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1.0 INTRODUCTION

1.1 Application Note Objective

This application note is intended to explain and complement

the information in the data sheet and also address the com-

mon user questions. While no initial familiarity with the

LM628/629 is assumed, it will be useful to have the

LM628/629 data sheet close by to consult for detailed de-

scriptions of the user command set, timing diagrams, bit

assignments, pin assignments, etc.

After the following brief description of the LM628/629, Sec-

tion 2.0 gives a fairly full description of the device’s opera-

tion, probably more than is necessary to get going with the

device. This section ends with an outline of how to tune the

control system by adjusting the PID filter coefficients.

Section 3 ‘‘User Command Set’’ discusses the use of the

LM628/629 commands. For a detailed description of each

command the user should refer to the data sheet.

Section 4 ‘‘Helpful User Ideas’’ starts with a short descrip-

tion of the actions necessary to get going, then proceeds to

talk about some performance enhancements and follows on

with a discussion of a couple of operating constraints of the

device.

Section 5 ‘‘Theory’’ is a short foray into theory which relates

the PID coefficients that would be calculated from a continu-

ous domain control loop analysis to those of the discrete

domain including the scaling factors inherent to the

LM628/629. No attempt is made to discuss control system

theory as such, readers should consult the ample refer-

ences available, some suggestions are made at the end of

this application note. Section 5 concludes with an example

trajectory calculation, reviving those perhaps forgotten

ideas about acceleration, velocity, distance and time.

Section 6 ‘‘Questions and Answers’’, is in question and an-

swer format and is born out of and dedicated to the many

interesting discussions with customers that have taken

place.

1.2 Brief Description of LM628/629

LM628/629 is a microcontroller peripheral that incorporates

in one device all the functions of a sample-data motion con-

trol system controller. Using the LM628/629 makes the po-

tentially complex task of designing a fast and precise motion

control system much easier. Additional features, such as

trajectory profile generation, on the ‘‘fly’’ update of loop

compensation and trajectory, and status reporting, are in-

cluded. Both position and velocity motion control systems

can be implemented with the LM628/629.

TL/H/11018–1

FIGURE 1. LM628 and LM629 Typical System Block Diagram
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LM628/629 is itself a purpose designed microcontroller that

implements a position decoder, a summing junction, a digital

PID loop compensation filter, and a trajectory profile gener-

ator, Figure 1. Output format is the only difference between

LM628 and LM629. A parallel port is used to drive an 8- or

12-bit digital-to-analog converter from the LM628 while the

LM629 provides a 7-bit plus sign PWM signal with sign and

magnitude outputs. Interface to the host microcontroller is

via an 8-bit bi-directional data port and six control lines

which includes host interrupt and hardware reset. Maximum

sampling rates of either 2.9 kHz or 3.9 kHz are available by

choosing the LM6268/9 device options that have 6 MHz or

8 MHz maximum clock frequencies (device -6 or -8 suffixes).

In operation, to start a movement, a host microcontroller

downloads acceleration, velocity and target position values

to the LM628/629 trajectory generator. At each sample in-

terval these values are used to calculate new demand or

‘‘set point’’ positions which are fed into the summing junc-

tion. Actual position of the motor is determined from the

output signals of an optical incremental encoder. Decoded

by the LM628/629’s position decoder, actual position is fed

to the other input of the summing junction and subtracted

from the demand position to form the error signal input for

the control loop compensator. The compensator is in the

form of a ‘‘three term’’ PID filter (proportional, integral, deriv-

ative), this is implemented by a digital filter. The coefficients

for the PID digital filter are most easily determined by tuning

the control system to give the required response from the

load in terms of accuracy, response time and overshoot.

Having characterized a load these coefficient values are

downloaded from the host before commencing a move. For

a load that varies during a movement more coefficients can

be downloaded and used to update the PID filter at the mo-

ment the load changes. All trajectory parameters except ac-

celeration can also be updated while a movement is in prog-

ress.

2.0 DEVICE DESCRIPTION

2.1 Hardware Architecture

Four major functional blocks make up the LM628/629 in

addition to the host and output interfaces. These are the

Trajectory Profile Generator, Loop Compensating PID Filter,

Summing Junction and Motor Position Decoder (Figure 1) .

TL/H/11018–2

FIGURE 2. Hardware Architecture of LM628/629
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Details of how LM628/629 is implemented by a purpose

designed microcontroller are shown in Figure 2. The control

algorithm is stored in a 1k x 16-bit ROM and uses 16-bit

wide instructions. A PLA decodes these instructions and

provides data transfer timing signals for the single 16-bit

data and instruction bus. User variable filter and trajectory

profile parameters are stored as 32-bit double words in

RAM. To provide sufficient dynamic range a 32-bit position

register is used and for consistency. 32 bits are also used

for velocity and acceleration values. A 32-bit ALU is used to

support the 16 x 16-bit multiplications of the error and PID

digital filter coefficients.

2.2 Motor Position Decoder

LM628/629 provides an interface for an optical position

shaft encoder, decoding the two quadrature output signals

to provide position and direction information, Figure 3. Op-

tionally a third index position output signal can be used to

capture position once per revolution. Each of the four states

of the quadrature position signal are decoded by the

LM628/629 giving a 4 times increase in position resolution

over the number of encoder lines. An ‘‘N’’ line encoder will

be decoded as ‘‘4N’’ position counts by LM628/629.

Position decoder block diagram, Figure 4, shows three lines

coming from the shaft encoder, M1, M2 and Index. From

these the decoder PLA determines if the motor has moved

forward, backward or stayed still and then drives a 16-bit up-

down counter that keeps track of actual motor position.

Once per revolution when all three lines including the index

line are simultaneously low, Figure 3, the current position

count is captured in an index latch.

TL/H/11018–3

FIGURE 3. Quadrature Encoder Output Signals and Direction Decode Table

TL/H/11018–4

FIGURE 4. LM628/629 Motor Position Decoder
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The 16-bit up-down counter is used to capture the differ-

ence in position from one sample to the next. A position

latch attached to the up-down counter is strobed at the

same time in every sample period by a sync pulse that is

generated in hardware. The position latch is read soon after

the sync pulse and is added to the 32-bit position register in

RAM that holds the actual current position. This is the value

that is subtracted in the summing junction every sample in-

terval from the new desired position calculated by the tra-

jectory generator to form the error input to the PID filter.

Maximum encoder state capture rate is determined by the

minimum number of clock cycles it takes to decode each

encoder state, seeFigure 3, this minimum number is 8 clock

cycles, capture of the index pulse is also achieved during

these 8 clock cycles. This gives a more than adequate 1

MHz maximum encoder state capture rate with the 8 MHz

fCLK devices (750 kHz for the 6 MHz fCLK devices). For

example, with the 1 MHz capture rate, a motor using a 500

line encoder will be moving at 30,000 rpm.

There is some limited signal conditioning at the decoder

input to remove problems that would occur due to the asyn-

chronous position encoder input being sampled on signal

edges by the synchronous LM628/629. But there is no

noise filtering as such on the encoder lines so it is important

that they are kept clean and away from noise sources.

2.3 Trajectory Profile Generator

Desired position inputs to the summing junction, Figure 1,
within the LM628/629 are provided by an internal indepen-

dent trajectory profile generator. The trajectory profile gen-

erator takes information from the host and computes for

each sample interval a new current desired position. The

information required from the host is, operating mode, either

position or velocity, target acceleration, target velocity and

target position in position mode.

