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1. Scope 
 
This document describes how to programme the real-time control system of NAOMI, 
how the existing real-time programmes are structured and how they can be modified. 
 
A separate document “NAOMI Hardware Reference Manual” provides a description 
of the real-time control electronics rack.  
 
A separate document “The GP Messaging Library” describes the general purpose 
asynchronous messaging system used to configure and monitor the real-time system. 
 
A separate document “Real Time Control System User’s Guide” provides a 
description of the use of the low-level engineering level command line access 
methods, including setting up and executing software configurations as well as the 
manipulation and monitoring of a running system. 
 
A separate document “Naomi Engineering and Control Program: TopGui” provides 
a description of higher-level control, monitoring and sequencing of real-time 
processes. 
 

2. Acknowledgements 
NAOMI’s real-time software is derived from Durham University’s Electra software 
and many of its files and nomenclature use the word Electra. Most of the 
underlying design of the software and much of the programming is by David Buscher. 
Other design features were evolved in discussion with Andy Vick. Craige Bevil, 
David Buscher, Nigel Dipper, Peter Doel, Szilveszter Juhos, Patrick Morris, Richard 
Myers and Andy Vick evolved the workstation client-side software. (The staff of the 
UKATC produced the Mechanism and WFS control software but this software has its 
own documentation and this Guide does not describe it further.) 
 
Parts of this Guide borrow freely from David Buscher’s documentation. 

3. Overview 
NAOMI stands for Nasmyth Adaptive Optics for Multi-Purpose Instrumentation. It is 
the Adaptive Optics (AO) system on the William Herschel Telescope (WHT). 
The purpose of this document is to enable maintenance and development of the 
NAOMI real-time control system. An understanding of the purposes and the basic 
construction and operation of NAOMI is assumed. An Introduction to Astronomical 
Adaptive Optics is available in the book of that name by John. W. Hardy (OUP). 
Introductory information on NAOMI’s overall design requirements may be found on 
http://aig-www.dur.ac.uk/fix/projects/projects_index.html. The accompanying 
Technical Description is useful but describes the design rather than the final system. 
An updated general description of the as-built NAOMI system is in preparation by 
A.J.Longmore (UK ATC at ROE) and R.M.Myers (Durham) at the time of writing 
this document. 



This Guide includes a brief history of the real-time system software, sufficient only to 
understand the nature of the collected code. It describes the Revision Control system 
used, how to set up as a developer and gain access to the source code, and where the 
key files are located in the software directory tree. 
 
Subsequent sections describe the hardware architecture of the real-time control system 
(briefly) and the corresponding software architecture. The structure of the principal 
programmes is then explained. The method of building new programmes and 
generating new real-time configurations is then described, followed by brief 
descriptions of the nature of the connections to workstation client processes. 
The final sections document the software files in detail, and briefly introduce some 
ways in which the software might develop. 
 

4. Glossary 
AO Adaptive Optics partial removal of the effects of 

atmospheric turbulence on image quality 
BSP Bulk Synchronisation 

Parallelism 
Real-time programming methodology used 
in NAOMI (University of Oxford) 

C40/C44 Texas Instruments DSP DSP optimised for interprocessor 
communications 

CCD Charged Coupled Device  light sensitive detector 
DM Deformable Mirror wavefront phase corrector 
DSP Digital Signal Processor processor optimised for signal processing 
Electra Durham University AO 

system, software and DM 
See History section below 

EPM Electra process monitor Process variable database portion of the 
NAOMI sequencer 

FSM Fast Steering Mirror wavefront tip-tilt corrector 
GHRIL Ground-based High 

Resolution Imaging 
Laboratory 

Nasmyth platform of the WHT 

GP General Purpose message 
protocol 

Asynchronous messaging system used 
to/from and between C40s 

INGRID ING infrared camera Can be used as a science camera for 
NAOMI 

ISR Interrupt Service Routine Code executed on processor interrupt 
LoveTrain Synchronisation packet Synchronous messaging system used 

between C40s in the WFS and DM rings 
during ISR execution. 

OASIS Optical Spectrograph Integral field spectrograph to be used with 
NAOMI. 

Python High-level language Scripting language for NAOMI 
Ring 
Leader 

C40 brokering transaction 
IDs 

C40 used to coordinate parameter block 
transactions within a c40 ring 

Sequencer Process launcher/monitor Processes used by NAOMI supervisory 
software 

WFS Wavefront Sensor Optical system for wavefront phase 
distortion measurement 

 



5. Typographic Conventions 
Code is indicated by this type format. 
 
Future expansion notes in the main text are indicated in this type format. 

6. History  
NAOMI’s real-time software is derived from Durham University’s Electra software 
and many of its files and nomenclature use the word Electra.  
 
The Electra AO system’s ThermoTrex 228-degree of freedom mirror, with its internal 
figure sensing system, was adopted for the NAOMI system in 1996. This followed a 
PPARC review recommendation and a decision by the NAOMI consortium (then 
ING, Durham, RGO, ROE). A Memorandum of Understanding between ING and the 
University of Durham describes the transfer and reciprocal arrangements.  
 
The Electra mirror requires unique control system features because of its internal 
feedback capability. The design of Electra’s real-time control software predated the 
inception of NAOMI and is essentially a superset of NAOMI’s requirements in terms 
of the flexibility of both the underlying architecture and the visualisation system. On 
the other hand, it interfaces to different WFS and FSM hardware and does not cover 
NAOMI’s operational requirements. Rather than write wholly new software on this 
scale, the Electra software was adopted as a whole and new interfaces and a unified 
engineering GUI (TopGui) were added within the Electra software structure.  New 
documentation requirements were added. This document is part of that process. 
 
The NAOMI mechanism and WFS control software is new and was written at UK 
ATC. It does not need to be within the Electra software structure and, indeed, is not.  
 
The higher-level coordination software (the Sequencer and TopGui) necessarily forms 
part of the Electra structure because of its need to communicate intensively with the 
real-time control system (e.g. for WFS image display). 
 
The adoption of the Electra software package as a whole has resulted in the 
availability of many little-used library routines and applications. Several of these 
applications (WFSAlign, MirrorMimic, DataDiag) were of great use during NAOMI’s 
commissioning phase but have now been superseded by TopGui. In all these cases it 
is not proposed to provide extensive documentation of these facilities and it is 
anticipated that they will be removed from the supported release in due course. 
 
The Electra software system supports development in two languages: C and Python 
(with Numeric extensions). Python provides both a scripting facility and a rapid 
development high-level language that is also efficient in execution. 

7. Accessing and Developing Real-Time Source Code 
This section is freely adapted from David Buscher’s Quick Guide to Electra Software 
Development. It describes the method for developing Electra workstation and c40 
code in general. It also describes the location of the principal source code for the 
Real-Time control system parts of the Electra. The details of how to build, maintain, 
modify and enhance this particular code are deferred to subsequent sections. 



7.1 The Electra Development Process 
 
Electra uses the BCS  baseline control system to allow multiple developers to work on 
one body of code. Not only source code but also documentation is all stored in one 
central directory tree, called a baseline. Software developers maintain their own 
private copies of this baseline, called staging areas and the BCS system takes care of 
the synchronisation of the private copies and the baseline. For the Electra developer, 
there are three copies of the source trees to be aware of, which are rooted in  
 
/software/Electra_src_tree   
$STAGING (usually $HOME/Electra) and  
/software/Electra 
 
The first of these is the baseline, which contains the ‘master’ copies of the source 
files. No object files or executables are ever built in this tree, and manipulation of this 
tree is mostly indirect via BCS commands.  
 
The second tree, $STAGING, is a private staging area for a given user. It can have 
any name but we have given it the name $HOME/Electra for concreteness here. 
Normally its subdirectories contain pointers (symlinks) to read-only files in the 
corresponding subdirectories of /software/Electra_src_tree. When these 
files are staged real writable copies replace the symlinks. The user can then build 
modified versions of executables in their staging areas without affecting installed 
executables and other users. The RCS revision control files within each directory are 
common to all users, however, and locks are used to prevent two users staging the 
same file at the same time. 
 
The third (partial) tree is a public staging area. It is like the private staging area, but is 
used for sharing built versions of the code, e.g. libraries etc.  
 
The normal development process is to develop and test code in the private staging 
area, and once it has been tested to install the built versions in  
 
/software/Electra  
 
and the source code in  
 
/software/Electra_src_tree.  
 
The /software/Electra/bin directory contains executables, the 
/software/Electra/lib directory contains object libraries and configuration 
files for the built code. Likewise the /software/Electra/include directory 
contains common include files which are shared between packages. 
  
The files in /software/Electra/{bin,lib,include} are the 
stable versions of these files, while those under the developers' private trees are 
developmental versions. Compiler search paths for include files and library files may 
search the user’s private directories first, and then the relevant 
/software/Electra directory. In this way, a developer first picks up the 



versions of the code s/he is currently developing in preference to the stable version. 
Clearly though, once development of a package has been completed, the private 
directories should be cleaned out. This allows the latest version to be picked up from 
/software/Electra, which is helpful if someone else later updates the code. 
Similar comments apply to the order of bin directories in the shell PATH variable.  
 
There are several scripts to aid the development process. These scripts are installed in 
the /software/Electra/bin directory, and the originals are in 
/software/Electra_src_tree/tools (and can themselves be accessed 
from, and staged into, $STAGING/tools). The functions of the two most 
commonly used scripts are as follows:  
 
bcs_mkdirs Sets up the directory tree for a developer 
bcs_publish Checks in source files which have been checked out, and updates 

the baseline copy of the files. Used to “publish” any updated 
versions of the source code in a given tree/subtree. 

 
The /software/Electra_src_tree/config directory contains files which 
are included by makefiles to configure the make process.  These files can be accessed 
from $STAGING/config. 
 
The /software/Electra_src_tree/scripts directory contains startup 
scripts for setting up the development process and also for starting daemons which are 
used at runtime. These files can be accessed from $STAGING/scripts. 
 
Historical note: the /software/Electra_src_tree/docs directory tree 
contains some early documentation about the Electra system. It is mostly in the form 
of LaTeX source files. A makefile in these directories converts these files to HTML 
and installs them in an HTML tree.  
 
All the rest of the subdirectories of /software/Electra_src_tree, and the 
corresponding directories of $STAGING/ are C and Python source code trees. These 
trees contain by convention subdirectories libsrc and appsrc to hold code for 
building libraries and executables respectively.  

7.2 Setting up a user account for Real-Time software development 
 
Here is a recipe for how to develop a new package. Skip the stages you have already 
done as necessary.  
 
1. Set up your login files. Edit your .cshrc file to include the lines 

 
setenv BASELINE /software/Electra_src_tree 
setenv STAGING $HOME/Electra 
source /software/Electra/bin/setup.csh 
 
Then log in again or re-source your .cshrc. You will obviously have to adjust 
this process if you do not use csh or tcsh.  
 



2. Create a private staging area using 
 
mkdir $STAGING 
 
Type bcs_mkdirs. This command should be used any time someone else has 
created new directories in the baseline.  
 

3. Make a new subdirectory if a totally new package is being made. Type  
 
cd $STAGING 
mkdirhier myPackage/appsrc 
cd myPackage/appsrc 
register_file Makefile 
cp ../../c40Comms/appsrc/Makefile . 
 
This will create the directory and make a mirror copy in the baseline. The example 
shows stealing a makefile from another directory as the starting point. This should 
be edited to suit the package being built.  
 

4. Register any other new files with the BCS system e.g.  
 
register_file mysrc.c mysrc.h  
 
Edit files in this area, and compile and test them. 
 

5. Once the files at least compile, the source files can be checked into the RCS 
system for version control  
 
bcs ci -l mysrc.c mysrc.h 
 

6. When the files compile and have been tested, install the built files in the (public) 
baseline directory and put the latest versions of the source files into the baseline.  
 
gmake install 
bcs_publish . 
 

7. There is a (little-used) process to make a release: 
 
cd ~/Electra 
bcs_tag_tree myPackage 
 
This will tag all the RCS files in the myPackage tree with a tag of myPackage1. 
The next time you do this the files will be tagged with myPackage2 etc. 

