
Motorola Built-In Test (MBIT)
Diagnostic Software

User’s Manual

MBITA/UM1

June 2002 Edition

© Copyright 2002 Motorola Inc.

All rights reserved.

Printed in the United States of America.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.

Tornado and VxWorks are registered trademarks of Wind River Systems, Inc.

Windows is a registered trademark of Microsoft in the U.S. and other countries.

All other product or service names mentioned in this document are trademarks or registered
trademarks of their respective holders.

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or from
the use of the information obtained therein. Motorola reserves the right to revise this
document and to make changes from time to time in the content hereof without obligation
of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or
referenced in another document as a URL to the Motorola Computer Group Web site. The
text itself may not be published commercially in print or electronic form, edited, translated,
or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola
products (machines and programs), programming, or services that are not available in your
country. Such references or information must not be construed to mean that Motorola
intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013
(Nov. 1995) and of the Rights in Noncommercial Computer Software and
Documentation clause at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282

v

About This Manual

Overview of Contents ...xvii
Comments and Suggestions ... xviii
Conventions Used in This Manual ..xix

CHAPTER 1 MBIT Overview

Introduction .. 1-1
System Requirements ... 1-3
Installation .. 1-3
MBIT Features ... 1-3
MBIT Process ... 1-5

Diagnostic Application ... 1-6
Test List Processing Task .. 1-6
Subtest Control Task ... 1-6
Subtest Envelope Task .. 1-7
Device Fault Database ... 1-7

CHAPTER 2 Using MBIT

Using MBIT ... 2-1
Initializing MBIT .. 2-2

initBit() ... 2-2
reinitBit() ... 2-3
isBitInitializationComplete() ... 2-3

Executing Subtests in MBIT ... 2-3
executeBitTests() ... 2-4
buildBitDefaultTestList() ... 2-5
buildBitDefaultTestEntry() .. 2-6
getBitResponse() .. 2-6
getNumBitResponses() .. 2-7
abortBitTests() ... 2-7

Obtaining IDs in MBIT ... 2-8
getBitSubtestIdByName() .. 2-8
getBitDeviceIdByName() .. 2-8
getBitFaultIdByName() ... 2-9

Contents

vi

Obtaining Faults in MBIT ... 2-9
getBitDeviceFault() .. 2-9

Obtaining String Descriptions in MBIT .. 2-10
getBitSubtestDesc() .. 2-10
getBitDeviceDesc() .. 2-10
getBitFaultDesc() ... 2-11

Obtaining Counts in MBIT .. 2-11
getBitNumberOfSubtests() ... 2-11
getBitNumberOfDevices() ... 2-12
getBitNumberOfFaults() .. 2-12
getBitMaxTestListEntries() .. 2-12

Terminating MBIT ... 2-13
terminateBit() ... 2-13

Example: Using MBIT ... 2-13

CHAPTER 3 Integrating Custom Diagnostics

Introduction .. 3-1
Diagnostic Integration Methods ... 3-1

addBitSubtestIdent() .. 3-2
addBitDeviceIdent() .. 3-2
addBitFaultIdent() ... 3-3
createBitTestAssociations() ... 3-3
installBitDriver() ... 3-4
installBitSubtestEntries() ... 3-5
getBitNumberOfAssociations() ... 3-6

Implementing Subtests ... 3-6
Subtest Structure .. 3-6

Example: Subtest Structure .. 3-8
Subtest Parameters ... 3-8

Example: Subtest Parameter Configuration ... 3-9
Subtest Configuration .. 3-10

Subtest Addition ... 3-10
Subtest Installation ... 3-11
Addition of Subtest-Specific MBIT Faults .. 3-11
Example: Subtest Configuration .. 3-11

Implementing an MBIT Device Driver .. 3-12
Generic Device Driver Interface .. 3-12

drvInstall() .. 3-13
drvDeinstall() ... 3-14
drvOpen() ... 3-14

vii

drvClose() .. 3-15
drvRead() ... 3-15
drvWrite() .. 3-16
drvIoctl() .. 3-16

Device Driver Interface ... 3-17
devXXXInstall() .. 3-18
devXXXDeInstall() .. 3-19
devXXXOpen() .. 3-19
devXXXClose() ... 3-20
devXXXRead() .. 3-20
devXXXWrite() ... 3-21
devXXXIoctl() ... 3-22

Installing a Device Driver into the MBIT Environment 3-23
Initializing the Diagnostic Devices .. 3-24

Device Initialization Method .. 3-24
Device Descriptor Structure (DEV_DESC) .. 3-25
Device Address Table Array (part of DEV_DESC) 3-27
Generic Device Address Table Structure (part of DEV_DESC) 3-30
Address Type (ADDR_TYPE) .. 3-31
Device Type (DEV_TYPE) ... 3-33
Device Read and Write Utility Methods .. 3-33

Creating a Device Initialization Method ... 3-40
Creating Diagnostic Associations .. 3-43
Using the Diagnostic Configuration Method ... 3-43

Example: Diagnostic Configuration Method .. 3-45

CHAPTER 4 Utility Methods

Introduction .. 4-1
Cache Utility Methods ... 4-1

bitDataCacheEnable() ... 4-2
bitDataCacheDisable() .. 4-3
bitDataCacheIsEnabled() .. 4-3
bitDataCacheFlush() ... 4-3
bitDataCacheFlushInvalidate() .. 4-4
bitDataCacheInvalidate() .. 4-4
bitDataCacheLock() .. 4-5
bitDataCacheUnlock() .. 4-5
bitInstCacheEnable() ... 4-5
bitInstCacheDisable() ... 4-6
bitInstCacheIsEnabled() .. 4-6

viii

bitInstCacheLock() .. 4-6
bitInstCacheUnlock() .. 4-7
bitL2CacheSizeGet() ... 4-7
bitL2CacheEnable() ... 4-7
bitL2CacheDisable() ... 4-8
bitL2CacheOn() ... 4-8
bitL2CacheOff() .. 4-9
bitL2CacheIsEnabled() .. 4-9
bitL2CacheFlush() ... 4-9
bitL2CacheFlushInvalidate() ... 4-10
bitL2CacheInvalidate() .. 4-10
bitL2CacheLock() ... 4-11
bitL2CacheUnlock() .. 4-11
bitL2CacheIsLockable() .. 4-11
bitL2CacheFill() .. 4-12
bitL2CacheIsWritebackCapable() ... 4-12

Diagnostic Device Utility Methods .. 4-13
getDeviceDescriptor() ... 4-13
getDevTablePtr() ... 4-14
bitTrackChanges() ... 4-14
bitIn() ... 4-15
bitOut() .. 4-15

Interrupt Utility Methods .. 4-16
bitIntLock() ... 4-16
bitIntUnlock() .. 4-17
bitForceIntUnlock() ... 4-17
bitIntConnect() .. 4-17
isBitIntEnabled() ... 4-18
bitIntVectorSet() .. 4-18
bitIntEnable() ... 4-19
bitIntDisable() ... 4-19

Time Utility Methods ... 4-20
bitUsDelay() .. 4-20
bitMsDelay() ... 4-20

CHAPTER 5 MBIT Faults

Built-In MBIT Faults .. 5-1
Pre-Defined MBIT Faults ... 5-4

ix

APPENDIX A API Method’s Reference Pages

initBit() ...A-3
reinitBit() ..A-5
isBitInitializationComplete() ..A-6
executeBitTests() ..A-7
buildBitDefaultTestList() ...A-11
buildBitDefaultTestEntry() ...A-13
getBitResponse() ..A-14
getNumBitResponses() ..A-16
abortBitTests() ..A-17
getBitDeviceFault() ..A-18
getBitSubtestDesc() ..A-19
getBitDeviceDesc() ..A-20
getBitFaultDesc() ...A-21
getBitSubtestIdByName() ..A-22
getBitDeviceIdByName() ...A-23
getBitFaultIdByName() ..A-24
getBitNumberOfSubtests() ...A-25
getBitNumberOfDevices() ...A-26
getBitNumberOfFaults() ..A-27
getBitMaxTestListEntries() ..A-28
terminateBit() ...A-29

APPENDIX B Integrating Custom Diagnostics’ Reference Pages

Diagnostic Integration Methods ...B-1
addBitSubtestIdent() ...B-2
addBitDeviceIdent() ..B-4
addBitFaultIdent() ...B-6
createBitTestAssociations() ..B-8
installBitDriver() ...B-10
installBitSubtestEntries() ..B-12
getBitNumberOfAssociations() ..B-15

Generic Device Driver Methods ...B-15
drvInstall() ...B-17
drvDeinstall() ..B-19
drvOpen() ..B-21
drvClose() ...B-22
drvRead() ..B-23

x

drvWrite() ... B-25
drvIoctl() ... B-27

Device Driver Methods .. B-28
devXXXInstall() ... B-29
devXXXDeinstall() ... B-31
devXXXOpen() .. B-33
devXXXClose() .. B-34
devXXXRead() ... B-35
devXXXWrite() .. B-37
devXXXIoctl() .. B-39

Device Read and Write Utility Methods ... B-40
bitProbeIn8/16/32() .. B-41
bitProbeOut8/16/32() .. B-42
bitProbeInSwap16/32() .. B-43
bitProbeOutSwap16/32() .. B-44
bitIn8/16/32() .. B-45
bitOut8/16/32() ... B-46
bitInSwap16/32() .. B-47
bitOutSwap16/32() ... B-48
bitPciWrite32() ... B-49
bitPciRead32() .. B-50

APPENDIX C Utility Methods’ Reference Pages

Cache Utility Methods ... C-1
bitDataCacheEnable() .. C-3
bitDataCacheDisable() ... C-4
bitDataCacheIsEnabled() .. C-5
bitDataCacheFlush() ... C-6
bitDataCacheFlushInvalidate() ... C-7
bitDataCacheInvalidate() .. C-8
bitDataCacheLock() ... C-9
bitDataCacheUnlock() .. C-10
bitInstCacheEnable() .. C-11
bitInstCacheDisable() ... C-12
bitInstCacheIsEnabled() ... C-13
bitInstCacheLock() ... C-14
bitInstCacheUnlock() ... C-15
bitL2CacheSizeGet() .. C-16
bitL2CacheEnable() .. C-17
bitL2CacheDisable() .. C-18

xi

bitL2CacheOn() ..C-19
bitL2CacheOff() ..C-20
bitL2CacheIsEnabled() ...C-21
bitL2CacheFlush() ..C-22
bitL2CacheFlushInvalidate() ...C-23
bitL2CacheInvalidate() ..C-24
bitL2CacheLock() ...C-25
bitL2CacheUnlock() ...C-26
bitL2CacheIsLockable() ...C-27
bitL2CacheFill() ..C-28
bitL2CacheIsWritebackCapable() ...C-30

Diagnostic Device Utility Methods ..C-30
getDeviceDescriptor() ...C-31
getDevTablePtr() ...C-32
bitTrackChanges() ...C-33
bitIn() ..C-34
bitOut() ..C-35

Interrupt Utility Methods ...C-36
bitIntLock() ...C-37
bitIntUnlock() ...C-38
bitForceIntUnlock() ..C-39
bitIntConnect() ..C-40
isBitIntEnabled() ...C-42
bitIntVectorSet() ..C-43
bitIntEnable() ..C-44
bitIntDisable() ...C-45

Time Utility Methods ...C-45
bitUsDelay() ..C-46
bitMsDelay() ...C-47

APPENDIX D Installing MBIT with Tornado 2.1 and VxWorks

Installing MBIT from the CD-ROM ..D-1
Installing MBIT on a Microsoft Windows Platform ...D-1

Creating a VxWorks Image with the MBIT API ..D-2
Building a VxWorks Image ..D-2
Building a VxWorks VME Slave Image ..D-5
Configuring the Target ...D-6
Booting the Target ..D-6
Modifying the Image ..D-6
Modifying the MVME5100 BSP ...D-7

xii

Flash Memory Testing .. D-7
GD82559ER Ethernet Testing .. D-9
VME Location Monitor Window Setup ... D-12

APPENDIX E Known Issues

Installation ..E-1
Subtest Results ..E-1

APPENDIX F Related Documentation

Motorola Computer Group Documents ..F-1
Manufacturers’ Documents ..F-2
URLs ...F-3

xiii

Table 3-1. Device Descriptor (DEV_DESC) .. 3-25
Table 3-2. Address Information (ADDR_INFO) .. 3-28
Table 3-3. Address Type (ADDR_TYPE) ... 3-31
Table 3-4. Device Type (DEV_TYPE) .. 3-33
Table 5-1. Built-In MBIT Faults ... 5-1
Table 5-2. Pre-Defined MBIT Faults .. 5-4
Table F-1. Motorola Computer Group Documents ... F-1
Table F-2. Manufacturers’ Documents .. F-2

List of Tables

xv

About This Manual
This manual explains how to install and use the Motorola Built-In Test
(MBIT) 1.01 diagnostic software for MVME51xx family boards running
the Wind River Systems, Inc. VxWorks® real-time operating system.
MBIT also depends on the use of the Tornado® 2.1 development
environment.

This manual is a companion to the Motorola Built-In Test (MBIT)
Diagnostic Software Test Reference Guide listed in Appendix F, Related
Documentation. The Test Reference Guide identifies and describes the
supported devices and subtests needed to create test lists as part of a
diagnostic application.

This User’s Manual supports both the board level version of MBIT
(PN: MBIT-BRD-51XX) and the system level version of MBIT
(PN: MBIT-SYS-51XX). Refer to Chapter 1, MBIT Overview for a
description of each version.

This manual is intended for use by software programmers or individuals
with experience in the C programming language.

As of the printing date of this manual, MBIT supports the MVME51xx
models listed below.

Model Number Description

All models of the MVME51xx are available with either a VME Scanbe front
panel (-xxx1) or a IEEE 1101 compatible front panel (-xxx3).

450 MHz MPC750 Class Commercial Models

MVME5100-013x 450 MHz MPC750 class, 64MB ECC SDRAM, 17MB
Flash and 1MB L2 cache

MVME5100-016x 450 MHz MPC750 class, 512MB ECC SDRAM, 17MB
Flash and 1MB L2 cache

400 MHz MPC755 Class Extended Temperature Models

MVME5106-114x 400 MHz MPC755 class, 128MB ECC SDRAM and
1MB L2 cache

xvi

MVME5106-115x 400 MHz MPC755 class, 256MB ECC SDRAM and
1MB L2 cache

MVME5106-116x 400 MHz MPC755 class, 512MB ECC SDRAM and
1MB L2 cache

400 MHz MPC7400 Commercial Models

MVME5101-013x 400 MHz MPC7400, 64MB ECC SDRAM, 17MB Flash
and 1MB L2 cache

MVME5101-016x 400 MHz MPC7400, 512MB ECC SDRAM, 17MB
Flash and 1MB L2 cache

MVME5101-213x 400 MHz MPC7400, 64MB ECC SDRAM, 17MB Flash
and 2MB L2 cache

MVME5101-214x 400 MHz MPC7400, 128MB ECC SDRAM, 17MB
Flash and 2MB L2 cache

MVME5101-216x 400 MHz MPC7400, 512MB ECC SDRAM, 17MB
Flash and 2MB L2 cache

400 and 500 MHz MPC7410 Commercial Models

MVME5110-213x 400 MHz MPC7410, 64MB ECC SDRAM and 2MB L2
cache

MVME5110-214x 400 MHz MPC7410, 128MB ECC SDRAM and 2MB L2
cache

MVME5110-215x 400 MHz MPC7410, 256MB ECC SDRAM and 2MB L2
cache

MVME5110-216x 400 MHz MPC7410, 512MB ECC SDRAM and 2MB L2
cache

MVME5110-223x 500 MHz MPC7410, 64MB ECC SDRAM and 2MB L2
cache

MVME5110-224x 500 MHz MPC7410, 128MB ECC SDRAM and 2MB L2
cache

MVME5110-225x 500 MHz MPC7410, 256MB ECC SDRAM and 2MB L2
cache

MVME5110-226x 500 MHz MPC7410, 512MB ECC SDRAM and 2MB L2
cache

Model Number Description

xvii

Overview of Contents
This manual is divided into the following chapters and appendices:

Chapter 1, MBIT Overview, provides a high-level overview of the system
level and board level versions of MBIT.

Chapter 2, Using MBIT, provides the MBIT application programming
interface, as well as an example of how to use MBIT.

Chapter 3, Integrating Custom Diagnostics, provides instructions on how
to integrate custom diagnostics available with the system level version of
MBIT.

Chapter 4, Utility Methods, provides methods to complete various
activities while integrating custom diagnostics in the system level version
of MBIT.

Chapter 5, MBIT Faults, provides the faults built into the MBIT API or pre-
defined by the MVME51xx diagnostics.

Appendix A, API Method’s Reference Pages, provides detailed
information about the MBIT API methods mentioned in Chapter 2, Using
MBIT.

Appendix B, Integrating Custom Diagnostics’ Reference Pages, provides
detailed information about the diagnostic integration methods, generic
device driver methods, device driver methods, and the device read/write
utility methods mentioned in Chapter 3, Integrating Custom Diagnostics.

500 MHz MPC7410 Extended Temperature Models

MVME5107-214x 500 MHz MPC7410, 128MB ECC SDRAM and 2MB L2
cache

MVME5107-215x 500 MHz MPC7410, 256MB ECC SDRAM and 2MB L2
cache

MVME5107-216x 500 MHz MPC7410, 512MB ECC SDRAM and 2MB L2
cache

Model Number Description

xviii

Appendix C, Utility Methods’ Reference Pages, provides detailed
information about the utility methods mentioned in Chapter 4, Utility
Methods.

Appendix D, Installing MBIT with Tornado 2.1 and VxWorks, provides
instructions on how to install MBIT with the Tornado 2.1 development
system.

Appendix E, Known Issues, provides known issues with the MBIT
diagnostic software.

Appendix F, Related Documentation, provides a list of related
documentation for the MBIT software.

Comments and Suggestions
Motorola welcomes and appreciates your comments on its documentation.
We want to know what you think about our manuals and how we can make
them better. Mail comments to:

Motorola Computer Group
Reader Comments DW164
2900 S. Diablo Way
Tempe, Arizona 85282

You can also submit comments to the following e-mail address:
reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company.
Be sure to include the title and part number of the manual and tell how you
used it. Then tell us your feelings about its strengths and weaknesses and
any recommendations for improvements.

mailto:reader-comments@mcg.mot.com

xix

Conventions Used in This Manual
The following typographical conventions are used in this document:

bold

is used for user input that you type just as it appears; it is also used for
commands, options and arguments to commands, and names of
programs, directories and files.

italic

is used for names of variables to which you assign values, for function
parameters, and for structure names and fields. Italic is also used for
comments in screen displays and examples, and to introduce new
terms.

courier

is used for system output (for example, screen displays, reports),
examples, and system prompts.

<Enter>, <Return> or <CR>

represents the carriage return or Enter key.

Ctrl

represents the Control key. Execute control characters by pressing the
Ctrl key and the letter simultaneously, for example, Ctrl-d.

1-1

11MBIT Overview

Introduction
MBIT is an off-the-shelf software infrastructure designed to verify the
correct operation of Motorola Computer Group hardware. MBIT is
available in two versions—board level MBIT and system level MBIT.

❏ Board level MBIT (PN: MBIT-BRD-51XX)—a comprehensive
diagnostic software package designed to verify the correct
operation of board mounted logical devices. All tests can execute
at boot-up and selected tests can run continuously in the
background of user applications. An application programming
interface (API) is included to provide access to test results and to
control the operation of device tests. Chapter 2, Using MBIT and
Appendix A, API Method’s Reference Pages are specifically for
the board level version of MBIT.

Control

VxWorksVxWorks

Motorola BoardMotorola Board

OEM ApplicationOEM Application

MBITMBIT
DiagnosticDiagnostic
InterfaceInterface

MBITMBIT
DiagnosticDiagnostic

DriverDriver
InterfaceInterface

MBIT OSMBIT OS
AbstractionAbstraction

MBIT Board Level APIMBIT Board Level API

MBIT API Access and
Analysis Software

S
ys

te
m

H
ar

dw
ar

e

1-2 Computer Group Literature Center Web Site

MBIT Overview
1

❏ System level MBIT (PN: MBIT-SYS-51XX)—includes all of the
functionality and API function calls of the board level version and
enables system-wide testing. It provides a framework and
additional API methods to support the inclusion of software
designed to test custom hardware and/or system components.
Chapter 3, Integrating Custom Diagnostics, Chapter 4, Utility
Methods, Appendix B, Integrating Custom Diagnostics’
Reference Pages, and Appendix C, Utility Methods’ Reference
Pages are specifically for the system level version of MBIT.

Before using the MBIT diagnostic software, connect and configure the
board and other hardware according to the respective installation guide.

S
ys

te
m

H
ar

dw
ar

e

Control

VxWorksVxWorks

Motorola BoardMotorola Board

OEM ApplicationOEM Application

Custom TestsCustom Tests Custom DriverCustom Driver

MBIT OSMBIT OS
AbstractionAbstractionSystem APISystem API

MBIT API Access and
Analysis Software

MBIT Test InterfaceMBIT Test Interface

Diagnostic APIDiagnostic API

MBIT Test DriverMBIT Test Driver
InterfaceInterface

System Requirements

http://www.motorola.com/computer/literature 1-3

1

System Requirements
In order to successfully install and use this diagnostic software, you need
the following items:

✓ Wind River Systems, Inc. Tornado 2.1 development environment

✓ Wind River Systems, Inc. VxWorks® real-time operating system

✓ Motorola’s MVME51xx VME processor module

✓ Wind River Systems, Inc. board support package (BSP) for
Motorola’s MVME51xx VME processor module
(PN: TDK-14498-ZC)

Refer to the Help pull down menu in your Tornado 2.1 environment for
more information on system requirements.

Installation
Refer to Appendix D, Installing MBIT with Tornado 2.1 and VxWorks, for
instructions on how to install the MBIT diagnostic software.

MBIT Features
MBIT provides PowerPC™ architecture-compatible single-board
computers with an API that allows the user’s application to control subtest
execution and sequencing. The following list summarizes general features
and functions of the API and associated diagnostic.

❏ The user’s application controls diagnostic execution and
sequencing. The application dictates the execution of each
diagnostic.

❏ The user’s application can extend MBIT to add custom diagnostics
in the system level product.

❏ The user’s application can invoke lists of diagnostics.

❏ Each diagnostic executes independently of all other diagnostic.

http://www.mcg.mot.com/literature

1-4 Computer Group Literature Center Web Site

MBIT Overview
1

❏ Each diagnostic provides its own initialization, resource
allocation, and resource de-allocation.

❏ The diagnostic application can control whether a subtest halts on
the first error detected or runs until subtest completion.

❏ The diagnostic application can clear the results of previously
executed subtests.

❏ The diagnostic application can halt a subtest in progress.

❏ MBIT uses a time-out mechanism on diagnostics to prevent them
from waiting for an event that may never occur due to a hardware
malfunction.

❏ Exception handling mechanisms help prevent the diagnostic
application from failing due to hardware faults during subtest
execution.

❏ MBIT reports the status for each executed subtest.

❏ MBIT diagnostics cover 95 percent of stuck-at faults for board
address and data nodes.

❏ Total subtest execution time for all built-in subtests on all devices,
with the exception of the memory subtests, does not exceed five
minutes.

The MBIT diagnostics cover more than 95 percent of address and data
nodes on MVME51xx family boards alone, and in combination with an
attached IPMC712. To calculate the coverage, the analysis process
classified each node on the board (a trace connecting one or more
components) as an address, data, control or other. For each node classified
as address or data, the analysis process verified that each diagnostic could
detect stuck-at zero or stuck-at one faults. This coverage calculation
assumes executing diagnostics for each device, executing all the subtests
for a device, and using the default parameters for the subtests.

MBIT Process

http://www.motorola.com/computer/literature 1-5

1

MBIT Process
The MBIT diagnostic software is explained in a five-part process, ending
with a summary of subtest results. The process executes in four separate
threads and communicates by message passing.

1. Diagnostic Application

2. Test List Processing Task

3. Subtest Control Task

4. Subtest Envelope Task

5. Device Fault Database

Diagnostic Application

Application Programming Interface

Test List

Processing Task

Subtest

Control Task

Subtest

Envelope Task

Device Fault

Database

Test List

Subtest
Request

Spawn
Task

Subtest
Results

Subtest
Results

Test Results
List

Device Fault

Fault

http://www.mcg.mot.com/literature

1-6 Computer Group Literature Center Web Site

MBIT Overview
1

Diagnostic Application

The diagnostic application submits a test list for execution via the API. A
test list contains a set of subtests and only a single list can be submitted at
any one time. Further test list requests are ignored until the current test list
is processed. Once a test list is submitted, a message is queued to the Test
List Processing Task and the API returns control to the user’s application
to await future commands.

