
Particle Physics and Astronomy

Research Council

Isaac Newton Group

A Developer ’s Guide to the NAOMI Observer
Software

Version : 1.1

Craige Bevil

Document Identifier : WHT−NAOMI−17

7 August 2002

Isaac Newton Group,
Apartado 321, 38780 S/C La Palma,
Tener ife, Canary Islands

Telephone +34 922 425400
Fax +34 922 425401
Internet cb@ing.iac.es

WHT−NAOMI−17 NAOMI Developer Guide

Table of Contents

CHAPTER 1. OVERVIEW..4

CHAPTER 2. THIRD PARTY DEVELOPMENT SOFTWARE.........................5

2.1 TCL/Tk..5

2.2 Incr ..5

2.3 BLT..5

2.4 DRAMA...5

2.5 EPICS..5

2.6 Python..6

2.7 Man2html...6

CHAPTER 3. THE SYSTEM ARCHITECTURE...7

3.1 An Overview..7

3.2 The EPMDataServer...7

3.3 Running the EPMDataServer...8

3.4 The EPMDataServer HTTP Client Inter face...8
3.4.1 The NAOMI/Status GET Request..8
3.4.2 The NAOMI/status POST Request..9
3.4.3 The NAOMI/command POST Request..10
3.4.4 The NAOMI/CommandStatus POST Request..11
3.4.5 The NAOMI/FreeStatus POST Request...11
3.4.6 The NAOMI/debug/on and NAOMI/debug/off GET Request...............................11
3.4.7 EPMDataServer HTTP Return Codes..12

3.4.7.1 The 502 Error Response..12
3.4.7.2 The 503 Error Response...12
3.4.7.3 The 504 error Response...12
3.4.7.4 The 505 Error Response...13
3.4.7.5 The 506 Error Response..13
3.4.7.6 The 507 Error Response ...13
3.4.7.7 The 508 Error Response ...13
3.4.7.8 The 509 Error Response ...13
3.4.7.9 The 510 Error Response ...13
3.4.7.10 The 511 Error Response..13

3.5 The seeingLogger Task..14

3.6 The packetCollection Task..14

3.7 The LyotStopAngleUpdate Application..14

– 2 –

WHT−NAOMI−17 NAOMI Developer Guide

3.7.1 LyotStopAngleUpdate DRAMA Features..15
3.7.1.1 The STOPUPDATE Action...15
3.7.1.2 The STARTUPDATE Action..15
3.7.1.3 The UPDATEANGLEOFFSET Action...15
3.7.1.4 The LYOTUPDSTAT Parameter..15

3.8 The naomiInter face Application...15

3.9 The command line scr ipts..15

CHAPTER 4. THE CLASS PACKAGES ...17

4.1 The ICSSupport Package..17
4.1.1 The ErrorHandling Class...17
4.1.2 The HTTPInterface Class..17
4.1.3 The GeneralPurpose Class...17
4.1.4 The SingleFieldEntry Class...18

4.2 The ICSGUISupport Package...18
4.2.1 The DRAMADialControl Class...18
4.2.2 The EPICSDialControl Class...18
4.2.3 The EPICSButtonControl Class...18
4.2.4 The DRAMAButtonControl Class...18
4.2.5 The INGStatusDisplayWidget Class..19

4.3 The NAOMISupport Package...19
4.3.1 The NAOMICommand Class...19
4.3.2 The NAOMIFOVMonitor Class..19
4.3.3 The NAOMIGSFile Class..20
4.3.4 The NAOMIOSCAControl Class...20
4.3.5 The NAOMIImageGrab Class...20
4.3.6 The NAOMIPerformanceMeter Class..20
4.3.7 The NAOMIStatusDisplay Class...21

4.4 The PacketCollection Package..21
4.4.1 The PacketCollection Class...21

4.5 The OCSgp Package..21

CHAPTER 5. BUILDING AND INSTALLING THE PROJECT.......................22

5.1 The Environment...22
5.1.1 The MAKEINCLUDEDIR Variable..22
5.1.2 The PYTHONPATH Variable...22
5.1.3 The TCLLIBPATH Variable...22
5.1.4 The PATH Variable...23
5.1.5 The PREFIX Variable...23
5.1.6 The OBSERVING_SYSTEM Variable..23

5.2 Building the Project...23

5.3 Installing the Deliverables...23

5.4 Installing the documentation...24

– 3 –

WHT−NAOMI−17 NAOMI Developer Guide

Chapter 1. Overview
The purpose of this document is to provide the developer with an overview of the NAOMI
top level observing software. This will include a description of the development tree, the
tools used in the development of the system, a guide to how to build and install the system
and a summary of the architecture of the software.

The actual functionality of the software included in the system is subject to document WHT−
NAOMI−15.

– 4 –

WHT−NAOMI−17 NAOMI Developer Guide

Chapter 2. Third Par ty Development Software
The software provided for the NAOMI observing level software relies heavily on a number of
third party software packages. This chapter outlines the third party software that has been
used throughout the system.

2.1 TCL/Tk
The majority of the applications associated with the NAOMI observer level software are
coded in TCL and Tk. The current version of the TCL/Tk being used by the system is version
8.0.3 and can be located in the /opt/csg directory tree. The scripts are portable and have been
tested upon both Linux and Solaris platforms.

There is a dependancy on version 8.0.3 by the incr package which is described below.
Upgrading TCL/Tk should only be done in conjunction with an upgrade of incr.

