Optical CCDs
ING Banner
Home > Public Information > ING Detectors > Optical CCDs


Optical CCDs


A CCD is an array of photosensitive elements, each one of which generates photoelectrons and stores them as a small bucket of charge. When requested, the elements form a bucket brigade; each row of charges is passed from element to element down the columns and horizontally along the final row to be measured in turn and recorded digitally.

Below it's a summary of the CCDs used so far at ING. Please visit this web page for the CCDs currently available: ING CCDs Home Page.



Figure 1. A selection of CCDs that RGO operated. In a clockwise direction these are: SITe-002 (2048×4096), Loral 2k3eb (2048×2048), EEV CCD42-80 (2048×4096), SITe-424 (2048×2048), GEC P8603 (385×578), EEV 15-11 (1024×256), TK1024 (1024×1024), Loral 512FT (512×1024), EEV-05-30 (1242×1152), EEV CCD42-10 (2048×512), Loral-64 (64×64), EEV CCD39-01 (80×80).


Selected Optical CCDs used at ING on a common-user basis
Chip GEC P8603 RCA SID501 EEV P88200 EEV-05-30 Ford-Loral EEV-02-06 TEK-1024 EEV-05-50 EEV-42-80 Loral 2k3eb SITe 424 Marconi MITLL3 CCD 4720 (Autoguider/TV) QUCAM RED+
Useful imaging area (pixels) 385×578 320×512 770×1152 1242×1152 2048×2048 335×520 1024×1024 2186×1152 2048×4100 2048×2048 2048×2048 2047×4611 2043×4098 1028×977 1026×1024 2048×4096
Pixel size 22µ 30µ 22.5µ 22.5µ 15µ 22µ 24µ 22.5µ 13.5µ 15µ 24µ 13.5µ 15µ 13µ 13µ 15µ
Image area (mm) 8.5×12.7 9.6×15.3 17.3×25.9 28×26 30.7×30.7 7.4×11.4 24×24 49.2×25.9 27.6×55.3 30.7×30.7 49.1×49.1 27.6×62.2 30.6×61.5 13.4×12.7 13.4×13.3 30.7×61.4
Readout noise 6-10e- 60e- 4-5e- 3-5e- 12e- 8.5e- 5-10e- 4.4e- 4.5-7.5 e- 6.4e- 6.1e- 3.5-5.0e- 2.3-2.8e- 4.4-7.0e- <1e--4e- 3.9-6.2e-
Dark Current <1e-/hour <4e-/hour <10-/hour 8e-/hour 5-9e-/hour 0-5e-/hour 11e-/hour 1-3e-/hour 3e-/hour Unknown <1e-/second <1e-/hour <8-/hour
Peak QE 48% 76% 50% 50% 37% 80% 70% 44% 85% 91% 79% 91% 89% 92% ~91% 92%
QE @ 650 nm 55% 75% 50% 50% 38% 70% 42% 74% 80% 78% 90% 84% 88% ~88% 91%
QE @ 400 nm 15% (coated), 4% (uncoated) 40% 15% (coated) 15% (coated) 16% 54% 13% 78% 84% 52% 53% 25% 47% ~47% 49%
QE @ 800 nm 40% 63% 48% 37% 28% 58% 33% 54% 68% 64% 78% 84% 66% ~66% 83%
First commissioning Jun 84 Jul 85 Jul 89 Apr 91 Oct 91 May 92 Mar 92 Feb 95 Jun 97 Jun 96 May 97 May 2002 July 2003 March 2003 May 2005 November 2006
Retired from service Aug 96 Jul 93 Jun 91 Jun 94 Aug 98 Jan 98
Figure 1. Evolution of optical CCDs and infrared arrays at ING in terms of detection efficiency (=Peak Quantum Efficiency(%)/Typical Readout Noise(e-)) [ JPEG | TIFF ].


Figure 2. Evolution of optical CCDs. Detection Efficiency is defined as Peak Quantum Efficiency (%) divided by Typical Readout Noise (e-). Size is measured in pixels.


Figure 3. Evolution of optical CCDs in terms of readout time in fast speed mode per pixel [ JPEG | TIFF ].


Figure 4. Evolution of optical detectors' survey capabilities at ING. Survey capability is defined as (PQE×pixels2)/(σreadout×Treadout). PQE is percentual Peak Quantum Efficiency, σreadout is typical readout noise in e-, and Treadout is readout time in slow speed mode [ JPEG | TIFF ].


