NAOMI WFS and OMC/NCU Acceptance Tests at the University of Durham

wht-naomi-34

ATC Document number AOW/GEN/RAH/15.0/07/00 WFS and OMC/NCU acceptance tests DRAFT (Version date: 4th July 2000)

This document combines two earlier draft documents that addressed the WFS and OMC/NCU separately. It also covers the system level acceptance tests that will be repeated at GHRIL to verify performance.

The ID numbers in the first column are those used in Dr. Andy Longmore's Microsoft Access database (see AJL file: integration_tests.mdb) which summarises the WPD requirements. The prefixes "WFS" and "OMC" before the ID number refer to the wavefront sensor and opto-mechanical chassis/Nasmyth calibration unit respectively. Most of the acceptance tests listed in the database have been included in this document; some selection of tests has been performed. Section 1 contains a grouping of tests with similar procedures. Elsewhere numbers in parentheses in the ID column identify tests that may be grouped together for efficient operation: note that there is no back referencing in the ID column. There is no requirement to perform the tests in the order given in this document.

Three levels of priority are shown, namely high, medium and low. These levels are indicated by the letters H, M and L in the ID column. In some instances a lower priority has been assigned where sufficient testing has been performed at the ATC or there is high confidence in the design.

A pre-requisite for the tests is the ability to observe a near diffraction-limited visible image with the SBIG camera at the IR science port. At least the first Airy ring should be observable in the image and the FWHM of the central peak should be consistent with diffraction theory after allowing for camera pixellation effects.

ID	Objective	Requirements		Description of Test	Date &	Pass/	Comments
					Examiner	Fail	
OMC 15	Verify that the optics	?? OMC	1.	The integrated system is required for this test with			
	maintain the registration of	?? WFS		the Nasmyth focal plane mask installed.			
	the DM with the WFS	?? NCU	2.	Flatten the DM and set the FSM to mid range.			
Μ	lenslets independent of the	?? Engineering level GUI	3.	Set up WFS in 4 x 4 pixel mode with lenslet array 1			
	guide star position.	8 8 8 8		and ADC set to zero dispersion.			
			4.	Move the WFS pickoff to acquire the on-axis DL			
				pinhole and centre the Hartmann spots.			
			5.	Select the WFS fiducial mask and position the relay-			
				lens/CCD carriage for the pupil-viewing mode.			
			6.	Verify the DM registration with the fiducial mask. If			
				not aligned adjust the DM x-y stage accordingly.			
				(Note that the offset segment approach described in			
				the next procedure may be used to obtain optimum			
				alignment.)			
			7.	Move the WFS pickoff to at least 4 other field points			

1. Grouped Tests

			and measure the DM/fiducial-mask registration.	
			non telecentricity.	
WFS 7 H	Verify that the DM segments map onto the WFS subapertures.	 ?? WFS ?? OMC ?? NCU ?? Engineering level GUI 	 Flatten DM and set the FSM to midrange. Align WFS to on-axis NCU DL point source. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Adjust x-y position of the DM as required for the best overall registration of the DM image with the lenslet array in the pupil viewing mode. Return to Hartmann spot viewing. Select a DM segment close to the DM centre and offset all adjacent segments so that their respective Hartmann spots move out of each subaperture's field of view. Determine the light spillover into adjacent subapertures. Readjust DM in x and y if required to balance spillover. Spillover should not exceed 3.3% (2% is allowed for lenslet scattering and 1.3 % for misregistration. Note that in the next test 0.7% is allowed for angular misregistration.) Repeat steps 4 and 5 for another segment close to the DM centre 	
WFS120 H	Lenslets shall be aligned in angle to better than 10 arcminutes relative to mapping of the DM segments.	?? WFS?? NCU?? OMC?? Engineering level GUI	 This test is a continuation of the preceding procedure. Select a DM segment at edge of WFS subapertures and offset all adjacent segments so that their respective Hartmann spots move out of each subaperture's field of view. Determine the light spillover into adjacent subapertures as a result of misregistration (angular or otherwise). Repeat the measurement for three other subapertures so that all four lie at the extremes of a cross. Light spillover into an adjacent subaperture should not exceed 0.7 % due to rotation alone. Note allowance of 3.3% for other sources of error. 	Requirement is achieved by shimming DM as required.
WFS 51	Spot displacements due to aberrations on-axis must be < 20% of pixel size.	?? WFS ?? NCU ?? OMC	Note: Although there is no off-axis specification the Hartmann spot offsets should be determined for other field positions as part of the system characterisation.	

н		?? Engineering level GUI	 The integrated system is required for this test with the Nasmyth focal plane mask installed. Flatten the DM and set the FSM to mid range. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Move pickoff to acquire on-axis source. Adjust WFS pickoff to obtain best centration of Hartmann spots in array and record pick-off x-y position. 		
			 rate without saturation. 7. Record spot centroid positions and determine displacement from centre of each pixel array. 8. Repeat steps 5-7 for lenslets 2 and 3. 9. Repeat steps 4-7 for other pinholes in grid of NFP mask (subject to time constraints). 		
OMC 20 H	NCU provide capability to distortion map of AO optical train.	?? NCU?? OMC?? WFS?? Engineering level GUI	Capability was demonstrated in preceding test.		
WFS 22	Verify that the acquisition accuracy is < 3.4 ?m.	?? WFS?? NCU?? OMC?? Engineering level GUI	Acquisition accuracy will be ascertained as part of the astrometric mapping process in test WFS 51.		
WFS159 H	Combined motion of all carriages in response to pickoff motion shall produce no detectable focus error at WFS.	?? WFS?? NCU?? OMC?? Engineering level GUI	Verified by observing WFS focus residuals during astrometric mapping in test WFS 22. Note that the WFS carriage drives are programmed to compensate for the OMC field curvature.		
WFS 29 L	Pickoff z-axis shall provide field curvature compensation.	?? WFS?? NCU?? OMC?? Engineering level GUI	Verified by observing WFS focus residuals during astrometric mapping in test WFS 22. Note that the WFS carriage drives are programmed to compensate for the OMC field curvature.		
OMC186	Provision must be made to calibrate non-common path errors between science path and the WFS.	??NCU??OMC??WFS??Engineering level GUI??SBIG camera	Procedure to be added later to cover methods developed by Durham.		

