PMCspan PMC Adapter Carrier Module Installation and Use

PMCSPANA/IH2

Notice

While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about Motorola products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282

Preface

The *PMCspan PMC Adapter Carrier Module Installation and Use* manual provides the following information for the PMCspan:

- **□** Hardware preparation and installation instructions
- Operating instructions
- □ A functional description
- □ Interfacing information and data

This manual is intended for anyone who wants to supply OEM systems, add capability to an existing compatible system, and/or work in a lab environment for experimental purposes. A basic knowledge of computers and digital logic is assumed.

After using this manual, you may wish to become familiar with the publications listed in Appendix A.

© Copyright Motorola, Inc. 1999 All Rights Reserved

Printed in the United States of America February 1999

Safety Summary Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the equipment. Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of the equipment in your operating environment.

Ground the Instrument.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in the presence of flammable gases or fumes. Operation of any electrical equipment in such an environment constitutes a definite safety hazard.

Keep Away From Live Circuits.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other qualified maintenance personnel may remove equipment covers for internal subassembly or component replacement or any internal adjustment. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.

Do not attempt internal service or adjustment unless another person capable of rendering first aid and resuscitation is present.

Use Caution When Exposing or Handling the CRT.

Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should be done only by qualified maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local Motorola representative for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. You should also employ all other safety precautions which you deem necessary for the operation of the equipment in your operating environment.

To prevent serious injury, use extreme caution when handling, testing, and adjusting this equipment. Dangerous voltages, capable of causing death are present. All Motorola printed wiring boards (PWBs) are manufactured by UL-recognized manufacturers, with a flammability rating of 94V-0.

This equipment generates, uses, and can radiate electro-magnetic energy. It may cause or be susceptible to electro-magnetic interference (EMI) if not installed and used in a cabinet with adequate EMI protection.

If any modifications are made to the product, the modifier assumes responsibility for radio frequency interference issues. Changes or modifications not expressly approved by Motorola Computer Group could void the user's authority to operate the equipment.

European Notice: Board products with the CE marking comply with the EMC Directive (89/336/EEC). Compliance with this directive implies conformity to the following European Norms:

EN55022 (CISPR 22)Radio Frequency InterferenceEN50082-1 (IEC801-2, IEC801-3, IEC801-4)Electromagnetic ImmunityThe product also fulfills EN60950 (product safety) which is essentially the requirement

for the Low Voltage Directive (73/23/EEC).

This board product was tested in a representative system to show compliance with the above mentioned requirements. A proper installation in a CE-marked system will maintain the required EMC/safety performance.

For minimum RF emissions, it is essential that you implement the following conditions:

1. Install shielded cables on all external I/O ports.

2. Connect conductive chassis rails to earth ground to provide a path for connecting shields to earth ground.

3. Tighten all front panel screws.

The computer programs stored in the Read Only Memory of this device contain material copyrighted by Motorola Inc. and may be used only under a license such as those contained in Motorola's software licenses.

The software described herein and the documentation appearing herein are furnished under a license agreement and may be used and/or disclosed only in accordance with the terms of the agreement.

The software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law.

No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means without the prior written permission of Motorola, Inc.

Contents

CHAPTER 1 Introduction

Product Overview	-1
PMCspan Models1	-1
PMCspan Features	-5
Electrical Requirements1	
Product Reliability (MTBF)1	
VME Processor/PMCspan System1	-6

CHAPTER 2 Hardware Installation

Introduction	2-1
Packaging	2-1
ESD Precautions	
Installing PMC Adapters	2-2
Installing a PMCspan-001 or PMCspan-002	2-4
Installing a PMCspan-010	2-9

CHAPTER 3 Functional Description

Introduction	3-1
PCI-to-PCI Bridge Chip	3-1
On-Board 3.3 Volt Power Supply	
PMC Interface	3-4
PCI Expansion	3-4
Secondary Expansion	
Clock Configuration	3-5
PMC Present Signals	3-5
Front Panel LEDs	3-5
PMC Performance	3-5

CHAPTER 4 Programming Model

Introduction	1
21150 Configuration Registers	1
Configuration Transactions	1
Type 0 Configuration Cycles4-3	3
Type 1 Configuration Cycles4-3	3
Type 1 to Type 1 Forwarding4-4	4
Special Cycles	4
PMC Interrupts	5
PMC Clock, Request, Grant Assignment	9
PMC Present Signal Assignment	9

CHAPTER 5 Connectors

Introduction	
VMEbus Connectors (P1/P2)	
PMC Slot Connectors (J11/J12/J14) (J21/J22/J24)	
PMCspan-001/-002 PCI Expansion Connector (P4/P5)	
PMCspan-001/-002 Secondary PCI Bus Connector (J3)	
PMCspan-010 PCI Bus Connector (P3)	

APPENDIX A Related Documentation

Related SpecificationsA-1

FIGURES

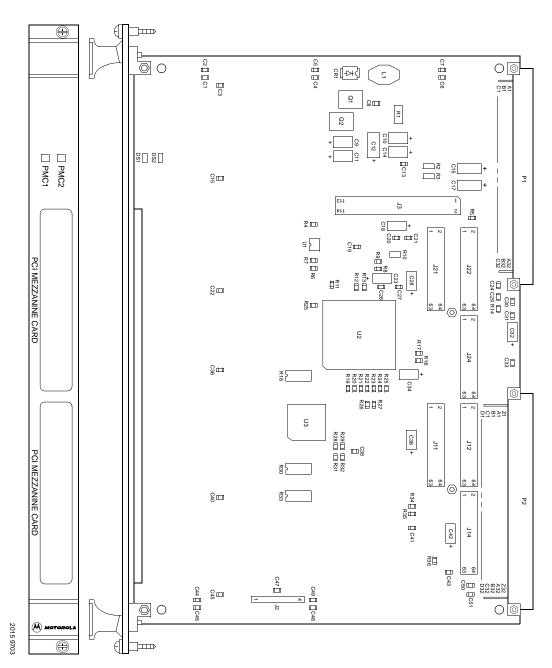
Figure 1-1. PMCspan-001 Component Side and Front Panel	
Figure 1-2. PMCspan-002 Component Side and Front Panel	
Figure 1-3. PMCspan-010 Component Side and Front Panel	
Figure 1-4. VME Processor/PMCspan System Diagram	
Figure 2-1. PMC Module Placement on PMCspan	
Figure 2-2. PMCspan-001 Installation on an MVME3600	
Figure 2-3. PMCspan-002 Installation on an MVME2300	
Figure 2-4. PMCspan-010 Installation onto a PMCspan-001/002	
Figure 3-1. PMCspan-001/-002 Block Diagram	
Figure 3-2. PMCspan-010 Block Diagram	
Figure 4-1. 21150 PCI Configuration Registers	
Figure 4-2. PMCspan Interrupt Routing for MVME2600/3600/4600	
Figure 4-3. PMCspan Interrupt Routing for MVME2300	
Figure 4-4. Serial Clock Mask	

TABLES

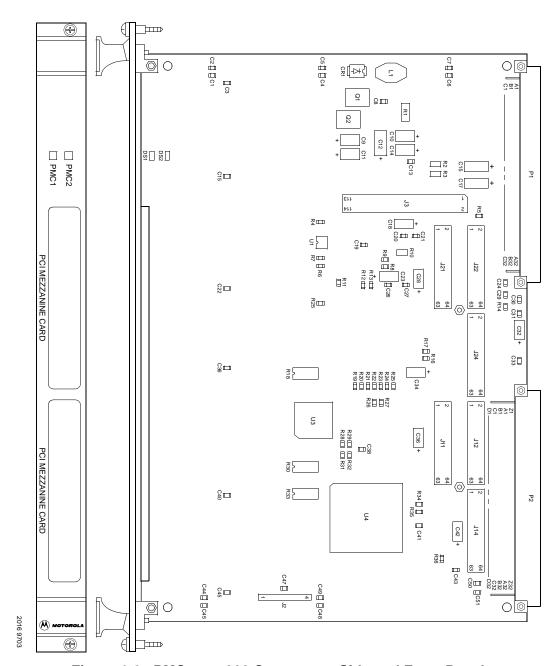
Table 3-1. PowerPC 60x Bus to PMCspan PMC Access Timing	
Table 3-2. PMCspan PMC to ECC Memory Access Timing	3-7
Table 4-1. Secondary Device Number to IDSEL Mapping	4-4
Table 4-2. PMC Interrupt Routing	
Table 4-3. PMC Clock, Request, Grant Assignments	4-9
Table 4-4. PMC Present to GPIO Assignments	4-10
Table 5-1. VME P1 Connector Pin Assignments	5-1
Table 5-2. VME P2 Connector Pin Assignments	5-3
Table 5-3. PMC J11 Connector Pin Assignments	5-5
Table 5-4. PMC J12 Connector Pin Assignments	5-6
Table 5-5. PMC J14 Connector Pin Assignments	5-7
Table 5-6. PMC J21 Connector Pin Assignments	5-8
Table 5-7. PMC J22 Connector Pin Assignments	5-9
Table 5-8. PMC J24 Connector Pin Assignments	5-10
Table 5-9. PMCspan-001/-002 P4/P5 Connector Pin Assignments	5-11
Table 5-10. PMCspan-001/-002 J3 Connector Pin Assignments	5-13
Table 5-11. PMCspan-010 P3 Connector Pin Assignments	5-15

1

Product Overview


PMCspan is a PMC carrier module that provides PCI expansion capability for an MVME2300/MVME2600/MVME2700/MVME3600/ or MVME4600 host VME processor module. The PMCspan has two PMC slots which support either two single-wide PMC adapters or one doublewide PMC adapter. Two PMCspan modules can be stacked on a host VME processor, allowing up to four additional PMC adapters.

