

Royal Observatory, Edinburgh Blackford Hill Edinburgh, EH9 3HJ United Kingdom

Telephone: Facsimile:	+44 (0)131 668 8100 668 8264 (Central) 662 1668 (West Wing) 668 1130 (Villas) 662 1654 (Directorate)
Email:	initial.surname@roe.ac.uk

Email: WWW:

http://www.roe.ac.uk/

ICD 1.0 version for NAOMI WFS Camera

Part two- VME interface

wht-naomi-2

Xiaofeng Gao

11 January, 2000

Contents list
1. Introduction
2. References
3. The control flowchart
4. Readout mode [2]
5. Hardware configuration for synchronized 2-CCD readout
6. SDSU VME I/F parallel port and C40 link convert (SDSU-RS422) card interface
7. The data protocol for NAOMI WFS camera
8. The FSTART and FIFORD waveform
9. Error handling
10. Commands and replies
11. VME I/F board DSP codes for NAOMI WFS camera
12. Modification to SDSU VME I/F board
13. CCD readout procedure (for engineering level)
14. Parameters and memory map for VME I/F board DSP 14
15. Check for code ID, author and version
16. Communications between SDSU controller Timing board and VME I/F board
17. Appendix

ICD 1.0 version for NAOMI WFS Camera Part two- VME interface

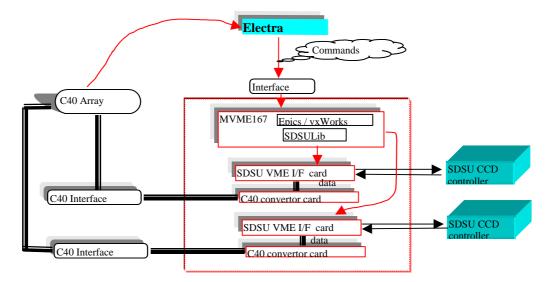
1. Introduction

This note describes the proposed control flowchart, frame data protocol and commands/replies between host, SDSU VME I/F cards and controller, VME I/F cards and C40 for NAOMI WFS camera. A brief description of communication link between/in SDSU Gen II controller and VME is also included as a background information for understanding the SDSU controller.

2. References

[1] "System description", SDSU document

[2] "CCD readout mode", Derek Ives, UK.ATC

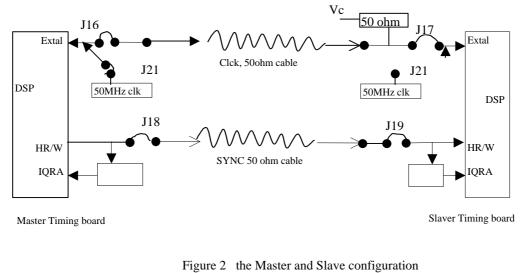

[3] "Timing board", "VME Interface board", SDSU document Updated MAY,25 1998

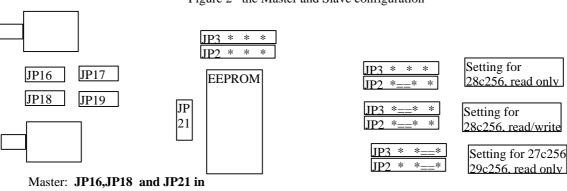
[4]" CCD controller requirements for ground-base optical astronomy" Robert Leach

[5] "ICD1.6/1.10 Revision Working Document – version 7", Gemini document

3. The control flowchart

The NAOMI WFS camera system has two CCD headers with two SDSU CCD controllers and two VME I/F cards. They are called master and slave. Each SDSU VME I/F board sits at its own address. The central control system is called Electra (built in Durham). The image data is fed from the CCD cameras directly to the ELECTRA system, by-passing the VME bus in the WFS VME control System. The ELECTRA system then performs the image centroiding calculations. Commands are issued from host (ELECTRA), through Epics/vxWork to call a function from sdsuLib, which communicates with VME I/F board through VMEbus, using a SDSU-defined protocol (header *[source board, destination board , No of words]*, command and No of arguments if any). The DSP on the VME I/F board checks the in-coming command, it then either goes to a particular subroutine to execute the command, or pass the command to the Timing board (inside controller), which also checks the command and either goes to a particular subroutine to execute the command. When a command is completed, each board (destination board) usually sends a reply back to its source board. The control flowchart is shown in Figure 1.




4. Readout mode [2]

The different readout modes for Naomi WFS camera are described in more details [2]

5. Hardware configuration for synchronized 2-CCD readout

The two controllers in Naomi WFS camera can be operated independently, they then look like just two separate cameras. For synchronized readout, the master and slave controller have to be hardware configured (Figure 2, 3). The "SYNC" signal (from pin HR/W) by master is hardware decoded to generate an IQRA interrupt to both master and slave (Figure 2), which will jump to interrupt subroutine once detecting the IQRA. However, the start of synchronized 2-CCD readout is trigged only after a second "SYNC" signal is issued by the master. In order to maximize synchronization for each frame, when the first frame is finished, the slave will wait for a "SYNC" signal issued by the master to start the next frame with the master, and so on.

