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The main pointsThe main points

•• New and recycled ideas for Highly-multiplexedNew and recycled ideas for Highly-multiplexed
spectroscopyspectroscopy
–– Diverse Field Spectroscopy: Diverse Field Spectroscopy: paradigm and technologyparadigm and technology

–– AstrophotonicsAstrophotonics: : cut-price revolutioncut-price revolution

•• Key to successful exploitation of new observatoriesKey to successful exploitation of new observatories
for a wide range of astrophysicsfor a wide range of astrophysics

•• WHT could be the gatewayWHT could be the gateway
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Collecting the light that weCollecting the light that we
actually wantactually want

Advantages of spatially-resolved spectroscopyAdvantages of spatially-resolved spectroscopy
•• Avoid aperture effectsAvoid aperture effects

•• Correct radial velocityCorrect radial velocity

•• No ambiguity in slit positionNo ambiguity in slit position

•• Spectral and spatial resolution decoupledSpectral and spatial resolution decoupled

Poppett, Allington-Smith & Murray 2009 MNRAS 399,433
Murray & Allington-Smith 2009 MNRAS 399, 209
Allington-Smith 2007. MNRAS 379, 143
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The confused and blobby universeThe confused and blobby universe

SAURON 24h exposure with WHT of
LAB-1/SSA-2 protocluster

Is the whole sky like this at levels
accessible to ELTs?

Other traditional targets (GMOS-IFU):

What is the most efficientWhat is the most efficient
way to address such targets?way to address such targets?  

(Weijmans et al. 2009)
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Dilute samplingDilute sampling

ELTsELTs    101010 10 - 10- 101212  λλ(µm)(µm)-2-2  spatial elements in fully-corrected FOVspatial elements in fully-corrected FOV

      ⇒⇒  101014 14 - 10- 101616  λλ(µm)(µm)-2-2 detector pixels for spectroscopy detector pixels for spectroscopy

WHTWHT    10108   8   - 10- 101010  λλ(µm)(µm)-2-2  spatial elements in fully-corrected FOVspatial elements in fully-corrected FOV

      ⇒⇒  101012 12 - 10- 101414  λλ(µm)(µm)-2-2 detector pixels for spectroscopy detector pixels for spectroscopy

    ⇒⇒ select only specified  select only specified Regions of InterestRegions of Interest ( (RoIsRoIs))

ELTsELTs will often target clumpy & confused distributions will often target clumpy & confused distributions
(proto-galactic objects under assembly; IMBH & SMBH hosts)(proto-galactic objects under assembly; IMBH & SMBH hosts)

Need to address arbitrary distributions of targets:Need to address arbitrary distributions of targets:  MOS+IFS =MOS+IFS =

    Diverse Field SpectroscopyDiverse Field Spectroscopy
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DFS requirementsDFS requirements

Cosmological applications (ELT FOV) Cosmological applications (ELT FOV) 
–– 101055 - 10 - 1066 potential inputs potential inputs

–– 101033 - 10 - 1044  selectable outputs  selectable outputs

–– Downselection Downselection factor 10-100factor 10-100

•• But smaller formats useful But smaller formats useful (e.g. microscopy, demonstrators)(e.g. microscopy, demonstrators)
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DFS TechnologyDFS Technology
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Massively multiplexed fibresMassively multiplexed fibres

Lensed Lensed fibrefibre
arrayarray

ConnectorConnector
arrayarray

ClumsyClumsy
robotrobot

Smallest unitSmallest unit
of fibresof fibres

Graham Murray, CfAI, Durham)
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PrototypingPrototyping
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n x m switch made from 3
layers of n x 1 switches

Any NO = m points in the field 
of NI = n2 points can be routed 
to the output with downselection 
factor, F = n2/m

Example shown: n = 6, m = 3 
with contiguous field (red) so 
NI = 36, NO = 3, F = 6

[Note: IP protected]

Fibre opticalFibre optical
switchesswitches
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Free-space optical switchesFree-space optical switches