PMCspan Models


There are three PMCspan models:

- PMCspan-001: Primary PMC Carrier Module that attaches to the MVME2600/2700/3600/4600 and provides two PMC slots. It includes a DEC 21150 PCI-to-PCI bridge chip with 32-bit PCI support and accepts a PMCspan-010 Secondary PCI Expansion Module.
- PMCspan-002: Primary PMC Carrier Module that attaches to the MVME2300 and provides two PMC slots. It includes a DEC 21150 PCI-to-PCI bridge chip with 32-bit PCI support, and accepts a PMCspan-010 Secondary PCI Expansion Module.
- PMCspan-010: Secondary PMC Carrier Module that attaches to either a PMCspan-001 or PMCspan-002 and provides two PMC slots. The PMCspan-010 is identical to the PMCspan-001/-002 except that the PCI-to-PCI bridge chip, the Clock Configuration logic, and the primary PCI expansion connector are not present.

All PMCspan models provide both front panel and VME bus I/O.

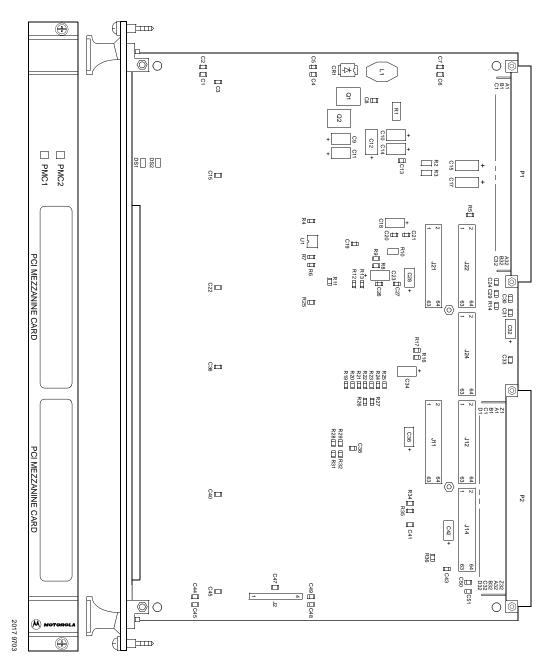


Figure 1-3. PMCspan-010 Component Side and Front Panel

PMCspan Features

PMCspans have the following features:

- □ They are operational with the MVME2300/2600/2700/3600/4600 processor modules.
- □ They provide support for two single-width PMC adapters or one double-width PMC adapter.
- □ They incorporate 5V bus signaling voltage.
- □ They incorporate both PMC Bus and VMEbus connectors with the following features:
 - Two sets of three EIA E700 AAAB connectors for 32-bit PMC interface to secondary PCI bus and user specific I/O.
 - P1 connector for power and BGNT and IACK daisy chaining.
 - 5-row P2 connector for power and PMC I/O.
- □ They incorporate a DEC 21150 PCI-to-PCI Bridge Interface device, with the following features (PMCspan-001/-002 only):
 - PCI Revision 2.1 compliant.
 - 32-bit primary bus interface.
 - 32-bit secondary bus interface.
 - Delayed transactions for all PCI configuration, I/O, and memory read commands, allowing up to three transactions simultaneously in each direction
 - Buffering (data and address) for posted memory write commands in each direction, allowing up to five posted write transactions simultaneously in each direction.
 - Read data buffering in each direction.
 - Concurrent primary and secondary bus operation to isolate traffic.
 - Enhanced address decoding.
 - PCI transaction forwarding.

Electrical Requirements

The voltage and current requirements for the PMCspan are as follows:

+5V	290 mA typical 440 mA maximum
+12V	None
-12V	None

Product Reliability (MTBF)

The reliability for the PMCspan is 75,000 hours MTBF.

VME Processor/PMCspan System

Figure 1-4 shows a block diagram of a PMCspan system: a VME processor module, a PMCspan-001/-002 primary PMC carrier module, and a PMCspan-010 secondary PMC carrier module.

The primary PMCspan interfaces to the VME processor module via the PCI expansion connector. The expansion connector on the secondary bus supports the secondary PMCspan. The PCI-to-PCI Bridge chip on the PMCspan provides the interface between the primary PCI bus and the secondary PCI bus.

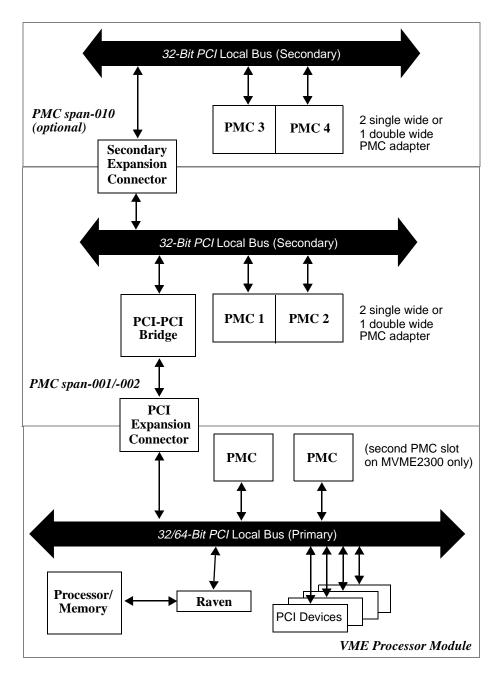


Figure 1-4. VME Processor/PMCspan System Diagram

Hardware Installation 2

Introduction

The following sections discuss the installation of the PMCspan modules and PMC adapters. The following installation procedures are provided:

- □ PMC adapter on a PMCspan
- PMCspan-001/-002 Primary PMC Carrier Module on a MVME2300/2600/2700/3600/4600 VME processor module
- PMCspan-010 Secondary PMC Carrier Module on a PMCspan-001/-002 Primary PMC Carrier Module

Refer to the installation instructions in VME processor module's installation and use manual before proceeding with these instructions.

Packaging

The PMCspan is packed in an anti-static package to protect it from any static discharge. Observe standard handling practices of static sensitive equipment.

Note Each PMCspan ships with a standoff hardware kit for attaching the primary PMCspan to the MVME2300/2600/2700/3600/4600 and the secondary PMCspan to the primary PMCspan.

ESD Precautions

Motorola strongly recommends that you use an antistatic wrist strap and a conductive foam pad when installing or upgrading a system. Electronic components such as disk drives, computer boards, and memory modules can be damaged by ESD. After removing the component from the system or its protective wrapper, place the component on a grounded and static-free surface (and in the case of a board, component side up). Do not slide the component over any surface.

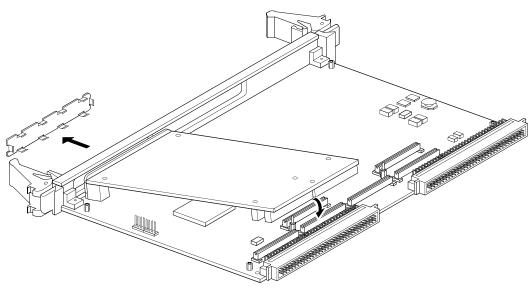
If an ESD station is not available, you can avoid damage resulting from ESD by wearing an antistatic wrist strap (available locally) that is attached to an unpainted metal part of the system chassis.

Installing PMC Adapters

PCI mezzanine card (PMC) adapters mount on the PMCspan. Install the PMC adapter modules on the PMCspan prior to installing the PMCspan onto the VME processor module. Refer to the installation instructions that come with the PMC adapter for any prerequisites.

Note The PMCspan is keyed to accept only 5V PMC adapter modules.

To install a PMC adapter, refer to Figure 2-1 and proceed as follows:


1. Position the PMCspan with the P1 and P2 connectors facing you.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

aution

2. Remove the PMC slot filler panel from the PMCspan front panel.

Figure 2-1. PMC Module Placement on PMCspan

- 3. Slide the PMC module port connector into the PMC slot opening on the PMCspan front panel
- 4. Align the PMC adapter over the PMCspan.
 - Align the connectors on the underside of the PMC adapter with the corresponding connectors (J11, J12, and J14) on the PMCspan.
 - Align the keying hole on the PMC adapter with the keying pin on the PMcspan.
- 5. Gently press the PMC adapter onto the PMCspan.
- 6. Turn the PMCspan component-side down.
- 7. Insert the four short Phillips screws supplied with the PMC adapter through the holes on the underside of the PMCspan, into the standoffs at the corners of the PMC adapter (note that some PMC adapters take a screw at each corner; others require only two screws at the forward corners). Tighten the screws.

Installing a PMCspan-001 or PMCspan-002

The difference between the PMCspan -001 and -002 is that the PMCspan-001 mounts on top of the 2600/2700/3600/4600 series VME processor module and The PMCspan-002 mounts onto an MVME2300 series processor module. To upgrade or install a PMCspan, refer to Figure 2-2 (PMCspan-001) or Figure 2-3 (PMCspan-002) and proceed as follows:

- 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to the chassis as a ground. The ESD strap must be secured to your wrist and to ground while you are performing the installation procedure.
- Perform an operating system shutdown. Turn the AC or DC power off and remove the AC cord or DC power lines from the system. Remove chassis or system cover(s) as necessary for access to the VME module card cage.