 

7.3 C40 programs 
The c40 DSP processors are described further below. For now it suffices to note that 
they are the main processors for actual real-time operations. 
 



By convention, c40 executables are denoted by the .x40 suffix and the object files 
are denoted by the .o40 suffix. This allows two versions of a given program, one 
running on c40s and one on workstations, to be built in the same directory.  
 
In a directory where c40 programs are to be built, the makefile, like all Electra 
makefiles, should include the line  
 
include $(STAGING)/config/Electra.mk 
 
A target build line might look something like  
 
c40Echo.x40 : c40Echo.o40 
        $(C40_CC) $(C40_LDFLAGS) -o $@ $^ \ 
        -L$$STAGING/lib -L/software/Electra/lib \ 
        -lGPmsg.lib -lUtil.lib 
 
The c40_cc program is a front-end to the TI C40 compiler that makes it appear 
much more like a standard Unix compiler.  
 
The library files shown in the make recipe provide GP messaging and utility functions 
(currently only the exeception-handling facilities). The c40_cc compiler front end 
automatically includes the C run-time system.  

7.4 Real-Time Program Directories 
After setting up a user account for NAOMI (ELECTRA) RealTime software the 
STAGING environment variable will be defined (generally as 
/home/user/Electra). The setup procedure should also have produced a 
subdirectory (amongst others) called: 
 
${STAGING}/RealTime/ - base directory for real-time source code 
 
This directory in turn has the following subdirectories: 
 
appsrc/ - real-time workstation client applications (low level engineering level) 
pythonModules/ - workstation python client support libraries 
libsrc/ - c40 libraries 
WFS/ - c40 WFS ring code 
StrainGauge/ - c40 Strain Gauge ring code 

7.4.1 RealTime/WFS: key files 
The following file in the RealTime/WFS directory are the ones which normally need 
to be edited to alter real-time WFS processing behaviour or add new control 
parameters. 
AlgNaomiInterleave.c Contains the WFS centroid estimation algorithm 
AlgMartini.c Contains the WFS reconstructor and tip-tilt-piston 

calibration 
NaomiGenericBSP.c   Hosts AlgNaomiInterleave. This is the main function 

of NaomiGenericBSP.x40, which loads onto all 
the C44s in the WFS ring apart from the mirror CPU 



(GP number 4). 
NaomiMirrorBSP.c Hosts AlgMartini. This is the main function of 

NaomiMirrorBSP.x40, that loads onto the mirror 
CPU (GP number 4) of the WFS ring. 

Makefile makefile (uses ../Makefile) 
 

7.4.2 RealTime/StrainGauge: key files 
AlgSGadc.c Strain Gauge reading, calibration and servo algorithm 
AlgSGmirror.c Mirror output algorithm 
AlgSGtimer.c Strain Gauge ring timer algorithm 
SGBSP2.c Hosts all the above algorithms. This is the main 

function of SGBSP2.x40 that loads onto all the 
C44s in the strain gauge ring. 

Makefile makefile (uses ../Makefile) 
 

7.4.3 SharedInclude 
The ${STAGING}/SharedInclude directory contains ‘master’ python files 
which are used to generate C and python include files. These ensure that workstation 
and C40 programmes have the same correspondence between C enum types (and 
python strings) and command-identifying numbers in GP communication packets. 
 
ParameterBlocks.py - is used to identify new parameter block transactions 
Makefile – gmake include will regenerate the include files and install them 

8. Processor Architecture 

8.1 Summary of required functions 
The required NAOMI real-time processing functions are: 

8.1.1 WFS data processing 
? ? Receive Wavefront Sensor (WFS) pixel data from the NAOMI WFS 

controllers. The controllers are of SDSU type and have the “Steward” port 
option, which allows direct access to parallel digital data output (i.e., without 
the data being transmitted along the VME bus). There are two CCDs in the 
WFS, which may be synchronised or operated independently. Note that the 
real-time system can readout from either CCD or from both if they are 
synchronised. It cannot be run if the CCDs are both running unsynchronised 
(and indeed if they are both running unsynchronised and the real-time system 
has data reception enabled for both, it will fail).  
The CCDs in the WFS are EEV CCD39 chips and each has frame transfer 
buffers connected to four separate readout ports. The SDSU controllers 
interleave pixels from the quadrants of each CCD. The data from each 
quadrant therefore become available concurrently, starting at each corner and 
progressing by rows towards the centre. 
For further details of the SDSU controllers and the NAOMI readout modes see   



NAOMI WFS CCD CAMERA CONTROL (V3 or higher) by D. Ives (ATC) 
and NAOMI ICD 101 or higher by X. Gao (ATC). 

? ? Determine the current readout mode of the CCD from the header data 
preceding each frame. Adjust the size of the expected data transfer and the 
parameters of the signal-processing algorithm (see below) accordingly. 
Different modes support different numbers of subapertures and have different 
on-chip binning and skipping. The mode also determines if the two CCDs are 
synchronised. 

? ? Process the WFS pixel data to produce centroid estimates of the WFS spot 
positions, and therefore, estimates of the local wavefront slopes. This involves 
removing a background level and, optionally, a sky gradient, and dividing the 
pixels into “boxes” (e.g., a 4x4 pixel square for each subaperture).   

? ? Generally there is one WFS subaperture per deformable mirror segment but in 
some modes a subaperture covers several mirror segments. If this is the case 
then copy the centroid estimates as required. 

? ? Remove an optional offset from the WFS centroid estimates. This is to account 
for the shape of the “starting” figure on the DM.  

? ? Apply a servo algorithm to the current estimator in order to update the current 
mirror segment x,y slope demands. 

? ? Perform a matrix multiply on the vector of x,y slope demands. There is one x,y 
measurement per subaperture. The result of the matrix multiply is a vector of 
piston values: one per subaperture. 

? ? Convert the x,y,piston command for each mirror segments into the A,B,C 
equilaterally sectored actuator commands that are actually required to drive 
the mirror. The resulting command vector is the mirror input demand. 

8.1.2 DM data processing 
? ? When strain gauge feedback is operating, compare the actuator input demand 

to a calibrated digitised sample of the strain gauge voltages and adjust the final 
demand to the deformable mirror using a servo algorithm. This algorithm must 
sample and update substantially faster than the WFS servo algorithm. 

8.1.3 Latency 
? ? All the above WFS and strain gauge processing must be performed with 

timing uncertainties of no more than a few microseconds (i.e. it must have 
deterministic latency). There are also stringent upper limits on the magnitude 
of the processing latency. If it substantially exceeds 1 ms then performance 
will in general degrade. In practice, the sensible upper limit to the latency of 
the WFS processing depends on the current integration time of the WFS. If it 
is already 10 or more milliseconds then the relative effect of another 0.2 
milliseconds of processing latency may not be decisive to the level of 
performance obtained. Similar arguments may be applied to the time taken to 
read out in the WFS CCD modes where little skipping (windowing) and 
binning takes place. Reducing processing latency is always beneficial but the 
actual magnitude of the benefit needs to be evaluated for the likely operational 
conditions. A NAOMI model exists (by Richard Wilson, Durham) which may 
be used to estimate operational benefits of any planned change of this kind. 
For the present purpose of describing the existing implementation, it may be 
taken that some form of interleaving of the readout of the CCD and the 



estimation of the WFS centroids is highly desirable in most cases. That is to 
say that, so far as possible, WFS readout and WFS data processing, should be 
concurrent. 

8.1.4 Commands 
? ? All key run-time parameters of the above processing must be capable of being 

updated on-the-fly. This means that updates can take place with all the control 
loops closed and with all parameters changing synchronously. There must be 
no missed samples (of WFS or SG data) or delayed processing of samples. 

 

8.1.5 Status 
? ? The state of run-time parameters must be able to be retrieved at any time. 

 

8.1.6 Diagnostics 
? ? Diagnostic samples of input, intermediate and output data must be available 

from the real-time controls system in a streaming fashion without interfering 
with the real-time data flow. 

8.2 C40 processors 
The Texas Instruments TMS320C40 Digital Signal Processors (DSPs) was selected as 
the main processor for implementation of the real-time control system for NAOMI. It 
has the following features: 

? ? Optimised for digital filtering. A Multiply-Accumulate (MAC) and two data 
moves can be executed by a single instruction and performed in a single 
processor cycle. The MAC is also the key instruction for servo algorithms and 
for matrix multiplication, which are key operations for NAOMI. 

? ? Interprocessor communications ports. Each processor has six processor-to-
processor bi-directional links. The link hardware is 8-bit 20MBs-1 parallel but 
from the programme point of view the minimum data quantum is 32 bits. Each 
C40 has an 8x32bit FIFO buffer on input and output. Interprocessor 
communications therefore have 16-deep 32-bit FIFOs in each link.  

? ? Each communications port is connected to a separate on-chip Direct Memory 
Access (DMA) engine which may be programmed to move data between the 
communications port and memory without further programme intervention. 
With suitable hardware the communications ports can be used to transfer data 
to or from external systems as well as between c40s. 

? ? Separate instruction and data busses.  
? ? JTAG scan chain hardware for external debugging access to processor 

registers and hardware breakpoints. It is possible to set up synchronised 
hardware breakpoints on several processsors. 

Note that the TMS320C44 is actually used in the NAOMI control system. This 
differs from the c40 by having 4 instead of 6 communications ports. A full c40 is 
used for the diagnostics processor. 
 



8.3 Interconnections 
The figure below shows the connections of the c44 communications for NAOMI. 
Interprocessor connections and external connections are indicated, as are the assigned 
GP numbers for each processor. 
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8.4 Ring structures 
16 of the c40s have their communications ports interconnected so as to form two rings 
of eight processors each. One ring is used for the WFS algorithms and one ring for the 
Strain Gauge processing.  The figure below shows how the c40 rings connect to the 
external sensing, actuation and diagnostics systems. 

 
Together with the software architecture described below, the ring structures enable the 
real-time processing requirements to be fulfilled with fewer DSPs than with an 
equivalent farm architecture. The development overheads are also reduced.  
 

8.5 WFS ring 
The WFS ring contains 8 c44 processors (GP numbers 1 to 8). Two are connected via 
communications ports and interface casrds to the data output from the “Steward” 
parallel output ports of the SDSU controllers for the WFS CCDs. The interface cards, 
produced by Durham, buffer the incoming data and respond to synchronisation and 
control signals from  further communications part which carries command from the 
c40s. P. Clark describes the interface cards in the NAOMI Hardware Reference 
Manual. 
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The 8 processors of the WFS ring are hosted on a single VME card: a Blue Wave 
Systems (UK) DBV44 card. This card is a motherboard, which hosts 4 TIM processor 
daughtercards, each of which carries 2  C44s. The DB44 card routes communications 
ports to the VME P2 bus as well as to the panel front, and it is P2 ports which carry 
the WFS interfaces. Panel front connections are used for the communications ports 
that link the WFS ring to the strain gauge ring (one port) and to the diagnostic CPU. 
 
The DBV44 has Link  Interface Adapters (LIAs) which connect some of the 
communications ports to the VME bus, where they appear as memory mapped 
registers. The four LIAs are used to provide communications with the VME host 
processor (see below) and thence, via Ethernet to the outside network. 

8.6 Strain Gauge Ring 
The Strain Gauge (SG) processing ring is designed to be as similar possible in both 
hardware and software to the WFS ring (above). It too consists of 8 C44 processors 
(GP numbers 11 to 18) hosted on a DBV44 VME card. In this case the sensor data 
come from the strain gauge Analogue to Digital Convertors (ADCs). The ADCs are 
contained in 3 VME cards produced by Pentland, UK, which are specialised in that 
they have C40 communications port outputs. There are 256 16-bit ADC channels 
altogether and each of them is capable of sampling at 85kHz and delivering the data 
via a c40 communications port. The configuration of these ADC cards is done via the 
VME bus from the c40Comms process on the VME host processor (see below). They 
are configured to deliver the digitised data via 6 communications ports to 6 processors 
(the ADC CPUs) of the strain gauge ring: 2 ports carry 64 strain gauge channels each 
and 4 ports carry 32 strain gauge channels each. The readout order is a little 
complicated and downloadable tables are used by the c40s to reorder the data. The 
connection to the processors is organised so that the 2 64-sample channels could have 
half of their respective data transferred to unloaded  neighbour C44s in order to 
achieve a better load balance of 32 channels per processor (future upgrade). 
 