Slave: JP17, JP19 in, R8=50R must be in.

Figure 3 the Master and Slave jump settings on Timing board

6. SDSU VME I/F parallel port and C40 link convert (SDSU-RS422) card interface

The image data from CCD controller will pass SDSU VME I/F card through on board parallel port to C40 array by SDSU_RS422 interface card. During CCD readout, the DSP on VME I/F board will generate a "FSTART" signal (pulse) on parallel port as a frame start indication to SDSU_RS422 interface card in each frame transfer, it will also generate "RMT_RST" signal on the parallel port, which is then fed back to "FIFORD" as FIFO readout signal to read out each coming data in FIFO from Timing board. At the same time, this "RMT_RST" is used as a strobe signal to C40 interface card.

The functional block and link to SDSU_RS422 card are illustrated in Figure 4

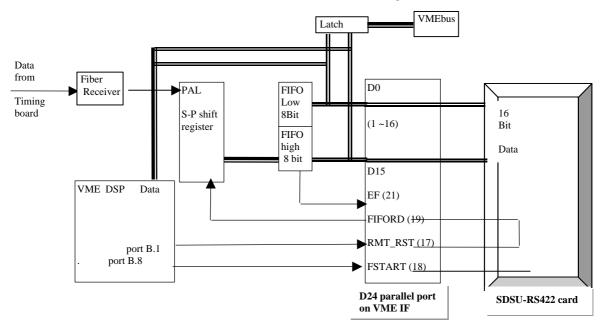


Figure 4. The function block and link to SDSU_RS422

The parallel connector on the SDSU VME I/F board is two row 24 IDC type, see below for enclosed photo Figure 5. The pin assignment of the parallel port can be found in SDSU document (vmesch7A.ps)

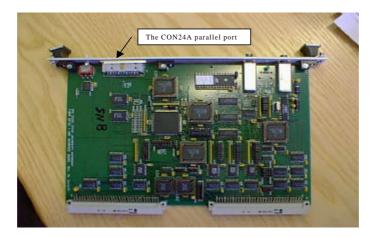
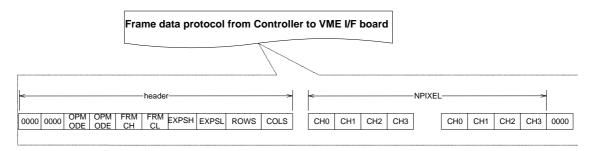


Figure 5. the SDSU VME I/F board

7. The data protocol for NAOMI WFS camera

Controller to VME I/F board Frame data Format


In response to readout CCD command, the downlink (Timing board to VME interface board) is changed from 32bit to 16-bit format. The uplink (VME interface board to Timing board) format remains unchanged (24bit). The Controller starts to do CCD readout task. Once the exposure period has elapsed, 10 of 14-bit header words are transmitted, followed by a sequence of 16-bit image pixel values. The last 14 bit word in a frame data is Zero indicating the end of frame. This procedure repeats until an ABORT command from host is received. The downlink format is then changed back to 32-bits.

The frame format is shown in Table 1. It is self-defined

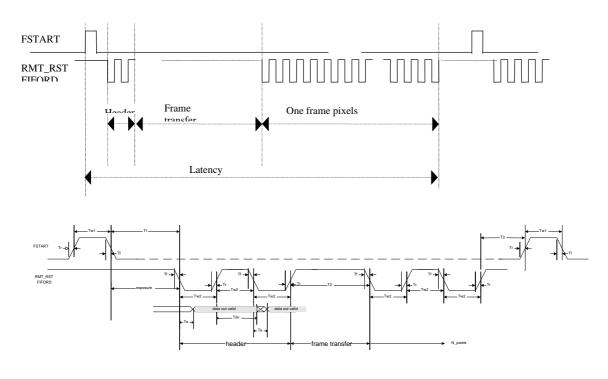
Table 1 Format of Controller Data Frame							
Word Number	Name	Description					
0	0000						
1	0000	The two zeros are Frame sync words					
2	OPMODE	Repeated here for sync propose					
3	OPMODE	the current operation mode. DEFINATION [2]					
4	FRMCH	Two words for frame counter, starting from 1,					
5	FRMCL	rounded back if 28 bit reached					
6	EXPSH	High byte of the exposure time					
7	EXPSL	low byte of the exposure time					
8	ROWS	The number of rows /frame					
9	COLS	The number of columns /frame					
1+9	PIXEL(1,1)	First pixel value.					
:	:	:					
N+9	PIXEL(4,N)	Last pixel value.					
N+1+9	0000	End of frame					

