NAOMI WFS Acceptance Tests at the University of Durham

wht-naomi-45

Document number AOW/GEN/RAH/14.0/06/00 WFS acceptance tests DRAFT (Version date: 2nd June 2000)

The ID numbers are those used in Dr. Andy Longmore's Microsoft Access database (see AJL file: integration_tests.mdb) which summarises the WPD requirements. Most of the acceptance tests listed in the database have been included in this document; some selection of tests has been performed. The pressures of the schedule may lead to significant reductions. In later versions of this document the author plans to attach priorities to the tests and indicate test sequences for more efficient operation, i.e. tests with similar configurations and requirements should be grouped together. Notes in this draft have partially addressed the need for grouping but a scheme that readily identifies similar tests is needed.

ID	Objective	Requirements	Description of Test	Date &	Pass/	Comments
				Examiner	Fail	
4	Verify that the WFS will operate with atmospheric coherence lengths > 8 cm at 0.55 ? m.	 ?? WFS ?? OMC ?? Engineering level GUI ?? Liquid crystal turbulence simulator 	 Set up WFS to view point source through turbulence simulator with DM flattened and FSM at midrange. Demonstrate that satisfactory Hartmann spot data can be obtained over required range of turbulence conditions, changing between lenslets 1 and 2 in accordance with turbulence strength. 			
7	Verify that the DM segments map onto the WFS subapertures.	?? WFS?? OMC?? NCU?? Engineering level GUI	 Flatten DM and set the FSM to midrange. Align WFS to on-axis NCU DL point source. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Adjust x-y position of the DM as required for the best overall registration of the DM image with the lenslet array. Verify that in near-pupil viewing mode that light does not spill over into other subapertures except as allowed by test ID number 120. Note: Tests ID 7 and 20 should be combined. 			
10	Verify that CCDs operate with 8 x8 (6 x 6) and 4 x 4 pixels (unbinned)	?? WFS?? OMC?? NCU?? Engineering level GUI	 Flatten DM or install dummy DM. Set FSM to midrange. Align WFS to on-axis NCU DL point source. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Adjust WFS pickoff to centre Hartmann spots in array. Adjust NCU brightness and WFS integration time to give high photon rate without saturation. 			

			4.	Operate in required readout modes and show that the		
				data streams can be reconstructed into the		
11	Verify that the CCDs operate in a quad cell mode (2 x 2 binned pixels).	?? WFS?? OMC?? NCU?? Engineering level GUI	1. 2. 3. 4.	 appropriate images. Flatten DM or install dummy DM. Set FSM to midrange. Align WFS to on-axis NCU DL point source. Set up WFS in quad cell mode with lenslet array 1 and ADC set to zero dispersion. Adjust WFS pickoff to centre Hartmann spots in array. Adjust NCU brightness and WFS integration time to give high photon rate without saturation 		
			5.	Verify that the data stream can be reconstructed into the appropriate image.		
12	Verify that the CCD configuration is changeable without loosing lock.	 ?? WFS ?? OMC ?? Engineering level GUI ?? Liquid crystal turbulence simulator 	1. 2. 3.	This test should be performed on completion of test ID 4. With lenslet 1 and 4 x 4 pixels close the DM and FSM loops for simulated r_0 TBD (>15 cm suggested). Demonstrate that one can change to quad cell mode and 6 x 6 pixels without looping lock.		
20	Pickoff must allow acquisition of WFS source	?? WFS?? Engineering level GUI	1. 2.	Acquire WFS calibration source by moving pickoff. Verify that images of source can be centred in CCDs field of view.		
22	Verify that the acquisition accuracy is < 3.4 ?m.	?? WFS?? NCU?? OMC?? Engineering level GUI	1. 2. 3. 4.	Flatten DM or install dummy DM. Set FSM to midrange. Install NCU FP mask. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Acquire and centre in CCD FOV a selection of pinholes from over the field presented by the FP mask. Verfify that acquisition accuracy meets requirements from WFS pickoff readouts and calibration data for FP mask.		
23	Dithering range of 1.7 mm (5 arcsecond) with \pm 3.4 ?m repeatability is required.	?? WFS?? NCU?? OMC?? Engineering level GUI	1. 2. 3.	Flatten DM or install dummy DM. Set FSM to midrange. Install NCU FP mask. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Select pair of pinholes in FP mask with separation		

