

NAOMI

Nasmyth Adaptive Optics for Multi-purpose Instrumentation

The Real Time Control System
Programmers Guide

wht-naomi-24

Version: 0.3 24 December 2002

Authors: Richard Myers1, Stephen Goodsell2

1. University of Durham, Department of Physics

2. Isaac Newton Group of Telescopes

1. Scope

This document describes how to programme the real-time control system of NAOMI,
how the existing real-time programmes are structured and how they can be modified.

A separate document “NAOMI Hardware Reference Manual” provides a description
of the real-time control electronics rack.

A separate document “The GP Messaging Library” describes the general purpose
asynchronous messaging system used to configure and monitor the real-time system.

A separate document “Real Time Control System User’s Guide” provides a
description of the use of the low-level engineering level command line access
methods, including setting up and executing software configurations as well as the
manipulation and monitoring of a running system.

A separate document “Naomi Engineering and Control Program: TopGui” provides
a description of higher-level control, monitoring and sequencing of real-time
processes.

2. Acknowledgements
NAOMI’s real-time software is derived from Durham University’s Electra software
and many of its files and nomenclature use the word Electra. Most of the
underlying design of the software and much of the programming is by David Buscher.
Other design features were evolved in discussion with Andy Vick. Craige Bevil,
David Buscher, Nigel Dipper, Peter Doel, Szilveszter Juhos, Patrick Morris, Richard
Myers and Andy Vick evolved the workstation client-side software. (The staff of the
UKATC produced the Mechanism and WFS control software but this software has its
own documentation and this Guide does not describe it further.)

Parts of this Guide borrow freely from David Buscher’s documentation.

3. Overview
NAOMI stands for Nasmyth Adaptive Optics for Multi-Purpose Instrumentation. It is
the Adaptive Optics (AO) system on the William Herschel Telescope (WHT).
The purpose of this document is to enable maintenance and development of the
NAOMI real-time control system. An understanding of the purposes and the basic
construction and operation of NAOMI is assumed. An Introduction to Astronomical
Adaptive Optics is available in the book of that name by John. W. Hardy (OUP).
Introductory information on NAOMI’s overall design requirements may be found on
http://aig-www.dur.ac.uk/fix/projects/projects_index.html. The accompanying
Technical Description is useful but describes the design rather than the final system.
An updated general description of the as-built NAOMI system is in preparation by
A.J.Longmore (UK ATC at ROE) and R.M.Myers (Durham) at the time of writing
this document.

This Guide includes a brief history of the real-time system software, sufficient only to
understand the nature of the collected code. It describes the Revision Control system
used, how to set up as a developer and gain access to the source code, and where the
key files are located in the software directory tree.

Subsequent sections describe the hardware architecture of the real-time control system
(briefly) and the corresponding software architecture. The structure of the principal
programmes is then explained. The method of building new programmes and
generating new real-time configurations is then described, followed by brief
descriptions of the nature of the connections to workstation client processes.
The final sections document the software files in detail, and briefly introduce some
ways in which the software might develop.

4. Glossary
AO Adaptive Optics partial removal of the effects of

atmospheric turbulence on image quality
BSP Bulk Synchronisation

Parallelism
Real-time programming methodology used
in NAOMI (University of Oxford)

C40/C44 Texas Instruments DSP DSP optimised for interprocessor
communications

CCD Charged Coupled Device light sensitive detector
DM Deformable Mirror wavefront phase corrector
DSP Digital Signal Processor processor optimised for signal processing
Electra Durham University AO

system, software and DM
See History section below

EPM Electra process monitor Process variable database portion of the
NAOMI sequencer

FSM Fast Steering Mirror wavefront tip-tilt corrector
GHRIL Ground-based High

Resolution Imaging
Laboratory

Nasmyth platform of the WHT

GP General Purpose message
protocol

Asynchronous messaging system used
to/from and between C40s

INGRID ING infrared camera Can be used as a science camera for
NAOMI

ISR Interrupt Service Routine Code executed on processor interrupt
LoveTrain Synchronisation packet Synchronous messaging system used

between C40s in the WFS and DM rings
during ISR execution.

OASIS Optical Spectrograph Integral field spectrograph to be used with
NAOMI.

Python High-level language Scripting language for NAOMI
Ring
Leader

C40 brokering transaction
IDs

C40 used to coordinate parameter block
transactions within a c40 ring

Sequencer Process launcher/monitor Processes used by NAOMI supervisory
software

WFS Wavefront Sensor Optical system for wavefront phase
distortion measurement

5. Typographic Conventions
Code is indicated by this type format.

Future expansion notes in the main text are indicated in this type format.

6. History
NAOMI’s real-time software is derived from Durham University’s Electra software
and many of its files and nomenclature use the word Electra.

The Electra AO system’s ThermoTrex 228-degree of freedom mirror, with its internal
figure sensing system, was adopted for the NAOMI system in 1996. This followed a
PPARC review recommendation and a decision by the NAOMI consortium (then
ING, Durham, RGO, ROE). A Memorandum of Understanding between ING and the
University of Durham describes the transfer and reciprocal arrangements.

The Electra mirror requires unique control system features because of its internal
feedback capability. The design of Electra’s real-time control software predated the
inception of NAOMI and is essentially a superset of NAOMI’s requirements in terms
of the flexibility of both the underlying architecture and the visualisation system. On
the other hand, it interfaces to different WFS and FSM hardware and does not cover
NAOMI’s operational requirements. Rather than write wholly new software on this
scale, the Electra software was adopted as a whole and new interfaces and a unified
engineering GUI (TopGui) were added within the Electra software structure. New
documentation requirements were added. This document is part of that process.

The NAOMI mechanism and WFS control software is new and was written at UK
ATC. It does not need to be within the Electra software structure and, indeed, is not.

The higher-level coordination software (the Sequencer and TopGui) necessarily forms
part of the Electra structure because of its need to communicate intensively with the
real-time control system (e.g. for WFS image display).

The adoption of the Electra software package as a whole has resulted in the
availability of many little-used library routines and applications. Several of these
applications (WFSAlign, MirrorMimic, DataDiag) were of great use during NAOMI’s
commissioning phase but have now been superseded by TopGui. In all these cases it
is not proposed to provide extensive documentation of these facilities and it is
anticipated that they will be removed from the supported release in due course.

The Electra software system supports development in two languages: C and Python
(with Numeric extensions). Python provides both a scripting facility and a rapid
development high-level language that is also efficient in execution.

7. Accessing and Developing Real-Time Source Code
This section is freely adapted from David Buscher’s Quick Guide to Electra Software
Development. It describes the method for developing Electra workstation and c40
code in general. It also describes the location of the principal source code for the
Real-Time control system parts of the Electra. The details of how to build, maintain,
modify and enhance this particular code are deferred to subsequent sections.

7.1 The Electra Development Process

Electra uses the BCS baseline control system to allow multiple developers to work on
one body of code. Not only source code but also documentation is all stored in one
central directory tree, called a baseline. Software developers maintain their own
private copies of this baseline, called staging areas and the BCS system takes care of
the synchronisation of the private copies and the baseline. For the Electra developer,
there are three copies of the source trees to be aware of, which are rooted in

/software/Electra_src_tree
$STAGING (usually $HOME/Electra) and
/software/Electra

The first of these is the baseline, which contains the ‘master’ copies of the source
files. No object files or executables are ever built in this tree, and manipulation of this
tree is mostly indirect via BCS commands.

The second tree, $STAGING, is a private staging area for a given user. It can have
any name but we have given it the name $HOME/Electra for concreteness here.
Normally its subdirectories contain pointers (symlinks) to read-only files in the
corresponding subdirectories of /software/Electra_src_tree. When these
files are staged real writable copies replace the symlinks. The user can then build
modified versions of executables in their staging areas without affecting installed
executables and other users. The RCS revision control files within each directory are
common to all users, however, and locks are used to prevent two users staging the
same file at the same time.

The third (partial) tree is a public staging area. It is like the private staging area, but is
used for sharing built versions of the code, e.g. libraries etc.

The normal development process is to develop and test code in the private staging
area, and once it has been tested to install the built versions in

/software/Electra

and the source code in

/software/Electra_src_tree.

The /software/Electra/bin directory contains executables, the
/software/Electra/lib directory contains object libraries and configuration
files for the built code. Likewise the /software/Electra/include directory
contains common include files which are shared between packages.

The files in /software/Electra/{bin,lib,include} are the
stable versions of these files, while those under the developers' private trees are
developmental versions. Compiler search paths for include files and library files may
search the user’s private directories first, and then the relevant
/software/Electra directory. In this way, a developer first picks up the

versions of the code s/he is currently developing in preference to the stable version.
Clearly though, once development of a package has been completed, the private
directories should be cleaned out. This allows the latest version to be picked up from
/software/Electra, which is helpful if someone else later updates the code.
Similar comments apply to the order of bin directories in the shell PATH variable.

There are several scripts to aid the development process. These scripts are installed in
the /software/Electra/bin directory, and the originals are in
/software/Electra_src_tree/tools (and can themselves be accessed
from, and staged into, $STAGING/tools). The functions of the two most
commonly used scripts are as follows:

bcs_mkdirs Sets up the directory tree for a developer
bcs_publish Checks in source files which have been checked out, and updates

the baseline copy of the files. Used to “publish” any updated
versions of the source code in a given tree/subtree.

The /software/Electra_src_tree/config directory contains files which
are included by makefiles to configure the make process. These files can be accessed
from $STAGING/config.

The /software/Electra_src_tree/scripts directory contains startup
scripts for setting up the development process and also for starting daemons which are
used at runtime. These files can be accessed from $STAGING/scripts.

Historical note: the /software/Electra_src_tree/docs directory tree
contains some early documentation about the Electra system. It is mostly in the form
of LaTeX source files. A makefile in these directories converts these files to HTML
and installs them in an HTML tree.

All the rest of the subdirectories of /software/Electra_src_tree, and the
corresponding directories of $STAGING/ are C and Python source code trees. These
trees contain by convention subdirectories libsrc and appsrc to hold code for
building libraries and executables respectively.

7.2 Setting up a user account for Real-Time software development

Here is a recipe for how to develop a new package. Skip the stages you have already
done as necessary.

1. Set up your login files. Edit your .cshrc file to include the lines

setenv BASELINE /software/Electra_src_tree
setenv STAGING $HOME/Electra
source /software/Electra/bin/setup.csh

Then log in again or re-source your .cshrc. You will obviously have to adjust
this process if you do not use csh or tcsh.

2. Create a private staging area using

mkdir $STAGING

Type bcs_mkdirs. This command should be used any time someone else has
created new directories in the baseline.

3. Make a new subdirectory if a totally new package is being made. Type

cd $STAGING
mkdirhier myPackage/appsrc
cd myPackage/appsrc
register_file Makefile
cp ../../c40Comms/appsrc/Makefile .

This will create the directory and make a mirror copy in the baseline. The example
shows stealing a makefile from another directory as the starting point. This should
be edited to suit the package being built.

4. Register any other new files with the BCS system e.g.

register_file mysrc.c mysrc.h

Edit files in this area, and compile and test them.

5. Once the files at least compile, the source files can be checked into the RCS
system for version control

bcs ci -l mysrc.c mysrc.h

6. When the files compile and have been tested, install the built files in the (public)
baseline directory and put the latest versions of the source files into the baseline.

gmake install
bcs_publish .

7. There is a (little-used) process to make a release:

cd ~/Electra
bcs_tag_tree myPackage

This will tag all the RCS files in the myPackage tree with a tag of myPackage1.
The next time you do this the files will be tagged with myPackage2 etc.