Table 1 Format of Controller Data Frame

N -Number of pixels /frame

VME I/F board to C40 Frame data Format

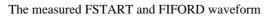
In response to an **RDS or RDC** command from host, the VME interface board fiber optic shift register is changed from 32-bit to 16-bit format. Knowing there is data about to arrive from FIFO, the DSP on VME I/F board waits, until the beginning of frame header (0000,0000) is received. It then starts to transmit 7 14- bit header words to C40, followed by a sequence of 16-bit pixel values. This procedure repeats until an ABORT command from the host . The fiber optic shift register then is changed back to 32-bits.


The frame data format sent to C40 is shown in Table 2.

Word Number	Name	Description
0	OPMODE	the current operation mode. DEFINATION [2]
1	FRMCH	Two words for frame counter, starting from 1,
2	FRMCL	rounded back if 28 bit reached
3	EXPSH	High byte of the exposure time
4	EXPSL	low byte of the exposure time
5	ROWS	The number of rows in frame/frame
6	COLS	The number of columns in frame./frame
1+6	PIXEL(1,1)	First pixel value.
8	:	:
N+7	PIXEL(4,N)	Last pixel value.

Ν

	Frame data protocol from VME I/F to C40													
<	header			>	<				NPIXEL				>	
OPM FRM FRM ODE CH CL	EXPSH E	EXPSL	ROWS	COLS	CH0	CH1	CH2	СНЗ]	CH0	CH1	CH2	СНЗ	


8. The FSTART and FIFORD waveform

Timing

	Timing	Volta	age level on the para	allel port CON24	
		D0~D15 (pin:1-16)	Voh=2.4v (min)	Vol=0.4v (max)	IDT7202
Tr	6 ns (min)		Vih=2.0v(min)	Vil=0.8v (max)	
Tf	6 ns (min)	EF (pin:21)	Voh=2.4v (min)	Vol=0.4v (max)	IDT7202
Та	15 ns (max)	FIFORD (pin:19)	Vih=2.0v(min)	Vil=0.8v (max)	CY7C31
Tdv	5 ns (min)	RMT_RST (pin:17)	Voh=2.4v (min)	Vol=0.4v (max)	DSP
T1	Exposure time	FSTART (pin:18)	Voh=2.4v (min)	Vol=0.4v (max)	DSP
T2	21.6 us (min)				
T3	120 ns (min)				
Tw1	40 ns (min)				
Tw2	40 ns (min)				

Note: the width of FSTART and FIFORD, ie, Tw1,Tw2 can be adjusted by user in software.

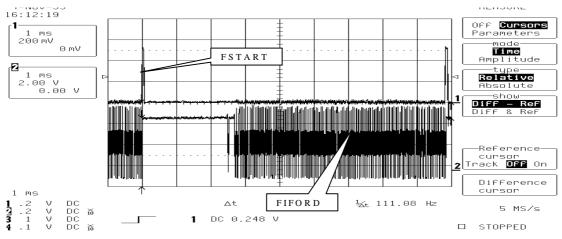


Figure 6 The measured FSTART and FIFORD waveform

9. Error handling

The error handling in the current system has not yet been fully defined. It is proposed that it will depend on the frame status condition word (FSTAT), which is defined in Table 3

Table 3	Frame State	us word bit	definition

	Bit		Error
HD_WAIT	0	Set if waiting for a frame header, indicates where the DSP is,	
EOF_ERR	1	Set if end of frame error	yes
FBA_VLD	2	Set if current frame buffer address is valid	
LST_FRM	3	Set if last frame or time out	
ABRT	4	Set if Abort CMD received during readout	
TIM_OUT	5	Set if time out period 65ms has reached during FIFO readout	yes
FRDING	6	Set if frame readout is in process, *this can be changed to anything later	
FBA_WAT	7	Set if wait for FBA, only for indication where the DSP is	
HF_WAT	8	Set if wait for Half FIFO time out (=FO_TO)	yes

The frame status word is only sent back to Vxwork not to C40

The VME I/F DSP will not take any action apart from reporting during error handling, at any point in reading FIFO, if there is time out, the DSP will jump out, flag Frame status word(FSTAT), send FSTAT back to Vxwork, generate a frame INT, then jump to check CMD routine. The readout process will not stop until it is asked by host to "Abort"

10. Commands and replies

The commands for SDSU VME I/F are listed in BOOT and APPLICATION tables (all the command will have a 24 bits header associated with it, source always is host)