2.2 Incr
Incr is a third party package which extends standard TCL/Tk by adding object orientated
extensions into the language. The software provided with the NAOMI observer level
interface is object orientated based. Much of the software has been generalised and reduced to
classes to improve both maintenance and reusability.

The version of incr currently installed is version 3.0 which is the latest major release of the
software. The package is dependant on version 8.0.3 of TCL/Tk. The software is located in
the /opt/csg directory tree.

A later version of incr is slated for release sometime soon which is compatible with the later
releases of TCL/Tk.

2.3 BLT
This is a TCL extension developed by Bell Laboratories in the United States. It provides a
number of new widgets which can be used from TCL/Tk and is used most notably by the
performance seeing and FOV monitor classes to display the seeing trace and the FOV
monitor.

The current version of the software that is installed is version 2.4u and can be located in the
/opt/csg directories.

2.4 DRAMA
The standard message passing protocol adopted by the ING. The packet collection task has a
DRAMA interface so that it may be driven by the UltraDAS system in order to acquire
packets that it has been configured to collect.

The packet collection task currently uses DRAMA version 1.2b2 of the Dtcl package which
is located in the /opt/csg/lib directory tree.

2.5 EPICS
EPICS is used by the packet collection task in order to acquire packet information from
EPICS based embedded subsystems. In the case of the NAOMI observing software, the
packet collection task uses EPICS to retrieve header packets from INGRID.

The packet collection task uses version R3.12.2 of EPICS which is located in the directory
/opt/INGsoft/epics/R3.12.2.

– 5 –

WHT−NAOMI−17 NAOMI Developer Guide

2.6 Python
Python is used extensively throughout the embedded NAOMI system provided by Durham
and is their scripting language of choice. The API provided by Durham for remote client
access to the NAOMI sequencer and the Electra Process Monitor is coded in Python.
Subsequently the EPMDataServer is also coded in Python. Python is not used anywhere else
within the NAOMI observing level software.

The current version of Python being used is version 1.5.2 and can be located in the /opt/csg
directory tree.

2.7 Man2html
This is a utility which is used in the build process and is used to convert the manual pages
that have been written for each of the applications into HTML. The HTML files are
subsequently included into the online documentation provided as part of document WHT−
NAOMI−15.

The application can be found in the /opt/csg/bin directories.

– 6 –

WHT−NAOMI−17 NAOMI Developer Guide

Chapter 3. The System Architecture
This chapter describes in brief the purpose of each of the software components that make up
the NAOMI observing system, how they interact and a guide to the internal architecture of
each of the components.

3.1 An Overview
The following illustration outlines the architecture of the top level NAOMI software
developed at the ING and and data flows between the systems and subsystems.

A rectangle with a thick black line delimits a system boundary. Thin black lines indicate data
flows.

3.2 The EPMDataServer
The NAOMI system as provided by Durham and the ATC contains a number of embedded
computer systems. The interface to these embedded systems from a external client of
NAOMI is via the NAOMI Sequencer and the Electra Process Monitor (EPM). The NAOMI
Sequencer application was developed by the Durham team and is accompanied by a client
API that applications external to the NAOMI system can use to control the NAOMI system.
The Electra Process Monitor is used to store process state variables relating to the status of
the NAOMI system. The NAOMI client API also provides an interface to the EPM so that
clients can interrogate the status of the NAOMI system. In it’s present state, the API is
presented as a Python module which entails that any third party application must also be
coded in Python. It should be noted that at this point in time, there does not exists a DRAMA
interface to the NAOMI system.

In order to restrict the proliferation of yet another programming language within the ING, it
was decided to develop a single Python task that would act as a bridge between third party

– 7 –

El ectra Process
Monitor

INGRIDUl traDAS

TCS

PacketCol l ection
Command l ine

control
scripts

NaomiInterface

SeeingLogger

NAOMI Embedded
Systems

EPMDataServer
NAOMI
Sequencer

API
NAOMI
Sequencer

WHT−NAOMI−17 NAOMI Developer Guide

client applications and NAOMI using an interface which was neutral of the programming
language used. The result of these endeavours was the EPMDataServer, a Python based script
that uses the HTTP protocol to communicate with it’s clients. This has the following
advantages:

� It’s an open standard, HTTP libraries exist for many different programming languages and
are normally included as part of the distribution. All of the following programming
languages come complete with HTTP libraries; Python, Tcl and Java. Third party libraries
also exist for C/C++. Control can even be affected from a web browser.

� In the case of TCL, Java and Python, as the HTTP library comes complete with the
programming tool, no special installations are necessary in order to communicate with the
EPMDataServer.

� It is very flexible, the HTTP protocol is the language of the web, client applications can be
located anywhere on the global network.

3.3 Running the EPMDataServer
The interface to the NAOMI sequencer from the EPMDataServer requires the installation of
the Durham supplied GPM communication libraries to be installed upon the machine that
runs the EPMDataServer in order for the client API to communicate with the NAOMI
sequencer. At present only navis.ing.iac.es has the relevant libraries installed upon it.
Therefore, prior to starting any of the NAOMI Observing Software described in this
document, the developer must ensure that an instance of the EPMDataServer is running on
navis.ing.iac.es.

All EPMDataServer client software must be instructed to direct NAOMI related status/control
requests to navis.ing.iac.es. This may be done by setting the environment variable
NAOMIHOST to navis.ing.iac.es prior to starting any of the NAOMI observing software on
taurus. This is normally done by the obssys command when the observer selects the
observing system to use.

See document WHT−NAOMI−15 for information relating to starting and stopping the
EPMDataServer.