7.3 C40 programs
The c40 DSP processors are described further below. For now it suffices to note that
they are the main processors for actual real-time operations.

By convention, c40 executables are denoted by the .x40 suffix and the object files
are denoted by the .o40 suffix. This allows two versions of a given program, one
running on c40s and one on workstations, to be built in the same directory.

In a directory where c40 programs are to be built, the makefile, like all Electra
makefiles, should include the line

include $(STAGING)/config/Electra.mk

A target build line might look something like

c40Echo.x40 : c40Echo.o40
 $(C40_CC) $(C40_LDFLAGS) -o $@ $^ \
 -L$$STAGING/lib -L/software/Electra/lib \
 -lGPmsg.lib -lUtil.lib

The c40_cc program is a front-end to the TI C40 compiler that makes it appear
much more like a standard Unix compiler.

The library files shown in the make recipe provide GP messaging and utility functions
(currently only the exeception-handling facilities). The c40_cc compiler front end
automatically includes the C run-time system.

7.4 Real-Time Program Directories
After setting up a user account for NAOMI (ELECTRA) RealTime software the
STAGING environment variable will be defined (generally as
/home/user/Electra). The setup procedure should also have produced a
subdirectory (amongst others) called:

${STAGING}/RealTime/ - base directory for real-time source code

This directory in turn has the following subdirectories:

appsrc/ - real-time workstation client applications (low level engineering level)
pythonModules/ - workstation python client support libraries
libsrc/ - c40 libraries
WFS/ - c40 WFS ring code
StrainGauge/ - c40 Strain Gauge ring code

7.4.1 RealTime/WFS: key files
The following file in the RealTime/WFS directory are the ones which normally need
to be edited to alter real-time WFS processing behaviour or add new control
parameters.
AlgNaomiInterleave.c Contains the WFS centroid estimation algorithm
AlgMartini.c Contains the WFS reconstructor and tip-tilt-piston

calibration
NaomiGenericBSP.c Hosts AlgNaomiInterleave. This is the main function

of NaomiGenericBSP.x40, which loads onto all
the C44s in the WFS ring apart from the mirror CPU

(GP number 4).
NaomiMirrorBSP.c Hosts AlgMartini. This is the main function of

NaomiMirrorBSP.x40, that loads onto the mirror
CPU (GP number 4) of the WFS ring.

Makefile makefile (uses ../Makefile)

7.4.2 RealTime/StrainGauge: key files
AlgSGadc.c Strain Gauge reading, calibration and servo algorithm
AlgSGmirror.c Mirror output algorithm
AlgSGtimer.c Strain Gauge ring timer algorithm
SGBSP2.c Hosts all the above algorithms. This is the main

function of SGBSP2.x40 that loads onto all the
C44s in the strain gauge ring.

Makefile makefile (uses ../Makefile)

7.4.3 SharedInclude
The ${STAGING}/SharedInclude directory contains ‘master’ python files
which are used to generate C and python include files. These ensure that workstation
and C40 programmes have the same correspondence between C enum types (and
python strings) and command-identifying numbers in GP communication packets.

ParameterBlocks.py - is used to identify new parameter block transactions
Makefile – gmake include will regenerate the include files and install them

8. Processor Architecture

8.1 Summary of required functions
The required NAOMI real-time processing functions are:

8.1.1 WFS data processing
? ? Receive Wavefront Sensor (WFS) pixel data from the NAOMI WFS

controllers. The controllers are of SDSU type and have the “Steward” port
option, which allows direct access to parallel digital data output (i.e., without
the data being transmitted along the VME bus). There are two CCDs in the
WFS, which may be synchronised or operated independently. Note that the
real-time system can readout from either CCD or from both if they are
synchronised. It cannot be run if the CCDs are both running unsynchronised
(and indeed if they are both running unsynchronised and the real-time system
has data reception enabled for both, it will fail).
The CCDs in the WFS are EEV CCD39 chips and each has frame transfer
buffers connected to four separate readout ports. The SDSU controllers
interleave pixels from the quadrants of each CCD. The data from each
quadrant therefore become available concurrently, starting at each corner and
progressing by rows towards the centre.
For further details of the SDSU controllers and the NAOMI readout modes see

NAOMI WFS CCD CAMERA CONTROL (V3 or higher) by D. Ives (ATC)
and NAOMI ICD 101 or higher by X. Gao (ATC).

? ? Determine the current readout mode of the CCD from the header data
preceding each frame. Adjust the size of the expected data transfer and the
parameters of the signal-processing algorithm (see below) accordingly.
Different modes support different numbers of subapertures and have different
on-chip binning and skipping. The mode also determines if the two CCDs are
synchronised.

? ? Process the WFS pixel data to produce centroid estimates of the WFS spot
positions, and therefore, estimates of the local wavefront slopes. This involves
removing a background level and, optionally, a sky gradient, and dividing the
pixels into “boxes” (e.g., a 4x4 pixel square for each subaperture).

? ? Generally there is one WFS subaperture per deformable mirror segment but in
some modes a subaperture covers several mirror segments. If this is the case
then copy the centroid estimates as required.

? ? Remove an optional offset from the WFS centroid estimates. This is to account
for the shape of the “starting” figure on the DM.

? ? Apply a servo algorithm to the current estimator in order to update the current
mirror segment x,y slope demands.

? ? Perform a matrix multiply on the vector of x,y slope demands. There is one x,y
measurement per subaperture. The result of the matrix multiply is a vector of
piston values: one per subaperture.

? ? Convert the x,y,piston command for each mirror segments into the A,B,C
equilaterally sectored actuator commands that are actually required to drive
the mirror. The resulting command vector is the mirror input demand.

8.1.2 DM data processing
? ? When strain gauge feedback is operating, compare the actuator input demand

to a calibrated digitised sample of the strain gauge voltages and adjust the final
demand to the deformable mirror using a servo algorithm. This algorithm must
sample and update substantially faster than the WFS servo algorithm.

8.1.3 Latency
? ? All the above WFS and strain gauge processing must be performed with

timing uncertainties of no more than a few microseconds (i.e. it must have
deterministic latency). There are also stringent upper limits on the magnitude
of the processing latency. If it substantially exceeds 1 ms then performance
will in general degrade. In practice, the sensible upper limit to the latency of
the WFS processing depends on the current integration time of the WFS. If it
is already 10 or more milliseconds then the relative effect of another 0.2
milliseconds of processing latency may not be decisive to the level of
performance obtained. Similar arguments may be applied to the time taken to
read out in the WFS CCD modes where little skipping (windowing) and
binning takes place. Reducing processing latency is always beneficial but the
actual magnitude of the benefit needs to be evaluated for the likely operational
conditions. A NAOMI model exists (by Richard Wilson, Durham) which may
be used to estimate operational benefits of any planned change of this kind.
For the present purpose of describing the existing implementation, it may be
taken that some form of interleaving of the readout of the CCD and the

estimation of the WFS centroids is highly desirable in most cases. That is to
say that, so far as possible, WFS readout and WFS data processing, should be
concurrent.

8.1.4 Commands
? ? All key run-time parameters of the above processing must be capable of being

updated on-the-fly. This means that updates can take place with all the control
loops closed and with all parameters changing synchronously. There must be
no missed samples (of WFS or SG data) or delayed processing of samples.

8.1.5 Status
? ? The state of run-time parameters must be able to be retrieved at any time.

8.1.6 Diagnostics
? ? Diagnostic samples of input, intermediate and output data must be available

from the real-time controls system in a streaming fashion without interfering
with the real-time data flow.

8.2 C40 processors
The Texas Instruments TMS320C40 Digital Signal Processors (DSPs) was selected as
the main processor for implementation of the real-time control system for NAOMI. It
has the following features:

? ? Optimised for digital filtering. A Multiply-Accumulate (MAC) and two data
moves can be executed by a single instruction and performed in a single
processor cycle. The MAC is also the key instruction for servo algorithms and
for matrix multiplication, which are key operations for NAOMI.

? ? Interprocessor communications ports. Each processor has six processor-to-
processor bi-directional links. The link hardware is 8-bit 20MBs-1 parallel but
from the programme point of view the minimum data quantum is 32 bits. Each
C40 has an 8x32bit FIFO buffer on input and output. Interprocessor
communications therefore have 16-deep 32-bit FIFOs in each link.

? ? Each communications port is connected to a separate on-chip Direct Memory
Access (DMA) engine which may be programmed to move data between the
communications port and memory without further programme intervention.
With suitable hardware the communications ports can be used to transfer data
to or from external systems as well as between c40s.

? ? Separate instruction and data busses.
? ? JTAG scan chain hardware for external debugging access to processor

registers and hardware breakpoints. It is possible to set up synchronised
hardware breakpoints on several processsors.

Note that the TMS320C44 is actually used in the NAOMI control system. This
differs from the c40 by having 4 instead of 6 communications ports. A full c40 is
used for the diagnostics processor.

8.3 Interconnections
The figure below shows the connections of the c44 communications for NAOMI.
Interprocessor connections and external connections are indicated, as are the assigned
GP numbers for each processor.

SDSU
Master

SDSU
Slave

8.4 Ring structures
16 of the c40s have their communications ports interconnected so as to form two rings
of eight processors each. One ring is used for the WFS algorithms and one ring for the
Strain Gauge processing. The figure below shows how the c40 rings connect to the
external sensing, actuation and diagnostics systems.

Together with the software architecture described below, the ring structures enable the
real-time processing requirements to be fulfilled with fewer DSPs than with an
equivalent farm architecture. The development overheads are also reduced.

8.5 WFS ring
The WFS ring contains 8 c44 processors (GP numbers 1 to 8). Two are connected via
communications ports and interface casrds to the data output from the “Steward”
parallel output ports of the SDSU controllers for the WFS CCDs. The interface cards,
produced by Durham, buffer the incoming data and respond to synchronisation and
control signals from further communications part which carries command from the
c40s. P. Clark describes the interface cards in the NAOMI Hardware Reference
Manual.

Wavefront Sensor CCDs
2x4-port EEV 39

Eth

Wavefront Sensor DSP Ring Strain Gauge DSP Ring

96-ch ADC 96-ch ADC
64-ch ADC

DRAM

Diagnostics
DSP

256ch DAC

HV
Amps Strain Gauge Amplifiers

C44

C40

VME

Sparc

76 seg
mirror

Tip-tilt
Mirror

C44 C44 C44

C44 C44 C44 C44

C44 C44 C44 C44

C44 C44 C44 C44

Ethernet

The 8 processors of the WFS ring are hosted on a single VME card: a Blue Wave
Systems (UK) DBV44 card. This card is a motherboard, which hosts 4 TIM processor
daughtercards, each of which carries 2 C44s. The DB44 card routes communications
ports to the VME P2 bus as well as to the panel front, and it is P2 ports which carry
the WFS interfaces. Panel front connections are used for the communications ports
that link the WFS ring to the strain gauge ring (one port) and to the diagnostic CPU.

The DBV44 has Link Interface Adapters (LIAs) which connect some of the
communications ports to the VME bus, where they appear as memory mapped
registers. The four LIAs are used to provide communications with the VME host
processor (see below) and thence, via Ethernet to the outside network.