2.4 Definitions Relating to Profile Generation

The units of position and time, used by the LM628/629, are

counts (4 c N encoder lines) and samples (sample intervals

e 2048/fCLK) respectively. Velocity is therefore calculated

in counts/sample and acceleration in counts/sample/sam-

ple.

Definitions of ‘‘target’’, ‘‘desired’’ and ‘‘actual’’ within the

profile generation activity as they apply to velocity, accelera-

tion and position are as follows. Final requested values are

called ‘‘target’’, such as target position. The values comput-

ed by the profile generator each sample interval on the way

to the target value are called ‘‘desired’’. Real values from

the position encoder are called ‘‘actual’’.

For example, the current actual position of the motor will

typically be a few counts away from the current desired po-

sition because a new value for desired position is calculated

every sample interval during profile generation. The differ-

ence between the current desired position and current actu-

al position relies on the ability of the control loop to keep the

motor on track. In the extreme example of a locked rotor

there could be a large difference between the current actual

and desired positions.

Current desired velocity refers to a fixed velocity at any

point on a on-going trajectory profile. While the profile de-

mands acceleration, from zero to the target velocity, the

velocity will incrementally increase at each sample interval.

Current actual velocity is determined by taking the differ-

ence in the actual position at the current and the previous

sample intervals. At velocities of many counts per sample

this is reasonably accurate, at low velocities, especially be-

low one count per sample, it is very inaccurate.

2.5 Profile Generation

Trajectory profiles are plotted in terms of velocity versus

time,Figure 5, and are velocity profiles by reason that a new

desired position is calculated every sample interval. For

constant velocity these desired position increments will be

the same every sample interval, for acceleration and decel-

eration the desired position increments will respectively in-

crease and decrease per sample interval. Target position is

the integral of the velocity profile.

TL/H/11018–5

FIGURE 5. Typical Trajectory Velocity Profile
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When performing a move the LM628/629 uses the informa-

tion as specified by the host and accelerates until the target

velocity is reached. While doing this it takes note of the

number of counts taken to reach the target velocity. This

number of counts is subtracted from the target position to

determine where deceleration should commence to ensure

the motor stops at the target position. LM628/629 decelera-

tion rates are equal to the acceleration rates. In some cas-

es, depending on the relative target values of velocity, ac-

celeration and position, the target velocity will not be

reached and deceleration will commence immediately from

acceleration.

2.6 Trajectory Resolution

The resolution the motor sees for position is one integral

count. The algorithm used to calculate the trajectory adds

the velocity to the current desired position once per sample

period and produces the next desired position point. In or-

der to allow very low velocities it is necessary to have veloc-

ities of fractional counts per sample. The LM628/629 in ad-

dition to the 32-bit position range keeps track of 16 bits of

fractional position. The need for fractional velocity counts

can be illustrated by the following example using a 500 line

(2000 count) encoder and an 8 MHz clock LM628/629 giv-

ing a 256 ms sample interval. If the smallest resolution is 1

count per sample then the minimum velocity would be 2

revolutions per second or 120 rpm. (1/2000 revs/count c

1/256 ms counts/second). Many applications require veloci-

ties and steps in velocity less than this amount. This is pro-

vided by the fractional counts of acceleration and velocity.

2.7 Position, Velocity and Acceleration Resolution

Every sample cycle, while the profile demands acceleration,

the acceleration register is added to the velocity register

which in turn is added to the position register. When the

demand for increasing acceleration stops, only velocity is

added to the position register. Only integer values are out-

put from the position register to the summing junction and

so fractional position counts must accumulate over many

sample intervals before an integer count is added and the

position register changed. Figure 6 shows the position, ve-

locity and acceleration registers.

The position dynamic range is derived from the 32 bits of

the integer position register, Figure 6. The MSB is used for

the direction sign in the conventional manner, the next bit

30 is used to signify when a position overflow called ‘‘wrap-

around’’ has occurred. If the wraparound bit is set (or reset

when going in a negative direction) while in operation the

status byte bit 4 is set and optionally can be used to inter-

rupt the host. The remaining 30 bits provide the available

dynamic range of position in either the positive or negative

direction (g1,073,741,824 counts).

Velocity has a resolution of 1/216 counts/sample and ac-

celeration has a resolution of 1/216 counts/sample/sample

as mentioned above. The dynamic range is 30 bits in both

cases. The loss of one bit is due to velocity and acceleration

being unsigned and another bit is used to detect wrap-

around. This leaves 14 bits or 16,383 integral counts and 16

bits for fractional counts.

2.8 Velocity Mode

LM628 supports a velocity mode where the motor is com-

manded to continue at a specified velocity, until it is told to

TL/H/11018–6

FIGURE 6. Position, Velocity and Acceleration Registers
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stop (LTRJ bits 9 or 10). The average velocity will be as

specified but the instantaneous velocity will vary. Velocities

of fractional counts per sample will exhibit the poorest in-

stantaneous velocity. Velocity mode is a subset of position

mode where the position is continually updated and moved

ahead of the motor without a specified stop position. Care

should be exercised in the case where a rotor becomes

locked while in velocity mode as the profile generator will

continue to advance the position. When the rotor becomes

free high velocities will be attained to catch-up with the cur-

rent desired position.

2.9 Motor Output Port

LM628 output port is configured to 8 bits after reset. The

8-bit output is updated once per sample interval and held

until it is updated during the next sample interval. This al-

lows use of a DAC without a latch. For 12-bit operation the

PORT12 command should be issued immediately after re-

set. The output is multiplexed in two 6-bit words using pins

18 through 23. Pin 24 is low for the least significant word

and high for the most significant. The rising edge of the

active low strobe from pin 25 should be used to strobe the

output into an external latch, see Figure 7. The DAC output

is offset binary code, the zero codes are hexÊ80Ê for 8 bits

and hexÊ800Ê for 12 bits.

TL/H/11018–7

FIGURE 7. LM628 12-Bit DAC Output Multiplexed Timing

The choice of output resolution is dependant on the user’s

application. There is a fundamental trade-off between sam-

pling rate and DAC output resolution, the LM628 8-bit output

at a 256 ms sampling interval will most often provide as

good results as a slower, e.g. microcontroller, implementa-

tion which has a 4 ms typical sampling interval and uses a

12-bit output. The LM628 also gives the choice of a 12-bit

DAC output at a 256 ms sampling interval for high precision

applications.

LM629 PWM sign and magnitude signals are output from

pins 18 and 19 respectively. The sign output is used to con-

trol motor direction. The PWM magnitude output has a reso-

lution of 8 bits from maximum negative drive to maximum

positive drive. The magnitude output has an off condition,

with the output at logic low, which is useful for turning a

motor off when using a bridge motor drive circuit. The mini-

mum duty cycle is 1/128 increasing to a maximum of

127/128 in the positive direction and a maximum of

128/128 in the negative direcition, i.e., a continuous output.

There are four PWM periods in one LM629 sample interval.

With an 8 MHz clock this increases the PWM output rate to

15.6 kHz from the LM629 maximum 3.9 kHz sample rate,

see Figure 8 for further timing information.

TL/H/11018–8

Note: Sign output (pin 18) not shown.

FIGURE 8. LM629 PWM Output Signal Format

2.10 Host Interface

LM628/629 has three internal registers: status, high, and

low bytes,Figure 9, which are used to communicate with the

host microcontroller. These are controlled by the RD, WR,

and PS lines and by use of the busy bit of the status byte.