2. OMC Tests (not addressed above)

ID	Objective	Requirements	Description of Test	Date &	Pass/	Comments
	-		_	Examiner	Fail	
OMC 19	The NCU should provide a	?? NCU	1. Measure the f/ratio of the NCU output beam with the			Test may be
	WHT pupil simulator (for on-	?? OMC	pupil mask in place.			limited by
	axis use only)	?? WFS	2. If brightness is sufficient, verify that the pupil mask			source
		?? Engineering level GUI.	is imaged at the DM and its size is correct (56 mm).			brightness.
Μ			3. If brightness inadequate for visual observation at			
			DM the pupil viewing mode of the WFS may be			
			used as follows.			
			4. Flatten DM and set FSM to midrange.			
			5. Set WFS ADC to zero dispersion and select doublet.			
			o. Acquire on-axis point source by moving wrs			
			7 Switch to WES pupil viewing mode. Verify pupil is			
			in focus and record image for analysis Confirm that			
			pupil size is acceptable			
OMC 21	Average transmission from	22 NCU	1. Flatten DM and set FSM to midrange.			
0.110 21	Nasmyth focus to WFS input	22 OMC	2. With on-axis point source, pupil mask and spectral			
(OMC	must be >0.58 over 0.5 to 0.8	22 Engineering level GUI	filter measure NCU output flux with photometer or			
41)	?m (Mode 1).	22 ATC photometer (or	SBIG camera. (Note that the latter can measure total			
		equivalent, e.g. SBIG	flux).			
		camera)	3. Measure flux passing through centre of dichroic at			
Н		?? 0.5 -0.8? m filter	WFS input and calculate transmission.			
OMC 51	Show that loop closure can	?? NCU	1. Select NCU on-axis point source, i.e. no FP mask.			
	be maintained while	?? OMC	2. Flatten DM and set FSM to midrange.			
(WFS 23,	dithering.	?? WFS	3. Move WFS pickoff to acquire point source and			
24, 25)		?? Engineering level GUI	centre in WFS FOV.			
		0 0	4. Close DM and FSM loops.			
			5. Setting the configuration to the dither mode, inject			
Н			an increasing amplitude, low frequency tilt signal to			
			the NCU tip/tilt mirror (maximum amplitude and			
			trequency TBD).			
			6. Demonstrate that the system can maintain loop			
OMC 55	On avia common/acience	22 OMC	ciosure while differing.			
OMC 55	Dil-axis common/science		 Install dummy DW with pupil stop. Mount EISPA on axis at the OMC input (Nearwith) 			
(UNIC 56 57	20 pm rms within a	?? FISBA interferometer	2. Mount FISDA on axis at the OMC input (Nasmyth			
50, 57,	< 30 mili mils within a	?? Concave spherical	10cus).			1

58, 60) M	subaperture (note exceptions in WPD).	mirror and x, y & z mount (for use as retroreflector)	3. 4. 5.	Install and align concave sphere so that its centre of curvature is coincident with the focused FISBA light at the WFS focus. Measure and record the wavefront. Analyse for compliance. Move the concave sphere to the science path and repeat the wavefront measurement. Analyse for compliance.		
OMC 56	Off-axis uncorrectable wavefront error over 1 arcmin field shall be <50 nm rms (note exceptions in WPD)	 ?? OMC ?? FISBA interferometer ?? Concave spherical mirror and x, y & z mount (for use as retroreflector) 	1. 2. 3. 4. 5.	Install dummy DM with pupil stop. Mount FISBA at +0.5 arcmin off axis in x at OMC input (Nasmyth focus). Install and align concave sphere so that its centre of curvature is coincident with the focused FISBA light at the WFS focus. Measure and record the wavefront. Analyse for compliance. Repeat steps 2-5 for -0.5 arcmin in x and \pm 0.5 arcmin in y.		-0.5 arcmin in y may be omitted due to symmetry of the design.
OMC 57 M	The pupil wavefront error shall be <200 nm rms (goal < 170 nm) within 2 arcmin field. (Note exceptions in WPD).	 ?? OMC ?? FISBA interferometer ?? Concave spherical mirror and x, y & z mount (for use as retroreflector) 	1. 2.	Follow same procedure as for ID 56 except that FISBA and sphere are located at ± 1 arcmin in x and y respectively. Determine rms wavefront error over the pupil for each field position.		
OMC 58 M	The pupil wavefront error shall be <300 nm rms (goal < 265 nm) within 2.9 arcmin field. (Note exceptions in WPD).	 ?? OMC ?? FISBA interferometer ?? Concave spherical mirror and x, y & z mount (for use as retroreflector) 	1. 2.	Follow same procedure as for ID 56 except that FISBA and sphere are located at \pm 1.45 arcmin_in x and y respectively. Determine rms wavefront error over the pupil for each field position.		
OMC 60 M	Non-common path errors between science path and WFS shall be < 100 nm rms	 ?? OMC ?? WFS ?? FISBA interferometer ?? Concave spherical mirror and x, y & z mount (for use as retroreflector) 	1. 2. 3. 4.	Calibrate wavefront quality of concave spherical mirror using the FISBA. Retain wavefront data for use in other tests that follow. Set up the FISBA on axis at the input (Nasmyth focus) to the OMC. WFS should not be in position. Flatten the DM or install the dummy DM. Install and align the concave spherical mirror at the IR science port so that the IR science path can be measured in double pass with the FISBA. Measure		