Inserting or removing modules with power applied may result in damage to module components.

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.

3. Carefully remove the VME processor module from the VMEbus card slot and lay it flat, with connectors P1 and P2 facing you.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

4. Install the PMC adapter modules on the PMCspan and VME processor module. Refer to *Installing PMC Adapters* on page 2-2 and the installation instructions that are supplied with the PMC adapters.

Hardware Installation

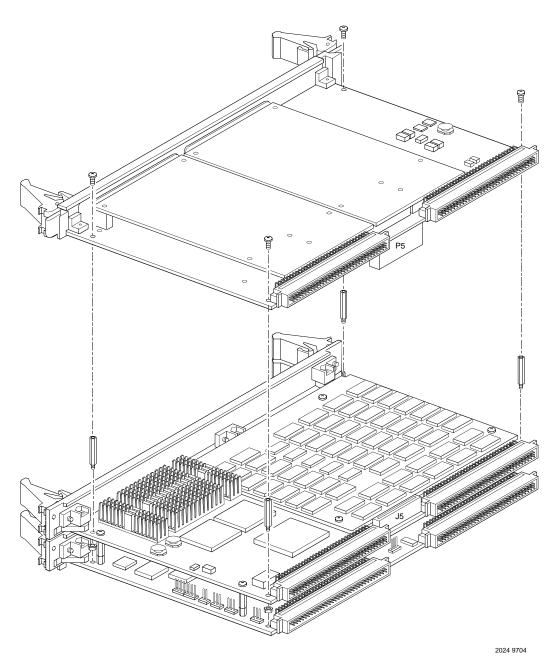


Figure 2-2. PMCspan-001 Installation on an MVME3600

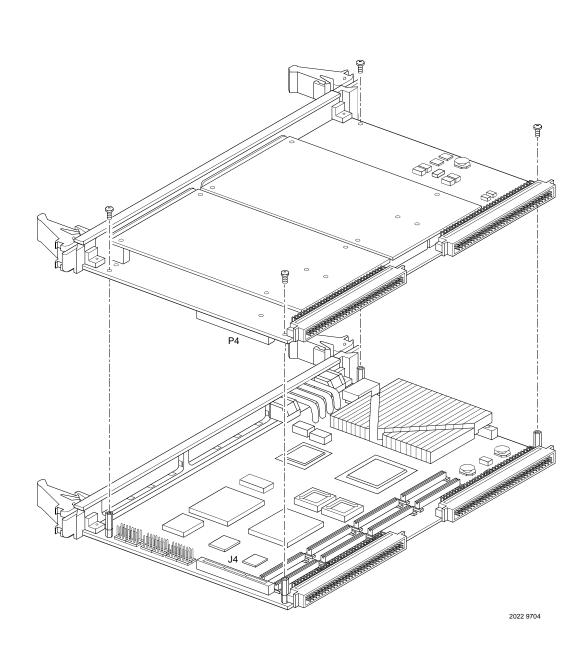


Figure 2-3. PMCspan-002 Installation on an MVME2300

- 5. Attach the four standoffs to the VME processor module. For each standoff:
 - Insert the threaded end into the standoff hole at each corner of the VME processor module.
 - Thread the locking nuts onto the standoff tips.
 - Tighten the nuts with a box-end wrench or a pair of needle nose pliers.
- **Note** On the MVME2600, use the short standoff in corner with the LED mezzanine module.

Do not remove an MVME3600 or MVME4600 processor board from the base board. Use a small box-end wrench or needle nose pliers to hold the nut in place.

- 6. Place the PMCspan on top of the VME processor module. Align the mounting holes in each corner to the standoffs, and align PMCspan connector (P4 or P5) with VME processor module connector (J4 or J5).
- 7. Gently press the PMCspan and VME processor module together, making sure that P4/P5 is fully seated into J4/J5.
- 8. Insert the four short Phillips screws through the holes at the corners of the PMCspan and into the standoffs on the VME processor module. Tighten the screws.
- **Note** The screws have two different head diameters. Use the screws with the smaller heads on the standoffs next to VMEbus connectors P1 and P2.

- 9. Install the VME processor module and PMCspan into the card slots. Be sure the modules are well seated in the backplane connectors. Do not damage or bend connector pins.
- 10. Replace the chassis or system cover(s), reconnect the system to the AC or DC power source, and turn the equipment power on.

Installing a PMCspan-010

The PMCspan-010 Secondary PMC Adapter Carrier Module mounts on top of a PMCspan-001/-002 Primary PMC Adapter Carrier Module. To install a PMCspan, refer to Figure 2-2 and proceed as follows:

- 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to the chassis as a ground. The ESD strap must be secured to your wrist and to ground while you are performing the installation procedure.
- Perform an operating system shutdown. Turn the AC or DC power off and remove the AC cord or DC power lines from the system. Remove chassis or system cover(s) as necessary for access to the VME module card cage.

Inserting or removing modules with power applied may result in damage to module components.

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.

3. If the Primary PMC Carrier Module/VME processor module assembly is in the VME chassis, carefully remove the modules from the VMEbus card slot and lay it flat, with the P1 and p2 connectors facing you.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

4. Install the PMC adapter modules on the PMCspan module. Refer to *Installing PMC Adapters* on page 2-2 and the installation instructions that are supplied with the PMC adapters.

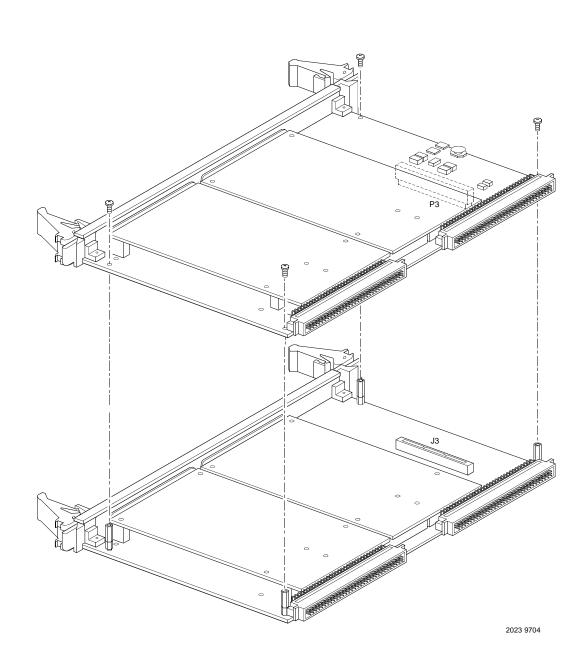


Figure 2-4. PMCspan-010 Installation onto a PMCspan-001/002

- 5. Remove the four short Phillips screws from the standoffs in each corner of the Primary PMC Carrier Module.
- 6. Attach the four standoffs to the Primary PMC Carrier Module.
- 7. Place the Secondary PMCspan module on top of the Primary PMCspan module. Align the mounting holes in each corner to the standoffs, and align secondary PMCspan connector P3 with primary PMCspan connector J3.
- 8. Gently press the two PMCspan modules together, making sure that P3 is fully seated in J3.
- 9. Insert the four short Phillips screws through the holes at the corners of the secondary PMCspan and into the standoffs on the primary PMCspan. Tighten the screws.
- **Note** The screws have two different head diameters. Use the screws with the smaller heads on the standoffs next to VMEbus connectors P1 and P2.
 - Install the VME processor module/PMCspan assembly into the card slots. Be sure the modules are well seated in the backplane connectors. Do not damage or bend connector pins.
 - 11. Replace the chassis or system cover(s), reconnect the system to the AC or DC power source, and turn the equipment power on.

Installing a PMCspan-010

Functional Description

Introduction

This chapter describes the physical and electrical structure of the PMCspan. Figure 3-1 and Figure 3-1 show the detailed block diagrams of the PMCspan and its primary interfaces.

PMC adapter I/O is available through the PMCspan front panel opening (for PMC adapters with front panel connectors) or through the PMCspan VMEbus P2 backplane connector.

PCI-to-PCI Bridge Chip

The primary component on the PMCspan is the DEC 21150 PCI-to-PCI bridge chip. This device provides the interface between the primary PCI bus (processor side), and the secondary PCI bus, which provides the interface to the PMC adapter. The bridge chip connects to the VMEbus processor module PCI bus through the PCI Expansion connector. The secondary PCI bus connects to each of the PCM slots and a an optional secondary expansion connector. For a detailed description of the 21150 chip, refer to the 21150 data sheet, DEC part number EC-QPDLB-TE.

The DEC 21150 PCI-to-PCI Bridge chip supports a 32-bit primary bus interface and a 32-bit secondary bus interface. This chip provides full support for delayed transactions which enables the buffering of memory read, I/O, and configuration transactions. It supports buffering of simultaneous multiple posted write and delayed transactions in both directions.

The 21150 has clock and arbitration pins to support PCI bus masters on the secondary bus. These are used to provide clocks an bus arbitration for the PMC adapter. The 21150 supports concurrent operation on the primary and secondary PCI busses providing traffic isolation between the primary and secondary busses.