The status byte is read by bringing RD and PS low, bit 0 is

the busy bit. Commands are written by bringing WR and PS

low. When PS is high, WR brought low writes data into

LM628/629 and similarly, RD is brought low to read data

from LM628/629. Data transfer is a two-byte operation writ-

ten in most to least significant byte order. The above de-

scription assumes that CS is low.

TL/H/11018–9

FIGURE 9. Host Interface Internal I/O Registers

2.11 Hardware Busy Bit Operation

Before and between all command byte and data byte pair

transfers, the busy bit must be read and checked to be at

logic low. If the busy bit is set and commands are issued

they will be ignored and if data is read it will be the current

contents of the I/O buffer and not the expected data. The

busy bit is set after the rising edge of the write signal for

commands and the second rising edge of the respective

read or write signal for two byte data transfers, Figure 10.
The busy bit remains high for approximately 15 ms.
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TL/H/11018–10

FIGURE 10. Busy Bit Operation during Command and Data Write Sequence

The busy bit reset to logic low indicates that high and low

byte registers shown in Figure 9 have been either loaded or

read by the LM628/629 internal microcode. To service the

command or data transfer this microcode which performs

the trajectory and filter calculations is interrupted, except in

critical areas, and the on-going calculation is suspended.

The microcode was designed this way to achieve minimum

latency when communicating with the host. However, if this

communication becomes too frequent and on-going calcula-

tions are interrupted too often corruption will occur. In a

256 ms sample interval, the filter calculation takes 50 ms,

outputting a sample 10 ms and trajectory calculation 90 ms.

If the LM628 behaves in a manner that is unexpected the

host communication rate should be checked in relation to

these timings.

2.12 Filter Initial Values and Tuning

When connecting up a system for the first time there may be

a possibility that the loop phasing is incorrect. As this may

cause violent oscillation it is advisable to initially use a very

low value of proportional gain, say kp e 1 (with kd, ki and il

all set to zero), which will provide a weak level of drive to the

motor. (The Start command, STT, is sent to LM628/629 to

close the control loop and energize the motor.) If the system

does oscillate with this low value of kp then the motor con-

nections should be reversed.

Having determined that the loop phasing is correct kp can

be increased to a value of about 20 to see that the control

system basically works. This value of kp should hold the

motor shaft reasonably stiffly, returning the motor to the set

position, which will be zero until trajectory values have been

input and a position move performed. If oscillation or unac-

ceptable ringing occurs with a kp value of 20 reduce this

until it stops. Low values of acceleration and velocity can

now be input, of around 100, and a position move com-

manded to say 1000 counts. All values suggested here are

decimal. For details of loading trajectory and filter parame-

ters see Section 3.0, reference (5) and the data sheet.

It is useful at this stage to try different values of acceleration

and velocity to get a feel for the system limitations. These

can be determined by using the reporting commands of de-

sired and actual position and velocity, to see if the error

between desired and actual positions of the motor are con-

stant and not increasing without bound. See Section 3.6 and

the data sheet for information about the reporting com-

mands. Clearly it will be difficult to tune for best system

response if the motor and its load cannot achieve the de-

manded values of acceleration and velocity. When correct

operation is confirmed and limiting values understood, filter

tuning can commence.

Due to the basic difficulty of accurately modeling a control

system, with the added problem of variations that can occur

in mechanical components over time and temperature, it is

always necessary at some stage to perform tuning empiri-

cally. Determining the PID filter coefficients by tuning is the

preferred method with LM628/629 because of the inherent

flexibility in changing the filter coefficients provided by this

programmable device.

Before tuning a control system the effect of each of the PID

filter coefficients should be understood. The following is a

very brief review, for a detailed understanding reference (2)

should be consulted. The proportional coefficient, kp, pro-

vides adjustment of the control system loop proportional

gain, as this is increased the output steady state error is

reduced. The error between the required and actual position

is effectively divided by the loop gain. However there is a

natural limitation on how far kp can be increased on its own

to reduce output position error because a reduction in

phase margin is also a consequence of increasing kp. This

is first encountered as ringing about the final position in re-

sponse to a step change input and then instability in the

form of oscillation as the phase margin becomes zero. To

improve stability, kd, the derivative coefficient, provides a

damping effect by providing a term proportional to velocity

in antiphase to the ringing, or viewed in another way, adds

some leading phase shift into the loop and increases the

phase margin.

In the tuning process the coefficients kp and kd are iterative-

ly increased to their optimum values constrained by the sys-

tem constants and are trade-offs between response time,

stability and final position error. When kp and kd have been

determined the integral coefficient, ki, can be introduced to

remove steady state errors at the load. The steady state

9



errors removed are the velocity lag that occurs with a con-

stant velocity output and the position error due to a constant

static torque. A value of integration limit, il, has to be input

with ki, otherwise ki will have no effect. The integral coeffi-

cient ki adds another variable to the system to allow further

optimization, very high values of ki will decrease the phase

margin and hence stability, see Section 5 and reference (2)

for more details. Reference (5) gives more details of PID

filter tuning and how to load filter parameters.

Figure 11 illustrates how a relatively slow response with

overshoot can be compensated by adjustment of the PID

filter coefficients to give a faster critically damped response.

3.0 USER COMMAND SET

3.1 Overview

The following types of User Commands are available:

Initialization

Filter control commands

Trajectory control commands

Interrupt control commands

Data reporting commands

User commands are single bytes and have a varying num-

ber of accompanying data bytes ranging from zero to four-

teen depending upon the command. Both filter and trajecto-

ry control commands use a double buffered scheme to input

data. These commands load primary registers with multiple

words of data which are only transferred into secondary

working registers when the host issues a respective single

byte user command. This allows data to be input before its

actual use which can eliminate any potential communication

bottlenecks and allow synchronized operation of multiple

axes.

3.2 Host-LM628/629 CommunicationÐThe Busy Bit

Communication flow between the LM628/629 and its host

is controlled by using a busy bit, bit 0, in the Status Byte.

The busy bit must be checked to be at logic 0 by the host

before commands and data are issued or data is read. This

includes between data byte pairs for commands with multi-

ple words of data.

3.3 Loading the Trapezoidal Velocity Profile Generator

To initiate a motor move, trajectory generator values have

to be input to the LM628/629 using the Load Trajectory

Parameters, LTRJ, command. The command is followed by

a trajectory control word which details the information to be

loaded in subsequent data words. Table I gives the bit allo-

cations, a bit is set to logic 1 to give the function shown.

TABLE I. Trajectory Control Word Bit Allocations

Bit Position Function

Bit 15 Not Used

Bit 14 Not Used

Bit 13 Not Used

Bit 12 Forward Direction (Velocity Mode Only)

Bit 11 Velocity Mode

Bit 10 Stop Smoothly (Decelerate as Programmed)

Bit 9 Stop Abruptly (Maximum Deceleration)

Bit 8 Turn Off Motor (Output Zero Drive)

Bit 7 Not Used

Bit 6 Not Used

Bit 5 Acceleration Will Be Loaded

Bit 4 Acceleration Data Is Relative

Bit 3 Velocity Will Be Loaded

Bit 2 Velocity Data Is Relative

Bit 1 Position Will Be Loaded

Bit 0 Position Data Is Relative

Bits 0 to 5 determine whether any, all or none of the posi-

tion, velocity or acceleration values are loaded and whether

they are absolute values or values relative to those previ-

ously loaded. All trajectory values are 32-bit values, position

values are both positive and negative. Velocity and acceler-

ation are 16-bit integers with 16-bit fractions whose absolute

value is always positive. When entering relative values en-

sure that the absolute value remains positive. The manual

stop commands bits 8, 9 and 10 are intended to allow an

unprogrammed stop in position mode, while a position move

is in progress, perhaps by the demand of some external

event, and to provide a method to stop in velocity mode.