			 and record the wavefront. 5. Move the concave sphere so that its centre of curvature lies at the WFS input focus. Measure and record the input wavefront to the WFS. Remove sphere. 6. Install the WFS and move its pickoff so that the FISBA light passes through to the optical science port (OSP). Reposition the sphere to allow a double-pass wavefront measurement to the OSP. Measure and record the wavefront. 7. Determine the non-common path errors from the measured wavefronts.
OMC 67	General optical practice to avoid ghosting shall be followed.	 ?? OMC ?? NCU ?? Engineering level GUI ?? WFS ?? SBIG camera 	 The objective is to identify all ghost images within the optical train and quantify them in terms of relative intensity and location. Set the NCU to maximum brightness, select the on-axis point source, flatten the DM and set the FSM to mid range. Set up the SBIG camera at the IR science port to view the point source image. Demagnification to provide at least a 50 arcsecond field of view is suggested. Identify and quantify any ghost images. Note that an extended integration time may be needed to locate any ghosts. Move the camera to the optical science port and repeat. Move the WFS pickoff to avoid obscuration of the SBIG camera. Select the WFS doublet in the lenslet wheel and move the pickoff to acquire and centre the point source image. Set the ADC to zero dispersion. Identify and quantify any ghost images. Insert the lenslet arrays in turn and repeat the operation. Also insert the WFS filters in turn and rotate the ADC elements. Similarly check for ghost images in the acquisition camera's field. Install the NFP mask and search for ghosts at all ports for at least three field postions (TBD)
OMC 77	Measures shall be taken to protect personnel from	?? OMC	Verify compliance with documented safety audit. Procedure to be established when document is made

Н	hazards.	??	NCU	available to Durham.	
		??	Engineering level GUI		
OMC 78	Handling procedures and	??	NCU	Verify availability and function of lifting aids when	
	lifting aids should be	??	OMC	demonstrating installation and alignment (or disassembly	
Μ	provided for heavy items.	??	Lifting aids (e.g.	on completion of tests).	
			handles)		
OMC 94	SciOpReq Clauses 1 – 3	??	Turbulence simulator	This test should be performed as part of test ID WFS 4	
(WFS 4)	performance achievable for 1	??	OMC	which uses the turbulence simulator. The SBIG camera	
Н	hour integrations without	??	WFS	should be set up at the IR science port to view the	
	recalibration	??	Engineering level GUI	compensated point source image. Observations of the	
		??	SBIG camera	image quality should be made for fixed test conditions	
OMC 05	The uncomposed has the time to be	- 00	M/DO	Over a 1 nour period.	Testus
OMC 95	induced jitter shall be < 30	// 99	WFS NCU	1 Elatten DM and set ESM to midrange	further
	nrad (0.006 arcsec) in WHT	// 	NU	2 Install SBIG camera at the optical science port to	thought
Priority	object space. Note the	// 99	UMC	view DL ninhole in FP mask	Difficult to
TBD	inclusion of the WFS in the	- / / - 99	SDIC compare	3. Align WFS to suitable pinhole in FP mask without	distinguish
	specification.	11	SDIG camera	obscuring image of the SBIG camera.	uncorrectabl
	1			4. Measure PSF width at science port with WFS power	-e tilt from
				sources off.	other
				5. Turn on WFS power sources. Close FSM loop.	sources of
				Measure PSF width again. Determine change in	PSF
				width.	degradation.
				Note: This test is similar to the WFS test ID 146 which	
				also lacks a satisfactory procedure.	
OMC 97	Cleaning procedures	22	Witness samples	1 If a suitable spectrophotometer is available the	
01120 37	demonstrated on witness	··· ??	Cleaning materials and	transmittance or reflectance of all witness samples	
	samples of all coatings.		procedures	should be measured before and after cleaning.	
			I	2. Perform cleaning in accordance with documentation.	
Μ				Verify that the cleaning does not leave residue or	
				cause damage.	
OMC100	Verify that the DM and its	??	OMC	1. Flatten DM and set FSM to midrange. Select on-axis	
	associated electronics on	??	NCU	point source in NCU.	
(OMC	bench can be removed and	??	WFS	2. Select lenslet 1 and 4 x 4 pixel mode. Set ADC	
101)	re-installed safely in 1 hour	??	Engineering level GUI	alspersion to zero.	
	or less.			5. Acquire and centre point source image in wFS by	
м				In pupil viewing mode verify that DM segments are	
141		1		T. In pupil viewing mode verify that Divi segments are	