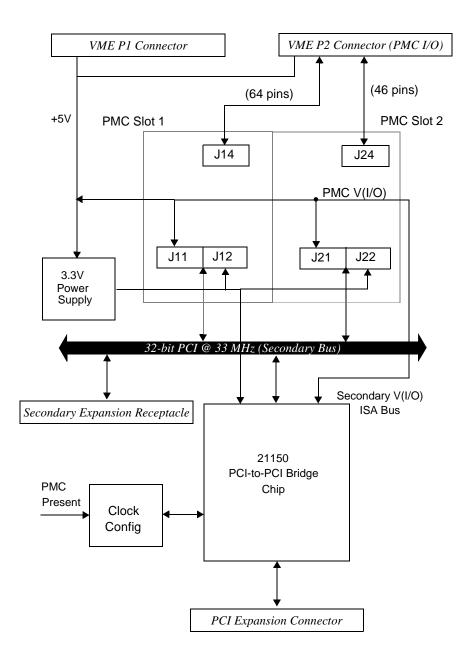


Figure 3-1. PMCspan-001/-002 Block Diagram

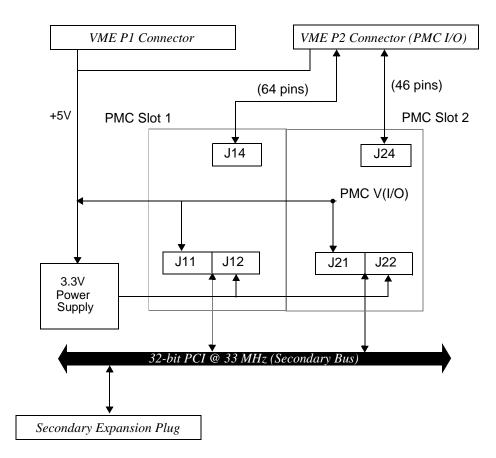


Figure 3-2. PMCspan-010 Block Diagram

On-Board 3.3 Volt Power Supply

The on-board PMCspan power supply circuit generates the 3.3 volts used by the PCI-to-PCI bridge chip. The PCI-to-PCI bridge consumes 400 mA maximum, leaving 4.6 Amps available to the PMC adapters. On the PMCspan-010, 5 Amps is available to the PMC adapters.

PMC Interface

Each PMC slot has three EIA E700 AAAB connectors for a 32-bit PMC interface to secondary PCI bus and user specific I/O. The PMCspan VME backplane connector P2 provides 64 I/O signals for PMC 1, and 46 P2 I/O signals for PMC 2. Refer to Chapter 5, *Connectors*, for the pin signal assignments.

PCI Expansion

The PCI Expansion interface is provided by a 114-pin plug connector (P4 or P5) on the secondary side of the PMCspan. This mates to the PCI Expansion connector on the VME processor module. Refer to Chapter 5, *Connectors*, for the pin signal assignments.

The IDSEL for the 21150 chip is connected to AD20 on the PMCspan. Therefore the 21150 Device Number on the primary PCI bus is 1_0100b.

Secondary Expansion

Secondary PCI bus expansion is provided by a 114-pin receptacle connector, J3, on the primary side of the PMCspan-001/-002. This mates to a 114-pin plug connector, P3, mounted on the secondary side of the PMCspan-010. Refer to Chapter 5, *Connectors*, for the pin signal assignments.

Clock Configuration

The DEC 21150 PCI-to-PCI Bridge chip will access the Clock Configuration logic following a primary PCI bus reset. The 21150 will automatically enable the PCI clock for all four PMC slots.

PMC Present Signals

The PMC PRESENT signal (BUSMODE1#) from each of the PMC adapters (up to four) may be read any time following a reset through the General Purpose I/O interface in the 21150. Refer to *PMC Present Signal Assignment* on page 4-9.

Front Panel LEDs

There are two green LEDs located on the front panel of the PMCspan, one for each PMC adapter. Both LEDs will be illuminated during reset. An individual LED will be illuminated whenever a PMC adapter has been granted bus mastership of the secondary PCI bus.

PMC Performance

All PMCspan models support 32-bit PCI operations at 33 MHz on the PMC (secondary) side. The PMCspan-001/-002 primary carrier module supports 32-bit PCI operations on the processor (primary) side. Refer to the 21150 data sheet (EC-QPDLB-TE) for PCI transaction timing information across the bridge.

Writes to the PCI bus are also posted by the Raven chip ASIC, so this section will focus mainly on read cycles. The read access latency for PMCspan-bound cycles initiated by 60X bus master consists of the following components:

T _{start}	Start-up time (TS# to PCI bus Request). T _{start} is 6 system clocks.
T _{arb}	On-board PCI bus arbitration time.
T _{ac}	On-board PCI access time (FRAME# to TRDY#).
T _{lat}	Latency through PCI-to-PCI bridge.
T _{delay}	Delay time from TRDY# on PCI to TA# on 60X bus. T_{delay} is 4 system clocks.

Table 3-1 shows the access timings for various types of transfers initiated by a 60X system bus master to a PMCspan module.

Access Type	System Clock Periods Required for:				Total
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Read (32-bit PCI Target)	49	1	1	1	52

4

38

4

Table 3-1. PowerPC 60x Bus to PMCspan PMC Access Timing

Notes Write cycles are posted by the Raven ASIC.

Assumes no pipeline. Pipelined cycles would improve these numbers.

1

_

-

1

_

-

1

_

-

7

38

4

 T_{arb} is assumed to be 4 system clocks (2 PCI clocks).

 T_{ac} is assumed to be 6 system clocks (3 PCI clocks): Medium DEVSEL# target, zero wait PCI timing.

4-Beat Write

1-Beat Read

1-Beat Write

(32-bit PCI Target)

(aligned, 4 bytes or less)

3

Table 3-2 shows the ECC memory access latency for PMCspan-initiated cycles.

Access Type	PCI Clock Periods Required for:			
Access Type	1st Beat	2nd Beat	3rd Beat	nth Beat
32-bit Burst Reads	17	1	1	1
32-bit Burst Writes	3	1	1	1
1-Beat Read	17	-	-	-
1-Beat Write	3	-	-	-

Table 3-2. PMCspan PMC to ECC Memory Access Timing

Notes 1. The latency assumes two system clocks for 60X system bus arbitration.

2. The latency is based on 60ns, fast-page DRAM timing. It is also assumed that L2 is either disabled or missed.

3. Write timings assume write posting FIFO is initially empty.

Programming Model 4

Introduction

This chapter describes the programming model for the PMCspan.

21150 Configuration Registers

The PCI Configuration Registers for the DEC PCI-to-PCI Bridge 21150 chip are shown in Figure 4-1. For a detailed register bit description, refer to the 21150 data sheet, DEC part number EC-QPDLB-TE.

Configuration Transactions

PCI configuration transactions are used to initialize the PCI system including the PCI-to-PCI bridge and devices on the PMC adapter. All 21150 registers are accessible only in the configuration space. In addition to accepting configuration transactions for initialization of its own configuration registers, the 21150 also forwards configuration transactions bound for devices on the PMC adapter, as well as special cycle generation on the secondary PCI bus. These two types of configuration transactions are supported by Type 0 and Type 1 configuration cycles.

Programming Model

Device ID (\$0022)		Vendor ID (\$1011)		\$00
Status Command			\$04	
Class Code	Class Code Revision ID		Revision ID	\$08
Reserved	Header Type	Primary Latency Timer	Cache Line Size	\$0C
Reserved	•			\$10
Reserved				\$14
Secondary Latency Timer	Subordinate Bus Number	Secondary Bus Number	Primary Bus Number	\$18
Secondary Status	•	I/O Limit Address	I/O Base Address	\$1C
Memory Limit Addres	S	Memory Base Addre	SS	\$20
Prefetchable Memory	/ Limit Address	Prefetchable Memor	y Base Address	\$24
Prefetchable Memory	/ Base Address Uppe	r 32 Bits		\$28
Prefetchable Memory	/ Limit Address Upper	32 Bits		\$2C
I/O Limit Address Up	per 16 Bits	I/O Base Address Upper 16 Bits		\$30
Subsystem ID		Subsystem Vendor ID		\$34
Reserved				\$38
Bridge Control		Interrupt Pin	Reserved	\$3C
Arbiter Control		Diagnostic Control	Chip Control	\$40
Reserved				\$44
Reserved				\$48
Reserved				\$4C
Reserved				\$50
Reserved				\$54
Reserved				\$58
Reserved				\$5C
Reserved				\$60
GPIO Input Data	GPIO Output Enable Control	GPIO Output Data	p_serr_I Event Disable	\$64
Reserved	p_serr_I Status	Secondary Clock Co	ntrol	\$68
Reserved				\$6C \$FF

Note Writes to Reserved locations are don't care. Reads to Reserved locations return zeros.

Figure 4-1. 21150 PCI Configuration Registers

Type 0 Configuration Cycles

Type 0 configuration cycles are issued to configure devices on the same bus as the initiator. The processor will access configuration registers within the 21150, issuing a Type 0 cycle on the primary PCI bus by programming the Raven CONADD Register for Bus Number 0, and Device Number 1_0100 (binary). The Function Code is ignored by the 21150 since it is a single-function device. The RAVEN chip will translate this configuration address to an IDSEL# on AD20, which is connected to the DEVSEL# on the 21150 on the PMCspan.

The 21150 limits all configuration register accesses to a single double word data transfer and returns a target disconnect with the first data transfer if additional data phases are requested. All bytes of the requested double word are returned, regardless of the PCI byte enable bits. Type 0 configuration transactions do not use the 21150 data buffers so these transactions are completed immediately regardless of the state of the data buffers.