They do not specify how the motor will stop in position

mode at the end of a normal position move. In position

mode a programmed move will automatically stop with a

deceleration rate equal to the acceleration rate at the target

position. Setting a stop bit along with other trajectory param-

eters at the beginning of a move will result in no movement!

Bits 8, 9 and 10 should only be set one at a time, bit 8 turns

the motor off by outputting zero drive to the motor, bit 9

stops the motor at maximum deceleration by setting the tar-

get position equal to the current position and bit 10 stops

the motor using the current user-programmed acceleration

value. Bit 11 is set for operating in velocity mode and bit 12

is set for forward direction in velocity mode.

Critically DampedUnderdamped

TL/H/11018–11

FIGURE 11. Position vs Time for 100 Count Step Input
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Following immediately after the trajectory control word

should be two 16-bit data words for each parameter speci-

fied to be loaded. These should be in the descending order

of the trajectory control word bits, that is acceleration, ve-

locity and position. They are written to the LM628/629 as

two pairs of data bytes in most to least significant byte or-

der. The busy bit should be checked between the command

byte and the data byte pair forming the trajectory control

word and the individual data byte pairs of the data. The Start

command, STT, transfers the loaded trajectory data into the

working registers of the double buffered scheme to initiate

movement of the motor. This buffering allows any parame-

ter, except acceleration, to be updated while the motor is

moving by loading data with the LTRJ command and to be

later executed by using the STT command.

New values of acceleration can be loaded with LTRJ while

the motor is moving, but cannot be executed by the STT

command until the trajectory has completed or the drive to

the motor is turned off by using bit 8 of the trajectory control

word. If acceleration has been changed and STT is issued

while the drive to the motor is still present, a command error

interrupt will be generated and the command ignored. Sepa-

rate pairs of LTRJ and STT commands should be issued to

first turn the motor off and then update acceleration. System

operation when changing acceleration while the motor is

moving, but with the drive removed, is discussed in Section

4.5.1.

3.4 Loading PID Filter Coefficients

PID filter coefficients are loaded using the Load Filter Pa-

rameters, LFIL, command and are the proportional coeffi-

cient kp, derivative coefficient kd and integral coefficient ki.

Associated with ki, an integration limit, il, has to be loaded.

This constrains the magnitude of the integration term of the

PID filter to the il value, see Section 4.4.2. Associated with

the derivative coefficient, a derivative sample rate can be

chosen from 2048/fCLK to (2048 c 256)/fCLK in steps of

2048/fCLK, see Section 4.4.1.

The first pair of data bytes following the LFIL command byte

form the filter control word. The most significant byte sets

the derivative sample rate, the fastest rate, 2048/fCLK, be-

ing hexÊ00Ê the slowest rate (2048 c 256)/fCLK being

hexÊFFÊ. The lower four bits of the least significant byte tell

the LM628/629 which of the coefficients is going to be load-

ed, bit 3 is kp, bit 2 is ki, bit 1 is kd and bit 0 is il. Each filter

coefficient and the integration limit can range in value from

hexÊ0000Ê to Ê7FFFÊ, positive only. If all coefficient values

are loaded then ten bytes of data, including the filter control

word, will follow the LFIL command. Again the busy bit has

to be checked between the command byte and filter control

word and between data byte pairs. Use of new filter coeffi-

cient values by the LM628/629 is initiated by issuing the

single byte Update Filter command, UDF.

When controlled movement of the motor has been

achieved, by programming the filter and trajectory, attention

turns to incorporating the LM628/629 into a system. Inter-

rupt Control Commands and Data Reporting Commands en-

able the host microcontroller to keep track of LM628/629

activity.

3.5 Interrupt Control Commands

There are five commands that can be used to interrupt the

host microcontroller when a predefined condition occurs

and two commands that control interrupt operation. When

the LM628/629 is programmed to interrupt its host, the

event which caused this interrupt can be determined from

bits 1 to 6 of the Status Byte (additionally bit 0 is the busy bit

and bit 7 indicates that the motor is off). All the Interrupt

Control commands are executable during motion.

The Mask Interrupts command, MSKI, is used to tell

LM628/629 which of bits 1 to 6 will interrupt the host

through use of interrupt mask data associated with the com-

mand. The data is in the form of a data byte pair, bits 1–6 of

the least significant byte being set to logic 1 when an inter-

rupt source is enabled. The Reset Interrupts command,

RSTI, resets interrupt bits in the Status Byte by sending a

data byte pair, the least significant byte having logic 0 in bit

positions 1 to 6 if they are to be reset.

Executing the Set Index Position command, SIP, causes bit

3 of the status byte to be set when the absolute position of

the next index pulse is recorded in the index register. This

can be read with the command, Read Index Position, RDIP.

Executing either Load Position Error for Interrupt, LPEI, or

Load Position Error for Stopping, LPES, commands, sets bit

5 of the Status Byte when a position error exceeding a

specified limit occurs. An excessive position error can indi-

cate a serious system problem and these two commands

give the option when this occurs of either interrupting the

host or stopping the motor and interrupting the host. The

excessive position is specified following each command by

a data byte pair in most to least significant byte order.

Executing either Set Break Point Absolute, SBPA, or Set

Break Point Relative, SBPR, commands, sets bit 6 of the

status byte when either the specified, absolute or relative,

breakpoint respectively is reached. The data for SBPA can

be the full position range (hexÊC0000000Ê to Ê3FFFFFFFÊ)
and is sent in two data byte pairs in most to least significant

byte order. The data for the Set Breakpoint Relative com-

mand is also of two data byte pairs, but its value should be

such that when added to the target position it remains within

the absolute position range. These commands can be used

to signal the moment to update the on-going trajectory or

filter coefficients. This is achieved by transferring data from

the primary registers, previously loaded using LTRJ or LFIL,

to working registers, using the STT or UDF commands.

Interrupt bits 1, 2 and 4 of the Status Byte are not set by

executing interrupt commands but by events occurring dur-

ing LM628/629 operation as follows. Bit 1 is the command

error interrupt, bit 2 is the trajectory complete interrupt and

bit 4 is the wraparound interrupt. These bits are also

masked and reset by the MSKI and RSTI commands re-

spectively. The Status Byte still indicates the condition of

interrupt bits 1–6 when they are masked from interrupting

the host, allowing them to be incorporated in a polling

scheme.

3.6 Data Reporting Commands

Read Status Byte, RDSTAT, supported by a hardware regis-

ter accessed via CS, RD and PS control, is the most fre-

quently used method of determining LM628/629 status.

This is primarily to read the busy bit 0 while communicating

commands and data as described in Section 3.2.