Words include header	Valid Destination DSPs	Response	Description
3	VME TIMING	DON	LoaD Application program <i>#nnnnnn</i> from EEPROM.
3	VME TIMING	Dddddd	ReaD Memory. Read DSP address <i>maaaaa</i> . Returned data = $dddddd$. The most significant nibble of the address indicates the memory type. m = 1: P memory $m = 2$: X memory m = 4: Y memory $m = 8$: EEPROM
4	VME TIMING	DON	Write Memory. Write <i>ddddd</i> to DSP address <i>maaaaa</i> . The most significant nibble of the address indicates the memory type. See RDM
3	VME TIMING	Nnnnnn	Test Data Link. Destination DSP echoes <i>nnnnn</i> back to source.
2	VME TIMING	DON	Un-used command
4	VME	DON	Set Reply Address. Defines the start of a circular buffer in VME memory that receives replies from the VME interface DSP.
2	VME	SYR (fromTiming)	Remote Reset System. Reset the Timing and Utility DSPs.
2	VME	nnnnnn	Checksum VME board memory areas where nnnnn is calculated value.
	include header 3 3 4 4 3 2 4 2 4 2	include headerDestination DSPs3VME TIMING3VME TIMING4VME TIMING3VME TIMING2VME TIMING4VME TIMING2VME TIMING2VME TIMING2VME TIMING	include headerDestination DSPsDot3VME TIMINGDON3VME TIMINGDddddd4VME TIMINGDON3VME TIMINGDON3VME TIMINGDON2VME TIMINGDON4VME TIMINGDON2VME TIMINGDON2VME TIMINGDON2VME TIMINGDON2VME TIMINGDON2VME TIMINGDON

Table 4 SDSU VME BOOT Commands Defined for WFS

Notes to Table

1. "Boot" commands are available on power-up or reset, Checksum will change when new application is downloaded,

2. all the replies to host are given as they should be. The error replies are given in table 6

3. In NAOMI WFS, we are not using Utility board at all.

Command	Words Include header	Valid Destination DSPs	Response	Description
ABT	2	VME TIMING	DON DAB (from VME)	AborT. Abort the previous RDC/RDS command. The host should send this command to the VME board only.
RDC	2	VME TIMING	DON (from VME)	ReaD CCD. Put the VEM DSP in readout mode using the current readout sequence and loaded parameters., wait for frame data from controller, The host should send this command to the VME board only.
RDS	2	VME TIMING	DON (from VME)	Same as RDC but data sent out to C40 through D24 port
FBA Aaaa,bbbb	4	VME	NONE	Aaaa,bbbb=Frame buffer address

Table 5 SDSU VME APPLICATION Commands Defined for WFS

Notes to Table

1. command in an application program which may be either downloaded or loaded from EEPROM using the LDA

2. all the replies to host are given as they should be. The error replies are given in table 6

Response	Description
DON	DONe. Command received and processed without error.
DAB	Done Abort during readout
SYR	System Reset. The controller has reset (power-on reset, reset button, RRS reset, or watchdog timer reset).
	Error message
ERR	ERRor. Unrecognized command
POE	Power On Error. Error occurred while powering up the analog supplies on the utility board.
AFE	Address Format Error. A valid P, X, Y or EEPROM address was not specified.
HDE	HeaDer Error. The first word in the command has error

Table 6SDSU Responses Defined for WFS

11. VME I/F board DSP codes for NAOMI WFS camera

The DSP code developed for NAOMI WFS camera consists of three parts:

2). Head code vmehead.asm

```
3). Application code vmeapl1.asm, vmeapl2.asm and vmeapl3.asm
```

vmeapl1.asm application 1

is used for reading out data to VxWork, the image can be displayed on SAOtng window and saved into a file.

vmeapl2.asm application 2

is used for reading out data to C40. No data can be seen by VxWork apart from frame state word (SFTAT)

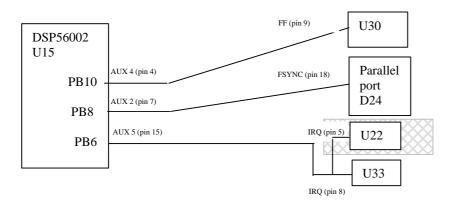
vmeap3.asm application 3

is used for self test for VME I/F board. The simulated image can be displayed on SAOtng window and saved into a file.

Makefile

Three makefiles are available to use: (details seen Appendix)

- 1). Make -f makenorm.mk → vmebt_norn.s, vme_norm.s
- compilers and links vmeboot and applications. Later, *.s files are programmed into an E^2 prom (28c256) by a normal programmer.
- 2). Make -f makeevm56k.mk → vme56k.cld compilers and links vmeboot and applications. Later, *.cld file is programmed into an E²prom (29c256, 27c256) by a motoroal 56k Evaluation Module board
 2). Make -f make described when → evaluation (1/2/2), dashed bear
- Make -f makedownload.mk → vmeapl (1/2/3)_dwld.lod compilers and links only applications. Later, *.lod files are downloaded directly into the DSP.