An output port from one of the C44s (the timer CPU) is connected to a Durham 
interface card, which produces a trigger signal for the ADCs. Therefore the SG ring 
must provide its own source of interrupts, as it is responsible for the conversion 
trigger to the ADCs. This is in distinction to the WFS ring where the SDSU 
controllers free-run and provide the interrupts. 
 
The output from the SG ring is carried by a panel front communications port to a 
Durham DAC interface card and thence to the Durham DAC rack. A synchronisation 
signal is carried to the same interface on a separate communications port. There are 
256 13-bit DAC channels of which 228 are used by the DM. Two DAC channels (30 
and 31) are used for the FSM and are connected to the Zeiss (Jena) driver rack. The 
DM analogue signals go to the Durham drive amplifier rack. 
 
Like the WFS ring, the SG ring uses its LIAs to communicate with the VME host 
processor. Likewise it has a panel front communications port connection with the 
diagnostic CPU. 

8.7 Diagnostic CPU 
The diagnostic CPU is a C40 (GP number 9) located on a Blue Wave Systems (UK) 
DBV46 VME card. The CPU is one of two fitted as standard to the DBV46. The other 



CPU (GP number 10) is spare capacity. The DBV46 can also host TIM cards carrying 
additional processors but none have been fitted.  
 
The DBV46 has dual-ported memory, which is read/write accessible both from the 
C40s and from the VME32 bus. It is this channel that is used for downloading 
diagnostics data to the VME host.  
 
Unfortunately the DBV46 has no LIA connections and therefore must be booted 
indirectly from one of the WFS ring CPUs via its front panel communications port 
connection. 

8.8 VME Host 
The current VME host is a Force VME card carrying a SPARC 5V processor. It runs 
the Sun Solaris operating system and can therefore mediate between the C40s and the 
external network. It has its own disk and is an autonomous computer. A console may 
be attached if required via an RS232 connection. Normal communication goes via a 
10BT Ethernet port. 
 
For mostly historical reasons this processor currently carries the C40 cross-
development software. The reason is that one of the C40 development tools, the DB40 
debugger, must run on this computer in order to access the JTAG scan chain via the 
VME bus. This debugger is only used very rarely now and there is no fundamental 
reason why this computer should continue to host the other C40 cross-development 
tools. 
 
The current Force card will probably be replaced with an updated one based on an 
UltraSPARC processor. Such a card will be fitted with a 100BT Ethernet port. 

8.9 Workstations 
The control and monitoring processes of the remainder of the NAOMI control system 
may be distributed anywhere on the Internet, at least in theory. Some of them have 
been ported to SGI and Linux hardware, for example. In practice they are run on the 
NAOMI workstation, navis, a dual processor UltraSPARC system. 

9. Software Architecture 

9.1 Summary of required functions 
The software architecture fulfils the overall requirements given in the hardware 
architecture section (above) and within the constraints imposed by the selected 
hardware (above). It is important to also bear in mind the history of the design 
(above), i.e., that the NAOMI software is derived from the Electra software and that 
the Electra requirements were in some respects a superset of those for NAOMI. Some 
software features are therefore not strictly traceable to NAOMI’s requirements. These 
features generally take the form of additional flexibility and diagnostic capabilities. 
An example of additional flexibility is the ability to perform synchronised switching 
of interrupt processing algorithms as well as just run-time parameters.  
 
One important example of an Electra-specific feature is a code design that allows the 
WFS data from a given CCD to be transmitted as separate quadrants to more than one 
CPU. This is indeed partially exploited by NAOMI in its support for more than one 



WFS CCD. Also some per-quadrant processing is really necessary because of the 
quadrant dependence of the bias and the (interleaved) read order. It would therefore 
be difficult to untangle in retrospect how much of the per-quadrant processing is 
really superfluous to NAOMI’s requirements. 
 
The software User Requirements Document for NAOMI as a whole lists various 
direct requirements for real-time processing and indirect ones for control, status 
display and visualisation. These are effectively covered by the requirements given in 
the above hardware architecture section and the Electra capabilities. Note, however, 
that some requirements, for example, 3D diagnostics, though met in general by 
Electra’s capabilities, have not yet been commissioned for NAOMI use due to time 
constraints and their low priority in practice. 
 
In developing a parallel real-time processing system, a very major issue is controlling 
the development time required to generate a stable structure and to subsequently 
maintain and enhance it. Following studies of parallel operating systems and an 
experimental evaluation of one proprietary language, it was decided to adopt selected 
aspects of the Bulk Synchronisation Parallelism (BSP) methodology developed by 
Oxford University, UK. The aims of this methodology are ease of development and 
stability. Its adoption has been successful. Consequently there is no proprietary code 
within the real-time software. The aspects of BSP not adopted have normally been 
omitted for obvious reasons: e.g., random process placement would not work with 
fixed interface connection nodes. 

9.2 Introduction 
The BSP methodology requires that all processes wait to communicate until a global 
synchronisation step. All processes wait for this step to complete regardless of 
whether they have anything to transmit or receive. The step is not complete until all 
interprocess communications have finished. The global progress of the parallel 
processing system is therefore divided into supersteps by these synchronisation 
barriers. The figure below illustrates the general idea. 
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The advantage of all this is that it makes parallel software development much easier in 
practice. Each process ‘knows’ that if it is in superstep n then every other process 
must be in superstep n too. It also ‘knows’ that the data available to every other 
process is precisely that which is dictated by its being in superstep n. The developer 
can safely program the message passing of any process at any stage knowing the 
states of all other receiving and transmitting processors. Furthermore, if an error were 
reported by process X whilst in superstep m and this were thought to be due to the 
activities of another process, then the developer can ascertain, simply by inspecting 
code, the program and data states of all other processes within the system at the time 
of the error to within the resolution of one superstep: they will all be at their 
respective superstep m. Without such a scheme, complex and time-dependent webs of 
interprocess dependency can develop. 
 
In practice, the BSP methodology is applied separately to the two rings of C44 
processors, and then, in fact, only to the software within their Interrupt Service 
Routines (ISRs). The use of ISRs for the time-critical processes is pretty well dictated 
by the requirement that diagnostic/visualisation/logging activity should have no effect 
on the timing or dataflow within the latency-critical processing. We do not have 
multi-ported memory on each CPU so there must be C44 involvement in 
diagnostic/visualisation/logging activity. If this activity is not to affect time-critical 
processing then it follows that it must be interrupted by signals indicating the arrival 
of new real-time data. In the case of the WFS ring, the signal is the arrival of a new 
frame of WFS data. In the case of the SG ring, the signal is the arrival of newly 
digitised strain gauge data from the Pentland ADCs. There is of course the issue of 
processor interrupt latency but the effects of that are effectively eliminated by the use 
of DMA transfers for the interrupting WFS and SGS data, combined with the 
“cowcatcher” system (below). 
 
The diagnostics/visualisation activity effectively forms a background activity and 
clearly needs to use an interruptible, and therefore asynchronous, communications 
system to exchange data with external workstation processes. For example a WFS 
processor sending pixel data to a workstation GUI for display must be interrupted 
mid-message by the arrival of new pixel data coming from the CCD controllers. The 
physical medium for this background communication is via the network of 
interconnecting communications ports. An asynchronous message-passing protocol is 
therefore required. This is called GP for General Purpose and is described in detail by 
David Buscher’s document. It is called “General Purpose” because it is also used for 
transmission of command and status information to/from the C40/C44 processors. 
Such a protocol is clearly well suited to retrieving status data and can also be used for 
sending commands to the C44s provided there is some means of synchronising the 
actual changes in real-time parameter states on different processes. This requirement 
is fulfilled by the transaction system, which is described below. 
 
GP message packets originating from a C40/C44 processor are forwarded from 
processor to processor according to a destination address embedded within the packet. 
Other internal data fields, as described below, further identify their contents. 
Diagnostic data packets arriving at the diagnostic C40 (GP number 9) are placed in a 
shared memory buffer, ready for transmission via the VME bus to the VME host. 



Other packets typically travel via LIAs to the VME host. Either way, the server 
process, c40Comms, running on the VME host, embeds the GP packets within 
appropriately addressed TCP/IP packets for onward transmission via the internet. The 
c40Comms process also performs a reverse procedure, extracting GP packets from 
TCP/IP wrapping and forwarding them via LIAs into the C40/C44 network. 
 
The ISR code cannot use the GP system directly for interprocessor communications. 
Firstly, this is because GP is not synchronous and would not meet the processing 
latency requirement. Secondly, in the context of an ISR the GP system will have been 
interrupted by the ISR code and such a protocol could hardly be made re-entrant 
without a significant loss of efficiency. A second, synchronous, interprocessor 
communications protocol, and one which embodies the Barrier Synchronisation idea, 
is therefore required for use by the ISRs. The unit of this protocol is called a 
LoveTrain? , primarily for memorability.  
 
LoveTrains use the ring of interconnections of the C44s to broadcast information 
between them. Each processor in the ring sends its own output information for 
broadcast (if any) to its downstream neighbour and then copies information from its 
upstream neighbour to downstream. The processor’s output information is therefore 
copied right around the ring to the processor immediately upstream, which does not 
copy it further (i.e., information does not return, redundantly, to its origin). The 
LoveTrain implements the BarrierSynch because communication is global and cannot 
finish until all processes have started communicating. The expected quantity of data to 
be sourced, copied and removed by each processor is coordinated near the beginning 
of each ISR. This is done by an initial, special BarrierSynch which uses the first 
LoveTrain after the cowcatcher to broadcast the anticipated number and size of 
LoveTrain contributions from each processor. The final BarrierSynch of each ISR is 
also special. It contains the StopMessage, which is used to decide if RealTime 
processing should cease at the current interrupt. The StopMessage also implements 
the transaction system, whereby real-time parameter changes, which have been 
scheduled on several processors, all become effective at the next ISR. 
 
The communication port links used by the ISRs to transmit LoveTrains can also be 
used by the GP system outside of the ISRs. This is achieved by insisting that the two 
protocols travel in different directions on the bi-directional links. This is possible 
because each link direction has its own FIFO buffer system. 

9.3 Summary of GP system 
The General Purpose Message system (GP) allows asynchronous communications 
between any 2 C40/C44s and between a C40/C44 and an external processor. This is 
achieved by a simple message passing and forwarding system within the C40 network 
and by wrapping the GP messages in TCP/IP packets (accessed using the DTM 
library) for transmission via the internet. 
 
David Buscher in “The GP Messaging Library” deals with the GP system in detail. 
Here we summarise a few key features. 
 
GP messages consist of fixed-length header and a variable length body. The header 
fields include a length and source and destination address fields. The body carries 



most of the actual data and can be up to 3300 32-bit words long. This is the C 
declaration for the header structure: 
 
typedef struct { 
  int32 length;   /* Length of the entire packet in words -1 */ 
  uint32 protocolID; /* Synchronisation word */ 
  uint32 destAddress; /* Destination machine  port address */ 
  int32 hopCount;   /* Incremented on every hop - used to trap 
                        messages which never reach  

their destination */ 
  int32 command;  /* Command/acknowledge verb */ 
  int32 sequenceID; /* Unique message tag for multiple  
                         messages of the same type */ 
  uint32 replyAddress; /* Reply_to machine + port address */ 
  int32 arg1  /* Optional command argument –  

pads to 8 words */ 
} GPmsgHdr; 
 
 
The replyAddress field is used so that a reply can be sent if appropriate. The 32-
bit address fields have the following format: 
 

 
For a C40/C44 address, the port number is always 0, whilst the CPU number is the GP 
number assigned to the CPU at boot time. The C40s/C44s in NAOMI are numbered 1 
to 18 with the c40Comms process on the VME host having the special number 0. 
 