8.6 Strain Gauge Ring
The Strain Gauge (SG) processing ring is designed to be as similar possible in both
hardware and software to the WFS ring (above). It too consists of 8 C44 processors
(GP numbers 11 to 18) hosted on a DBV44 VME card. In this case the sensor data
come from the strain gauge Analogue to Digital Convertors (ADCs). The ADCs are
contained in 3 VME cards produced by Pentland, UK, which are specialised in that
they have C40 communications port outputs. There are 256 16-bit ADC channels
altogether and each of them is capable of sampling at 85kHz and delivering the data
via a c40 communications port. The configuration of these ADC cards is done via the
VME bus from the c40Comms process on the VME host processor (see below). They
are configured to deliver the digitised data via 6 communications ports to 6 processors
(the ADC CPUs) of the strain gauge ring: 2 ports carry 64 strain gauge channels each
and 4 ports carry 32 strain gauge channels each. The readout order is a little
complicated and downloadable tables are used by the c40s to reorder the data. The
connection to the processors is organised so that the 2 64-sample channels could have
half of their respective data transferred to unloaded neighbour C44s in order to
achieve a better load balance of 32 channels per processor (future upgrade).

An output port from one of the C44s (the timer CPU) is connected to a Durham
interface card, which produces a trigger signal for the ADCs. Therefore the SG ring
must provide its own source of interrupts, as it is responsible for the conversion
trigger to the ADCs. This is in distinction to the WFS ring where the SDSU
controllers free-run and provide the interrupts.

The output from the SG ring is carried by a panel front communications port to a
Durham DAC interface card and thence to the Durham DAC rack. A synchronisation
signal is carried to the same interface on a separate communications port. There are
256 13-bit DAC channels of which 228 are used by the DM. Two DAC channels (30
and 31) are used for the FSM and are connected to the Zeiss (Jena) driver rack. The
DM analogue signals go to the Durham drive amplifier rack.

Like the WFS ring, the SG ring uses its LIAs to communicate with the VME host
processor. Likewise it has a panel front communications port connection with the
diagnostic CPU.

8.7 Diagnostic CPU
The diagnostic CPU is a C40 (GP number 9) located on a Blue Wave Systems (UK)
DBV46 VME card. The CPU is one of two fitted as standard to the DBV46. The other

CPU (GP number 10) is spare capacity. The DBV46 can also host TIM cards carrying
additional processors but none have been fitted.

The DBV46 has dual-ported memory, which is read/write accessible both from the
C40s and from the VME32 bus. It is this channel that is used for downloading
diagnostics data to the VME host.

Unfortunately the DBV46 has no LIA connections and therefore must be booted
indirectly from one of the WFS ring CPUs via its front panel communications port
connection.

8.8 VME Host
The current VME host is a Force VME card carrying a SPARC 5V processor. It runs
the Sun Solaris operating system and can therefore mediate between the C40s and the
external network. It has its own disk and is an autonomous computer. A console may
be attached if required via an RS232 connection. Normal communication goes via a
10BT Ethernet port.

For mostly historical reasons this processor currently carries the C40 cross-
development software. The reason is that one of the C40 development tools, the DB40
debugger, must run on this computer in order to access the JTAG scan chain via the
VME bus. This debugger is only used very rarely now and there is no fundamental
reason why this computer should continue to host the other C40 cross-development
tools.

The current Force card will probably be replaced with an updated one based on an
UltraSPARC processor. Such a card will be fitted with a 100BT Ethernet port.

8.9 Workstations
The control and monitoring processes of the remainder of the NAOMI control system
may be distributed anywhere on the Internet, at least in theory. Some of them have
been ported to SGI and Linux hardware, for example. In practice they are run on the
NAOMI workstation, navis, a dual processor UltraSPARC system.

9. Software Architecture

9.1 Summary of required functions
The software architecture fulfils the overall requirements given in the hardware
architecture section (above) and within the constraints imposed by the selected
hardware (above). It is important to also bear in mind the history of the design
(above), i.e., that the NAOMI software is derived from the Electra software and that
the Electra requirements were in some respects a superset of those for NAOMI. Some
software features are therefore not strictly traceable to NAOMI’s requirements. These
features generally take the form of additional flexibility and diagnostic capabilities.
An example of additional flexibility is the ability to perform synchronised switching
of interrupt processing algorithms as well as just run-time parameters.

One important example of an Electra-specific feature is a code design that allows the
WFS data from a given CCD to be transmitted as separate quadrants to more than one
CPU. This is indeed partially exploited by NAOMI in its support for more than one

WFS CCD. Also some per-quadrant processing is really necessary because of the
quadrant dependence of the bias and the (interleaved) read order. It would therefore
be difficult to untangle in retrospect how much of the per-quadrant processing is
really superfluous to NAOMI’s requirements.

The software User Requirements Document for NAOMI as a whole lists various
direct requirements for real-time processing and indirect ones for control, status
display and visualisation. These are effectively covered by the requirements given in
the above hardware architecture section and the Electra capabilities. Note, however,
that some requirements, for example, 3D diagnostics, though met in general by
Electra’s capabilities, have not yet been commissioned for NAOMI use due to time
constraints and their low priority in practice.

In developing a parallel real-time processing system, a very major issue is controlling
the development time required to generate a stable structure and to subsequently
maintain and enhance it. Following studies of parallel operating systems and an
experimental evaluation of one proprietary language, it was decided to adopt selected
aspects of the Bulk Synchronisation Parallelism (BSP) methodology developed by
Oxford University, UK. The aims of this methodology are ease of development and
stability. Its adoption has been successful. Consequently there is no proprietary code
within the real-time software. The aspects of BSP not adopted have normally been
omitted for obvious reasons: e.g., random process placement would not work with
fixed interface connection nodes.

9.2 Introduction
The BSP methodology requires that all processes wait to communicate until a global
synchronisation step. All processes wait for this step to complete regardless of
whether they have anything to transmit or receive. The step is not complete until all
interprocess communications have finished. The global progress of the parallel
processing system is therefore divided into supersteps by these synchronisation
barriers. The figure below illustrates the general idea.

T
I

M
E

Process A Process B Process C

wait
wait

Superstep
2

Barrier Synch
1

wait wait
Superstep

1

Barrier Synch
2

Communications

Communications

The advantage of all this is that it makes parallel software development much easier in
practice. Each process ‘knows’ that if it is in superstep n then every other process
must be in superstep n too. It also ‘knows’ that the data available to every other
process is precisely that which is dictated by its being in superstep n. The developer
can safely program the message passing of any process at any stage knowing the
states of all other receiving and transmitting processors. Furthermore, if an error were
reported by process X whilst in superstep m and this were thought to be due to the
activities of another process, then the developer can ascertain, simply by inspecting
code, the program and data states of all other processes within the system at the time
of the error to within the resolution of one superstep: they will all be at their
respective superstep m. Without such a scheme, complex and time-dependent webs of
interprocess dependency can develop.

In practice, the BSP methodology is applied separately to the two rings of C44
processors, and then, in fact, only to the software within their Interrupt Service
Routines (ISRs). The use of ISRs for the time-critical processes is pretty well dictated
by the requirement that diagnostic/visualisation/logging activity should have no effect
on the timing or dataflow within the latency-critical processing. We do not have
multi-ported memory on each CPU so there must be C44 involvement in
diagnostic/visualisation/logging activity. If this activity is not to affect time-critical
processing then it follows that it must be interrupted by signals indicating the arrival
of new real-time data. In the case of the WFS ring, the signal is the arrival of a new
frame of WFS data. In the case of the SG ring, the signal is the arrival of newly
digitised strain gauge data from the Pentland ADCs. There is of course the issue of
processor interrupt latency but the effects of that are effectively eliminated by the use
of DMA transfers for the interrupting WFS and SGS data, combined with the
“cowcatcher” system (below).

The diagnostics/visualisation activity effectively forms a background activity and
clearly needs to use an interruptible, and therefore asynchronous, communications
system to exchange data with external workstation processes. For example a WFS
processor sending pixel data to a workstation GUI for display must be interrupted
mid-message by the arrival of new pixel data coming from the CCD controllers. The
physical medium for this background communication is via the network of
interconnecting communications ports. An asynchronous message-passing protocol is
therefore required. This is called GP for General Purpose and is described in detail by
David Buscher’s document. It is called “General Purpose” because it is also used for
transmission of command and status information to/from the C40/C44 processors.
Such a protocol is clearly well suited to retrieving status data and can also be used for
sending commands to the C44s provided there is some means of synchronising the
actual changes in real-time parameter states on different processes. This requirement
is fulfilled by the transaction system, which is described below.

GP message packets originating from a C40/C44 processor are forwarded from
processor to processor according to a destination address embedded within the packet.
Other internal data fields, as described below, further identify their contents.
Diagnostic data packets arriving at the diagnostic C40 (GP number 9) are placed in a
shared memory buffer, ready for transmission via the VME bus to the VME host.

Other packets typically travel via LIAs to the VME host. Either way, the server
process, c40Comms, running on the VME host, embeds the GP packets within
appropriately addressed TCP/IP packets for onward transmission via the internet. The
c40Comms process also performs a reverse procedure, extracting GP packets from
TCP/IP wrapping and forwarding them via LIAs into the C40/C44 network.

The ISR code cannot use the GP system directly for interprocessor communications.
Firstly, this is because GP is not synchronous and would not meet the processing
latency requirement. Secondly, in the context of an ISR the GP system will have been
interrupted by the ISR code and such a protocol could hardly be made re-entrant
without a significant loss of efficiency. A second, synchronous, interprocessor
communications protocol, and one which embodies the Barrier Synchronisation idea,
is therefore required for use by the ISRs. The unit of this protocol is called a
LoveTrain? , primarily for memorability.

LoveTrains use the ring of interconnections of the C44s to broadcast information
between them. Each processor in the ring sends its own output information for
broadcast (if any) to its downstream neighbour and then copies information from its
upstream neighbour to downstream. The processor’s output information is therefore
copied right around the ring to the processor immediately upstream, which does not
copy it further (i.e., information does not return, redundantly, to its origin). The
LoveTrain implements the BarrierSynch because communication is global and cannot
finish until all processes have started communicating. The expected quantity of data to
be sourced, copied and removed by each processor is coordinated near the beginning
of each ISR. This is done by an initial, special BarrierSynch which uses the first
LoveTrain after the cowcatcher to broadcast the anticipated number and size of
LoveTrain contributions from each processor. The final BarrierSynch of each ISR is
also special. It contains the StopMessage, which is used to decide if RealTime
processing should cease at the current interrupt. The StopMessage also implements
the transaction system, whereby real-time parameter changes, which have been
scheduled on several processors, all become effective at the next ISR.

The communication port links used by the ISRs to transmit LoveTrains can also be
used by the GP system outside of the ISRs. This is achieved by insisting that the two
protocols travel in different directions on the bi-directional links. This is possible
because each link direction has its own FIFO buffer system.

9.3 Summary of GP system
The General Purpose Message system (GP) allows asynchronous communications
between any 2 C40/C44s and between a C40/C44 and an external processor. This is
achieved by a simple message passing and forwarding system within the C40 network
and by wrapping the GP messages in TCP/IP packets (accessed using the DTM
library) for transmission via the internet.

David Buscher in “The GP Messaging Library” deals with the GP system in detail.
Here we summarise a few key features.

GP messages consist of fixed-length header and a variable length body. The header
fields include a length and source and destination address fields. The body carries

most of the actual data and can be up to 3300 32-bit words long. This is the C
declaration for the header structure:

typedef struct {
 int32 length; /* Length of the entire packet in words -1 */
 uint32 protocolID; /* Synchronisation word */
 uint32 destAddress; /* Destination machine port address */
 int32 hopCount; /* Incremented on every hop - used to trap
 messages which never reach

their destination */
 int32 command; /* Command/acknowledge verb */
 int32 sequenceID; /* Unique message tag for multiple
 messages of the same type */
 uint32 replyAddress; /* Reply_to machine + port address */
 int32 arg1 /* Optional command argument –

pads to 8 words */
} GPmsgHdr;

The replyAddress field is used so that a reply can be sent if appropriate. The 32-
bit address fields have the following format:

For a C40/C44 address, the port number is always 0, whilst the CPU number is the GP
number assigned to the CPU at boot time. The C40s/C44s in NAOMI are numbered 1
to 18 with the c40Comms process on the VME host having the special number 0.

