Requirements from imaging surveys and spectroscopy for near-field cosmology

using wide-field imaging and spectroscopy to probe the assembly history and properties of dark and visible matter in Local Group galaxies

Near-field cosmology - some key questions

- where are the missing satellites predicted in ΛCDM ?
- are dark matter profiles universal ? NFW ?
- what is the extent, nature and spatial distribution of dark matter ?
- how were the Galaxy and M31 constructed ? are they typical disk galaxies ?
- what was the role of accretion in the formation of the Galactic halo, disk, bulge ?
- what was the detailed chemical enrichment history of the stellar components of each structure ?
- do the Galaxy and M31 look like the predictions ?

Galaxy substructure and satellite accretion

 ΛCDM models predict large-scale subtructure in L_* galaxies like M31 and the MW

Bullock & Johnston 2005

300 x 300 kpc

GA science requires detailed chemo-dynamic tagging

- chemo-dynamic structure of Galactic components
 - interface between disk, bulge/bar, halo
 - ancient dissolved and surviving substructures
- fossil record of chemical evolution of stellar pops
 - chemical signature of ancient accretions
 - discovery and properties of metal-poor popIII stars
- evolutionary history of stellar components
 - IMF, SFH, tagging the chemical development
 - tracking the role of star clusters
- linking the Bulge to the high Z universe
 detailed comparative spectral synthesis
- detailed chemo-dynamics of surviving satellites
 crucial for analysis of outer profiles & links to DM

Example: Canis-Major and the Monoceros Ring – a disk accretion ?

kinematics insufficient to discriminate between models -> need detailed abundances

Near-field chemo-dynamics: What do you need – I ?

- wide field well calibrated imaging optical -> NIR
- north: SDSS ugriz, UKIDSS zyJHK, Pan-STARRS, MegaCam, (Hyper)SuprimeCam
- south: Skymapper, VST, CTIO 4m DE, VISTA
- all-sky: 2MASS, UCAC3 calibration and pathfinders
- Gaia mission: proper motions and parallaxes
- large area stellar spectroscopy (million stars)
- automate majority of processing and analysis

	b =	20°	30°	60°	90°	
V = 17		2290	1318	468	355	HF
18		4074	$\frac{1010}{2239}$	7 41	550	
19		7079	3631	1122	832	
20		11482	5623	1698	1230	LF
21		17378	8128	2455	1778	
22		23988	11220	3467	2399	

Estimated V-band stellar density per square degree

Why a "WFMOS" is needed for chemodynamic analysis of nearby galaxies

 $\Delta DARX$

What do you need - II ?

- 4-8m class telescope with wide fov 1-2 deg diam
- 1000+ fibres to exploit target surface density
- survey selected regions totalling few 1000 sq deg
- LR survey vels to ~2 km/s; [Fe/H] to 0.1-0.2 dex
- sampled HR vels to 0.5 km/s; EWs to 5mA; good wavelength coverage e.g. few 1000A; abundances: light elements, alpha-elements, r- sprocess and heavy elements => chemical tagging
- synergy with Gaia => LR to V~20 HR to V~17
 (Gaia will revolutionise GA but lacks spectroscopic depth)

Stellar atmosphere modelling

LR CaT dwarf -v- giant s:n=100

LR Mgb dwarf -v- giant s:n=100

Summary

- large area spectroscopic studies of the MW and nearby galaxies are needed to test cosmological predictions on low-mass scales
 - nature and distribution of dark matter
 - detailed formation history of galaxies
- Gaia will revolutionise this field, but will lack detailed chemical information, as well as accurate radial velocities
 -> European consortium Gaia Chemo-Dynamical Survey
- complex spatial variations in properties require wide-field kinematics and abundance measures to analyse structure and test near-field cosmological predictions