The 21150 will ignore all Type 0 transactions initiated on the secondary PCI bus.

Type 1 Configuration Cycles

Type 1 configuration cycles are issued to configure PMC adapters. The processor will access configuration registers within the PMC adapters by issuing a Type 1 cycle on the primary PCI bus by programming the Raven CONADD Register for Bus Number \$01 (i.e., the Bus Number programmed into the Secondary Bus Number register), and the Device Number per Table 4-1. The Function Code is dependent on the PMC adapters.

The 21150 will perform a Type 1 to Type 0 translation when the Type 1 transaction generated on the primary bus is intended for a PMC adapter on the secondary bus. The PMC adapter can then respond to the Type 0 transaction.

The 21150 forwards Type 1 to Type 0 configuration transactions as delayed transactions which are limited to a single data transfer.

Device Number (Hex)	Secondary AD(31:16) (Binary)	AD Bit Used as IDSEL#	Purpose
0-1	0000_0000_0000_0001 - 0000_0000_0000_0010	-	Implemented by 21150 but not used
2	0000_0000_0000_0100	18	PMC 1 IDSEL# (Slot 1 on PMCspan-001/-002)
3	0000_0000_0000_1000	19	PMC 2 IDSEL# (Slot 2 on PMCspan-001/-002)
4	0000_0000_0001_0000	20	PMC 3 IDSEL# (Slot 1 on PMCspan-010)
5	0000_0000_0010_0000	21	PMC 4 IDSEL# (Slot 2 on PMCspan-010)
6 - F	0000_0000_0100_0000 - 1000_0000_0000_0000	22 - 31	Implemented by 21150 but not used
10 - 1E	0000_0000_0000_0000	None	Not implemented by 21150
1F	Special Cycle Data	-	Special Cycles for PMC

Table 4-1.	Secondary	Device	Number	to	IDSEL	Mapping
------------	-----------	--------	--------	----	-------	---------

Type 1 to Type 1 Forwarding

If the 21150 detects a Type 1 configuration transaction intended for a PCI bus downstream from the secondary bus (i.e., another PCI bus on a PMC adapter), the 21150 will forward the transaction unchanged to the secondary bus. This transaction will eventually get translated to a Type 0 transaction or a Special Cycle by a downstream PCI-to-PCI bridge.

Special Cycles

Special Cycle transactions generated on the primary PCI bus are ignored by the 21150. However, Special Cycle commands can be sent to the PMC adapter using a Type 1 Configuration transaction. The 21150 will generate a Special Cycle on the secondary bus when it detects a Type 1 transaction on the primary bus with the following conditions:

- □ The lower two primary address bits AD(1:0) are 01 (binary)
- \Box The device number in AD(15:11) is 1_111 (binary)
- **\Box** The function number in AD(10:8) is 111 (binary)
- \Box The register number in AD(7:2) is 00_0000 (binary)
- □ The bus number in AD(23:16) is \$01 (i.e., the value in the Secondary Bus Number Register)
- □ The bus command on C/BE# is a configuration write command

The 21150 translates the Type 1 Configuration command to a Special Cycle and forwards the address and data unchanged. The transaction is forwarded as a delayed transaction but the target response is not forwarded back because Special Cycles result in a master abort. If more than one data transfer is requested during a Special Cycle, the 21150 responds with a target disconnect during the first data phase.

PMC Interrupts

The routing of interrupts from each PMC adapter is described in Table 4-2. Figure 4-2 and Figure 4-3 show the overall routing back to the Raven chip on the VME processor modules.

Device on Secondary Bus (Hex)	Device (PMC Adapter) Interrupt Pin	PCI Interrupt
02 (PMC 1)	INTA#	INTC#
	INTB#	INTD#
	INTC#	INTA#
	INTD#	INTB#

Table 4-2. PMC Interrupt Routing

Device on Secondary Bus (Hex)	Device (PMC Adapter) Interrupt Pin	PCI Interrupt
03 (PMC 2)	INTA#	INTD#
	INTB#	INTA#
	INTC#	INTB#
	INTD#	INTC#
04 (PMC 3)	INTA#	INTA#
	INTB#	INTB#
	INTC#	INTC#
	INTD#	INTD#
05 (PMC 4)	INTA#	INTB#
	INTB#	INTC#
	INTC#	INTD#
	INTD#	INTA#

Table 4-2.	PMC	Interrupt	Routing
------------	-----	-----------	---------

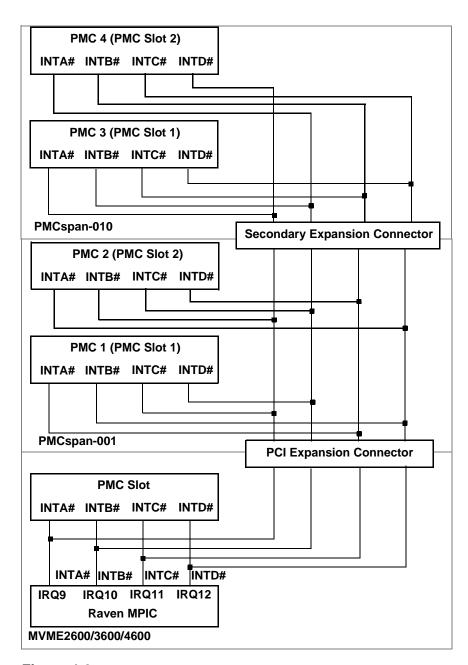


Figure 4-2. PMCspan Interrupt Routing for MVME2600/3600/4600

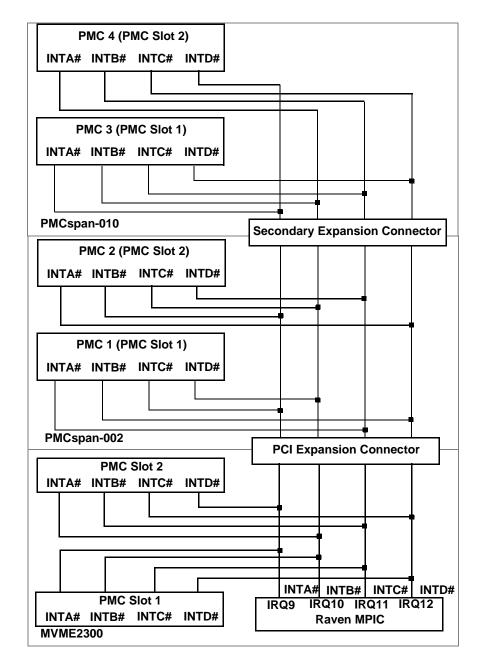
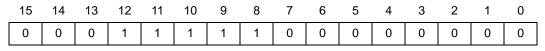


Figure 4-3. PMCspan Interrupt Routing for MVME2300

PMC Clock, Request, Grant Assignment

The 21150 bridge chip provide individual clock sources and arbitration logic for each PMC adapter on the secondary PCI bus. The PMCspan routes the secondary PCI bus Clock, Request and Grant signals between the 21150 bridge chip and the PMC slots as shown in Table 4-3.

РМС	21150 Clock Source	21150 Request	21150 Grant
1 (Slot 1 on PMCspan-001/-002)	s_clk_o(0)	s_req_l(0)	s_gnt_l(0)
2 (Slot 2 on PMCspan-001/-002)	s_clk_o(1)	s_req_l(1)	s_gnt_l(1)
3 (Slot 1 on PMCspan-010)	s_clk_o(2)	s_req_l(2)	s_gnt_l(2)
4 (Slot 2 on PMCspan-010)	s_clk_o(3)	s_req_l(3)	s_gnt_l(3)


Table 4-3. PMC Clock, Request, Grant Assignments

PMC Present Signal Assignment

The PMCspan hardwires the BUSMODE(4:2)# encoding signals to 001 (binary) for each PMC slot indicating that the PMCspan supports PCI protocol. The signal BUSMODE1# returned from each PMC adapter indicates there is a PMC adapter installed in the slot and that the PMC adapter supports PCI protocol. The PMC Present signals from each PMC slot may be read at any time following a reset on the 21150 GPIO pins. Table 4-4 shows the assignment of the PMC Present signals to the GPIO pins. Figure 4-4 shows the values in the Serial Clock Mask register following a reset. Serial Clock Mask bit 13 is 0 in order to enable s_clk_o(9) for the 21150 s_clk input.

PMC Present Signal	GPIO bit
1 (Slot 1 on PMCspan-001/-002)	0
2 (Slot 2 on PMCspan-001/-002)	1
3 (Slot 1 on PMCspan-010)	2
4 (Slot 2 on PMCspan-010)	3

Table 4-4. PMC Present to GPIO Assignments

Figure	4-4.	Serial	Clock	Mask
--------	------	--------	-------	------

Introduction

The PMCspan module connectors provide I/O and for interfaces to the VME processor modules and to other PMCspan modules. The pin assignments for the connectors PMCspan connections are provided in the following sections.

VMEbus Connectors (P1/P2)

The VMEbus P1 connector is a partially populated version of the 96-pin DIN type connector. The P1 Connector contains 23 pins and is used to provide +5V power to the PMCspan module. IACK and Bus Grant signals are passed through as required by the VME specification. The P2 VMEbus connector is a 5-row 160-pin connector and provides P2 I/O for the PMC adapter modules.