3.4 The EPMDataServer HTTP Client Inter face
Clients of the EPMDataServer request an action to be performed by the EPMDataServer
using the standard HTTP GET and POST protocols. The exact action to be performed is
specified by the URL specified by the client. The following subsections explain more clearly
the URLs which are supported by the EPMDataServer.

All accesses of the EPMDataServer should be addressed to port 40000 on the machine that is
hosting the EPMDataServer.

It should be noted that character case is significant in all HTTP transactions with the
EPMDataServer.

3.4.1 The NAOMI/Status GET Request
The purpose of this URL is to return a HTML document of MIME type text/html which
auto−refreshes and which can be requested and displayed from a standard web browser. It
will contain the current state of the EPMDataServer and Electra process variables from the
EPM. This is the easiest way of deducing whether the EPMDataServer is actually running
upon a machine. By default the page will update every 15 seconds. An optional suffix may be
appended to the URL in order to request that the page is not automatically refreshed. By

– 8 –

WHT−NAOMI−17 NAOMI Developer Guide

suffixing the URL with /on, the page returned by the HTTP server will continually refresh.
By suffixing the URL with /off, the page returned by the HTTP server will not continually
refresh.

The URL is as follows;

 http://<hostname>:40000:/NAOMI/status/[on|off]

The <hostname> should be the name of the host that has the EPMDataServer running upon it
. The easiest way to appreciate the mechanism employed is to ensure that the EPMDataServer
is running on navis.ing.iac.es and then type the following into the URL locator on any web
browser which will result in the status page being retrieved and displayed.

http://navis.ing.iac.es:40000:/NAOMI/status/on

The file that determines which of the EPM process variables are displayed in the status page
is located in the directory /opt/software/Electra/lib/keyword.epm on navis.ing.iac.es.

See section 3.4.7 for details of HTTP error responses which may be sent as a result of
executing this command.

Note : Case is significant when specifying the URL.

3.4.2 The NAOMI/status POST Request
The purpose of the HTTP NAOMI/Status POST request is to retrieve from the EPM data
server the values of the EPM variables that have been posted by the HTTP client. The URL
is as follows;

 http://<hostname>:40000:/NAOMI/status

The EPM variables that are to be returned by the EPMDataServer should be posted to the
server in the following manner;

<variable name>,<variable name>,<variable name>, ...

An example follows;

CorrectedSeeingEstimate,UncorrectedSeeingEstimate

Will result in the current values of the EPM variables CorrectedSeeingEstimate and
UncorrectedSeeingEstimate being returned by the EPMDataServer. The data will be returned
in the HTTP object returned by the EPMDataServer as type MIME type text/plain and in the
following format;

<variable name>\t<value>\n

<variable name>\t<value>\n

<variable name>\t<value>\n

....

An example of a document returned when the EPMDataServer is requested to return the
values for the CorrectedSeeingEstimate and UncorrectedSeeingEstimate process variables
follows;

CorrectedSeeingEstimate\t0.6\n

UncorrectedSeeingEstimate\t1.0\n

If a process variable is requested from the EPM that does not exist, the EPM will simply omit
the process variable from the document returned.

See section 3.4.7 for details of HTTP error responses which may be sent as a result of
executing this command.

– 9 –

WHT−NAOMI−17 NAOMI Developer Guide

Note : Case is significant when specifying the URL.

3.4.3 The NAOMI/command POST Request
The NAOMI/command POST request will be used by a HTTP client to instruct the
EPMDataServer to in turn instruct the NAOMI sequencer to execute a command. The
NAOMI sequencer provides a wide number of commands which allow various actions to be
performed within the NAOMI subsystem. For example, the NAOMI sequencer provides a
command OpenWFSloop() which allows the WFS control loop to be opened. An exhaustive
list of the commands which are supported by the NAOMI sequencer can be found in the
document WHT−NAOMI−16.

The details of the URL request to be made to the EPMDataServer from a client in order to
initiate an action in the NAOMI sequencer are as follows;

 http://<hostname>:40000:/NAOMI/command/<NAOMI sequencer command>

The <hostname> should be the name of the machine that has the EPMDataServer running
upon it.

The <NAOMI sequencer command> should be the name of the command inside of the
NAOMI sequencer that should be executed. For example, the <NAOMI sequencer
command> would be in the case of a client wanting to open the WFS control loop,
OpenWFSloop. The URL would therefore be as follows if the EPMDataServer was running
on navis.ing.iac.es;

http://navis.ing.iac.es:40000/NAOMI/command/OpenWFSLoop

In some cases the actual commands to be executed on the sequencer require arguments to be
specified. Command arguments for NAOMI sequencer commands can be specified in the
POST request sent by the HTTP client in the following manner;

<argument> \̂t<argument> \̂t<argument> \̂t

The argument separator token is the character pair ^ \t. The arguments are subsequently
passed to the NAOMI sequencer command in the order that they were specified in the POST
request.

The EPMDataServer will return a HTTP object of MIME type text/plain in response to a
NAOMI/command request. The format of this response will be as follows;

CommandStatus\t<Current command status>\n

StatusReturned\t<Status returned>\n

ErrorMessage\t<Error message>\n

ErrorStatus\t<Error status>\n

Tag\t<Tag name>\n

If the command is initiated successfully by the NAOMI sequencer, a tag will be returned
which will be an index to a variable in the EPM which will be subsequently be used by the
client in order to track the progress of the command in the NAOMI sequencer. This tag will
not be created in the event that the command could not be started by the NAOMI sequencer.