				aligned to lenslets. If not adjust DM x-y position as	
				required.	
				5. Turn off all power to system.	
				6. Remove and re-install DM and bench-mounted	
				electronics, noting time required for complete	
				operation.	
OMC101	Verify that only further	??	OMC	This test is a continuation of the procedure for test ID	
	minor alignment is needed on	??	NCU	100.	
	re-installation of DM.	??	WFS	1. Power up the system and check for the image of the	
L		??	Engineering level GUI	point source and pupil alignment in the WFS.	
				2. If re-alignment is required, verify that it is minor, i.e.	
				within limits of adjustments provided.	
OMC103	Verify that there is at least \pm	??	OMC	1. Set up travelling microscope to view a reference	
	4mm of travel on the DM	??	Engineering level GUI.	point on the DM, e.g. segment boundary. Take care	
(OMC	motorized stages.	??	Travelling microscope	not to touch the DM surface.	
104)			or equivalent	2. Command the DM x-y stage drive to each limit of	
			1	travel and measure distance moved with the	
L				travelling microscope. Verify travel is acceptable.	
OMC104	Verify that DM motorized	??	OMC	This test should be combined with test ID 103.	
	stage motions are repeatable	??	Engineering level GUI.	1. Set up travelling microscope to view a reference	
	to < 0.2 mm.	??	Travelling microscope	point on the DM, e.g. segment boundary. Take care	
			or equivalent	not to touch the DM surface.	
L				2. Command the x-y stage to drive set distances (TBD)	
				repeatedly and measure position after each command	
				with the travelling microscope. Verify that the	
				repeatability is acceptable.	
OMC110	Verify that the FSM is	??	OMC	Drive the FSM in incremental steps (TBD) towards its	
	protected against being	??	Engineering level GUI	limits noting the point at which the offload to the TCS	
	driven to limits of its safe			occurs. Verify that FSM does not exceed safe operating	
	operational range.			limits.	
Н				Note: A means of independently monitoring the FSM	
				surface tip/tilt is desirable for this test.	
OMC111	Verify that FSM offsets are	??	OMC	This test should be combined with test ID 110.	
Н	off-loadable to the TCS.	??	Engineering level GUI		
OMC112	Characterise the FSM	??	OMC	1. Set up collimator and position-sensing detector	Repeat of
	frequency response to 200	??	Engineering level GUI	(PSD) to measure FSM surface tilt.	tests
	Hz.	??	Collimator and	2. Apply small amplitude (\leq 50? rad surface tilt)	performed at
			position-sensing	sinusoidal oscillation to FSM progressing from low	the ATC.
Μ			detector to measure	to higher frequencies. Record FSM tip/tilt amplitude	Test subject

		FSM surface tilt.	as measured with PSD. Exercise caution if resonance	to equipmer
			starts to occur.	availability.
			3. Determine –3 dB frequency.	
OMC113	Verify that the FSM open-	?? OMC	Test is subject to review.	
	loop jitter is < 48 nrad (0.01	27 SBIG camera	1. Install and align the NCU and OMC.	
Priority	arcsec) rms in WHT object	22 NCU	2. Flatten the DM or install the dummy DM.	
TBD	space for either axis.	22 Engineering level GUI	3. Install the SBIG camera at the IR science port to	
	T		view the NCU on-axis DL point source.	
			4. With the FSM power off, measure the point spread	
			function (PSF) using the SBIG.	
			5. Measure the PSF again with the FSM power on in	
			open loop.	
			6. Determine the increase (if any) in the PSF width in	
			both axes with the power on and convert to angle in	
			WHT object space using the plate scale.	
OMC131	OMC and WFS must register	?? OMC	This test is identical to WFS test ID 39 and it should not	
(WFS	repeatably to each other with	?? NCU	be repeated.	
39)	< 50 ?m accuracy in all 3	?? WFS	-	
Μ	axes.	?? Engineering level GUI.		
OMC147	NCU provides on-axis point	?? NCU	1. Set up the SBIG camera to view the NCU on-axis	
	source which is full-aperture	?? SBIG camera	point source.	
М	diffraction limited (DL) at		2. Record and analyse the PSF.	
	visible wavelengths.		, i i i i i i i i i i i i i i i i i i i	
OMC150	Verify that the NCU point	?? OMC	1. Flatten DM and set FSM to midrange.	More
	source radiant intensity	?? NCU	2. Select WFS lenslet 1, 4 x 4 pixel mode and ADC to	detailed
	conforms to OMC WPD	?? WFS	zero dispersion.	information
Н	Table 2.	?? Engineering level GUI.	3. Move WFS pickoff to acquire and centre NCU on-	to be
			axis point source image in WFS field of view.	provided.
			4. Determine photons received per subaparture in 5	
			msec integration time and convert to radiant	
			intensity from source.	
			5. Extrapolate to infrared from these test results.	
OMC202	Measure the open-loop	?? OMC	The approach assumes that a sufficiently sensitive, high	 Test
	transfer function of the NCU	?? NCU	bandwidth position-sensing detector is not available.	approach is
L	tip/tilt mirror.	?? SBIG camera	1. Flatten DM and set the FSM to midrange. Set up the	subject to
		?? Engineering level GUI.	SBIG on axis at the science port.	review.
			2. Turn on the on-axis point source with the tip/tilt	Phase
			mirror stationary. Record the image and determine	information
			the PSF width (baseline).	is not

			 Turn on the tip/tilt mirror (amplitude TBD) at 1 Hz. Integrate with SBIG for > 30 sec. Determine width of blurred PSF and subtract baseline width to arrive at measured amplitude of oscillation. Repeat at 10 Hz intervals to 150 Hz. Shorter integration times may be used at the higher frequencies. 	obtained.
			6. Derive transfer function from ratio of commanded motion to measured motion as a function of mirror frequency.	
OMC154 M	Verify that the NCU point source tip/tilt injection frequency is controllable from 0.1 to 150 Hz.	?? OMC?? NCU?? WFS?? Engineering level GUI.	This requirement should be verified as part of the preceding test.	
OMC153 (OMC 154)	Verify that the NCU point source tip/tilt injection amplitude is variable up to 2.6 arcsec	?? OMC?? NCU?? WFS?? Engineering level GUI.	This procedure may be performed as part of test OMC 202 provided the SBIG camera is set up with sufficient FOV to accept the image motion with a 2.6 arcsecond amplitude. An alternative procedure using the WFS is given below.	
Н			 Select NCU on-axis point source, i.e. no FP mask. Flatten DM and set FSM to midrange. Select WFS doublet and set ADC dispersion to zero. Select lenslet array 2. Move WFS pickoff to acquire point source and centre in WFS FOV. Set NCU tip/tilt mirror to 2.6 arcsec amplitude at < 10Hz and determine amplitude seen by WFS. 	
OMC157 M	NCU point source spectral distribution shall correspond to G0 to K0 spectral type.	 ?? NCU ?? ATC photometer or equivalent calibrated detector. ?? Spectral filters (ideally 0.1 ?m bandwidth over 0.5 to 1.0 ?m) 	Measure the spectrum of the direct output of the NCU using the photometer and filters. If suitable equipment is not available, calculate spectral type from lamp colour temperature and data on any colour-balancing filter in the NCU.	Test subject to availability of suitable filters and detector.
OMC165 M	Verify that the extended source radiance conforms to Table 3 of OMC WPD.	?? NCU?? Engineering level GUI?? ATC photometer	Note that the solid angle of the extended source must be determined (or assumed from the optical design). The photometer measures irradiance and the solid angle is needed to determine radiance, i.e. W/cm ² /ster. As the	Test subject to equipment availability.