For a workstation process address, the CPU number is always 0. So, as far as a 
C40/C44 routing such a packet is concerned, the correct thing to do is to forward the 
packet to the c40Comms process on the VME host. This is the correct behaviour. The 
port number is non-zero in this case and this identifes to c40Comms the final 
destination of the packet on the internet. The c40Comms process maintains a table 
translating port numbers to DTM ports. DTM ports are identified by strings, which 
include both an IP address and an IP port number or symbolic name. When a client 
workstation process opens its communications with c40Comms its first action is to 
request (via a GP command) that c40Comms make an association between the 
client’s DTM port for GP replies and a new GP port number. The client sends the 
DTM port name as an ‘argument’ to the GP command and receives the generated port 
number as a reply. It can then use this port number as a reply address in the header of 
subsequent GP commands directed to c40 CPUs. The GP commands from 
workstation clients are wrapped in DTM packets addressed to c40Comms, which 
then extracts the GP command and forwards it via an LIA to the C40 network. The 
reverse process happens to a a reply GP message from the C40s to a workstation 
client. In this case c40Comms wraps the GP message in a DTM packet addressed to 
the DTM port corresponding to the GP port number in the destination field of the GP 
packet. It is also possible for a workstation client to request a mapping from a port 
number to a DTM port attached to a “third party” workstation process. This is 
intended for directing diagnostic GP packets to a display or logging process. In 
practice, however, many processes request their own diagnostic packets. 

Bits 15:0 
CPU number 

Bits 31:16 
Port number 



9.4 Command formats 
GP command headers contain a command field, which, like the destination and reply 
addresses, is also divided into two sub-fields. In this case the fields are a command 
class and an actual command indentifier. The class field identifies to a standard C40 
program which GP callback function it should invoke in order to further identify and 
process all commands of that class. An example is found in the file  
 
${STAGING}/SharedInclude/c40RealTimeCommands.py 
 
This contains the python statements which define the python strings associated with a 
new class and its commands. The installation process uses these statements to 
generate a C include files which contains enum statements that make the same 
association. 

9.5 DTM 
The Data Transfer Mechanism (DTM), developed by the NCSA, is the system that is 
used for message passing. It is layered on the TCP socket libraries and provides a 
relatively simple message passing API for use between (potentially remote) processes. 
The DTM API allows the destination port to be named either via an IP address/port 
(which can be in symbolic or numeric form) or using a name which is not known to 
the TCP/IP dns system. Such names are translated using a Nameserver process, which 
also allows names to be registered (by association with IP address/ports). One 
Nameserver process can serve several machines. All the machines which share the 
Nameserver must “know” the IP/port address on which it can be contacted. 
 
DTM communication always begins with a freeform text header message followed by 
a number of binary data messages. The header generally serves to describe the format 
and contents of the data packets. Although the header is freeform in a sense, its 
contents must normally be parseable in order to achieve automatic data description. 
Several simple conventions and code for header interpretations are distributed with 
DTM can some of these are employed with NAOMI. GP messages are very 
straightforwardly copied into DTM data packets as described above. DTM is also 
used for communication between workstation applications and display tools and these 
re-use some of the DTM header conventions. New-style commands are sent over 
DTM as python embedded into the data packet with “meta data” in the header 
describing the reply and acknowledge addresses. The Sequencer processes use this 
system. The sequencer and associated EPM (Electra Process Monitor) are used to 
coordinate control of NAOMI systems at the high level (for example using TopGui). 

9.6 GP main loop 
The following C statements form a typical main C40 programme configured to use the 
GP system. 
  GPsetup(status); 
  GPaddCallback(RT_CLASS, &RTcallback, status); 
  GPaddCallback(MIRROR_CLASS, &MirrorCallback, status); 
  GPmainLoop(status); 
 
The first statement sets up the GP system whilst the next two associate call-back C 
functions with command classes. Finally the programme enters the GPmainLoop 



where it remains until the CPUs are reset. The RT_CLASS contains the special 
commands which configure ISRs, and the transaction system whereby Parameter 
Block data may be communicated between ISRs and the GP system. The status 
structure pointer is used to track errors. By convention each function will return 
immediately if an error status has been set. 
 

9.7 GP callbacks 
Basic C40 programs are normally set up as simple message-driven programs. The 
actions of the GPmainLoop consist of waiting for a message, decoding the header, 
performing whatever action the header specifies, and returning a reply or error 
message. The program then loops back and looks for another message.  
The convention is that all messages sent to port PORT_BOOT are handled by calling 
the BootServices function. This is essential for the messaging system to function 
properly.  
 
All other commands are handled in the appropriate callback. The callback contains a 
switch statement which decodes the command verb and performs the appropriate 
action. This processing frequently involves extracting additional argument data from 
the message buffer. By convention, all commands put the reply in the same message 
buffer used to receive the message, and indicate the length of the reply by adjusting 
the header appropriately. At the end of the switch statement, control is returned by the 
callback to GPmainloop and any reply in the message buffer is sent back to the 
workstation, with the header.arg1 value set to zero to indicate success, and the 
header.command value incremented by GP_ACK to indicate which command is 
being acknowledged.  
 
If an error is encountered, using the ExcRaise macro will store an error message in 
the status structure (defined in exception.h). At the end of the switch statement, if 
an exception has been raised, a reply with a non-zero header.arg1 value is sent to 
indicate an error. The reply contains the error message in its body, in case the 
receiving program wants to print it out. In addition, the error message is sent to the 
C40_STDERR port. If an error message printing process is listening on that port, it 
will print it for the user. (A fprintf(stderr,..) statement on the C40s will 
also cause a message to be printed by any such error-logging processes.) 
 

9.8 ISRs and cowcatchers 
Interrupt Service Routines (ISRs) perform all latency critical data processing and are 
the only context in which a Barrier Synchronisation can take place. They are therefore 
the only context in which the components of a LoveTrain can be transmitted, copied 
and received. ISRs are normally invoked by an external interrupt signal. In the case of 
the WFS ring this will be ultimately caused by the arrival of a new frame of WFS 
data. In the case of the SG ring the ultimate cause is a timer interrupt. However, even 
though these are the ultimate causes of ring-wide interrupts, most of the CPUs in the 
ring are actually interrupted by communications port traffic from the neighbour 
(upstream) CPU in the ring. This is because only the timer CPU is actually interrupted 
in the SG ring case and only the WFS frame reception CPU or CPUs are interrupted 
in the WFS ring case. The interrupted CPUs then begin to send data to their 



neighbours which then in turn begin to send data to their neighbours and so on. The 
CPUs are armed to interrupt on receipt of communications port activity so this has the 
desired effect of eventually putting all of the ring CPUs into their ISRs. However if 
we relied upon waiting for the first processed data output from the interrupted CPUs 
to accomplish this, we would have the unfortunate side effect that we would then have 
an additional wait whilst the interrupted CPU actually arrived in its ISR code. This 
delay, the interrupt latency, is in-part a hardware delay caused by the processor saving 
the interrupted code context on the stack, and partly a software delay caused by the 
execution of the ISRwrapper assembly language code which prepares for execution of 
a C function and ensures that certain global data may be accessed from the ISR. 
Incurring these delays in a system-critical fashion as each CPU in the ring were 
sequentially interrupted would be most undesirable. 
 
The deleterious effects of most of the interrupt latency are overcome by arranging for 
a high degree of concurrency. Each interrupted CPU, whatever the cause of the 
interrupt, immediately sends to its downstream neighbour a single word on their 
connecting communications port. This has the effect of interrupting the neighbour 
promptly so that it will almost certainly have completed its interrupt latency before 
useful data could be sent to it. Because these interrupting words precede the first 
LoveTrains carrying operational data they are dubbed “cowcatchers” for 
memorability. The interrupt latency of the WFS ring is concurrent with the arrival and 
decoding of the WFS header and the processing of the first row of centroid data. The 
interrupt latency of the SG ring is concurrent with the conversion time of the SG 
ADCs. The ADC conversion is initiated by the SG timer CPU immediately on its 
(timer) interrupt. 
 

9.9 ISR debug logging 
The LOG(val) macro records a programme file, programme line number, frame 
number, time, and an integer argument val in a circulating buffer. This may be 
retrieved at any time and is useful for tracing code execution and for obtaining time-
synchronised data samples simply. The command RT PrintDebugLog nCPU will 
print logging data from CPU (GP) number nCPU. Care must be taken when 
examining these logs as the circular buffer will typically contain output from several 
ISR interrupt frames and will have recycled and overlapped to a seemingly arbitrary 
point at the time of download and printing. A careful examination of the frame 
numbers and times for the lines in the log output will reveal which is the most recent 
log record. 

9.10 Panics 
When an error is detected within an ISR the standard action is to invoke the C macro 
Panic().  This causes the following actions: 

1. The C program jumps (!) to an exception processing label at the end of the ISR 
code. No further Real-Time processing therefore takes place. 

2. An exception is raised which records the following information in a status 
message: the time, frame number, super-step, program line, and program file 
at the which the panic occurs. 

3. Future ISRs are disabled for this CPU. 
Because of this last action then no other CPUs in the same ring can pass further 
BarrierSynchs, because no LoveTrain can pass the Panic’ed CPU. Ring-wide real-



time activity therefore halts at this point. Note, however, that the panicking CPU has 
not crashed. It can still perform GP processing in its foreground task, including 
displaying its Panic status message, normally in response to the WFS Status and 
SG Status commands for the respective C40 rings. 
 

9.11 Barrier Synchronisation 
Barrier Synchronisation is both the method by which the supersteps of ISRs within a 
CPU ring are synchronised and also the method by which they communicate. Each 
CPU which participates in a Barrier Synchronisation sources a certain amount of data 
to its downstream neighbour, copies a certain amount of data from its upstream 
neighbour to its downstream neighbour, and sinks a certain amount of data that has 
already been all the way around the ring and would, if it were copied further, be 
returning (inefficiently) to its originator. This ring-wide movement of data, 
collectively constitutes a LoveTrain.  
 
For efficient operation, careful checking that the expected quantity of data arrives and 
does not cause a timeout or overrun is not carried out for every LoveTrain. Instead the 
each CPU publishes a plan of its subsequent LoveTrain activity at the start of the ISR. 
The exchange of plans is carried out with careful checking. Each CPU then compares 
all received plans with its own intentions and if they are inconsistent, panics. 
 
A typical plan is defined by the following C statement: 
 
static BarrierSyncPlan myPlanWFS[] = { 
    {  5, NUM_SUBAP_X*2*NUM_CCD_PORT, NUM_SUBAP_X*2*NUM_CCD_PORT, 0 }, 
    {  1,             3,            3*NUM_RING_CPU, 0 }, 
    { -1, -1, -1, -1 } 
  }; 
 
Each line of the plan specifies a set of similar BarrierSyncs that the CPU intends to 
perform in turn. The first field specifies the number of similar BarrierSyncs and the 
next field specifies the number of 32-bit words which the CPU plans to source (i.e., to 
add to the LoveTrain) at each of these BarrierSyncs. The second field contains the 
total number of 32-bit words it anticipates there to be in each LoveTrain. The final 
field is always initially zero but is set during a successful exchange of plans. The final 
line of the plan simply signals that this is the end of the plan, but the penultimate line 
is more interesting. This always specifies the exchange of a StopMessage, which is 
always the last LoveTrain to be exchanged in each ISR. It establishes if real time 
activity is scheduled to stop on completion of the current frame, or if a change of real-
time parameters or algorithm has been scheduled ring-wide at the next interrupt. This 
last function implements a key part of the Transaction system (see below). 
 
The plan is exchanged using the C function 
 
    BSPbegin(myPlanWFS, ISRglobals.status); 
 
where the plan array forms the first argument. The BarrierSyncs themselves are 
carried out by the following function: 
 
 BarrierSync(iSuperStep,(int *)centroid,  



      NUM_SUBAP_X * 2 * NUM_CCD_PORT,  
      0); 
 
The first argument is the superstep counter (which is incremented by the invoking 
program after the BarrierSync), the second is a pointer to the LoveTrain buffer, the 
third is the number of words to source and the fourth is the number of words to copy. 
 
The StopMessage is exchanged and acted on by the following code fragment: 
 
  /* Transfer stop frame info around the ring - barrier synchronisation */ 
  if (StopMessage(iSuperStep))Panic(); 
  iSuperStep++; 
 
  /* Do algorithm shuffle */ 
  if (SwapAlgorithm())Panic(); 
  LOG(0); 
 
Note that some older ISR code uses a direct call to BarrierSync to deal with the 
StopMessage. 