The MBIT API methods are described in greater detail in Chapter 2, Using
MBIT and in Appendix A, API Method’s Reference Pages.

Test List Processing Task

Upon receipt of the test list message, the test list processing task buffers
the test list and queues a subtest for processing by the Subtest Control Task.
A subtest is sent and the test list processing task waits for test completion.
Upon receipt of the test results, the test list processing task buffers the
completion data in a test list results message, which returns to the
diagnostic application upon completion of all subtests contained in the test
list message. The next subtest in the test list is then queued to the subtest
control task. The results are returned through a response message queue.

Subtest Control Task

Upon receipt of a subtest response message, the subtest control task calls
the configured subtest installation method. A task is spawned to run the
configured subtest execution method. A timer is set to limit execution time
and the subtest control task waits for subtest completion. Refer to the
Motorola Built-In Test (MBIT) Diagnostic Software Test Reference Guide,
listed in Appendix F, Related Documentation, for default subtest time
limits.

Upon receipt of the subtest completion message, the subtest control task
stores the completion data for the logical device being tested in the results
message and device fault database. The subtest control task also invokes
the subtest de-installation method and forwards the results message to the
test list processing task. Subtest installation and de-installation methods
are responsible for allocating and freeing resources required by the subtest.

Subtest Envelope Task

http://www.motorola.com/computer/literature 1-7

1

If the test results are not received before the timer expires, it is assumed the
subtest is unable to complete its testing. In such a case, the spawned subtest
task is deleted, a time-out indication is stored in the fault database, and the
time-out indication is queued to the test list processing task.

If subtest control receives an abort directive while a test list is executing,
the spawned subtest task is deleted. The value BIT_TEST_ABORTED is
placed in a subtest result message, which is then queued to the test list
processing task. The fault database is not updated, since an operator abort
directive does not represent a device failure.

Subtest Envelope Task

The test execution task initializes a subtest results message and calls the
configured subtest repeatedly based on the iteration count. Upon
completion of all required test iterations, a summary of the results is placed
in the results message and is then queued to the subtest control task. The
test execution task then exits.

Device Fault Database

The device fault database contains the results of subtest execution for each
supported device. The results of subtest execution begin to accumulate in
the fault database after API initialization. The results may indicate
unexecuted tests on the device. If there are executed tests on the device, the
result indicates either success or the first fault detected for the device. The
user’s application can obtain fault information for logical devices by
invoking the getBitDeviceFault() method (see Chapter 2, Using MBIT or
Appendix A, API Method’s Reference Pages for details on this method).

Note The device fault database clears when the reinitBit() method is
invoked.

http://www.mcg.mot.com/literature

2-1

22Using MBIT

Using MBIT
The MBIT software provides the methods contained in the MBIT API.
These methods, which are listed below, initialize the software, control
subtest execution and sequencing, terminate the software, and perform
several other functions necessary for a diagnostic application. Appendix A,
API Method’s Reference Pages describes each of these methods in greater
detail.

Method Description

initBit() Initiates the MBIT software.

reinitBit() Clears the device fault database.

isBitInitializationComplete() Returns the MBIT initialization status.

executeBitTests() Executes a list of subtests.

buildBitDefaultTestList() Fills in a test list with default test entries for each subtest
associated with the given device.

buildBitDefaultTestEntry() Fills in a test list with a single default test entry for the associated
subtest and device.

getBitResponse() Obtains a list of test results.

getNumBitResponses() Provides the number of MBIT test results lists in the response
queue.

abortBitTests() Aborts a subtest or group of subtests.

getBitDeviceFault() Gets a fault for the specified logical device from the device fault
database.

getBitSubtestDesc() Gets a subtest description.

getBitDeviceDesc() Gets a logical device description.

getBitFaultDesc() Gets a fault description.

getBitSubtestIdByName() Gets the subtest ID for the corresponding subtest name.

2-2 Computer Group Literature Center Web Site

Using MBIT

2

Initializing MBIT

The initBit() method initializes MBIT, reinitBit() clears the device fault
database, and terminateBit() terminates MBIT. The
isBitInitializationComplete() method returns TRUE or FALSE,
depending on whether or not the MBIT initialization is complete.

initBit()

initBit() performs MBIT initialization and must be invoked prior to any
other method. This method creates the test list processing task and the
subtest control task.

Here’s a synopsis of the initBit() method:

#include <api/bitApi.h>

BIT_FAULT initBit(BIT_FAULT (*pConfigRoutines[])(),

int numConfigRoutines)

where pConfigRoutines[] is an array of function pointers to custom subtest
and device configuration methods and numConfigRoutines is the number
of custom configuration methods.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

getBitDeviceIdByName() Gets the device ID for the corresponding device name.

getBitFaultIdByName() Gets the fault ID for the corresponding fault name.

getBitNumberOfSubtests() Gets the number of subtests.

getBitNumberOfDevices() Gets the number of devices.

getBitNumberOfFaults() Gets the number of faults.

getBitMaxTestListEntries() Gets the maximum number of test list entries supported by
executeBitTests() and getBitResponse().

terminateBit() Terminates the MBIT software.

Method Description

Executing Subtests in MBIT

http://www.motorola.com/computer/literature 2-3

2reinitBit()

reinitBit() clears the device fault database and extinguishes the Fail LED.

Here’s a synopsis of the reinitBit() method:

#include <api/bitApi.h>

BIT_FAULT reinitBit(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

isBitInitializationComplete()

isBitInitializationComplete() returns the MBIT initialization status.

Here’s a synopsis of the isBitInitializationComplete() method:

#include <api/bitApi.h>

BOOLEAN isBitInitializationComplete(void)

This method returns TRUE if the MBIT initialization is complete, FALSE
if it is not.

Executing Subtests in MBIT

Executing subtests begins with creating test lists and submitting them for
execution by calling executeBitTests(). Follow this method up with
getBitResponse(), which returns test results. abortBitTests() allows
aborting test execution any time outside critical sections during tests. See
the section on subtest attributes in the Test Reference Guide for a list of
subtests with protected critical sections.

A user may obtain a test list filled with default test entries for a given
device by calling either buildBitDefaultTestList() or
buildBitDefaultTestEntry().

An MBIT application may occupy two threads of execution. All API
methods, except getBitResponse(), must be called from the thread

http://www.mcg.mot.com/literature

2-4 Computer Group Literature Center Web Site

Using MBIT

2 initBit() is called from. getBitResponse() may be called from another
thread.

executeBitTests()

executeBitTests() submits and executes a list of subtests. The test list
processing task buffers the test list and processes it in the background.

Here’s a synopsis of the executeBitTests() method:

#include <api/bitApi.h>

BIT_FAULT executeBitTests(BIT_TEST_CONTROL listControl,

unsigned int testCount,

TEST_ENTRY testList[])

where listControl specifies HALT_ON_ERROR or
RUN_TILL_COMPLETION (see config/bitCommonDefs.h),
testCount is the number of entries in the test list, and testList[] is an array
of tests to execute.

For each successfully submitted test list, MBIT places a single test results
list in the response queue.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

Creating Test Lists

In creating a test list, the following applies:

❏ Any subtest can be included in a single test list and a test list
may contain a single entry.

❏ The number of subtest entries in a test list is limited to the
number of entries returned by the
getBitMaxTestListEntries() method.

❏ Only one subtest is executed at any one time.

MBIT provides two methods to create test lists with default test
entries. These methods can be used as a starting point for configuring
subtest parameters. The buildBitDefaultTestList() method fills a test

Executing Subtests in MBIT

http://www.motorola.com/computer/literature 2-5

2list with subtests associated with a given device. The
buildBitDefaultTestEntry() method fills a test list with a single
subtest associated with a given device. These test lists may then be
submitted to the executeBitTests() method for processing.

Executing a Test List

To execute a test list, the user must specify a list control with one of
the values, HALT_ON_ERROR or RUN_TILL_COMPLETION.
If HALT_ON_ERROR is specified, processing of the test list
terminates with the detection of the first failed subtest. Otherwise, all
subtests in the test list are executed. If a subtest fails, the board fail
LED illuminates.

For more information on executing a test list, refer to Appendix A, API
Method’s Reference Pages.

buildBitDefaultTestList()

buildBitDefaultTestList() fills in a test list with default test entries for
each subtest associated with the given device. The list of test entries must
be allocated before this method is called. The maximum number of test
entries returned is no more than the value returned by the
getBitMaxTestListEntries() method. Refer to the Motorola Built-In Test
(MBIT) Diagnostic Software Test Reference Guide for a list of subtests and
the associated devices.

Here’s a synopsis of the buildBitDefaultTestList() method:

#include <api/bitApi.h>

BIT_FAULT buildBitDefaultTestList(

BIT_LOGICAL_DEVICE deviceId,

unsigned int *numTests,

TEST_ENTRY testEntryList[])

where deviceId is an ID specifying a unique device. The number of test
entries returned is placed in the integer at numTests and the test entries for
the device are placed in the buffer starting at testEntryList[].

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the

http://www.mcg.mot.com/literature

2-6 Computer Group Literature Center Web Site

Using MBIT

2 return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

buildBitDefaultTestEntry()

buildBitDefaultTestEntry() fills in a single default test entry for the
associated subtest and device. The test entry must be allocated before this
method is called.

Here’s a synopsis of the buildBitDefaultTestEntry() method:

#include <api/bitApi.h>

BIT_FAULT buildBitDefaultTestEntry(BIT_SUBTEST subtestId,

BIT_LOGICAL_DEVICE deviceId,

TEST_ENTRY *testEntry)

where subtestId is an ID specifying a unique subtest, deviceID is an ID
specifying a unique device, and the test entry for subtest and device is
placed in the TEST_ENTRY as testEntry.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

getBitResponse()

getBitResponse() provides the results of a test list submitted by invoking
executeBitTests(). getBitResponse() blocks until the executing subtest
completes, times out, or aborts. If this method is called when no subtests
are executing, it blocks until a call is made to executeBitTests() and all
subtests in the list complete execution. getBitResponse() returns a single
test results list and removes it from the response queue.

Here’s a synopsis of the getBitResponse() method:

#include <api/bitApi.h>

BIT_FAULT getBitResponse(TEST_RESULTS_ENTRY testResults[],

unsigned int *numberOfResults)

where testResults[] is a user allocated array for the test results and
numberOfResults will receive the number of entries in the test results list.

Executing Subtests in MBIT

http://www.motorola.com/computer/literature 2-7

2If the number of results exceeds the value returned by
getBitMaxTestListEntries(), an error is returned.

The number of testResults entries allocated must be greater than or equal
to the number of test entries submitted with executeBitTests(). The
number of testResults returned will be less than or equal to the number of
test entries submitted with executeBitTests().

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

getNumBitResponses()

getNumBitResponses() provides the number of MBIT test results lists in
the MBIT response queue.

Here’s a synopsis of the getNumBitResponses() method:

#include <api/bitApi.h>

BIT_FAULT getNumBitResponses(int *msgCount)

where msgCount will contain the number of test results lists in the MBIT
response queue.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

abortBitTests()

abortBitTests() terminates current test list processing and aborts any
subtest in progress. This method has no effect if a subtest is not executing
or has already completed. Tests with protected critical sections are not
aborted until the critical section is exited. Test results for those tests
already complete are made available in response to the submitted test list.
For each successfully submitted test list, a single test results list is placed
in the response queue.

http://www.mcg.mot.com/literature

2-8 Computer Group Literature Center Web Site

Using MBIT

2 Invoking abortBitTests(), then reinitBit(), is sufficient to place MBIT in
an initial state.

Here’s a synopsis of the abortBitTests() method:

#include <api/bitApi.h>

BIT_FAULT abortBitTests(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

Obtaining IDs in MBIT

The getBitSubtestIdByName(), getBitDeviceIdByName(), and
getBitFaultIdByName() methods return an ID representing the string
identifier.

getBitSubtestIdByName()

getBitSubtestIdByName() returns the ID representing the subtest string
identifier.

Here’s a synopsis of the getBitSubtestIdByName() method:

#include <api/bitApi.h>

BIT_SUBTEST getBitSubtestIdByName(const char* const subtest)

where subtest is a string identifier specifying the subtest.

Upon successful completion, a BIT_SUBTEST is returned, which is an ID
representing the subtest identifier. Otherwise, –1 is returned if the subtest
is not found. Refer to Chapter 5, MBIT Faults for more return values.

getBitDeviceIdByName()

getBitDeviceIdByName() returns the ID representing the device string
identifier.

Obtaining Faults in MBIT

http://www.motorola.com/computer/literature 2-9

2Here’s a synopsis of the getBitDeviceIdByName() method:

#include <api/bitApi.h>

BIT_LOGICAL_DEVICE getBitDeviceIdByName(const char* const

device)

where device is a string identifier specifying the device.

Upon successful completion, a BIT_LOGICAL_DEVICE is returned,
which is an ID representing the device identifier. Otherwise, –1 is returned
if the device is not found. Refer to Chapter 5, MBIT Faults for more return
values.

getBitFaultIdByName()

getBitFaultIdByName() returns the ID representing the fault string
identifier.

Here’s a synopsis of the getBitFaultIdByName() method:

#include <api/bitApi.h>

BIT_FAULT getBitFaultIdByName(const char* const fault)

where fault is a string identifier specifying the fault

Upon successful completion, a BIT_FAULT is returned, which is an ID
representing the fault identifier. Otherwise, –1 is returned if the fault is not
found. Refer to Chapter 5, MBIT Faults for more return values.

Obtaining Faults in MBIT

The getBitDeviceFault() method obtains fault information for a specified
logical device.

getBitDeviceFault()

getBitDeviceFault() obtains the fault data for the device specified by the
input device enumeration value. The first fault detected for the specified
logical device returns to the caller.

Invoking reinitBit() clears the collected fault data.

http://www.mcg.mot.com/literature

2-10 Computer Group Literature Center Web Site

Using MBIT

2 Here’s a synopsis of the getBitDeviceFault() method:

#include <api/bitApi.h>

BIT_FAULT getBitDeviceFault(BIT_LOGICAL_DEVICE device,

BIT_FAULT *deviceFault)

where device is the logical device for the requested fault data and the
returned fault code will be place in the BIT_FAULT as deviceFault.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

Obtaining String Descriptions in MBIT

The getBitSubtestDesc(), getBitDeviceDesc(), and getBitFaultDesc()
methods obtain strings describing subtests, logical devices and diagnostic
faults, respectively. The IDs mentioned in these methods are obtained from
the corresponding methods: getBitSubtestIdByName(),
getBitDeviceIdByName(), and getBitFaultIdByName().

The string descriptions returned should not be modified or freed.

getBitSubtestDesc()

getBitSubtestDesc() returns a string describing the subtest.

Here’s a synopsis of the getBitSubtestDesc() method:

#include <api/bitApi.h>

const char* getBitSubtestDesc(BIT_SUBTEST subtestId)

where subtestId is an ID specifying a unique subtest.

Upon successful completion, getBitSubtestDesc() returns a string
containing the subtest description. If it fails, it returns an empty string.
Refer to Chapter 5, MBIT Faults for more return values.

getBitDeviceDesc()

getBitDeviceDesc() returns a string describing the logical device.

Obtaining Counts in MBIT

http://www.motorola.com/computer/literature 2-11

2Here’s a synopsis of the getBitDeviceDesc() method:

#include <api/bitApi.h>

const char* getBitDeviceDesc(BIT_LOGICAL_DEVICE deviceId)

where deviceId is an ID specifying a unique device.

Upon successful completion, getBitDeviceDesc() returns a string
containing the device description. If it fails, it returns an empty string.
Refer to Chapter 5, MBIT Faults for more return values.

getBitFaultDesc()

getBitFaultDesc() returns a string describing the fault.

Here’s a synopsis of the getBitFaultDesc() method:

#include <api/bitApi.h>

const char* getBitFaultDesc(BIT_FAULT faultId)

where faultId is an ID specifying a unique fault.

Upon successful completion, getBitFaultDesc() returns a string
containing the fault description. If it fails, it returns "No description
supplied for fault." Refer to Chapter 5, MBIT Faults for more return values.

Obtaining Counts in MBIT

getBitNumberOfSubtests(), getBitNumberOfDevices(),
getBitNumberOfFaults(), and getBitMaxTestListEntries() return a
count of subtests, devices, faults, and test list entries.

getBitNumberOfSubtests()

getBitNumberOfSubtests() returns the number of subtests.

Here’s a synopsis of the getBitNumberOfSubtests() method:

#include <api/bitApi.h>

int getBitNumberOfSubtests(void)

http://www.mcg.mot.com/literature

2-12 Computer Group Literature Center Web Site

Using MBIT

2 Upon successful completion, getBitNumberOfSubtests() returns the
number of MBIT configured subtests. Refer to Chapter 5, MBIT Faults for
more return values.

getBitNumberOfDevices()

getBitNumberOfDevices() returns the number of devices.

Here’s a synopsis of the getBitNumberOfDevices() method:

#include <api/bitApi.h>

int getBitNumberOfDevices(void)

Upon successful completion, getBitNumberOfDevices() returns the
number of MBIT configured devices. Refer to Chapter 5, MBIT Faults for
more return values.

getBitNumberOfFaults()

getBitNumberOfFaults() returns the number of faults.

Here’s a synopsis of the getBitNumberOfFaults() method:

#include <api/bitApi.h>

int getBitNumberOfFaults(void)

Upon successful completion, getBitNumberOfFaults() returns the
number of MBIT configured faults. Refer to Chapter 5, MBIT Faults for
more return values.

getBitMaxTestListEntries()

getBitMaxTestListEntries() returns the maximum number of test list
entries.

Here’s a synopsis of the getBitMaxTestListEntries() method:

#include <api/bitApi.h>

int getBitMaxTestListEntries(void)

Upon successful completion, getBitMaxTestListEntries() returns the
maximum number of MBIT configured test list entries. Refer to Chapter 5,
MBIT Faults for more return values.

Terminating MBIT

http://www.motorola.com/computer/literature 2-13

2Terminating MBIT

The terminateBit() method performs an orderly termination of MBIT and
releases all allocated resources.

terminateBit()

terminateBit() terminates MBIT, including releasing allocated resources
and the termination of all spawned child tasks.

After invoking terminateBit(), you may call initBit(). There are no
restrictions placed on the number of times you can call initBit() and
terminateBit(), as long as each call to initBit() is followed by a call to
terminateBit() prior to the next invocation of initBit().

Note: Calling initBit() and terminateBit() an excessive number of times
may cause memory fragmentation.

Here’s a synopsis of the terminateBit() method:

#include <api/bitApi.h>

BIT_FAULT terminateBit(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix A, API Method’s Reference Pages and
Chapter 5, MBIT Faults.

Example: Using MBIT
The following is a simplified example, or sample application, of how to use
MBIT. The example includes how to initialize MBIT, run a test, and then
terminate the software.

http://www.mcg.mot.com/literature

2-14 Computer Group Literature Center Web Site

Using MBIT

2
#include <vxWorks.h>

#include <stdio.h>

#include <stdlib.h>

#include <api/bitApi.h>

#include <config/testDefaults.h>

#include <config/bitCommonDefs.h>

/*

bitSampleApplication

Calling this routine will initialize bit, run a test, and then

terminate bit when the test is finished. There is no error

checking performed in this application.

*/

void bitSampleApplication(void)

{

 BIT_FAULT status;

 BIT_SUBTEST subtest;

 BIT_LOGICAL_DEVICE device;

 TEST_ENTRY test[1];

 TEST_RESULTS_ENTRY testResults[1];

 unsigned int numResults;

 /*

 Run initBit so that all of MBIT is initialized. This needs

 to be done before running a subtest.

 */

 status = initBit(NULL,0);

 subtest = getBitSubtestIdByName("BIT_RAM_BIT_WALK");

 device = getBitDeviceIdByName("BIT_ECC_SDRAM");

 /*

 To pass parameters to the test, use the testParamPtr field

 in the TEST_ENTRY test structure. Then pass the test to

 the buildBitDefaultTestEntry. Otherwise, pass nothing in

 the test field and the defaults will be used.

 */

 status = buildBitDefaultTestEntry(subtest, device, test);

 status = executeBitTests(HALT_ON_ERROR, 1, test);

 status = getBitResponse(testResults, &numResults);

 status = terminateBit();

}

3-1

33Integrating Custom Diagnostics

Introduction
This chapter explains integrating custom diagnostics for a developer. The
diagnostic integration methods are used for configuring devices and
subtests, and are used throughout this chapter.

Diagnostic Integration Methods
MBIT provides the following methods for integrating diagnostics:

These methods may only be used during the initialization of MBIT, with
the exception of getBitNumberOfAssociations(). These methods are used
by the configuration methods that setup devices and/or subtests and may
not be called during the diagnostic test.

Method Description

addBitSubtestIdent() Adds a subtest entry.

addBitDeviceIdent() Adds a device entry.

addBitFaultIdent() Adds a fault entry.

createBitTestAssociations() Creates an association between a device,
subtest, and a driver.

installBitDriver() Installs the methods for the driver.

installBitSubtestEntries() Installs the methods for the test and sets the
test defaults.

getBitNumberOfAssociations() Obtains the number of associations.

3-2 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

addBitSubtestIdent()

This method adds a subtest entry with the provided identifier and
description.

Here’s a synopsis of the addBitSubtestIdent() method:

#include <config/bitTestUtils.h>

BIT_FAULT addBitSubtestIdent(const char *subtest,

const char *description,

BIT_SUBTEST *id)

where subtest is the unique subtest name, description is the description of
the subtest name, and id is the unique ID being returned that represents the
subtest.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED and places a new unique ID in id,
otherwise it may return any of the return values listed in Appendix B,
Integrating Custom Diagnostics’ Reference Pages and Chapter 5, MBIT
Faults.

addBitDeviceIdent()

This method adds a device entry with the provided identifier and
description.

Here’s a synopsis of the addBitDeviceIdent() method:

#include <config/bitTestUtils.h>

BIT_FAULT addBitDeviceIdent(const char *device,

const char *description,

BIT_LOGICAL_DEVICE *id)

where device is the unique device name, description is the description of
the device name, and id is the unique ID being returned that represents the
device.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED and places a new unique ID in id,
otherwise it may return any of the return values listed in Appendix B,

addBitFaultIdent()

http://www.motorola.com/computer/literature 3-3

3

Integrating Custom Diagnostics’ Reference Pages and Chapter 5, MBIT
Faults.

addBitFaultIdent()

This method adds a fault entry with the provided identifier and description.

Here’s a synopsis of the addBitFaultIdent() method:

#include <config/bitTestUtils.h>

BIT_FAULT addBitFaultIdent(const char *fault,

const char *description,

BIT_FAULT_TYPE type,

BIT_FAULT *id)

where fault is the unique fault name, description is the description of the
fault, type is the type of fault (for example, hardware, software; see
config/bitCommonDefs.h), and id is the unique ID being returned that
represents the fault.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED and places a new unique ID in id,
otherwise it may return any of the return values listed in Appendix B,
Integrating Custom Diagnostics’ Reference Pages and Chapter 5, MBIT
Faults.

createBitTestAssociations()

This method creates an association between subtests, devices, and a driver.
If a driver is not available for the associated subtest and device, the
pDriveDesc parameter should be NULL.

Here’s a synopsis of the createBitTestAssociations() method:

#include <config/bitTestUtils.h>

BIT_FAULT createBitTestAssociations(BIT_SUBTEST subtestId[],

int numSubtestIds,

BIT_LOGICAL_DEVICE deviceId[],

int numDeviceIds,

DRV_DESC *pDriveDesc)

http://www.mcg.mot.com/literature

3-4 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

where subtestId[] is an array of subtest IDs, numSubtestIds is the number
of subtest IDs, deviceId[] is an array of device IDs, numDeviceIds is the
number of device IDs, and pDriveDesc is the pointer to the driver being
associated with the subtests and devices.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

installBitDriver()

This method installs the driver entry points. When you add a driver you
must implement all of the driver entry points.