OMC167 M	Verify that NCU extended source uniformity is < 0.5 % over 10 mm diameter.	 ?? NCU ?? Engineering level GUI ?? ATC photometer with 1mm dia mask or SBIG camera. ?? x-y stage with >10 mm travel for photometer head 	 ATC photometer only operates over 0.5 to 1.0 ?m one may have to use an IR camera to complete the measurement. 1. Install mask on photometer head (or at SBIG focus) and mount assembly at NCU output. 2. Set up NCU to provide extended source. 3. Measure uniformity of illumination across at least two diameters moving in ≤ 1 mm increments. Alternative procedure with SBIG camera. 1. Install lens on camera to give 5:1 demagnification. 2. Set up SBIG to view extended source. 3. Analyse uniformity of image. 4. Rotate camera 90 degrees about axis and repeat. Analyse data for camera rotational variations in response. 5. Displace camera by +/- half the FOV. Analyse data for lateral variations in camera response. Separate camera non-uniformities from source non-uniformity. 	Difficult to make reliable measuremen -ts to 0.5 %.
OMC168	Verify that a NCU He-Ne laser source is available for	?? NCU ?? OMC	 Install He-Ne laser in NCU Turn on the laser and verify that beam properly 	
L	on-axis alignment.	?? Engineering level GUI	illuminates the DM.	
OMC199 M	Verify fit and function of spare components, if any.	?? Spare components	Any components to be identified by the ATC.	
200 H	Verify the mechanical fit of the OMC/NCU components in their shipping containers.	?? OMC?? NCU?? Shipping containers	Pack and inspect.	

3. WFS Tests (not addressed above)

ID	Objective	Requirements	Description of Test	Date & Examiner	Pass/ Fail	Comments
WFS 4	Verify that the WFS will operate with atmospheric	?? WFS	1. Set up WFS to view point source through turbulence simulator with DM flattened and FSM at midrange.			

	coherence lengths > 8 cm at	??	OMC	2.	Demonstrate that satisfactory Hartmann spot data		
	0.55 ?m.	??	Engineering level GUI		can be obtained over required range of turbulence		
Н		??	Liquid crystal		conditions, changing between lenslets 1 and 2 in		
			turbulence simulator		accordance with turbulence strength.		
WFS 10	Verify that CCDs operate	??	WFS	1.	Flatten DM or install dummy DM. Set FSM to		
	with 6 x 6 and 4 x 4 pixels	??	OMC		midrange. Align WFS to on-axis NCU DL point		
	(unbinned)	??	NCU		source.		
(WFS 11,		22	Engineering level GUI	2.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		
12)		••	Engineering lever der		and ADC set to zero dispersion.		
				3.	Adjust WFS pickoff to centre Hartmann spots in		
					array.		
				3.	Adjust NCU brightness and WFS integration time to		
					give high photon rate without saturation.		
Н				4.	Operate in required readout modes and show that the		
					data streams can be reconstructed into the		
					appropriate images.		
WFS 11	Verify that the CCDs operate	??	WFS	1.	Flatten DM or install dummy DM. Set FSM to		
	in a quad cell mode (2 x 2	??	OMC		midrange. Align WFS to on-axis NCU DL point		
	binned pixels).	??	NCU		source.		
		??	Engineering level GUI	2.	Set up WFS in quad cell mode with lenslet array 1		
					and ADC set to zero dispersion.		
				3.	Adjust WFS pickoff to centre Hartmann spots in		
Н					array.		
				4.	Adjust NCU brightness and WFS integration time to		
				-	give high photon rate without saturation.		
				э.	verify that the data stream can be reconstructed into		
WES 12	Varify that the CCD	- 0.0	WEC	1	This tast should be performed on completion of test		
WF5 12	configuration is changeable	// 00	WFS	1.	This test should be performed on completion of test		
	without loosing lock	??		2	1D 4. With length 1 and $A \times A$ pixels close the DM and		
н	without loosing lock.	??	Engineering level GUI	2.	FSM loops for simulated r TBD (>15 cm		
11		??	Liquid crystal		suggested)		
			turbulence simulator	3	Demonstrate that one can change to quad cell mode		
				5.	and 6 x 6 pixels without loosing lock		
WFS 20	Pickoff must allow	22	WES	1.	Acquire WFS calibration source by moving pickoff		
	acquisition of WFS source	··· ??	Engineering level GUI	2.	Verify that images of source can be centred in CCDs		
М			Engineering level 001		field of view.		
WFS 23	Dithering range of 1.7 mm (5	??	WFS	1.	Flatten DM or install dummy DM. Set FSM to		
			NCU		midrange Install NCLI FP mask		