9.12 Parameter Block transactions 
Parameter block transactions implement the synchronised changing of real-time 
parameters and even algorithms ring-wide. Essentially a set of changes can be queued 
up in advance on each CPU in a ring and then made active simultaneously on a 
particular interrupt. The queuing of changes is accomplished by the GP commands of 
the RT_CLASS and can be activated by either C or Python workstation programs but 
is most elegantly implemented in python, where a single python function call can 
carry out a very complex ring-wide transaction. 
 
In order to be available to the standard function RTCallback, which processes the 
RT_CLASS commands, each C40 program must include a code fragment along the 
following lines in its main() function: 
 
/* Table to hold the set of available algorithms. Used in RTcallback() 
 * to define the real-time algorithms available in this executable. 
 */ 
extern struct AlgorithmMethods SGstarterMethods; 
extern struct AlgorithmMethods SGmirrorMethods; 
extern struct AlgorithmMethods SGadcMethods; 
extern struct AlgorithmMethods SGtimerMethods; 
 
const struct AlgorithmMethods *algorithmMethods[] = { 
  &SGstarterMethods, 
  &SGmirrorMethods, 
  &SGadcMethods, 
  &SGtimerMethods, 
  NULL /* Required to mark the end of the table */ 
}; 
 
The standard array of pointers to AlgorithmMethods structures, 
algorithmMethods, establishes a global record of available algorithms and their 
associated parameter manipulation functions. This is available to RTcallback 
which is then able to invoke particular methods (functions) according to RT_CLASS 
command parameters. The methods themselves are defined externally to the main 
program and are in fact, most conveniently, defined in the same program files as the 



ISR algorithms themselves. Consider the following example from an algorithm C file 
(the names of these files conventionally begin with Alg): 
 
static void ISR(void);  /* The interrupt service routine */ 
static Algorithm *Create(const Algorithm *, ExcStatus *);  
                      /* Create/copy an algorithm instance */ 
static void Destroy(Algorithm *, ExcStatus *); 
                      /* Release resources used by an instance */ 
static void SetParameters(Algorithm *, int32, int32 *, int32, ExcStatus *); 
                      /* Set/alter the parameters of an instance */ 
static void GetParameters(const Algorithm *, int32, GPmsgBuffer *, 
     ExcStatus *); 
                      /* Return a instance parameter set in a binary format 
*/ 
static void PrintParameters(const Algorithm *, int32, ExcStatus *); 
                      /* Print parameter set values to stderr */ 
 
struct AlgorithmMethods SGadcMethods = { 
  ALG_SG_ADC,  
  "$Id: AlgSGadc.c,v 1.21 2000/05/24 10:11:59 rmm Exp $", 
  &ISR,  
  &Create, &Destroy, &SetParameters, 
  &GetParameters, &PrintParameters 
}; 
Note that the AlgorithmMethods structure definition includes the following: 

1. an algorithm ID. This is made available to both C40 and workstation programs 
(C and python) using the SharedInclude system. It is used by workstation 
programs to identify which algorithm is to be swapped in or to have its 
parameters manipulated or interrogated. 

2. The second is an RCS string which can be used to identify which algorithm 
versions are currently running. This is typically accomplished using the 
workstation command: 
RT GetAlgorithmVersion 

3. The remaining fields are pointers to functions. The first is a pointer to the ISR 
function itself, which is defined in the same file. 

4. The Create function (one per algorithm file) is used to set up a new 
algorithm, Destroy removes its resources. 

5. SetParameters is a function made available to RT_CLASS to manipulate 
the parameters of an algorithm whilst GetParameters is used to retrieve 
them. PrintParameters is a future extension which may be used to ‘print’ 
the parameters to an error-logging process. SetParameters does not 
directly manipulate the parameters of the currently active algorithm but rather 
manipulates a set of duplicated parameters waiting to be swapped into active 
use by the Transaction system. 

 
The functioning of the algorithm methods themselves is dealt with in the next section 
below. The principal commands of the RT_CLASS are summarised below: 
 
RT_INIT – initialises the real-time transaction system 
RT_STATUS – enquires about the status of the ISRs and transaction system, 
RT_START – starts interrupt processing 
RT_STOP – stops interrupt processing 
RT_BEGIN_TRANSACTION – obtains a transactionID from the ringleader 
RT_END_TRANSACTION – instructs the ringleader to release a transaction 



RT_BREAK_TRANSACTION – aborts and unlocks a transaction setup 
RT_SET_PARAMS – invokes SetParameters for a named algorithm ID 
RT_GET_PARAMS - invokes GetParameters for a named algorithm ID 
RT_PRINT_PARAMS - invokes PrintParameters for a named algorithm ID 
RT_GET_ALGORITHM_VERSION – Gets the Algorithm RCS ID 
 
Workstation programs may invoke these commands either directly with the GP rpc 
(remote procedure call) function which is available in both the C and Python versions 
of the workstation GP support libraries, or in the case of python workstation 
programs, they will probably chose to invoke them via the GPtransaction library. 
 
The actual mechanism of a transaction is as follows: 

1. The workstation requests a transactionID from the ringleader CPU of a 
particular ring. There is only one ringleader per C40 ring and the each CPU 
‘knows’ via a global variable whether or not it has been assigned as a 
ringleader. If there is already a transaction in progress on a ring, that is a 
transactionID has previously been allocated and never released, then the 
ringleader will refuse to allocate another. In this case the workstation 
programme or user may choose to break the transaction. In the case of the 
WFS ring the workstation user command WFS BreakTransaction will 
accomplish this. 

2. Assuming a transactionID was successfully obtained, the workstation process 
can then begin to setup the parameters of its chosen algorithm on an CPU. To 
do this it invokes RT_SET_PARAMS, specifying an algorithmID and a 
transactionID. It identifies exactly which parameter that is to be manipulated 
using a ParameterBlock Section ID. These Ids are available to both 
workstation (C and python) and C40 programmes through the 
SharedInclude system. 

3. Following the manipulation of ParameterBlocks on all CPUs where changes 
are required, the workstation process send the RT_END_TRANSACTION 
command to the ringleader. This unlocks the transaction and instructs the 
ringleader to send  the transactionID as part of its next ISR StopMessage 
LoveTrain. This instructs all the CPUs to swap in the modified parameter 
blocks (and potentially algorithms) at the next interrupt. 

 
The ParameterBlock section Ids identify a particular parameter for replacement or 
retrieval. Many are actually arrays of variables. The section IDs are defined in 
Electra/SharedInclude/ParameterBlocks.py and are summarised 
below. A PB_SG_ prefix indicates an SG ring CPU parameter block section. All 
others are WFS ring CPU parameter block sections. 
 
PB_FLAT unused 
PB_WFS_OFFSET RAL WFS offset 
PB_SEG_GAIN WFS segment TT gains (X,Y) 
PB_DECIMATE WFS centroid and pixel diagnostic decimation values 
PB_RECON_GAIN usused 
PB_LOCK_DAC open/close WFS loop 
PB_CCD_TEST WFS test mode 
PB_FRAME_DELAY WFS test mode rate 
PB_SG_TIMER_INTERVAL SG sample interval (in 66ns clocks) 



PB_SG_DEMAND_PORT identify demand communications port for SG ring 
PB_SG_TIMER_TRIGGER_PORT identify timer trigger communications port 
PB_SG_MIRROR_DATA_PORT mirror data output port 
PB_SG_MIRROR_SYNC_PORT mirror sync output strobe port 
PB_SG_ADC_PORT SG ADC data input port 
PB_SG_ADC_BLOCK_SIZE size of SG ADC data block for this SG CPU 
PB_SG_ADC_CAL_GAIN SG ADC calibration gain vector 
PB_SG_ADC_CAL_OFFSET SG ADC offset gain vector 
PB_SG_ADC_SERVO_GAIN SG servo loop gain 
PB_SG_PASS_THROUGH mirror actuator flags controlling SGloop 
PB_SG_ADC_REORDER_TABLE vector indicating SG ADC channel order 
PB_SG_INITIAL_DEMAND mirror demand received from WFS ring 
PB_SG_DAC_REORDER_TABLE table for reordering LoveTrain actuator values 
PB_SG_WAVEFORM test actuator waveform 
PB_SG_CAPTURE SG rapid sample diagnostic mode control 
PB_SG_SNAPSHOT SG synchronised sample diagnostic mode control 
PB_SG_ACCUM_ZERO_HOLD SG open/closed loop (normally use PASS_THROUGH) 
PB_SG_DIAGNOSTIC      
PB_CENTROID_WEIGHT X and Y pixel weights for centroiding 
PB_SG_TABLE_OFFSET identify block of SG ADC data 
PB_MATRIX Reconstructor matrix 
PB_MATRIX1 Reconstructor section 
PB_MATRIX2 Reconstructor section  
PB_MATRIX3 Reconstructor section 
PB_MATRIX4 Reconstructor section 
PB_TT_FLAT Zero level for global tip-tilt 
PB_TT_GAIN Gain matrix for global tip-tilt 
PB_SG_ADC_SNAPSHOT_DECIMATE frame-wise decimation for SG ADC snapshot (all 

channels) diagnostics 
PB_SG_ADC_CAPTURE_DECIMATE buffer-wise decimation for SG waveform (single 

continuously-sampled channel) diagnostics 
PB_SG_DAC_SNAPSHOT_DECIMATE frame-wise decimation for SG DAC snapshot (all 

channels) diagnstics 
PB_XYZ_TO_ABC Geometry matrix for segment XYZ algorithm 
PB_I_AM_A_DUMMY Set into dummy interrupt mode 
PB_PIXEL_TIMEOUT Timeout for waiting for pixels (in clock ticks) 
PB_FLUX_MEMORY Decay constant for flux low-pass filter - zero is no 

memory, unity is no learning 
PB_SG_SYNCHRONISE set synchronisation to WFS ring demands 
PB_SG_FEEDFORWARD send new demand deltas direct to the mirror  
PB_SEGMENT_TILT_LIMIT Limit of tilt during closed-loop operation 
PB_BACKGROUND_WEIGHT Pixel weights for background estimation 
PB_QUICK_PISTONS Compute pistons immediately after the tilts 
PB_CENTROID_BIAS Bias for x, y and flux sums 
PB_LONG_WFS_OFFSET Full-frame WFS offsets for use with NAOMI 
PB_LONG_CENTROID_BIAS Full-frame WFS biases for use with NAOMI 
PB_SDSU_CURRENT_CAM Sets current UNSYNCHED loop controlling camera - for 

use with NAOMI 
PB_ACCEPT_FRAMES Sets WFS CPU to accept SDSU frames 
PB_ROUTE_CENTROIDS Sets WFS CPU to route SDSU centroids to mirror 
PB_ROUTE_PIXEL_DIAGS Sets WFS CPU to route SDSU pixel diagnostics 
PB_ROUTE_CENTROID_DIAGS Sets WFS CPU to route SDSU (direct) centroid 

diagnostics 
PB_LONG_CENTROID_BIAS_4x4 4x4 WFS bias for use with NAOMI 
PB_LONG_CENTROID_BIAS_2x2 2x2 WFS bias for use with NAOMI 
PB_CENTROID_WEIGHT_4x4 4x4 X and Y and flux pixel weights for centroiding 
PB_BACKGROUND_WEIGHT_4x4 4x4 Pixel weights for background estimation 
PB_CENTROID_WEIGHT_2x2 2x2 X and Y and flux pixel weights for centroiding 



PB_BACKGROUND_WEIGHT_2x2 2x2 Pixel weights for background estimation 
PB_SDSU_STATUS WFS interface status (Get only) 
PB_HEADER_TIMEOUT Timeout for waiting for SDSU header (in clock ticks) 
PB_BACKGROUND_FLUX_MEMORY Flux memory specific to background calc 
PB_SURROGATE_WFS_APP Set a WFS mode to simulate from full frame data 
PB_TT_ONLY_GAIN Gain for use in tip-tilt only (app 10/doublet) mode 
PB_TT_ONLY_LIMIT Limit for use in tip-tilt only (app 10/doublet) mode 
PB_SELECT_APP10 Assume SDSU App 10 is in use rather than App 8 

9.13 Algorithm methods 
The Create function of each algorithm performs certain activities by convention 
when it is invoked. It allocates space for a parameter block structure which will 
contain all the parameter data (and some of the operational data) that the algorithm 
will use. Where rapid write-access to data is required for particular parameters or 
operational buffers, it will only allocate space for a pointer in the parameters structure 
itself and will instead allocate the actual memory in on-chip RAM. This is a limited 
resource in the C40 architecture but provides faster access than off-chip RAM. The 
Create function can ascertain whether or not it is the first invocation for this type of 
algorithm. If it is the first then it will initialise the parameter block with default 
values. If it is not the first invocation then it will copy the values from the last 
invocation into the newly allocated structure. In this way, the SetParameters 
function need modify only the selected parameters of an existing configuration and 
does not have to upload a full set of data each time a change is required. 
 