There are seven other user commands which can read data

from LM628/629 data registers.
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The Read Signals Register command, RDSIGS, returns a

16-bit data word to the host. The least-significant byte re-

peats the RDSTAT byte except for bit 0 which indicates that

a SIP command has been executed but that an index pulse

has not occurred. The most significant byte has 6 bits that

indicate set-up conditions (bits 8, 9, 11, 12, 13 and 14). The

other two bits of the RDSIGS data word indicate that the

trajectory generator has completed its function, bit 10, and

that the host interrupt output (Pin 17) has been set to logic

1, bit 15. Full details of the bit assignments of this command

can be found in the data sheet.

The Read Index Position, RDIP, command reads the posi-

tion recorded in the 32 bits of the index register in four data

bytes. This command, with the SIP command, can be used

to acquire a home position or successive values. These

could be used, for example, for gross error checking.

Both on-going 32-bit position inputs to the summing junction

can be read. Read desired position, RDDP, reads the cur-

rent desired position the demand or ‘‘set point input’’ from

the trajectory generator and Read Real Position, RDRP,

reads the current actual position of the motor.

Read Desired Velocity, RDDV, reads the current desired ve-

locity used to calculate the desired position profile by the

trajectory generator. It is a 32-bit value containing integer

and fractional velocity information. Read Real Velocity,

RDRV, reads the instantaneous actual velocity and is a 16-

bit integer value.

Read Integration-Term Summation Value, RDSUM, reads

the accumulated value of the integration term. This is a 16-

bit value ranging from zero to the current, il, integration limit

value.

3.7 Software Example

The following example shows the flow of microcontroller

commands needed to get the LM628/629 to control a sim-

ple motor move. As it is non-specific to any microcontroller

pseudo commands WR,XXXXH and RD,XXXXH with hex im-

mediate data will be used to indicate read and write opera-

tions respectively by the host to and from the LM628/629.

Decisions use IF..THEN..ELSE. BUSY is a user routine to

check the busy bit in the Status Byte, WAIT is a user routine

to wait 1.5 ms after hardware reset.

LABEL MNEMONIC :REMARK

Initialization:

WAIT :Routine to wait 1.5 ms after reset.

RDSTAT :Check correct RESET operation by reading the

:Status Byte. This should be either hexÊ84Ê or ÊC4Ê
IF Status byte not equal hexÊ84Ê or ÊC4Ê THEN repeat

hardware RESET

:Make decision concerning validity of RESET

Optionally the Reset can be further checked for correct operation as follows. It is useful to include this to reset all interrupt bits in

the Status Byte before further action:

MSKI :Mask interrupts

BUSY :Check busy bit 0 routine

WR,0000H :Host writes two zero bytes of data to

:LM628/629. This mask disables all interrupts.

BUSY :Check busy bit

RSTI :Reset Interrupts command

BUSY :Check busy bit

WR,0000H :Host writes two zero bytes of data to LM628/629

RDSTAT :Status byte should read either hexÊ80Ê or ÊC0Ê
IF Status byte not equal hexÊ80Ê or ÊC0Ê THEN repeat

hardware RESET

:

IF Status Byte equal to hexÊC0Ê THEN continue ELSE PORT

:

BUSY :Check busy bit

RSTI :Reset Interrupts

BUSY :Check busy bit

WR,0000H :Reset all interrupt bits

Set Output Port Size for a 12-bit DAC.

PORT BUSY :Check busy bit

PORT12 :Sets LM628 output port to 12-bits

(Only for systems with 12-bit DAC)

12



Load Filter Parameters

BUSY :Check busy bit

LFIL :Load Filter Parameters command

BUSY :Check busy bit

WR,0008H :Filter Control Word

: Bits 8 to 15 (MSB) set the derivative

:sample rate.

: Bit 3 Loading kp data

: Bit 2 Loading ki data

: Bit 1 Loading kd data

: Bit 0 Loading il data

:Choose to load kp only at maximum

:derivative sample rate then Filter Control

:Word 4 0008H

BUSY :Check busy bit

WR,0032H :Choose kp 4 50, load data byte pair MS

:byte first

Update Filter

BUSY :Check busy bit

UDF :

Load Trajectory Parameters

BUSY :Check busy bit

LTRJ :Load trajectory parameters command.

BUSY :Check busy bit

WR,002AH :Load trajectory control word:

: See Table I

:Choose Position mode, and load absolute

:acceleration, velocity and position. Then

:trajectory control word 4 002AH. This means

:6 pairs of data bytes should follow.

BUSY :Check busy bit

WR,XXXXH :Load Acceleration integer word MS byte first

BUSY :Check busy bit

WR,XXXXH :Load Acceleration fractional word MS byte first

BUSY :Check busy bit

WR,XXXXH :Load Velocity integer word MS byte first

BUSY :Check busy bit

WR,XXXXH :Load Velocity fractional word MS byte first

BUSY :Check busy bit

WR,XXXXH :Load Position MS byte pair first

BUSY :Check busy bit

WR,XXXXH :Load position LS byte pair

Start Motion

BUSY :Check busy bit

STT :Start command

Check for Trajectory complete.

RDSTAT :Check Status Byte bit 2 for trajectory

:complete

Busy bit check routine

BUSY RDSTAT :Read status byte

If bit 0 is set THEN BUSY ELSE RETURN

END

*Consult reference (5) for more information on programming the LM628/629.
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TL/H/11018–12

FIGURE 12. Basic Software Flow
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4.0 HELPFUL USER IDEAS

4.1 Getting Started

This section outlines the actions that are necessary to im-

plement a simple motion control system using LM628/629.

More details on how LM628/629 works and the use of the

User Command Set are given in the sections ‘‘2.0 DEVICE

DESCRIPTION’’ and ‘‘3.0 USER COMMAND SET’’.

4.2 Hardware

The following hardware connections need to be made:

4.2.1 Host Microcontroller Interface

Interface to the host microcontroller is via an 8-bit com-

mand/data port which is controlled by four lines. These are

the conventional chip select CS, read RD, write WR and a

line called Port Select PS, see Figure 13. PS is used to

select user Command or Data transfer between the

LM628/629 and the host. In the special case of the Status

Byte (RDSTAT) bringing PS, CS and RD low together allows

access to this hardware register at any time. An optional

interrupt line, HI, from the LM628/629 to the host can be

used. A microcontroller output line is necessary to control

the LM628/629 hardware reset action.

4.2.2 Position Encoder Interface

The two optical incremental position encoder outputs feed

into the LM628/629 quadrature decoder TTL inputs A and

B. The leading phase of the quadrature encoder output de-

fines the forward direction of the motor and should be con-

nected to input A. Optionally an index pulse may be used

from the position encoder. This is connected to the IN input,

which should be tied high if not used, see Figure 13.

4.2.3 Output Interface

LM628 has a parallel output of either 8 or 12 bits, the latter

is output as two multiplexed 6-bit words.Figure 14 illustrates

how a motor might be driven using a LM12 power linear

amplifier from the output of 8-bit DAC0800.

LM629 has a sign and magnitude PWM output, Figure 13, of

7-bit resolution plus sign. Figure 15 shows how the LM629

sign and magnitude outputs can be used to control the out-

puts of an LM18293 quad half-H driver. The half-H drivers

are used in pairs, by using 100 mX current sharing resistors,

and form a full-H bridge driver of 2A output. The sign bit is

used to steer the PWM LM629 magnitude output to either

side of the H-bridge lower output transistors while holding

the upper transistors on the opposite side of the H-bridge

continuously on.

