I saac N ewton G roup R ed I maging D etector

Release notes for SDSU software Version 2.1

Peter Moore 16th August 1999..

Version 2.1 of the INGRID SDSU Timing board software is built upon Version 2.0 and incorporates minor changes to fix bugs, remove artefacts, and improve the software behavioural stability. It also serves to familiarise the author with the detector controller software. Please read SDSU INTERFACE CONTROL DOCUMENT VERSION 2.1 in conjunction with these notes.

	Ver	Bug Bonort	Current Status in V2.1
1	2.0	Bug Report MRA Command accepts ZERO	MRA Command now accepts zero as valid
	2.0	as valid input for number of	number of reads and returns image of zero
		readouts. Should either reject	pixels. This can be used gainfully to test
		this with error or behave	scripts without actually acquiring data.
		normally returning an image of	
		size zero bytes. Currently it	
		streams data in image mode.	
2	ICD	ICD provides no way of setting	See SDT command in ICD v2.1
		required detector servo	
		temperature.	
3	ICD	How are version numbers	As compact 3 character ASCII format.
		encoded in 24 bit memory	Version number '000' is reserved to indicate
		locations ?	that no application program is present.
4	2.0	Software returns strange version	Version 2.1 of software now consistently
		numbers.	returns string '2.1' as version for boot and
			application code at locations \$P:6 & \$P:7
5.	ICD	How is the temperature encoded	respectively for utility and timing code. Now returns temperature in units kelvin. See
5.		How is the temperature encoded in the 24 bit memory locations ?	TEM command in ICD 2.1
6.	ICD	Specification for TEM command	TEM command will either return an integer
0.	100	gives no way of checking	in the range of $0 - 333$ Kelvin (hex 000000 -
		whether command was	00014D) or ascii code 'ERR'.
		accepted. Unlike with RDM and	
		CHK commands which are	
		resident in the boot code, this is	
		an issue.	
7	2.0	Attempt to read minimum	ICD gave incorrect location to see minimum
		exposure time from X:30 gives	exposure time. See list of current locations
		HED error.	below for correct location map.
8	ICD	ICD doesn't define mapping	No change – awaiting characterization
		between physical location of	efforts to arrive at optimum setting. The pixel
		pixels and order in which they are transmitted back to host.	order may change.
9	2.0	ABR command doesn't abort	ABR now asyncronously aborts a readout
3	2.0	until middle of MNDR sequence.	during the integration stage of any
		The preferred behaviour is that	exposure sequence with correct reply sent
		ABR will be processed at each	(DON). This implies that the das system will
		end of array read.	be able to predict the exact amount of data
			that arrives (i.e. one complete MNDR
			sequence) to facilitate host FO switching
			(data / msg). The ABR command cannot
			abort readouts during an MNDR sequence
			due to limitations of the SDSU architecture.

Figure 1 Bug Fix status for Version 2.1.

Changes to Behavioural model.

- 1. The Command sequence used to generate test data has been modified. The command DAT is now sent with one mode select variable between the ranges of 0 and 3 that corresponds to real image data, test generator 1 or test generator 2 respectively. In addition a 3rd mode (3) is incorporated that allows 'read up ramp' mode. This mode takes n integrations (where n is the variable n of the MRA command) of exp time p each. The variable p is the exposure time set by the 'SET' command. This sends one frame of data back after reset and then each p milliseconds for a total of n frames. The Default power on (and after CON command sent) is zero, real image data. Once the mode has been set it will remain in effect until cancelled by setting another mode value The readout mode currently selected can be read back from the timing application at address \$X:3A
- 2. The MRA command now accepts as valid multiple readout values integers between 0 and 16,777,216 (2²4).
- 3. A new command at the boot level is incorporated to allow simple testing of communication integrity to/from the sdsu controller. By issuing the command 'NOP' (no operation) the sdsu will respond with 'DON' (done). This command cannot unfortunately be used during a MNDR sequence as it compromises the timing integrity and competes for the fiber comms link (limitation of the SDSU controller), however, it will be queued and processed after an MNDR sequence finalizes.
- 4. Checksum values for code are now as follows:-

Timing Boot	B46057
Timing Application	61A2FA
Utility Boot	EE8C33
Utility Application	323D77

Noted inconsistencies from version 2.0 for evaluation and ratification.

- Exposure timer is set running after completion of post reset MNDR sequence. This means that the effective integration time is the time for one MNDR sequence (Min exp time @ X:38) plus whatever integration value is set with the SET command. The minimum exposure time from the point of view of the host is therefore zero millisecs which will result in an integration equal to the minimum integration time of 0.847 secs. This inconsistency must be dealt with to provide accurate (0.1%) timing information to the user.
- 2. After boot or reset to the sdsu, all memory locations read back to the host will be at a value of 0xFFFFF. This may confuse the host system if not aware that the application code is not available. This could happen by a spontaneous boot from the watchdog, etc.

Board	Address	Available	Туре	Description
Timing	\$P:6	Boot	ASCII	Timing boot eeprom sw version
Timing	\$P:7	Appl	ASCII	Timing application code sw version
Timing	\$X:0	Appl	INT	Timing Application Mode Status Word ⁽¹⁾
Timing	\$X:1	Appl	INT	Target Integration time
Timing	\$X:2	Appl	INT	Elapsed Integration time
Timing	\$X:30	Appl	INT	Number of MNDR Reads in current
				exposure
Timing	\$X:31	Appl	INT	Delay between reset and first read.
Timing	\$X:35	Appl	INT	Number of reset pulses per pixel column
Timing	\$X:36	Appl	INT	Number of reset cycles per reset
Timing	\$X:37	Appl	INT	Time in ns for each pixel read
Timing	\$X:38	Appl	INT	Time in ms for full frame read (i.e min exp time)
Timing	\$X:39	Appl	INT	Number of preconditioning cycles per read
Timing	\$X:3A	Appl	INT	Current readout mode (0 = real, 1 & 2 test modes)
Utility	\$P:6	Boot	ASCII	Utility boot eeprom sw version
Utility	\$P:7	Appl	ASCII	Utility application code sw version

Figure 2 LIst of active addresses within the SDSU environment.

Notes:

•

1. Status word defined as:

Bit #	Significance		
0	Application executive loop active		
1	Continuous reset to detector active		
2	Continuous video streaming mode active		
3	Clock test mode active		
4	Readout / integration in progress		