

Studying nearby disk galaxies using MEGARA

(the proposed wide-field IFU & MOS for GTC)

Armando Gil de Paz (UCM) & MEGARA Science Team

Science with the WHT 2010-2020 (London, March 22-23 2010)

Outline

- i) Current paradigm of galaxy-disks evolution
- ii) Limitations & Challenges
- iii) MEGARA @ GTC
- iv) GTO plans for MEGARA
- v) Synergies with future WHT instruments

- Frequent mergers at z>1 led to the formation of the thick disk
- At z<1, stars in the thin disk started to form in the inner regions first (i.e. shorter gas infall timescale in the central regions).
- Delayed star formation occurred in the outer parts: Inside-out growth
- This scenario naturally explains ...

(1) metallicity gradients & abund. patterns, (2) colors, (3) gas & SF distribution (Matteucci et al., Prantzos et al., Boissier et al., Mollá et al.)

... first in the MW but also recently in external galaxies ...

Multi- λ fitting of SINGS disks by

Muñoz-Mateos et al. (2010)

Star formation history of galaxy disks Current paradigm

Recent multi- λ studies on spirals disks (locally and at intermediate-z) reveal an **inside-out growth of ~25% in size between z=1 and z=0** (Muñoz-Mateos et al. 2007, 2010, Trujillo & Pohlen 2005).

Data: FUV+NUV,ugriz,JHK,JRAC,MIPS Models: Boissier & Prantzos (2000) NGC 3198 λ =0.063^{+0.011}_{-0.010} V_C=191⁺⁷₋₅ km/s K01 IMF 150 200 (mag arcsec⁻²) μ_{AB} (mag arcsec⁻²) μ_{AB} (mag arcsec⁻²) μ_{AB} (mag arcsec⁻²) 21 22 23 24 25 26 27 SFR (M_{sun} Gyr⁻¹ μAB 18 F g H = H arcsec⁻²\ μ_{AB} (mag arcsec⁻²) (mag arcsec⁻²) μ_{AB} (mag arcsec⁻²) 22 24 24 mag 27 цAB 150 200 μ_{AB} (mag arcsec⁻²) 21 22 23 24 25 26 27 μ_{AB} (mag arcsec⁻²) 21 22 23 24 25 μ_{AB} (mag arcsec⁻²) μ_{AB} (mag arcsec⁻²) 21 22 23 24 25 26 21 22 23 24 25 26 27 28

Recent multi- λ studies on spirals disks (locally and at intermediate-z) reveal an **inside-out growth of ~25% in size between z=1 and z=0** (Muñoz-Mateos et al. 2007, 2010, Trujillo & Pohlen 2005).

(Muñoz-Mateos et al. 2010)

Star formation history of galaxy disks Limitations & Challenges

Degeneracies from photometry alone -- WE NEED (1) spectroscopy

Lack of depth to study outer edges -- WE NEED (2) 10m-class telescopes

Stellar Migration

- -- WE NEED (1)(2) plus ...
- ... kinematics & resolved-stars analysis

<u>Star formation history of galaxy disks</u> Migration: Theoretical predictions

by heating, ...

churning ... (Sellwood & Binney 2002)

... or by other mechanisms ...

- Satellite accretion (e.g. Young et al. 2007)
- Magnetic fields (when gas transforms into stars the equilibrium between gravity, rotation, and B dissapears) (Battaner et al. 2002)
- Multi E spectrógrafo en G TC de A lta R esolución para A stronomía
- Bars (e.g. Valenzuela & Kyplin 2003)

Star formation history of galaxy disks

Quantifying migration

- i) Disk heating is correlated with σz , which can be measured with high-res. spectroscopy (R~10,000) in nearly face-on galaxies (Verheijen et al. 2004).
- ii) Transient arms & heating are thought to be also responsible for the higher velocity dispersion found in older stars (Lacey 1991).
- iii) The effective Star Formation History is driven the combined effect of *in-situ* star formation & migration. The outermost regions of disks are particularly sensible to stellar migration.
- iv) These mechanisms result in different **abundance gradients** for stars (or stellar populations) of different ages and for the gas.
- v) The efficiency of transient spiral arms is a function of the **disk-mass fraction** (Sellwood & Binney 2002).
- vi) The **determination of the velocity ellipsoid** provides clues on whether cloud or spiralarm scattering heat the disk.