The pin assignments for P1 and P2 are shown in Table 5-1 and 5.2.

ROW A	ROW B	ROW C	
	BG0IN_L		
	BG0OUT_L		
	BG1IN_L		
	BG1OUT_L		
	BG2IN_L		
GND	BG2OUT_L	GND	

ROW A	ROW B	ROW C	
	BG3IN_L		
GND	BG3OUT_L		
GND			
GND			
GND			
	GND		
IACKIN_L			
IACKOUT_L			
	GND		
-12V		+12V	
+5.0V	+5.0V	+5.0V	

Table 5-1. VME P1 Connector Pin Assignments (Continued)

	ROW Z	ROW A	ROW B	ROW C	ROW D]
1	PMC2IO2	PMC1IO2	+5.0V	PMC1IO1	PMC2IO1	1
2	GND	PMC1IO4	GND	PMC1IO3	PMC2IO3	2
3	PMC2IO5	PMC1IO6		PMC1IO5	PMC2IO4	3
4	GND	PMC1IO8		PMC1IO7	PMC2IO6	4
5	PMC2IO8	PMC1IO10		PMC1IO9	PMC2IO7	5
6	GND	PMC1IO12		PMC1IO11	PMC2IO9	6
7	PMC2IO11	PMC1IO14		PMC1IO13	PMC2IO10	7
8	GND	PMC1IO16		PMC1IO15	PMC2IO12	8
9	PMC2IO14	PMC1IO18		PMC1IO17	PMC2IO13	9
10	GND	PMC1IO20		PMC1IO19	PMC2IO15	10
11	PMC2IO17	PMC1IO22		PMC1IO21	PMC2IO16	11
12	GND	PMC1IO24	GND	PMC1IO23	PMC2IO18	12
13	PMC2IO20	PMC1IO26	+5.0V	PMC1IO25	PMC2IO19	13
14	GND	PMC1IO28		PMC1IO27	PMC2IO21	14
15	PMC2IO23	PMC1IO30		PMC1IO29	PMC2IO22	15
16	GND	PMC1IO32		PMC1IO31	PMC2IO24	16
17	PMC2IO26	PMC1IO34		PMC1IO33	PMC2IO25	17
18	GND	PMC1IO36		PMC1IO35	PMC2IO27	18
19	PMC2IO29	PMC1IO38		PMC1IO37	PMC2IO28	19
20	GND	PMC1IO40		PMC1IO39	PMC2IO30	20
21	PMC2IO32	PMC1IO42		PMC1IO41	PMC2IO31	21
22	GND	PMC1IO44	GND	PMC1IO43	PMC2IO33	22
23	PMC2IO35	PMC1IO46		PMC1IO45	PMC2IO34	23
24	GND	PMC1IO48		PMC1IO47	PMC2IO36	24
25	PMC2IO38	PMC1IO50		PMC1IO49	PMC2IO37	25
26	GND	PMC1IO52		PMC1IO51	PMC2IO39	26
27	PMC2IO41	PMC1IO54		PMC1IO53	PMC2IO40	27
28	GND	PMC1IO56		PMC1IO55	PMC2IO42	28
29	PMC2IO44	PMC1IO58		PMC1IO57	PMC2IO43	29
30	GND	PMC1IO60		PMC1IO59	PMC2IO45	30
31	PMC2IO46	PMC1IO62	GND	PMC1IO61	GND	31
32	GND	PMC1IO64	+5.0V	PMC1IO63	No Connect	32

Table 5-2. VME P2 Connector Pin Assignments

5

PMC Slot Connectors (J11/J12/J14) (J21/J22/J24)

Each PMC slot has a set of three 64-pin connectors (EIA E700 AAAB) for connection to the 32-bit secondary PCI bus and for PMC I/O. The PMC Slot 1 connectors are as J11, J12 and J14; the PMC Slot 2 connectors are J21, J22 and J24.

All 64 I/O signals from PMC 1 (J14) are routed to P2, while only the first 46 I/O signals of PMC 2 (J24) are routed to P2. The pin assignments for these connectors are shown in tables 5-3 through 5-8.

		-	
1	ТСК	-12V	2
3	GND	PMCINTAD#	4
5	PMCINTBA#	PMCINTCB#	6
7	PMC13P#	+5.0V	8
9	PMCINTDC#	PCI-RSVD	10
11	GND	PCI-RSVD	12
13	PMC13CLK	GND	14
15	GND	PMC13GNT#	16
17	PMC13REQ#	+5.0v	18
19	V(I/O)	S_AD31	20
21	S_AD28	S_AD27	22
23	S_AD25	GND	24
25	GND	S_C/BE3#	26
27	S_AD22	S_AD21	28
29	S_AD19	+5.0V	30
31	V(I/O)	S_AD17	32
33	S_FRAME#	GND	34
35	GND	S_IRDY#	36
37	S_DEVSEL#	+5.0V	38
39	GND	S_LOCK#	40
41	S_SDONE#	S_SBO#	42
43	S_PAR	GND	44
45	V(I/O)	S_AD15	46
47	S_AD12	S_AD11	48
49	S_AD9	+5.0V	50
51	GND	S_C/BE0#	52
53	S_AD6	S_AD5	54
55	S_AD4	GND	56
57	V(I/O)	S_AD3	58
59	S_AD2	S_AD1	60
61	S_AD0	+5.0V	62
63	GND	S_REQ64#	64

Table 5-3. PMC J11 Connector Pin Assignments

1	+12V	TRST#	2
3	TMS	PMC24TDI (TDO)	4
5	PMC13TDI	GND	6
7	GND	PCI-RSVD	8
9	PCI-RSVD	PCI-RSVD	10
11	BUSMODE2#	+3.3V	12
13	S_PCIRST#	BUSMODE3#	14
15	3.3V	BUSMODE4#	16
17	PCI-RSVD	GND	18
19	S_AD30	S_AD29	20
21	GND	S_AD26	22
23	S_AD24	+3.3V	24
25	PMC13IDSEL	S_AD23	26
27	+3.3V	S_AD20	28
29	S_AD18	GND	30
31	S_AD16	S_C/BE2#	32
33	GND	PMC-RSVD	34
35	S_TRDY#	+3.3V	36
37	GND	S_STOP#	38
39	S_PERR#	GND	40
41	+3.3V	S_SERR#	42
43	S_C/BE1#	GND	44
45	S_AD14	S_AD13	46
47	GND	S_AD10	48
49	S_AD8	+3.3V	50
51	S_AD7	PMC-RSVD	52
53	+3.3V	PMC-RSVD	54
55	PMC-RSVD	GND	56
57	PMC-RSVD	PMC-RSVD	58
59	GND	PMC-RSVD	60
61	S_ACK64#	+3.3V	62
63	GND	PMC-RSVD	64
			-

Table 5-4. PMC J12 Connector Pin Assignments

1	PMC13IO1	PMC13IO2	2
3	PMC13IO3	PMC13IO4	4
5	PMC13IO5	PMC13IO6	6
7	PMC13IO7	PMC13IO8	8
9	PMC13IO9	PMC13IO10	10
11	PMC13IO11	PMC13IO12	12
13	PMC13IO13	PMC13IO14	14
15	PMC13IO15	PMC13IO16	16
17	PMC13IO17	PMC13IO18	18
19	PMC13IO19	PMC13IO20	20
21	PMC13IO21	PMC13IO22	22
23	PMC13IO23	PMC13IO24	24
25	PMC13IO25	PMC13IO26	26
27	PMC13IO27	PMC13IO28	28
29	PMC13IO29	PMC13IO30	30
31	PMC13IO31	PMC13IO32	32
33	PMC13IO33	PMC13IO34	34
35	PMC13IO35	PMC13IO36	36
37	PMC13IO37	PMC13IO38	38
39	PMC13IO39	PMC13IO40	40
41	PMC13IO41	PMC13IO42	42
43	PMC13IO43	PMC13IO44	44
45	PMC13IO45	PMC13IO46	46
47	PMC13IO47	PMC13IO48	48
49	PMC13IO49	PMC13IO50	50
51	PMC13IO51	PMC13IO52	52
53	PMC13IO53	PMC13IO54	54
55	PMC13IO55	PMC13IO56	56
57	PMC13IO57	PMC13IO58	58
59	PMC13IO59	PMC13IO60	60
61	PMC13IO61	PMC13IO62	62
63	PMC13IO63	PMC13IO64	64

Table 5-5. PMC J14 Connector Pin Assignments

1	ТСК	-12V	2
3	GND	PMCINTBA#	4
5	PMCINTCB#	PMCINTDC#	6
7	PMC24P#	+5.0V	8
9	PMCINTAD#	PCI-RSVD	10
11	GND	PCI-RSVD	12
13	PMC24CLK	GND	14
15	GND	PMC24GNT#	16
17	PMC24REQ#	+5.0v	18
19	V(I/O)	S_AD31	20
21	S_AD28	S_AD27	22
23	S_AD25	GND	24
25	GND	S_C/BE3#	26
27	S_AD22	S_AD21	28
29	S_AD19	+5.0V	30
31	V(I/O)	S_AD17	32
33	S_FRAME#	GND	34
35	GND	S_IRDY#	36
37	S_DEVSEL#	+5.0V	38
39	GND	S_LOCK#	40
41	S_SDONE#	S_SBO#	42
43	S_PAR	GND	44
45	V(I/O)	S_AD15	46
47	S_AD12	S_AD11	48
49	S_AD9	+5.0V	50
51	GND	S_C/BE0#	52
53	S_AD6	S_AD5	54
55	S_AD4	GND	56
57	V(I/O)	S_AD3	58
59	S_AD2	S_AD1	60
61	S_AD0	+5.0V	62
63	GND	S_REQ64#	64