Here’s a synopsis of the installBitDriver() method:

#include <config/bitTestUtils.h>

DRV_DESC* installBitDriver(

 BIT_FAULT (*drvInstall) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvDeinstall) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvOpen) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvClose) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvRead) (DEV_DESC *devDescPtr,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesRead),

 BIT_FAULT (*drvWrite) (DEV_DESC *devDescPtr,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesWritten),

 BIT_FAULT (*drvIoctl) (DEV_DESC *devDescPtr

int function,

int argument))

where drvInstall is the driver install entry point, drvDeinstall is the driver
deinstall entry point, drvOpen is the driver open entry point, drvClose is
the driver close entry point, drvRead is the driver read entry point,
drvWrite is the driver write entry point, and drvIoctl is the driver ioctl entry
point. Refer to the Device Driver Interface section for more information on
the device driver methods.

installBitSubtestEntries()

http://www.motorola.com/computer/literature 3-5

3

Upon successful completion, DRV_DESC is returned, which is the pointer
to the driver descriptor. If an error occurs, NULL is returned. Refer to
Appendix B, Integrating Custom Diagnostics’ Reference Pages and
Chapter 5, MBIT Faults for more return values.

installBitSubtestEntries()

This method installs the required subtest entry points and sets the default
parameters, which are used by buildBitDefaultTestList() and
buildBitDefaultTestEntry().

Here’s a synopsis of the installBitSubtestEntries() method:

#include <config/bitTestUtils.h>

BIT_FAULT installBitSubtestEntries(

 BIT_SUBTEST subtest,

 BIT_FAULT (*installTest) (BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

void *testParamPtr),

 BIT_FAULT (*deinstallTest) (BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

void *testParamPtr),

 BIT_FAULT (*runTest) (BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

void *testParamPtr),

 int interations,

 int durations

 BIT_TEST_CONTROL control,

 BIT_FAULT (*freeParamPtr) (BIT_SUBTEST subtest,

void *testParamPtr),

 BIT_FAULT (*initParamPtr) (BIT_SUBTEST subtest,

void *testParamPtr),

 int paramSize)

where subtest is the subtest ID the methods and default parameters are
associated with, installTest is the subtest installation method, deinstallTest
is the subtest de-installation method, runTest is the actual test method,
iterations is the default number of times to run the test, duration is the
default maximum number of milliseconds the test is allowed to run, control
is the default test control to halt on the first error detected or to run until
test completion, freeParamPtr is the pointer to the free parameter method,

http://www.mcg.mot.com/literature

3-6 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

initParamPtr is the pointer to the method that initializes the default
parameter structure, and paramSize is the size of the parameter structure
used by the subtest

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

getBitNumberOfAssociations()

This method returns the number of associations and should only be used
after initializing MBIT. If called during initialization, this method will
return an invalid number of associations.

Here’s a synopsis of the getBitNumberOfAssociations() method:

#include <config/bitTestUtils.h>

int getBitNumberOfAssociations(void)

Upon successful completion, getBitNumberOfAssociations() returns the
number of associations. If MBIT has not been initialized, it returns 0.

Implementing Subtests
The MBIT API provides a method that allows the operator to abort an
executing subtest. This is achieved by providing a separate thread of
execution for the subtest and a method of terminating this thread of
execution. Any resource allocation must be viewed as a critical region.
During execution of such a critical region, termination must not be allowed
to take place or resources may not be capable of being reclaimed. These
public methods are installed in installBitSubtestEntries().

Subtest Structure

MBIT requires that each subtest implements the following public methods:
test installation, test execution, and test de-installation. These methods

Subtest Structure

http://www.motorola.com/computer/literature 3-7

3

must perform all the resource allocation and de-allocation required by the
subtest, including a device driver installation and any memory allocation.

All methods return a BIT_FAULT, as defined in
config/bitCommonDefs.h. The faults returned may either be pre-defined
(refer to Chapter 5, MBIT Faults) or added during subtest configuration.
Each method passes in a logical device and a subtest, which are
BIT_LOGICAL_DEVICE and BIT_SUBTEST. The test execution
method contains a control which directs the test to halt on the first error
detected or to run until test completion, if possible. The
BIT_TEST_CONTROL definition is located in bitCommonDefs.h. The
last parameter is passed to all methods and is a pointer to a structure
containing test parameters. This parameter structure is unique to the
subtest and contains items to control test execution such as patterns, buffer
sizes, etc.

Test Method Definition

Test installation Allows resource allocation and driver installation.

Test execution Implements the bulk of the test and is subject to
unexpected termination. Resource allocation is
discouraged.

Test de-installation Allows removing drivers, freeing allocated resources,
and placing the device in a known state.

http://www.mcg.mot.com/literature

3-8 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Example: Subtest Structure

The following is an example of a subtest implementing the three public test
methods:

BIT_FAULT installL2CacheTest(BIT_LOGICAL_DEVICE device,

BIT_SUBTEST subtest,

void *parameters)

{

 return(getBitFaultIdByName("BIT_NO_FAULT_DETECTED"));

}

BIT_FAULT runL2CacheTest(BIT_LOGICAL_DEVICE device,

BIT_SUBTEST subtest,

BIT_SUBTEST_CONTROL control,

void *parameters)

{

 return(getBitFaultIdByName("BIT_NO_FAULT_DETECTED"));

}

BIT_FAULT deinstallL2CacheTest(BIT_LOGICAL_DEVICE device,

BIT_SUBTEST subtest,

void *parameters)

{

 return(getBitFaultIdByName("BIT_NO_FAULT_DETECTED"));

}

Subtest Parameters

Each diagnostic method includes a void pointer parameter. This parameter
allows passing a subtest-specific parameter structure to the diagnostic
methods. The parameter structure is optional and, if used, an initialization
and free method must be provided to installBitSubtestEntries(). See
Example: Subtest Parameter Configuration for steps on how to configure
the optional parameter structure.

If the subtest allows parameters, the allocation for the default parameter
structure takes place after executeBitTests() is called. The parameter
initialization methods are called if the parameter pointer (testParamPtr in
the TEST_ENTRY structure) is set to NULL. These are the two methods
setup by installBitSubtestEntries() during the diagnostic configuration
method. The de-allocation of the parameter structure occurs after the test
runs. Also, if the user wants to pass in his own parameters for the subtests,

Subtest Parameters

http://www.motorola.com/computer/literature 3-9

3

the testParamPtr field in the TEST_ENTRY structure holds this
information. Once executeBitTests() is called, the parameter pointer is
copied over to an internal MBIT buffer so that the user does not have to
keep the pointer around. The parameter structure does not get returned
back to the API.

Example: Subtest Parameter Configuration

The steps below outline the method to configure new subtest parameters.

1. Declare the parameter structure used by the diagnostics.

typedef struct {

 int length

 int *data

} XXX_LOOPBACK_PARAMS

2. Create the method to initialize parameter defaults.

BIT_FAULT initLoopbackParams(BIT_SUBTEST subtest,

 void **testParamPtr)

{

 BIT_FAULT faultCode;

 XXX_LOOPBACK_PARAMS *loopParams;

 int defaultLength = 10;

 loopParams = malloc (sizeof

 (XXX_LOOPBACK_PARAMS));

 loopParams.length = defaultLength;

 loopParams.data = malloc (defaultLength * sizeof

 (int));

 for (i = 0; i < defaultLength; i++)

 {

 data[i] = 0xFF00FF00;

 }

 *testParamPtr = loopParams;

 return(

 getBitFaultIdByName("BIT_NO_FAULT_DETECTED"));

}

http://www.mcg.mot.com/literature

3-10 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

3. Create the method to free parameter defaults. Any memory
allocated during initialization is free’d and the parameter pointer
is set to NULL.

BIT_FAULT freeLoopbackParams(

 BIT_SUBTEST subtest,

 void **testParamPtr,)

{

 XXX_LOOPBACK_PARAMS *loopParams =

 (XXX_LOOPBACK_PARAMS *)*testParamPtr;

 free(loopParams->data);

 loopParams->data = NULL;

 free(loopParams);

 loopParams = NULL;

 *testParamPtr = NULL;

 return

 (getBitFaultIdByName("BIT_NO_FAULT_DETECTED"));

}

Subtest Configuration

A subtest is integrated using a configuration method that includes the
following:

1. Subtest Addition

2. Subtest Installation

3. Addition of Subtest-Specific MBIT Faults

Subtest Addition

Subtests are added by providing a name and description to
addBitSubtestIdent(). The number of subtests is obtained by calling
getBitNumberOfSubtests().

Subtest Configuration

http://www.motorola.com/computer/literature 3-11

3

Subtest Installation

Subtest installation is performed with a call to installBitSubtestEntries()
for each subtest added to the MBIT system. This method associates the
subtest methods (that is, installation, execution, and de-installation) with
the subtest and sets the default values. See the Motorola Built-In Test
(MBIT) Diagnostic Software Test Reference Guide for each subtest’s
default values.

Addition of Subtest-Specific MBIT Faults

A fault identifier is added by providing a name, description, and fault type
to addBitFaultIdent(). The fault type is used to specify whether the fault
is a system or hardware fault. System faults are not saved in the device fault
database.

Example: Subtest Configuration

faultCode = addBitSubtestIdent ("LOOPBACK_SUBTEST_ONE",

"Loopback subtest number one",

&loopSubtests[0]);

faultCode = installBitSubtestEntries (loopbackSubtest[0],

installLoopbackOneTest,

deinstallLoopbackOneTest,

runLoopbackOneTest,

1,

1000,

RUN_TILL_COMPLETION,

freeLoopbackParams,

initLoopbackParams,

sizeof(XXX_LOOPBACK_PARAMS));

http://www.mcg.mot.com/literature

3-12 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Implementing an MBIT Device Driver
The MBIT system utilizes its own device drivers to increase functionality
and enhance operating system (OS) independence. However, MBIT
software does not preclude the use of the drivers supplied by a given OS.

MBIT drivers operate independently and do not use the OS supplied I/O
system. If a generic driver method is called by a configured subtest, the
associated device driver method is located and called. The generic driver
method also looks up the device descriptor for the logical device passed in
and passes it to the device’s driver method.

The drvInstall() method must be called before any other generic driver
methods can be accessed. After drvDeinstall() is called by a configured
subtest method, the generic driver methods listed in Generic Device Driver
Interface can no longer be called.

Note: The generic device driver methods in this section are in the
api/bitGenericDriver.h header file and are also described later in this
section.

Generic Device Driver Interface

The MBIT generic driver interface utilizes subtest and logical device input
parameters to select and install the appropriate device driver methods.
Such a scheme allows different drivers to be used for different tests on the
same device.

Each application's call to a generic driver must provide a subtest and a
device. The subtest and device are mapped to an appropriate device
descriptor, which is provided to the driver. This re-mapping occurs for all
of the generic driver methods. Depending on the application's generic
driver call, additional information may be passed to the driver. For
instance, in the case of a read or write operation, the driver receives a
pointer to the buffer address, the buffer length, and a pointer for returning
the number of bytes that are transferred.

The generic interface allows a single method to use different drivers to test
different logical devices. A single driver can be installed to support many
separate logical devices. For example, a given driver may support all serial

Generic Device Driver Interface

http://www.motorola.com/computer/literature 3-13

3

devices on a given board or separate drivers may be required for some
serial devices. Use installBitDriver() to specify all of the methods
supported by the driver. Refer to Creating Diagnostic Associations on page
3-43 on how to associate the driver with supported subtests and devices.

MBIT provides the following generic driver methods:

drvInstall()

drvInstall() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

It is suggested that this method be invoked by the install test method for the
specified subtest.

Here’s a synopsis of the drvInstall() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvInstall(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device);

where subtest is the current subtest and device is the device to operate on.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

Method Description

drvInstall() Installs a device driver.

drvDeinstall() Removes an installed device driver.

drvOpen() Opens a device for I/O operations.

drvClose() Closes a device.

drvRead() Reads data from a device.

drvWrite() Writes data to a device.

drvIoctl() Controls the operation of a device.

http://www.mcg.mot.com/literature

3-14 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

drvDeinstall()

drvDeinstall() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

This method must be invoked by the de-install test method for the specified
subtest.

Here’s a synopsis of the drvDeinstall() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvDeinstall(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device);

where subtest is the current subtest and device is the device to operate on.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

drvOpen()

drvOpen() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

Here’s a synopsis of the drvOpen() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvOpen(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device);

where subtest is the current subtest and device is the device to operate on.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

Generic Device Driver Interface

http://www.motorola.com/computer/literature 3-15

3

drvClose()

drvClose() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

This method must be called before the drvDeinstall() is called.

Here’s a synopsis of the drvClose() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvClose(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device);

where subtest is the current subtest and device is the device to operate on.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

drvRead()

drvRead() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

This method must be called after the drvOpen() has been called.

Here’s a synopsis of the drvRead() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvRead(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesRead);

where subtest is the current subtest, device is the device to operate on,
bufferSize is the size of buffer in bytes, buffer is the buffer to place data in,
and bytesRead is a pointer to the number of bytes read.

http://www.mcg.mot.com/literature

3-16 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

drvWrite()

drvWrite() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

This method must be called after drvOpen() has been called.

Here’s a synopsis of the drvWrite() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvWrite(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesWritten);

where subtest is the current subtest, device is the device to operate on,
bufferSize is the number of bytes from buffer to write, buffer is the buffer
to write data from, and bytesWritten is the pointer to the number of bytes
written.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

drvIoctl()

drvIoctl() finds the associated driver method based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver method is then
called.

This method must be called after the drvOpen() has been called.

Device Driver Interface

http://www.motorola.com/computer/literature 3-17

3

Here’s a synopsis of the drvIoctl() method:

#include<api/bitGenericDriver.h>

BIT_FAULT drvIoctl(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

int function,

int argument);

where subtest is the current subtest, device is the device to operate on,
function is the driver-specific operation to perform on the device or driver,
and argument is a driver-specific argument for the function.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix B, Integrating Custom Diagnostics’
Reference Pages and Chapter 5, MBIT Faults.

Device Driver Interface

The MBIT device driver interface is similar to most device driver
implementations. However, there are certain differences that the developer
should observe to ensure a successful implementation with the MBIT
environment.

To integrate a device driver with the MBIT application, the developer must
provide seven driver methods when the driver is configured with
installBitDriver(). These driver methods provide the capability of
communicating between the MBIT application and the device. The driver
must provide the standard install, deinstall, open, close, read, write, and
ioctl methods to implement the necessary interface. There may be cases
when a device does not need to implement one of these driver methods. In
this case, the developer can stub the driver method by simply providing a
method that returns a successful status.

http://www.mcg.mot.com/literature

3-18 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

MBIT provides the following driver methods:

devXXXInstall()

devXXXInstall() allows MBIT to prepare the driver for subsequent access
of the device. The driver should save all of the necessary device registers
for restoration when the test is complete. This method receives a pointer to
the device descriptor of the device being tested. All of the necessary device
registers are contained in this structure. The driver should use these register
definitions to interface with the correct device.

This method is responsible for allocating required resources (that is,
buffers, semaphores, etc.) and saving the state of the device. It is also
responsible for installing any required interrupt service methods. This
method may also disable the device driver supplied by the underlying OS
if such a capability is supported.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

Here’s a synopsis of the devXXXInstall() method:

devXXXInstall(DEV_DESC *pDevDesc);

where pDevDesc is a pointer to a structure that contains all of the registers
that are needed to perform an install operation on the device. Using the

Method Description

devXXXInstall() Allows MBIT to prepare the driver for subsequent
access of the device.

devXXXDeInstall() Allows the user to terminate the use of the driver.

devXXXOpen() Allows the user to prepare the device for testing.

devXXXClose() Allows the user to close the device in preparation
for terminating use of the device.

devXXXRead() Allows the user to read information from the device.

devXXXWrite() Allows the driver to write information to the device.

devXXXIoctl() Allows the driver to perform special operations with
the device.

Device Driver Interface

http://www.motorola.com/computer/literature 3-19

3

register definitions in the device descriptor guarantees that the correct
device is being accessed.

The return values for this method are determined by the developer.

devXXXDeInstall()

devXXXDeinstall() allows the user to terminate the use of the driver. The
driver de-installation method is responsible for resource reclamation,
restoring the device state, and de-installing the interrupt service methods.
The driver should restore all of the device registers that were saved when
the driver was installed. This method receives a pointer to a device
descriptor of the device being tested. All of the necessary device registers
are contained in this structure. The driver should use these register
definitions to interface with the correct device.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

Here’s a synopsis of the devXXXDeinstall() method:

devXXXDeinstall(DEV_DESC *pDevDesc)

where pDevDesc is a pointer to a structure that contains all of the registers
that are needed to perform a de-install operation on the device. Using the
register definitions in the device descriptor guarantees that the correct
device is being accessed.

The return values for this method are determined by the developer.

devXXXOpen()

devXXXOpen() allows the user to prepare the device for testing. It
receives a pointer to the device descriptor of the device being tested. Also,
driver variables may be initialized in preparation for subsequent driver use.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

Here’s a synopsis of the devXXXOpen() method:

devXXXOpen(DEV_DESC *pDevDesc)

http://www.mcg.mot.com/literature

3-20 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

where pDevDesc is a pointer to a structure that contains all of the registers
that are needed to perform an open operation on the device. Using the
register definitions in the device descriptor guarantees that the correct
device is being accessed.

The return values for this method are determined by the developer.

devXXXClose()

devXXXClose() allows the user to close the device in preparation for
terminating use of the device. It receives a pointer to the device descriptor
of the device being tested.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

Here’s a synopsis of the devXXXClose() method:

devXXXClose(DEV_DESC *pDevDesc)

where pDevDesc is a pointer to a structure that contains all of the registers
that are needed to perform a close operation on the device. Using the
register definitions in the device descriptor guarantees that the correct
device is being accessed.

The return values for this method are determined by the developer.

devXXXRead()

devXXXRead() allows the user to read information from the device. It
receives a pointer to the device descriptor of the device being tested, the
requested buffer size, a pointer to the buffer address, and a pointer to a
variable that holds the number of bytes read. The developer should also
update the variable pointed to by the bytesRead parameter before returning
to the caller.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

Device Driver Interface

http://www.motorola.com/computer/literature 3-21

3

Here’s a synopsis of the devXXXRead() method:

devXXXRead(DEV_DESC *pDevDesc,

UINT32 bufferSize,

INT8 *bufferAddr,

UINT32 *bytesRead)

where pDevDesc, bufferSize, bufferAddr and bytesRead are the input
parameters.

pDevDesc is a pointer to a structure that contains all of the registers that
are needed to perform a read operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device is
being accessed.

bufferSize contains the number of bytes that the user expects to read from
the device. If the device supports transfers wider than a byte, the driver
should adjust the count appropriately.

bufferAddr points to the first element of the data buffer that the driver
stores the data that is read from the device. The caller must provide a data
buffer sufficiently large enough to accept the requested number of bytes
defined in the buffer size parameter.

bytesRead points to the variable that the driver returns as the number of
bytes read. In the event of an error, the byte count should reflect the actual
byte count of the received data.

The return values for this method are determined by the developer.

devXXXWrite()

devXXXWrite() allows the driver to write information to the device. It
receives a pointer to the device descriptor of the device being tested, the
requested buffer size, a pointer to the buffer address, and a pointer to a
variable that holds the number of bytes written. The developer should also
update the variable pointed to by the bytesWritten parameter before
returning to the caller.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

http://www.mcg.mot.com/literature

3-22 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Here’s a synopsis of the devXXXWrite() method:

devXXXWrite(DEV_DESC *pDevDesc,

UINT32 bufferSize,

INT8 *bufferAddr,

UINT32 *bytesWritten)

where pDevDesc, bufferSize, bufferAddr, and bytesWritten are the input
parameters.

pDevDesc is a pointer to a structure that contains all of the registers that
are needed to perform a write operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device is
being accessed.

bufferSize contains the number of bytes that the user expects to write to the
device. If the device supports transfers wider than a byte, the driver should
adjust the count appropriately.

bufferAddr points to the first element of the data buffer that the driver reads
data that is to be written to the device. The caller should provide a data
buffer sufficiently large enough to reflect the requested number of bytes
defined in the bufferSize parameter.

bytesWritten points to the variable that the driver returns as the number of
bytes written. In the event of an error, the bytesWritten variable should
reflect the actual byte count of the output data.

The return values for this method are determined by the developer.

devXXXIoctl()

devXXXIoctl() allows the driver to perform special operations with the
device. It receives a pointer to the device descriptor of the device being
tested, the requested function, and an argument.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
for more information on this method.

Installing a Device Driver into the MBIT Environment

http://www.motorola.com/computer/literature 3-23

3

Here’s a synopsis of the devXXXIoctl() method:

devXXXIoctl(DEV_DESC *pDevDesc,

INT32 function,

INT32 argument)

where pDevDesc, function, and argument are the input parameters.

pDevDesc is a pointer to a structure that contains all of the registers that
are needed to perform an ioctl operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device is
being accessed.

function contains the special operation that is to be performed. The actual
function value and implementation is device-specific.

argument contains special information that is required by the method being
performed. The actual value of the argument is method- and device-
specific. It should be noted that the user is not limited to an integer value
as an argument. The argument can be a pointer that is cast as an integer
when the method is called. Being a pointer, the user can pass a large
amount of information to the ioctl method.

The return values for this method are determined by the developer.

Installing a Device Driver into the MBIT Environment

Before a device driver can be used, it must be installed in the MBIT
environment. To accomplish this, the developer must call the method
installBitDriver(). The driver entry points are the install, deinstall, open,
close, read, write, and ioctl operations. A device driver may support
multiple devices and/or subtests. To associate the devices and subtests that
the driver supports, the developer makes a separate call to
createBitTestAssociations() from within a diagnostic configuration
method.

Here’s one example of the installBitDriver() call:

drvPtr = installBitDriver(installFuncPtr, deinstallFuncPtr,

openFuncPtr, closeFuncPtr,

readFuncPtr, writeFuncPtr,

ioctlFuncPtr);

http://www.mcg.mot.com/literature

3-24 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Upon successful installation, the returned value will be a pointer to a driver
descriptor. A driver descriptor is defined by the DRV_DESC structure
located in api/bitGenericDriver.h. If the install fails, NULL is returned.
Refer to Using the Diagnostic Configuration Method on page 3-43 for
more information.

Once configured, the developer may use the generic driver interface to
access the diagnostic device driver.

Initializing the Diagnostic Devices
Initialization of diagnostic devices requires adding the device to MBIT and
setting up a default device descriptor for the device. A device initialization
method is created for each unique device.

A diagnostic may support multiple instances of a device and each instance
of a device does not require a separate device initialization method.

Device Initialization Method

The device initialization method is a configuration method passed to
initBit(). Its purpose is to add the device and setup default device
descriptor values.

A device initialization method describes the hardware including register
and device types by providing the following categories of information:

❏ Device Descriptor Structure (DEV_DESC)

❏ Device Address Table Array (part of DEV_DESC)

❏ Generic Device Address Table Structure (part of DEV_DESC)

❏ Address Type (ADDR_TYPE)

❏ Device Type (DEV_TYPE)

❏ Device Read and Write Utility Methods

Device Initialization Method

http://www.motorola.com/computer/literature 3-25

3

Device Descriptor Structure (DEV_DESC)

The device descriptor structure describes the device to MBIT and Table 3-1
provides a description of each field. All types and enumerations are located
in utilities/bitDeviceUtils.h.

Table 3-1. Device Descriptor (DEV_DESC)

Field Description

logicalDev The logical device number. This value is a
BIT_LOGICAL_DEVICE representing the device.

devType General device descriptor information. Valid values are
described in the DEV_TYPE structure.

devName The device class name that the logical device belongs to.

pci The devVend method contains the PCI device and vendor ID,
defined by the BIT_PCI_INFO structure. The device
initialization method must initialize devVend for PCI devices.
devVend should be initialized as (device << 16) | vendor. All
other structure elements are initialized internally by MBIT.

reg A pointer to the address table structure. This array defines
each hardware address for a device.

genReg A pointer to the generic table structure. This structure
provides an association between generic register names and
specific registers for a particular class of devices. The
members of the generic address table are ADDR_INFO
pointers.

initStat Device-specific initialization status. Valid values are
described in the INIT_STAT structure.

totalRegCnt Total number of device addresses. This is the actual address
count, not the number of bytes.

barRegCnt[] Number of registers per BAR. MBIT supports up to six BARs.
The barRegCnt[] contains one field for each BAR supported
by MBIT (that is, barRegCnt[0] – barRegCnt[5]). Each field
is initialized to the number of hardware addresses for the
BAR. If the BAR does not contain any hardware addresses, the
barRegCnt []should be set to 0.

http://www.mcg.mot.com/literature

3-26 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3 intVec The interrupt vector may be the actual vector value,
BIT_AUTO_CONFIG or BIT_NONE_CONFIG.
BIT_AUTO_CONFIG causes the device descriptor
initialization to assign a vector at run time.
BIT_NONE_CONFIG indicates that the device does not use
interrupts.

intLvl The interrupt level may be the actual level value,
BIT_AUTO_CONFIG or BIT_NONE_CONFIG.
BIT_AUTO_CONFIG and BIT_NONE_CONFIG behave
similarly to IntVec above.

baseAddr For PCI devices, BIT_AUTO_BASE_ADDR causes the base
address to be configured at run time.