Micromirror	
  array

Micromirror	
  array

Microlens	
  arrays

Optical design:
Robert Content

Many fewer interconnections
but
More complex optics
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Fully Steerable MEMSFully Steerable MEMS

Free-space technologiesFree-space technologies
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RemappingRemapping

•• If you cannot use switches in cascadeIf you cannot use switches in cascade
- NO = m points in the field  of NI = n2 points can be routed to the output

with downselection factor, F = n2/m
-- But only n x 1 switches are available (no cascade)But only n x 1 switches are available (no cascade)

-- ⇒⇒  Contiguity is lost since only 1 output from each group of nContiguity is lost since only 1 output from each group of n

-- can be switched to the outputcan be switched to the output

•• Solution:Solution:
-- Randomise Randomise input-output mapping in input-output mapping in fibre fibre bundle to give finitebundle to give finite

probability that adjacent inputs can be  routed to the outputprobability that adjacent inputs can be  routed to the output
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Simulated Simulated RoI RoI selectionselection
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Incoherent remappingIncoherent remapping

• Remapping is very beneficial for clumpy distributions
• DFS is much more versatile than IFS or MOS

Incoherent
DFS

Coherent
DFS

IFS

(MOS)

(Poppett, Allington-Smith and Murray 2009, MNRAS)
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More radical optionsMore radical options
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Integrated Photonic spectrograph 

One miniature integrated One miniature integrated 
photonic spectrograph per fibrephotonic spectrograph per fibre

Demonstrated Demonstrated 
but not in but not in 

integrated deviceintegrated device

Devices exist but  notDevices exist but  not
integrated tointegrated to

detectordetector

Exists but notExists but not
integrated inintegrated in
spectrographspectrograph
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Phased photonic disperserPhased photonic disperser

Implementation with Ultrafast
Laser Inscription (HWU)

Fibre input

Phased arrayPropagation
region

Detector

Highly compact AWGs adapted 
and prototyped (Sydney)

Lipmann interferometry (Grenoble)
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ConclusionsConclusions

•• Maximum flexibility in sampling the field usingMaximum flexibility in sampling the field using
Diverse Field SpectroscopyDiverse Field Spectroscopy

•• More radical options using More radical options using AstrophotonicsAstrophotonics

•• To demonstrate the technology we need To demonstrate the technology we need 
money money and and telescope access!telescope access!

•• Could the WHT become the channel throughCould the WHT become the channel through
which these ideas become reality?which these ideas become reality?

Allington-Smith & Bland-Hawthorn; MNRAS in press
Czetojevic et al. 2009. Optics Express, Vol. 17, No.21, 18643
LeCoarer et al. Nature 2007. Photonics 1, 473
Thomson, Kar & Allington-Smith, 2009. OpEx 17, 1963
Poppett, Allington-Smith & Murray 2009 MNRAS 399,433
Murray & Allington-Smith 2009 MNRAS 399, 209
Allington-Smith 2007. MNRAS 379, 143
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Issues to addressIssues to address

•• Unique facility aimed at niche science?Unique facility aimed at niche science?
–– What aspects of the telescope are unique?What aspects of the telescope are unique? [but photon-starved] [but photon-starved]

–– What niches are compelling? [Cosmic What niches are compelling? [Cosmic EoSEoS; G-archeology, planets]; G-archeology, planets]

–– Dedicated to follow-up? [planets]Dedicated to follow-up? [planets]

–– What is the competition & window of opportunity?What is the competition & window of opportunity?

•• Excellent facility to empower community?Excellent facility to empower community?
–– Who are the community, what are their interests?Who are the community, what are their interests?

–– Is the telescope excellent in every area?Is the telescope excellent in every area?

–– What other facilities are available?What other facilities are available?

•• Testbed Testbed for future observatories?for future observatories?
–– Relevance and scalability? [few photons, low spatial resolution]Relevance and scalability? [few photons, low spatial resolution]

–– Who pays?Who pays?



Jeremy Allington-Smith