The Complete List


Chip Type Name Operating Dates  Bias Level (ADU) Read Noise (e-) Gain (e-/ADU) Max Counts -in most cases linearity limit (ADU) Format (useful imaging area) (pixels) Pixel Size (microns) Dark Current (e/-hour) Description Comments
RCA 501EX RCA Jul 85-Feb 87 1300 60 3.8 >65k 320×512 30µ Thinned Anti-Reflecting (AR) CCD, enhanced peak/UV response, uncoated. Back-illuminated.
RCA 501EX RCA2 Feb 87- 300 60 3.8 >65k 320×512 30µ Thinned AR CCD, enhanced peak/UV response, uncoated. Back-illuminated.
GEC P8603 FOS1 May 85-May 88 150 7 27k 385×578 22µ
GEC P8603 FOS1 May 88- 150 8 1 >65k 385×578 22µ Dye-coating CCD to give enhanced UV-response High-quality coated-CCD
GEC P8603 GEC1 Jun 84-Dec 86 140 5 0.8 40k 385×578 22µ A nominal preflash was routinely used
GEC P8603 GEC1 Feb 87-Dec 87 100 7 0.8 >30k 385×578 22µ Un-coated chip
GEC P8603 GEC3 Dec 87-Apr 92 100 7 1 >65k 385×578 22µ Dye-coating CCD to give enhanced UV-response
GEC P8603 GEC2 Sep 85-Mar 86 100  6 1 30k 385×578 22µ
GEC P8607 GEC2 Jul 86-Nov 86 100 8 1.6 35k 385×578 16µ
GEC P8603 GEC2 Nov 86-Jan 88 150 9 2.2 >65k 385×578 22µ
GEC P8603 GEC4 Jan 88-May 89 200 6.5 1.1 >65k 385×578 22µ Dye-coating CCD to give enhanced UV-response
GEC P8603 FOS2 Aug 87-May 89 200 10 2 30k 385×578 22µ Dye-coating CCD to give enhanced UV-response Standard ESO-coated EEV CCD
GEC P8603 GEC5 Jul 88- 150  9 1.1 40k 385×578 22µ Dye-coating CCD to give enhanced UV-response Standard ESO-coated EEV CCD
GEC P8603 GEC6 May 89-May 92 200 8 1 60k 385×578 22µ Dye-coating CCD to give enhanced UV-response
GEC P8603 FOS2 May 89- 200 9.5 2.3 >50k 385×578 22µ Dye-coating CCD to give enhanced UV-response
EEV P88225 EEV1 Jul 89-Dec 89 2450 5 1.7 60k 770×1152 22.5µ In July 89 switched to operate with the new WHT Dwingeloo CCD controller
EEV P88231 EEV2 Dec 89-Jun 91 2630 4 1.1 60k 770×1152 22.5µ Super-grade, un-coated 88200 CCD
EEV-05-30 EEV3 Apr 91- Aug 98 3850 3.5 0.8 60k 1242×1152 22.5µ Metachrome phosphor coating, for UV  response
EEV-05-20 EEV4 Jun 91- 2700 4 1 50k 770×1152 22.5µ Metachrome phosphor coating, for UV  response Coated, super-grade chip
EEV-05-30 EEV5 Oct 91- 4100 4.5 0.7 >45k 1242×1152 22.5µ 8 Metachrome phosphor coating, for UV  response Coated, super-grade chip. 
EEV-05-30 EEV6 Oct 91- 3600 3.5 1.0 >50k 1242×1152 22.5µ Metachrome phosphor coating, for UV  response
Tek TK1024 TEK1 Mar 92-Oct 92 450 5/12 2.4 >60k 1024×1024 24µ Thinned AR CCD for enhanced peak/UV response
Tek TK1024 TEK1 Nov 92- 2290 5 1.3 60k 1024×1024 24µ Thinned AR CCD for enhanced peak/UV response
EEV-05-30 EEV7 Apr 92- 4300 4 0.76 >60k 1242×1152 22.5µ Metachrome phosphor coating, for UV  response
EEV-02-06 GEC7 May 92- 7600 8.5 1.4 >60k 335×520 22µ Metachrome phosphor coating, for UV  response
GEC P8603 GEC3.1 May 92- 100 7 1 >65k 385×578 22µ Dye-coating CCD to give enhanced UV-response
Ford-Loral Ford 2048×2048 15µ
Tek TK1024 TEK2 Nov 93- 1088 4.9 1.1 60k 1024×1024 24µ Thinned AR CCD for enhanced peak/UV response
Tek TK1024 TEK3 May 94-Dec 98 800 4.5 0.7 >65k 1024×1024 24µ 9 Thinned AR CCD for enhanced peak/UV response
Tek TK1024 TEK4 Jul 94- 1138 4.0 1.2 60k 1024×1024 24µ <6 Thinned AR CCD for enhanced peak/UV response
EEV-05-50  EEV9 Feb 95-Aug 98 4390 4.4 0.69 50k 2186×1152 22.5µ Metachrome phosphor coating, for UV  response
EEV-42-80 EEV10 Jul 97-Mar 98 7.5 0.75 2048×4096 13.5µ ~0
Loral LOR1a Jun 97-Jan 98 2486 6.4 0.63 60k 2048×2048 15µ 11
Loral LOR2 Jun 97-Jan 98 2048×2048 15µ
EEV-42-80 EEV12 May 98- 930 4.5 1.0 2048×4100 13.5µ 5.1
SITe SITe1 May 97- 1240 6.1 1.35 2048×2048 24µ 3
Tek
TK 1024
TEK6 Mar 95- 1001 5.7 1.35 60k 1024×1024 24µ Thinned AR CCD
Tek
TK 1024
TEK5 Dec 94- 427 4.3 1.1 60k 1024×1024 24µ 7
EEV-42-80 EEV10a Mar 98- 794 4.2 1.2 65k 2048×1024 24µ 4
FOS1 FOS1 Mar 98- 1147 8.6 0.8 60k 512×1024 15µ 1 Thinned backside illuminated with passivated platinum surface
SITe SITe2 Dec 97- 906 6.6 1.1 60k 2048×2048 24µ 1
EEV-42-80 WHTWFC November 1999- 1463(fast)-1371(slow)   1.3(fast)-0.9(slow) 60K 2048×4100 13.5µ   The camera contains two EEV-42-80 thinned and AR coated CCDs butted along their long axis to provide a 4K × 4K pixel mosaic. It's used in both PFIP and WYFFOS
EEV-42-80 EEV13 July 2001- 2250(slow)-1750(fast) 4 (slow)-6.7(fast) 1.2(slow)-2.4(fast)   2048×4100 13.5µ      
Marconi Marconi2 May 2002- 726 (fast)-1386 (slow) 5.0 (fast)-3.5 (slow) 2.2 (fast)-1.1 (slow) 62k (fast)-57k (slow) 2047×4611 13.5µ 3e- per hour Grade 1 Deep Depletion low fringing CCD with 550nm AR coating. Red sensitive device assigned to ISIS red arm on the WHT.
MIT CC1D20 MITLL3 2003- 3450 (fast)-6451 (slow) 2.8 (fast)-2.3 (slow) 1.37 (fast)-0.67 (slow) 60k (fast)-65k (slow) 2043×4098 15µ Unknown CC1D20 deep depletion. Assigned to OASIS on the WHT.
CCD 4720 AG 1-4 (autoguiders/TV) March 2003- 1715 (fast)-1880 (slow) 7.0 (fast)-4.4 (slow) 1.0 (fast)-0.5 (slow) 47k (fast)- 65k (slow) 1028×977 13µ <1e-/s Thinned backside-illuminated chip with hermetically sealed packages and integral Peltier coolers.
CCD 5710 AG 5-7 (autoguiders/TV) December 2003- 1620 (fast)-2040 (slow) 11.0 (fast)-7.0 (slow) 1.80 (fast)-0.83 (slow) 47k (fast)- 65k (slow) 512×512 13µ <1e-/s Thinned backside-illuminated chip with hermetically sealed packages and integral Peltier coolers.
E2V CCD97 QUCAM1 May 2005- 2300(fast)-2320(slow) 0.1(fast)-1 (slow) 0.01(fast)-0.125(slow) 18K 1026×1024 13µ <1e-/hour    
E2V CCD201-20-4-122 QUCAM2 May 2005- 2400(fast)-2200(slow) <1(fast)-4 (slow) 1(fast)-0.97(slow)   1026×1024 13µ <1e-/hour    