The first three items listed below are method pointers to methods that enable,
disable, or check enable status for the device. Devices that must be enabled
before reading or writing require these methods. If the device does not need to
be enabled, set each method pointer to NULL.

isEnabled A method to check if the device is enabled. The method should
return TRUE if enabled, FALSE otherwise.

enableDev A method to enable the device. This method is responsible for
enabling read and/or write accesses to the device.

disableDev A method to disable the device. This method is responsible for
disabling read and/or write accesses to the device.

data Device instance data. This is a general-purpose element that
may be used by the developer to contain additional device-
specific data.

The following are method pointers for reading and writing registers (refer to
Device Read and Write Utility Methods on page 3-33).
Utility Method Parameters:

Parameter 1: 32-bit address to access.

Parameter 2: (Output) Data to write to the address.

 (Input) Address to store the data read from Parameter 1 above.

inReg8 A method to read an 8-bit address.

Table 3-1. Device Descriptor (DEV_DESC) (continued)

Field Description

Device Initialization Method

http://www.motorola.com/computer/literature 3-27

3

Device Address Table Array (part of DEV_DESC)

The address table array defines each hardware address for a device. The
hardware addresses are the complete addresses, which are calculated by
adding the address offset with the base address of the device.

The address information structure contains the information for one
particular device hardware address. The structure is used by
bitIn()/bitOut() (see Chapter 4, Utility Methods) when accessing a

outReg8 A method to write an 8-bit address.

inReg16 A method to read a 16-bit address.

outReg16 A method to write a 16-bit address.

inReg32 A method to read a 32-bit address.

outReg32 A method to write a 32-bit address.

Table 3-1. Device Descriptor (DEV_DESC) (continued)

Field Description

http://www.mcg.mot.com/literature

3-28 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

hardware address. In addition, it provides a means to keep track of bits
toggled during read and/or write accesses to the hardware address.

If a device’s addressable memory is not continuous, the offset is multiplied
by an address interval to get to the address needed (for example, address =
base address + (offset * address interval).

Table 3-2. Address Information (ADDR_INFO)

Field Description

addr A hardware address on a device. The address is
calculated by adding the device base address with
the offset of the hardware address (refer to the
Device Address Table Array (part of DEV_DESC)).

mask A mask used to mark read/write bits. A mask of
0x0F for an 8-bit hardware address indicates the
four high-order bits are read-only.

val A value used to store data read from or written to a
hardware address. To write the data to a hardware
address, assign the data to this field and then use
bitOut() to write the value.

save The location to allow a developer to save a value
read from the hardware address.

size The number of addressable bytes at the hardware
address.

type A type of hardware address (refer to Address Type
(ADDR_TYPE)).

dev An integer ID representing the device associated
with the hardware address. This must match
logicalDev from the DEV_DESC containing the
ADDR_INFO.

changes A structure keeps track of bits toggled when
accessing the hardware address through
bitIn()/bitOut().

Device Initialization Method

http://www.motorola.com/computer/literature 3-29

3

Devices that support auto configuration of the base address, specified by
BIT_AUTO_BASE_ADDR, will only require the offset for each
hardware address. Run time initialization code will calculate the complete
base address by adding the address offset to the base address for each
hardware address. PCI devices are the only devices that support
BIT_AUTO_BASE_ADDR.

Devices that map different register sets using different base addresses may
require several address tables. Each address table for the device will be
combined into the same ’C’ array and only the names and address
calculations will differ. This is specifically useful for PCI devices that map
different registers using different PCI base address registers (that is, BAR0,
BAR1, etc.).

Below is an example of the device address table ’C’ structure.

typedef struct

{

 // BAR 0 (I/O mapped register set)

 ADDR_INFO ioscntl0;

 ADDR_INFO ioscntl1;

 ADDR_INFO ioscid;

 ADDR_INFO iosxfer;

 ...

 // BAR 1 (MEMORY mapped register set)

 ADDR_INFO memscntl0;

 ADDR_INFO memscntl1;

 ADDR_INFO memscid;

 ADDR_INFO memsxfer;

 ...

 // BAR 2 (SCRIPTS RAM)

 ADDR_INFO scriptsRam;

} BIT_SYM895A_REG_T;

This structure is accessed through the device descriptor member reg. The
members of the address table are ADDR_INFO structures.

The device address table structure must remain accessible throughout the
execution of MBIT. This structure is not free’d by MBIT during
termination.

http://www.mcg.mot.com/literature

3-30 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Generic Device Address Table Structure (part of DEV_DESC)

The generic device address table structure provides a method of
associating generic register names with specific registers for a particular
class of devices. For example, all memory controllers have registers that
define and enable banks of SDRAM. However, there is no standard for
these registers. By using a generic register name and generic register bit
masks, software can be written to determine if a bank is enabled, and the
size of the bank.

Example: Generic Device Address Table ’C’ Structure

Below is an example of the generic device address table ’C’ structure.

typedef struct

{

 ADDR_INFO* allRam;

 ADDR_INFO* ramBankA;

 ADDR_INFO* ramBankB;

 ADDR_INFO* ramBankC;

 ADDR_INFO* ramBankD;

 ADDR_INFO* ramBankE;

 ADDR_INFO* ramBankF;

 ADDR_INFO* ramBankG;

 ADDR_INFO* ramBankH;

} BIT_RAM_GENREG_T;

This structure is accessed through the device descriptor member genReg.
The members of the generic address table are ADDR_INFO structure
pointers.

The generic register references must point to hardware addresses with the
same format for all devices the developer designs the code to support.
Also, the generic device address table structure must be allocated by the
device initialization method. This structure is free’d by MBIT during
termination.

Device Initialization Method

http://www.motorola.com/computer/literature 3-31

3

Address Type (ADDR_TYPE)

The address type provides MBIT with additional information about the
hardware address. This type may indicate a register, memory, or a serial
ROM hardware address. In addition, the behavior (that is, readable,
writeable, etc.) of the hardware address may be described.

Table 3-3. Address Type (ADDR_TYPE)

Field Description

Register Hardware Address Types

REG_RD_ONLY Register read-only

REG_WR_ONLY Register write-only

REG_RDWR Register read/write

REG_RD_ONLY_CLRS_BITS Register read-only, reading clears bits

REG_WR_ONLY_CLRS_BITS Register write-only, writing clears bits

REG_RDWR_RD_CLRS_BITS Register read/write, reading clears bits

REG_RDWR_WR_CLRS_BITS Register read/write, writing clears bits

REG_RDWR_CLRS_BITS Register read/write, reading or writing clears bits

REG_RD_SIDE_EFFECT Register read-only, reading adversely effects device

REG_WR_SIDE_EFFECT Register write-only, writing adversely effects device

REG_RDWR_SIDE_EFFECT Register read/write, reading or writing adversely
effects device

REG_RD_VISIBLE_TEST Register read-only, location designated for read
visibility testing

REG_WR_VISIBLE_TEST Register write-only, location designated for write
visibility testing

REG_RDWR_VISIBLE_TEST Register read/write, location designated for
read/write visibility testing

Memory Hardware Address Types

MEM_RD_ONLY Memory read-only

MEM_WR_ONLY Memory write-only

http://www.mcg.mot.com/literature

3-32 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3 MEM_RDWR Memory read/write

MEM_RD_VISIBLE_TEST Memory read-only, location designated for read
visibility testing

MEM_WR_VISIBLE_TEST Memory write-only, location designated for write
visibility testing

MEM_RDWR_VISIBLE_TEST Memory read/write, location designated for
read/write visibility testing

Serial ROM Hardware Address Types

SROM_RD_ONLY Serial ROM read-only

SROM_WR_ONLY Serial ROM write-only

SROM_RDWR_ONLY Serial ROM read/write

SROM_RD_VISIBLE_TEST Serial ROM read-only, location designated for read
visibility testing

SROM_WR_VISIBLE_TEST Serial ROM write-only, location designated for
write visibility testing

SROM_RDWR_VISIBLE_TEST Serial ROM read/write, location designated for
read/write visibility testing

Table 3-3. Address Type (ADDR_TYPE) (continued)

Field Description

Device Initialization Method

http://www.motorola.com/computer/literature 3-33

3

Device Type (DEV_TYPE)

The device type provides MBIT with a general description of the device.
MBIT currently supports PCI, ISA, memory, and general device types. PCI
device hardware addresses are configured internally by MBIT during
initialization if baseAddr is set to BIT_AUTO_BASE_ADDR. MBIT
does not perform any additional device type configurations for other
supported device types.

Device Read and Write Utility Methods

The device read and write utility methods provided by MBIT are added to
the device descriptor during device initialization. These are then used by
bitIn()/bitOut() to access the device hardware addresses.

MBIT provides the following device read and write utility methods:

Table 3-4. Device Type (DEV_TYPE)

Field Description

DEV_TYPE_NONE Device type invalid.

DEV_TYPE_PCI Device type PCI.

DEV_TYPE_ISA Device type ISA.

DEV_TYPE_MEM Device type memory.

DEV_TYPE_GEN Device type general.

Method Description

bitProbeIn8/16/32() Reads 8/16/32-bit data from the designated
address.

bitProbeOut8/16/32() Writes 8/16/32-bit data to the designated address.

bitProbeInSwap16/32() Reads and byte swaps 16/32-bit data from the
designated address.

bitProbeOutSwap16/32() Writes and byte swaps 32-bit data to the
designated address.

http://www.mcg.mot.com/literature

3-34 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

bitProbeIn8/16/32()

bitProbeIn8/16/32() reads 8/16/32-bit data from the designated address.

The data read is written into a 8/16/32-bit memory location. This method
requires a 32-bit memory location for storing the data because it is used by
the device utility methods bitIn()/bitOut(). These methods store the
location’s contents in the 32-bit value field of the ADDR_INFO structure.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitIn8()/bitIn16()/bitIn32() should be used.

Here’s a synopsis of the bitProbeIn8/16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeIn8(ULONG addr, UINT32 *pdata);

STATUS bitProbeIn16(ULONG addr, UINT32 *pdata);

STATUS bitProbeIn32(ULONG addr, UINT32 *pdata);

where addr is the address to read data from and pdata is the pointer to the
32-bit location to store data.

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

bitIn8/16/32() Reads 8/16/32-bit data from the designated
address.

bitOut8/16/32() Writes 8/16/32-bit data to the designated address.

bitInSwap16/32() Reads and byte swaps 16/32-bit data from the
designated address.

bitOutSwap16/32() Writes and byte swaps 16/32-bit data to the
designated address.

bitPciWrite32() Writes 32-bit data to PCI (I/O or memory) space
in little-endian mode.

bitPciRead32() Reads 32-bit data from PCI (I/O or memory)
space.

Method Description

Device Initialization Method

http://www.motorola.com/computer/literature 3-35

3

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

bitProbeOut8/16/32()

bitProbeOut8/16/32() writes 8/16/32-bit data to the designated address.

The data is written into an 8/16/32-bit memory location. The MBIT
exception handler is enabled during the data write. If the MBIT exception
handler is not necessary to "catch" exceptions caused by the access to the
device, then bitOut8()/bitOut16()/bitOut32() should be used.

Here’s a synopsis of the bitProbeOut8/16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeOut8(ULONG addr, UINT8 *data);

STATUS bitProbeOut16(ULONG addr, UINT16 *data);

STATUS bitProbeOut32(ULONG addr, UINT32 *data);

where addr is the address to write data to and data is the data to write out.

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

bitProbeInSwap16/32()

bitProbeInSwap16/32() reads and byte swaps 16/32-bit data from the
designated address. The data is read as little/big-endian and loaded as
big/little-endian into a 32-bit memory location. This method requires a
32-bit memory location for storing the data because it is used by the device
utility methods bitIn()/bitOut(). These methods store the location’s
contents in the 32-bit value field of the ADDR_INFO structure.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitInSwap16()/bitInSwap32() should be used.

http://www.mcg.mot.com/literature

3-36 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Here’s a synopsis of the bitProbeInSwap16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeInSwap16(ULONG addr, UINT32 *pdata);

STATUS bitProbeInSwap32(ULONG addr, UINT32 *pdata);

where addr is the address to read data from and pdata is the pointer to a
32-bit location to store data.

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

bitProbeOutSwap16/32()

bitProbeOutSwap16/32() writes and byte swaps 16/32-bit data to the
designated address. The big/little-endian data is written into a 16/32-bit
data location as little/big-endian.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitOutSwap16()/bitOutSwap32() should be
used.

Here’s a synopsis of the bitProbeOutSwap16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeOutSwap16(ULONG addr, UINT16 *data);

STATUS bitProbeOutSwap32(ULONG addr, UINT32 *data);

where addr is the address to write data to and data is the data to write out.

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

Device Initialization Method

http://www.motorola.com/computer/literature 3-37

3

bitIn8/16/32()

bitIn8/16/32() reads 8/16/32-bit data from the designated address. The
data read is written into a 32-bit memory location. This method requires a
32-bit memory location for storing the data because it is used by the device
utility methods bitIn()/bitOut(). These methods store the location’s
contents in the 32-bit value field of the ADDR_INFO structure.

The MBIT exception handler is not enabled during the data read. If the
MBIT exception handler is needed to "catch" exceptions caused by the
access to the device, then bitProbeIn8()/bitProbeIn16()/bitProbeIn32()
should be used.

Here’s a synopsis of the bitIn8/16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitIn8(ULONG addr, UINT32 *pdata);

STATUS bitIn16(ULONG addr, UINT32 *pdata);

STATUS bitIn32(ULONG addr, UINT32 *pdata);

where addr is the address to read data from and pdata is the pointer to a
32-bit location to store data.

This method always returns 0.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

bitOut8/16/32()

bitOut8/16/32() writes 8/16/32-bit data to the designated address. The
data is written into an 8/16/32-bit memory location.

The MBIT exception handler is not enabled during the data write. If the
MBIT exception handler is needed to "catch" exceptions caused by the
access to the device, then
bitProbeOut8()/bitProbeOut16()/bitProbeOut32() should be used.

http://www.mcg.mot.com/literature

3-38 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

Here’s a synopsis of the bitOut8/16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitOut8(ULONG addr, UINT8 *data);

STATUS bitOut16(ULONG addr, UINT16 *data);

STATUS bitOut32(ULONG addr, UINT32 *data);

where addr is the address to write data to and data is the data to write out.

This method always returns 0.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

bitInSwap16/32()

bitInSwap16/32() reads and byte swaps 16/32-bit data from the
designated address. The data is read as little/big-endian and loaded as
big/little-endian into a 32-bit memory location. This method requires a
32-bit memory location for storing the data because it is used by the device
utility methods bitIn()/bitOut(). These methods store the location’s
contents in the 32-bit value field of the ADDR_INFO structure.

The MBIT exception handler is not enabled during the data read. If the
MBIT exception handler is needed to "catch" exceptions caused by the
access to the device, then bitProbeInSwap16()/bitProbeInSwap32()
should be used.

Here’s a synopsis of the bitInSwap16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitInSwap16(ULONG addr, UINT32 *pdata);

STATUS bitInSwap32(ULONG addr, UINT32 *pdata);

where addr is the address to read data from and pdata is the pointer to a
32-bit location to store data.

This method always returns 0.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

Device Initialization Method

http://www.motorola.com/computer/literature 3-39

3

bitOutSwap16/32()

bitOutSwap16/32() writes and byte swaps 16/32-bit data to the designated
address. The big/little-endian data is written into a 16/32-bit data location
as little/big-endian.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitProbeOutSwap16()/bitProbeOutSwap32()
should be used.

Here’s a synopsis of the bitOutSwap16/32() method:

#include <utilities/bitDeviceUtils.h>

STATUS bitOutSwap16(ULONG addr, UINT16 *data);

STATUS bitOutSwap32(ULONG addr, UINT32 *data);

where addr is the address to write data to and data is the data to write out.

This method always returns 0.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

bitPciWrite32()

bitPciWrite32() writes 32-bit data to PCI (I/O or memory) space in little-
endian mode.

Here’s a synopsis of the bitPciWrite32() method:

#include <utilities/bitDeviceUtils.h>

void bitPciWrite32(ULONG addr, UINT32 data);

where addr is the PCI address to write data to and data is the data to write
out.

This method has no return values.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

http://www.mcg.mot.com/literature

3-40 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

bitPciRead32()

bitPciRead32() reads 32-bit data from PCI (I/O or memory) space.

Here’s a synopsis of the bitPciRead32() method:

#include <utilities/bitDeviceUtils.h>

void bitPciRead32(ULONG addr, UINT32 *pdata);

where addr is the PCI address to read data from and pdata is the pointer to
store data to.

This method has no return values.

Refer to Appendix B, Integrating Custom Diagnostics’ Reference Pages
and Chapter 5, MBIT Faults for more information.

Creating a Device Initialization Method

This section provides an example of the required steps to create a device
initialization method. The method is responsible for adding the device to
the device list and setting device default information.

The method begins by making a call to addBitDeviceIdent() to add the
device. A call to the getDevTablePtr() method is then made to get a
pointer to the device descriptor associated with the added device. The
device descriptor is used to fill in all the data for that particular device.
Refer to Device Descriptor Structure (DEV_DESC) on page 3-25 for a
description of the device descriptor structure.

Creating a Device Initialization Method

http://www.motorola.com/computer/literature 3-41

3

The following is an outline of a device initialization method for a device
on an MVME51xx board. The device being added is the system memory
controller (SMC).

 BIT_FAULT initMemoryController(void)

 {

 BIT_FAULT faultCode;

 BIT_LOGICAL_DEVICE memDev; // Used to catch the return

 from addBitDeviceIdent().

 DEV_DESC *pDevDesc; // Device descriptor pointer.

1. (Optional) Declare and allocate the generic device address table
structure (structure is free’d during termination of MBIT).

BIT_SMC_GENREG_T *genReg = malloc

 (sizeof(BIT_SMC_GENREG_T));

2. Declare a static device address table structure.

static BIT_HAWK_SMC_REG_T smc;

3. Add the device to the device list.

faultCode =

addBitDeviceIdent("BIT_MEMORY_CONTROLLER",

 "Memory Controller",

 &memDev);

4. Set the logical device to return from addBitDeviceIdent().
pDevDesc->logicalDev = memDev;

5. Get the device descriptor for this device.

pDevDesc = getDevTablePtr(memIdent);

6. Set the default initialization status.

pDevDesc->initStat = INIT_NOT_INITIALIZED;

7. Set the default 8-, 16-, and 32-bit read and write methods.

pDevDesc->inReg8 = (INREG8_FUNCPTR) bitProbeIn8;

pDevDesc->outReg8 = (OUTREG8_FUNCPTR) bitProbeOut8;

pDevDesc->inReg16 = (INREG16_FUNCPTR) bitProbeIn16;

pDevDesc->outReg16 = (OUTREG16_FUNCPTR) bitProbeOut16;

pDevDesc->inReg32 = (INREG32_FUNCPTR) bitProbeIn32;

pDevDesc->outReg32 = (OUTREG32_FUNCPTR) bitProbeOut32;

http://www.mcg.mot.com/literature

3-42 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

8. Set the device type.

pDevDesc->devType = DEV_TYPE_GEN;

9. Set the device class.

pDevDesc->devName = "HAWK_SMC";

10. Set the interrupt level and vector.

pDevDesc->intVec = BIT_NONE_CONFIG;

pDevDesc->intLvl = BIT_NONE_CONFIG;

pDevDesc->baseAddr = HAWK_SMC_BASE_ADDR;

11. Setup the generic hardware addresses, if applicable.

genReg->sdramEnSzA = &smc.sdramEnSzA;

genReg->sdramEnSzB = &smc.sdramEnSzB;

genReg->sdramEnSzC = &smc.sdramEnSzC;

genReg->sdramEnSzD = &smc.sdramEnSzD;

genReg->sdramEnSzE = &smc.sdramEnSzE;

genReg->sdramEnSzF = &smc.sdramEnSzF;

...etc...

12. Setup the hardware addresses.

smc.venDevId.addr = pDevDesc->baseAddr +

(0x00*addrInterval);

smc.venDevId.mask = 0x00000000;

smc.venDevId.size = 4;

smc.venDevId.type = REG_RD_ONLY;

smc.venDevId.dev = memDev;

smc.revIdGcr.addr = pDevDesc->baseAddr +

(0x08*addrInterval);

smc.revIdGcr.mask = 0x01000100;

smc.revIdGcr.size = 4;

smc.revIdGcr.type = REG_RDWR;

smc.revIdGcr.dev = memDev;

...etc...

13. Assign the pointer to the address table and generic address table
structures in the device descriptor. The structures must be cast to
void pointers.

pDevDesc->genReg = (void*)genReg;

pDevDesc->reg = (void*)&smc;

Creating Diagnostic Associations

http://www.motorola.com/computer/literature 3-43

3

14. (Non-PCI devices only) If setup was successful, indicate device
descriptor initialization is complete.

pDevDesc->initStat = INIT_OK;

return (faultCode);

} /* end of the routine */

Creating Diagnostic Associations
To bring the elements (that is, subtests, devices, and drivers) of a diagnostic
together, an association must be made between the related elements. The
elements of a diagnostic are associated by invoking the method
createBitTestAssociations(). The method creates an association for each
subtest and device provided. If a driver is also provided, each subtest and
device association will include an association to the driver.

With multiple subtests and devices, several calls to
createBitTestAssociations() may be required to achieve the desired result.
For example, if a particular device is not supported by all subtests, an
additional call to createBitTestAssociations() is required. If, for example,
a driver supports loopback on two logical devices but only supports
modem controls on one, multiple calls to createBitTestAssociations()
may be required. Otherwise, the API may indicate a subtest requiring
modem controls can be run on a device that does not support them. A
properly configured system should return an error indicating that the test
was not supported.

Calls to the createBitTestAssociations() method are placed in the
diagnostic configuration method (refer to Using the Diagnostic
Configuration Method).

Using the Diagnostic Configuration Method
A diagnostic is configured into MBIT using a diagnostic configuration
method. The configuration method contains all of the necessary calls to
integrate custom diagnostics. This configuration method is passed to
initBit() and then called during MBIT initialization.

http://www.mcg.mot.com/literature

3-44 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

The following steps demonstrate the methods involved in configuring
diagnostics and the suggested order of their use.

1. Make a call to the addBitFaultIdent() method for each subtest-
specific MBIT fault.

2. Make a call to the addBitSubtestIdent() method for each subtest
being configured. The subtest ID returned identifies the subtest to
all methods with a BIT_SUBTEST parameter.

3. Make a call to installBitSubtestEntries() for each subtest that
was added. This method uses the subtest ID returned by
addBitSubtestIdent() as its BIT_SUBTEST parameter.

4. Make a call to installBitDrivers() and pass the driver entry points
for the driver being installed. This method returns a driver
descriptor pointer (DRV_DESC*), which is used when creating an
association to a driver with the method
createBitTestAssociations().

5. Make a call to getBitDeviceIdByName() for each device that is
associated with the installed subtests. Use the return value from
each call to getBitDeviceIdByName() to provide as a parameter
to the method createBitTestAssociations().

6. Make a call to createBitTestAssociations() using the subtest IDs,
device IDs, and a driver descriptor pointer. This call may be made
several times to create different associations for specific
diagnostic configurations.

Example: Diagnostic Configuration Method

http://www.motorola.com/computer/literature 3-45

3

Example: Diagnostic Configuration Method

The steps below show an example of the diagnostic configuration method.
This example configures a diagnostic with two subtests, two fault, one
device, and one driver.