The SetParameters function identifies which parameter block section is actually 
being manipulated using a switch statement. Normally a number of additional 
arguments are then decoded from the GP body. The precise number and nature of 
these arguments depends on the Parameter Block section which is being manipulated. 
Floating point arguments may be unpacked in-situ from the GP message body 
following this example code fragment: 
 
   floatArg = (float *) arg; 
   afrieee(floatArg, SG_UNPACKED_DEMAND_BUF_SIZE); 
 
The GetParameters function also uses switch statement to identify which 
ParameterBlock Section is being addressed. It then formats a buffer body to deliver 
the requested information. Again the number and nature of the elements in the body 
depends on the ParameterBlock section in question. 
Floating point arguments may be packed for GP transmission as follows: 
 
    floatArg = (float *) buffer->body; 
    for (i = 0; i < SG_UNPACKED_DEMAND_BUF_SIZE; i++) { 
      floatArg[i] = parameters->ADCcalGain[i]; 
    }     
    atoieee(floatArg, SG_UNPACKED_DEMAND_BUF_SIZE); 
 

9.14 Misc support libraries 
There are a number of other support libraries and macro collections which support the 
writing of C40 programmes. Import examples are the Exc exception handling system 
and the AIO asynchronous I/O system which manipulates the on-chip DMA engines. 



9.15 WFS Programme structure 
Two algorithms are involved in WFS ring processing: AlgNaomiInterleave, 
which deals with SDSU WFS frame reception, and runs on all but one of the WFS 
ring CPUs and AlgMartini, which takes the centroid data produced by 
AlgNaomiInterleave and derives drive signals for segmented mirror and fast 
steering mirror. 
 

9.15.1 AlgNaomiInterleave 
 
AlgNaomiInterleave.c contains the ISR itself, its associated methods such as 
Create, SetParameters and GetParameters, and numerous helper functions 
invoked from the ISR. Some of these helper functions are tagged for inline 
compilation for speed of execution. The file begins with the including of the various 
required include files for utility c40 and real-time support libraries (in 
Electra/RealTime/libsrc), definitions of working constants, and the 
declaration of the parameter block structure and AlgorithmMethods.  
 
The ISR function of AlgNaomiInterleave has several possible modes of 
operation. The most fundamental condition determining which mode to execute is 
whether or not the processor is attached to a wavefront sensor readout, i.e., whether it 
is a “WFS CPU”. If not, then its role in the current implementation is simply to pass 
on data: it is a “slacker” representing spare processing capacity. (The distributed 
reconstructor under development as AlgParallelSISO is designed to exploit this 
capacity.) The processor determines whether it is attached to a WFS output port using 
the WFS.in structure which is set up before the RT system is started using ordinary 
GP commands rather than transactions. The reason for this is simply that the WFS 
interrupts are driven by the reception of WFS frames and the configuration of the 
WFS system must precede the use of the transaction system, which depends on 
interrupts. 
 
The attachment of a WFS channel to a CPU does not necessarily mean that it will 
always be desirable for that CPU to process frames. Consider, for example, the use of 
only one of the two NAOMI WFS CCDS when both are reading out in synched mode. 
This is important in system alignment, when it can be desirable to switch rapidly 
between both cameras. In this case it is necessary to switch off frame processing on 
one of the CPUs even though a WFS is attached and data frames are arriving. This 
switching is achieved using the parameter acceptFrames.  
 
When a WFS CPU is receiving and processing frames there are a number of options 
available for routing output data and diagnostics. Using the routeCentroids 
parameter it is possible to control whether output centroid data are passed from this 
CPU to the mirror control CPU (running AlgMartini) or not. Similarly 
routePixelDiags and routCentroidDiags control whether or not the CPU 
send diagnostics packets to the diagnostic CPU containing pixel and centroid data 
respectively. Note that it is not usual to send centroid diagnostic data from a WFS 
CPU. Rather it is the mirror CPU in the WFS ring which is normally responsible for 
this. The routing of centroid Data to the mirror CPU and the routing of centroid 
diagnostics are therefore coupled in normal operation. The facility to decouple them 



using the data routing parameters enables a configuration where one WFS CCD is 
responsible fore closing the DM control loop whilst the other is providing pixel and 
centroid diagnostics for alignment. The purpose of this configuration is to allow the 
WFS CCDs to be mutually aligned with the DM control loop closed. 
 
There are two other special configurations available in AlgNaomiInterleave. 
Firstly dummy mode allows a CPU to generate interrupts without WFS frames 
actually arriving (or even the WFS being switched on or attached). This is 
accomplished using a c40 timer to trigger interrupts instead of a WFS 
communications port. Dummy mode is controlled by the parameter IamAdummy. The 
second configuration is surrogation whereby the WFS actually provides frames in 
NAOMI SDSU mode (‘application’) 1 but the CPU reformats the data to simulate 
some other mode and then processes the data as if it were actually provided in that 
format. The purpose of this configuration is to debug the processing of data for 
various WFS modes. 
 
With one exception the processing of the data from the various modes (‘applications’) 
of the SDSU WFS is dynamically determined, that is to say that the WFS mode of 
each individual WFS data frame is determined from self-describing header data and 
the processing algorithm is adjusted accordingly. The exception is mode 10 which 
shares the same application-identifying bit pattern as mode 8 and so must currently be 
enabled by the previous transmission of a parameter selectApp10. A future 
development might be to determine this distinction using auxiliary header data 
(row/column) instead. 
 
The following sequence describes the detail of the operation of AlgNaomiInterleave 
essentially in its conventional processing mode, whilst passing comments about the 
other configurations. The detailed description of the helper functions is deferred to 
later discussion. 
 

1. the definition of local static and automatic variables 
2. cache configuration (generic): 

CACHE_ON(); 
CACHE_DEFROST(); 

3. Setup timer and frame numbering (generic): 
  /* Synchronise watches on first frame */ 
  if (ISRglobals.iFrame == 0) RunWallClock(); 
 
  /* New frame number */ 
  parameters->wfsFrame = ISRglobals.iFrame++; 
  LOG(0); 
  if (!ExcOK(ISRglobals.status)) Panic(); 
   
  /* Record start of frame time */ 
  start = C40ticksStart(); 
 
  /* keep track of inter-frame interval */ 
  parameters->frameInterval = start - lastStart; 
  lastStart = start; 

4. Setup heap variables (generic) 
  /* Set up heap variables */ 
  parameters = ISRglobals.currentAlgorithm->parameters; 
  centroid = parameters->centroid; 



5. Start the DMA for the SDSU WFS header data. First allocate a pointer to the 
DMA engine control registers: 
  wfsData = WFS.in.AIO; 
On the basis of receive_frames parameter start the actual header read: 
  AIOread(wfsData, parameters->naomiHeader, NAOMI_HEADER_SIZE - 1); 
 

6. Now that the time-critical DMA processing has been initiated, complete the 
generic ISR startup: 
  /* Unblock comports so that messages and wakeups can occur */ 
  GPunblock(ISRglobals.status); 
 
  /* Start timer for timeouts etc */ 
  RunTimer(ISRtimer, 100); 
 
  /* Remove wakeup (cowcatcher) word from comport */ 
  if (CowCatcherRemove()) Panic(); 

7. Agree the BarrierSync plan 
8. If required, start the WFS frame processing. Begin by initialising the frame 

processing variables if we are on the first iteration then examine the first 
Header word to see is if it is a start-of-frame word (0x8000). It need not be as 
it could have been absorbed at the end of the previous frame depending on 
SDSU timing. 

9. Check that the header DMA is complete. If not, check that we have not arrived 
at the end of the timeout interval. Once we have the whole header begin 
decoding it. We first extract the naomiOpMode and naomiCameraID 
header fields. We then switch to format specific code based on the application 
subfield (this is known as the SDSU application or mode, eg., 
mode/application 1 is full-frame readout): 
switch(naomiOpMode & NAOMI_APPLICATION_MASK) { 

10. Each case statement of the switch statement deals with a particular frame 
readout format and sets the naomiApplication variable accordingly. 
Bases on this another larger DMA of the actual pixel data is initiated: 
AIOread(wfsData, parameters->pixel, numPixelsDMA); 

11. At this point we decide if we are doing WFS surrogation, a debugging mode 
(not used much, if at all) where a full frame of real CCD data is actually read, 
then reformatted by the receiving C40 to look like one of the other windowed 
(and perhaps binned) modes. Let us assume we are not using this mode.  

12. Based on the naomiApplication variable we enter another switch case 
statement where a number of pixel processing control variables are set up. 
These determine how many pixels there are per WFS subaperture box, what its 
geometry is, how many pixels there are per quadrant line, how many guard 
pixels there are between boxes and how many subapertures there are per 
quadrant. Everything is processed on a quadrant basis even though SDSU data 
is delivered in an interleaved format (you get one pixel from each quadrant in 
turn). We also set up pointers to the pixel weighting matrices used in deriving 
the centroids and background.  
Note that there is special background processing used for applications 8, 9, 
and 10. The first two are 4x4 subaperture modes, the latter is a tip-tilt only 
mode with only a single aperture. These formats have special background 
monitoring pixels in the corner of each quadrant and these require special 
processing. All other modes call the helper function 
DeriveNaomiBackground for each CCD quadrant.  This function takes 



as arguments the pixel geometry and background weight variables as well as a 
quadrant ID and, of course, the pixel data buffer pointer, and an output 
variable such as &background1. 

13. We next begin the processing of the WFS centroids. This is done for each row 
of subapertures in each quadrant. We therefore enter a for loop which 
indexes each row of subapertures in turn: 
for (iSubApY = 0; iSubApY < numSubapY; iSubApY++) 
Remember that the rows for each quadrant count from the outside of the chip 
inwards as this is the quadrant read order. Note the dependency on the 
skipTable as to whether a particular row of centroids is processed or not. 
This table, together with the copyTable, is used for processing SDSU 
modes (‘applications’) 8 and 9. These modes operate with larger than normal 
WFS lenslets which cover ~4 segments. The required grouping together of 
segments is achieved by copying the centroid values to the adjacent segments 
within each group. This copying is controlled by the two tables, the indices of 
which can either centroid row or column numbers within each quadrant 
(because of the row-column symmetry in each quadrant).  A non-zero entry in 
the skipTable means do not do any processing for this row/column of 
centroids at all and leave the pixel buffer unchanged. Apart from the case of 
the first row/column, which corresponds to disabled segments in NAOMI, 
such processing will not be required because data will already have been 
copied into the current buffers by an entry in the copyTable for the previous 
row/column. 
The processing of each row consists of the following operations: 
a) wait for the DMA of the row to complete. Note that this DMA transfer 
actually contains a row of subapertures from each quadrant as the quadrant 
pixels are read out in an interleaved format. 
b) call the helper function DeriveNaomiCentroidRow four times to 
process a row of pixels from each quadrant. Many of the arguments to this 
helper correspond to those used with the background calculating functions. 
There are more in this case, however, because, we need to pass in the offset 
and bias control vectors and the centroid XY weight tables. We also pass in 
the skipTable and CopyTable so they can be applied to the individual 
centroids within a row. 
c) perform centroid row copy operations as required by the copyTable. 
d) perform a BarrierSync to transmit the newly calculated centroids to the 
other CPUs of the WFS ring. Each of the 5 LoveTrains will contain a row of X 
and Y centroid coordinates (WFS spot locations) for all four quadrants. 
e) increment the current pixel processing pointer unless we skipped the 
current row of centroids because of an entry in skipTable. 