Table 5-6. PMC J21 Connector Pin Assignments

		_	_
1	+12V	TRST#	2
3	TMS	PMC24TDO(TDO)	4
5	PMC24TDI (TDI)	GND	6
7	GND	PCI-RSVD	8
9	PCI-RSVD	PCI-RSVD	10
11	BUSMODE2#	+3.3V	12
13	S_PCIRST#	BUSMODE3#	14
15	3.3V	BUSMODE4#	16
17	PCI-RSVD	GND	18
19	S_AD30	S_AD29	20
21	GND	S_AD26	22
23	S_AD24	+3.3V	24
25	PMC24IDSEL	S_AD23	26
27	+3.3V	S_AD20	28
29	S_AD18	GND	30
31	S_AD16	S_C/BE2#	32
33	GND	PMC-RSVD	34
35	S_TRDY#	+3.3V	36
37	GND	S_STOP#	38
39	S_PERR#	GND	40
41	+3.3V	S_SERR#	42
43	S_C/BE1#	GND	44
45	S_AD14	S_AD13	46
47	GND	S_AD10	48
49	S_AD8	+3.3V	50
51	S_AD7	PMC-RSVD	52
53	+3.3V	PMC-RSVD	54
55	PMC-RSVD	GND	56
57	PMC-RSVD	PMC-RSVD	58
59	GND	PMC-RSVD	60
61	S_ACK64#	+3.3V	62
63	GND	PMC-RSVD	64

Table 5-7. PMC J22 Connector Pin Assignments

5

1	PMC24IO1	PMC24IO2	2
3	PMC24IO3	PMC24IO4	4
5	PMC24IO5	PMC24IO6	6
7	PMC24IO7	PMC24IO8	8
9	PMC24IO9	PMC24IO10	10
11	PMC24IO11	PMC24IO12	12
13	PMC24IO13/	PMC24IO14	14
15	PMC24IO15	PMC24IO16	16
17	PMC24IO17	PMC24IO18	18
19	PMC24IO19	PMC24IO20	20
21	PMC24IO21	PMC24IO22	22
23	PMC24IO23	PMC24IO24	24
25	PMC24IO25	PMC24IO26	26
27	PMC24IO27	PMC24IO28	28
29	PMC24IO29	PMC24IO30	30
31	PMC24IO31	PMC24IO32	32
33	PMC24IO33	PMC24IO34	34
35	PMC24IO35	PMC24IO36	36
37	PMC24IO37	PMC24IO38	38
39	PMC24IO39	PMC24IO40	40
41	PMC24IO41	PMC24IO42	42
43	PMC24IO43	PMC24IO44	44
45	PMC24IO45	PMC24IO46	46
47	N/C	N/C	48
49	N/C	N/C	50
51	N/C	N/C	52
53	N/C	N/C	54
55	N/C	N/C	56
57	N/C	N/C	58
59	N/C	N/C	60
61	N/C	N/C	62
63	N/C	N/C	64

Table 5-8. PMC J24 Connector Pin Assignments

PMCspan-001/-002 PCI Expansion Connector (P4/P5)

A 114-pin plug connector provides the interface to the VME processor module's PCI expansion bus. P5 on the PMCspan-001 connects to J5 on the MVME2600/2700/3600/4600; P4 on the PMCspan-002 connects to J4 on MVME2300. The pin assignments for these connectors are shown in Table 5-9.

		U		
1	3.3V	GND	3.3V	2
3	P_PCICLK	GND	INTA#	4
5	GND	GND	INTB#	6
7	PURST#	GND	INTC#	8
9	HRESET#	GND	INTD#	10
11	PCIXTDO(TDO)	GND	21150TDI(TDI)	12
13	TMS	GND	ТСК	14
15	TRST#	GND	PCIXP#	16
17	PCIXGNT#	GND	PCIXREQ#	18
19		GND	-12 V	20
21	P_PERR#	GND	P_SERR#	22
23	P_LOCK#	GND	P_SDONE	24
25	P_DEVSEL#	GND	P_SBO#	26
27	GND	GND	GND	28
29	P_TRDY#	GND	P_IRDY#	30
31	P_STOP#	GND	P_FRAME#	32
33	GND	GND	GND	34
35	P_ACK64#	GND	Reserved	36
37	P_REQ64#	GND	Reserved	38
39	P_PAR	+5V	P_PCIRST#	40
41	P_C/BE1#	+5V	P_C/BE0#	42
43	P_C/BE3#	+5V	P_C/BE2#	44
45	P_AD1	+5V	P_AD0	46
47	P_AD3	+5V	P_AD2	48
49	P_AD5	+5V	P_AD4	50
				_

 Table 5-9. PMCspan-001/-002 P4/P5 Connector

 Pin Assignments

Connectors

			,	
51	P_AD7	+5V	P_AD6	52
53	P_AD9	+5V	P_AD8	54
55	P_AD11	+5V	P_AD10	56
57	P_AD13	+5V	P_AD12	58
59	P_AD15	+5V	P_AD14	60
61	P_AD17	+5V	P_AD16	62
63	P_AD19	+5V	P_AD18	64
65	P_AD21	+5V	P_AD20	66
67	P_AD23	+5V	P_AD22	68
69	P_AD25	+5V	P_AD24	70
71	P_AD27	+5V	P_AD26	72
73	P_AD29	+5V	P_AD28	74
75	P_AD31	+5V	P_AD30	76
77	P_PAR64	GND	Reserved	78
79	P_C/BE5#	GND	P_C/BE4#	80
81	P_C/BE7#	GND	P_C/BE6#	82
83	P_AD33	GND	P_AD32	84
85	P_AD35	GND	P_AD34	86
87	P_AD37	GND	P_AD36	88
89	P_AD39	GND	P_AD38	90
91	P_AD41	GND	P_AD40	92
93	P_AD43	GND	P_AD42	94
95	P_AD45	GND	P_AD44	96
97	P_AD47	GND	P_AD46	98
99	P_AD49	GND	P_AD48	100
101	P_AD51	GND	P_AD50	102
103	P_AD53	GND	P_AD52	104
105	P_AD55	GND	P_AD54	106
107	P_AD57	GND	P_AD56	108
109	P_AD59	GND	P_AD58	110
111	P_AD61	GND	P_AD60	112
113	P_AD63	GND	P_AD62	114

Table 5-9. PMCspan-001/-002 P4/P5 ConnectorPin Assignments (Continued)

PMCspan-001/-002 Secondary PCI Bus Connector (J3)

A 114-pin receptacle connector, J3, provides the secondary PCI bus expansion interface on the PMCspan-001 and PMCspan-002. It connects to P3 on the PMCspan-010. The pin assignments for this connector are shown in Table 5-10.

1	SCLK2ST	GND	PMC3P#	2
3	SCLK3ST	GND	INTA#	4
5	GND	GND	INTB#	6
7	Reserved	GND	INTC#	8
9	Reserved	GND	INTD#	10
11	PCIXTDO(TDO)	GND	PMC3TDI(TDI)	12
13	TMS	GND	ТСК	14
15	TRST#	GND	PMC4P#	16
17	SGNT2#	GND	SREQ2#	18
19	SGNT3#	GND	SREQ3#	20
21	S_PERR#	GND	S_SERR#	22
23	S_LOCK#	GND	S_SDONE	24
25	S_DEVSEL#	GND	S_SBO#	26
27	GND	GND	GND	28
29	S_TRDY#	GND	S_IRDY#	30
31	S_STOP#	GND	S_FRAME#	32
33	GND	GND	GND	34
35	S_ACK64#	GND	Reserved	36
37	S_REQ64#	+5V	Reserved	38
39	S_PAR	+5V	S_PCIRST#	40
41	S_C/BE1#	+5V	S_C/BE0#	42
43	S_C/BE3#	+5V	S_C/BE2#	44
45	S_AD1	+5V	S_AD0	46
47	S_AD3	+5V	S_AD2	48
49	S_AD5	+5V	S_AD4	50
51	S_AD7	+5V	S_AD6	52

Table 5-10. PMCspan-001/-002 J3 Connector Pin Assignments

5

53	S_AD9	+5V	S_AD8	54
55	S_AD11	+5V	S_AD10	56
57	S_AD13	+5V	S_AD12	58
59	S_AD15	+5V	S_AD14	60
61	S_AD17	+5V	S_AD16	62
63	S_AD19	+5V	S_AD18	64
65	S_AD21	+5V	S_AD20	66
67	S_AD23	+5V	S_AD22	68
69	S_AD25	+5V	S_AD24	70
71	S_AD27	+5V	S_AD26	72
73	S_AD29	+5V	S_AD28	74
75	S_AD31	GND	S_AD30	76
77		GND		78
79		GND		80
81		GND		82
83		GND		84
85		GND		86
87		GND		88
89		GND		90
91		GND		92
93		GND		94
95		GND		96
97		GND		98
99		GND		100
101		GND		102
103		GND		104
105		GND		106
107		GND		108
109		GND		110
111		GND		112
113		GND		114

Table 5-10. PMCspan-001/-002 J3 Connector Pin Assignments

PMCspan-010 PCI Bus Connector (P3)

A 114-pin receptacle connector, P3, provides the secondary PCI bus expansion interface for the PMCspan-010. It connects to J3 on the PMCspan-001/-002. The pin assignments for this connector are shown in Table 5-11.