Star formation history of galaxy disks

Quantifying migration

- i) Disk heating is correlated with σz , which can be measured with high-res. spectroscopy (R~10,000) in nearly face-on galaxies (Verheijen et al. 2004).
- ii) Transient arms & heating are thought to be also responsible for the higher velocity dispersion found in older stars (Lacey 1991).
- iii) The effective Star Formation History is driven the combined effect of *in-situ* star formation & migration. The outermost regions of disks are particularly sensible to stellar migration.
- iv) These mechanisms result in different **abundance gradients** for stars (or stellar populations) of different ages and for the gas.
- v) The efficiency of transient spiral arms is a function of the **disk-mass fraction** (Sellwood & Binney 2002).
- vi) The **determination of the velocity ellipsoid** provides clues on whether cloud or spiralarm scattering heat the disk.

WE NEED

(1) intermediate-R, (2) large contiguous FOV & collecting area, (3) λ -coverage

MEGARA main characteristics

IFU FOV (in 3 dith. pointings)	$\sim 1 \mathrm{x}1 \mathrm{arcmin}^2$			
MOS (simultaneous with IFU)	94 objects in 3.5x3.5 arcmin ²			
Spaxel (fiber) size	0.685 arcsec			
Wavelength range	3700-9800 Å			
Spectral resolution	R=5900-17000			
# of spectrographs	8 (7 IFU + 1 MOS)			
# of spaxels / multiplexing	5300			
GTC station	Folded-Cass (spectrographs @ Nasmyth)			
Budget (for all 8 spectrographs)	7.5 M€			
Delivery date	2014			

Nulti spectrógrafo en **G** TC de A lta

R esolución para

Science Team

A. Gil de Paz (PI), A. Herrero (IAC), A. Castillo Morales (UCM), C. Sánchez Contreras (CAB), C. Muñoz-Tuñon (IAC), D. Barrado y Navascúes (CAB), N. Huélamo (CAB), E. Carrasco (INAOE), J. Cenarro (CEFCA), J. Gallego (UCM), J. Iglesias-Paramo (IAA), J. M. Vílchez (IAA), M. García Vargas (Fractal), M. Mollá (CIEMAT), I. Trujillo (IAC), N. Cardiel (UCM), P. G. Pérez-González (UCM), S. Sánchez (CEFCA), Y. Tsamis (IAA), O. Vega (INAOE), D. Rosa (INAOE), M. Chávez-Dagostino (INAOE), E. Bertone (INAOE), D. Mayya (INAOE), M. Rodríguez (INAOE), C. Eliche-Moral (UCM), S. Pascual (UCM)

PM (M. L. García Vargas), Proj. Engineer (A. Pérez), Proj. Controller (K. Hansen)

Consortium

Institution	Representative	Area of expertise / interests		
Universidad Complutense de Madrid	Armando Gil de Paz	Management, detectors, software		
IAC	Artemio Herrero	Fiber optics, integration, verification		
INTA/Centro de Astrobiología	Nuria Huélamo	Robotics, mechanics, management		
INAOE	Esperanza Carrasco	Cryostats and main optics		

Participating companies: Fractal (optical and mech. design), AVS (robotic positioners), GMV (software), SEDI (fiber bundles), ...

Compact bundle

 ~ 600 fibers with a lens array with 98.3% coverage $FOV \sim 12 \times 14 \operatorname{arcsec}^2$

Use: Study of the central (i) extended or (ii) clustered targets and (iii) for calib. purposes.

Sparse bundle

~4000 fibers in a lens array with 100% coverage in 3 pointings and no redundancy (hexagonal lenslets)

FOV~ 66 x 57 arcsec^2

Use:

(i) Study of extended targets or

(ii) full coverage with 3 ptgs.

Robotic Actuators (MOS)

It allows observing 94 objects in the 3.5x3.5 arcmin² *non-curved*, *non-vignetted* Folded-Cass FOV (7x94 fibers to trace AD).