			closest to 1.7 mm.		
			4. Establish pickoff positions that centre each pinhole		
			in CCDs' FOV.		
			5. Dither between these pinholes and determine		
			repeatability from Hartmann spot positions at ends		
			of each dither cycle		
24	Dithering range of 6 mm (18	22 WFS	This test is similar to the previous test (ID 23) except that		
2.	arcsecond) with ± 8.5 ?m	22 NCU	the dither range is increased accordingly.		
	repeatability is required	22 OMC			
	repeatability is required.	22 Engineering level GU			
25	Dithering emplitude ecourtees		This test should be combined with tests ID 22 and 24		
23	Dimening amplitude accuracy		This test should be combined with tests ID 25 and 24.		
	shall be $\pm 17.2 \text{ m} (\pm 0.05)$		These tests establish repeatability. To establish accuracy		
	arcsecond) or better.		one compares the commanded pickon positions with the		
			CCD ₂		
20	Distroff z avia shall provide		Verified as part of any test involving 7 axis motion a 7		
29	field currenture componention	22 Factor and CII	TD 150		
20	neid curvature compensation.	· ?? Engineering level GU	[ID 139.	·	
30	Maximum z-axis speed shall	?? WFS	Measure time for z-axis motion of 19 mm.		
	be > 1.9 mm/sec.	?? Engineering level GU			
39	WFS must register with	?? WFS	1. Install dummy DM with fiducial. Set FSM to		
	OMC with a 3-axis	?? NCU	midrange. Align WFS to on-axis NCU DL point		
	repeatability < 50 ?m.	?? OMC	source. Set NCU to high brightness.		
		?? Engineering level GU	$\begin{bmatrix} 2. & \text{Set up WFS in 4 x 4 pixel mode with lenslet array 1} \end{bmatrix}$		
			and ADC set to zero dispersion.		
			3. Adjust WFS pickoff to centre Hartmann spots in		
			array. Adjust integration time to give go best signal		
			to noise ratio without saturation.		
			4. Measure spot positions, mean separation, pupil		
			image of fiducial in front of dummy DM.		
			5. After taking all precautions, lift the WFS using the		
			handling gear provided and carefully replace.		
			6. Repeat step 4 and calculate replacement accuracy		
40	WES must pixet shout $f/1 < 0$	22 W/EC	This comphility is varified as part of the OMONUES	·	
40	wr5 must pivot about 1/16.8	// WFS	initial installation and alignment		
	iocus in bour axes.	?? NCU	mitiai instanation and angnment.		
		77 OMC			
		?? Engineering level GU		·	
41	Phase-gradient measurement	?? WFS	1. Flatten DM or install dummy DM. Set FSM to		
	accuracy of 0.018 wave		midrange. Align WFS to on-axis NCU DL point		

	(?=2.2 ?m) rms required	?? NCU			source.		
	with 1500	?? OMC	2	2.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		
	photons/subaperture .	?? Enginee	ing level GUI		and ADC set to zero dispersion.		
		8	3	3.	Adjust WFS pickoff to centre Hartmann spots in		
					array.		
			4	4.	Adjust NCU brightness and WFS integration time to		
					give photon rate. Record spot centroid positions.		
				5.	Tilt FSM angle* 20.8 ?rad (4.3 arcsec) and measure		
					spot centroid positions. Repeat several times and		
					determine the dispersion. (* Mirror surface tilt		
					corresponding to required phase gradient accuracy.)		
42	Phase-gradient measurement	?? WFS	1	1.	Flatten DM or use dummy DM. Set FSM to		
	accuracy of 0.14 wave (?=2.2	?? NCU			midrange. Align WFS to on-axis		
	?m) rms required with 40	?? OMC			NCU DL point source.		
	photons/subaperture.	?? Engineer	ring level GUI	1.	Set up WFS in quad cell mode with lenslet array 1		
		-			and ADC set to zero dispersion.		
			2	2.	Adjust WFS pickoff to centre Hartmann spots in		
				_	array.		
			3	3.	Adjust NCU brightness and WFS integration time to		
					give photon rate. Record spot centroid positions.		
			2	4.	Tilt FSM angle TBD and measure spot centroid		
					positions. Repeat several times and determine the		
12		22 4477		1	dispersion.		
43	Verify phase gradient range	?? WFS		1.	Flatten DM or use dummy DM. Set FSM to		
	1s at least ± 1.5	?? NCU			midrange. Align WFS to large NCU source which		
	waves/subaperture (?=2.2	?? OMC			simulates time-averaged source degraded by strong		
	?m) with 4 x 4 pixels for	?? Engineer	ring level GUI	r	Cot up WES in 4 y 4 nivel mode with length empty		
	$r_0 = 8 \text{ cm and } 8 \times 8 \text{ pixels for}$			Ζ.	and ADC set to zero dispersion		
	$r_0 > 13$ cm.			3	Move WES pickoff along x axis until adge of pixel		
				5.	array is reached in each direction. Note that ± 1.5		
					waves/subaperture corresponds to a pickoff motion		
					of ± 0.41 mm		
					Record pickoff positions at array edges		
				4.	Repeat for v-axis.		
				5.	Align WFS pickoff to NCU DL point source and		
					select lenslet 1 and 8 x 8 pixel mode.		
				6.	Repeat steps 3 and 4 for this configuration.		
51	Spot displacements due to	?? WFS	1	1.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		

