

HECTOR Next generation multi-object IFU for the Anglo-Australian Telescope

Julia Bryant HECTOR project scientist Australian Astronomical Observatory University of Sydney CAASTRO

SAMI Galaxy Survey

http://sami-survey.org/

- •SAMI Galaxy Survey team of ~100 astronomers from Australia and internationally.
- •The galaxy survey began March 2013.
- •151-181 nights awarded from 2013B for ~3years.
- •3400 galaxies =
- 2800 field/group (from GAMA survey)
- + 600 cluster galaxies
 - >1000 observed already!

Public data release of 107 galaxies available to you! http://sami-survey.org/edr

Bryant et al. 2014 Allen et al. 2014 Sharp et al. 2014 Croom et al. 2012

SAMI Galaxy Survey

	2015MNRAS.446.1567 Allen et al.	"The SAMI Galaxy Survey: Early Data Release"
	2015MNRAS.447.2857 Bryant et al	"The SAMI Galaxy Survey: instrument specification and target selection"
	2015MNRAS.446.1551 Sharp et al.	"The SAMI Galaxy Survey: cubism and covariance, putting round pegs into square holes"
	2014MNRAS.445.1104 Richards et a	I. "The SAMI Galaxy Survey: the discovery of a luminous, low-metallicity
		H II complex in the dwarf galaxy GAMA J141103.98-003242.3
	<u>2014MNRAS.444.3894</u> Ho et al.	"The SAMI Galaxy Survey: shocks and outflows in a normal star-forming
galaxy	,n	
	2014ApJ.795L.37 Cortese et al.	"The SAMI Galaxy Survey: Toward a Unified Dynamical Scaling Relation for
		Galaxies of All Types"
	2014MNRAS.443.485 Fogarty et al.	"The SAMI Pilot Survey: the kinematic morphology-density relation in Abell
		85, Abell 168 and Abell 2399"
	<u>2014arXiv1409.7271</u> Fogarty et al.	"The Kinematic Morphology-Density Relation from the SAMI Pilot Survey"
	2013ASPC475345 Lorente et al.	"SAMI Automated Plug Plate Configuration"
	<u>2012ApJ761169</u> Fogarty et al.	"First Science with SAMI: A Serendipitously Discovered Galactic Wind in
	 Galactic winds 	ESO 185-G031"

- Universal dynamical scaling relation for different galaxy types
- Kinematic morphological-density relation for early-type galaxies
- Enhanced star formation in dwarf galaxies

SAMI is achieving great science, so what's next?

Larger galaxy samples are required

Local density | environment | inclination | stellar mass | morphology | redshift | stochastic variation and precision

➔ 100,000 galaxy survey required.

Origin of gas in galaxies

We aim to test the impact of environment, stellar mass and morphology on the origin of gas.

• Total 754 galaxies from SAMI :

~300 in 8 clusters, ~450 in GAMA field/groups.

 Gas and stellar p.a.'s were fitted. → 202 field/group and 123 cluster galaxies had both.

Misalignment fraction

Warped:

Clusters: 11±3% (14/123) Field/groups:16 ±3% (32/202)

Effect of local surface density

Effect of local surface density

3 bins in local surface density => minimum of 5 misaligned galaxies/bin.

Influence of morphological type and preprocessing

Morphological type:

→ Early-type galaxies have 3x misalignments of late-types.

ATLAS-3D was morphologically-selected as ETGs => 36% misaligned (Davis et al. 2011) compared to our 11%.

→ Higher local densities have more ETGs.

Need at least 2 bins in morphological type

Influence of morphological type and preprocessing

Morphological type:

→ Early-type galaxies have 3x misalignments of late-types.

ATLAS-3D was morphologically-selected as ETGs => 42% in the field (Davis et al. 2011) compared to our 11%, and 36% overall.

→ Higher local densities have more ETGs.

<u>Need at least 2 bins in morphological type</u> **The morphological-density relation**:

→ galaxies in the outskirts of clusters should then have fewer misalignments than in the centre.

Need 3 bins in cluster radius

Influence of morphological type and preprocessing

Morphological type:

→ Early-type galaxies have 3x misalignments of late-types.

ATLAS-3D was morphologically-selected as ETGs => 42% in the field (Davis et al. 2011) compared to our 11%, and 36% overall.

→ Higher local densities have more ETGs.

<u>Need at least 2 bins in morphological type</u> **The morphological-density relation**:

→ galaxies in the outskirts of clusters should then have fewer misalignments than in the centre.

Need 3 bins in cluster radius

Effect of stellar mass:

Need 4 bins in stellar mass

Influence of morphological THE UNIVERSITY OF SYDNEY type and preprocessing

Morphological type:

 \rightarrow Early-type galaxies have 3x misalignments of late-types.

•MO

ATLAS-3D was morphologically-selected as ETGs => 42% in the field (Davis et al. 2011) compared to our 11%, and 36% overall.

➔ Higher local densities have more ETGs.

Need at least 2 bins in morphological type The morphological-density relation:

→ galaxies in the outskirts of clusters should then have fewer misalignments than in the centre.

Need 3 bins in cluster radius.

Effect of stellar mass:

<u>Need 4 bins in stellar mass</u>

A new massive MOS IFU instrument for the AAT.

Aim: Volume-limited survey of 100,000 galaxies to disentangle intertwined processes in a multi-dimensional parameter space.

• The next major dark time instrument for AAT.