The DSP code flowchart is illustrated in Figure 7.

12. Modification to SDSU VME I/F board

It was discovered during the project that SDSU VME I/F board did not have a hardware means to detect whether a request of VMEbus interrupt has been granted. Various tests by a VME bus analyzer have illustrated that there could be a few microseconds delay for VME CPU board to respond to a VMEbus interrupt. To make the system more reliable, a modification to SDSU VME I/F board has been made. The wire links added to SDSU VME board are:

```
    > wiring DSP portB.6 (DSP pin 15) to U33 pin 8 (internal connected to U22 pin5)
    > for INT IRQ monitor
    > wiring DSP portB.8 (DSP pin 7) to parallel port pin 18 for FSYNC
    > wiring DSP portB.10 (DSP pin 4) to U30 pin 9 for FF
```

```
see the following diagram
```

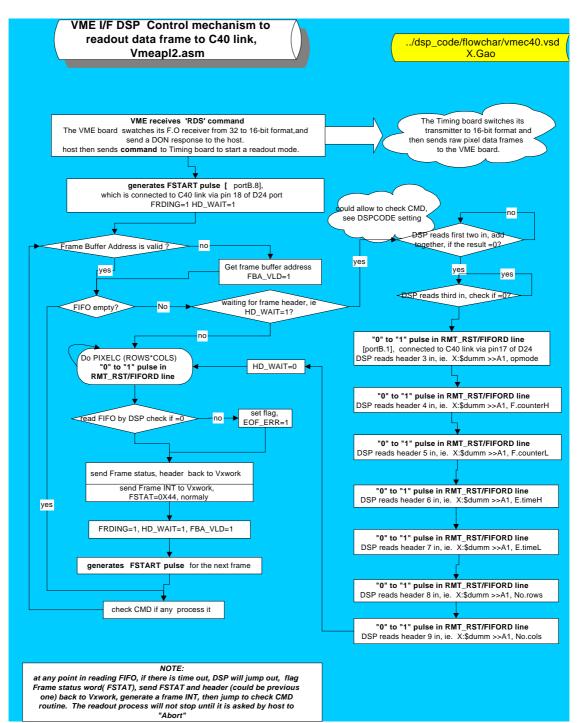



Figure 7 the VME I/F DSP code flowchart

13. CCD readout procedure (for engineering level)

At engineering level, the system setup without C40 is shown in Figure 8

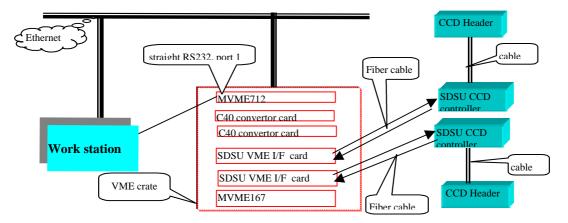


Figure 8 the system setup without C40

Starting a CCD readout task involves three scripts at low level (VxWork):

1). Task

includes to startup Vxwork or Epics, then, startup sdsulib tasks, download DSP codes into VME I/F and Timing boards

2). Initial

setup parameters for VME I/F, Timing DSP code and memory buffer in VME,

3). Read

start the CCD readout.

An example of CCD readout is of something like:

From a Xterm window,

type <u>telnet naomi</u> (could be another name), type <u><startup</u>. Then type <u><startCCDReadout</u> (see detail in Appendix)

There are few useful sdsuLib commands for engineering level (details see sdsuLib manual):

1). SdsuFrameShow "cam1" or sdsuCurrentFrameShow "cam1" (cam1 is the name for Master/slave)

display the frame status word and header information, the address where the frame data is stored 2).sdsuDebug

if sdsuDebug=1, there will be printed message on screen when a frame interrupt occurs, set sdsuDebug=0, will disable the function. It gives visible way to see if the frame readout is happening.