54	aberrations on-axis must be < 20% of pixel size. Transmission shall be >90% over 0.5 to 1.0 ? m spectral range.	 ?? Engineering level GUI ?? WFS ?? OMC ?? NCU or suitable bright source at Nasmyth focus ?? ATC photometer 	 and ADC set to zero dispersion. Move pickoff to acquire WFS calibration source. Adjust WFS pickoff to obtain best centration of Hartmann spots in array. Adjust WFS integration time to give high photon rate without saturation. Record spot centroid positions and determine displacement from centre of each pixel array. A "point" source of sufficient brightness is required at the input to the OMC, i.e. the Nasmyth focus. "Sufficient brightness" is defined as a good signal to noise level with the ATC photometer when its head is placed at the f/16.8 focus, i.e. the WFS input. Measure the signal at the f/16.8 focus with the photometer head. Move the CCD carriage to the rear limit of its travel. Select the WFS doublet in the lenslet wheel. Mount the photometer head to collect all light from the doublet. The ratio of the second reading to the first is a measure of the transmission (excluding relay optics). Perform this operation with different filters (subject to availability) to assess transmission variation with 0.5 to 1.0 ?m spectral region. 	Measurement excludes relay optics.
67	Lenslets shall not scatter >2% into adjacent subapertures.	?? WFS?? NCU?? OMC?? Engineering level GUI	 Flatten DM and set FSM to midrange. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Align WFS to on-axis NCU point source. In pupil-viewing mode verify correct registration of DM segments to lenslets. Select a subaperture and tilt segments around this subaperture to limit away from subaperture. Measure flux in adjacent subapertures and compare with flux in selected subaperture. 	Difficult to distinguish between lenslet scattering and DM mis- registration.
80	Pupil shift and residual dispersion shall be <5% subap. and <0.04 arcsec at	?? WFS ?? NCU ?? OMC	Satisfactory procedure not yet defined.	Difficult to perform a credible test.

	45deg zenith: <8% subap, 0.06 arcsec at 60 deg zenith.	?? Engineering level GUI			
85	Remotely-controlled shutter with EPICS interface is required.	?? WFS?? Engineering level GUI	Verify remote operation of shutter.		
88	Verify that two electronically switchable readout modes have been provided.	?? WFS?? Engineering level GUI	Demonstrate synchronized mode switch (by inspection of output data stream?) while observing WFS calibration source.		
90	At 100 kilopixel/sec the readout noise shall be 3 e- /pixel or less.	?? WFS?? Engineering level GUI	With the WFS shutter closed, set the readout rate, determine the dark field and readout noise level.		
91	At maximum rate, the readout noise shall be 7 e- /pixel or less.	?? WFS?? Engineering level GUI	Similar to previous test (ID90) but at maximum readout rate.		
103	Reference wavefront tilt accuracy must be a factor of two better than WFS can detect.	?? WFS?? Engineering level GUI	Confirm by calculation. Compare pickoff resolution to Hartmann spot centroid accuracy as determined in ID 41.		
105	WFS calibration source intensity must be $\ge 3 \times 10^{-8}$ W/steradian.	?? WFS?? Engineering level GUI	 With lenslet 1 and 4 x 4 pixel mode, acquire the calibration source and centre Hartmann spots in CCD FOV. Measure number of photons /subaperture in 5 msec through broadest spectral filter with no ND. Number of photons should exceed 2500. 		
107	WFS calibration source intensity must be uniform.	?? WFS?? Engineering level GUI	 With lenslet 1 and 4 x 4 pixel mode, acquire the calibration source and centre Hartmann spots in CCD FOV. Switch to the pupil-viewing mode, increasing the integration time if required to obtain sufficient signal. Record the pupil image and assess the uniformity. 		
108	WFS calibration source must simulate G0-K0 star.	?? WFS?? Engineering level GUI	Test required to analyse spectral characteristics.		Difficult to devise and perform suitable test.
111	Verify that WFS transfer curve linearity is <15% (except in quad cell mode).	?? WFS?? NCU?? OMC?? Engineering level GUI	 Flatten DM or use dummy DM. Align WFS to on- axis NCU DL point source. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. 		