For a workstation process address, the CPU number is always 0. So, as far as a
C40/C44 routing such a packet is concerned, the correct thing to do is to forward the
packet to the c40Comms process on the VME host. This is the correct behaviour. The
port number is non-zero in this case and this identifes to c40Comms the final
destination of the packet on the internet. The c40Comms process maintains a table
translating port numbers to DTM ports. DTM ports are identified by strings, which
include both an IP address and an IP port number or symbolic name. When a client
workstation process opens its communications with c40Comms its first action is to
request (via a GP command) that c40Comms make an association between the
client’s DTM port for GP replies and a new GP port number. The client sends the
DTM port name as an ‘argument’ to the GP command and receives the generated port
number as a reply. It can then use this port number as a reply address in the header of
subsequent GP commands directed to c40 CPUs. The GP commands from
workstation clients are wrapped in DTM packets addressed to c40Comms, which
then extracts the GP command and forwards it via an LIA to the C40 network. The
reverse process happens to a a reply GP message from the C40s to a workstation
client. In this case c40Comms wraps the GP message in a DTM packet addressed to
the DTM port corresponding to the GP port number in the destination field of the GP
packet. It is also possible for a workstation client to request a mapping from a port
number to a DTM port attached to a “third party” workstation process. This is
intended for directing diagnostic GP packets to a display or logging process. In
practice, however, many processes request their own diagnostic packets.

Bits 15:0
CPU number

Bits 31:16
Port number

9.4 Command formats
GP command headers contain a command field, which, like the destination and reply
addresses, is also divided into two sub-fields. In this case the fields are a command
class and an actual command indentifier. The class field identifies to a standard C40
program which GP callback function it should invoke in order to further identify and
process all commands of that class. An example is found in the file

${STAGING}/SharedInclude/c40RealTimeCommands.py

This contains the python statements which define the python strings associated with a
new class and its commands. The installation process uses these statements to
generate a C include files which contains enum statements that make the same
association.

9.5 DTM
The Data Transfer Mechanism (DTM), developed by the NCSA, is the system that is
used for message passing. It is layered on the TCP socket libraries and provides a
relatively simple message passing API for use between (potentially remote) processes.
The DTM API allows the destination port to be named either via an IP address/port
(which can be in symbolic or numeric form) or using a name which is not known to
the TCP/IP dns system. Such names are translated using a Nameserver process, which
also allows names to be registered (by association with IP address/ports). One
Nameserver process can serve several machines. All the machines which share the
Nameserver must “know” the IP/port address on which it can be contacted.

DTM communication always begins with a freeform text header message followed by
a number of binary data messages. The header generally serves to describe the format
and contents of the data packets. Although the header is freeform in a sense, its
contents must normally be parseable in order to achieve automatic data description.
Several simple conventions and code for header interpretations are distributed with
DTM can some of these are employed with NAOMI. GP messages are very
straightforwardly copied into DTM data packets as described above. DTM is also
used for communication between workstation applications and display tools and these
re-use some of the DTM header conventions. New-style commands are sent over
DTM as python embedded into the data packet with “meta data” in the header
describing the reply and acknowledge addresses. The Sequencer processes use this
system. The sequencer and associated EPM (Electra Process Monitor) are used to
coordinate control of NAOMI systems at the high level (for example using TopGui).

9.6 GP main loop
The following C statements form a typical main C40 programme configured to use the
GP system.
 GPsetup(status);
 GPaddCallback(RT_CLASS, &RTcallback, status);
 GPaddCallback(MIRROR_CLASS, &MirrorCallback, status);
 GPmainLoop(status);

The first statement sets up the GP system whilst the next two associate call-back C
functions with command classes. Finally the programme enters the GPmainLoop

where it remains until the CPUs are reset. The RT_CLASS contains the special
commands which configure ISRs, and the transaction system whereby Parameter
Block data may be communicated between ISRs and the GP system. The status
structure pointer is used to track errors. By convention each function will return
immediately if an error status has been set.

9.7 GP callbacks
Basic C40 programs are normally set up as simple message-driven programs. The
actions of the GPmainLoop consist of waiting for a message, decoding the header,
performing whatever action the header specifies, and returning a reply or error
message. The program then loops back and looks for another message.
The convention is that all messages sent to port PORT_BOOT are handled by calling
the BootServices function. This is essential for the messaging system to function
properly.

All other commands are handled in the appropriate callback. The callback contains a
switch statement which decodes the command verb and performs the appropriate
action. This processing frequently involves extracting additional argument data from
the message buffer. By convention, all commands put the reply in the same message
buffer used to receive the message, and indicate the length of the reply by adjusting
the header appropriately. At the end of the switch statement, control is returned by the
callback to GPmainloop and any reply in the message buffer is sent back to the
workstation, with the header.arg1 value set to zero to indicate success, and the
header.command value incremented by GP_ACK to indicate which command is
being acknowledged.

If an error is encountered, using the ExcRaise macro will store an error message in
the status structure (defined in exception.h). At the end of the switch statement, if
an exception has been raised, a reply with a non-zero header.arg1 value is sent to
indicate an error. The reply contains the error message in its body, in case the
receiving program wants to print it out. In addition, the error message is sent to the
C40_STDERR port. If an error message printing process is listening on that port, it
will print it for the user. (A fprintf(stderr,..) statement on the C40s will
also cause a message to be printed by any such error-logging processes.)

9.8 ISRs and cowcatchers
Interrupt Service Routines (ISRs) perform all latency critical data processing and are
the only context in which a Barrier Synchronisation can take place. They are therefore
the only context in which the components of a LoveTrain can be transmitted, copied
and received. ISRs are normally invoked by an external interrupt signal. In the case of
the WFS ring this will be ultimately caused by the arrival of a new frame of WFS
data. In the case of the SG ring the ultimate cause is a timer interrupt. However, even
though these are the ultimate causes of ring-wide interrupts, most of the CPUs in the
ring are actually interrupted by communications port traffic from the neighbour
(upstream) CPU in the ring. This is because only the timer CPU is actually interrupted
in the SG ring case and only the WFS frame reception CPU or CPUs are interrupted
in the WFS ring case. The interrupted CPUs then begin to send data to their

neighbours which then in turn begin to send data to their neighbours and so on. The
CPUs are armed to interrupt on receipt of communications port activity so this has the
desired effect of eventually putting all of the ring CPUs into their ISRs. However if
we relied upon waiting for the first processed data output from the interrupted CPUs
to accomplish this, we would have the unfortunate side effect that we would then have
an additional wait whilst the interrupted CPU actually arrived in its ISR code. This
delay, the interrupt latency, is in-part a hardware delay caused by the processor saving
the interrupted code context on the stack, and partly a software delay caused by the
execution of the ISRwrapper assembly language code which prepares for execution of
a C function and ensures that certain global data may be accessed from the ISR.
Incurring these delays in a system-critical fashion as each CPU in the ring were
sequentially interrupted would be most undesirable.

The deleterious effects of most of the interrupt latency are overcome by arranging for
a high degree of concurrency. Each interrupted CPU, whatever the cause of the
interrupt, immediately sends to its downstream neighbour a single word on their
connecting communications port. This has the effect of interrupting the neighbour
promptly so that it will almost certainly have completed its interrupt latency before
useful data could be sent to it. Because these interrupting words precede the first
LoveTrains carrying operational data they are dubbed “cowcatchers” for
memorability. The interrupt latency of the WFS ring is concurrent with the arrival and
decoding of the WFS header and the processing of the first row of centroid data. The
interrupt latency of the SG ring is concurrent with the conversion time of the SG
ADCs. The ADC conversion is initiated by the SG timer CPU immediately on its
(timer) interrupt.

9.9 ISR debug logging
The LOG(val) macro records a programme file, programme line number, frame
number, time, and an integer argument val in a circulating buffer. This may be
retrieved at any time and is useful for tracing code execution and for obtaining time-
synchronised data samples simply. The command RT PrintDebugLog nCPU will
print logging data from CPU (GP) number nCPU. Care must be taken when
examining these logs as the circular buffer will typically contain output from several
ISR interrupt frames and will have recycled and overlapped to a seemingly arbitrary
point at the time of download and printing. A careful examination of the frame
numbers and times for the lines in the log output will reveal which is the most recent
log record.

9.10 Panics
When an error is detected within an ISR the standard action is to invoke the C macro
Panic(). This causes the following actions:

1. The C program jumps (!) to an exception processing label at the end of the ISR
code. No further Real-Time processing therefore takes place.

2. An exception is raised which records the following information in a status
message: the time, frame number, super-step, program line, and program file
at the which the panic occurs.

3. Future ISRs are disabled for this CPU.
Because of this last action then no other CPUs in the same ring can pass further
BarrierSynchs, because no LoveTrain can pass the Panic’ed CPU. Ring-wide real-

time activity therefore halts at this point. Note, however, that the panicking CPU has
not crashed. It can still perform GP processing in its foreground task, including
displaying its Panic status message, normally in response to the WFS Status and
SG Status commands for the respective C40 rings.

9.11 Barrier Synchronisation
Barrier Synchronisation is both the method by which the supersteps of ISRs within a
CPU ring are synchronised and also the method by which they communicate. Each
CPU which participates in a Barrier Synchronisation sources a certain amount of data
to its downstream neighbour, copies a certain amount of data from its upstream
neighbour to its downstream neighbour, and sinks a certain amount of data that has
already been all the way around the ring and would, if it were copied further, be
returning (inefficiently) to its originator. This ring-wide movement of data,
collectively constitutes a LoveTrain.

For efficient operation, careful checking that the expected quantity of data arrives and
does not cause a timeout or overrun is not carried out for every LoveTrain. Instead the
each CPU publishes a plan of its subsequent LoveTrain activity at the start of the ISR.
The exchange of plans is carried out with careful checking. Each CPU then compares
all received plans with its own intentions and if they are inconsistent, panics.

A typical plan is defined by the following C statement:

static BarrierSyncPlan myPlanWFS[] = {
 { 5, NUM_SUBAP_X*2*NUM_CCD_PORT, NUM_SUBAP_X*2*NUM_CCD_PORT, 0 },
 { 1, 3, 3*NUM_RING_CPU, 0 },
 { -1, -1, -1, -1 }
 };

Each line of the plan specifies a set of similar BarrierSyncs that the CPU intends to
perform in turn. The first field specifies the number of similar BarrierSyncs and the
next field specifies the number of 32-bit words which the CPU plans to source (i.e., to
add to the LoveTrain) at each of these BarrierSyncs. The second field contains the
total number of 32-bit words it anticipates there to be in each LoveTrain. The final
field is always initially zero but is set during a successful exchange of plans. The final
line of the plan simply signals that this is the end of the plan, but the penultimate line
is more interesting. This always specifies the exchange of a StopMessage, which is
always the last LoveTrain to be exchanged in each ISR. It establishes if real time
activity is scheduled to stop on completion of the current frame, or if a change of real-
time parameters or algorithm has been scheduled ring-wide at the next interrupt. This
last function implements a key part of the Transaction system (see below).

The plan is exchanged using the C function

 BSPbegin(myPlanWFS, ISRglobals.status);

where the plan array forms the first argument. The BarrierSyncs themselves are
carried out by the following function:

 BarrierSync(iSuperStep,(int *)centroid,

 NUM_SUBAP_X * 2 * NUM_CCD_PORT,
 0);

The first argument is the superstep counter (which is incremented by the invoking
program after the BarrierSync), the second is a pointer to the LoveTrain buffer, the
third is the number of words to source and the fourth is the number of words to copy.