BIT_FAULT xxxLoopbackConfigTest()

{

1. Declare and initialize local variables.

BIT_FAULT faultCode = NO_FAULT_DETECTED;

int loopbackSubtests[2];

int loopbackDevices[1];

int loopbackFaults[2];

DRV_DESC *pDrvDesc;

2. Add the fault and subtest identifiers.

faultCode = addBitFaultIdent("LOOPBACK_FAULT_ONE",

 "Loopback fault number one",

 BIT_HARDWARE_FAULT,

 &loopbackFaults[0]);

faultCode = addBitFaultIdent("LOOPBACK_FAULT_TWO",

 "Loopback fault number two",

 BIT_HARDWARE_FAULT,

 &loopbackFaults[1]);

faultCode = addBitSubtestIdent ("LOOPBACK_SUBTEST_ONE",

 "Loopback subtest number one",

 &loopSubtests[0]);

faultCode = addBitSubtestIdent ("LOOPBACK_SUBTEST_TWO",

 "Loopback subtest number two",

 &loopSubtests[1]);

http://www.mcg.mot.com/literature

3-46 Computer Group Literature Center Web Site

Integrating Custom Diagnostics

3

3. Install each of the subtests.

faultCode = installBitSubtestEntries (loopbackSubtest[0],

 installLoopbackOneTest,

 deinstallLoopbackOneTest,

 runLoopbackOneTest,

 1,

 1000,

 RUN_TILL_COMPLETION,

 freeLoopbackParams,

 initLoopbackParams,

 sizeof(XXX_LOOPBACK_PARAMS));

faultCode = installBitSubtestEntries (loopbackSubtest[1],

 installLoobackTwoTest,

 deinstallLoopbackTwoTest,

 runLoopbackTwoTest,

 1,

 5000,

 HALT_ON_ERROR,

 freeLoopbackParams,

 initLoopbackParams,

 sizeof(XXX_LOOPBACK_PARAMS);

4. Install the diagnostic device drivers.

pDrvDesc = installBitDriver(loopbackDrvInstall,

 loopbackDrvDeinstall,

 loopbackDrvOpen,

 loopbackDrvClose,

 loopbackDrvRead,

 loopbackDrvWrite,

 loopbackDrvIoctl);

5. Get the device IDs to use when creating an association to the device.

loopbackDevices[0] =

 getBitDeviceIdByName("LOOPBACK_DEVICE_ONE");

Example: Diagnostic Configuration Method

http://www.motorola.com/computer/literature 3-47

3

6. Create an association between the subtests, devices, and diagnostic
device drivers.

status = createBitTestAssociations(loopbackSubtests,

 2,

 loopbackDevices,

 1,

 pDrvDesc)

return (status);

}

http://www.mcg.mot.com/literature

4-1

44Utility Methods

Introduction
MBIT provides methods to complete various activities while integrating
custom diagnostics. These methods are grouped into the following
categories:

Cache Utility Methods on page 4-1

Diagnostic Device Utility Methods on page 4-13

Interrupt Utility Methods on page 4-16

Time Utility Methods on page 4-20

Refer to Appendix C, Utility Methods’ Reference Pages for more
information on these methods.

Cache Utility Methods
MBIT provides the following L1 and L2 cache utility methods. The header
file, utilities/bitCacheUtils.h, provides the prototypes for these methods.

Method Description

bitDataCacheEnable() Invalidates and then enables the L1 data cache.

bitDataCacheDisable() Flushes and then disables the L1 data cache.

bitDataCacheIsEnabled() Returns the boolean enable state of L1 data cache.

bitDataCacheFlush() Flushes the entire L1 data cache.

bitDataCacheFlushInvalidate() Flushes and invalidates the entire L1 data cache.

bitDataCacheInvalidate() Invalidates the L1 data cache for a range of memory.

bitDataCacheLock() Locks the L1 data cache.

bitDataCacheUnlock() Unlocks the L1 data cache.

4-2 Computer Group Literature Center Web Site

Utility Methods

4

bitDataCacheEnable()

This method invalidates and then enables the L1 data cache.

Here’s a synopsis of the bitDataCacheEnable() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheEnable(void)

bitInstCacheEnable() Invalidates and then enables the L1 instruction cache.

bitInstCacheDisable() Disables the L1 instruction cache.

bitInstCacheIsEnabled() Returns the boolean enable state of the L1 instruction
cache.

bitInstCacheLock() Locks the L1 instruction cache.

bitInstCacheUnlock() Unlocks the L1 instruction cache.

bitL2CacheSizeGet() Returns the size of the L2 cache configured by the
hardware.

bitL2CacheEnable() Enables the L2 cache.

bitL2CacheDisable() Flushes, invalidates and then disables the L2 cache.

bitL2CacheOn() Enables the L2 cache without any flushing or invalidation.

bitL2CacheOff() Disables the L2 cache without any flushing or invalidation.

bitL2CacheIsEnabled() Returns the boolean enable state of the L2 cache.

bitL2CacheFlush() Flushes the entire L2 cache.

bitL2CacheFlushInvalidate() Flushes and invalidates the entire L2 cache.

bitL2CacheInvalidate() Invalidates the entire L2 cache.

bitL2CacheLock() Locks the L2 cache if the L2 cache supports it.

bitL2CacheUnlock() Unlocks the L2 cache if the L2 cache supports it.

bitL2CacheIsLockable() Returns the boolean lock capability of the L2 cache.

bitL2CacheFill() Fills the specified number of 32-bit words in the L2 cache
with the specified pattern.

bitL2CacheIsWritebackCapable() Returns the boolean write-back capability of the L2 cache.

Method Description

bitDataCacheDisable()

http://www.motorola.com/computer/literature 4-3

4

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitDataCacheDisable()

This method flushes and then disables the L1 data cache.

Here’s a synopsis of the bitDataCacheDisable() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheDisable(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitDataCacheIsEnabled()

This method returns the boolean enable state of the L1 data cache.

Here’s a synopsis of the bitDataCacheIsEnabled() method:

<utilities/bitCacheUtils.h>

BOOL bitDataCacheIsEnabled(void)

Upon successful completion, this method returns TRUE if the L1 data
cache is enabled or FALSE if the L1 data cache is not enabled.

Refer to Chapter 5, MBIT Faults for more faults.

bitDataCacheFlush()

This method flushes the entire L1 data cache.

Here’s a synopsis of the bitDataCacheFlush() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheFlush(void)

http://www.mcg.mot.com/literature

4-4 Computer Group Literature Center Web Site

Utility Methods

4

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitDataCacheFlushInvalidate()

This method flushes and invalidates the entire L1 data cache.

Here’s a synopsis of the bitDataCacheFlushInvalidate() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheFlushInvalidate(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitDataCacheInvalidate()

This method invalidates the L1 data cache for a range of memory.

Here’s a synopsis of the bitDataCacheInvalidate() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheInvalidate(void *address, UINT bytes)

where address is the virtual address to begin invalidation and bytes is the
number of bytes to invalidate.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitDataCacheLock()

http://www.motorola.com/computer/literature 4-5

4

bitDataCacheLock()

This method locks the L1 data cache.

Here’s a synopsis of the bitDataCacheLock() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheLock(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitDataCacheUnlock()

This method unlocks the L1 data cache.

Here’s a synopsis of the bitDataCacheUnlock() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheUnlock(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitInstCacheEnable()

This method invalidates and then enables the L1 instruction cache.

Here’s a synopsis of the bitInstCacheEnable() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheEnable(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

http://www.mcg.mot.com/literature

4-6 Computer Group Literature Center Web Site

Utility Methods

4

bitInstCacheDisable()

This method disables the L1 instruction cache.

Here’s a synopsis of the bitInstCacheDisable() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheDisable(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitInstCacheIsEnabled()

This method returns the boolean enable state of the L1 instruction cache.

Here’s a synopsis of the bitInstCacheIsEnabled() method:

<utilities/bitCacheUtils.h>

BOOL bitInstCacheIsEnabled(void)

Upon successful completion, this method returns TRUE if the L1
instruction cache is enabled or FALSE if the L1 instruction cache is not
enabled.

Refer to Chapter 5, MBIT Faults for more faults.

bitInstCacheLock()

This method locks the L1 instruction cache.

Here’s a synopsis of the bitInstCacheLock() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheLock(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitInstCacheUnlock()

http://www.motorola.com/computer/literature 4-7

4

bitInstCacheUnlock()

This method unlocks the L1 instruction cache.

Here’s a synopsis of the bitInstCacheUnlock() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheUnlock(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheSizeGet()

This method returns the size (in bytes) of the L2 cache configured by the
hardware (the L2 cache controller).

Here’s a synopsis of the bitL2CacheSizeGet() method:

<utilities/bitCacheUtils.h>

UINT bitL2CacheSizeGet(void)

Upon successful completion, this method returns numBytes (L2 cache size
in bytes) or 0 if the size cannot be determined.

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheEnable()

This method enables the L2 cache.

Here’s a synopsis of the bitL2CacheEnable() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheEnable(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

http://www.mcg.mot.com/literature

4-8 Computer Group Literature Center Web Site

Utility Methods

4

bitL2CacheDisable()

This method flushes, invalidates and then disables the L2 cache. If a
NULL buffer is provided, then a local buffer is allocated for use and free’d
before return. If the size of a given non-NULL buffer is not equal to twice
the L2 cache size or is not naturally aligned, then no action is taken by the
method.

Here’s a synopsis of the bitL2CacheDisable() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheDisable(void *pFlushBuffer, int buffSize)

where pFlushBuffer and buffSize are the input parameters.

pFlushBuffer is a pointer to a cacheable memory block twice the size of the
L2 cache and aligned naturally. If NULL, a local buffer is used and
buffSize is ignored. The local buffer will not be guaranteed to be cacheable
if BATs or page tables have been altered prior to calling.

buffSize is the size of the flush buffer in bytes. It must be equal to twice the
L2 cache size.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheOn()

This method enables the L2 cache without any flushing or invalidation.

Here’s a synopsis of the bitL2CacheOn() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheOn(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheOff()

http://www.motorola.com/computer/literature 4-9

4

bitL2CacheOff()

This method disables the L2 cache without any flushing or invalidation.

Here’s a synopsis of the bitL2CacheOff() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheOff(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheIsEnabled()

This method returns the boolean enable state of the L2 cache.

Here’s a synopsis of the bitL2CacheIsEnabled() method:

<utilities/bitCacheUtils.h>

BOOL bitL2CacheIsEnabled(void)

Upon successful completion, this method returns TRUE if the L2 cache is
enabled or FALSE if the L2 cache is not enabled.

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheFlush()

This method flushes the entire L2 cache. If a NULL buffer is provided,
then a local buffer is allocated for use and free’d before return. If the size
of a given non-NULL buffer is not equal to twice the L2 cache size or is
not naturally aligned, then no action is taken by the method.

Here’s a synopsis of the bitL2CacheFlush() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheFlush(void pFlushBuffer, int buffSize)

where pFlushBuffer and buffSize are the input parameters.

http://www.mcg.mot.com/literature

4-10 Computer Group Literature Center Web Site

Utility Methods

4

pFlushBuffer is a pointer to a cacheable memory block twice the size of the
L2 cache and aligned naturally. If NULL, a local buffer is used and
buffSize is ignored. The local buffer will not be guaranteed to be cacheable
if BATs or page tables have been altered prior to calling.

buffSize is the size of the flush buffer in bytes. It must be equal to twice the
L2 cache size.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheFlushInvalidate()

This method flushes and invalidates the entire L2 cache.

Here’s a synopsis of the bitL2CacheFlushInvalidate() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheFlushInvalidate(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheInvalidate()

This method invalidates the entire L2 cache. Any modified data in the L2
cache is lost unless it is flushed first.

Here’s a synopsis of the bitL2CacheInvalidate() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheInvalidate(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheLock()

http://www.motorola.com/computer/literature 4-11

4

bitL2CacheLock()

This method locks the L2 cache if the L2 cache supports it.

Here’s a synopsis of the bitL2CacheLock() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheLock(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheUnlock()

This method unlocks the L2 cache if the L2 cache supports it.

Here’s a synopsis of the bitL2CacheUnlock() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheUnlock(void)

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheIsLockable()

This method returns the boolean lock capability of the L2 cache.

Here’s a synopsis of the bitL2CacheIsLockable() method:

<utilities/bitCacheUtils.h>

BOOL bitL2CacheIsLockable(void)

Upon successful completion, this method returns TRUE if the L2 cache is
lockable or FALSE if the L2 cache is not lockable.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

4-12 Computer Group Literature Center Web Site

Utility Methods

4

bitL2CacheFill()

This method fills the specified number of 32-bit words in the L2 cache with
the specified pattern. The pattern is incremented by the modifier after every
write.

Here’s a synopsis of the bitL2CacheFill() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheFill(UINT *bufPtr, UINT *castOutBuf,

UINT wordCount,

UINT pattern,

int modifier)

where bufPtr is a pointer to a cacheable buffer to fill, castOutBuf is a
pointer to a cacheable buffer to fill that causes data to be cast-out from the
L1 data cache, wordCount is the number of 32-bit words to fill, pattern is
the pattern to fill the buffer with, and modifier is the value with which to
modify the pattern after each write to the buffer.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitL2CacheIsWritebackCapable()

This method returns the boolean write-back capability of the L2 cache.

Here’s a synopsis of the bitL2CacheIsWritebackCapable() method:

<utilities/bitCacheUtils.h>

BOOL bitL2CacheIsWritebackCapable(void)

Upon successful completion, this method returns TRUE if the L2 cache
supports write-back or FALSE if the L2 cache does not support write-
back.

Refer to Chapter 5, MBIT Faults for more faults.

Diagnostic Device Utility Methods

http://www.motorola.com/computer/literature 4-13

4

Diagnostic Device Utility Methods
MBIT provides the following methods to obtain device descriptors, access
devices, and monitor what each device accesses. The utility methods
bitIn() and bitOut() may read/write hardware locations defined by
ADDR_INFO structures. The header file utilities/bitDeviceUtils.h
provides the prototypes for these methods.

getDeviceDescriptor()

This method takes a logical device number and returns a pointer to the
device descriptor. The device descriptor contains all the information
needed to interface with the device.

Here’s a synopsis of the getDeviceDescriptor() method:

<utilities/bitCacheUtils.h>

DEV_DESC* getDeviceDescriptor(BIT_LOGICAL_DEVICE device)

where device is the logical device to retrieve.

Upon successful completion, this method returns DEV_DESC (a pointer
to the device descriptor) or NULL if the device descriptor is invalid.

Refer to Chapter 5, MBIT Faults for more faults.

Method Description

getDeviceDescriptor() Takes a logical device number and returns a pointer
to the device descriptor.

getDevTablePtr() Takes a logical device number and returns a pointer
to the device descriptor.

bitTrackChanges() Starts or stops tracking register bit changes during
hardware access.

bitIn() Reads from the location described by the
ADDR_INFO structure passed to the method.

bitOut() Writes to the location described by the
ADDR_INFO structure passed to the method.

http://www.mcg.mot.com/literature

4-14 Computer Group Literature Center Web Site

Utility Methods

4

getDevTablePtr()

This method takes a logical device number and returns a pointer to the
device descriptor. The device descriptor contains all the information
needed to interface with the device. This method should only be used by
methods initializing device descriptors.

Here’s a synopsis of the getDevTablePtr() method:

<utilities/bitCacheUtils.h>

DEV_DESC* getDevTablePtr(BIT_LOGICAL_DEVICE device)

where device is the logical device to retrieve.

Upon successful completion, this method returns DEV_DESC (a pointer to
the device descriptor) or NULL if the device descriptor is invalid.

Refer to Chapter 5, MBIT Faults for more faults.

bitTrackChanges()

This method starts or stops tracking register bit changes during hardware
access.

Here’s a synopsis of the bitTrackChanges() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitTrackChanges(ADDR_INFO *reg, UINT on)

where reg is the pointer to the location's ADDR_INFO structure and on is
a boolean value to indicate starting or stopping change tracking. TRUE
starts tracking, FALSE stops tracking.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitIn()

http://www.motorola.com/computer/literature 4-15

4

bitIn()

This method reads from the location described by the ADDR_INFO
structure passed to the method. If an exception is caused by the read,
BIT_BUS_ERROR is returned to indicate an exception occurred. If a
device is not enabled and enable/disable methods are defined, then the
device is enabled, written to, and then disabled. The value read from the
location is put into the val field of the ADDR_INFO structure passed to the
method.

Here’s a synopsis of the bitIn() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitIn(ADDR_INFO *reg)

where reg is the pointer to the location's ADDR_INFO structure.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the
return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

bitOut()

This method writes to the location described by the ADDR_INFO structure
passed to the method. If an exception is caused by the write,
BIT_BUS_ERROR is returned to indicate an exception occurred. If a
device is not enabled and enable/disable methods are defined, then the
device is enabled, written to, and then disabled. The value actually written
to the location is the value in the val field of the ADDR_INFO structure
passed to the method.

Here’s a synopsis of the bitOut() method:

<utilities/bitCacheUtils.h>

BIT_FAULT bitOut(ADDR_INFO *reg)

where reg is the pointer to the location's ADDR_INFO structure.

Upon successful completion, this method returns
BIT_NO_FAULT_DETECTED, otherwise it may return any of the

http://www.mcg.mot.com/literature

4-16 Computer Group Literature Center Web Site

Utility Methods

4

return values listed in Appendix C, Utility Methods’ Reference Pages and
Chapter 5, MBIT Faults.

Interrupt Utility Methods
MBIT provides methods to lock/unlock interrupts, and to connect methods
to exceptions/interrupts for use during diagnostics. The header file,
utilities/bitCacheUtils.h, provides the prototypes for these methods

bitIntLock()

This method increments an interrupts-locked reference count and if
interrupts are not locked, it locks all interrupts.

Here’s a synopsis of the bitIntLock() method:

<utilities/bitCacheUtils.h>

void bitIntLock(void)

There are no return values for this method.

Method Description

bitIntLock() Has the capability to lock all interrupts.

bitIntUnlock() Has the capability to unlock all interrupts.

bitForceIntUnlock() Has the capability to unlock all interrupts.

bitIntConnect() Connects an MBIT interrupt handler to the MBIT
interrupt table.

isBitIntEnabled() Checks if an interrupt is enabled on a specified
interrupt level.

bitIntVectorSet() Sets a vector entry in the MBIT interrupt table.

bitIntEnable() Enables the interrupt level.

bitIntDisable() Disables the interrupt level.

bitIntUnlock()

http://www.motorola.com/computer/literature 4-17

4

bitIntUnlock()

This method decrements the interrupts-locked reference count
incremented by bitIntLock() and if the reference count is 0, it unlocks all
interrupts.

Here’s a synopsis of the bitIntUnlock() method:

<utilities/bitCacheUtils.h>

void bitIntUnlock(void)

There are no return values for this method.

bitForceIntUnlock()

This method sets the interrupts-locked reference count to 0 and unlocks all
the interrupts locked by bitIntLock().

Here’s a synopsis of the bitForceIntUnlock() method:

<utilities/bitCacheUtils.h>

void bitForceIntUnlock(void)

There are no return values for this method.

bitIntConnect()

This method connects an MBIT interrupt handler to the MBIT interrupt
table. In software, there may be up to 256 interrupts connected, however,
hardware may limit the actual number available. This method only
connects one handler to any interrupt vector at any one time. All interrupt
handlers not connected, that use this method, remain as they were installed
by the operating system (chained handlers remain chained). To disconnect
the handler from the vector, use bitIntVectorSet() with a NULL entry.

Here’s a synopsis of the bitIntConnect() method:

<utilities/bitCacheUtils.h>

STATUS bitIntConnect(VOIDFUNCPTR *vector,

VOIDFUNCPTR routine,

int param)

http://www.mcg.mot.com/literature

4-18 Computer Group Literature Center Web Site

Utility Methods

4

where vector is the interrupt vector to connect, routine is the routine to
connect to the specified vector, and param is the parameter provided to the
specified routine (when an interrupt occurs).

Upon successful completion, this method returns OK if no fault is
detected, otherwise it may return any of the return values listed in
Appendix C, Utility Methods’ Reference Pages and Chapter 5, MBIT
Faults.

isBitIntEnabled()

This method checks if an interrupt is enabled on a specified interrupt level.

Here’s a synopsis of the isBitIntEnabled() method:

<utilities/bitCacheUtils.h>

STATUS isBitIntEnabled(int level)

where level is the interrupt level to be tested.

Upon successful completion, this method returns TRUE if enabled,
FALSE if not enabled, and –1 if the interrupt level could not be resolved.
Refer to Appendix C, Utility Methods’ Reference Pages and Chapter 5,
MBIT Faults for more information.

bitIntVectorSet()

This method sets a vector entry in the MBIT interrupt table.

Here’s a synopsis of the bitIntVectorSet() method:

<utilities/bitCacheUtils.h>

STATUS bitIntVectorSet(VOIDFUNCPTR *vector, INT32 *entry)

where vector is the interrupt vector to connect and entry is the method to
connect to the specified vector.

There are no return values for this method.

bitIntEnable()

http://www.motorola.com/computer/literature 4-19

4

bitIntEnable()

This method enables the interrupt level.

Here’s a synopsis of the bitIntEnable() method:

<utilities/bitCacheUtils.h>

INT32 bitIntEnable(INT32 level)

where level is the interrupt level to enable.

Upon successful completion, this method returns OK if no fault is detected
or –1 if the interrupt level could not be resolved. Refer to Appendix C,
Utility Methods’ Reference Pages and Chapter 5, MBIT Faults for more
information.

bitIntDisable()

This method disables the interrupt level.

Here’s a synopsis of the bitIntDisable() method:

<utilities/bitCacheUtils.h>

INT32 bitIntDisable(INT32 level)

where level is the interrupt level to be disabled.

Upon successful completion, this method returns OK if no fault is detected
or –1 if the interrupt level could not be resolved. Refer to Appendix C,
Utility Methods’ Reference Pages and Chapter 5, MBIT Faults for more
information.

http://www.mcg.mot.com/literature

4-20 Computer Group Literature Center Web Site

Utility Methods

4

Time Utility Methods
MBIT provides two time-related utility methods. The header file,
utilities/bitCacheUtils.h, provides the prototypes for these methods

bitUsDelay()

This method delays micro number of microseconds. Note that the
resolution may be more than a microsecond, so this call gives the smallest
timeout possible in those cases.

Here’s a synopsis of the bitUsDelay() method:

<utilities/bitCacheUtils.h>

void bitUsDelay(UINT32 micro)

where micro is the number of microseconds to delay.

There are no return values for this method.

bitMsDelay()

This method delays for milli number of milliseconds.

Here’s a synopsis of the bitMsDelay() method:

<utilities/bitCacheUtils.h>

void bitMsDelay(UINT32 milli)

where milli is the number of milliseconds to delay.

There are no return values for this method.

Method Description

bitUsDelay() Delays micro number of microseconds.

bitMsDelay() Delays for milli number of milliseconds.

5-1

55MBIT Faults

The following tables list the faults that are either built into the MBIT API
or pre-defined by the MVME51xx diagnostics.

Built-In MBIT Faults
The built-in faults may be used during any stage from initialization to
termination of the MBIT API. H=hardware and S=software.

Table 5-1. Built-In MBIT Faults

Type MBIT Fault String Description

H BIT_NO_FAULT_DETECTED No fault detected, successful.

S BIT_INIT_NOT_PERFORMED MBIT initialization was already
performed.

S BIT_INIT_ALLOCATION_ERROR Required resources for initialization are
unavailable.

S BIT_INIT_ALREADY_PERFORMED Attempted to perform initialization
twice.

S BIT_DEV_INSTALL_NOT_DEFINED Device installation is not configured.

S BIT_TST_INSTALL_NOT_DEFINED Test installation is not configured.

S BIT_DEVICE_NOT_PRESENT Device is not present.

S BIT_DEVICE_NOT_SUPPORTED Device is not supported.

S BIT_SUBTEST_NOT_SUPPORTED Selected subtest is not supported on this
device.

S BIT_INVALID_TEST_PARAM Invalid test parameter was supplied.

S BIT_TEST_NOT_EXECUTED No results available for this test.

S BIT_TEST_ABORTED The test was aborted by the operator.

5-2 Computer Group Literature Center Web Site

MBIT Faults

5

S BIT_OPERATION_IN_PROGRESS A previous operation (test or abort) is in
progress.

S BIT_INVALID_MSG_ERROR An invalid message was received.

S BIT_MESSAGE_QUEUE_ERROR Unable to queue or de-queue a message.

S BIT_RESOURCE_MGMT_FAULT A memory management error occurred.

S BIT_INSTALL_TEST_FAILED Test installation failed.

S BIT_INSTALL_DEV_FAILED Device installation failed.

S BIT_SYS_RESTORE_FAILED Unable to restore pre-test system state.

S BIT_TEST_SEQUENCE_ERROR Tests in list completed out of order.

S BIT_DRIVER_SEQUENCE_ERROR Driver methods invoked out of order.

S BIT_TESTING_TERMINATED Testing terminated.

S BIT_INVALID_DEVICE_DESC Device descriptor has invalid field
(configuration error).

H BIT_DEVICE_ENABLE_FAULT Failed to enable a disabled device.

H BIT_DEVICE_DISABLE_FAULT Failed to disable an enabled device.

H BIT_BUS_ERROR Device did not respond to transfer.

S BIT_FUNCTION_NOT_SUPPORTED Function call is not supported.

H BIT_INTERRUPT_FAULT Initialization of interrupt failed.

H BIT_TEST_TIMED_OUT The test timed out prior to completion.

H BIT_DATA_MISCOMPARE Data miscompare on write and read
sequence.

S BIT_INVALID_SUBTEST_ID The subtest ID is invalid.