SYDNEY

AX.

- Based on new or expanded technology concepts.
- Prototype beginning operation mid-2016.
- Full science operations by 2020.
- IFUs covering >=15 arcsec.
- λ coverage: 3700 to ~9000A
- R=λ/dλ ~4000 in red (λ>4800A) and ~
 ~2000 in blue

Key team members:

Joss Bland-Hawthorn, Scott Croom, Jon Lawrence

Bland-Hawthorn et al. 2015 IAUS, 309, 21; Lawrence et al. 2012 SPIE, 8446, 53

HECTOR

A massively multiplexed hexabundle instrument

	SAMI	Hector 2df	Hector 3df
No. hexabundles	13	50	100
No. fibres	819	>3000	>7000
Top end	1 deg. field	2 deg. field	3 deg. field
spectrograph	AAOmega – flexible format	Dedicated fixed- format sectrographs	Dedicated fixed- format sectrographs
Nights x fields/night x objects/field x weather	181 x 2.1 x 12 x 0.75	~500 x 2.5 x 50 x 0.75	~500 x 2.5 x 100 x 0.75
Survey objects	3400 in 3 years	50,000 in <5 years	100,000 in <5 years
Density	15 objects/square degree	16 obj/sq. deg – could increase by 50%	14 obj/sq.deg. – could increase by 50%

HECTOR instrument design

- 3 main components: 1. New fibre IFUs
- New fibre geometries
- New configurations and sizes

2. New positioning technology

Starbugs SPIE 2014 papers: Kuehn 9147-35 Piersiak 9147-357 Goodwin 9152-26

3. New fixed-format spectrographs to accommodate up to ~8000 fibres

Curved VPH grating design

Clemens, O'Donoghue et al. SPIE 9151-54, 2014

Reflective Schmidt

Wil Saunders - AAO

Refractive

Robert Content- AAO

Hexabundles – optical fibre IFUs

Hexabundles

61 optical fibres fused together using our glass fibre processing unit in the SAIL astrophotonics labs at Sydney University.

Advantages of this design:

- Fill fraction (Area of fibre cores/total bundle area) ~75%.
- Low cross-talk < 0.5%

New developments in hexabundles

What can be improved?

• Fibre configuration

Super-sampled hexabundles:

- Uniform S/N
- Half-sized cores sample the same physical size at double the redshift.

HECTOR

Starbugs

STARBUGS

Parallel Fiber Positioning Technology

From the Australian Astronomical Observatory

Field plate tilting 90 degrees...

WIRING AND VACUUM HOSE

12 MM -STARBUG

A

LIGHT ENTERS THROUGH GLASS FIELD PLATE

HECTOR instrument design

- 3 main components: 1. New fibre IFUs
- New fibre geometries
- New configurations and sizes

2. New positioning technology

Starbugs Kuehn 9147-35

3. <u>New fixed-format spectrographs</u> to accommodate up to ~8000 fibres

Curved VPH grating design

Clemens, O'Donoghue et al. SPIE 9151-54, 2014

Reflective Schmidt

Wil Saunders - AAO

Refractive

Robert Content- AAO

HECTOR spectrographs

Curved VPH grating design by Clemens & O'Donoghue

Key cost saving is in fixed-format, duplicated, non-articulated
spectrographs
~1200 fibres per
spectrograph.

Reflective Schmidt design with 2 or 4 arms by Will Saunders

Refractive design by Robert Content

HECTOR survey selection

Potential selection catalogue: 4MOST/WAVES

- deep spectroscopy complemented by photometric surveys (VST KIDS; VISTA VIKING)
- overlaps Euclid & SKA cores surveys, giving HI.
- Existing GALEX, and WISE, HERSHEL imaging in these fields.
- Simon Driver will talk further about WAVES at 11:30.

Conclusion

- The SAMI instrument and galaxy survey:
- Hexabundles are now a proven and successful technology. .
- The SAMI Galaxy Survey has >1000 galaxies observed and 107 in a public data release.
- Science papers are now coming out (Fogarty+, Ho+, Sharp+, Allen+, Bryant+, Richards+, Cortese+.....)

HECTOR:

- Massively multiplexed IFU facility instrument for the AAT
- Incorporates new hexabundle, spectrograph and Starbugs positioning technologies.
- Prototypes will be on-sky mid-2016.
- A 100,000 galaxy survey will break new ground in fundamental low redshift galaxy science.

HECTOR survey selection

Potential selection catalogue: 4MOST/WAVES

- deep spectroscopy complemented by photometric surveys (VST KIDS; VISTA VIKING)
- overlaps Euclid & SKA cores surveys, giving HI.
- Existing GALEX, and WISE, HERSHEL imaging in these fields.
- Simon Driver will talk further about WAVES at 11:30.

HECTOR survey selection

New developments in hexabundles

What can be improved?

• Fibre configuration

Super-sampled hexabundles:

- Uniform S/N
- Half-sized cores sample the same physical size at double the redshift.

OUTHECTOR corrector

Design for 2 and 3-degree-field correctors by Peter Gillingham

OUTHECTOR corrector

Design for 2 and 3-degree-field correctors by Peter Gillingham

OUTLarger galaxy samples are required.

THE UNIVERSITY OF SYDNEY

₽**A**ŶÛ

Local density | environment | inclination | stellar mass | morphology | redshift | stochastic variation and precision

➔ 100,000 galaxy survey required.