The StopMessage is exchanged and acted on by the following code fragment:

 /* Transfer stop frame info around the ring - barrier synchronisation */
 if (StopMessage(iSuperStep))Panic();
 iSuperStep++;

 /* Do algorithm shuffle */
 if (SwapAlgorithm())Panic();
 LOG(0);

Note that some older ISR code uses a direct call to BarrierSync to deal with the
StopMessage.

9.12 Parameter Block transactions
Parameter block transactions implement the synchronised changing of real-time
parameters and even algorithms ring-wide. Essentially a set of changes can be queued
up in advance on each CPU in a ring and then made active simultaneously on a
particular interrupt. The queuing of changes is accomplished by the GP commands of
the RT_CLASS and can be activated by either C or Python workstation programs but
is most elegantly implemented in python, where a single python function call can
carry out a very complex ring-wide transaction.

In order to be available to the standard function RTCallback, which processes the
RT_CLASS commands, each C40 program must include a code fragment along the
following lines in its main() function:

/* Table to hold the set of available algorithms. Used in RTcallback()
 * to define the real-time algorithms available in this executable.
 */
extern struct AlgorithmMethods SGstarterMethods;
extern struct AlgorithmMethods SGmirrorMethods;
extern struct AlgorithmMethods SGadcMethods;
extern struct AlgorithmMethods SGtimerMethods;

const struct AlgorithmMethods *algorithmMethods[] = {
 &SGstarterMethods,
 &SGmirrorMethods,
 &SGadcMethods,
 &SGtimerMethods,
 NULL /* Required to mark the end of the table */
};

The standard array of pointers to AlgorithmMethods structures,
algorithmMethods, establishes a global record of available algorithms and their
associated parameter manipulation functions. This is available to RTcallback
which is then able to invoke particular methods (functions) according to RT_CLASS
command parameters. The methods themselves are defined externally to the main
program and are in fact, most conveniently, defined in the same program files as the

ISR algorithms themselves. Consider the following example from an algorithm C file
(the names of these files conventionally begin with Alg):

static void ISR(void); /* The interrupt service routine */
static Algorithm *Create(const Algorithm *, ExcStatus *);
 /* Create/copy an algorithm instance */
static void Destroy(Algorithm *, ExcStatus *);
 /* Release resources used by an instance */
static void SetParameters(Algorithm *, int32, int32 *, int32, ExcStatus *);
 /* Set/alter the parameters of an instance */
static void GetParameters(const Algorithm *, int32, GPmsgBuffer *,
 ExcStatus *);
 /* Return a instance parameter set in a binary format
*/
static void PrintParameters(const Algorithm *, int32, ExcStatus *);
 /* Print parameter set values to stderr */

struct AlgorithmMethods SGadcMethods = {
 ALG_SG_ADC,
 "$Id: AlgSGadc.c,v 1.21 2000/05/24 10:11:59 rmm Exp $",
 &ISR,
 &Create, &Destroy, &SetParameters,
 &GetParameters, &PrintParameters
};
Note that the AlgorithmMethods structure definition includes the following:

1. an algorithm ID. This is made available to both C40 and workstation programs
(C and python) using the SharedInclude system. It is used by workstation
programs to identify which algorithm is to be swapped in or to have its
parameters manipulated or interrogated.

2. The second is an RCS string which can be used to identify which algorithm
versions are currently running. This is typically accomplished using the
workstation command:
RT GetAlgorithmVersion

3. The remaining fields are pointers to functions. The first is a pointer to the ISR
function itself, which is defined in the same file.

4. The Create function (one per algorithm file) is used to set up a new
algorithm, Destroy removes its resources.

5. SetParameters is a function made available to RT_CLASS to manipulate
the parameters of an algorithm whilst GetParameters is used to retrieve
them. PrintParameters is a future extension which may be used to ‘print’
the parameters to an error-logging process. SetParameters does not
directly manipulate the parameters of the currently active algorithm but rather
manipulates a set of duplicated parameters waiting to be swapped into active
use by the Transaction system.

The functioning of the algorithm methods themselves is dealt with in the next section
below. The principal commands of the RT_CLASS are summarised below:

RT_INIT – initialises the real-time transaction system
RT_STATUS – enquires about the status of the ISRs and transaction system,
RT_START – starts interrupt processing
RT_STOP – stops interrupt processing
RT_BEGIN_TRANSACTION – obtains a transactionID from the ringleader
RT_END_TRANSACTION – instructs the ringleader to release a transaction

RT_BREAK_TRANSACTION – aborts and unlocks a transaction setup
RT_SET_PARAMS – invokes SetParameters for a named algorithm ID
RT_GET_PARAMS - invokes GetParameters for a named algorithm ID
RT_PRINT_PARAMS - invokes PrintParameters for a named algorithm ID
RT_GET_ALGORITHM_VERSION – Gets the Algorithm RCS ID

Workstation programs may invoke these commands either directly with the GP rpc
(remote procedure call) function which is available in both the C and Python versions
of the workstation GP support libraries, or in the case of python workstation
programs, they will probably chose to invoke them via the GPtransaction library.

The actual mechanism of a transaction is as follows:

1. The workstation requests a transactionID from the ringleader CPU of a
particular ring. There is only one ringleader per C40 ring and the each CPU
‘knows’ via a global variable whether or not it has been assigned as a
ringleader. If there is already a transaction in progress on a ring, that is a
transactionID has previously been allocated and never released, then the
ringleader will refuse to allocate another. In this case the workstation
programme or user may choose to break the transaction. In the case of the
WFS ring the workstation user command WFS BreakTransaction will
accomplish this.

2. Assuming a transactionID was successfully obtained, the workstation process
can then begin to setup the parameters of its chosen algorithm on an CPU. To
do this it invokes RT_SET_PARAMS, specifying an algorithmID and a
transactionID. It identifies exactly which parameter that is to be manipulated
using a ParameterBlock Section ID. These Ids are available to both
workstation (C and python) and C40 programmes through the
SharedInclude system.

3. Following the manipulation of ParameterBlocks on all CPUs where changes
are required, the workstation process send the RT_END_TRANSACTION
command to the ringleader. This unlocks the transaction and instructs the
ringleader to send the transactionID as part of its next ISR StopMessage
LoveTrain. This instructs all the CPUs to swap in the modified parameter
blocks (and potentially algorithms) at the next interrupt.

The ParameterBlock section Ids identify a particular parameter for replacement or
retrieval. Many are actually arrays of variables. The section IDs are defined in
Electra/SharedInclude/ParameterBlocks.py and are summarised
below. A PB_SG_ prefix indicates an SG ring CPU parameter block section. All
others are WFS ring CPU parameter block sections.

PB_FLAT unused
PB_WFS_OFFSET RAL WFS offset
PB_SEG_GAIN WFS segment TT gains (X,Y)
PB_DECIMATE WFS centroid and pixel diagnostic decimation values
PB_RECON_GAIN usused
PB_LOCK_DAC open/close WFS loop
PB_CCD_TEST WFS test mode
PB_FRAME_DELAY WFS test mode rate
PB_SG_TIMER_INTERVAL SG sample interval (in 66ns clocks)

PB_SG_DEMAND_PORT identify demand communications port for SG ring
PB_SG_TIMER_TRIGGER_PORT identify timer trigger communications port
PB_SG_MIRROR_DATA_PORT mirror data output port
PB_SG_MIRROR_SYNC_PORT mirror sync output strobe port
PB_SG_ADC_PORT SG ADC data input port
PB_SG_ADC_BLOCK_SIZE size of SG ADC data block for this SG CPU
PB_SG_ADC_CAL_GAIN SG ADC calibration gain vector
PB_SG_ADC_CAL_OFFSET SG ADC offset gain vector
PB_SG_ADC_SERVO_GAIN SG servo loop gain
PB_SG_PASS_THROUGH mirror actuator flags controlling SGloop
PB_SG_ADC_REORDER_TABLE vector indicating SG ADC channel order
PB_SG_INITIAL_DEMAND mirror demand received from WFS ring
PB_SG_DAC_REORDER_TABLE table for reordering LoveTrain actuator values
PB_SG_WAVEFORM test actuator waveform
PB_SG_CAPTURE SG rapid sample diagnostic mode control
PB_SG_SNAPSHOT SG synchronised sample diagnostic mode control
PB_SG_ACCUM_ZERO_HOLD SG open/closed loop (normally use PASS_THROUGH)
PB_SG_DIAGNOSTIC
PB_CENTROID_WEIGHT X and Y pixel weights for centroiding
PB_SG_TABLE_OFFSET identify block of SG ADC data
PB_MATRIX Reconstructor matrix
PB_MATRIX1 Reconstructor section
PB_MATRIX2 Reconstructor section
PB_MATRIX3 Reconstructor section
PB_MATRIX4 Reconstructor section
PB_TT_FLAT Zero level for global tip-tilt
PB_TT_GAIN Gain matrix for global tip-tilt
PB_SG_ADC_SNAPSHOT_DECIMATE frame-wise decimation for SG ADC snapshot (all

channels) diagnostics
PB_SG_ADC_CAPTURE_DECIMATE buffer-wise decimation for SG waveform (single

continuously-sampled channel) diagnostics
PB_SG_DAC_SNAPSHOT_DECIMATE frame-wise decimation for SG DAC snapshot (all

channels) diagnstics
PB_XYZ_TO_ABC Geometry matrix for segment XYZ algorithm
PB_I_AM_A_DUMMY Set into dummy interrupt mode
PB_PIXEL_TIMEOUT Timeout for waiting for pixels (in clock ticks)
PB_FLUX_MEMORY Decay constant for flux low-pass filter - zero is no

memory, unity is no learning
PB_SG_SYNCHRONISE set synchronisation to WFS ring demands
PB_SG_FEEDFORWARD send new demand deltas direct to the mirror
PB_SEGMENT_TILT_LIMIT Limit of tilt during closed-loop operation
PB_BACKGROUND_WEIGHT Pixel weights for background estimation
PB_QUICK_PISTONS Compute pistons immediately after the tilts
PB_CENTROID_BIAS Bias for x, y and flux sums
PB_LONG_WFS_OFFSET Full-frame WFS offsets for use with NAOMI
PB_LONG_CENTROID_BIAS Full-frame WFS biases for use with NAOMI
PB_SDSU_CURRENT_CAM Sets current UNSYNCHED loop controlling camera - for

use with NAOMI
PB_ACCEPT_FRAMES Sets WFS CPU to accept SDSU frames
PB_ROUTE_CENTROIDS Sets WFS CPU to route SDSU centroids to mirror
PB_ROUTE_PIXEL_DIAGS Sets WFS CPU to route SDSU pixel diagnostics
PB_ROUTE_CENTROID_DIAGS Sets WFS CPU to route SDSU (direct) centroid

diagnostics
PB_LONG_CENTROID_BIAS_4x4 4x4 WFS bias for use with NAOMI
PB_LONG_CENTROID_BIAS_2x2 2x2 WFS bias for use with NAOMI
PB_CENTROID_WEIGHT_4x4 4x4 X and Y and flux pixel weights for centroiding
PB_BACKGROUND_WEIGHT_4x4 4x4 Pixel weights for background estimation
PB_CENTROID_WEIGHT_2x2 2x2 X and Y and flux pixel weights for centroiding

PB_BACKGROUND_WEIGHT_2x2 2x2 Pixel weights for background estimation
PB_SDSU_STATUS WFS interface status (Get only)
PB_HEADER_TIMEOUT Timeout for waiting for SDSU header (in clock ticks)
PB_BACKGROUND_FLUX_MEMORY Flux memory specific to background calc
PB_SURROGATE_WFS_APP Set a WFS mode to simulate from full frame data
PB_TT_ONLY_GAIN Gain for use in tip-tilt only (app 10/doublet) mode
PB_TT_ONLY_LIMIT Limit for use in tip-tilt only (app 10/doublet) mode
PB_SELECT_APP10 Assume SDSU App 10 is in use rather than App 8

9.13 Algorithm methods
The Create function of each algorithm performs certain activities by convention
when it is invoked. It allocates space for a parameter block structure which will
contain all the parameter data (and some of the operational data) that the algorithm
will use. Where rapid write-access to data is required for particular parameters or
operational buffers, it will only allocate space for a pointer in the parameters structure
itself and will instead allocate the actual memory in on-chip RAM. This is a limited
resource in the C40 architecture but provides faster access than off-chip RAM. The
Create function can ascertain whether or not it is the first invocation for this type of
algorithm. If it is the first then it will initialise the parameter block with default
values. If it is not the first invocation then it will copy the values from the last
invocation into the newly allocated structure. In this way, the SetParameters
function need modify only the selected parameters of an existing configuration and
does not have to upload a full set of data each time a change is required.