The semantics associated with the status variables outlined in this response are outlined in
greater detail in the document WHT−NAOMI−16.

See section 3.4.7 for details of HTTP error responses which may be sent as a result of
executing this command.

Note : Case is significant when specifying the URL.

– 10 –

WHT−NAOMI−17 NAOMI Developer Guide

3.4.4 The NAOMI/CommandStatus POST Request
The NAOMI/CommandStatus POST request will be used by a client in order to ascertain the
progress of a command that it might have previously initiated in the NAOMI sequencer. The
URL associated with this request is as follows;

 http://<hostname>:40000:/NAOMI/CommandStatus

Where <hostname> is the name of the machine that is currently hosting the EPMDataServer.

The client should post as part of the HTTP request, the name of a tag (see section 3.4.3 for
more information about command tags) associated with a command currently running in the
NAOMI sequencer. The EPMDataServer will use this to index and return the correct
command status information in the EPM process monitor.

If the command tag is found in the EPM, the EPMDataServer will return a HTTP object of
MIME type text/plain describing the current state of the command associated with the tag.

The response will be in the following format;

CommandStatus\t<Current command status>\n

StatusReturned\t<Status returned>\n

ErrorMessage\t<Error message>\n

ErrorStatus\t<Error status>\n

Tag\t<Tag name>\n

The ordering of the status variables in the response cannot be guaranteed by the
EPMDataServer.

The semantics associated with the status variables outlined in the response are outlined in
greater detail in the document WHT−NAOMI−16.

See section 3.4.7 for details of HTTP error responses which may be sent as a result of
executing this command.

3.4.5 The NAOMI/FreeStatus POST Request
The NAOMI/FreeStatus HTTP POST request will be used to instruct the EPMDataServer that
the client is no longer interested in the command status data associated with the command tag
specified by the HTTP POST request.

The EPMDataServer will simply return an empty header of MIME type text/plain in
response to the command tag being successfully deleted from the EPM with a HTTP return
code of 200.

See section 3.4.7 for details of HTTP error responses which may be sent as a result of
executing this command.

Note : Case is significant when specifying the URL.

3.4.6 The NAOMI/debug/on and NAOMI/debug/off GET Request
The NAOMI/debug/on and the NAOMI/debug/off commands can be used to instruct the EPM
data server to enable or disable the production of debug trace information. Trace information
will be written to the syslog.

See section 3.4.7 for details of HTTP error responses which may be sent as a result of
executing this command.

Note : Case is significant when specifying the URL.

– 11 –

WHT−NAOMI−17 NAOMI Developer Guide

3.4.7 EPMDataServer HTTP Return Codes
By default, if a request is serviced by the EPMDataServer without error, a HTTP code of 200
is returned.

The EPMDataServer in the case that an error is encountered whilst it is attempting to service
a HTTP request, returns to the HTTP client one of the following HTTP error codes.

HTTP Error Code Error Text

502 Comms error communicating with NAOMI EPM

503 Unidentified NAOMI request received

504
Exception raised when NAOMI sequencer command

executed, command failed

505 The NAOMI sequencer does not recognise the command

506
NAOMI sequencer unable to fork and execute the

command, seek expert assistance

507
NAOMI sequencer unable to execute command,

command already in progress

508 Unknown status returned from the NAOMI sequencer

509 NAOMI Sequencer logic error, no status returned

510
Unable for EPM Data server to talk to NAOMI

sequencer

511 Command tag not found in NAOMI sequencer

3.4.7.1 The 502 Error Response
The 502 response is returned when there is an attempt using the NAOMI/status POST request
to access status information in the EPM but the EPMDataServer could not communicate with
the EPM due to a communications problem.

The probable cause for this error is that the EPM is not running or there was a network error.

3.4.7.2 The 503 Error Response
A client has sent a unidentified HTTP request to the server. This may be due to either
complete rubbish being set down to the EPMDataServer as part of the URL or there is a
discrepancy in the character case of the URL being used to access the server.

3.4.7.3 The 504 error Response
When the NAOMI sequencer attempted to execute the NAOMI sequencer command
requested by a HTTP client, the command raised a Python based exception in the sequencer.
This may be due to either an internal failure of the remote command being executed by the
sequencer or that an incorrect number of arguments have been specified for the command.

This response covers a whole multitude of failures in the execution of a remote command in
the NAOMI sequencer.

– 12 –

WHT−NAOMI−17 NAOMI Developer Guide

3.4.7.4 The 505 Error Response
If the command that a HTTP client has requested the EPMDataServer to execute in the
NAOMI sequencer does not exist, a 505 HTTP error response will be returned.

3.4.7.5 The 506 Error Response
This error will be returned in the event of a remote HTTP client attempting to start a
command in the NAOMI sequencer via the EPMDataServer but the NAOMI sequencer is
unable to create a new process in order to execute it.

This is a serious error in the NAOMI sequencer and will need manual intervention to resolve.

3.4.7.6 The 507 Error Response
This response will be returned when a remote HTTP client attempts to start a command in the
NAOMI sequencer which is already running.

For example, if the NAOMI sequencer has been requested to point the telescope at a new
source and whilst the action is in progress, a second request to move the telescope arrives at
the NAOMI sequencer, the 507 error response will be returned to indicate that the sequencer
was unable to execute the command as the action was already in progress.

3.4.7.7 The 508 Error Response
The NAOMI sequencer API that is used by the EPMDataServer to communicate with the
EPM and the sequencer returns a status value after the execution of some of the API
functions. This status response is a higher level status response and relates more to the ability
of the API to execute the request being made of it rather than the lower level error responses
which are returned directly from the NAOMI sequencer or the EPM.