14. A DMA is scheduled to absorb any trailing pixels that may be in the hardware 
input buffer following a bad/incomplete WFS data frame. This should allow 
the reading of the next frame to be properly resynchronised. 

15. If the CPU is not doing WFS processing then a series of ‘slacker’ BarrierSyncs 
are performed after a short delay. 

16. The StopMessage is transmitted around the ring. This marks the end of the 
real-time communications phases of the ISR. The remaining processing within 
the ISR is concerned with the interpretation of the StopMessage, re-



initialisation of subsequent ISR processing, and the scheduling of the 
transmission of diagnostics. 

17. A particular CPU is designated as the WFS control CPU via the previously-
configured WFS.out structure. This CPU requests the next frame of data 
form all CCD interfaces using the following output statement: 
WFS.out.comport->outData = 0x02; 

18. If diagnostic pixel data frames are to be sent then we must determine the type. 
This can be either the older ELECTRA-compatible full-frame data, which was 
sent on a per-quadrant basis and actually re-assembled into frames in the 
diagnostic CPU, or the newer NAOMI type which includes a self-describing 
header. In the case of surrogation we can alternate between raw full-frame and 
surrogated data. 

19. If we are sending the old pixel data format then we extract the quadrant data 
and rotate it if it originates from the ‘master’ CCD (the ‘master’ and ‘slave’ 
CCDs are rotated with respect to each other to allow on-chip row and column 
binning). We achieve this using the helper function 
ExtractNaomiQuadrant for the ‘slave’ CCD data and 
ExtractNaomiQuadrantTrans for the ‘master’. Old-style pixel data is 
transmitted with individual quadrants being sent on each of a series of  
subsequent ISR invocations. There is therefore a minimum sensible 
decimation value for pixel data diagnostics. Diagnostic decimation values 
within ISRs refer to the number of real data values which must be processed 
for each corresponding diagnostic value transmitted to the diagnostic CPU. 
This decimation value is set up as a parameter. 

20. If the new type of pixel diagnostic data are required then the helper function 
SendNaomiPixelData is invoked, or, in the case of mode 10 (tipl-tilt only 
correction) SendNaomiTTpixelData. 

21. Centroid data may then be optionally transmitted. As described in the 
introduction to this section, this is rather an unusual situation. Generally the 
centroid diagnostics come from the mirror CPU running AlgMartini. 

22. In the case of dummy mode operation the interrupting timer is re-initialiased. 
23. If we are receiving frames then the DMA to remove extra pixels is stopped. 

Note the rather unusual fact that this will include the Start of Frame Word for 
the next transmission, which is sent rather early. 

24. If we are not a receiving (i.e. pixel processing) CPU but are nevertheless 
attached to a WFS we complete our flushing operation by waiting to see that 
the flow if pixels seems to have completed. 

25. If no exceptions were raised we return from the ISR, otherwise we raise an 
exception and disable future interrupts (i.e., we ‘panic’). 

9.15.1.1 AlgMartini 
The Algorithm AlgMartini runs on only one CPU and that is in the WFS ring. 
This is known as the mirrorCPU although in fact it interfaces to the SG ring and not 
directly to the mirror. Its ISR is responsible for receiving centroid LoveTrains from 
the WFS CPUs. It maintains servo loops controlling the mirror segment tip-tilts and 
conducts a reconstruction of the mirror pistons using a matrix. The XYZ (tip-tilt-
piston) segment commands are converted to ABC (triaxial actuator) format and then 
added to a ‘flat’ buffer containing the base actuator commands and transmitted to the 



SG ring. Various helper functions are invoked to accomplish these procedures, and 
the description of these is postponed to later. 
 
AlgMartini is contained in the file AlgMartini.c, which also contains 
declarations, the ISR itself, the helper functions, and the other algorithm methods. 
This is the same situation as for other algorithms. 
 
The following sequence summarises the operation of the ISR of AlgMartini: 
 

1. After the usual initialisations, which follow the same form as 
AlgNaomiInterleave stages 1-7 we derive the piston and global tip-tilt 
values from the centroids processed in the previous frame. The logic is that 
these computations can be efficiently interleaved with the WFS pixel readout 
latency for the current frame and are therefore conducted before the first 
centroid BarrierSync for the current frame. The computed pistons for the 
previous frame are then transmitted along with the piston values for the 
current frame. This may sometimes involve an undesirable delay, however, 
and the parameter quickPistons can be use to enable immediate 
processing of piston values. 

2. We next perform the 5 barrier syncs in order to get all the centroid data from 
the WFS CPUs We note that there is currently no interleaved processing in 
this phase and this represents a possible avenue for future expansion along 
with the implementation of the distributed AlgParallelSISO. 

3. We next examine the received centroid buffer to see if the WFS processors 
have flagged the frame as ‘bad’ and if the frame originated from the ‘master’ 
or ‘slave’ CCDs. The two cameras readout in different formats and this is 
accounted for by switching a pointer between two different tables according to 
a cenID enumerator embedded in the centroid message. cenID can also 
indicate a tip-tilt only SDSU ‘application’ 10 frame. 

4. On the first iteration we initialise various servo variables and set the output 
mirror DAC buffer to the current flat value. 

5. If the cenID indicate a tip-tilt only frame then special processing is carried 
out for this mode only. This includes setting an overall tip-tilt limit. 

6. In full AO mode the segment tip-tilt servo variables are updated using new 
centroid values and the gain parameter table. The global tip-tilt variable is 
added to the tip-tilt slots of the mirror output DAC buffer. 

7. The mirror output DAC buffer is translated from its XYZ format using the 
helper function XYZtoMirrorBuffer and transmitted to the SG ring using 
the helper function WriteDACs. Note the use of the parameter lockDAC 
that is passed to WriteDACs to determine if the loops are actually to be 
closed. 

8. If the quickPistons parameter is set then the new piston values are 
computed immediately and the full DAC data re-transmitted to the SG ring. 

9. Following the StopMessage, centroid and DAC diagnostics are transmitted 
to the diagnostic CPU with a rate determined by a single common decimate 
parameter. 

10. As with other algorithms the ISR returns if no exception has been raised or 
otherwise performs panic processing. 

 



 
 
 
 

10. SG Programme Structure 
The Strain Gauge (SG) ring runs a single compiled c40 programme on all 8 CPUs 
within the ring: SGBSP2.x40. This programme therefore contains all the algorithms 
required for operation on the various CPUs: AlgSGstarter, AlgSGtimer, 
AlgSGmirror and AlgSGadc. The source code for each algorithm is contained in 
a .c file of the same name and the same organisational convention as 
AlgNaomiInterleave on the WFS ring is followed: each file contains a 
parameter block definition, an ISR, and the code for its associated methods. 
Linking all the algorithms into a single monolith is inefficient in terms of space 
because each CPU runs only one algorithm. A possible future extension is to produce 
separate programs for each CPU function as in the case of the WFS ring. Note 
however that AlgSGstarter is required in the initialisation phase and also that a 
further future rebalancing of the SG processing load may well involve increasing 
commonality of the algorithms running on different CPUs. 
 
The basic function of the SG ring is to accept the demand output from the WFS ring 
and compare it repeatedly to sample data from the Strain Gauge ADCs. On the basis 
of this comparison the final output demand to the mirror control electronics is 
adjusted using a servo algorithm such that the demand and ADC values become 
identical. For this purpose the ADC values are subjected to a calibrated transformation 
to nominal mirror DAC units. Mirror DAC values are represented by 13-bit unsigned 
integers and the raw Strain Gauge ADC values are 16-bit unsigned integers. 
 

10.1.1.1 AlgSGstarter 
The algorithm AlgSGstarter is a minimal ISR with essentially placeholder 
methods. It executes no BarrierSyncs apart from the Stop Message. Its purpose is to 
allow the main algorithms to be configured using parameter block transactions. The 
main algorithms can therefore swap in with a full set of parameters at the first frame. 
It is actually a little more complicated than this because the main algorithms then 
perform one ‘frame’ with the ADCs being triggered but no data actually being read. 
This is to deal with an artefact of the ADC initialisation whereby data are not 
produced after the first trigger. 
 

10.1.1.2 AlgSGtimer 
This simple algorithm acts as a ‘slacker’ during data processing when it simply copies 
the LoveTrains containing the demand and output data. Its main purpose is to 
schedule the timer interrupt which will cause the next ISR invocation. Once invoked 
the timer algorithm automatically wakes up its neighbour by transmitting the 
cowcatcher in its ISR wrapper (as do all algorithms). Shortly after invocation the ISR 
sends a trigger pulse to the ADC trigger module. The re-scheduling of the interrupt 
takes place after transmission of the Stop Message. The parameter 
interruptInterval is used to control the timer interval. 



10.1.1.3 AlgSGadc 
This is the main algorithm of the SG ring and runs on the six CPUs that have ADC 
data inputs. The structure of the ISR is as follows: 

1. after the usual initialisation stages which follows the first few stage of 
AlgNaomiInterleave, a number of servo parameters are initialised on the 
first iteration. 

2. If a parameter change is detected then the waveform parameters are checked 
for changes. The waveform system is used inject programmed motion (for 
example, a sine wave) onto a particular DAC channel (which could include the 
FSM tip-tilt control channels). 

3. The snapshot variables are then initialised if required. The purpose of the 
snapshot system is to allow a full set of Strain Gauge ADC and output 
values sampled at the same time to be retrieved by a workstation process. This 
is achieved by setting a number of pointers to the snapshot buffers where 
copies of these data are held. The pointers normally point to dummy buffers 
where the copies are made anyway. This arrangement prevents the taking of a 
snapshot from interfering with timings by introducing additional copying. 

4. The next step is to read the Strain Gauge ADCs via a DMA transfer. The 
number of channels to be transferred is controlled by ADCblockSize, which is 
configured to the value 32 or 64 depending on the ADC port which the CPU is 
attached. 

5. The waveform playback system is linked to the developmental capture 
diagnostic system. The capture system is the antithesis of the snapshot 
system in that it captures a whole contiguous sequence of data values but only 
from one channel per CPU at any one time. The purpose of the linkage to the 
waveform system is to enable measurement with fine time resolution of the 
response of an actuator to a stimulus. Such a method would be valuable to the 
future implementation of Smith Compensation (feed forward) in the Strain 
Gauge control loop. 

6. The next stage is to agree on the BarrierSync plan. 
7. If the CPU has the demand interface that conveys data from the WFS ring then 

a DMA must be scheduled to read the data. This is done if the DMA is 
completed or not started. There is also a test system for copying in simulation 
data from the initialDemand parameter. The SG ring typically operates 
much faster than the WFS ring so several executions of the ISR may be 
expected to take place between each demand. There is an optional 
synchronisation system that may be used to delay the further execution of the 
ISR at the read point if this is the ISR execution in which a new demand is 
expected to arrive (based on the previous interval between demands). The 
purpose of the synchronisation arrangement is to allow each new WFS ring 
demand to be processed with the minimum of delay. If there is or is not a new 
demand present then this is signalled in a field of the demandBuffer 
parameter prior to the data being transmitted around the WFS ring using a 
BarrierSync: 
/* signal new demand */ 
parameters->demandBuffer[SG_NEW_DEMAND_SIGNAL_CHANNEL] = 1; 

8. If the current CPU does not have the demand interface then demand data are 
simply copied during the BarrierSync. 



9. We now set up pointers into various parameter tables, including the demand 
block, the calibration slope (gain) and offset, the servo gain and the 
passThrough table. These parameter tables are the same on all ADC CPUs 
and include entries for all channels. Each CPU therefore needs an offset  
parameter, tableOffset, within these tables in order to select the entries 
for the channels which that CPU reads out.  

10. The feed forward system is intended as the first stage of a developmental 
Smith Compensation system. It is controlled by the feedforward parameter 
and allows a new demand to be transmitted promptly without feedback to the 
mirror. It performs this by setting the pointers to the unpacked demand buffers 
to a special buffer for this purpose. 

11. We now unpack the demand. It is transmitted from the WFS ring with two of 
the 13-bit values packed into each 32-bit word. 