S BIT_INVALID_DEVICE_ID The device ID is invalid.

S BIT_INVALID_FAULT_ID The fault ID is invalid.

S BIT_DUPLICATE_ASSOCIATION The association already exists.

S BIT_INVALID_LIST_CONTENT Data in the list is invalid.

Table 5-1. Built-In MBIT Faults (continued)

Type MBIT Fault String Description

Built-In MBIT Faults

http://www.motorola.com/computer/literature 5-3

5

S BIT_ADD_IDENT_ERROR An error occurred while adding
identifier.

S BIT_DUPLICATE_IDENT The identifier has already been added to
the list.

S BIT_DEVICE_NOT_ASSOCIATED The device is not associated with any
tests.

S BIT_CACHE_ROUTINE_NOT_
SUPPORTED

Cache routine is not defined or
supported.

S BIT_PROCESSOR_NOT_SUPPORTED Processor type is unknown and not
supported.

H BIT_DATA_CACHE_NOT_ENABLED Data cache must be enabled before
calling a function.

H BIT_CACHE_NOT_ENABLED Cache must be enabled before calling a
cache function.

H BIT_CACHE_LOCK_NOT_SUPPORTED Cache locking is not supported.

H BIT_SPD_CHECKSUM_FAULT SPD checksum fault.

H BIT_SPD_SROM_FAULT SPD access fault.

H BIT_VPD_SROM_FAULT VPD error accessing the VPD SROM.

H BIT_VPD_CONTAINS_NO_CRC VPD contains no valid CRC packet.

H BIT_VPD_HEADER_INVALID VPD header is invalid.

H BIT_VPD_DATA_INVALID VPD data is invalid.

Table 5-1. Built-In MBIT Faults (continued)

Type MBIT Fault String Description

http://www.mcg.mot.com/literature

5-4 Computer Group Literature Center Web Site

MBIT Faults

5

Pre-Defined MBIT Faults
The pre-defined faults may only be used once initialization of MBIT has
successfully completed and prior to termination. H=hardware and
S=software.

Table 5-2. Pre-Defined MBIT Faults

Type MBIT Fault String Description

H BIT_ECC_DETECT_ERROR Memory error correction failed.

H BIT_BATTERY_LOW_POWER NVRAM battery power is low. Replace
battery.

H BIT_CPU_ALU_FAULT CPU arithmetic logic unit fault.

H BIT_CPU_SCIU_FAULT CPU single-cycle integer unit fault.

H BIT_CPU_MCIU_FAULT CPU multi-cycle integer unit fault.

H BIT_CPU_FPU_FAULT CPU floating point unit fault.

H BIT_CPU_LSU_FAULT CPU load/store unit fault.

H BIT_CPU_BIU_FAULT CPU bus interface unit fault.

H BIT_CPU_BPU_FAULT CPU branch processing unit fault.

H BIT_CPU_MMU_FAULT CPU memory management unit fault.

H BIT_CPU_VPU_FAULT CPU vector processing unit fault.

H BIT_VISIBILITY_FAULT Device failed visibility test.

H BIT_NO_VISIBILITY_LOCATION No location on device designated for
visibility testing.

H BIT_DEVICE_ENABLE_FAULT Failed to enable a disabled device.

H BIT_DEVICE_DISABLE_FAULT Failed to disable an enabled device.

H BIT_VPD_CRC_FAULT VPD CRC did not equal the calculated
CRC.

H BIT_RTC_CLOCK_FAULT RTC clock read fault.

H BIT_RTC_CLOCK_SET_FAULT RTC clock set fault.

H BIT_RTC_CLOCK_ACCURACY_FAULT RTC clock accuracy fault.

Pre-Defined MBIT Faults

http://www.motorola.com/computer/literature 5-5

5

H BIT_RTC_ALARM_FAULT RTC alarm timer fault.

H BIT_RTC_ALARM_ACCURACY_FAULT RTC alarm time accuracy fault.

H BIT_RTC_WATCHDOG_FAULT RTC watchdog timer fault.

H BIT_RTC_WATCHDOG_EARLY_FAULT RTC watchdog timer early fault.

H BIT_SERIAL_REGISTER_FAULT Serial register test fault.

H BIT_SERIAL_RECV_FAULT Serial receiver fault (parity, frame,
overrun).

H BIT_PARALLEL_REGISTER_FAULT Parallel register test fault.

H BIT_PARALLEL_FIFO_FAULT Parallel FIFO test fault.

H BIT_MPIC_INTERRUPT_FAULT MPIC interrupt controller fault.

H BIT_ISA_INTERRUPT_FAULT ISA interrupt controller fault.

H BIT_MPIC_INTERRUPT_MARGINAL MPIC interrupt controller marginal.

H BIT_ISA_INTERRUPT_MARGINAL ISA interrupt controller marginal.

H BIT_SCSI_SELECTION_FAULT SCSI target selection failed.

H BIT_SCSI_FIFO_CLEAR_FAULT SCSI and/or DMA FIFOs failed to clear.

H BIT_SCSI_ARBITRATE_FAULT SCSI target arbitration fault.

H BIT_SCSI_TIMER_FAULT SCSI bus timer(s) indication of timeout
failed.

H BIT_SCSI_BMOVE_TIMEOUT SCSI block move timed out.

H BIT_SCSI_PARITY_FAULT SCSI parity error interrupt.

H BIT_SCSI_NO_PARITY_FAULT SCSI parity error interrupt failed to
assert.

H BIT_SCSI_ILLEGAL_FAULT SCSI illegal instruction interrupt.

H BIT_SCSI_NO_ILLEGAL_FAULT SCSI illegal instruction interrupt failed
to assert.

H BIT_PCI_BUS_FAULT PCI bus fault indicated.

H BIT_NO_PCI_BUS_FAULT PCI bus fault not indicated.

Table 5-2. Pre-Defined MBIT Faults (continued)

Type MBIT Fault String Description

http://www.mcg.mot.com/literature

5-6 Computer Group Literature Center Web Site

MBIT Faults

5

H BIT_SCSI_INTERRUPT_TIMEOUT SCSI timeout interrupt received.

H BIT_SCSI_INTERRUPT_FAULT SCSI interrupt failed to assert.

H BIT_SCSI_INIT_ERROR SCSI bus not free for initialization.

H BIT_SCSI_CONTROL_LINE_FAULT SCSI bus control lines contain bad data.

H BIT_SCSI_DATA_LINE_FAULT SCSI bus data lines contain bad data.

H BIT_USER_DATA_SROM_FAULT SROM user configuration data access
error.

H BIT_VME_REGISTER_IO_FAULT VME bridge register write/read access
fault.

H BIT_VME_REGISTER_DATA_FAULT VME bridge register write/read data
miscompare.

H BIT_VME_REGISTER_VALUE_FAULT VME bridge register read value fault.

H BIT_VME_RW_TARGET_IO_FAULT VME write/read target access fault.

H BIT_VME_RW_TARGET_DATA_FAULT VME write/read target data
miscompare.

H BIT_VME_RW_TARGET_INT_FAULT VME write/read target interrupt fault.

H BIT_VME_NO_TARGET_RW_IO_FAULT VME target write/read to non-existent
address succeeded.

H BIT_VME_LOCMON_FAULT VME bridge location monitor (mailbox)
interrupt fault.

H BIT_VME_LOCMON_IO_FAULT VME bridge location monitor (mailbox)
access fault.

H BIT_ETHERNET_SROM_ACCESS_
ERROR

An error occurred while accessing the
Serial EEPROM (SROM) connected to
the Ethernet device.

H BIT_ETHERNET_SROM_CHECKSUM_
FAULT

The checksum of the Serial EEPROM
(SROM) does not match the calculated
value.

Table 5-2. Pre-Defined MBIT Faults (continued)

Type MBIT Fault String Description

Pre-Defined MBIT Faults

http://www.motorola.com/computer/literature 5-7

5

H BIT_ETHERNET_SROM_VERIFY_
FAULT

The contents of the Serial EEPROM
(SROM) do not make sense or do not
match the expected values.

H BIT_ETHERNET_REGISTER_
ACCESS_FAULT

An error occurred while accessing the
Ethernet device registers.

H BIT_ETHERNET_LOOPBACK_DATA_
FAULT

The transmitted and received data sent
in loopback do not match.

H BIT_ETHERNET_DRIVER_FAULT A driver fault occurred.

H BIT_ETHERNET_TRANSMIT_ERROR An error occurred during transmission.

H BIT_ETHERNET_TRANSMIT_BLOCK The transmission would block.

H BIT_FLASH_STUCK_ERROR Possible stuck bit was detected, or
insufficient variability in Flash data.

H BIT_FLASH_FLOAT_ERROR Possible floating bit was detected.

H BIT_THERMOMETER_REGISTER_
FAULT

Thermometer register fault.

H BIT_THERMOMETER_ALARM_FAULT Thermometer thermal alarm fault.

H BIT_THERMOMETER_RANGE_FAULT Thermometer thermal range fault.

H BIT_THERMOMETER_I2C_RW_FAULT Thermometer I2C read/write fault.

H BIT_THERMOMETER_ACTIVE_FAULT Thermometer active alarm fault.

H BIT_THERMOMETER_INACTIVE_
FAULT

Thermometer inactive alarm fault.

Table 5-2. Pre-Defined MBIT Faults (continued)

Type MBIT Fault String Description

http://www.mcg.mot.com/literature

A-1

AAAPI Method’s Reference Pages

This appendix provides detailed information about the MBIT API methods
mentioned in Chapter 2, Using MBIT.

initBit() on page A-3

reinitBit() on page A-5

isBitInitializationComplete() on page A-6

executeBitTests() on page A-7

buildBitDefaultTestList() on page A-11

buildBitDefaultTestEntry() on page A-13

getBitResponse() on page A-14

getNumBitResponses() on page A-16

abortBitTests() on page A-17

getBitDeviceFault() on page A-18

getBitSubtestDesc() on page A-19

getBitDeviceDesc() on page A-20

getBitFaultDesc() on page A-21

getBitSubtestIdByName() on page A-22

getBitDeviceIdByName() on page A-23

getBitFaultIdByName() on page A-24

getBitNumberOfSubtests() on page A-25

getBitNumberOfDevices() on page A-26

getBitNumberOfFaults() on page A-27

A-2 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitMaxTestListEntries() on page A-28

terminateBit() on page A-29

initBit()

http://www.motorola.com/computer/literature A-3

A

initBit()
Name

initBit()—initializes the MBIT software

Synopsis

#include <api/bit.Api.h>

BIT_FAULT initBit(BIT_FAULT (*pConfigRoutines[]()),

int numConfigRoutines)

Parameters

pConfigRoutines[]

is an array of function pointers to custom subtest and device
configuration methods.

numConfigRoutines

is the number of custom configuration methods.

Description

This method performs MBIT system initialization and must be invoked
prior to any other method in MBIT. This method creates the test list
processing task and the subtest control task (refer to Chapter 1, MBIT
Overview).

http://www.mcg.mot.com/literature

A-4 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_ALREADY_PERFORMED—MBIT initialization was
already performed
BIT_INIT_ALLOCATION_ERROR—required resources for
initialization are unavailable
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_OPERATION_IN_PROGRESS—MBIT test or abort in progress
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message

Refer to Chapter 5, MBIT Faults for more faults.

reinitBit()

http://www.motorola.com/computer/literature A-5

A

reinitBit()
Name

reinitBit()—clears the device fault database

Synopsis

#include <api/bitApi.h>

BIT_FAULT reinitBit(void)

Parameters

No input parameters are required by this method.

Description

This method places the MBIT API in an initial state after executing tests.
As a result, the fault database clears and the Fail LED extinguishes.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_OPERATION_IN_PROGRESS—MBIT test or abort in progress
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-6 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

isBitInitializationComplete()
Name

isBitInitializationComplete()—returns the MBIT initialization status

Synopsis

#include <api/bitApi.h>

BOOLEAN isBitInitializationComplete(void)

Parameters

No input parameters are required by this method.

Description

This method returns the MBIT initialization status.

Return Values

TRUE—MBIT initialization is complete
FALSE—MBIT initialization is not complete

Refer to Chapter 5, MBIT Faults for more faults.

executeBitTests()

http://www.motorola.com/computer/literature A-7

A

executeBitTests()
Name

executeBitTests()—submits and executes a list of subtests

Synopsis

#include <api/bitApi.h>

BIT_FAULT executeBitTests(BIT_TEST_CONTROL listControl,

unsigned int testCount,

TEST_ENTRY testList[])

Parameters

listControl

specifies HALT_ON_ERROR or RUN_TILL_COMPLETION
(see config/bitCommonDefs.h).

testCount

is the number of entries in the test list.

testList[]

is an array of tests to execute.

Description

Executing subtests begins with creating test lists and submitting them for
execution by calling executeBitTests(). Follow this method up with
getBitResponse(), which returns test results. abortBitTests() allows
aborting test execution any time outside critical sections during tests. See
the section on subtest attributes in the Test Reference Guide for a list of
subtests with protected critical sections.

An MBIT application may occupy two threads of execution. All API
methods, except getBitResponse(), must be called from the thread
initBit() is called from. getBitResponse() may be called from another
thread.

http://www.mcg.mot.com/literature

A-8 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

Note A user may submit a test list filled with default test entries for a
given device by calling either buildBitDefaultTestList() or
buildBitDefaultTestEntry().

This method submits and executes MBIT tests. In creating a test list, the
following applies:

❏ Any subtest can be included in a single test list and a test list may
contain a single entry.

❏ The number of subtest entries in a test list is limited to the
getBitMaxTestListEntrie()s method.

❏ Only one subtest is executed at any one time.

To execute a test list, specify the listControl parameter with one of the
available values, HALT_ON_ERROR or RUN_TILL_COMPLETION.
If HALT_ON_ERROR is specified, processing of the test list terminates
with the detection of the first failed test. Otherwise, all tests in the test list
execute without stopping for failed tests.

A count of the subtests contained in the test list must be supplied along
with the address of an array of test entries. The TEST_ENTRY definition is
contained in the configuration file, config/bitCommonDefs.h. Each test
entry specifies a test to execute, the logical device to be tested, a test
duration, an iteration count and a test control specifying one of the values,
HALT_ON_ERROR or RUN_TILL_COMPLETION.

The test duration parameter determines the maximum allowable time in
which a test must complete. If the test does not complete within the
specified time, it aborts and a failure is declared. The test duration may be
affected by optional test parameters.

Value Definition

HALT_ON_ERROR Test list terminates with the detection of
the first failed test.

RUN_TILL_COMPLETION Test list executes without stopping for
failed tests.

executeBitTests()

http://www.motorola.com/computer/literature A-9

A

The test iteration count determines the number of times the test executes in
succession. The test duration parameter is automatically multiplied by the
iteration count to determine total allowable execution time. Required
driver installation, exception handler installation, and test initialization are
performed only once; the test must provide its own re-initialization prior to
returning status. Once the test executes the required number of times, the
results return to test control and invoke the test de-installation method.

A subtest has two options for control when it runs. The subtest can use
RUN_TILL_COMPLETION or HALT_ON_ERROR as the control. If
the test uses RUN_TILL_COMPLETION, the test may run till the end
even if a fault occurs. If HALT_ON_ERROR is the control parameter,
then the subtest allows the execution to halt after the first fault occurs and
returns to the API. For clarification, the following paragraph is an example
of a test that uses both types of control as the control parameter.

Example: a subtest wants to test a list of five different bit patterns for
reading and writing to a register. If the subtest uses HALT_ON_ERROR
for its control parameter, the test returns when one of the patterns receives
an error during reading or writing. The test does not continue to read or
write the other patterns. If the subtest uses RUN_TILL_COMPLETION
for its control parameter, the test runs all of the bit patterns even if an error
occurs during the reading or writing to the register.

In addition to the parameters already described, many subtests allow
additional control over the nature of the testing. For example, memory tests
allow the user to specify the patterns to be used and the memory locations
to be tested. To determine if a subtest allows additional parameters,
reference the Motorola Built-In Test (MBIT) Diagnostic Software Test
Reference Guide, listed in Appendix F, Related Documentation, and the
associated include file for the package that implements the test. To support
such controls, a pointer to a user-supplied structure passes to the subtest
upon invocation. The pointer is set to NULL if the test does not support
subtest-specific controls.

http://www.mcg.mot.com/literature

A-10 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_OPERATION_IN_PROGRESS—MBIT test or abort in progress
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_TST_INSTALL_NOT_DEFINED—test installation is not
configured
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message

Refer to Chapter 5, MBIT Faults for more faults.

buildBitDefaultTestList()

http://www.motorola.com/computer/literature A-11

A

buildBitDefaultTestList()
Name

buildBitDefaultTestList()—fills in a list of default test entries

Synopsis

#include <config/testDefaults.h>

BIT_FAULT buildBitDefaultTestList(

BIT_LOGICAL_DEVICE deviceId,

unsigned int *numTests,

TEST_ENTRY testEntryList[])

Parameters

deviceId

is an ID specifying a unique device.

numTests

is the number of test entries being returned.

testEntryList[]

is the list of test entries being returned for a given device.

Description

This method fills in a test list with default test entries for each subtest
associated with the given device. The list of test entries must be allocated
before this method is called. The maximum number of test entries returned
is no more than the value returned by the getBitMaxTestListEntries()
method. Refer to the Motorola Built-In Test (MBIT) Diagnostic Software
Test Reference Guide for a list of subtests and the associated devices.

http://www.mcg.mot.com/literature

A-12 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_INVALID_TEST_PARAM—invalid parameter was supplied

Refer to Chapter 5, MBIT Faults for more faults.

buildBitDefaultTestEntry()

http://www.motorola.com/computer/literature A-13

A

buildBitDefaultTestEntry()
Name

buildBitDefaultTestEntry()—fills in a single default test entry

Synopsis

#include <config/testDefaults.h>

BIT_FAULT buildBitDefaultTestEntry(BIT_SUBTEST subtestId,

BIT_LOGICAL_DEVICE deviceId,

TEST_ENTRY *testEntry)

Parameters

subtestId

is an ID specifying a unique subtest.

deviceId

is an ID specifying a unique device.

testEntry

is a test entry being returned for the associated subtest and device.

Description

This method fills in a single default test entry for the associated subtest and
device. The test entry must be allocated before this method is called.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_INVALID_TEST_PARAM—invalid parameter was supplied

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-14 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitResponse()
Name

getBitResponse()—obtains a list of test results

Synopsis

#include <api/bitApi.h>

BIT_FAULT getBitResponse(TEST_RESULTS_ENTRYtestResults[],

unsigned int *numberOfResults)

Parameters

testResults[]

is a user allocated array for the test results.

numberOfResults

receives the number of entries in the test results list. If the number of
results exceeds the value returned by getBitMaxTestListEntries(), an
error is returned.

The number of testResults entries allocated must be greater than or equal
to the number of test entries submitted with executeBitTests(). The
number of testResults returned will be less than or equal to the number of
test entries submitted with executeBitTests().

Description

This method obtains the results of a test list submitted by invoking
executeBitTests(). This method blocks until the executing test list
completes, times out, or aborts. If this method is called when no tests are
executing, it blocks the viewing of test results until a call is made to
executeBitTests() and all tests in the list complete execution.
getBitResponse() returns a single test results list and removes it from the
response queue.

getBitResponse()

http://www.motorola.com/computer/literature A-15

A

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message
BIT_INVALID_MSG_ERROR—invalid message was received

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-16 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getNumBitResponses()
Name

getNumBitResponses()—provides the number of MBIT test results lists

Synopsis

#include <api/bitApi.h>

BIT_FAULT getNumBitResponses(int *msgCount)

Parameters

msgCount

will contain the number of test results lists in the MBIT response
queue.

Description

This method provides the number of MBIT test results lists in the MBIT
response queue.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred

Refer to Chapter 5, MBIT Faults for more faults.

abortBitTests()

http://www.motorola.com/computer/literature A-17

A

abortBitTests()
Name

abortBitTests()—aborts any subtest in progress

Synopsis

#include <api/bitApi.h>

BIT_FAULT abortBitTests(void)

Parameters

No input parameters are required by this method.

Description

This method terminates current test list processing and aborts any subtest
in progress. This method has no effect if a subtest is not executing or has
already completed. Tests with protected critical sections will not be
aborted until the critical section is exited. Test results for those tests
already complete are made available in response to the submitted test list.
For each successfully submitted test list, a single test results list is placed
in the response queue.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-18 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitDeviceFault()
Name

getBitDeviceFault()—obtains fault information for a specific logical
device

Synopsis

#include <config/bitCommonDefs.h>

BIT_FAULT getBitDeviceFault(BIT_LOGICAL_DEVICE device,

BIT_FAULT *deviceFault)

Parameters

device

is the logical device for which fault data is being requested.

deviceFault

is the fault code.

Description

This method obtains the fault data for the device specified by the input
device value. The first fault detected for the specified logical device returns
to the caller.

Invoking reinitBit() clears the collected fault data and places MBIT in an
initial state. This action also extinguishes the Fail LED when it illuminates
from the detection of a fault by a previous test.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred
BIT_INVALID_TEST_PARAM—invalid parameter was supplied

Refer to Chapter 5, MBIT Faults for more faults.

getBitSubtestDesc()

http://www.motorola.com/computer/literature A-19

A

getBitSubtestDesc()
Name

getBitSubtestDesc()—obtains a string describing a subtest

Synopsis

#include <config/bitCommonDefs.h>

const char* getBitSubtestDesc(BIT_SUBTEST subtestId)

Parameters

subtestId

is an ID specifying a unique subtest.

Description

This method returns a string describing the subtest. The string descriptions
returned should not be modified or free’d.

Return Values

Upon successful completion, getBitSubtestDesc() returns a string
containing the subtest description. If it fails, it returns an empty string.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-20 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitDeviceDesc()
Name

getBitDeviceDesc()—obtains a string describing a logical device

Synopsis

#include <config/bitCommonDefs.h>

const char* getBitDeviceDesc(BIT_LOGICAL_DEVICE deviceId)

Parameters

deviceId

is an ID specifying a unique device.

Description

This method returns a string describing the logical device.

Return Values

Upon successful completion, getBitDeviceDesc() returns a string
containing the device description. If it fails, it returns an empty string.

Refer to Chapter 5, MBIT Faults for more faults.

getBitFaultDesc()

http://www.motorola.com/computer/literature A-21

A

getBitFaultDesc()
Name

getBitFaultDesc()—obtains a string describing a subtest fault

Synopsis

#include <config/bitCommonDefs.h>

const char* getBitFaultDesc(BIT_FAULT faultId)

Parameters

faultId

is an ID specifying a unique fault.

Description

This method returns a string describing the subtest fault.

Return Values

Upon successful completion, getBitFaultDesc() returns a string
containing the fault description. If it fails, it returns "No description
supplied for fault."

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-22 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitSubtestIdByName()
Name

getBitSubtestIdByName()—returns the subtest string identifier ID

Synopsis

#include <config/bitCommonDefs.h>

BIT_SUBTEST getBitSubtestIdByName(const char* const subtest)

Parameters

subtest

is a string identifier specifying the subtest.

Description

This method returns the ID representing the subtest string identifier.

Return Values

BIT_SUBTEST—an ID representing the subtest identifier or
–1—the subtest is not found

Refer to Chapter 5, MBIT Faults for more faults.

getBitDeviceIdByName()

http://www.motorola.com/computer/literature A-23

A

getBitDeviceIdByName()
Name

getBitDeviceIdByName()—returns the device string identifier ID

Synopsis

#include <config/bitCommonDefs.h>

BIT_LOGICAL_DEVICE getBitDeviceIdByName(

const char* const device)

Parameters

device

is a string identifier specifying the device.

Description

This method returns the ID representing the device string identifier.

Return Values

BIT_LOGICAL_DEVICE—an ID representing the device identifier
–1—the device is not found

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-24 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitFaultIdByName()
Name

getBitFaultIdByName()—returns the device string identifier ID

Synopsis

#include <config/bitCommonDefs.h>

BIT_FAULT getBitFaultIdByName(const char* const fault)

Parameters

fault

is a string identifier specifying the fault.

Description

This method returns the ID representing the fault string identifier.

Return Values

BIT_FAULT—an ID representing the fault identifier
–1—the fault is not found

Refer to Chapter 5, MBIT Faults for more faults.

getBitNumberOfSubtests()

http://www.motorola.com/computer/literature A-25

A

getBitNumberOfSubtests()
Name

getBitNumberOfSubtests()—returns the number of subtests

Synopsis

#include <config/bitCommonDefs.h>

int getBitNumberOfSubtests(void)

Parameters

No input parameters are required by this method.

Description

This method returns the number of subtests.