TL/H/11018–13

FIGURE 13. LM628 and LM629 Host, Output and Position Encoder Interfaces

TL/H/11018–14

FIGURE 14. LM628 Example of

Linear Motor Drive Using LM12
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TL/H/11018–15

FIGURE 15. LM629 H-Bridge Motor Drive Example Using LM18293
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4.3 Software

Making LM628/629 perform a motion control function re-

quires that the host microcontroller, after initializing

LM628/629, loads coefficients for the PID filter and then

loads trajectory information. The interrupt and data report-

ing commands can then be used by the host to keep track

of LM628/629 actions. For detailed descriptions see the

LM628/629 data sheet and Section 3.

4.4 Initialization

There is only one initialization operation that must be per-

formed; a check that hardware reset has operated correctly.

If required, the size of the LM628 output port should be

configured. Other operations which might be part of user’s

system initialization are discussed under Interrupt and Data

Reporting commands, Sections 3.5 and 3.6.

4.4.1 Hardware RESET Check

The hardware reset is activated by a logic low pulse at pin

27, RST, from the host of greater than 8 clock cycles. To

ensure that this reset has operated correctly the Status Byte

should be checked immediately after the reset pin goes

high, it should read hexÊ00Ê. If the reset is successful this

will change to hexÊ84Ê or ÊC4Ê within 1.5 ms. If not, the hard-

ware reset and check should be repeated. A further check

can be used to make certain that a reset has been success-

ful by using the Reset Interrupts command, RSTI. Before

sending the RSTI, issue the Mask Interrupts command,

MSKI, and mask data that disables all interrupts, this mask

is sent as two bytes of data equaling hexÊ0000Ê. Then issue

the RSTI command plus mask data that resets all interrupts,

this equals hexÊ0000Ê and is again sent as two bytes. Do not

forget to check the busy bit between the command byte and

data byte pairs. When the chip has reset properly the status

byte will change from hexÊ84Ê or ÊC4Ê to hexÊ80Ê or ÊC0Ê.

4.4.2 Initializing LM628 Output Port

Reset sets the LM628 output port size to 8 bits. If a 12-bit

DAC is being used, then the output port size is set by the

use of the PORT12 command.

4.4.3 Interrupt Commands

Optionally the commands which cause the LM628/629 to

take action on a predefined condition (e.g., SIP, LPEI, LPES,

SBPA and SBPR) can be included in the initialization, these

are discussed under Interrupt Commands.

4.5 Performance Refinements

4.5.1 Derivative Sample Rate

The derivative sample interval is controllable to improve the

stability of low velocity, high inertia loads. At low speeds,

when fractional counts for velocity are used, the integer po-

sition counts, desired and actual, only change after several

sample intervals of the LM628/629 (2048/fCLK). This

means that for sample intervals between integer count

changes the error voltage will not change for successive

samples. As the derivative term, kd, multiplies the difference

betweeen the previous and current error values, if the deriv-

ative sample interval is the same as the sample interval,

several consecutive sample intervals will have zero deriva-

tive term and hence no damping contribution. Lengthening

the derivative sample interval ensures a more constant de-

rivate term and hence improved stability. Derivative sample

interval is loaded with the filter coefficient values as the

most significant byte of the LFIL control word everytime the

command is used, the host therefore needs to store the

current value for re-loading at times of filter coefficient

change.

4.5.2 Integral Windup

Along with the integral filter coefficient, ki, an integration

limit, il, has to be input into LM628/629 which allows the

user to set the maximum value of the integration term of

equation (3), Section 5.2.2. This term is then able to accu-

mulate up to the value of the integration limit and any further

increase due to error of the same sign is ignored. Setting

the integration limit enables the user to prevent an effect

called ‘‘Integral Windup’’. For example, if an LM628/629

attempts to accelerate a motor at a faster rate than it can

achieve, a very large integral term will result. When the

LM628/629 tries to stop the motor at the target position the

large accumulated integral term will dominate the filter and

cause the motor to badly overshoot, and thus integral wind-

up has occurred.

4.5.3 Profiles Other Than Trapezoidal

TL/H/11018–16

FIGURE 16. Generating a Non-Trapezoidal Profile

If it is required to have a velocity profile other than trapezoi-

dal, this can be accomplished by breaking the profile into

small pieces each of which is part of a small trapezoid. A

piecewise linear approximation to the required profile can

then be achieved by changing the maximum velocity before

the trapezoid has had time to complete, see Figure 16.

4.5.4 Synchronizing Axes

For controlling tightly coupled coordinated motion between

multiple-axes, synchronization is required. The best possible

synchronization that can be achieved between multiple

LM628/629 is within one sample interval, (2048/fCLK,

256 ms for an 8 MHz clock, 341 ms for a 6 MHz clock). This

is achieved by using the pipeline feature of the LM628/629

where all controlled axes are loaded individually with trajec-

tory values using the LTRJ command and then simulta-

neously given the start command STT. PID filter coefficients

can be updated in a similar manner using LFIL and UDF

commands.

4.6 Operating Constraints

4.6.1 Updating Acceleration on the Fly

Whereas velocity and target position can be updated while

the motor is moving, on the ‘‘fly’’, the algorithm described in

Section 2.5 prevents this for acceleration. To change accel-

eration while the motor is moving in mid-trajectory the motor

off command has to be issued by setting LTRJ command bit

8. Then the new acceleration can be loaded, again using the

17



LTRJ command. When the start command STT is issued

the motor will be energized and the trajectory generator will

start generating a new profile from the actual position when

the STT command was issued. In doing this the trajectory

generator will assume that the motor starts from a stationary

position in the normal way. If the motor has sufficient inertia

and is still moving when the STT command is issued then

the control loop will attempt to bring the motor on to the

new profile, possibly with a large error value being input to

the PID filter and a consequential saturated output until the

motor velocity matches the profile. This is a classic case of

overload in a feedback system. It will operate in an open

loop manner until the error input gets within controllable

bounds and then the feedback loop will close. Performance

in this situation is unpredictable and application specific.

LM628/629 was not intentionally designed to operate in this

way.

4.6.2 Command Update Rate

If an LM628/629 is updated too frequently by the host it will

not keep up with the commands given. The LM628/629

aborts the current trajectory calculation when it receives a

new STT command, resulting in the output staying at the

value of the previous sample. For this reason it is recom-

mended that trajectory is not updated at a greater rate than

once every 10 ms.

5.0 THEORY

5.1 PID Filter

5.1.1 PID Filter in the Continuous Domain

The LM628/629 uses a PID filter as the loop compensator,

the expression for the PID filter in the continuous domain is:

(1)H(s) e Kp a Ki/s a Kds

Where Kp e proportional coefficient

Ki e integral coefficient

Kd e derivative coefficient

5.1.2 PID Filter Bode Plots

TL/H/11018–17

FIGURE 17. Bode Plots of PID Transfer Function
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The Bode plots for this function (shown in Figure 17 ) show

the effect of the individual terms of equation (1). The propor-

tional term, Kp provides adjustment of proportional gain.

The derivative term Kd increases the system bandwidth but

more importantly adds leading phase shift to the control

loop at high frequencies. This improves stability by counter-

acting the lagging phase shift introduced by other control

loop components such as the motor. The integral term, Ki,

provides a high DC gain which reduces static errors, but

introduces a lagging phase shift at low frequencies. The rel-

ative magnitudes of Kd, Ki and loop proportional gain have

to be adjusted to achieve optimum performance without in-

troducing instability.