The 508 response is returned if the EPMDataServer receives a status response from the API
that it does not recognise.

3.4.7.8 The 509 Error Response
If a remote HTTP client requests the EPMDataServer to execute a command in the NAOMI
sequencer API that it expects a status from and it gets none, the EPMDataServer returns a
509 response to the client.

3.4.7.9 The 510 Error Response
The 510 error is sent in response to a remote HTTP client attempting to start a command in
the NAOMI sequencer but the EPMDataServer was unable to communicate with the NAOMI
sequencer.

This will be due to the NAOMI sequencer not running or a network failure.

3.4.7.10 The 511 Error Response
A remote HTTP client has requested the EPMDataServer to return the command status
associated with a tag that could not be found in the EPM.

– 13 –

WHT−NAOMI−17 NAOMI Developer Guide

3.5 The seeingLogger Task
The purpose of this application is to poll the EPM via the EPMDataServer at a specified
interval and read out estimates from NAOMI for the corrected and uncorrected seeing. The
values are then written to a seeing trace file which by default is stored in
/wht/var/seeingLogs. More details relating to the structure of this file can be found in the
document WHT−NAOMI−15.

The seeing trace files can then be subsequently used by other applications. Once such
application is the naomiInterface program which reads and plots the seeing data written to
this file in the seeing performance trace monitor.

The script is developed in TCL and incr and makes much use of the general purpose OCS
support classes that have been identified and created throughout the development of the
NAOMI observing software.

The seeingLogger will be started automatically when the observing system is started by the
observer.

The source code for the seeingLogger application can be found in the directory
src/seeingLogger in the source tree.

3.6 The packetCollection Task
This is script developed using TCL and incr whose primary function is to, when commanded
by UltraDAS, retrieve header packets from the system described in it’s configuration file and
create packet files.

The packetCollection task initiates the collections of headers when it receives an
ARCHIVE_B or ARCHIVE_E request upon it’s DRAMA interface. If it is configured to
collect headers from an EPICS based system, it uses the channel access/EPICS TCL
extension in order to retrieve the packets from the target system. The packetCollection task
contains extra logic which enables it to collect headers from NAOMI via the
EPMDataServer.

The source for the packetCollection can be found in the directory src/packetCollection in the
source tree.

An instance of the packetCollection collection configured for packet collection from both
NAOMI and INGRID will be started when the observer starts the observing system. Every
instance of the packetCollection must register itself upon the DRAMA network and the
adopted convention that was agreed is as follows;

<Instrument Name|Camera Name>PKT

For example in the case of the INGRID packet collection task, the name the task is expected
to register itself with DRAMA is as follows;

INGRIDPKT

There must also be a corresponding entry in the UltraDAS configuration files which instruct
UltraDAS to collect headers from this task after performing an integration.

More details relating to the packetCollection task can be found in the document WHT−
NAOMI−15.

3.7 The LyotStopAngleUpdate Application
This application is part of the OSCA CVS project and it’s purpose is to automatically update
the angle position of the Lyot Stop as the parallatic angle of the telescope changes. The
application is started as part of the observing system and then registers itself with the TCS as

– 14 –

WHT−NAOMI−17 NAOMI Developer Guide

a monitor of the telescope position. When the parallatic angle of the telescope changes, the
angular position of the Lyot Stop is recalculated and the mechanism is subsequently moved.
The automatic update of the mechanism can be enabled and disabled through the use of a
DRAMA action which the server exports, the details of which are outlined in the next
subsection.

3.7.1 LyotStopAngleUpdate DRAMA Features
The LyotStopAngleUpdate daemon can be controlled externally through it’s DRAMA
interface. The daemon presents the DRAMA client with a number of the DRAMA actions.
The name of the application on the DRAMA messaging system is LyotStopAngleUpdate

3.7.1.1 The STOPUPDATE Action
This action can be invoked in order to stop the automatic update of the Lyot Stop position
depending on the parallatic angle of the TCS. The action takes no arguments.

3.7.1.2 The STARTUPDATE Action
This action can be invoked in order to start the automatic update of the Lyot Stop depending
on the parallatic angle of the TCS. The action takes no arguments.

3.7.1.3 The UPDATEANGLEOFFSET Action
This action can be used to update the engineering constant which is derived by the OSCA
engineers and is used as part of the calculation of the Lyot Stop angle. The action expects a
single argument expressed as a float. The value will be subsequently stored in the WHTOCS
database and as such will be maintained across restarts of the system. When the value is
changed, an entry will be made in the syslog to that effect.

3.7.1.4 The LYOTUPDSTAT Parameter
The system exports a single SDS structure called LYOTUPDSTAT which contains two
values called UpdateStatus and OffsetAngle. The former is the current status of the
automatic updating of the Lyot Angle which can be set to either Update or NoUpdate. The
OffsetAngle holds the current engineering constant used in the calculation of the Lyot stop
angle offset.

3.8 The naomiInterface Application
This script is developed using TCL, BLT and incr and it is the main GUI through which the
observer will interact with the NAOMI system. The application has been heavily abstracted
and the actual naomiInterface script is very small. It does however draw on the functionality
of nearly all of the classes that have been developed to support both the OCS and NAOMI.

The source for the naomiInterface application can be found in the directory
src/naomiInterface in the source tree.

