Fabry-Perot Interferometry: an outstanding niche technique for emission line mapping of galaxies and other extended objects at high resolution

Joan Font^{1,2}, J. E. Beckman^{1,2,3} & J. Zaragoza^{1,2}

(1) Instituto de Astrofísica de Canarias,c/ Vía Láctea, s/n, E38205, La Laguna, Tenerife, Spain.
 (2) Departamento de Astrofísica. Universidad de La Laguna, Tenerife, Spain.
 (3) Consejo Superior de Investigaciones Científicas, Spain.

Ciencia con los telescopios óptico-infrarrojos de CAHA y ORM en la próxima década

Content:

- I. The instrument
 - I.I. Characteristics
 - I.2. Calibration
 - I.3. De-rotation
 - I.4. Moment maps extraction
- 2. Science examples
 - 2.1. Interacting galaxies
 - 2.1.1. Gas infall (Arp 271)
 - 2.1.2. Gas inflow/outflow (Arp 270)
 - 2.2. S⁴G spirals
 - 2.3. Resonant structure of spirals
 - 2.4. Expanding shells
 - 2.5. Planetary Nebulae
- 3. Conclusions

S

$GH\alpha FaS: Galaxy \ H\alpha \ Fabry-Perot \ System$

I.I The characteristics.

I.I The characteristics.

- $F.O.V = 3.4 \text{ arcmin}^2$
- CCD acquisition mode

- •low res: 512X512 pix² @ 100 fps \Rightarrow pixel scale \approx 0.4 ''/pix
- •high res: 1024×1024 pix² @ 60 fps \Rightarrow pixel scale ≈ 0.2 "/pix
- ▶ IPCS: no read-out noise \Rightarrow no flat field needed.
- Spatial resolution : seeing limited
- Etalon: FSR ~ 400km/s scanned in 48 channels (Nyquist criterion)
- \Rightarrow Velocity res. \approx 8 km/s

I.2 The calibration.

Neon lamp λ cal = 6598.9 Å

I.2 The calibration.

Neon lamp λ cal = 6598.9 Å

Phase calibration map

I.2 The calibration.

Neon lamp λ cal = 6598.9 Å

Data cube

Phase calibration map

I.3 Observations. De-rotation

Exposure time ≈ 3 hours/object

I.3 Observations.

Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8	Channel 9	Channel 10
0.1	ġ.								All and a second
Channel 11	Channel 12	Channel 13	Channel 14	Channel 15	Channel 16	Channel 17	Channel 18	Channel 19	Channel 20
Aller y	in the second	S.	N.	C.	C.				No.
Channel 21	Channel 22	Channel 23	Channel 24	Channel 25	Channel 26	Channel 27	Channel 28	Channel 29	Channel 30
- 	с. 	u.		<u>.</u>	a.	<u>.</u>		20.	
		S.	S.	Ś	S.		Sec.	Con Street	and the second
Channel 31	Channel 32	Channel 33	Channel 34	Channel 35	Channel 36	Channel 37	Channel 38	Channel 39	Channel 40
Channel 31	Channel 32	Channel 33	Channel 34	Channel 35	Channel 36	Channel 37	Channel 38	Channel 39	Channel 40
Channel 31 Channel 41	Channel 32	Channel 33 Channel 43	Channel 34 Channel 44	Channel 35 Channel 45	Channel 36	Channel 37 Channel 37 Channel 47	Channel 38 Channel 48	Channel 39	Channel 40

I.3 Observations.

ALMA CO image

I.3 Observations.

ALMA CO image

I.4 Moment map extraction

NGC 2146

Intensity map

Velocity map

ADHOC IDL based codes GIPSY

Thursday, 22 March 2012

2. Science with GHαFaS Proposals

GHαFaS interferometry of shocks in Tycho's SN remnant: constraining the cosmic ray precursor (J. Beckman)
 ✓ Disk kinematics and morphology of S⁴G spirals (J. Knapen)

✓ Star-forming satellites as a probe of environmental effects on galaxies (*P. Jam*es)

- ✓ The origin of complexity in Planetary Nebulae (M. Santander)
- ✓ Unveiling the gas kinematics of interacting/merging galaxies (B. Garcia-Lorenzo)
- ✓ Kinematics of ionized gas and interstellar dust in HII regions (U. Lisenfeld)
- ✓ "GHαFaS para ver starburst". Dynamical evolution of massive starbursts (J. Blasco-Herrera)

Institutions

IAC / University of Stockholm, GEMINI / Liverpool John Moores University / Observatotio Astronómico Nacional / University of Manchester / Instituto de Astronomía (UNAM) / South African astronomical observatory / ESO-La Silla / Laboratoire d'Astrophysique de Marseille / University of Arizona / University of Alabama / ESO-Garching, Vassar College / Carnegie Institution of Washington / University of Oulu / National Radio Astronomy Observatories / IBM Watson Research Center / California Institute of Technology / Max Planck Institut für Asrtonomie (Heidelberg) / State University of New York / Korea Astronomy and Space Science Institute / University of Montreal / ETH Zurich Institute of Astronomy / Harvard Smithsonian center for Astrophysics / Rutgers the state University of New Jersey / Universidad de Granada / Institute of Astronomy University of Cambridge / Uppsala Astronomical Observatory

2.1. Unveiling the gas kinematics of interacting/merging galaxies

main goal: study kinematics of interacting galaxies at different stages of the merging process

ARP 271

ARP 270

2.1. Unveiling the gas kinematics of interacting/merging galaxies 2.1.1.ARP 271 (Font et al., 2011, ApJ.) Anomalous region

Anomalous component

- Morphology ⇒ Located behind NGC 5427
 - Velocity map \Rightarrow Kinematically related to NGC 5426
- "Rotation curve" \Rightarrow Gas infalling to NGC 5427

Thursday, 22 March 2012

2.1.2.ARP 270

Inflow & Outflow in the inner region of NGC 3396

2.2. Disk kinematics and morphology of S⁴G spirals

main goal: study interplay between dark matter and stars.

2.3. Resonant structure of spiral galaxies

main goal: Apply a new method to determine the co-rotation radius of disc galaxies.

NGC 5427 (Font et al., 2011, Ap.J.)

 $R_{CR} = 47.3 \pm 2.1$ arcsec $\Omega_{PS} = 21.3 \pm 1.0$ km/s/kpc

main goal: Study of the expanding shells and comparison with dust emission & extinction distribution.

NGC 4214

S

2.5. The origin of complexity in Planetary Nebulae

main goal: Study bipolar PN with binary nuclei and complex structure to grasp its origin.

M I-75 (Santander-García et al., 2010, A&A)

NII emission line

Collapsed GHaFaS data cube and modelled lobes

3. Conclusions

- $GH\alpha FaS$ on the WHT is the Fabry-Perot system on the largest telescope, at the moment (A similar instrument is being built for the 4m NTT at ESO La Silla)
- Its field of view, angular resolution, velocity resolution and high sensitivity at low light levels make it highly competitive for kinematic programmes, especially for disc galaxies.
- \bullet GH α FaS is an approved Visitor Instrument, fully supported by IAC staff, and open to all users.