- 3). SdsuCommand ("cam1",1,"ABT")
 - this will abort the CCD readout task

4). To read parameter

```
sdsuMemory ("cam1",1,"RDM","CODE_ID") or sdsuCommand ("cam1",2,"RDM",0x*****,0) (where ****** is the address for P:10***, X: 20****, Y:40****,EEP:80****)
```

5). to write parameter

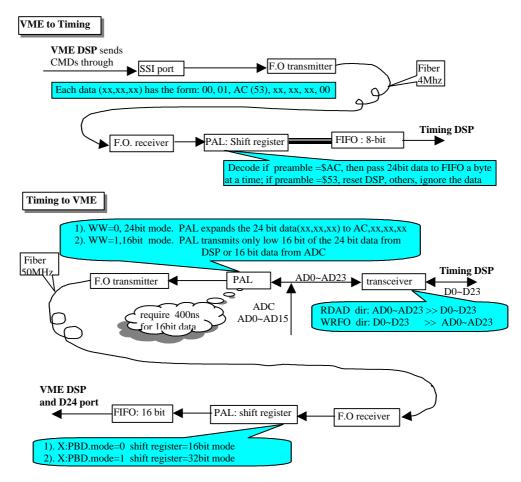
```
sdsuMemory ("cam1",2,"WRM","EXP") or sdsuCommand ("cont1",2,"WRM",0x*****,0) (where ****** is the address for P:10***, X: 20****, Y:40****,EEP:80****)
```

14. Parameters and memory map for VME I/F board DSP

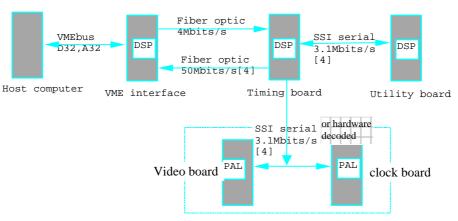
Table 7 the effects of different setting in parameters on VME DSP code

		Effects	
DSPOCODE (in Y: memory)	Bits		
WHI CH	0	=0 donot send RDC to TIMing board, =1 send RDC to TIMing board, remove 12 garbage from frame data	
RDHEAD	1	=0 donot check header, =1 check header	
TWOPMD	2	=0 only one opmode in the header =1 two opmode in header	
DOPIXC	3	=0 donot calculate PIXELC, use PIXEL_N set in initial by user =1 calculate PIXELC=rows*cols	
TI MCK	4	=0 don't do time out for Half fifo full =1 do F0_T0 time out check half fifi full	
GARBAGE	5	=0 no garbage in data from Timing board code =1 remove NOFGAR garbage from frame data in Timing board code	
CHKPXY (in X: memory)	Bits		
СНКР	0	Do checksum for p memory (\$0\$chk_sum)	
CHKX	1	Do checksum for p, X memory (\$0\$chk_sum, x)	
СНКҮ	2	Do checksum for p,Y memory (\$0\$chk_sum, y)	
FSTAT_WIDTH		The frame start pulse for C40, unit=0.04us. default=2000	
READ_WIDTH		The READ FIFO pulse width for C40, unit=0.04us. default=5	

Table 7 the Memory map for VME DSP code(all in HEX number)


Iuon	/ me memo	JIOI VINIE D			A HIGHH	ser)			
	56KVME n	nemory	length(word)		EPROM memory		length	Differe	DSP
	100	ation			Location			nce in	memory
	(word w	vide)			(byte wide)			Words	Location
progvme.asm	upwards	7F00							
vmeboot.P	(BOOT_P)	2000	(BTLH_P)	0300	(EEPO_P)	C000			P:RST_ISR
vmeboot.X	(BOOT_X)	2300	(BTLH_X)	0100	(EEPO_X)	C900	0900		X:XPARAMT
vmeapl1.P	(APPL1_P)	2400	(APLH1_P)	0200	(EEAP1_P)	8000		0000	P:APL_ADR
vmeapl1.X	(APPL1_X)	2600	(APLH1_X)	0100	(EEAP1_X)	8600	0600	0200	X;USR_CMD
vmeapl1.Y	(APPL1_Y)	2700	(APLH1_Y)	0100	(EEAP1_Y)	8900	0300	0300	Y:0000
vmeapl2.P	(APPL2_P)	2800	(APLH2_P)	0200	(EEAP2_P)	8C00	0300	0400	P:APL_ADR
vmeap12.X	(APPL2_X)	2A00	(APLH2_X)	0100	(EEAP2_X)	9200	0600	0600	X;USR_CMD
vmeapl2.Y	(APPL2_Y)	2B00	(APLH2_Y)	0100	(EEAP2_Y)	9500	0300	0700	Y:0000
vmeap13.P	(APPL3_P)	2C00	(APLH3_P)	0200	(EEAP3_P)	9800	0300	0800	P:APL_ADR
vmeapl3.X	(APPL3_X)	2E00	(APLH3_X)	0100	(EEAP3_X)	9E00	0600	0A00	X;USR_CMD
vmeap13.Y	(APPL3_Y)	2F00	(APLH3_Y)	0100	(EEAP3_Y)	A100	0300	0B00	Y:0000

15. Check for code ID, author and version


Every VME DSP code has a version. The CODE_ID and AUTHOR are only in boot code. Use sdsuMemory ("cam1",1,"RDM","xxx"), where xxx is the symbol

symbol	Expected reply	Version XX.XX	board XX	Or	Application XX
CODE_ID	"ATC"				
AUTHOR	"GAO "				
BT_CODE_VER	\$010001	1.00	01 = VME Rev. 7A		
APL_CODE_VER	\$010001	1.00		01=	application 1

16. Communications between SDSU controller Timing board and VME I/F board

Details for the communication between the VME board and the Timing board

The SDSU system processor block and communication path [3]. The boards in dash line only for CCD operation reference.