The SetParameters function identifies which parameter block section is actually
being manipulated using a switch statement. Normally a number of additional
arguments are then decoded from the GP body. The precise number and nature of
these arguments depends on the Parameter Block section which is being manipulated.
Floating point arguments may be unpacked in-situ from the GP message body
following this example code fragment:

 floatArg = (float *) arg;
 afrieee(floatArg, SG_UNPACKED_DEMAND_BUF_SIZE);

The GetParameters function also uses switch statement to identify which
ParameterBlock Section is being addressed. It then formats a buffer body to deliver
the requested information. Again the number and nature of the elements in the body
depends on the ParameterBlock section in question.
Floating point arguments may be packed for GP transmission as follows:

 floatArg = (float *) buffer->body;
 for (i = 0; i < SG_UNPACKED_DEMAND_BUF_SIZE; i++) {
 floatArg[i] = parameters->ADCcalGain[i];
 }
 atoieee(floatArg, SG_UNPACKED_DEMAND_BUF_SIZE);

9.14 Misc support libraries
There are a number of other support libraries and macro collections which support the
writing of C40 programmes. Import examples are the Exc exception handling system
and the AIO asynchronous I/O system which manipulates the on-chip DMA engines.

9.15 WFS Programme structure
Two algorithms are involved in WFS ring processing: AlgNaomiInterleave,
which deals with SDSU WFS frame reception, and runs on all but one of the WFS
ring CPUs and AlgMartini, which takes the centroid data produced by
AlgNaomiInterleave and derives drive signals for segmented mirror and fast
steering mirror.

9.15.1 AlgNaomiInterleave

AlgNaomiInterleave.c contains the ISR itself, its associated methods such as
Create, SetParameters and GetParameters, and numerous helper functions
invoked from the ISR. Some of these helper functions are tagged for inline
compilation for speed of execution. The file begins with the including of the various
required include files for utility c40 and real-time support libraries (in
Electra/RealTime/libsrc), definitions of working constants, and the
declaration of the parameter block structure and AlgorithmMethods.

The ISR function of AlgNaomiInterleave has several possible modes of
operation. The most fundamental condition determining which mode to execute is
whether or not the processor is attached to a wavefront sensor readout, i.e., whether it
is a “WFS CPU”. If not, then its role in the current implementation is simply to pass
on data: it is a “slacker” representing spare processing capacity. (The distributed
reconstructor under development as AlgParallelSISO is designed to exploit this
capacity.) The processor determines whether it is attached to a WFS output port using
the WFS.in structure which is set up before the RT system is started using ordinary
GP commands rather than transactions. The reason for this is simply that the WFS
interrupts are driven by the reception of WFS frames and the configuration of the
WFS system must precede the use of the transaction system, which depends on
interrupts.

The attachment of a WFS channel to a CPU does not necessarily mean that it will
always be desirable for that CPU to process frames. Consider, for example, the use of
only one of the two NAOMI WFS CCDS when both are reading out in synched mode.
This is important in system alignment, when it can be desirable to switch rapidly
between both cameras. In this case it is necessary to switch off frame processing on
one of the CPUs even though a WFS is attached and data frames are arriving. This
switching is achieved using the parameter acceptFrames.

When a WFS CPU is receiving and processing frames there are a number of options
available for routing output data and diagnostics. Using the routeCentroids
parameter it is possible to control whether output centroid data are passed from this
CPU to the mirror control CPU (running AlgMartini) or not. Similarly
routePixelDiags and routCentroidDiags control whether or not the CPU
send diagnostics packets to the diagnostic CPU containing pixel and centroid data
respectively. Note that it is not usual to send centroid diagnostic data from a WFS
CPU. Rather it is the mirror CPU in the WFS ring which is normally responsible for
this. The routing of centroid Data to the mirror CPU and the routing of centroid
diagnostics are therefore coupled in normal operation. The facility to decouple them

using the data routing parameters enables a configuration where one WFS CCD is
responsible fore closing the DM control loop whilst the other is providing pixel and
centroid diagnostics for alignment. The purpose of this configuration is to allow the
WFS CCDs to be mutually aligned with the DM control loop closed.

There are two other special configurations available in AlgNaomiInterleave.
Firstly dummy mode allows a CPU to generate interrupts without WFS frames
actually arriving (or even the WFS being switched on or attached). This is
accomplished using a c40 timer to trigger interrupts instead of a WFS
communications port. Dummy mode is controlled by the parameter IamAdummy. The
second configuration is surrogation whereby the WFS actually provides frames in
NAOMI SDSU mode (‘application’) 1 but the CPU reformats the data to simulate
some other mode and then processes the data as if it were actually provided in that
format. The purpose of this configuration is to debug the processing of data for
various WFS modes.

With one exception the processing of the data from the various modes (‘applications’)
of the SDSU WFS is dynamically determined, that is to say that the WFS mode of
each individual WFS data frame is determined from self-describing header data and
the processing algorithm is adjusted accordingly. The exception is mode 10 which
shares the same application-identifying bit pattern as mode 8 and so must currently be
enabled by the previous transmission of a parameter selectApp10. A future
development might be to determine this distinction using auxiliary header data
(row/column) instead.

The following sequence describes the detail of the operation of AlgNaomiInterleave
essentially in its conventional processing mode, whilst passing comments about the
other configurations. The detailed description of the helper functions is deferred to
later discussion.

1. the definition of local static and automatic variables
2. cache configuration (generic):

CACHE_ON();
CACHE_DEFROST();

3. Setup timer and frame numbering (generic):
 /* Synchronise watches on first frame */
 if (ISRglobals.iFrame == 0) RunWallClock();

 /* New frame number */
 parameters->wfsFrame = ISRglobals.iFrame++;
 LOG(0);
 if (!ExcOK(ISRglobals.status)) Panic();

 /* Record start of frame time */
 start = C40ticksStart();

 /* keep track of inter-frame interval */
 parameters->frameInterval = start - lastStart;
 lastStart = start;

4. Setup heap variables (generic)
 /* Set up heap variables */
 parameters = ISRglobals.currentAlgorithm->parameters;
 centroid = parameters->centroid;

5. Start the DMA for the SDSU WFS header data. First allocate a pointer to the
DMA engine control registers:
 wfsData = WFS.in.AIO;
On the basis of receive_frames parameter start the actual header read:
 AIOread(wfsData, parameters->naomiHeader, NAOMI_HEADER_SIZE - 1);

6. Now that the time-critical DMA processing has been initiated, complete the
generic ISR startup:
 /* Unblock comports so that messages and wakeups can occur */
 GPunblock(ISRglobals.status);

 /* Start timer for timeouts etc */
 RunTimer(ISRtimer, 100);

 /* Remove wakeup (cowcatcher) word from comport */
 if (CowCatcherRemove()) Panic();

7. Agree the BarrierSync plan
8. If required, start the WFS frame processing. Begin by initialising the frame

processing variables if we are on the first iteration then examine the first
Header word to see is if it is a start-of-frame word (0x8000). It need not be as
it could have been absorbed at the end of the previous frame depending on
SDSU timing.

9. Check that the header DMA is complete. If not, check that we have not arrived
at the end of the timeout interval. Once we have the whole header begin
decoding it. We first extract the naomiOpMode and naomiCameraID
header fields. We then switch to format specific code based on the application
subfield (this is known as the SDSU application or mode, eg.,
mode/application 1 is full-frame readout):
switch(naomiOpMode & NAOMI_APPLICATION_MASK) {

10. Each case statement of the switch statement deals with a particular frame
readout format and sets the naomiApplication variable accordingly.
Bases on this another larger DMA of the actual pixel data is initiated:
AIOread(wfsData, parameters->pixel, numPixelsDMA);

11. At this point we decide if we are doing WFS surrogation, a debugging mode
(not used much, if at all) where a full frame of real CCD data is actually read,
then reformatted by the receiving C40 to look like one of the other windowed
(and perhaps binned) modes. Let us assume we are not using this mode.

12. Based on the naomiApplication variable we enter another switch case
statement where a number of pixel processing control variables are set up.
These determine how many pixels there are per WFS subaperture box, what its
geometry is, how many pixels there are per quadrant line, how many guard
pixels there are between boxes and how many subapertures there are per
quadrant. Everything is processed on a quadrant basis even though SDSU data
is delivered in an interleaved format (you get one pixel from each quadrant in
turn). We also set up pointers to the pixel weighting matrices used in deriving
the centroids and background.
Note that there is special background processing used for applications 8, 9,
and 10. The first two are 4x4 subaperture modes, the latter is a tip-tilt only
mode with only a single aperture. These formats have special background
monitoring pixels in the corner of each quadrant and these require special
processing. All other modes call the helper function
DeriveNaomiBackground for each CCD quadrant. This function takes

as arguments the pixel geometry and background weight variables as well as a
quadrant ID and, of course, the pixel data buffer pointer, and an output
variable such as &background1.

13. We next begin the processing of the WFS centroids. This is done for each row
of subapertures in each quadrant. We therefore enter a for loop which
indexes each row of subapertures in turn:
for (iSubApY = 0; iSubApY < numSubapY; iSubApY++)
Remember that the rows for each quadrant count from the outside of the chip
inwards as this is the quadrant read order. Note the dependency on the
skipTable as to whether a particular row of centroids is processed or not.
This table, together with the copyTable, is used for processing SDSU
modes (‘applications’) 8 and 9. These modes operate with larger than normal
WFS lenslets which cover ~4 segments. The required grouping together of
segments is achieved by copying the centroid values to the adjacent segments
within each group. This copying is controlled by the two tables, the indices of
which can either centroid row or column numbers within each quadrant
(because of the row-column symmetry in each quadrant). A non-zero entry in
the skipTable means do not do any processing for this row/column of
centroids at all and leave the pixel buffer unchanged. Apart from the case of
the first row/column, which corresponds to disabled segments in NAOMI,
such processing will not be required because data will already have been
copied into the current buffers by an entry in the copyTable for the previous
row/column.
The processing of each row consists of the following operations:
a) wait for the DMA of the row to complete. Note that this DMA transfer
actually contains a row of subapertures from each quadrant as the quadrant
pixels are read out in an interleaved format.
b) call the helper function DeriveNaomiCentroidRow four times to
process a row of pixels from each quadrant. Many of the arguments to this
helper correspond to those used with the background calculating functions.
There are more in this case, however, because, we need to pass in the offset
and bias control vectors and the centroid XY weight tables. We also pass in
the skipTable and CopyTable so they can be applied to the individual
centroids within a row.
c) perform centroid row copy operations as required by the copyTable.
d) perform a BarrierSync to transmit the newly calculated centroids to the
other CPUs of the WFS ring. Each of the 5 LoveTrains will contain a row of X
and Y centroid coordinates (WFS spot locations) for all four quadrants.
e) increment the current pixel processing pointer unless we skipped the
current row of centroids because of an entry in skipTable.