CCD44-82-5-D23

RED+ November 2006- 3190 (slow)-2320(fast) ~3.9 (slow)-~6.2(fast) 0.98(slow)-1.9(fast) 60K 2048×4096 15µ <8e-/hour    

CCD44-82-1-D23

AUXCAM November 2007- 1900(slow)-1020(fast) ~3.2(slow)-~5.6(fast) 0.92(slow)-1.86(fast) 65K 2048×4096 15µ <4e-/hour    
E2V CCD201-20-4-122 QUCAM3 September 2008- 2400 (fast)-1980 (slow) <1(fast)-4(slow) 260 (fast)-1 (slow)   1026×1024 13µ <1e-/hour    

CCD44-82-1-D23

RED+2 February 2011- 3730(slow)-2980(fast) 3.5(slow)-5.7(fast) 0.9(slow)-1.9(fast) 60K 2048×4096 15µ <8e-/hour    
Chip Type Name Operating Dates  Bias Level (ADU) Read Noise (e-) Gain (e-/ADU) Max Counts -in most cases linearity limit (ADU) Format (useful imaging area) (pixels) Pixel Size (microns) Dark Current (e/-hour) Description Comments

Notes:

  1. Typical digitised areas exceed the size of the imaging area; e.g. 1124×1124 for TEK CCDs.
  2. Readout-noise is quoted at the STANDARD readout speed.
  3. ADU=analogue-digital converter units. The figure is given for the default (standard) readout speed.
  4. The maximum available digitised count is always 65535. This is a purely electronic limitation. In some cases measurements close to this limit have not been made; these are often indicated by, e.g., >55k. Usually the linearity limit is constrained by the ADC range combined with the electronic gain of the system, rather than by a real limitation of the CCD (which exceeds 100,000 electrons in most cases).
  5. The GEC CCD was originally made by GEC-Hurst Research Centre; however all devices are now made by EEV (Chelmsford, part of GEC group).


References and more information:



Top | Back

Contact:  (Public Relations Officer)
Last modified: 23 July 2015