12. If we are using the feedforward system with the waveform system then we 
need to make sure that the current waveform value is copied into the feed 
forward demand buffer at this point. 

13. We now check that the ADC data have all been read and panic if there is too 
long a delay in it arriving. 

14. The data arrives from the ADCs in a fairly obscure order and each ADC CPU 
has a reorderTable parameter to re-order the ADC data into DAC channel 
order. 

15. We start an ADC DMA to remove any additional unexpected data. 
16. If the feedforward variable is switched on then we calculate how the new 

demand differs from the last demand and adjust the output accordingly, whilst 
checking the output value for exceeding saturation limits. The 
feedforward variable indicates that the feedforward parameter is set 
and a new demand has just arrived. 

17. If we are not performing feedforward processing then we perform the servo 
processing for the CPU’s data block in DAC channel order: 
    for (iWord = 0; iWord < blockSize; iWord++) { 
 
The servo processing  is performed using floating point arithmetic. The ADC 
value is converted into floating point format and then transformed into 
nominal DAC units using calibration tables loaded using the ADCcalGain 
and ADCcalOffset parameters. A simple servo algorithm is then executed 
and the integer format output buffer updated. 

18. It is at this point that we use the passThrough parameter table to override 
servo processing on selected channels and to write the demand value directly 
to the channel in the output buffer. 

19. The output buffer contents are then checked against the saturation limits. 
20. The contents of the output buffer are now packed into a buffer for transmission 

around the ring by BarrierSync. The BarrierSync is then performed. This has 
the effect of distributing all the output data for all ADC CPUs around the SG 
ring. The mirrorCPU runs the algorithm AlgSGmirror which deals with 
outputting data to the mirror electronics. 

21. We now check for extra data in the ADC input buffer and panic if any is found 
(as this represents a serious inconsistency). 

22. It is at this point that the snapshot data are copied, whether or not they are 
required (in order to ensure constant timing) 



23. The StopMessage is then transferred and processed. 
24. Snapshot and capture data are then scheduled for transmission to the 

diagnostic CPU according to separate decimate parameters: 
ADCsnapshotDecimate, ADCcaptureDecimate. It is also possible to 
retrieve the snapshot data using the Parameter Block system. 

25. The usual return or panic processing is then performed. 
 

10.1.1.4 AlgSGmirror 
The ISR function of the AlgSGmirror algorithm is responsible for transmitting 
output data to the mirror electronics. The ISR processing follows the following 
sequence: 

1. The initial processing corresponds to the AlgNaomiInterleave and other 
algorithms. 

2. We initialise the finalDemand and output values to midrange (4096) on 
the first iteration. 

3. the sync pulse is sent on the mirror syncPort. The mirror finalDemand is 
then written to the mirror electronics. Note that the output data from the last 
iteration (or from initialisation) is written to the mirror electronics at the start 
of the current ISR invocation. 

4. We now agree on the BarrierSync plan using a call to BSPbegin. 
5. The snapshot system of AlgSGadc extends to AlgSGmirror and in this 

case the data which are copied are the contents of the finalDemand and 
inputDemand buffers. Pointers to diagnostic or dummy buffers are adjusted 
in the same way as for AlgSGadc. 

6. The BarrierSyncs for the demand data, the snapshot copy (or dummy) and the 
BarrierSync for the AlgSGadc output data are then performed. 

7. The StopMessage is then transmitted. 
8. We now unpack the demands from the output BarrierSync and unpack the data 

using the DACreorderTable parameter to determine which order the data 
blocks arrive from the ADC CPUs. 

9. We now extract the tip-tilt data and check it for exceeding the saturation 
limits. 

10. The algorithm swap processing is then performed if required. 
11. Snapshot diagnostic data are then transmitted according to the 

DACsnapshotDecimate parameter. Note that snapshot data can also be 
retrieved using the Parameter Block system. 

12. Finally we perform the usual return or panic processing. 
 
 

11. Building the principal c40 programs 
GNU gmake is used to build the programs from the RealTime directory. 

12. RT configurations 
RealTime configurations are specified in the 
RealTime/pythonModules/RTconfig.py python language source file.  
 



GP transactions must be conducted with respect to named algorithms. As software is 
developed, however, it is sometimes necessary to change the names of algorithms 
allocated to a given processor and/or function. This is inevitable where two or more 
former algorithms are being merged, to implement load-balancing, for example. It is 
also desirable where functional development or differing supported hardware 
configuration have led to genuinely different algorithms supporting differing sets of 
parameter block transactions. At the same time, it is desirable, of course, to be able to 
write workstation support libraries which will perform certain generic functions with 
any running algorithm that supports that function and not to have a different library 
for every set of algorithm names. Clearly however such a generic function then needs 
to be able to identify the name of which algorithm is executing and whether it 
supports the desired function, and if so, what procedure is required to invoke it. The 
RTconfig system provides the capability to do this in a centralised fashion.  
 
RTconfig introduces the idea of named software configurations. Tables in 
RTconfig.py hold the names of the executable programme files that must be 
loaded on each CPU in order to run a given configuration. It also holds the basic WFS 
and DM  configurations required to initialise each configuration. A named 
configuration can be booted simply by passing its name to the c40Run utility which 
then passes on the name to Run functions within WFSlib and SGlib. They in turn 
use the configuration name to look up the required c40 programme filenames and 
configuration tables using the services provided by RTconfig.  
 
Software configurations therefore provide at once a means of being able to retrieve 
older c40 programmes without having to alter and recompile libraries, and also a 
means of loading different programmes to support different attached hardware. 
RTconfig provides some additional support for this latter application by introducing a 
hardware-software compatibility checking system. It works like this: at boot time the 
Run function can check compatibility using the HWRTcompatible(conf) 
function in RTconfig where conf is the name of the software configuration that is 
being booted. RTconfig retrieves basic information on the attached hardware that is 
recorded in the file 
/software/Electra/save/RealTime/<host>.HWconfig where 
<host> is replaced by the name of the c40 host computer, e.g., aocontrol1. It 
uses this, together with internal compatibility tables, to assess whether or not the 
proposed hardware/software combination is compatible. 
 
After a software configuration has been successfully booted its name is recorded ad 
may be retrieved. RTconfig then uses the concept of functional names for algorithms 
to allow workstation processes to find out the real names of the algorithms that have 
been booted for the recorded software configuration name. For example, the 
functional name “generic” translates to “ALG_NAOMI_INTERLEAVE” under the 
“Naomi” software configuration but to “ALG_GENERIC” under the “Electra” 
configuration. A workstation support process can therefore deal transparently with 
either algorithm using the “generic” functional name. 
 
There are various ways in which the implementation of RTconfig might be enhanced: 
(a) it currently stores the software configuration name in a file whereas it might be 
better to have it stored in the EPM database; (b) it implements a form of “inheritance” 



between configurations that might be better achieved using the object oriented 
programming features of the python language. 

13. Workstation support libraries 

13.1 GP and DTM libraries 
Python and C language version of the GP and DTM libraries are available for 
workstation programmes to communicate with the c40 processors and each other. 
The most common way of sending normal GP commands is the python GP.rpc 
remote procedure call. This takes three arguments: the CPU (GP) number, the 
command identifying string, and a list of parameters to the command. For transactions 
from python procedures the GPtransaction.Transact call provides a 
convenient mechanism. It takes a single argument which is a list of transaction 
elements. Each element of this list is itself a list with the following fields: a (GP) CPU 
number, the name of the algorithm (see RT configurations above), the name of the 
parameter block section and a list of parameters. For retrieving parameter block 
sections the python function GPtransaction.GetParam is useful. It has only 
two arguments: the (GP) CPU number and the name of the parameter block section 

13.1.1 Workstation C programs which talk to C40 programs 
 
Here is a minimal C program to talk to the C40s.  
 
#include <signal.h> 
#include <stdlib.h> 
#include "exception.h" 
#include "packet.h" 
#include "c40Commands.h" 
 
int main(int argc, char **argv) 
{ 
  GPmsgBuffer *buffer; 
  ExcStatus *status = ExcStatusNew(1); 
 
  GPsetup(status); 
  buffer = GPallocBuffer(status); 
  if (!ExcOK(status)) goto end; 
  buffer->header.command = DO_PING; 
  GPsendMsg(buffer, length, GP_PACK_ADDRESS(4, 
PORT_BOOT), status); 
  buffer = GPgetMsg(1000, status); 
  if (!ExcOK(status)) goto end; 
 
  if(buffer->header.command == DO_PING + GP_ACK  
     && buffer->header.arg1 == 0)  
        printf("Ping succeeded\n"); 
  else 
        printf("Ping failed\n"); 
 
  GPshutdown(); 



  exit(0); 
 
end: 
  ExcToFile(status, stderr); 
  GPshutdown(); 
  exit(1); 
} 
 
The program goes through the following steps:  
 
       It initialises the status variable, which holds the exception state and error 
messages. The argument of 1 to ExcStatusNew() causes the program to exit with 
an error if the system is out of memory.  
       It initialises the GP system with GPsetup()  
       It allocates a buffer and puts a command into the header  
       It sends the command to the appropriate CPU, in this case number 4.  
       It then waits for a response with a 1000 msec timeout  
       It checks to see if the response is correct. By convention, the C40 acknowledges 
all commands by incrementing the initial command number by the value GP_ACK 
(1000). The status is, by convention returned in header.arg1 and is zero on 
success.  
 
       It shuts down the GP system. This is important to free up ports on the c40Comms 
server. 
       It deals with any error messages by calling ExcToFile, which simply prints out 
any messages from any of the called subroutines. The reason the error messages are 
not printed in the subroutines is that the subroutines have no knowledge whether the 
calling program is connected to a terminal, or whether the program sends the error 
messages to a higher-level client. 
       Also, higher-level subroutines in the call chain may decide that an exception is 
not serious and call ExcClear() to clear the error condition without printing any 
messages. 
 
 

13.2 WFSlib 
WFSlib.py provides general access to WFS ring functions to python workstation 
processes working below the EPM level. At this level only the minimal interlocking 
provided by the GP transaction system is operational and it is therefore appropriate for 
engineering level functions. Command line access to many of the functions is 
available via the WFS command which uses the WFStest.py library to access the 
functions in WFSlib. These commands are dealt with in the c40 Users Guide. 
 

13.3 SGLIB 
SGlib.py provides general access to WFS ring functions to python workstation 
processes working below the EPM level. At this level only the minimal interlocking 
provided by the GP transaction system is operational and it is therefore appropriate for 
engineering level functions. Command line access to many of the functions is 



available via the SG command which uses the SGtest.py library to access the 
functions in SGlib. These commands are dealt with in the c40 Users Guide. 
 

13.4 DeformableMirror 
DeformableMirror.py provides python access to deformable mirror 
manipulation functions at the sub-EPM (non-interlocked) level. 

13.5 ReconLIB 
ReconLib.py provides python access to reconstructior matrix manipulation 
functions at the sub-EPM (non-interlocked) level. 
 

13.6 Diagnostics libraries 
GPdiag.py provides python access to the c40 diagnostics system. 

13.7 EPM aware libraries 
Python c40 support libraries exist above the EPM level and provide potentially full-
interlocked access to the c40s. It is these libraries that are used by top level processes 
such as TopGui and the superscripts. 

14. Workstation programmes 
In addition to TopGui there are a number of workstation programmes which access 
the c40s. These include FisbaGui, which deals with initial mirror flattening using 
the interferometer, WhiteLightProcedure, which deals with full flattening using 
the WFS and IngridAlign which deals with the removal of non-common-path 
errors in the optical path to the science camera. 

15. Programmes and files 
[insert SJG material] 

16. Work in progress 
Implementation of 4x4 subaperture modes 
Implementation of synched WFS modes 
Improved load-balancing on the SG c40s 
Investigation of optimal read/write timing on the SG c40s 
[Many other lower priorities] 

17. Obsolete and little-used software 
WFSAlign Non-EPM C programme (GUI) for WFS alignment and visualisation 
MirrorMimic Non-EPM C programme (GUI) for DM control 
RTengGui python non-EPM Real-time control GUI 
DataDiag Non-EPM C diagnostic launcher 
[Many other systems to catalogue] 
 