14. A DMA is scheduled to absorb any trailing pixels that may be in the hardware
input buffer following a bad/incomplete WFS data frame. This should allow
the reading of the next frame to be properly resynchronised.

15. If the CPU is not doing WFS processing then a series of ‘slacker’ BarrierSyncs
are performed after a short delay.

16. The StopMessage is transmitted around the ring. This marks the end of the
real-time communications phases of the ISR. The remaining processing within
the ISR is concerned with the interpretation of the StopMessage, re-

initialisation of subsequent ISR processing, and the scheduling of the
transmission of diagnostics.

17. A particular CPU is designated as the WFS control CPU via the previously-
configured WFS.out structure. This CPU requests the next frame of data
form all CCD interfaces using the following output statement:
WFS.out.comport->outData = 0x02;

18. If diagnostic pixel data frames are to be sent then we must determine the type.
This can be either the older ELECTRA-compatible full-frame data, which was
sent on a per-quadrant basis and actually re-assembled into frames in the
diagnostic CPU, or the newer NAOMI type which includes a self-describing
header. In the case of surrogation we can alternate between raw full-frame and
surrogated data.

19. If we are sending the old pixel data format then we extract the quadrant data
and rotate it if it originates from the ‘master’ CCD (the ‘master’ and ‘slave’
CCDs are rotated with respect to each other to allow on-chip row and column
binning). We achieve this using the helper function
ExtractNaomiQuadrant for the ‘slave’ CCD data and
ExtractNaomiQuadrantTrans for the ‘master’. Old-style pixel data is
transmitted with individual quadrants being sent on each of a series of
subsequent ISR invocations. There is therefore a minimum sensible
decimation value for pixel data diagnostics. Diagnostic decimation values
within ISRs refer to the number of real data values which must be processed
for each corresponding diagnostic value transmitted to the diagnostic CPU.
This decimation value is set up as a parameter.

20. If the new type of pixel diagnostic data are required then the helper function
SendNaomiPixelData is invoked, or, in the case of mode 10 (tipl-tilt only
correction) SendNaomiTTpixelData.

21. Centroid data may then be optionally transmitted. As described in the
introduction to this section, this is rather an unusual situation. Generally the
centroid diagnostics come from the mirror CPU running AlgMartini.

22. In the case of dummy mode operation the interrupting timer is re-initialiased.
23. If we are receiving frames then the DMA to remove extra pixels is stopped.

Note the rather unusual fact that this will include the Start of Frame Word for
the next transmission, which is sent rather early.

24. If we are not a receiving (i.e. pixel processing) CPU but are nevertheless
attached to a WFS we complete our flushing operation by waiting to see that
the flow if pixels seems to have completed.

25. If no exceptions were raised we return from the ISR, otherwise we raise an
exception and disable future interrupts (i.e., we ‘panic’).

9.15.1.1 AlgMartini
The Algorithm AlgMartini runs on only one CPU and that is in the WFS ring.
This is known as the mirrorCPU although in fact it interfaces to the SG ring and not
directly to the mirror. Its ISR is responsible for receiving centroid LoveTrains from
the WFS CPUs. It maintains servo loops controlling the mirror segment tip-tilts and
conducts a reconstruction of the mirror pistons using a matrix. The XYZ (tip-tilt-
piston) segment commands are converted to ABC (triaxial actuator) format and then
added to a ‘flat’ buffer containing the base actuator commands and transmitted to the

SG ring. Various helper functions are invoked to accomplish these procedures, and
the description of these is postponed to later.

AlgMartini is contained in the file AlgMartini.c, which also contains
declarations, the ISR itself, the helper functions, and the other algorithm methods.
This is the same situation as for other algorithms.

The following sequence summarises the operation of the ISR of AlgMartini:

1. After the usual initialisations, which follow the same form as
AlgNaomiInterleave stages 1-7 we derive the piston and global tip-tilt
values from the centroids processed in the previous frame. The logic is that
these computations can be efficiently interleaved with the WFS pixel readout
latency for the current frame and are therefore conducted before the first
centroid BarrierSync for the current frame. The computed pistons for the
previous frame are then transmitted along with the piston values for the
current frame. This may sometimes involve an undesirable delay, however,
and the parameter quickPistons can be use to enable immediate
processing of piston values.

2. We next perform the 5 barrier syncs in order to get all the centroid data from
the WFS CPUs We note that there is currently no interleaved processing in
this phase and this represents a possible avenue for future expansion along
with the implementation of the distributed AlgParallelSISO.

3. We next examine the received centroid buffer to see if the WFS processors
have flagged the frame as ‘bad’ and if the frame originated from the ‘master’
or ‘slave’ CCDs. The two cameras readout in different formats and this is
accounted for by switching a pointer between two different tables according to
a cenID enumerator embedded in the centroid message. cenID can also
indicate a tip-tilt only SDSU ‘application’ 10 frame.

4. On the first iteration we initialise various servo variables and set the output
mirror DAC buffer to the current flat value.

5. If the cenID indicate a tip-tilt only frame then special processing is carried
out for this mode only. This includes setting an overall tip-tilt limit.

6. In full AO mode the segment tip-tilt servo variables are updated using new
centroid values and the gain parameter table. The global tip-tilt variable is
added to the tip-tilt slots of the mirror output DAC buffer.

7. The mirror output DAC buffer is translated from its XYZ format using the
helper function XYZtoMirrorBuffer and transmitted to the SG ring using
the helper function WriteDACs. Note the use of the parameter lockDAC
that is passed to WriteDACs to determine if the loops are actually to be
closed.

8. If the quickPistons parameter is set then the new piston values are
computed immediately and the full DAC data re-transmitted to the SG ring.

9. Following the StopMessage, centroid and DAC diagnostics are transmitted
to the diagnostic CPU with a rate determined by a single common decimate
parameter.

10. As with other algorithms the ISR returns if no exception has been raised or
otherwise performs panic processing.

10. SG Programme Structure
The Strain Gauge (SG) ring runs a single compiled c40 programme on all 8 CPUs
within the ring: SGBSP2.x40. This programme therefore contains all the algorithms
required for operation on the various CPUs: AlgSGstarter, AlgSGtimer,
AlgSGmirror and AlgSGadc. The source code for each algorithm is contained in
a .c file of the same name and the same organisational convention as
AlgNaomiInterleave on the WFS ring is followed: each file contains a
parameter block definition, an ISR, and the code for its associated methods.
Linking all the algorithms into a single monolith is inefficient in terms of space
because each CPU runs only one algorithm. A possible future extension is to produce
separate programs for each CPU function as in the case of the WFS ring. Note
however that AlgSGstarter is required in the initialisation phase and also that a
further future rebalancing of the SG processing load may well involve increasing
commonality of the algorithms running on different CPUs.

The basic function of the SG ring is to accept the demand output from the WFS ring
and compare it repeatedly to sample data from the Strain Gauge ADCs. On the basis
of this comparison the final output demand to the mirror control electronics is
adjusted using a servo algorithm such that the demand and ADC values become
identical. For this purpose the ADC values are subjected to a calibrated transformation
to nominal mirror DAC units. Mirror DAC values are represented by 13-bit unsigned
integers and the raw Strain Gauge ADC values are 16-bit unsigned integers.

10.1.1.1 AlgSGstarter
The algorithm AlgSGstarter is a minimal ISR with essentially placeholder
methods. It executes no BarrierSyncs apart from the Stop Message. Its purpose is to
allow the main algorithms to be configured using parameter block transactions. The
main algorithms can therefore swap in with a full set of parameters at the first frame.
It is actually a little more complicated than this because the main algorithms then
perform one ‘frame’ with the ADCs being triggered but no data actually being read.
This is to deal with an artefact of the ADC initialisation whereby data are not
produced after the first trigger.

10.1.1.2 AlgSGtimer
This simple algorithm acts as a ‘slacker’ during data processing when it simply copies
the LoveTrains containing the demand and output data. Its main purpose is to
schedule the timer interrupt which will cause the next ISR invocation. Once invoked
the timer algorithm automatically wakes up its neighbour by transmitting the
cowcatcher in its ISR wrapper (as do all algorithms). Shortly after invocation the ISR
sends a trigger pulse to the ADC trigger module. The re-scheduling of the interrupt
takes place after transmission of the Stop Message. The parameter
interruptInterval is used to control the timer interval.

10.1.1.3 AlgSGadc
This is the main algorithm of the SG ring and runs on the six CPUs that have ADC
data inputs. The structure of the ISR is as follows:

1. after the usual initialisation stages which follows the first few stage of
AlgNaomiInterleave, a number of servo parameters are initialised on the
first iteration.

2. If a parameter change is detected then the waveform parameters are checked
for changes. The waveform system is used inject programmed motion (for
example, a sine wave) onto a particular DAC channel (which could include the
FSM tip-tilt control channels).

3. The snapshot variables are then initialised if required. The purpose of the
snapshot system is to allow a full set of Strain Gauge ADC and output
values sampled at the same time to be retrieved by a workstation process. This
is achieved by setting a number of pointers to the snapshot buffers where
copies of these data are held. The pointers normally point to dummy buffers
where the copies are made anyway. This arrangement prevents the taking of a
snapshot from interfering with timings by introducing additional copying.

4. The next step is to read the Strain Gauge ADCs via a DMA transfer. The
number of channels to be transferred is controlled by ADCblockSize, which is
configured to the value 32 or 64 depending on the ADC port which the CPU is
attached.

5. The waveform playback system is linked to the developmental capture
diagnostic system. The capture system is the antithesis of the snapshot
system in that it captures a whole contiguous sequence of data values but only
from one channel per CPU at any one time. The purpose of the linkage to the
waveform system is to enable measurement with fine time resolution of the
response of an actuator to a stimulus. Such a method would be valuable to the
future implementation of Smith Compensation (feed forward) in the Strain
Gauge control loop.

6. The next stage is to agree on the BarrierSync plan.
7. If the CPU has the demand interface that conveys data from the WFS ring then

a DMA must be scheduled to read the data. This is done if the DMA is
completed or not started. There is also a test system for copying in simulation
data from the initialDemand parameter. The SG ring typically operates
much faster than the WFS ring so several executions of the ISR may be
expected to take place between each demand. There is an optional
synchronisation system that may be used to delay the further execution of the
ISR at the read point if this is the ISR execution in which a new demand is
expected to arrive (based on the previous interval between demands). The
purpose of the synchronisation arrangement is to allow each new WFS ring
demand to be processed with the minimum of delay. If there is or is not a new
demand present then this is signalled in a field of the demandBuffer
parameter prior to the data being transmitted around the WFS ring using a
BarrierSync:
/* signal new demand */
parameters->demandBuffer[SG_NEW_DEMAND_SIGNAL_CHANNEL] = 1;

8. If the current CPU does not have the demand interface then demand data are
simply copied during the BarrierSync.

9. We now set up pointers into various parameter tables, including the demand
block, the calibration slope (gain) and offset, the servo gain and the
passThrough table. These parameter tables are the same on all ADC CPUs
and include entries for all channels. Each CPU therefore needs an offset
parameter, tableOffset, within these tables in order to select the entries
for the channels which that CPU reads out.

10. The feed forward system is intended as the first stage of a developmental
Smith Compensation system. It is controlled by the feedforward parameter
and allows a new demand to be transmitted promptly without feedback to the
mirror. It performs this by setting the pointers to the unpacked demand buffers
to a special buffer for this purpose.