(WFS 24,	repeatability is required.	??	OMC	2. Set up WFS with doublet and ADC set to zero		
25)		??	Engineering level GUI	dispersion.		
			0 0	3. Select pair of pinholes in FP mask with separation		
				closest to 1.7 mm.		
				4. Establish pickoff positions that centre each pinhole		
Н				in CCDs' FOV.		
				5. Dither between these pinholes and determine		
				repeatability from Hartmann spot positions at ends		
				of each dither cycle.		
WFS 24	Dithering range of 6 mm (18	??	WFS	This test is similar to the previous test (ID 23) except that		
	arcsecond) with \pm 8.5 ?m	??	NCU	the dither range is increased accordingly.		
Н	repeatability is required.	??	OMC			
		??	Engineering level GUI			
WFS 25	Dithering amplitude accuracy	??	0 0	This test should be combined with tests ID 23 and 24.		
	shall be $+ 17$?m ($+ 0.05$			These tests establish repeatability. To establish accuracy		
	arcsecond) or better.			one compares the commanded pickoff positions with the		
Н				actual as determined by the spot positions as seen by the		
				CCDs.		
WFS 30	Maximum z-axis speed shall	??	WFS	Measure time for z-axis motion of 19 mm.		
L	be > 1.9 mm/sec.	??	Engineering level GUI			
WFS 39	WFS must register with	??	WFS	1. Install dummy DM with fiducial. Set FSM to		
	OMC with a 3-axis	??	NCU	midrange. Align WFS to on-axis NCU DL point		
(WFS	repeatability < 50 ?m.	??	OMC	source. Set NCU to high brightness.		
163)		??	Engineering level GUI	2. Set up WFS in 4 x 4 pixel mode with lenslet array 1		
			8	and ADC set to zero dispersion.		
				3. Adjust WFS pickoff to centre Hartmann spots in		
				array. Adjust integration time to give go best signal		
Μ				to noise ratio without saturation.		
				4. Measure spot positions, mean separation, pupil		
				image of fiducial in front of dummy DM.		
				5. After taking all precautions, lift the WFS using the		
				handling gear provided and carefully replace.		
				6. Repeat step 4 and calculate replacement accuracy		
				from spot position and pupil changes.		
WFS 40	WFS must pivot about f/16.8	??	WFS	This capability is verified as part of the OMC/WFS		
	focus in both axes.	??	NCU	initial installation and alignment.		
Μ		??	OMC			
		??	Engineering level GUI			
WFS 41	Phase-gradient measurement	??	WFS	1. Flatten DM or install dummy DM. Set FSM to		

	accuracy of 0.018 wave	??]	NCU		midrange. Align WFS to on-axis NCU DL point		
(WFS	(?=2.2.2.7) rms required	??	OMC		source.		
42)	with 1500	??	Engineering level GUI	2.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		
	photons/subaperture.				and ADC set to zero dispersion.		
				3.	Adjust WFS pickoff to centre Hartmann spots in		
Н					array.		
				4.	Adjust NCU brightness and WFS integration time to		
					give photon rate. Record spot centroid positions.		
				5.	Tilt FSM angle* 20.8 ?rad (4.3 arcsec) and measure		
					spot centroid positions. Repeat several times and		
					determine the dispersion. (* Mirror surface tilt		
					corresponding to required phase gradient accuracy.)		
WFS 42	Phase-gradient measurement	?? `	WFS	1.	Flatten DM or use dummy DM. Set FSM to		
	accuracy of 0.14 wave (?=2.2	??	NCU		midrange. Align WFS to on-axis		
	?m) rms required with 40	?? (OMC		NCU DL point source.		
	photons/subaperture.	??]	Engineering level GUI	1.	Set up WFS in quad cell mode with lenslet array 1		
Н			0 0		and ADC set to zero dispersion.		
				2.	Adjust WFS pickoff to centre Hartmann spots in		
					array.		
				3.	Adjust NCU brightness and WFS integration time to		
					give photon rate. Record spot centroid positions.		
				4.	Tilt FSM angle TBD and measure spot centroid		
					positions. Repeat several times and determine the		
					dispersion.		
WFS 43	Verify phase gradient range	?? `	WFS	1.	Flatten DM or use dummy DM. Set FSM to		
	is at least ± 1.5	??]	NCU		midrange. Align WFS to large NCU source which		
	waves/subaperture (?=2.2	?? (OMC		simulates time-averaged source degraded by strong		
	?m) with 4 x 4 pixels for	??]	Engineering level GUI		turbulence.		
	$r_0=8$ cm and 8 x 8 pixels for			2.	Set up WFS in 4 x 4 pixel mode with lenslet array		
	$r_{o} > 13$ cm.				and ADC set to zero dispersion.		
Н				3.	Move WFS pickoff along x-axis until edge of pixel		
					array is reached in each direction. Note that ± 1.5		
					waves/subaperture corresponds to a pickoff motion		
					01 ± 0.41 mm.		
				4	Record pickoll positions at array edges.		
				4.	Repeat IOF y-axis.		
				э.	Alight w F5 pickon to NCU DL point source and		
				6	Beneat stops 2 and 4 for this configuration		
				0.	Repeat steps 5 and 4 for this configuration.		