5.2 PID Filter Coefficient Scaling Factors for LM628/629

While the easiest way to determine the PID filter coefficient

kp, kd, and ki values is to use tuning as described in Section

2.11, some users may want to use a more theoretical ap-

proach to at least find initial starting values before fine tun-

ing. As very often this analysis is performed in the continu-

ous (s) domain and transformed into the discrete digital do-

main for implementation, the relationship between the con-

tinuous domain coefficients and the values input into

LM628/629 is of interest.

5.2.1 PID Filter Difference Equation

In the discrete domain, equation (1) becomes the difference

equation:

u(n)eKpe(n)aKiT&N

ne0

e(n)aKd/Ts[e(n)be(nb1)] (2)

Where:

T is the sample interval 2048/fCLK

Ts is the derivative sample interval (2048/fCLK c (1..255)

5.2.2 Difference Equation with LM628/629 Coefficients

In terms of LM628/629 coefficients, (2) becomes:

u(n)ekpe(n)aki&N

ne0

e(n)akd[e(nÊ)be(nÊb0)] (3)

Where:

kp, ki and kd are the discrete-time LM628/629 coeffi-

cients

e(n) is the position error at sample time n

nÊ indicates sampling at the derivative sampling rate.

The error signal e(n) [or e(nÊ)] is a 16-bit number from the

output of the summing junction and is the input to the PID

filter. The 15-bit filter coefficients are respectively multiplied

by the 16-bit error terms as shown in equation (3) to pro-

duce 32-bit products.

5.2.3 LM628/629 PID Filter Output

The proportional coefficient kp is multiplied by the error sig-

nal directly. The error signal is continually summed at the

sample rate to previously accumulated errors to form the

integral signal and is maintained to 24 bits. To achieve a

more usable range from this term, only the most significant

16 bits are used and multiplied by the integral coefficient, ki.

The absolute value of this product is compared with the

integration limit, il, and the smallest value, appropriately

signed, is used. To form the derivative signal, the previous

error is subtracted from the current error over the derivative

sampling interval. This is multiplied by the derivative coeffi-

cient kd and the product contributes every sample interval

to the output independently of the user chosen derivative

sample interval.

The least significant 16 bits of the 32-bit products from the

three terms are added together to produce the resulting u(n)

of equation (3) each sample interval. From the PID filter 16-

bit result, either the most significant 8 or 12 bits are output,

depending on the output word size being used. A conse-

quence of this and the use of the 16 MSB’s of the integral

signal is a scaling of the filter coefficients in relation to the

continuous domain coefficients.

5.2.4 Scaling for kp and kd

Figure 18 gives details of the multiplication and output for kp
and kd. Taking the output from the MS byte of the LS 16 bits

of the 32-bit result register causes an effective 8-bit right-

shift or division of 256 associated with kp and kd as follows:

TL/H/11018–18

FIGURE 18. Scaling of kp and kd
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Result e kp c e(n)/256 e Kp x e(n) .Ê. kp

e 256 c Kp.

Similarly for kd:

Result e (kd x [e(nÊ) b e(nÊb1)])/256

e Kd/Ts c e(n) .Ê. kd e 256 c Kd/Ts

Where Ts is the derivative sampling rate.

5.2.5 Scaling for ki

Figure 19 shows the multiplication and output for the inte-

gral term ki. The use of a 24-bit register for the error terms

summation gives further scaling:

Result e ki/256 c l e(n)/256

e Ki c T .Ê. ki e 65536 Ki c T.

Where T is the sampling interval 2048/fCLK.

For a 12-bit output the factors are:

kp e 16 c Kp, kd e 16 c Kd/Ts and ki e 4096 Ki c T.

If the 32-bit result register overflows into the most significant

16-bits as a result of a calculation, then all the lower bits are

set high to give a predictable saturated output.

5.3 An Example of a Trajectory Calculation

Problem: Determine the trajectory parameters for a motor

move of 500 revolutions in 1 minute with 15 seconds of

acceleration and deceleration respectively. Assume the op-

tical incremental encoder used has 500 lines.

The LM628/629 quadrature decoder gives four counts for

each encoder line giving 2000 counts per revolution in this

example. The total number of counts for this position move

is 2000 c 500 e 1,000,000 counts.

By definition, average velocity during the acceleration and

deceleration periods, from and to zero, is half the maximum

velocity. In this example, half the total time to make the

move (30 seconds) is taken by acceleration and decelera-

tion. Thus in terms of time, half the move is made at maxi-

mum velocity and half the move at an average velocity of

half this maximum. Therefore, the combined distance trav-

eled during acceleration and deceleration is half that during

TL/H/11018–19

FIGURE 19. Scaling for ki

TL/H/11018–20

FIGURE 20. Trajectory Calculation Example Profile
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maximum velocity or (/3 of the total, or 333,333 counts. Ac-

celeration and deceleration takes 166,667 counts respec-

tively.

The time interval used by the LM628/629 is the sample

interval which is 256 ms for a fCLK of 8 MHz.

The number of sample periods in 15 seconds e 15s/

256 ms e 58,600 samples

Remembering that distance s e at2/2 is traveled due to

acceleration ÊaÊ and time ÊtÊ.
Therefore acceleration a e 2S/t2

e 2 c 166,667/58,600

e 97.1 c 10b6 counts/sample2

Acceleration and velocity values are entered into

LM628/629 as a 32-bit integer double-word but represents

a 16-bit integer plus 16-bit fractional value. To achieve this

acceleration and velocity decimal values are scaled by

65536 and any remaining fractions discarded. This value is

then converted to hex to enter into LM628 in four bytes.

Scaled acceleration a e 97.1 c 10b6 c 65536

e 6.36 decimal e 00000006 hex.

The maximum velocity can be calculated in two ways, either

by the distance in counts traveled at maximum velocity di-

vided by the number of samples or by the acceleration mul-

tiplied by the number of samples over acceleration duration,

as follows:

Velocity e 666,667/117,200 e 97.1 c 10b6 c 58,600

e 5.69 counts/sample

Scaled by 65536 becomes 372,899.8 decimal e 0005B0A3

hex.

Inputting these values for acceleration and velocity with the

target position of 1,000,000 decimal, 000F4240 hex will

achieve the desired velocity profile.

6.0 QUESTIONS AND ANSWERS

6.1 The Two Most Popular Questions

6.1.1 Why doesn’t the motor move, I’ve loaded filter pa-

rameters, trajectory parameters and issued Update Fil-

ter, UDF, and Start, STT, commands?

Answer: The most like cause is that a stop bit (one of bits 8,

9 or 10 of the trajectory control word) has been set in error,

supposedly to cause a stop in position mode. This is unnec-

essary, in position mode the trajectory stops automatically

at the target position, see Section 3.3.

6.1.2 Can acceleration be changed on the fly?

Answer: No, not directly and a command error interrupt will

be generated when STT is issued if acceleration has been

changed. Acceleration can be changed if the motor is

turned off first using bit 8 of the Load Trajectory Parameter,

LTRJ, trajectory control word, see Section 4.6.1.

6.2.More on Acceleration Change

6.2.1 What happens at restart if acceleration is changed

with the motor drive off and the motor is still moving?

Answer: The trajectory generation starting position is the

actual position when the STT command is issued, but as-

sumes that the motor is stationary. If the motor is moving

the control loop will attempt to bring the motor back onto an

accelerating profile, producing a large error value and less

than predictable results. The LM628/629 was not designed

with the intention to allow acceleration changes with moving

motors.