Disperser Summary R=5800 VPHs

Disperser Summary R = 10000 VPHs

GTC station

- i) IFU+ MOS actuators: Folded-Cass
- ii) Spectrographs: Nasmyth (preferred) or rotating floor

#	Name	Setup	R	FWHM	FWHM	Rec.Disp.	$\Delta\lambda_{\rm r}$	Range	# of spec.
				(Å)	(km/s)	(Å/pixel)	(Å)	(Å)	
1	VP665-17000	HR-R	17000	0.39@6650Å	18	0.0978	401	6520 - 6921	8
2	VP863-17000	HR-I	17000	0.51@8630Å	18	0.1269	520	8540 - 9060	2
3	VP417-10000	MR-U	10000	0.42@4175Å	30	0.1044	427	3962 - 4389	8
4	VP487-10000	MR-B	10000	0.49@4870Å	30	0.1217	498	4621 - 5119	8
5	VP523-10000	MR-V	10000	0.52@5230Å	30	0.1307	535	4963 - 5498	2
6	VP581-10000	MR-O	10000	0.58@5810Å	30	0.1452	595	5512 - 6107	2
7	VP405-5900	LR-U	5900	0.69@4050Å	51	0.1716	702	3699 - 4401	8
8	VP480-5900	LR-B	5900	0.81@4800Å	51	0.2034	833	4384 - 5217	8
9	VP570-5900	LR-G	5900	0.97@5700Å	51	0.2415	989	5206 - 6195	8
10	VP675-5900	LR-R	5900	1.14@6750Å	51	0.2860	1171	6164 - 7335	8
11	VP850-7000	LR-I	7000	1.21@8475Å	43	0.3027	1240	8000 - 9240	8

- (1) CaT at both R=17000 (2 spec) and R=7000 (8 spec)
- (2) H α at R=17000 (8 spec)
- (3) Full optical coverage (3700-7300 Å) at R=5900

(4) R=10000 in the entire blue optical range (\sim 3900-6100 Å)

GTO plans for MEGARA Local Group galaxies

<u>GTO plans for MEGARA</u> Local Group galaxies

Observables: (1) σ_z profiles from individual massive stars and RGBs (2) Spectral indices profiles

GTO plans for MEGARA Local Volume galaxies

<u>GTO plans for MEGARA</u> Local Volume galaxies

Observables: (1) σ_z profiles from massive stars and integrated light (2) Spectral indices profiles

Analysis of a diameter-limited sample of nearby galaxies

Multi E spectrógrafo er G TC de A Ita R esolución para A stronomía

Wull select ~30 objects from the CALIFA sample (PPAK@CAHA3.5 Trade A la legacy) covering a range of luminosities, colors, environments

GTO plans for MEGARA

Unresolved nearby disk galaxies

Observables: (1) σ_z profile from the integrated light (2) Spectral indices profiles

G TC de

Synergies with future WHT instruments

Current or planned IFUs on 4m-class telescopes:

- VIRUS-P: Large FOV, low R, very coarse spaxels
- SparsePak: Large FOV (low filling factor), intermediate-high R, very coarse spaxels
- PPAK: Large FOV, low-intermediate R, coarse spaxels, λ >3700Å
- SAURON: Intermediate-large FOV, low-intermediate R, small spaxels, narrow λ -range
- OASIS: Intermediate FOV, intermediate R, small spaxels.

Current or planned IFUs on 10m-class telescopes:

- VIMOS: Large FOV, very low R, small spaxels, $\lambda{>}4000\text{\AA}$
- GMOS: Small FOV, low-intermediate R, small spaxels
- VIRUS: Large FOV, low R, coarse spaxels
- MUSE: Large FOV, intermediate R, small spaxels, λ >4500Å
- MEGARA: Large FOV, intermediate-high R, small spaxels, λ >3700Å

One possible niche for a IFU at WHT:

Large FOV with relatively coarse spaxels (~1-2"), R~4000-10000 in two arms covering the full-optical range at low resolution. Such an instrument would be highly competitive for stellar populations studies in nearby (unresolved) galaxies and could share (or duplicate) a MOS with the same specifications.

From the Report by the ETSRC on Europe's 2-4m OIR telescopes over the next decade

In strong contrast, IFU spectroscopy provides spatial information that is relatively unbiased. IFU observations of nearby galaxies can offer a wealth of information on their stellar populations, star formation and ionized gas properties, as well as kinematics, structure and possible imprints of environmetal effects.

In order to perform an efficient 2D spectroscopic study of galaxies in the local Universe a larger field of view is a must. For a galaxy at, for example, the distance of the Coma cluster (i.e. $z \sim 0.023$), 1 arcsec on the sky represents ~0.5 kpc within the galaxy (assuming standard cosmology); therefore, it is clear that an IFU field of view ≥ 1 arcmin in diameter is necessary to carry out an efficient mapping of the full spatial extent of such objects out as far as Coma.