WFS 54	Transmission shall be >90% over 0.5 to 1.0 ? m spectral range.	 ?? WFS ?? OMC ?? NCU or suitable bright source at Nasmyth focus ?? ATC photometer 	 A "point" source of sufficient brightness is required at the input to the OMC, i.e. the Nasmyth focus. "Sufficient brightness" is defined as a good signal to noise level with the ATC photometer when its head is placed at the f/16.8 focus, i.e. the WFS input. Measure the signal at the f/16.8 focus with the photometer head. Move the CCD carriage to the rear limit of its travel. Select the WFS doublet in the lenslet wheel. Mount the photometer head to collect all light from the doublet. The ratio of the second reading to the first is a measure of the transmission (excluding relay optics). Perform this operation with different filters (subject to availability) to assess transmission variation with 0.5 to 1.0 ?m spectral region. 	Measurement excludes relay optics.
WFS 67 H	Lenslets shall not scatter >2% into adjacent subapertures.	?? WFS?? NCU?? OMC?? Engineering level GUI	 Flatten DM and set FSM to midrange. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Align WFS to on-axis NCU point source. In pupil-viewing mode verify correct registration of DM segments to lenslets. Select a subaperture and tilt segments around this subaperture to limit away from subaperture. Measure flux in adjacent subapertures and compare with flux in selected subaperture. 	Difficult to distinguish between lenslet scattering and DM mis- registration.
WFS 80 M	ADC Pupil shift and residual dispersion shall be <5% subap. and <0.04 arcsec at 45deg zenith: <8% subap, 0.06 arcsec at 60 deg zenith.	?? WFS?? NCU?? OMC?? Engineering level GUI	Satisfactory procedure not yet defined.	Difficult to perform a credible test.
WFS 85 H	Remotely-controlled shutter with EPICS interface is required.	?? WFS?? Engineering level GUI	Verify remote operation of shutter.	
WFS 88 H	Verify that two electronically switchable readout modes have been provided.	?? WFS?? Engineering level GUI	Demonstrate synchronized mode switch (by inspection of output data stream?) while observing WFS calibration source.	

WFS 90	At 100 kilopixel/sec the	??	WFS	With the WFS shutter closed, set the readout rate,	
	readout noise shall be 3 e-	??	Engineering level GUI	determine the dark field and readout noise level.	
Н	/pixel or less.		6 6		
WFS 91	At maximum rate, the	??	WFS	Similar to previous test (ID90) but at maximum readout	
	readout noise shall be 7 e-	??	Engineering level GUI	rate.	
Н	/pixel or less.				
WFS103	Reference wavefront tilt	??	WFS	Confirm by calculation. Compare pickoff resolution to	
	accuracy must be a factor of	??	Engineering level GUI	Hartmann spot centroid accuracy as determined in ID 41.	
М	two better than WFS can				
	detect.				
WFS105	WFS calibration source	??	WFS	1. With lenslet 1 and 4 x 4 pixel mode, acquire the	
	intensity must be $\geq 3 \times 10^{-8}$??	Engineering level GUI	calibration source and centre Hartmann spots in	
ц	w/steracian.			2 Massure number of photons /subaparture in 5 msec	
11				2. Measure number of photons / subaperture in 5 insec through broadest spectral filter with no ND. Number	
				of photons should exceed 2500	
WFS107	WFS calibration source	22	WES	1. With lenslet 1 and 4 x 4 pixel mode, acquire the	
	intensity must be uniform.	··· ??	Engineering level GUI	calibration source and centre Hartmann spots in	
			Engineering lever der	CCD FOV.	
М				2. Switch to the pupil-viewing mode, increasing the	
				integration time if required to obtain sufficient	
				signal.	
				3. Record the pupil image and assess the uniformity.	
WFS108	WFS calibration source must	??	WFS	Determine by analysis from lamp colour temperature and	Difficult to
	simulate G0-K0 star.			the spectral characteristics of any filters installed in the	devise and
М				calibration source.	perform
					suitable test.
WFSIII	Verify that WFS transfer	??	WFS	1. Flatten DM or use dummy DM. Align WFS to on-	
	curve linearity is <15%	??	NCU	axis NCU DL point source.	
	(except in quad cell mode).	??	OMC	2. Set up wFS in 4 x 4 pixel mode with lensiet array 1 and ADC set to zero dispersion	
		??	Engineering level GUI	2 Move WES nickoff clong y ovis in 5.2m increments	
L				5. Wrove wrs pickon along x-axis in 5 / in increments until edge of pixel array is reached in each direction	
				4 Record WFS mean centroid position for each	
				increment.	
				5. Plot mean centroid position against pickoff position.	
				6. Repeat steps 3-5 for y-axis.	
				7. Determine linearity of transfer curves.	
WFS121	Lenslet accuracy shall be	??	WFS	1. With lenslet 1 and 4 x 4 pixel mode acquire the WFS	

M WFS132	maintained when lenslets are changed. WFS shall perform to	?? Engineering level GUI?? WFS	 calibration source. Centre the source image by adjusting the pickoff position as required. 2. Record spot positions. 3. Rotate lenslet wheel and reselect lenslet 1. 4. Re-measure spot positions. 5. Repeat for other lenslets. This test could be a continuation of ID 121 by 		
М	specification with a temperature change of 1 deg C/hour.	?? NCU?? OMC?? Engineering level GUI	monitoring the spot position, deviation and size with temperature.		
WFS146 Priority TBD	WFS vibration sources must contribute < 0.0035 arcsec rms uncorrectable tip/tilt jitter	 ?? WFS ?? NCU ?? OMC ?? Engineering level GUI ?? SBIG camera 	 This test is subject to review. Flatten DM and set FSM to midrange. Install SBIG camera at the optical science port to view DL pinhole in FP mask. Align WFS to suitable pinhole in FP mask without obscuring image of the SBIG camera. Measure PSF width at science port with WFS power sources off. Turn on WFS power sources. Close FSM loop. Measure PSF width again. Determine change in width. 		Extremely difficult to detect.
WFS147 H	Cleaning procedures for all optical components must be developed and demonstrated.	?? WFS	Cleaning procedures should first be demonstrated on witness samples wherever possible to reduce the risk of damage. An area of particular concern is the WFS pickoff mirror as no spare is available. Advise waiting until cleaning is required.		
WFS162 M	Verify proper function of encoder readout and use in any feedback.	?? WFS?? Engineering level GUI	A separate test is not essential in that other tests should adequately demonstrate the encoder functions. Tests already performed at the ATC indicate satisfactory operation.		
WFS163 M	Lifting frame and attachments must be provided for the WFS.	?? WFS?? Lifting equipment	Demonstrated as part of ID 39.		
WFS164 H	Verify fit of components in shipping containers and adequacy of protection.	?? WFS?? Shipping containers	Pack and inspect.		
WFS165 H	Verify fit and functionality of any spares.	?? WFS?? Engineering level GUI?? WFS spares	Verify fit and functionality of any spares (to be provided by the ATC).		