11. We now unpack the demand. It is transmitted from the WFS ring with two of
the 13-bit values packed into each 32-bit word.

12. If we are using the feedforward system with the waveform system then we
need to make sure that the current waveform value is copied into the feed
forward demand buffer at this point.

13. We now check that the ADC data have all been read and panic if there is too
long a delay in it arriving.

14. The data arrives from the ADCs in a fairly obscure order and each ADC CPU
has a reorderTable parameter to re-order the ADC data into DAC channel
order.

15. We start an ADC DMA to remove any additional unexpected data.
16. If the feedforward variable is switched on then we calculate how the new

demand differs from the last demand and adjust the output accordingly, whilst
checking the output value for exceeding saturation limits. The
feedforward variable indicates that the feedforward parameter is set
and a new demand has just arrived.

17. If we are not performing feedforward processing then we perform the servo
processing for the CPU’s data block in DAC channel order:
 for (iWord = 0; iWord < blockSize; iWord++) {

The servo processing is performed using floating point arithmetic. The ADC
value is converted into floating point format and then transformed into
nominal DAC units using calibration tables loaded using the ADCcalGain
and ADCcalOffset parameters. A simple servo algorithm is then executed
and the integer format output buffer updated.

18. It is at this point that we use the passThrough parameter table to override
servo processing on selected channels and to write the demand value directly
to the channel in the output buffer.

19. The output buffer contents are then checked against the saturation limits.
20. The contents of the output buffer are now packed into a buffer for transmission

around the ring by BarrierSync. The BarrierSync is then performed. This has
the effect of distributing all the output data for all ADC CPUs around the SG
ring. The mirrorCPU runs the algorithm AlgSGmirror which deals with
outputting data to the mirror electronics.

21. We now check for extra data in the ADC input buffer and panic if any is found
(as this represents a serious inconsistency).

22. It is at this point that the snapshot data are copied, whether or not they are
required (in order to ensure constant timing)

23. The StopMessage is then transferred and processed.
24. Snapshot and capture data are then scheduled for transmission to the

diagnostic CPU according to separate decimate parameters:
ADCsnapshotDecimate, ADCcaptureDecimate. It is also possible to
retrieve the snapshot data using the Parameter Block system.

25. The usual return or panic processing is then performed.

10.1.1.4 AlgSGmirror
The ISR function of the AlgSGmirror algorithm is responsible for transmitting
output data to the mirror electronics. The ISR processing follows the following
sequence:

1. The initial processing corresponds to the AlgNaomiInterleave and other
algorithms.

2. We initialise the finalDemand and output values to midrange (4096) on
the first iteration.

3. the sync pulse is sent on the mirror syncPort. The mirror finalDemand is
then written to the mirror electronics. Note that the output data from the last
iteration (or from initialisation) is written to the mirror electronics at the start
of the current ISR invocation.

4. We now agree on the BarrierSync plan using a call to BSPbegin.
5. The snapshot system of AlgSGadc extends to AlgSGmirror and in this

case the data which are copied are the contents of the finalDemand and
inputDemand buffers. Pointers to diagnostic or dummy buffers are adjusted
in the same way as for AlgSGadc.

6. The BarrierSyncs for the demand data, the snapshot copy (or dummy) and the
BarrierSync for the AlgSGadc output data are then performed.

7. The StopMessage is then transmitted.
8. We now unpack the demands from the output BarrierSync and unpack the data

using the DACreorderTable parameter to determine which order the data
blocks arrive from the ADC CPUs.

9. We now extract the tip-tilt data and check it for exceeding the saturation
limits.

10. The algorithm swap processing is then performed if required.
11. Snapshot diagnostic data are then transmitted according to the

DACsnapshotDecimate parameter. Note that snapshot data can also be
retrieved using the Parameter Block system.

12. Finally we perform the usual return or panic processing.

11. Building the principal c40 programs
GNU gmake is used to build the programs from the RealTime directory.

12. RT configurations
RealTime configurations are specified in the
RealTime/pythonModules/RTconfig.py python language source file.

GP transactions must be conducted with respect to named algorithms. As software is
developed, however, it is sometimes necessary to change the names of algorithms
allocated to a given processor and/or function. This is inevitable where two or more
former algorithms are being merged, to implement load-balancing, for example. It is
also desirable where functional development or differing supported hardware
configuration have led to genuinely different algorithms supporting differing sets of
parameter block transactions. At the same time, it is desirable, of course, to be able to
write workstation support libraries which will perform certain generic functions with
any running algorithm that supports that function and not to have a different library
for every set of algorithm names. Clearly however such a generic function then needs
to be able to identify the name of which algorithm is executing and whether it
supports the desired function, and if so, what procedure is required to invoke it. The
RTconfig system provides the capability to do this in a centralised fashion.

RTconfig introduces the idea of named software configurations. Tables in
RTconfig.py hold the names of the executable programme files that must be
loaded on each CPU in order to run a given configuration. It also holds the basic WFS
and DM configurations required to initialise each configuration. A named
configuration can be booted simply by passing its name to the c40Run utility which
then passes on the name to Run functions within WFSlib and SGlib. They in turn
use the configuration name to look up the required c40 programme filenames and
configuration tables using the services provided by RTconfig.

Software configurations therefore provide at once a means of being able to retrieve
older c40 programmes without having to alter and recompile libraries, and also a
means of loading different programmes to support different attached hardware.
RTconfig provides some additional support for this latter application by introducing a
hardware-software compatibility checking system. It works like this: at boot time the
Run function can check compatibility using the HWRTcompatible(conf)
function in RTconfig where conf is the name of the software configuration that is
being booted. RTconfig retrieves basic information on the attached hardware that is
recorded in the file
/software/Electra/save/RealTime/<host>.HWconfig where
<host> is replaced by the name of the c40 host computer, e.g., aocontrol1. It
uses this, together with internal compatibility tables, to assess whether or not the
proposed hardware/software combination is compatible.

After a software configuration has been successfully booted its name is recorded ad
may be retrieved. RTconfig then uses the concept of functional names for algorithms
to allow workstation processes to find out the real names of the algorithms that have
been booted for the recorded software configuration name. For example, the
functional name “generic” translates to “ALG_NAOMI_INTERLEAVE” under the
“Naomi” software configuration but to “ALG_GENERIC” under the “Electra”
configuration. A workstation support process can therefore deal transparently with
either algorithm using the “generic” functional name.

There are various ways in which the implementation of RTconfig might be enhanced:
(a) it currently stores the software configuration name in a file whereas it might be
better to have it stored in the EPM database; (b) it implements a form of “inheritance”

between configurations that might be better achieved using the object oriented
programming features of the python language.

13. Workstation support libraries

13.1 GP and DTM libraries
Python and C language version of the GP and DTM libraries are available for
workstation programmes to communicate with the c40 processors and each other.
The most common way of sending normal GP commands is the python GP.rpc
remote procedure call. This takes three arguments: the CPU (GP) number, the
command identifying string, and a list of parameters to the command. For transactions
from python procedures the GPtransaction.Transact call provides a
convenient mechanism. It takes a single argument which is a list of transaction
elements. Each element of this list is itself a list with the following fields: a (GP) CPU
number, the name of the algorithm (see RT configurations above), the name of the
parameter block section and a list of parameters. For retrieving parameter block
sections the python function GPtransaction.GetParam is useful. It has only
two arguments: the (GP) CPU number and the name of the parameter block section

13.1.1 Workstation C programs which talk to C40 programs

Here is a minimal C program to talk to the C40s.

#include <signal.h>
#include <stdlib.h>
#include "exception.h"
#include "packet.h"
#include "c40Commands.h"

int main(int argc, char **argv)
{
 GPmsgBuffer *buffer;
 ExcStatus *status = ExcStatusNew(1);

 GPsetup(status);
 buffer = GPallocBuffer(status);
 if (!ExcOK(status)) goto end;
 buffer->header.command = DO_PING;
 GPsendMsg(buffer, length, GP_PACK_ADDRESS(4,
PORT_BOOT), status);
 buffer = GPgetMsg(1000, status);
 if (!ExcOK(status)) goto end;

 if(buffer->header.command == DO_PING + GP_ACK
 && buffer->header.arg1 == 0)
 printf("Ping succeeded\n");
 else
 printf("Ping failed\n");

 GPshutdown();

 exit(0);

end:
 ExcToFile(status, stderr);
 GPshutdown();
 exit(1);
}

The program goes through the following steps:

 It initialises the status variable, which holds the exception state and error
messages. The argument of 1 to ExcStatusNew() causes the program to exit with
an error if the system is out of memory.
 It initialises the GP system with GPsetup()
 It allocates a buffer and puts a command into the header
 It sends the command to the appropriate CPU, in this case number 4.
 It then waits for a response with a 1000 msec timeout
 It checks to see if the response is correct. By convention, the C40 acknowledges
all commands by incrementing the initial command number by the value GP_ACK
(1000). The status is, by convention returned in header.arg1 and is zero on
success.

 It shuts down the GP system. This is important to free up ports on the c40Comms
server.
 It deals with any error messages by calling ExcToFile, which simply prints out
any messages from any of the called subroutines. The reason the error messages are
not printed in the subroutines is that the subroutines have no knowledge whether the
calling program is connected to a terminal, or whether the program sends the error
messages to a higher-level client.
 Also, higher-level subroutines in the call chain may decide that an exception is
not serious and call ExcClear() to clear the error condition without printing any
messages.

13.2 WFSlib
WFSlib.py provides general access to WFS ring functions to python workstation
processes working below the EPM level. At this level only the minimal interlocking
provided by the GP transaction system is operational and it is therefore appropriate for
engineering level functions. Command line access to many of the functions is
available via the WFS command which uses the WFStest.py library to access the
functions in WFSlib. These commands are dealt with in the c40 Users Guide.

13.3 SGLIB
SGlib.py provides general access to WFS ring functions to python workstation
processes working below the EPM level. At this level only the minimal interlocking
provided by the GP transaction system is operational and it is therefore appropriate for
engineering level functions. Command line access to many of the functions is

available via the SG command which uses the SGtest.py library to access the
functions in SGlib. These commands are dealt with in the c40 Users Guide.

13.4 DeformableMirror
DeformableMirror.py provides python access to deformable mirror
manipulation functions at the sub-EPM (non-interlocked) level.

13.5 ReconLIB
ReconLib.py provides python access to reconstructior matrix manipulation
functions at the sub-EPM (non-interlocked) level.

13.6 Diagnostics libraries
GPdiag.py provides python access to the c40 diagnostics system.

13.7 EPM aware libraries
Python c40 support libraries exist above the EPM level and provide potentially full-
interlocked access to the c40s. It is these libraries that are used by top level processes
such as TopGui and the superscripts.

14. Workstation programmes
In addition to TopGui there are a number of workstation programmes which access
the c40s. These include FisbaGui, which deals with initial mirror flattening using
the interferometer, WhiteLightProcedure, which deals with full flattening using
the WFS and IngridAlign which deals with the removal of non-common-path
errors in the optical path to the science camera.

15. Programmes and files
[insert SJG material]

16. Work in progress
Implementation of 4x4 subaperture modes
Implementation of synched WFS modes
Improved load-balancing on the SG c40s
Investigation of optimal read/write timing on the SG c40s
[Many other lower priorities]

17. Obsolete and little-used software
WFSAlign Non-EPM C programme (GUI) for WFS alignment and visualisation
MirrorMimic Non-EPM C programme (GUI) for DM control
RTengGui python non-EPM Real-time control GUI
DataDiag Non-EPM C diagnostic launcher
[Many other systems to catalogue]