3.9 The command line scr ipts
There are a number of scripts which may be executed from the command line which can be
found in the directory src/scriptCommands in the development tree. All of the scripts have
been developed in both TCL and incr. The purpose of the scripts is to allow the observer to

– 15 –

WHT−NAOMI−17 NAOMI Developer Guide

create observation scripts which include the functionality offered by the adaptive optics
system, the INGRID instrument and the UltraDAS data acquisition system.

The scripts use many of the classes that have been developed in order to support the OCS and
NAOMI in particular. Communication with the NAOMI sequencer is achieved via the
EPMDataServer.

The dither script deserves a special mention. This script coordinates both actions in NAOMI
and UltraDAS in order to achieve it’s goal of performing a dithered observation using the
adaptive optics system and the INGRID camera. Each point in the dithered observation
translates to a small telescope offset being performed which is accomplished by sending
commands to the NAOMI sequencer via the EPMDataServer which in turn results in the
appropriate DRAMA commands being sent to the TCS in order to perform the slow offset.
Once the slow offset has been applied, the script then instructs UltraDAS to perform an
integration using the UltraDAS run command line script.

The script iterates through this cycle until all of the points in the dithered observation
specified have been completed.

More details relating to the various command line scripts that accompany the NAOMI
observing software can be found in the document WHT−NAOMI−15.

– 16 –

WHT−NAOMI−17 NAOMI Developer Guide

Chapter 4. The Class Packages
Much of the NAOMI observer level software has been abstracted into classes. Groups of
related classes have been assembled conveniently into packages. The package is a standard
device used in TCL to load extensions into the interpreter. Packages are loaded into the
interpreter using a construct similar to the following :

package require Http

The above construct would instruct the TCL interpreter to attempt to find the package Http
somewhere in the list of directories specified by the TCLLIBPATH environment variable.

In the case of the packages associated with the NAOMI observing system, the directory

/wht/<system>/lib/classLibrary

should be added to the TCLLIBPATH so that when one of the applications that comprise
the NAOMI observer software requests a package released as part of the NAOMI observer
level software, it finds the package associated with the current release of the observing
system. By default the installation mechanism associated with the NAOMI observer level
software installs it’s packages into the above directory.

The packages are located underneath the directory src/classLibrary in the development tree.

The following sections outline the various packages that are installed as part of the release
and include a brief description of the purpose of each of the classes that comprise them.

4.1 The ICSSupport Package
This package contains a number of classes which were identified as having a potential
functional scope outside of the NAOMI system.

4.1.1 The ErrorHandling Class
This provides the consumer of the class with a standard interface for reporting debug, error
and informational information relating to the operation of the consumer task. The class
includes an interface to the syslog so that messages reported by the consumer class will be
routed to the syslog as well as optionally to stdout and if specified, a text widget supplied to
the class by the consumer. The final option is only open to TCL/Tk based applications rather
than pure TCL applications.

All TCL based NAOMI observer level software use this class for the reporting of
informational and error messages. The class uses the OCSgp package (see section 4.5) for it’s
interface to the syslog.

4.1.2 The HTTPInterface Class
This class forms that backbone of all TCL based NAOMI observer level software which
needs to communicate with the EPMDataServer. The class provides methods which allow a
consumer to request HTTP objects from a remote server in a simple and effective manner.

4.1.3 The GeneralPurpose Class
This class provides a number of static methods therefore there is no need for a consumer of
this class to instantiate this class. The class is a place holder for a set of general non−specific
methods would could not be logically grouped together.

– 17 –

WHT−NAOMI−17 NAOMI Developer Guide

4.1.4 The SingleFieldEntry Class
This class provides the consumer with the means to create a self contained dialogue window
which allows the user to enter a data item of a specified data type. Once the user
acknowledges the dialogue window, the class then validates the user input and returns to the
consumer the value the user entered.

4.2 The ICSGUISupport Package
This package will contain a set of general purpose of classes that may be used to used to help
with the construction of graphical user interfaces. This package will grow as the ICS
develops.

4.2.1 The DRAMADialControl Class
This generic class provides a dial control provided by the vu widget set. The range of the dial
can be specified as well as a mapping between engineering and logical units. Buttons
associated with the control can be used to initiate a DRAMA action on a specified DRAMA
server. The class also provides the user with the ability to associate a status DRAMA
parameter with the control so it can reflect the movement status of the associated mechanism.

The class is a subclass of the EPICSDialControl class.

4.2.2 The EPICSDialControl Class
This generic class provides a dial control provided by the vu widget set. The range of the dial
can be specified as well as a mapping between engineering and logical units. Buttons
associated with the control can be used to update a EPICS PV. The class also provides the
user with the ability to associate a status PV with the control so it can reflect the movement
status of the mechanism.

4.2.3 The EPICSButtonControl Class
This generic widget control class provides a series of buttons which can be used to offer the
user with a finite number of options which can be selected for a particular mechanism. For
example it can be used to specify position of a filter wheel. Buttons associated with the
control can be used to update a EPICS PV. The class also provides the user with the ability to
associate a status PV with the control so it can reflect the movement status of the mechanism.

A number of options exist to configure the widget including the use of the WHTOCS
RDBMS.

A mapping may be specified to map engineering units to logical units and vice versa.

4.2.4 The DRAMAButtonControl Class
This generic widget control class provides a series of buttons which can be used to offer the
user with a finite number of options which can be selected for a particular mechanism. For
example it can be used to specify position of a filter wheel. Buttons associated with the
control can be used to initiate a DRAMA action. The class also provides the user with the
ability to associate a DRAMA parameter with the control so it can reflect the movement
status of the mechanism.