Return Values

Upon successful completion, getBitNumberOfSubtests() returns the
number of MBIT configured subtests.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-26 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitNumberOfDevices()
Name

getBitNumberOfDevices()—returns the number of devices

Synopsis

#include <config/bitCommonDefs.h>

int getBitNumberOfDevices(void)

Parameters

No input parameters are required by this method.

Description

This method returns the number of devices.

Return Values

Upon successful completion, getBitNumberOfDevices() returns the
number of MBIT configured devices.

Refer to Chapter 5, MBIT Faults for more faults.

getBitNumberOfFaults()

http://www.motorola.com/computer/literature A-27

A

getBitNumberOfFaults()
Name

getBitNumberOfFaults()—returns the number of faults

Synopsis

#include <config/bitCommonDefs.h>

int getBitNumberOfFaults(void)

Parameters

No input parameters are required by this method.

Description

This method returns the number of faults.

Return Values

Upon successful completion, getBitNumberOfFaults() returns the
number of MBIT configured faults.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

A-28 Computer Group Literature Center Web Site

API Method’s Reference Pages
A

getBitMaxTestListEntries()
Name

getBitMaxTestListEntries()—returns the maximum number of test list
entries

Synopsis

#include <config/bitCommonDefs.h>

int getBitMaxTestListEntries(void)

Parameters

No input parameters are required by this method.

Description

This method returns the maximum number of test list entries.

Return Values

Upon successful completion, getBitMaxTestListEntries() returns the
maximum number of MBIT configured test list entries.

Refer to Chapter 5, MBIT Faults for more faults.

terminateBit()

http://www.motorola.com/computer/literature A-29

A

terminateBit()
Name

terminateBit()—terminates the MBIT software

Synopsis

#include <api/bitApi.h>

BIT_FAULT terminateBit(void)

Parameters

No input parameters are required by this method.

Description

This method performs an orderly termination of the MBIT software,
including releasing allocated resources and the termination of all spawned
child tasks.

After invoking terminateBit(), you may call initBit(). There are no
restrictions placed on the number of times you can call initBit() and
terminateBit(), as long as each call to initBit() is followed by a call to
terminateBit() prior to the next invocation of initBit().

Note: Calling initBit() and terminateBit() an excessive number of times
may cause memory fragmentation.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_NOT_PERFORMED—MBIT initialization was already
performed
BIT_MESSAGE_QUEUE_ERROR—could not queue MBIT message
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-1

BBIntegrating Custom
Diagnostics’ Reference Pages

This appendix provides detailed information about the methods mentioned
in Chapter 3, Integrating Custom Diagnostics. These methods are
categorized into the following four sections.

Diagnostic Integration Methods

Generic Device Driver Methods

Device Driver Methods

Device Read and Write Utility Methods

Diagnostic Integration Methods
MBIT provides the following methods for integrating diagnostics:

addBitSubtestIdent() on page B-2

addBitDeviceIdent() on page B-4

addBitFaultIdent() on page B-6

createBitTestAssociations() on page B-8

installBitDriver() on page B-10

installBitSubtestEntries() on page B-12

getBitNumberOfAssociations() on page B-15

B-2 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B addBitSubtestIdent()

Name

addBitSubtestIdent()—adds a subtest entry

Synopsis

#include <config/bitTestUtils.h>

BIT_FAULT addBitSubtestIdent(const char *subtest,

const char *description,

BIT_SUBTEST *id)

Parameters

subtest

is the unique subtest name.

description

is the description of the subtest name.

id

is the unique ID being returned that represents the subtest.

Description

This method adds a subtest entry with the provided identifier and
description.

addBitSubtestIdent()

http://www.motorola.com/computer/literature B-3

BReturn Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_ALREADY_PERFORMED—MBIT initialization was
already performed
BIT_INIT_ALLOCATION_ERROR—required resources for
initialization are unavailable
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_DUPLICATE_IDENT—name of the identifier already exists
BIT_RESOURCE_MGMT_FAULT— memory management error
occurred
BIT_INVALID_LIST_CONTENT—content of list is invalid

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-4 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B addBitDeviceIdent()

Name

addBitDeviceIdent()—adds a device entry

Synopsis

#include <config/bitTestUtils.h>

BIT_FAULT addBitDeviceIdent(const char *device,

const char *description,

BIT_LOGICAL_DEVICE *id)

Parameters

device

is the unique device name.

description

is the description of the device name.

id

is the unique ID being returned that represents the device.

Description

This method adds a device entry with the provided identifier and
description.

addBitDeviceIdent()

http://www.motorola.com/computer/literature B-5

BReturn Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_ALREADY_PERFORMED—MBIT initialization was
already performed
BIT_INIT_ALLOCATION_ERROR—required resources for
initialization are unavailable
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_DUPLICATE_IDENT—name of the identifier already exists
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred
BIT_INVALID_LIST_CONTENT—content of list is invalid

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-6 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B addBitFaultIdent()

Name

addBitFaultIdent()—adds a fault entry

Synopsis

#include <config/bitTestUtils.h>

BIT_FAULT addBitFaultIdent(const char *fault,

const char *description,

BIT_FAULT_TYPE type,

BIT_FAULT *id)

Parameters

fault

is the unique fault name.

description

is the description of the fault.

type

is the type of fault (for example, hardware, software; see
config/bitCommonDefs.h).

id

is the unique ID being returned that represents the fault.

Description

This method adds a fault entry with the provided identifier and description.

addBitFaultIdent()

http://www.motorola.com/computer/literature B-7

BReturn Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_ALREADY_PERFORMED—MBIT initialization was
already performed
BIT_INIT_ALLOCATION_ERROR—required resources for
initialization are unavailable
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_DUPLICATE_IDENT—name of the identifier already exists
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred
BIT_INVALID_LIST_CONTENT—content of list is invalid

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-8 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B createBitTestAssociations()

Name

createBitTestAssociations()—creates an association between devices,
subtests, and a driver

Synopsis

#include <config/bitTestUtils.h>

BIT_FAULT createBitTestAssociations(BIT_SUBTEST subtestId[],

int numSubtestIds,

BIT_LOGICAL_DEVICE deviceId[],

int numDeviceIds,

DRV_DESC *pDriveDesc)

Parameters

subtestId[]

is an array of subtest IDs.

numSubtestIds

is the number of subtest IDs.

deviceId[]

is an array of device IDs.

numDeviceIds

is the number of device IDs.

pDriveDesc

is the pointer to the driver being associated with the subtests and
devices.

Description

This method creates an association between subtests, devices, and a driver.
If a driver is not available for the associated subtest and device, the
pDriveDesc parameter should be NULL.

createBitTestAssociations()

http://www.motorola.com/computer/literature B-9

BReturn Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_ALREADY_PERFORMED—MBIT initialization was
already performed
BIT_INIT_ALLOCATION_ERROR—required resources for
initialization are unavailable
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_INVALID_SUBTEST_ID—subtest ID is invalid
BIT_INVALID_DEVICE_ID—device ID is invalid
BIT_DUPLICATE_ASSOCIATION—association has already been
created
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-10 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B installBitDriver()

Name

installBitDriver()—installs the driver entry points

Synopsis

#include <api/bitGenericDriver.h>

DRV_DESC* installBitDriver(

 BIT_FAULT (*drvInstall) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvDeinstall) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvOpen) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvClose) (DEV_DESC *devDescPtr),

 BIT_FAULT (*drvRead) (DEV_DESC *devDescPtr,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesRead),

 BIT_FAULT (*drvWrite) (DEV_DESC *devDescPtr,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesWritten),

 BIT_FAULT (*drvIoctl) (DEV_DESC *devDescPtr

int function,

int argument))

Parameters

drvInstall

is the driver install entry point. Also refer to devXXXInstall() on page
B-29.

drvDeinstall

is the driver deinstall entry point. Also refer to devXXXDeinstall() on
page B-31.

drvOpen

is the driver open entry point. Also refer to devXXXOpen() on page
B-33.

installBitDriver()

http://www.motorola.com/computer/literature B-11

BdrvClose

is the driver close entry point. Also refer to devXXXClose() on page
B-34.

drvRead

is the driver read entry point. Also refer to devXXXRead() on page
B-35.

drvWrite

is the driver write entry point. Also refer to devXXXWrite() on page
B-37.

drvIoctl

is the driver ioctl entry point. Also refer to devXXXIoctl() on page
B-39.

Description

This method installs the driver entry points. When you add a driver, you
must implement all of the driver entry points.

Return Values

DRV_DESC—pointer to the driver descriptor
NULL—an error occurred

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-12 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B installBitSubtestEntries()

Name

installBitSubtestEntries()—installs the required subtest entry points and
sets the default parameters

Synopsis

#include <config/bitTestUtils.h>

BIT_FAULT installBitSubtestEntries(

 BIT_SUBTEST subtest,

 BIT_FAULT (*installTest) (BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

void *testParamPtr),

 BIT_FAULT (*deinstallTest) (BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

void *testParamPtr),

 BIT_FAULT (*runTest) (BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

void *testParamPtr),

 int interations,

 int duration

 BIT_TEST_CONTROL control,

 BIT_FAULT (*freeParamPtr) (BIT_SUBTEST subtest,

void *testParamPtr),

 BIT_FAULT (*initParamPtr) (BIT_SUBTEST subtest,

void *testParamPtr),

 int paramSize)

Parameters

subtest

is the subtest ID the methods and default parameters are associated
with.

installTest

is the subtest installation method.

installBitSubtestEntries()

http://www.motorola.com/computer/literature B-13

BdeinstallTest

is the subtest de-installation method.

runTest

is the actual test method.

iterations

is the default number of times to run the test.

duration

is the default maximum number of milliseconds the test is allowed to
run.

control

is the default test control to halt on the first error detected or to run until
test completion, if possible.

freeParamPtr

is the pointer to the free parameter method. This method is responsible
for memory de-allocation of the parameter structure.

initParamPtr

is the pointer to the method that initializes the default parameter
structure. This method is responsible for any memory allocation and
initialization of the default parameter structure.

paramSize

is the size of the parameter structure used by the subtest.

Description

This method installs the required subtest entry points and sets the default
parameters, which are used by buildBitDefaultTestList and
buildBitDefaultTestEntry.

http://www.mcg.mot.com/literature

B-14 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_INIT_ALREADY_PERFORMED—MBIT initialization was
already performed
BIT_INIT_ALLOCATION_ERROR—required resources for
initialization are unavailable
BIT_INVALID_TEST_PARAM—invalid parameter was supplied
BIT_RESOURCE_MGMT_FAULT—memory management error
occurred

Refer to Chapter 5, MBIT Faults for more faults.

getBitNumberOfAssociations()

http://www.motorola.com/computer/literature B-15

BgetBitNumberOfAssociations()

Name

getBitNumberOfAssociations()—obtains the number of associations

Synopsis

#include <config/bitTestUtils.h>

int getBitNumberOfAssociations(void)

Parameters

None

Description

This method returns the number of associations.

Return Values

Upon successful completion, getBitNumberOfAssociations() returns the
number of associations. If MBIT has not been initialized, it returns 0.

Refer to Chapter 5, MBIT Faults for more faults.

Generic Device Driver Methods
MBIT provides the following generic device driver methods:

drvInstall() on page B-17

drvDeinstall() on page B-19

drvOpen() on page B-21

drvClose() on page B-22

drvRead() on page B-23

http://www.mcg.mot.com/literature

B-16 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B drvWrite() on page B-25

drvIoctl() on page B-27

drvInstall()

http://www.motorola.com/computer/literature B-17

BdrvInstall()

Name

drvInstall()—finds the associated driver routine based on the subtest and
logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvInstall(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device);

Parameters

subtest

is the current subtest.

device

is the device to operate on.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

It is suggested that this method be invoked by the install test method for the
specified subtest.

http://www.mcg.mot.com/literature

B-18 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DRIVER_SEQUENCE_ERROR—driver methods invoked out of
order
BIT_DEV_INSTALL_NOT_DEFINED—device installation is not
configured

Refer to Chapter 5, MBIT Faults for more faults.

drvDeinstall()

http://www.motorola.com/computer/literature B-19

BdrvDeinstall()

Name

drvDeinstall()—finds the associated driver routine based on the subtest
and logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvDeinstall(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device)

Parameters

subtest

is the current subtest.

device

is the device to operate on.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

This method must be invoked by the de-install test method for the specified
subtest.

http://www.mcg.mot.com/literature

B-20 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DEV_INSTALL_NOT_DEFINED—device installation is not
configured

Refer to Chapter 5, MBIT Faults for more faults.

drvOpen()

http://www.motorola.com/computer/literature B-21

BdrvOpen()

Name

drvOpen()—finds the associated driver routine based on the subtest and
logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvOpen(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device)

Parameters

subtest

is the current subtest.

device

is the device to operate on.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DRIVER_SEQUENCE_ERROR—driver methods invoked out of
order
BIT_DEV_INSTALL_NOT_DEFINED—device installation is not
configured

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-22 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B drvClose()

Name

drvClose()—finds the associated driver routine based on the subtest and
logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvClose(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device)

Parameters

subtest

is the current subtest.

device

is the device to operate on.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

This method must be called before the drvDeinstall() is called.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DEV_INSTALL_NOT_DEFINED—device installation is not
configured

Refer to Chapter 5, MBIT Faults for more faults.

drvRead()

http://www.motorola.com/computer/literature B-23

BdrvRead()

Name

drvRead()—finds the associated driver routine based on the subtest and
logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvRead(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesRead)

Parameters

subtest

is the current subtest.

device

is the device to operate on.

bufferSize

is the size of buffer in bytes.

buffer

is the buffer to place data in.

bytesRead

is a pointer to the number of bytes read.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

http://www.mcg.mot.com/literature

B-24 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B This method must be called after the drvOpen() has been called.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DRIVER_SEQUENCE_ERROR—driver methods invoked out of
order
BIT_INVALID_DEVICE_DESC—device descriptor has invalid field
(configuration error)

Refer to Chapter 5, MBIT Faults for more faults.

drvWrite()

http://www.motorola.com/computer/literature B-25

BdrvWrite()

Name

drvWrite()—finds the associated driver routine based on the subtest and
logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvWrite(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

unsigned int bufferSize,

char *buffer,

unsigned int *bytesWritten)

Parameters

subtest

is the current subtest.

device

is the device to operate on.

bufferSize

is the number of bytes from buffer to write.

buffer

is the buffer to write data from.

bytesWritten

is the pointer to the number of bytes written.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

http://www.mcg.mot.com/literature

B-26 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B This method must be called after drvOpen() has been called.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DRIVER_SEQUENCE_ERROR—driver methods invoked out of
order
BIT_INVALID_DEVICE_DESC—device descriptor has invalid field
(configuration error)

Refer to Chapter 5, MBIT Faults for more faults.

drvIoctl()

http://www.motorola.com/computer/literature B-27

BdrvIoctl()

Name

drvIoctl()—finds the associated driver routine based on the subtest and
logical device passed in

Synopsis

#include<api/bitGenericDriver.h>

BIT_FAULT drvIoctl(BIT_SUBTEST subtest,

BIT_LOGICAL_DEVICE device,

int function,

int argument)

Parameters

subtest

is the current subtest.

device

is the device to operate on.

function

is the driver-specific operation to perform on the device or driver.

argument

is a driver-specific argument for the function.

Description

This method finds the associated driver routine based on the subtest and
logical device passed in. This method looks up the device descriptor based
on the logical device passed in. The associated device driver routine is then
called.

This routine must be called after the drvOpen() has been called.

http://www.mcg.mot.com/literature

B-28 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_SUBTEST_NOT_SUPPORTED—selected subtest is not
supported on this device
BIT_DEVICE_NOT_SUPPORTED—device is not supported
BIT_DRIVER_SEQUENCE_ERROR—driver methods invoked out of
order
BIT_INVALID_DEVICE_DESC—device descriptor has invalid field
(configuration error)

Refer to Chapter 5, MBIT Faults for more faults.

Device Driver Methods
MBIT provides the following device driver methods:

devXXXInstall() on page B-29

devXXXDeinstall() on page B-31

devXXXOpen() on page B-33

devXXXClose() on page B-34

devXXXRead() on page B-35

devXXXWrite() on page B-37

devXXXIoctl() on page B-39

devXXXInstall()

http://www.motorola.com/computer/literature B-29

BdevXXXInstall()

Name

devXXXInstall()—allows MBIT to prepare the driver for subsequent
access of the device

Synopsis

devXXXInstall(DEV_DESC *pDevDesc)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform an install operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device
is being accessed.

Description

This method allows MBIT to prepare the driver for subsequent access of
the device. The driver should save all of the necessary device registers for
restoration when the test is complete. This method receives a pointer to the
device descriptor of the device being tested. All of the necessary device
registers are contained in this structure. The driver should use these register
definitions to interface with the correct device.

This method is responsible for allocating required resources (that is,
buffers, semaphores, etc.) and saving the state of the device. It is also
responsible for installing any required interrupt service methods. This
method may also disable the device driver supplied by the underlying OS
if such a capability is supported.

The devXXXInstall() method receives a pointer to the device descriptor of
the device being tested. All of the necessary device registers are contained
in this structure. The driver should use these register definitions to
interface with the correct device.

http://www.mcg.mot.com/literature

B-30 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B In addition to the register information, the structure should also identify the
interrupt level and vector that the device uses. The driver should use these
definitions when using interrupts. This ensures that the driver’s interrupt
processing is connected to the right device, assuming the device descriptor
is built correctly.

Return Values

The return values for this method are determined by the developer.

devXXXDeinstall()

http://www.motorola.com/computer/literature B-31

BdevXXXDeinstall()

Name

devXXXDeinstall()—allows the user to terminate the use of the driver

Synopsis

devXXXDeinstall(DEV_DESC *pDevDesc)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform a de-install operation on the device. Using the
register definitions in the device descriptor guarantees that the correct
device is being accessed.

Description

This method allows the user to terminate the use of the driver. The driver
de-installation method is responsible for resource reclamation, restoring
the device state, and de-installing the interrupt service methods. The driver
should restore all of the device registers that were saved when the driver
was installed. This method receives a pointer to a device descriptor of the
device being tested. All of the necessary device registers are contained in
this structure. The driver should use these register definitions to interface
with the correct device.

The devXXXDeinstall() method receives a pointer to a device descriptor
of the device being tested. All of the necessary device registers are
contained in this structure. The driver should use these register definitions
to interface with the correct device.

In addition to the register information, the structure should also identify the
interrupt level and vector that the device uses. The driver should use these
definitions when using interrupts. This ensures that the driver's interrupt
processing affects the correct device.

http://www.mcg.mot.com/literature

B-32 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Return Values

The return values for this method are determined by the developer.

devXXXOpen()

http://www.motorola.com/computer/literature B-33

BdevXXXOpen()

Name

devXXXOpen()—allows the user to prepare the device for testing

Synopsis

devXXXOpen(DEV_DESC *pDevDesc)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform an open operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device
is being accessed.

Description

This method allows the user to prepare the device for testing. It receives a
pointer to the device descriptor of the device being tested. Also, driver
variables may be initialized in preparation for subsequent driver use.

All of the necessary device registers are contained in this structure. The
driver should use these register definitions to interface with the correct
device.

Return Values

The return values for this method are determined by the developer.

http://www.mcg.mot.com/literature

B-34 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B devXXXClose()

Name

devXXXClose()—allows the user to close the device in preparation for
terminating use of the device

Synopsis

devXXXClose(DEV_DESC *pDevDesc)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform a close operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device
is being accessed.

Description

This method allows the user to close the device in preparation for
terminating use of the device. It receives a pointer to the device descriptor
of the device being tested.

Typically, a device driver does not need to do processing to close the driver
in the MBIT environment. The important device control and resource
allocation release should be performed in the devXXXDeinstall() driver
method.

Return Values

The return values for this method are determined by the developer.

devXXXRead()

http://www.motorola.com/computer/literature B-35

BdevXXXRead()

Name

devXXXRead()—allows the user to read information from the device

Synopsis

devXXXRead(DEV_DESC *pDevDesc,

UINT32 bufferSize,

INT8 *bufferAddr,

UINT32 *bytesRead)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform a read operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device
is being accessed.

bufferSize

contains the number of bytes that the user expects to read from the
device. If the device supports transfers wider than a byte, the driver
should adjust the count appropriately.

bufferAddr

points to the first element of the data buffer that the driver stores the
data that is read from the device. The caller must provide a data buffer
sufficiently large enough to accept the requested number of bytes
defined in the buffer size parameter.

bytesRead

points to the variable that the driver returns as the number of bytes
read. In the event of an error, the byte count should reflect the actual
byte count of the received data.

http://www.mcg.mot.com/literature

B-36 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Description

This method allows the user to read information from the device. It
receives a pointer to the device descriptor of the device being tested, the
requested buffer size, a pointer to the buffer address, and a pointer to a
variable that holds the number of bytes read. The developer should also
update the variable pointed to by the bytesRead parameter before returning
to the caller.

Return Values

The return values for this method are determined by the developer.

devXXXWrite()

http://www.motorola.com/computer/literature B-37

BdevXXXWrite()

Name

devXXXWrite()—allow the driver to write information to the device

Synopsis

devXXXWrite(DEV_DESC *pDevDesc,

UINT32 bufferSize,

INT8 *bufferAddr,

UINT32 *bytesWritten)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform a write operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device
is being accessed.

bufferSize

contains the number of bytes that the user expects to write to the
device. If the device supports transfers wider than a byte, the driver
should adjust the count appropriately.

bufferAddr

points to the first element of the data buffer that the driver reads data
that is to be written to the device. The caller should provide a data
buffer sufficiently large enough to reflect the requested number of
bytes defined in the bufferSize parameter.

bytesWritten

points to the variable that the driver returns as the number of bytes
written. In the event of an error, the bytesWritten variable should
reflect the actual byte count of the output data.

http://www.mcg.mot.com/literature

B-38 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Description

This method allows the driver to write information to the device. It receives
a pointer to the device descriptor of the device being tested, the requested
buffer size, a pointer to the buffer address, and a pointer to a variable that
holds the number of bytes written. The developer should also update the
variable pointed to by the bytesWritten parameter before returning to the
caller.

Return Values

The return values for this method are determined by the developer.

devXXXIoctl()

http://www.motorola.com/computer/literature B-39

BdevXXXIoctl()

Name

devXXXIoctl()—allows the driver to perform special operations with the
device

Synopsis

devXXXIoctl(DEV_DESC *pDevDesc,

INT32 function,

INT32 argument)

Parameters

pDevDesc

is a pointer to a structure that contains all of the registers that are
needed to perform an ioctl operation on the device. Using the register
definitions in the device descriptor guarantees that the correct device
is being accessed.

function

contains the special operation that is to be performed. The actual
function value and implementation is device specific.

argument

contains special information that is required by the method being
performed. The actual value of the argument is method and device
specific. It should be noted that the user is not limited to an integer
value as an argument. The argument can be a pointer that is cast as an
integer when the method is called. Being a pointer the user can pass a
large amount of information to ioctl method.

Description

This method allows the driver to perform special operations with the
device. It receives a pointer to the device descriptor of the device being
tested, the requested function, and an argument.

http://www.mcg.mot.com/literature

B-40 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B Return Values

The return values for this method are determined by the developer.

Device Read and Write Utility Methods
The device read and write utility methods provided by MBIT are added to
the device descriptor during device initialization. These are then used by
bitIn()/bitOut() to access the device hardware addresses.

MBIT provides the following device read and write utility methods:

bitProbeIn8/16/32() on page B-41

bitProbeOut8/16/32() on page B-42

bitProbeInSwap16/32() on page B-43

bitProbeOutSwap16/32() on page B-44

bitIn8/16/32() on page B-45

bitOut8/16/32() on page B-46

bitInSwap16/32() on page B-47

bitOutSwap16/32() on page B-48

bitPciWrite32() on page B-49

bitPciRead32() on page B-50

bitProbeIn8/16/32()

http://www.motorola.com/computer/literature B-41

BbitProbeIn8/16/32()

Name

bitProbeIn8/16/32()—reads 8/16/32-bit data from the designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeIn8(ULONG addr, UINT32 *pdata);

STATUS bitProbeIn16(ULONG addr, UINT32 *pdata);

STATUS bitProbeIn32(ULONG addr, UINT32 *pdata);

Parameters

addr

is the address to read data from.

pdata

is the pointer to a 32-bit location to store data.

Description

The data read is written into a 8/16/32-bit memory location. This method
requires a 32-bit memory location for storing the data because it is used by
the device utility methods bitIn()/bitOut(). These methods store the
location’s contents in the 32-bit value field of the ADDR_INFO structure.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitIn8()/bitIn16()/bitIn32() should be used.