17. Appendix

1). Make files

```
makeevm56k
#!/bin/csh
clear
       This generates NAOMI VME DSP release version 1.00 boot code plus applications, "
echo
             programed by 56kVME
echo
                                     ==> vme56k.lst,.cld,vme56k.lod
echo
     "PRGAPL BOOT/APL1/APL2/APL3 program onlyboot/application1/2/3 "
echo
      "PRG
             EVM56K
                             program boot CODE for EVM56K vmeboot_56k.lst"
     " PRG
             EVM56K
                            program application CODE for EVM56K/"
echo
echo
                         vmeapl1_56k.lst vmeapl2_56k.lst vmeapl3_56k.lst
     ...
                                       26-11-99
                                                     at ATC
echo
                        X.Gao
asm56000 -b -lvme56k.lst
                              -d PRGAPL APL1 -D PRGAPL2 APL2 -D PRGAPL3 APL3 progvme.asm
asm56000 -b -lvmeboot_56k.lst -d PRG EVM56K
                                             vmeboot.asm
asm56000 -b -lvmeapl1_56k.lst -d PRG EVM56K -d TEST HEAD -d READ MAUNAL vmeapl1.asm
asm56000 -b -lvmeap12_56k.lst -d PRG EVM56K -d TEST HEAD -d READ MAUNAL vmeap12.asm
asm56000 -b -lvmeapl3_56k.lst -d PRG EVM56K -d TEST HEAD -d READ MAUNAL vmeapl3.asm
dsplnk -bvme56k.cld -v progvme.cln vmeboot.cln vmeapl1.cln vmeapl2.cln vmeapl3.cln
      vme56k.lod
rm
cldlod vme56k.cld >vme56k.lod
rm *.cln
       makenorm
#!/bin/csh
clear
echo " This generates NAOMI VME DSP release code version 1.00 boot code plus applications,"
echo " programed by NORM programmer
                                        vmebt_norm/vme_norm.lst,.cld,vmebt_norm/vme_norm.lod"
echo " PRGAPL BOOT/APL1/APL2/APL3 program onlyboot/application1/2/3
                          program boot CODE for NORMAL EEPROM
echo " PRG
             NORM
echo " PRG
                           program application CODE for NORMAL EEPROM "
             NORM
echo "
                       X.Gao
                                       26-11-99
                                                    at ATC"
echo "
         BOOT first
                          ==> vmebt_norm.s"
asm56000 -b -lvmebt_norm.lst -d PRG NORM
                                          vmeboot.asm
dsplnk -bvmebt_norm.cld -v vmeboot.cln
         vmebt norm.lod
rm
cldlod
         vmebt norm.cld >vmebt norm.lod
srec
         -bs vmebt norm.lod
echo "
         Now APPLICATIONS ==> vme_norm.s"
asm56000 -b -lvmeapl1_norm.lst -d PRG NORM -d TEST HEAD -d READ MAUNAL vmeapl1.asm
asm56000 -b -lvmeapl2_norm.lst -d PRG NORM -d TEST HEAD -d READ MAUNAL vmeapl2.asm
asm56000 -b -lvmeapl3_norm.lst -d PRG NORM -d TEST HEAD -d READ MAUNAL vmeapl3.asm
```

```
dsplnk -bvme_norm.cld -v vmeboot.cln vmeapl1.cln vmeapl2.cln vmeapl3.cln
      vme_norm.lod
rm
cldlod vme_norm.cld >vme_norm.lod
srec -bs vme_norm.lod
rm
    *.cln
       makedowload
#!/bin/csh
clear
echo " build download version of VME application3 DSP code for VME board"
echo "vmeapl1_dwld.lod vmeapl2_dwld.lod
echo "
                <<<<< DOWNLOAD VERSION >>>>>
                                               vmeapl3_dwld.lod"
                                       26-11-99
                                                    at ATC"
#vmeapl1_make
clear
echo NAOMI VME application1 DSP code for VxWork, host sends RDC to VME
echo " <<<<< DOWNLOAD VERSION >>>> vmeapl1_dwld.lst, vmeapl1_dwld.lod "
echo "
                                                    at ATC
                      X.Gao
                                      26-11-99
echo off
asm56000 -b -lvmebootdwld.lst -d PRG NORM
                                          vmeboot.asm
asm56000 -b -lvmeapl1_dwld.lst -d PRG DOWNLOAD -d TEST HEAD -d READ MAUNAL vmeapl1.asm
dsplnk -bvmeapl1_dwld.cld -v vmeapl1.cln vmeboot.cln
      vmeapl1_dwld.lod
rm
cldlod vmeapl1_dwld.cld >vmeapl1_dwld.lod
#vmeap12_make
clear
echo NAOMI VME application2 DSP code for C40, host sends RDS to VME
echo "<<<< DOWNLOAD VERSION >>>> vmeapl2_dwld.lst, vmeapl2_dwld.lod"
echo "
                       X.Gao
                                       26-11-99
                                                    at ATC"
echo off
asm56000 -b -lvmebootdwld.lst -d PRG NORM vmeboot.asm
asm56000 -b -lvmeapl2_dwld.lst -d PRG DOWNLOAD -d TEST HEAD -d READ MAUNAL vmeapl2.asm
dsplnk -bvmeapl2_dwld.cld -v vmeapl2.cln vmeboot.cln
rm
      vmeapl2_dwld.lod
cldlod vmeapl2_dwld.cld >vmeapl2_dwld.lod
#vmeap13_make
clear
echo NAOMI VME application3 DSP code for VME board selftest, host sends RDC to VME
echo "<<<< DOWNLOAD VERSION >>>> vmeapl3_dwld.lst, vmeapl3_dwld.lod"
echo " X.Gao 26-11-99 at ATC"
echo off
asm56000 -b -lvmebootdwld.lst -d PRG NORM
                                           vmeboot.asm
asm56000 -b -lvmeapl3_dwld.lst -d PRG DOWNLOAD -d TEST HEAD -d READ MAUNAL vmeapl3.asm
dsplnk -bvmeapl3_dwld.cld -v vmeapl3.cln vmeboot.cln
     vmeapl3_dwld.lod
rm
cldlod vmeapl3_dwld.cld >vmeapl3_dwld.lod
2). StartCCDReadout
# startup task
sdsuCommandStart ("cam1", 0xc0000000, 0)
sdsuMemoryStart ("cam1")
sdsuReadoutStart ("cam1")
sdsuMemory ("caml", 1, "FDL", "/sw4/naomi/naomiWfs/dsp_code/xg/finalversion/vmeapl1_dwld.lod")
```

```
# initialise
sdsuCommand ("caml", 2, "PON", 0, 0)
sdsuCommand ("caml", 2, "SET", 100 , 0, 0)
sdsuMemory ("caml", 1, "WRM", "DSPCODE", 46 )
sdsuMemory ("caml", 1, "WRM", "PIXEL_N", 7040 )
sdsuMemory ("caml", 1, "WRM", "FSTAT_WIDTH", 10)
sdsuMemory ("caml", 1, "WRM", "NOFGAR", 8)
sdsuReadoutFrameQ ("caml", 7040, 5)
sdsuCommand("caml",2,"SYC",0,0)
```

```
# start readout of application 1
sdsuReadoutRDC("caml", 50)
sdsuCommand("caml",2,"LDA",1,0)
sdsuCommand("caml",2,"SYC",0,0)
```