A number of options exist to configure the widget including the use of the WHTOCS
RDBMS.

A mapping may be specified to map engineering units to logical units and vice versa.

– 18 –

WHT−NAOMI−17 NAOMI Developer Guide

This class is a subclass of the EPICSButtonControl class.

4.2.5 The INGStatusDisplayWidget Class
This class provides the consumer with a labelled text field dedicated to displaying status. The
class is complete with methods for setting the status field and indicating whether the status
displayed in the field is good or bad.

4.3 The NAOMISupport Package
This package consists of a number of classes created specifically to support the NAOMI
observer level software. The classes contained in this package are detailed in the following
sections.

4.3.1 The NAOMICommand Class
This class provides the consumer with the facility to execute commands within the NAOMI
sequencer. It is used by all clients in the observing level software to execute commands in the
NAOMI sequencer. The class itself is a consumer of the HTTPInterface class (see section
4.1.2) which it uses to communicate with the EPM and the NAOMI sequencer via the
EPMDataServer.

Commands that are executed in the NAOMI sequencer are assigned a tag which is
subsequently used for monitoring of the command’s progress.

If the command was issued synchronously, control will not be passed back to the consumer
until the command fails, completes or until a specified time−out is reached.

If the command is executed asynchronously, control is returned to the consumer as soon as
the command is initiated in the NAOMI sequencer. The NAOMICommand will then track the
progress of the command in the background and when the command completes, times−out or
fails, either an internal default command completion callback will be called or a callback that
was specified by the consumer in the initial call to the NAOMICommand class which resulted
in the execution of the command in the NAOMI sequencer. When a command is issued
asynchronously and a command status tag is returned, the class adds the tag to the command
tag pool. The tag pool is used to store the details of all of the tags associated with commands
that have been issued asynchronously and are still running within the NAOMI sequencer. The
class intermittently in the background, for each tag present in the pool, queries the EPM in
order to establish if the command has completed or not. Once a command is detected as being
completed, the tag is removed from the tag pool and the specified command completion
callback is called.

Details of the commands that may be issued in the NAOMI sequencer though the use of the
NAOMICommand class are outlined in section 3.4.

4.3.2 The NAOMIFOVMonitor Class
This class describes the FOV status page displayed by the naomiInterface task (see section
3.8) . It contains all of the methods necessary to build the FOV display page, maintain the
FOV status and to command NAOMI to move the WFS probe. The class completely
encapsulates the functionality of the FOV display and as a consequence, could be easily
integrated into other third party applications.

– 19 –

WHT−NAOMI−17 NAOMI Developer Guide

The class is reliant on a number of other classes which are provided as part of the NAOMI
observing system such as the HTTPInterface and NAOMICommand support classes. The
packages which contain dependencies are loaded as part of the package load sequence.

4.3.3 The NAOMIGSFile Class
This class describes the guide star selector page contained within the naomiInterface
application (see section 3.8). The class provides the means to create the guide star selector
page, to load guide stars and science objects from user prepared files and finally to position
the telescope and the WFS probe.

The class is reliant on a number of other classes which are provided as part of the NAOMI
observing system such as the HTTPInterface and NAOMICommand classes. The packages
which contain the dependencies are loaded as part of the package load sequence.

4.3.4 The NAOMIOSCAControl Class
This class describes the OSCA control page contained within the naomiInterface class. The
class provides control over the three mechanisms which constitute OSCA in addition to
control over the LyotStopUpdate daemon. Using the control page, the user can deploy OSCA,
set the Lyot Stop to any valid angular position and select any of the masks in the mask wheel.
The LyotStopUpdate daemon can be instructed to not automatically update the Lyot angle
and offers the user the ability to set the engineering constant which is used in the calculation
of the lyot angle.

4.3.5 The NAOMIImageGrab Class
This class was designed to offer the user the ability to acquire guide stars by taking a camera
image and allowing the user to position the WFS pickoff probe by simply clicking upon the
desired guide star. In addition the class offers some rudimentary image processing features to
enhance the image such histogram equalisation as well contrast and brightness adjustment.
This class makes use of a third party application called ImageMagick which is used to
perform some of the image processing. The class has to perform conversion between various
images types in order to accomplish it’s goals. The raw camera image must be converted to
FITS before being submitted to ImageMagick and to GIF before it can be displayed by the
application.

The class creates a Tk Frame which contains all of the GUI controls for this feature. The
calling class should pack this frame into a container frame which in the case of the NAOMI
system, is performed by the naomiInterface application.

4.3.6 The NAOMIPerformanceMeter Class
This class describes the seeing performance meter page contained within the naomiInterface
application (see section 3.8). The class provides the means to create a seeing trace display,
load in seeing trace files which have been created by the seeingLogger (see section 3.5) and
trace any new seeing data written to the currently monitored trace file upon the display.
Furthermore the class provides windowing functionality so that the observer can change both
the time window of the data displayed and zoom in on parts of the trace which are of
particular interest.

The class is reliant on a number of other classes which are provided as part of the NAOMI
observing system such as the HTTPInterface and NAOMICommand classes. The packages
which contain the dependencies are loaded as part of the package load sequence.

– 20 –

WHT−NAOMI−17 NAOMI Developer Guide

4.3.7 The NAOMIStatusDisplay Class
This class describes the status panel display which is located at the foot of the main
naomiInterface application (see section 3.8). The class provides the means to create a status
panel which reflects some of the core NAOMI process status variables of most interest to the
astronomer and to maintain the status display.

