

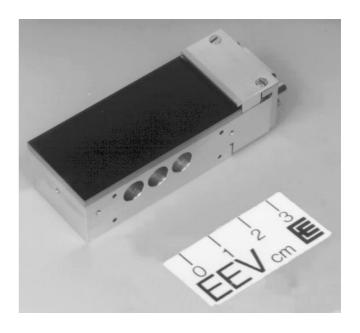
EEV CCD42-80 Back Illuminated High Performance CCD Sensor

FEATURES

- 2048 by 4096 Pixel Format
- 13.5 µm Square Pixels
- Image Area 27.6 x 55.3 mm
- Wide Dynamic Range
- Symmetrical Anti-static Gate Protection
- Back Illuminated Format for Enhanced Quantum Efficiency
- 3-side Buttable Close Butting Package
- Gated Anti-blooming Readout Register
- Low Noise Variable Gain Output Amplifier
- Flatness better than 15 µm peak to valley

APPLICATIONS

- Astronomy
- Scientific Imaging


INTRODUCTION

This version of the CCD42 family of CCD sensors has full-frame architecture. Back illumination technology, in combination with an extremely low noise amplifier, makes the device well suited to the most demanding applications, such as astronomy. To further improve sensitivity, the CCD is manufactured without anti-blooming structures.

The output amplifier is designed to give excellent noise levels at low pixel rates and can match the noise performance of most conventional scientific CCDs at pixel rates as high as 1 MHz.

The readout register has a gate controlled dump-drain to allow fast dumping of unwanted data. The register is designed to accommodate four image pixels of charge and a summing well is provided capable of holding six image pixels. The output amplifier has a feature to enable the responsivity to be reduced, allowing the reading of such large charge packets.

The device is supplied in a package designed to facilitate the construction of large close-butted mosaics and is designed to be used cryogenically. The design of the package will ensure that the device flatness is maintained at the working temperature.

TYPICAL PERFORMANCE

Pixel readout frequency			20 -	1000	kHz
Output amplifier sensitivity .				. 4.5	$\mu V/e^-$
Peak signal				150	ke ⁻ /pixel
Spectral range			200 -	1060	nm
Readout noise (at 188 K, 20 kl	⊣z)			. 3	e rms
QE at 500 nm				90	%
Peak output voltage				675	mV

GENERAL DATA

Format

Image area					27.6 x 55.3	mm
Active pixels	s (H)				. 2048	
	(∨)				4096 + 4	
Pixel size .					13.5 x 13.	5 µm

Package Package size

i ackage size					-			•	/	/ .Z	<i>J</i> ^	20	. 10	2 1111111
Number of pi	ins													36
Window mat	eria	ıl												N/A
Inactive edge	sp	aci	ng	:										
sides										28	30			μm
top										1!	50			um

EEV Limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU England Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: info@eev.com Internet: www.eev.com Holding Company: The General Electric Company, p.l.c. A member of the Marconi Avionics Group.

EEV, Inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 682-8922 e-mail: info@eevinc.com

77 25 v 28 168 mm

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	100k	150k	-	e ⁻ /pixel
Peak output voltage (unbinned)		675		mV
Dark signal at 153 K (see note 2)		< 0.1	4	e ⁻ /pixel/hour
Charge transfer efficiency (see note 3): parallel serial	99.999 99.999	99.9999 99.9993		% %
Output amplifier sensitivity	3.0	4.5	6.0	μV/e ⁻
Readout noise at 188 K (see note 4)		3	4	rms e ⁻ /pixel
Readout frequency (see note 5)	-	20	1000	kHz
Output node capacity OG2 high OG2 low		1000k 200k	-	electrons electrons

Spectral Response

	Spectral Resp	onse (QE)	Response	
Wavelength (nm)	Typical	Min	Non-uniformity, max (1ರ)	
350	50	40	5	%
400	80	70	3	%
500	90	80	3	%
650	80	75	3	%
900	30	25	5	%

ELECTRICAL INTERFACE CHARACTERISTICS

Electrode capacitances (measured at mid-clock level)

	Min	Typical	Max	
IØ/IØ interphase	-	TBD	-	nF
RØ/RØ interphase	-	TBD	-	pF
IØ/SS	-	TBD	-	nF
RØ/SS	-	TBD	-	pF
Output impedance	-	TBD	-	Ω

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Dark signal is typically measured at 188 K and $\rm V_{ss}=+9~V.$ The dark signal at other temperatures may be estimated from:

$$Q_d/Q_{d0} = 122T^3e^{-6400/T}$$

where Q_{d0} is the dark current at 293 K.

- 4. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 10 μs integration period with OG2 = OG1 + 1 V.
- 5. Readout above 1000 kHz can be achieved but performance to the parameters given cannot be guaranteed.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Traps are counted if they have a capacity

greater than 200 e⁻ at 188 K.