3). Default jump setting (most see SDSU VME Doc)

board address=0xc0000000 (A31,A30 out, the rest in) fiber optic speed =50MHz address modifier=\$ interrupt level=6 (IRQ6 in, IACK0 in, others out) bus request level =3 Eeprom =29c256(the same setting as 27c256), JP1 (1=2) JP2(1=2) Watch dog timer = disabled

4). Example of test

login coll

startup another xterm telnet naomi - can now communicate with VME rack <startup

to display images

startup another xterm

source /net/alba/sw4/naomi/naomilogin
naomiQI

a SAOTNG should become active

to start the VME self test readout process

naomiCam - cd "/sw4/naomi/naomiWfs/scripts/xg"
naomiCam -<xgVMEC40test</pre>

then you will see an image on SAOtng window.

naomiCam -sdsuDebug=1
will display the frame interrupt message, indicating the working condition
naomiCam -sdsuDebug=0
will stop

naomiCam - sdsuFrameShow "cam1"					
Contents of SDSU frame lo	ocated at : 0xeb0000				
Frame message queue	: 0xef3fc8				
Frame semaphore ID	: 0xef7010				
Frame header, located at	address : 0xeb0008				
Packet count	: 209				
Frame start count	: 0				
VME board count	: 0				
Timing board count	: 0x13b68				
Frame status	: 0xc0				
Operation mode	: 0x1				
Exposure time	: 0xf4240				
Number of rows	: 78				
Number of columns	: 86				

First 8 pixels, located at address : 0xeb0020 1234 5678 1357 2468 1234 5678 1357 2468

####