The class is reliant on a number of other classes which are provided as part of the NAOMI
observing system such as the HTTPInterface and NAOMICommand classes. The packages
which contain dependencies are loaded as part of the package load sequence.

4.4 The PacketCollection Package
This package contains a single class necessary to perform package collection duties for
UltraDAS (see section 3.4.3). It is used primarily by the packetCollection task.

4.4.1 The PacketCollection Class
This class is loaded by the packetCollection task and it’s main purpose is to retrieve from
either an EPICS or an EPM based system, headers which are required by UltraDAS in order
to create it’s FITS files.

The class is reliant on a number of different modules being available such as the
HTTPInterface class and the EPICS channel access TCL extension.

4.5 The OCSgp Package
The package consists of an ANSI C based shared library which is loaded dynamically into the
the TCL interpreter at run−time. The library provides the TCL interpreter with a number of
new commands which enable it to communicate with the syslog and to execute SLALIB
commands.

– 21 –

WHT−NAOMI−17 NAOMI Developer Guide

Chapter 5. Building and Installing the Project
This chapter outlines how the developer can accomplish the building and installation of the
project. It also outlines the environment variables that influence the build and installation
procedures.

5.1 The Environment
The environment must be set up correctly in advance of any development work or
installation being undertaken. The following commands need to be executed from the
command line so that it will install and build correctly.

/ opt / csg/ bi n/ bash
cd <t op l evel di r ect or y of pr oj ect >
. set upEnvi r onment

Line 1

Starts the bash(1) shell, this is a POSIX compliant shell that I have a personal preference for
and must be used when performing builds and installations throughout the project. All shell
programming performed throughout the project has been based upon the bash shell and it is
not compatible with the csh.

Line 2

Changes the current directory to be that of the top level directory of the project.

Line 3

Sources a script which sets up a number of environment variables which are used throughout
the project.

The following environment variables will be set up by the setupEnvironment script.

5.1.1 The MAKEINCLUDEDIR Var iable
The MAKEINCLUDEDIR variable holds the name of the directory that contains all of the
make include files. Many of the make files included in the project include one of the two
master makefiles which themselves contain all of the logic necessary to rebuild and install
targets specified by the makefile.

5.1.2 The PYTHONPATH Var iable
The PYTHONPATH variable is used to indicate to the Python interpreter additional
directories to look in when searching for modules that may have been imported by a Python
script. Modification of this variable is necessary so that the EPMDataServer can pick up the
NAOMI Sequencer API stub toolkit which was provided by Durham to assist in the
development of the software in the absence of the actual hardware being present at the ING.

After commissioning is complete and NAOMI is on−site, the software should be able to use
the actual API rather than the stub tool kit. The only software component that this
environment variable influences is the EPMDataServer software.

5.1.3 The TCLLIBPATH Var iable
The TCLLIBPATH variable is used to indicate to the TCL interpreter additional directories
to look in when searching for packages (see chapter 4) that may have been imported by a
TCL script.

– 22 –

WHT−NAOMI−17 NAOMI Developer Guide

By default, the additional directories which are included are the /opt/csg directories, the
/wht/lib/itclCA directories which contain the extra classes that have been provided to
facilitate EPICS channel access and the classL ibrary directory in the development tree
which contains all of the development classes which are used by the various components of
the system.

5.1.4 The PATH Var iable
The PATH variable is modified in order that the /opt/csg/bin and the src/scr iptCommands
directories are placed at the head of the command search path.

5.1.5 The PREFIX Var iable
The standard makefile variable PREFIX is set to the root directory of the installation tree
which in the case of the WHT observing system is /wht. This variable is used by the
makefiles when installing the project.

5.1.6 The OBSERVING_SYSTEM Var iable
The OBSERVING_SYSTEM variable is used by the makefiles in order to instruct them
where to install the project. This variable should be set to the name associated with the
current observing system that the developer wants to build the system to. For example, this
could be s9−2.

5.2 Building the Project
A build of the entire project tree can be accomplished by executing the following command
in the top level directory of the project;

make al l

This will result in the make program iterating throughout all of the project development sub−
directories attempting to build each of the target directories.

Individual sub−directories can also be rebuilt by changing to the directory in question and
executing the following command

make al l

from within the directory.

5.3 Installing the Deliverables
In order to install executables and manual pages that form part of the deliverable for the
project, the following command needs to be executed from the top level directory of the
project. It should be noted that in order to install software into the /wht tree, the user must
have be whtsm.

make i nst al l

This will result in the make program iterating throughout all of the project development sub−
directories attempting to install targets specified by the makefiles in each of the target
directories.

Individual sub−directories can also be installed by changing to the directory in question and
executing a

make i nst al l

– 23 –

WHT−NAOMI−17 NAOMI Developer Guide

from within the directory.

It should be noted that there is no implicit make all executed on the directories ahead of a
make install due to the different permissions required for both operations.

The root directory of the installation is defined by the PREFIX and
OBSERVING_SYSTEM environment variables outlined in sections 5.1.5 and 5.1.6. These
two variables should be set up as part of the setupEnvironment script outlined in section 5.1.

5.4 Installing the documentation
The manual pages provided by installation are installed as part of the install target. There is
however on−line HTML documentation which can be installed. This documentation can be
found in the sub−directory docs of the main development tree.

Online documentation can be installed by executing the following command from the Unix
command line prompt from the top level directory of the project.

make i nst al l −docs

This must be done as user docs as the makefile attempts to install the documentation into the
standard CSG online documentation directories.

– 24 –