 $\textbf{Slipped columns} \ \, \text{Are counted} \ \, \text{if they have an amplitude}$

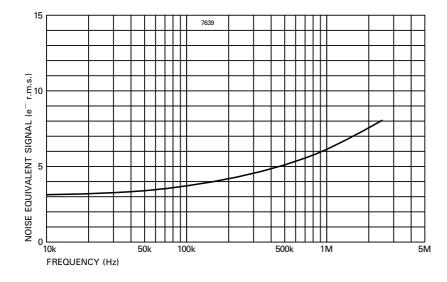
greater than 200 e^- .

Black spots Are counted when they have a responsivity

of less than 80% of the local mean signal.

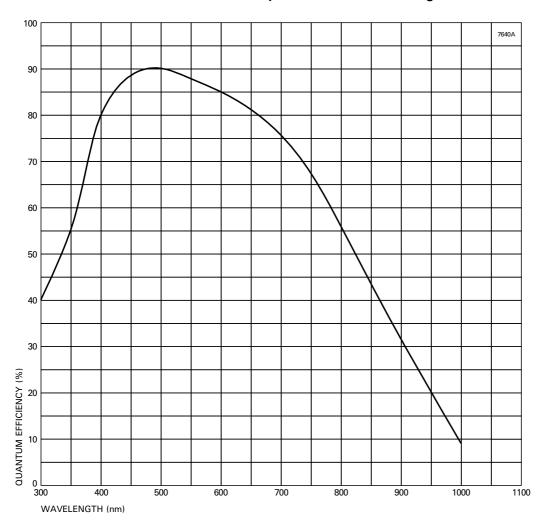
rate equivalent to 100 electrons per pixel per hour at 153 K (typically measured at 188 K). The typical temperature dependence of white spot blemishes is the same as that of the average dark signal i.e.:

 $Q_d/Q_{d0} = 122T^3e^{-6400/T}$

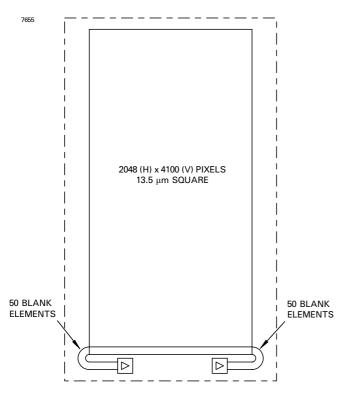

Column defects A column which contains at least 100 white

or black defects.

GRADE	0	1	2
Column defects	2	6	12
Black spots	500	750	1000
Traps > 200 e ⁻	15	30	50
White spots	250	400	600


TYPICAL OUTPUT CIRCUIT NOISE

(Measured using clamp and sample, temperature range 140 - 230 K)



TYPICAL SPECTRAL RESPONSE

(At $-90~^{\circ}$ C, measured with astronomy broadband AR coating)

DEVICE SCHEMATIC

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS 21-pin Micro D-connector

			PULS	SE AMPLITUE	DE OR	
			DC LE	VEL (V) (see	note 6)	MAXIMUM RATINGS
PIN	REF	DESCRIPTION	Min	Typical	Max	with respect to V_{SS}
1	SW(L)	Summing well (left)	(CLOCK AS RØ	ý 3	<u>+</u> 20 V
2	DG	Dump gate (see note 6)	-	0	-	<u>+</u> 20 V
3	ØR(L)	Reset gate (left)	9	12	15	<u>+</u> 20 V
4	RØ2(L)	Register clock phase 2 (left)	9	11	15	<u>+</u> 20 V
5	RØ1(L)	Register clock phase 1 (left)	9	11	15	<u>+</u> 20 V
6	RØ3	Register clock phase 3	9	11	15	<u>+</u> 20 V
7	RØ1(R)	Register clock phase 1 (right)	9	11	15	<u>+</u> 20 V
8	RØ2(R)	Register clock phase 2 (right)	9	11	15	<u>+</u> 20 V
9	ØR(R)	Reset gate (right)	9	12	15	<u>+</u> 20 V
10	DG	Dump gate (see note 6)	-	0	-	<u>+</u> 20 V
11	SW(R)	Summing well (right)	(CLOCK AS RØ	1 3	<u>+</u> 20 V
12	OG1(L)	Output gate 1 (left)	1	2	3	<u>+</u> 20 V
13	SS	Substrate	0	9	10	-
14	IØ2	Image area clock, phase 2	8	10	14	<u>+</u> 20 V
15	IØ1	Image area clock, phase 1	8	10	14	<u>+</u> 20 V
16	IØ3	Image area clock, phase 3	8	10	14	<u>+</u> 20 V
17	-	No connection	-	-	-	-
18	-	No connection	-	-	-	-
19	-	No connection	-	-	-	-
20	SS	Substrate	0	9	10	-
21	OG1(R)	Output gate 1 (right)	1	2	3	<u>+</u> 20 V