1	PMC3CLK	GND	PMC13P#	2
3	PMC4CLK	GND	SXINTA#	4
5	GND	GND	SXINTB#	6
7	Reserved	GND	SXINTC#	8
9	Reserved	GND	SXINTD#	10
11	SXTDO(TDO)	GND	SXTDI(TDI)	12
13	TMS	GND	ТСК	14
15	TRST#	GND	PMC24P#	16
17	PMC3GNT#	GND	PMC3REQ#	18
19	PMC4GNT#	GND	PMC4REQ#	20
21	S_PERR#	GND	S_SERR#	22
23	S_LOCK#	GND	S_SDONE	24
25	S_DEVSEL#	GND	S_SBO#	26
27	GND	GND	GND	28
29	S_TRDY#	GND	S_IRDY#	30
31	S_STOP#	GND	S_FRAME#	32
33	GND	GND	GND	34
35	S_ACK64#	GND	Reserved	36
37	S_REQ64#	GND	Reserved	38
39	S_PAR	+5V	S_PCIRST#	40
41	S_C/BE1#	+5V	S_C/BE0#	42
43	S_C/BE3#	+5V	S_C/BE2#	44
45	S_AD1	+5V	S_AD0	46
47	S_AD3	+5V	S_AD2	48
49	S_AD5	+5V	S_AD4	50
51	S_AD7	+5V	S_AD6	52

Table 5-11. PMCspan-010 P3 Connector Pin Assignments

53	S_AD9	+5V	S_AD8	54
55	S_AD11	+5V	S_AD10	56
57	S_AD13	+5V	S_AD12	58
59	S_AD15	+5V	S_AD14	60
61	S_AD17	+5V	S_AD16	62
63	S_AD19	+5V	S_AD18	64
65	S_AD21	+5V	S_AD20	66
67	S_AD23	+5V	S_AD22	68
69	S_AD25	+5V	S_AD24	70
71	S_AD27	+5V	S_AD26	72
73	S_AD29	+5V	S_AD28	74
75	S_AD31	+5V	S_AD30	76
77		GND		78
79		GND		80
81		GND		82
83		GND		84
85		GND		86
87		GND		88
89		GND		90
91		GND		92
93		GND		94
95		GND		96
97		GND		98
99		GND		100
101		GND		102
103		GND		104
105		GND		106
107		GND		108
109		GND		110
111		GND		112
113		GND		114

Table 5-11. PMCspan-010 P3 Connector Pin Assignments (Continued)

Related Documentation

Related Specifications

If you need more detailed information about this product, you may want to order one or more of the documents listed in this appendix. Documents may be ordered by using any of the following methods:

- □ Contacting your local Motorola sales office.
- □ Accessing the World Wide Web site listed on the back cover of this and other MCG manuals and selecting "Product Literature", or
- □ (USA and Canada only) Contacting the Literature Center via phone or fax at the numbers listed under *Product Literature* at MCG's World Wide Web site, http//: www.mcg.mot.com

Any supplements issued for a specific revision of a manual or guide are furnished with that document. The "type" and "revision level" of a specific manual are indicated by the last three characters of the document number, such as "/IH2" (the second revision of an installation manual); a supplement bears the same number as a manual but has two additional characters that indicate the revision level of the supplement, for example "/IH2A1" (the first supplement to the second edition of the installation manual).

Document Title	Publication Number	Source
MVME2600 Single Board Computer Installation and Use	V2600A/IH	Motorola Computer Group
MVME3600 Single Board Computer Installation and Use	V3600A/IH	Motorola Computer Group
MVME4600 Single Board Computer Installation and Use	V4600A/IH	Motorola Computer Group
PCI Local Bus Specification	Revision 2.1 10/21/94	PCI Special Interest Group P.O. Box 14070 Portland, OR 97214
Draft Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC	P1386.1/Draft 2.0 April 4, 1995	Bus Architecture Standards Committee of the IEEE Computer Society.
Draft Standard for a Common Mezzanine Card Family: CMC	P1386/Draft 2.0 April 4, 1995	Bus Architecture Standards Committee of the IEEE Computer Society.
Digital Semiconductor 21150 PCI-to-PCI Bridge Data Sheet	EC-QPDLB-TE Preliminary	Digital Equipment Corporation Maynard, Massachusetts

The following documents provide additional information related to this product:

Α

Index

Α

access time, PCI 3-6 access timing PMC 3-6 PMC to ECC memory 3-7 antistatic wrist strap 2-2

В

block diagram PMCspan-001/-002 3-2 PMCspan-010 3-3 VME processor/PMCspan system 1-7 bus arbitration time 3-6 bus signaling voltage 1-5

С

clock configuration 3-5 clock periods required 3-6, 3-7 Clock, Request and Grant signals 4-9 components PMCspan-001 1-2 PMCspan-002 1-3 PMCspan-010 1-4 configuration clock 3-5 cycles, Types 0 and 1 4-3 registers, PCI 4-2 transactions 4-1 connectors 5-1 J12 5-6 J14 5-7 J21 5-8 J22 5-9

J24 5-10 J3 5-13 P1 5-1 P2 5-3 P3 5-15 P4/P5 5-11 PCI expansion 5-11 PMC slot 5-4 secondary PCI bus 5-13, 5-15 current requirements 1-6

D

DEC 21150 1-5, 3-1, 4-1 delay time 3-6 DRAM timing 3-7

Ε

ECC memory access latency 3-7 EIA E700 AAAB connectors 3-4 electrical requirements 1-6 structure 3-1 ESD precautions 2-2 expansion connector, PCI 5-11 PCI 3-4 secondary 3-4

F

features 1-5 front panel LEDs 3-5 functional description 3-1

G

GPIO bits 4-10

Η

hardware installation 2-1

IDSEL, mapping secondary device number to 4-4 initialize PCI system 4-1 installation hardware 2-1 PMC modules onto PMCspan 2-2 PMCspan-001/-002 processor module 2-4 PMCspan-010 to PMCspan-001/-002 2-9 interface, PMC 3-4 interrupt routing for MVME2600/3600/4600 4-7 PMC 4-5 interrupts, PMC 4 -5

J

J11 connector pin assignments 5-5 J12 connector pin assignments 5-6 J14 connector pin assignments 5-7 J21 connector pin assignments 5-8 J22 connector pin assignments 5-9 J24 connector pinaAssignments 5-10 J3 connector pin assignments 5-13

L

latency, read access 3-5 LEDs, front panel 3-5

Μ

manufacturers' documents A-1, A-2 models, PMCspan 1-1 MTBF 1-6

Ρ

IN-2

P1 and P2 connectors 5-1 P1 connector pin assignments 5-1 P2 connector pin assignments 5-3 P3 connector pin assignments 5-15 P4/P5 connector pin assignments 5-11 packaging 2-1 PCI clock periods required 3-7 configuration registers 4-2 configuration transactions 4-1 expansion 3-4 expansion connector 5-11 PCI-to-PCI Bridge chip 3-1, 4-1 Bridge Interface device 1-5 performance, PMC 3-5 physical structure 3-1 PMC access timing 3-6 adapters supported 1-5 adapters, configuring 4-3 Bus connectors 1-5 clock, request, grant assignment 4-9 interface 3-4 interrupt routing 4-5 interrupts 4-5 slot connectors 5-4 **PMC** Present GPIO assignment 4-10 signal 3-5 signal assignment 4-9 PMC to ECC memory access timing 3-7 PMC1, PMC2 LEDs 3-5 PMCspan-001 block diagram 3-2 board layout drawing 1-2 PCI expansion connector 5-11 secondary PCI bus connector 5-13 PMCspan-002 block diagram 3-2 board layout drawing 1-3 PCI expansion connector 5-11 secondary PCI bus connector 5-13

PMCspan-010 block diagram 3-3 board layout drawing 1-4 PCI bus connector 5-15 power supply circuit 3-4 processor modules supported 1-5 product reliability 1-6 programming model 4-1

R

Raven ASIC 3-5, 3-6 read access latency 3-5 related specifications A-1, A-2

S

secondary device number IDSEL mapping 4-4 secondary expansion 3-4 signal, PMC Present 3-5 Special Cycle transactions 4-4 standoffs -1 start-up time 3-6 structure, physical and electrical 3-1 system clock periods required 3-6

Т

transactions Special Cycles 4-4 Types 0 and 1 4-3 Type 0 configuration cycles 4-3 Type 1 configuration cycles 4-3 Type 1 to Type 1 forwarding 4-4

V

VME processor/PMCspan system diagram 1-7 VMEbus connectors 1-5 voltage requirements 1-6

W

wrist strap, antistatic 2-2 write timings 3-7

I N D E X

Cover	PMCspan PMC Adapter Carrier Board Installation and Use
34 pages 1/8" spine	®тм
36 - 84 pages 3/16" & 1/4" spine	®тм
86 - 100 pages 5/16" spine	PMCspan PMC Adapter Carrier Board Installation and Use
102 - 180 pages 3/8" - 1/2" spine	® TM
182 - 308 pages 5/8" - 1 1/8" spine 2 lines allowed	