				3.	Move WFS pickoff along x-axis in 5 ?m increments		
					until edge of pixel array is reached in each direction.		
				4.	Record WFS mean centroid position for each		
					increment.		
				5.	Plot mean centroid position against pickoff position.		
				6.	Repeat steps 3-5 for v-axis.		
				7.	Determine linearity of transfer curves.		
115	CCD pixel gain calibration	??	WFS	1.	Set up NCU to provide uniform extended source.		Feasibilty
	shall be accurate to1% rms or	22	NCU	2.	Flatten DM or use dummy DM. Set FSM to		depends on
	better.	$\frac{1}{22}$	OMC		midrange. Align WFS to source.		sufficient NCU
		··· 22	Engineering level GUI	3.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		brightness.
		• •	Engineering level GOT		and ADC set to zero dispersion.		Difficult to
				4.	Perform pixel gain calibration.		establish 15%
				5.	Tilt FSM by random amounts to shift position of		accuracy.
					extended source and repeat pixel gain calibration at		,
					each position. (Intent is to smooth out variations in		
					extended source brightness.)		
				6.	Repeat for various integration times, if possible.		
116	CCD pixel background	??	WFS	1.	Close WFS shutter.		
	offsets shall be determined to	22	Engineering level GUI	2.	Measure stability of dark frame counts for various		
	within 1 e^{-} per sensor	••	Engineering lever der		integration times, e.g. $3 - 30$ ms, and confirm that		
	integration period.				the objective is satisfied.		
120	Lenslets shall be aligned in	??	WFS	1.	Flatten DM. Align WFS to on-axis NCU DL point		Requirement is
	angle to better than 10	??	NCU		source.		achieved by
	arcminutes relative to	??	OMC	2.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		shimming DM
	mapping of the DM	··· ??	Engineering level GUI		and ADC set to zero dispersion.		as required.
	segments.	•••	Engineering level Ger	3.	Adjust x-y position of the DM as required for the		
	-				best overall registration of the DM image with the		
					lenslet array.		
				4.	Select DM segment at edge of WFS subapertures		
					and offset all adjacent segments so that their		
					respective Hartmann spots move out of the WFS		
					field.		
				5.	Determine the light spillover into adjacent		
					subapertures as a result of misregistration (angular		
				1	or otherwise).		
				6.	Repeat the measurement for three other subapertures		
					so that all four lie at the extremes of a cross. Light		
					spillover into an adjacent subaperture should not		

			exceed 0.7 % due to rotation alone.		
121	Lenslet accuracy shall be maintained when lenslets are changed. WFS shall perform to	?? WFS?? Engineering level GUI?? WFS	 With lenslet 1 and 4 x 4 pixel mode acquire the WFS calibration source. Centre the source image by adjusting the pickoff position as required. Record spot positions. Rotate lenslet wheel and reselect lenslet 1. Re-measure spot positions. Repeat for other lenslets. This test could be a continuation of ID 121 by 		
	specification with a temperature change of 1 deg C/hour.	?? NCU?? OMC?? Engineering level GUI	monitoring the spot position, deviation and size with temperature.		
146	WFS vibration sources must contribute < 0.0035 arcsec rms uncorrectable tip/tilt jitter	 ?? WFS ?? NCU ?? OMC ?? Engineering level GUI ?? SBIG camera 	 Flatten DM and set FSM to midrange. Install SBIG camera at the optical science port to view DL pinhole in FP mask. Align WFS to suitable pinhole in FP mask without obscuring image of the SBIG camera. Measure PSF width at science port with WFS power sources off. Turn on WFS power sources. Measure PSF width again. Determine change in width. 		Extremely difficult to detect.
147	Cleaning procedures for all optical components must be developed and demonstrated.	?? WFS	Cleaning procedures should first be demonstrated on witness samples wherever possible to reduce the risk of damage. An area of particular concern is the WFS pickoff mirror as no spare is available. Advise waiting until cleaning is required.		
159	Combined motion of all carriages in response to pickoff motion shall produce no detectable focus error at WFS.	?? WFS?? NCU?? OMC?? Engineering level GUI	This test could be performed in conjunction with ID 22 by using the reconstructor to determine the focus change at each pinhole position.		
162	Verify proper function of encoder readout and use in any feedback.	?? WFS?? Engineering level GUI	A separate test is not essential in that other tests should adequately demonstrate the encoder functions. Tests already performed at the ATC indicate satisfactory operation.		
163	Lifting frame and attachments must be provided for the WFS.	?? WFS?? Lifting equipment	Demonstrated as part of ID 39.		
164	Verify fit of components in	?? WFS	Pack and inspect.		

	shipping containers and	??	Shipping containers			
	adequacy of protection.					
165	Verify fit and functionality of	??	WFS	Using full check list of spares, install each and show		
	any spares.	??	Engineering level GUI	normal operation of WFS, e.g. using WFs calibration		
		??	WFS spares	source.		
168	Temperature sensors will be	??	WFS	Test and monitor temperature sensors over a couple of 24		
	provided to allow correction	??	Engineering level GUI	-hour periods. Confirm that readings are consistent with		
	to unavoidable alignment		0 0	those from an independent thermometer.		
	changes caused by					
	contraction or expansion.					