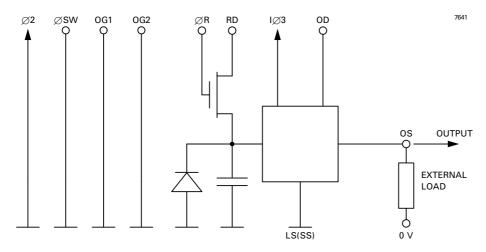
NOTE

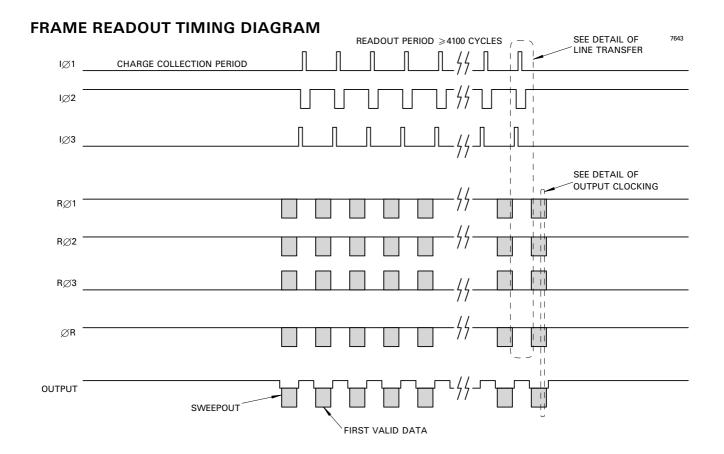
6. Non-charge dumping level shown. For operation in charge dumping mode DG should be pulsed to 12 ± 2 V.

15-pin micro D-connector

			PULSE AMPLITUDE OR DC LEVEL (V) (see note 6)			MAXIMUM RATINGS
PIN	REF	DESCRIPTION	Min	Typical	Max	with respect to $V_{S\ S}$
1	DD	Dump drain	22	24	26	−0.3 to 30 V
2	RD (L)	Reset drain (left)	15	17	19	−0.3 to 30 V
3	OG2(L)	Output gate 2 (left)		see note 7		<u>+</u> 20 V
4	-	No connection	-	-	-	-
5	-	No connection	-	-	-	-
6	OG2(R)	Output gate 2 (right)		see note 7		<u>+</u> 20 V
7	RD(R)	Reset drain (right)	15	17	19	−0.3 to 25 V
8	DD	Dump drain	22	24	26	−0.3 to 30 V
9	OD(L)	Output drain (left)	27	29	31	−0.3 to 35 V
10	OS(L)	Output transistor source (left)		see note 8		−0.3 to 25 V
11	SS	Substrate	0	9	10	-
12	SS	Substrate	0	9	10	-
13	SS	Substrate	0	9	10	-
14	OS(R)	Output transistor source (right)		see note 8		−0.3 to 25 V
15	OD(R)	Output drain (right)	27	29	31	−0.3 to 35 V

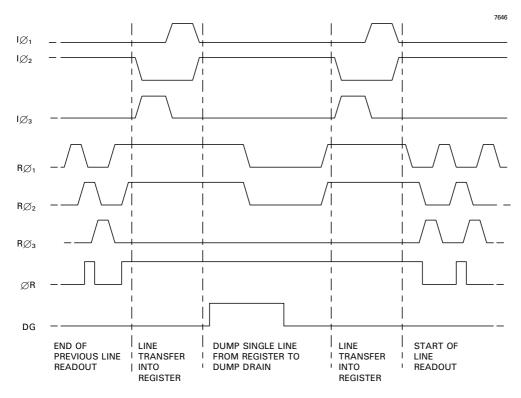
If all voltages are set to the typical values operation at, or close to, specification should be obtained. Some adjustment within the minimum - maximum range specified may be required to optimise performance.

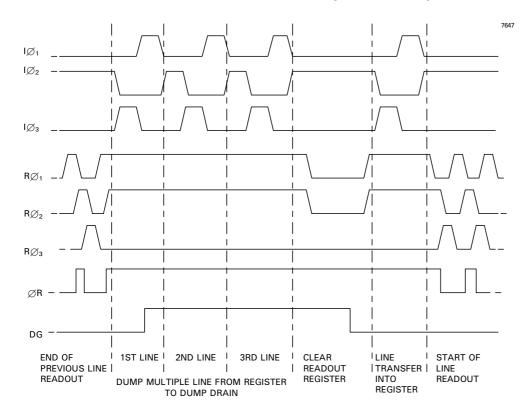

Maximum voltage between pairs of pins: OS to OD \pm 15 V.