WFS168	Temperature sensors will be	?? WFS	Test and monitor temperature sensors over a couple of 24		
	provided to allow correction	?? Engineering level GUI	-hour periods. Confirm that readings are consistent with		
	to unavoidable alignment	0 0	those from an independent thermometer.		
L	changes caused by				
	contraction or expansion.				

4. System Level Acceptance Tests

ID	Objective	Requirements	Description of Test	Date &	Pass/	Comments
				Examiner	Fail	
N/A	 Verify that a Strehl of ≥0.48 is obtained using NCU tilt injector with FSM-only correction. ?? Measured at IR science port with SBIG ST-5 camera. ?? Wavelength: 850 nm ?? Inject frequency: 10 Hz; Amplitude: +/- 0.1 arcsec. ?? Inject frequency: 20 Hz; Amplitude: +/- 0.0.05 arcsec. 	 ?? NCU ?? WFS ?? OMC ?? Engineering level GUI 	 Flatten DM and set the FSM to midrange. Align WFS pick-off to on-axis NCU DL point source. Install and align SBIG camera with 850 nm filter at IR science port. Set up WFS in 4 x 4 pixel mode with lenslet array 1 and ADC set to zero dispersion. Adjust x-y position of the DM as required for the best overall registration of the DM image with the lenslet array. Adjust NCU point source intensity to obtain maximum signal with saturation at maximum (TBD) WFS frame rate. Optimise the SBIG camera image using the "Nathanising" procedure. Fix the DM. Set the NCU tilt injector to 10Hz and an amplitude of +/- 0.1 arcsecond. Close the tilt loop. Record the PSF seen by the SBIG camera. Set the NCU tilt injector to 20Hz and an amplitude of +/- 0.05 arcsecond. Close the tilt loop. Record the PSF seen by the SBIG camera. Determine the Strehl ratio for the two measurement conditions. 			Test subject to availability of software to allow closure of tilt loop only.

N/A	As above using reconstructed	22	NCU	1.	Flatten DM and set the FSM to midrange. Align		
1.0.11	DM-only correction	· · 99	WES	1.	WFS pick-off to on-axis NCU DL point source		
	Divi only concetion.	2.2	MTS OMC	2	Install and align SBIG camera with 850 nm filter at		
				2.	IR science port (if not already in place)		
		11	Engineering level GUI	3	Set up WFS in $4 \ge 4$ pixel mode with lenslet array 1		
				5.	and ADC set to zero dispersion		
				4	Adjust x_y position of the DM as required for the		
				т.	hest overall registration of the DM image with the		
					lenslet array		
				5	Adjust NCU point source intensity to obtain		
				5.	maximum signal with saturation at maximum (TRD)		
					WFS frame rate		
				6	Set the NCU tilt injector to 10Hz and an amplitude		
				0.	Set the five of the injector to form and an amplitude $of \pm 0.1$ arcsecond		
				7	Close the DM loop		
				8	Record the PSF seen by the SBIG camera		
				9	Set the NCU tilt injector to 20Hz and an amplitude		
				7.	of $\pm/-0.05$ arcsecond		
				10	Close the tilt loop		
				11	Record the PSE seen by the SBIG camera		
				12	Determine the Strehl ratio for the two measurement		
				12.	conditions		
					conditions.		
N/A	Verify maximum WFS offsets	??	NCU	1.	Install the NFP mask.		
	below with hill-climbed on-axis	22	WFS	2.	Flatten DM and set the FSM to midrange. Align		
	DL spot at 850 nm on SBIG and	$\frac{1}{22}$	OMC		WFS pick-off to on-axis NCU DL point source.		
	DM fixed.	· · 22	Engineering level GUI	3.	Install and align SBIG camera with 850 nm filter at		
	?? <30 " off axis: no spot >0.1 "		Elignicering level OOT		IR science port (if not already in place).		
	from box centre			4.	Set up WFS in 4 x 4 pixel mode with lenslet array 1		
	?? <90" off axis: no spot >0.2"				and ADC set to zero dispersion.		
	from box centre			5.	Adjust x-y position of the DM as required for the		
					best overall registration of the DM image with the		
				1	lenslet array.		
				6.	Adjust NCU point source intensity to obtain		
					maximum signal with saturation at maximum (TBD)		
				1	WFS frame rate.		
				7.	Close the DM loop and follow the "Nathanising"		
				1	procedure to obtain the optimum image at the SBIG		
				1	camera. Fix the DM.		
				8.	Move the WFS pick-off to acquire and centre the		

			 closest (6.5 mm in NCU grid space) point source image in the +x direction. 9. Measure and record the Hartmann spot positions relative to each "box" centre. 10. Repeat steps 8 and 9 for the -x and +/- y positions. 11. Repeat steps 8 to 10 but for NFP point sources that are 19.5 mm (NCU grid space) off axis. 12. Verify that the test objectives have been satisfied. 		
N/A	Low light level specification: With 100 detected photons/ms/subaperture and inject/measurement conditions as for first test, verify Strehl ≥ 0.23 .	?? NCU?? WFS?? OMC?? Engineering level GUI	Follow the procedure for the first test but with the following exceptions: Before setting the tilt injector (step 7) switch the WFS to quad cell operation and adjust the NCU source brightness to give the specified photon rate in the objectives column. Continue with step 7.		