6.2.2 Is there any way to change acceleration?

Answer: Acceleration change can be simulated by making

many small changes of maximum velocity. For instance if a

small velocity change is loaded, using LTRJ and STT com-

mands, issuing these repeatedly at predetermined time in-

tervals will cause the maximum velocity to increment pro-

ducing a piecewise linear acceleration profile. The actual

acceleration between velocity increments remains the

same.

6.3 More on Stop Commands

6.3.1 What happens if the on-going trajectory is

stopped by setting LTRJ control word bits 9 or 10, stop

abruptly or stop smoothly, and then restarted by issu-

ing Start, STT?

Answer: While stopped the motor position will be held by

the control loop at the position determined as a result of

issuing the stop command. Issuing STT will cause the motor

to restart the trajectory toward the original target position

with normal controlled acceleration.

6.3.2 What happens if the on-going trajectory is

stopped by setting LTRJ control word bit 8, motor-off?

Answer: The LM628’s DAC output is set to mid-scale, this

puts zero volts on the motor which will still have a dynamic

braking effect due to the commutation diodes. The LM629’s

PWM output sets the magnitude output to zero with a similar

effect. If the motor freewheels or is moved the desired and

actual positions will be the same. This can be verified using

the RDDP and RDRP commands. When Start, STT, is is-

sued the loop will be closed again and the motor will move

toward the original trajectory from the actual current posi-

tion.

6.3.3 If the motor is off, how can the control loop be

closed and the motor energized?

Answer: Simply by issuing the Start, STT command. If any

previous trajectory has completed then the motor will be

held in the current position. If a trajectory was in progress

when the motor-off command was issued then the motor

will restart and move to the target position in position mode,

or resume movement in velocity mode.

6.4 More on Define Home

6.4.1 What happens if the Define Home command, DFH,

is issued while a current trajectory is in progress?

Answer: The position where the DFH command is issued is

reset to zero, but the motor still stops at the original position

commanded, i.e., the position where DFH is issued is sub-

stracted from the original target position.

6.4.2 Does issuing Define Home, DFH, zero both the tra-

jectory and position register.

Answer: Yes, use Read Real Position, RDRP, and Read De-

sired Position, RDDP to verify.

6.5 More on Velocity

6.5.1 Why is a command error interrupt generated when

inputting negative values of relative velocity?

Answer: Because the negative relative velocity would cause

a negative absolute velocity which is not allowed. Negative

absolute values of velocity imply movement in the negative

direction which can be achieved by inputting a negative po-
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sition value or in velocity mode by not setting bit 12. Similar-

ly negative values of acceleration imply deceleration which

occurs automatically at the acceleration rate when the

LM628/629 stops the motor in position mode or if making a

transition from a higher to a lower value of velocity.

6.5.2 What happens in velocity (or position) mode when

the position range is exceeded?

Answer: The position range extends from maximum nega-

tive position hexÊC0000000Ê to maximum positive position

hexÊ3FFFFFFFÊ using a 32-bit double word. Bit 31 is the

direction bit, logic 0 indicates forward direction, bit 30 is the

wraparound bit used to control position over-range in veloci-

ty (or position) mode.

When the position increases past hexÊ3FFFFFFFÊ the wrap-

around bit 30 is set, which also sets the wraparound bit in

the Status byte bit 4. This can be polled by the host or

optionally used to interrupt the host as defined by the MSKI

commands. Essentially the host has to manage wraparound

by noting its occurrence and resetting the Status byte wrap-

around bit using the RSTI command. When the wraparound

bit 30 is set in the position register so is the direction bit.

This means one count past maximum positive position

hexÊ3FFFFFFFÊ moves the position register onto the maxi-

mum negative position hexÊC0000000Ê. Continued increase

in positive direction causes the position register to count up

to zero and back to positive values of position and on

toward another wraparound.

Similarly when traveling in a negative direction, using two’s

complement arithmetic, position counts range from

hexÊFFFFFFFÊ (b1 decimal) to the maximum negative posi-

tion of hexÊC0000000Ê. One more negative count causes

the position register to change to hexÊ3FFFFFFFÊ, the maxi-

mum positive position. This time the wraparound bit 30 is

reset, causing the wraparound bit 4 of the status byte to be

set. Also the direction bit 31 is reset to zero. Further counts

in the negative direction cause the position register to count

down to zero as would be expected. With management

there is no reason why absolute position should be lost,

even when changing between velocity and position modes.

6.6 More on Use of Commands

6.6.1 If filter parameter and trajectory commands are

pipelined for synchronization of axes, can the Update

Filter, UDF, and Start, STT, commands be issued con-

secutively?

Answer: Yes.

6.6.2 Can commands be issued between another com-

mand and its data?

Answer: No.

6.6.3 What is the response time of the set breakpoint

commands, SBPA and SBPR?

Answer: There is an uncertainty of one sample interval in

the setting of the breakpoint bit 6 in the Status Byte in re-

sponse to these commands.

6.6.4 What happens when the Set Index Position, SIP,

command is issued?

Answer: On the next occurrence of all three inputs from the

position encoder being low the corresponding position is

loaded into the index register. This can be read with the

Read Index Position command, RDIP. Bit 0 of the Read Sig-

nals register, shows when an SIP command has been is-

sued but the index position has not yet been acquired.

RDSIGS command accesses the Read Signals Register.

6.6.5 What happens if the motor is not able to keep up

with the specified trajectory acceleration and velocity

values?

Answer: A large, saturated, position error will be generated,

and the control loop will be non-linear. The acceleration and

velocity values should be set within the capability of the

motor. Read Desired and Real Position commands, RDDP

and RDRP can be used to determine the size of the error.

The Load Position Error commands, for either host Interrupt

or motor Stopping, LPEI and LPES, can be used to monitor

the error size for controlled action where safety is a factor.

6.6.6 When is the command error bit 1 in the Status

Byte set?

Answer:

a) When an acceleration change is attempted when the mo-

tor is moving and the drive on.

b) When loading a relative velocity would cause a negative

absolute velocity.

c) Incorrect reading and writing operations generally.

6.6.7 What does the trajectory complete bit 2 in the

Status Byte indicate?

Answer: That the trajectory loaded by LTRJ and initiated by

STT has completed. The motor may or may not be at this

position. Bit 2 is also set when the motor stop commands

are executed and completed.

6.6.8 What do the specified minimum and maximum val-

ues of velocity mean in reality?

Answer: Assume a 500 line encoder e 1/2000 revs/count

is used.

The maximum LM628/629 velocity is 16383 counts/sample

and for a 8 MHz clock the LM628/629 sample rate is 3.9k

samples/second, multiplying these values gives 32k revs/

second or 1.92M rpm.

The maximum encoder rate is 1M counts/second multiplied

by 1/2000 revs/count gives 500 revs/second or 30k rpm.

The encoder capture rate therefore sets the maximum ve-

locity limit.

The minimum LM628/629 velocity is 1/65536 counts/sam-

ple (one fractional count), multiplying this value by the sam-

ple rate and encoder revs/count gives 30 c 10b6 revs/

second or 1.8 c 10b3 rpm.

The LM628 provides no limitation to practical values of ve-

locity.

6.6.9 How long will it take to get to position wraparound

in velocity mode traveling at 5000 rpm with a 500 line

encoder?

Answer: 107 minutes.
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