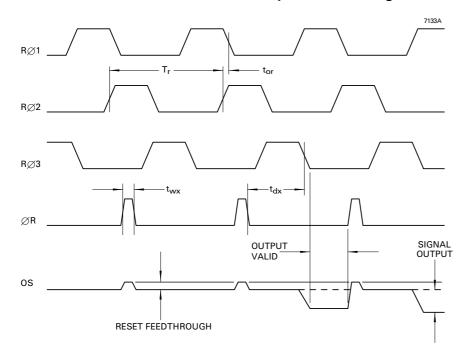

Maximum current through any source or drain pin: 10 mA.

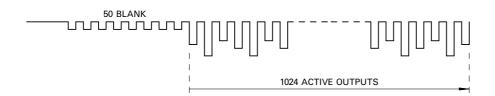

NOTES

- 7. OG2 = OG1 + 1 V for operation of the output mode in high responsivity, low noise mode. For operation at low responsivity high signal OG2 should be set to +20 V
- 8. Not critical; can be a 3 to 5 mA constant current source, or 5 to 10 $\text{k}\Omega$ resistor.
- 9. Readout register clock pulse low levels +1 V; other clock low levels 0 \pm 0.5 V.
- 10. With the R \varnothing connections shown this device will operate through both outputs simultaneously. In order to operate from the left hand output only R \varnothing 1(R) and R \varnothing 2(R) should be reversed.


OUTPUT CIRCUIT




DETAIL OF VERTICAL LINE TRANSFER (Single line dump)

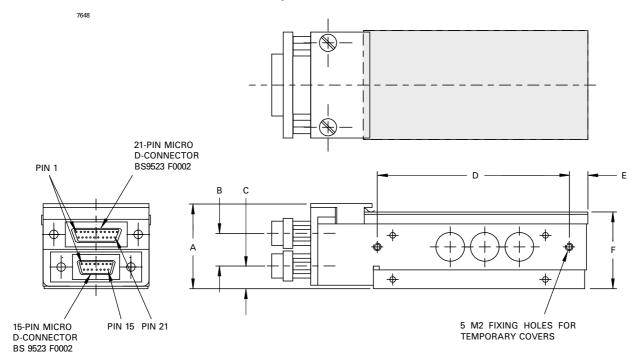

DETAIL OF VERTICAL LINE TRANSFER (Multiple line dump)

DETAIL OF OUTPUT CLOCKING (Operation through both outputs)

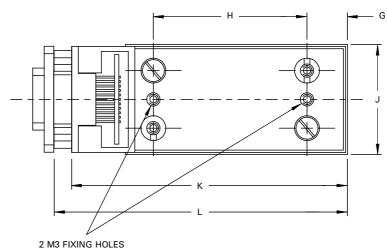
LINE OUTPUT FORMAT (Split read-out operation)

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	50	100	see note 11	μs
t _{wi}	Image clock pulse width	25	50	see note 11	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	1	10	0.5t _{oi}	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	10	0.5t _{oi}	μs
t _{oi}	Image clock pulse overlap	5	10	0.2T _i	μs
t _{li}	Image clock pulse, two phase low	10	20	0.2T _i	μs
t _{dir}	Delay time, I∅ stop to R∅ start	10	20	see note 11	μs
t _{dri}	Delay time, R∅ stop to I∅ start	1	2	see note 11	μs
T _r	Output register clock cycle period	1	see note 12	see note 11	μs
t _{rr}	Clock pulse rise time (10 to 90%)	100	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	50	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	50	0.1T _r	0.2T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	20	0.5t _{rr}	0.2T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	50	0.5T _r	0.8T _r	ns


7645

NOTES


- 11. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.
- 12. As set by the readout period.

OUTLINE

(All dimensions without limits are nominal)

Ref	Millimetres
Α	22.50
В	8.50
С	6.00
D	50.00
Е	4.83
F	20.00 ± 0.015
G	10.83
Н	40.00
J	28.168 ± 0.010
K	72.60
L	77.25

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:-

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (pins 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 21 on the 21-pin micro D-connector and pins 3 and 6 on the 15-pin micro D-connector) but not to the other pins.

HIGH ENERGY RADIATION

Device parameters may begin to change if subject to greater than 10^4 rads. This corresponds to:

 10^{13} of 15 MeV neutrons/cm² 2 x 10^{13} of 1 MeV gamma/cm² 4 x 10^{11} of ionising particles/cm²

Certain characterisation data are held at EEV. Users planning to use CCDs in a high radiation environment are advised to contact EEV.

TEMPERATURE LIMITS

	Min	Typical	Max					
Storage	73	-	373	Κ				
Operating	73	153	323	K				
Operation or storage in humid conditions may give rise to ice on								
the sensor surface on cooling, causing irreversible damage.								
Maximum device heating/cooling 5 K/min								

Whilst EEV has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. EEV accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.