Return Values

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-42 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B bitProbeOut8/16/32()

Name

bitProbeOu8/16/32()—writes 8/16/32-bit data to the designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeOut8(ULONG addr, UINT8 *data);

STATUS bitProbeOut16(ULONG addr, UINT16 *data);

STATUS bitProbeOut32(ULONG addr, UINT32 *data);

Parameters

addr

is the address to write data to.

data

is the data to write out.

Description

This method writes 8/16/32-bit data to the designated address.

The data is written into an 8/16/32-bit memory location. The MBIT
exception handler is enabled during the data write. If the MBIT exception
handler is not necessary to "catch" exceptions caused by the access to the
device, then bitOut8()/bitOut16()/bitOut32() should be used.

Return Values

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Chapter 5, MBIT Faults for more faults.

bitProbeInSwap16/32()

http://www.motorola.com/computer/literature B-43

BbitProbeInSwap16/32()

Name

bitProbeInSwap16/32()—reads and byte swaps 16/32-bit data from the
designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeInSwap16(ULONG addr, UINT32 *pdata);

STATUS bitProbeInSwap32(ULONG addr, UINT32 *pdata);

Parameters

addr

is the address to read data from.

pdata

is the pointer to a 32-bit location to store data.

Description

This method reads and byte swaps 16/32-bit data from the designated
address. The data is read as little/big-endian and loaded as big/little-endian
into a 32-bit memory location. This method requires a 32-bit memory
location for storing the data because it is used by the device utility methods
bitIn()/bitOut(). These methods store the location’s contents in the 32-bit
value field of the ADDR_INFO structure.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitInSwap16()/bitInSwap32() should be used.

Return Values

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-44 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B bitProbeOutSwap16/32()

Name

bitProbeOutSwap16/32()—writes and byte swaps 16/32-bit data to the
designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitProbeOutSwap16(ULONG addr, UINT16 *data);

STATUS bitProbeOutSwap32(ULONG addr, UINT32 *data);

Parameters

addr

is the address to write data to.

data

is the data to write out.

Description

This method byte swaps and writes 16/32-bit data to the designated
address. The big/little-endian data is written into a 16/32-bit data location
as little/big-endian.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitOutSwap16()/bitOutSwap32() should be
used.

Return Values

Upon successful completion, this method returns 0. If an exception occurs,
–1 is returned.

Refer to Chapter 5, MBIT Faults for more faults.

bitIn8/16/32()

http://www.motorola.com/computer/literature B-45

BbitIn8/16/32()

Name

bitIn8/16/32()—reads 8/16/32-bit data from the designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitIn8(ULONG addr, UINT32 *pdata);

STATUS bitIn16(ULONG addr, UINT32 *pdata);

STATUS bitIn32(ULONG addr, UINT32 *pdata);

Parameters

addr

is the address to read data from.

pdata

is the pointer to a 32-bit location to store data.

Description

This method reads 8/16/32-bit data from the designated address. The data
read is written into a 32-bit memory location. This method requires a
32-bit memory location for storing the data because it is used by the device
utility methods bitIn()/bitOut(). These methods store the location’s
contents in the 32-bit value field of the ADDR_INFO structure.

The MBIT exception handler is not enabled during the data read. If the
MBIT exception handler is needed to "catch" exceptions caused by the
access to the device, then bitProbeIn8()/bitProbeIn16()/bitProbeIn32()
should be used.

Return Values

This method always returns 0.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-46 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B bitOut8/16/32()

Name

bitOut8/16/32()—writes 8/16/32-bit data to the designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitOut8(ULONG addr, UINT8 *data);

STATUS bitOut16(ULONG addr, UINT16 *data);

STATUS bitOut32(ULONG addr, UINT32 *data);

Parameters

addr

is the address to write data to.

data

is the data to write out.

Description

This method writes 8/16/32-bit data to the designated address. The data is
written into an 8/16/32-bit memory location.

The MBIT exception handler is not enabled during the data write. If the
MBIT exception handler is needed to "catch" exceptions caused by the
access to the device, then
bitProbeOut8()/bitProbeOut16()/bitProbeOut32() should be used.

Return Values

This method always returns 0.

Refer to Chapter 5, MBIT Faults for more faults.

bitInSwap16/32()

http://www.motorola.com/computer/literature B-47

BbitInSwap16/32()

Name

bitInSwap16/32()—reads and byte swaps 16/32-bit data from the
designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitInSwap16(ULONG addr, UINT32 *pdata);

STATUS bitInSwap32(ULONG addr, UINT32 *pdata);

Parameters

addr

is the address to read data from.

pdata

is the pointer to a 32-bit location to store data.

Description

This method reads and byte swaps 16/32-bit data from the designated
address. The data is read as little/big-endian and loaded as big/little-endian
into a 32-bit memory location. This method requires a 32-bit memory
location for storing the data because it is used by the device utility methods
bitIn()/bitOut(). These methods store the location’s contents in the 32-bit
value field of the ADDR_INFO structure.

The MBIT exception handler is not enabled during the data read. If the
MBIT exception handler is needed to "catch" exceptions caused by the
access to the device, then bitProbeInSwap16()/bitProbeInSwap32()
should be used.

Return Values

This method always returns 0.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-48 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B bitOutSwap16/32()

Name

bitOutSwap16/32()—writes and byte swaps 16/32-bit data to the
designated address

Synopsis

#include <utilities/bitDeviceUtils.h>

STATUS bitOutSwap16(ULONG addr, UINT16 *data);

STATUS bitOutSwap32(ULONG addr, UINT32 *data);

Parameters

addr

is the address to write data to.

data

is the data to write out.

Description

This method byte swaps and writes 16/32-bit data to the designated
address. The big/little-endian data is written into a 16/32-bit data location
as little/big-endian.

The MBIT exception handler is enabled during the data read. If the MBIT
exception handler is not necessary to "catch" exceptions caused by the
access to the device, then bitProbeOutSwap16()/bitProbeOutSwap32()
should be used.

Return Values

This method always returns 0.

Refer to Chapter 5, MBIT Faults for more faults.

bitPciWrite32()

http://www.motorola.com/computer/literature B-49

BbitPciWrite32()

Name

bitPciWrite32()—writes 32-bit data to PCI (I/O or memory) space in
little-endian mode

Synopsis

#include <utilities/bitDeviceUtils.h>

void bitPciWrite32(ULONG addr, UINT32 data);

Parameters

addr

is the address to write data to.

data

is the data to write out.

Description

This method writes 32-bit data to PCI (I/O or memory) space in little-
endian mode.

Return Values

This method has no return values.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

B-50 Computer Group Literature Center Web Site

Integrating Custom Diagnostics’ Reference Pages

B bitPciRead32()

Name

bitPciRead32()—reads 32-bit data to PCI (I/O or memory) space

Synopsis

#include <utilities/bitDeviceUtils.h>

void bitPciRead32(ULONG addr, UINT32 *pdata);

Parameters

addr

is the address to read data from.

pdata

is the pointer to a 32-bit location to store data.

Description

This method reads 32-bit data from PCI (I/O or memory) space.

Return Values

This method has no return values.

Refer to Chapter 5, MBIT Faults for more faults.

C-1

CCUtility Methods’ Reference
Pages

This appendix provides detailed information about the utility methods
mentioned in Chapter 4, Utility Methods.

Cache Utility Methods

Diagnostic Device Utility Methods

Interrupt Utility Methods

Time Utility Methods

Cache Utility Methods
MBIT provides the following cache utility methods:

bitDataCacheEnable()

bitDataCacheDisable()

bitDataCacheIsEnabled()

bitDataCacheFlush()

bitDataCacheFlushInvalidate()

bitDataCacheInvalidate()

bitDataCacheLock()

bitDataCacheUnlock()

bitInstCacheEnable()

bitInstCacheDisable()

bitInstCacheIsEnabled()

bitInstCacheLock()

bitInstCacheUnlock()

C-2 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheSizeGet()

bitL2CacheEnable()

bitL2CacheDisable()

bitL2CacheOn()

bitL2CacheOff()

bitL2CacheIsEnabled()

bitL2CacheFlush()

bitL2CacheFlushInvalidate()

bitL2CacheInvalidate()

bitL2CacheLock()

bitL2CacheUnlock()

bitL2CacheIsLockable()

bitL2CacheFill()

bitL2CacheIsWritebackCapable()

bitDataCacheEnable()

http://www.motorola.com/computer/literature C-3

C

bitDataCacheEnable()

Name

bitDataCacheEnable()—enables the L1 data cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheEnable(void)

Parameters

No input parameters are required by this method.

Description

This method invalidates and then enables the L1 data cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, successful
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-4 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitDataCacheDisable()

Name

bitDataCacheDisable()—disables the L1 data cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheDisable(void)

Parameters

No input parameters are required by this method.

Description

This method flushes and then disables the L1 data cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_DATA_CACHE_NOT_ENABLED—data cache must be enabled
before calling cache function

Refer to Chapter 5, MBIT Faults for more faults.

bitDataCacheIsEnabled()

http://www.motorola.com/computer/literature C-5

C

bitDataCacheIsEnabled()

Name

bitDataCacheIsEnabled()—gives the enabled state of the L1 data cache

Synopsis

<utilities/bitCacheUtils.h>

BOOL bitDataCacheIsEnabled(void)

Parameters

No input parameters are required by this method.

Description

This method returns the boolean enable state of L1 data cache.

Return Values

TRUE—the L1 data cache is enabled
FALSE—the L1 data cache is not enabled

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-6 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitDataCacheFlush()

Name

bitDataCacheFlush()—flushes the L1 data cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheFlush(void)

Parameters

No input parameters are required by this method.

Description

This method flushes the entire L1 data cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_DATA_CACHE_NOT_ENABLED—data cache must be enabled
before calling cache function

Refer to Chapter 5, MBIT Faults for more faults.

bitDataCacheFlushInvalidate()

http://www.motorola.com/computer/literature C-7

C

bitDataCacheFlushInvalidate()

Name

bitDataCacheFlushInvalidate()—flushes and invalidates the L1 data
cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheFlushInvalidate(void)

Parameters

No input parameters are required by this method.

Description

This method flushes and invalidates the entire L1 data cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_DATA_CACHE_NOT_ENABLED—data cache must be enabled
before calling cache function

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-8 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitDataCacheInvalidate()

Name

bitDataCacheInvalidate()—invalidates the L1 data cache for a range of
memory

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheInvalidate(void *address, UINT bytes)

Parameters

address

is the virtual address to begin invalidation.

bytes

is the number of bytes to invalidate.

Description

This method invalidates the L1 data cache for a range of memory.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

bitDataCacheLock()

http://www.motorola.com/computer/literature C-9

C

bitDataCacheLock()

Name

bitDataCacheLock()—locks the L1 data cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheLock(void)

Parameters

No input parameters are required by this method.

Description

This method locks the L1 data cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-10 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitDataCacheUnlock()

Name

bitDataCacheUnlock()—unlocks the L1 data cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitDataCacheUnlock(void)

Parameters

No input parameters are required by this method.

Description

This method unlocks the L1 data cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

bitInstCacheEnable()

http://www.motorola.com/computer/literature C-11

C

bitInstCacheEnable()

Name

bitInstCacheEnable()—invalidates and enables the L1 instruction cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheEnable(void)

Parameters

No input parameters are required by this method.

Description

This method invalidates and then enables the L1 instruction cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-12 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitInstCacheDisable()

Name

bitInstCacheDisable()—disables the L1 instruction cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheDisable(void)

Parameters

No input parameters are required by this method.

Description

This method disables the L1 instruction cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_CACHE_NOT_ENABLED—cache must be enabled before calling
cache function

Refer to Chapter 5, MBIT Faults for more faults.

bitInstCacheIsEnabled()

http://www.motorola.com/computer/literature C-13

C

bitInstCacheIsEnabled()

Name

bitInstCacheIsEnabled()—gives the enabled state of the L1 instruction
cache

Synopsis

<utilities/bitCacheUtils.h>

BOOL bitInstCacheIsEnabled(void)

Parameters

No input parameters are required by this method.

Description

This method returns the boolean enable state of the L1 instruction cache.

Return Values

TRUE—the L1 instruction cache is enabled
FALSE—the L1 instruction cache is not enabled

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-14 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitInstCacheLock()

Name

bitInstCacheLock()—locks the L1 instruction cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheLock(void)

Parameters

No input parameters are required by this method.

Description

This method locks the L1 instruction cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

bitInstCacheUnlock()

http://www.motorola.com/computer/literature C-15

C

bitInstCacheUnlock()

Name

bitInstCacheUnlock()—unlocks the L1 instruction cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitInstCacheUnlock(void)

Parameters

No input parameters are required by this method.

Description

This method unlocks the L1 instruction cache(s).

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-16 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheSizeGet()

Name

bitL2CacheSizeGet()—returns the size (in bytes) of the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

UINT bitL2CacheSizeGet(void)

Parameters

No input parameters are required by this method.

Description

This method returns the size (in bytes) of the L2 cache configured by the
hardware (the L2 cache controller).

Return Values

numBytes—L2 cache size in bytes
0—size cannot be determined

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheEnable()

http://www.motorola.com/computer/literature C-17

C

bitL2CacheEnable()

Name

bitL2CacheEnable()—enables the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheEnable(void)

Parameters

No input parameters are required by this method.

Description

This method enables the L2 cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-18 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheDisable()

Name

bitL2CacheDisable()—disables the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheDisable(void *pFlushBuffer, int buffSize)

Parameters

pFlushBuffer

is a pointer to a cacheable memory block twice the size of the L2
cache. If NULL, a local buffer is used and buffSize is ignored. The
local buffer will not be guaranteed to be cacheable if BATs or page
tables have been altered prior to calling.

buffSize

is the size of the flush buffer in bytes. It must be equal to twice the L2
cache size.

Description

This method flushes, invalidates and then disables the L2 cache. If a
NULL buffer is provided, then a local buffer is allocated for use and freed
before return. If the size of a given non-NULL buffer is not equal to twice
the L2 cache size, then no action is taken by the method.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_CACHE_NOT_ENABLED—cache must be enabled before calling
cache function

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheOn()

http://www.motorola.com/computer/literature C-19

C

bitL2CacheOn()

Name

bitL2CacheOn()—enables the L2 cache without other actions

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheOn(void)

Parameters

No input parameters are required by this method.

Description

This method enables the L2 cache without any flushing or invalidation.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-20 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheOff()

Name

bitL2CacheOff()—disables the L2 cache without other actions

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheOff(void)

Parameters

No input parameters are required by this method.

Description

This method disables the L2 cache without any flushing or invalidation.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_CACHE_NOT_ENABLED—cache must be enabled before calling
cache function

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheIsEnabled()

http://www.motorola.com/computer/literature C-21

C

bitL2CacheIsEnabled()

Name

bitL2CacheIsEnabled()—gives the enabled state of the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BOOL bitL2CacheIsEnabled(void)

Parameters

No input parameters are required by this method.

Description

This method returns the boolean enable state of L2 cache.

Return Values

TRUE—the L2 cache is enabled
FALSE—the L2 cache is not enabled

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-22 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheFlush()

Name

bitL2CacheFlush()—flushes the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheFlush(void pFlushBuffer, int buffSize)

Parameters

pFlushBuffer

is a pointer to a cacheable memory block twice the size of the L2
cache. If NULL, a local buffer is used and buffSize is ignored. The
local buffer will not be guaranteed to be cacheable if BATs or page
tables have been altered prior to calling.

buffSize

is the size of the flush buffer in bytes. It must be equal to twice the L2
cache size.

Description

This method flushes the entire L2 cache. If a NULL buffer is provided,
then a local buffer is allocated for use and freed before return. If the size of
a given non-NULL buffer is not equal to twice the L2 cache size, then no
action is taken by the routine.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_CACHE_NOT_ENABLED—cache must be enabled before calling
cache function

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheFlushInvalidate()

http://www.motorola.com/computer/literature C-23

C

bitL2CacheFlushInvalidate()

Name

bitL2CacheFlushInvalidate()—flushes and invalidates the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheFlushInvalidate(void)

Parameters

No input parameters are required by this method.

Description

This method flushes and invalidates the entire L2 cache.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-24 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheInvalidate()

Name

bitL2CacheInvalidate()—invalidates the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheInvalidate(void)

Parameters

No input parameters are required by this method.

Description

This method invalidates the entire L2 cache. Any modified data in the L2
cache is lost unless it is flushed first.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheLock()

http://www.motorola.com/computer/literature C-25

C

bitL2CacheLock()

Name

bitL2CacheLock()—locks the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheLock(void)

Parameters

No input parameters are required by this method.

Description

This method locks the L2 cache if the L2 cache supports it.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_CACHE_LOCK_NOT_SUPPORTED—cache locking is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-26 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheUnlock()

Name

bitL2CacheUnlock()—unlocks the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheUnlock(void)

Parameters

No input parameters are required by this method.

Description

This method unlocks the L2 cache if the L2 cache supports it.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_CACHE_ROUTINE_NOT_SUPPORTED—cache routine is not
supported
BIT_CACHE_LOCK_NOT_SUPPORTED—cache locking is not
supported

Refer to Chapter 5, MBIT Faults for more faults.

bitL2CacheIsLockable()

http://www.motorola.com/computer/literature C-27

C

bitL2CacheIsLockable()

Name

bitL2CacheIsLockable()—gives the lock capability of the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BOOL bitL2CacheIsLockable(void)

Parameters

No input parameters are required by this method.

Description

This method returns the boolean lock capability of the L2 cache.

Return Values

TRUE—the L2 cache is lockable
FALSE—the L2 cache is not lockable

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-28 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheFill()

Name

bitL2CacheFill()—fills the L2 cache with the specified pattern

Synopsis

<utilities/bitCacheUtils.h>

BIT_FAULT bitL2CacheFill(UINT *bufPtr, UINT *castOutBuf, UINT

wordCount, UINT pattern, int modifier)

Parameters

bufPtr

is a pointer to a cacheable buffer to fill.

castOutBuf

is a pointer to a cacheable buffer to fill that causes data to be cast-out
from the L1 data cache. This may be necessary depending on the
L1/L2 cache controller design (victim caches).

wordCount

is the number of 32-bit words to fill.

pattern

is the pattern to fill the buffer with.

modifier

is the value with which to modify the pattern after each write to the
buffer.

Description

This method fills the specified number of 32-bit words in the L2 cache with
the specified pattern. The pattern is incremented by the modifier after every
write.

bitL2CacheFill()

http://www.motorola.com/computer/literature C-29

C

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_PROCESSOR_NOT_SUPPORTED—unknown processor type
BIT_INVALID_TEST_PARAM—invalid test parameter was supplied
BIT_CACHE_NOT_ENABLED—cache must be enabled before calling
cache function

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-30 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitL2CacheIsWritebackCapable()

Name

bitL2CacheIsWritebackCapable()—gives the write-back capability of
the L2 cache

Synopsis

<utilities/bitCacheUtils.h>

BOOL bitL2CacheIsWritebackCapable(void)

Parameters

No input parameters are required by this method.

Description

This method returns the boolean write-back capability of the L2 cache.

Return Values

TRUE—the L2 cache supports write-back
FALSE—the L2 cache does not support write-back

Refer to Chapter 5, MBIT Faults for more faults.

Diagnostic Device Utility Methods
MBIT provides the following diagnostic device utility methods:

getDeviceDescriptor()

getDevTablePtr()

bitTrackChanges()

bitIn()

bitOut()

getDeviceDescriptor()

http://www.motorola.com/computer/literature C-31

C

getDeviceDescriptor()

Name

getDeviceDescriptor()—returns a pointer to the device descriptor

Synopsis

<utilities/bitDeviceUtils.h>

DEV_DESC* getDeviceDescriptor(BIT_LOGICAL_DEVICE device)

Parameters

device

is the logical device to retrieve.

Description

This method takes a logical device number and returns a pointer to the
device descriptor. The device descriptor contains all the information
needed to interface with the device.

Return Values

DEV_DESC—a pointer to the device descriptor
NULL—the device descriptor is invalid

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-32 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

getDevTablePtr()

Name

getDevTablePtr()—returns a pointer to the device descriptor

Synopsis

<utilities/bitDeviceUtils.h>

DEV_DESC* getDevTablePtr(BIT_LOGICAL_DEVICE device)

Parameters

device

is the logical device to retrieve.

Description

This method takes a logical device number and returns a pointer to the
device descriptor. The device descriptor contains all the information
needed to interface with the device. This routine should only be used by
routines initializing device descriptors.

Return Values

DEV_DESC—a pointer to the device descriptor
NULL—the device descriptor is invalid

Refer to Chapter 5, MBIT Faults for more faults.

bitTrackChanges()

http://www.motorola.com/computer/literature C-33

C

bitTrackChanges()

Name

bitTrackChanges()—turns register bit change tracking on or off

Synopsis

<utilities/bitDeviceUtils.h>

BIT_FAULT bitTrackChanges(ADDR_INFO *reg, UINT on)

Parameters

reg

is the pointer to the location's ADDR_INFO structure.

on

is a boolean value to indicate starting or stopping changes tracking.
TRUE starts tracking, FALSE stops tracking.

Description

This method starts or stops tracking register bits changes during hardware
access.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_INVALID_TEST_PARAM—invalid test parameter was supplied

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-34 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitIn()

Name

bitIn()—reads from the location described by the ADDR_INFO structure

Synopsis

<utilities/bitDeviceUtils.h>

BIT_FAULT bitIn(ADDR_INFO *reg)

Parameters

reg

is the pointer to the location's ADDR_INFO structure.

Description

This method reads from the location described by the ADDR_INFO
structure passed to the method. If an exception is caused by the read,
BIT_BUS_ERROR is returned to indicate an exception occurred. If a
device is not enabled and enable/disable methods are defined, then the
device is enabled, written to, and then disabled. The value read from the
location is put into the val field of the ADDR_INFO structure passed to the
method.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_BUS_ERROR—device did not respond to transfer
BIT_DEVICE_ENABLE_FAULT—failed to enable a disabled device
BIT_DEVICE_DISABLE_FAULT—failed to disable an enabled device
BIT_INVALID_TEST_PARAM—invalid test parameter was supplied
BIT_INVALID_DEVICE_DESC—device descriptor has invalid field
(configuration error)

Refer to Chapter 5, MBIT Faults for more faults.

bitOut()

http://www.motorola.com/computer/literature C-35

C

bitOut()

Name

bitOut()—writes to the location described by the ADDR_INFO structure

Synopsis

<utilities/bitDeviceUtils.h>

BIT_FAULT bitOut(ADDR_INFO *reg)

Parameters

reg

is the pointer to the location's ADDR_INFO structure.

Description

This method writes to the location described by the ADDR_INFO structure
passed to the method. If an exception is caused by the write,
BIT_BUS_ERROR is returned to indicate an exception occurred. If a
device is not enabled and enable/disable methods are defined, then the
device is enabled, written to, and then disabled. The value actually written
to the location is the value in the val field of the ADDR_INFO structure
passed to the method.

Return Values

BIT_NO_FAULT_DETECTED—no fault detected, success
BIT_BUS_ERROR—device did not respond to transfer
BIT_DEVICE_ENABLE_FAULT—failed to enable a disabled device
BIT_DEVICE_DISABLE_FAULT—failed to disable an enabled device
BIT_INVALID_TEST_PARAM—invalid test parameter was supplied
BIT_INVALID_DEVICE_DESC—device descriptor has invalid field
(configuration error)

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-36 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

Interrupt Utility Methods
MBIT provides the following interrupt utility methods:

bitIntLock()

bitIntUnlock()

bitForceIntUnlock()

bitIntConnect()

isBitIntEnabled()

bitIntVectorSet()

bitIntEnable()

bitIntDisable()

bitIntLock()

http://www.motorola.com/computer/literature C-37

C

bitIntLock()

Name

bitIntLock()—locks out all interrupts

Synopsis

<utilities/bitExceptionUtils.h>

void bitIntLock(void)

Parameters

No input parameters are required by this method.

Description

This methods increments an interrupts-locked reference count and if
interrupts are not locked, it locks all interrupts.

Return Values

No return values.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-38 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitIntUnlock()

Name

bitIntUnlock()—re-enables interrupts

Synopsis

<utilities/bitExceptionUtils.h>

void bitIntUnlock(void)

Parameters

No input parameters are required by this method.

Description

This method decrements the interrupts-locked reference count
incremented by bitIntLock() and if the reference count is 0, it unlocks all
interrupts.

Return Values

No return values.

Refer to Chapter 5, MBIT Faults for more faults.

bitForceIntUnlock()

http://www.motorola.com/computer/literature C-39

C

bitForceIntUnlock()

Name

bitForceIntUnlock()—forces the re-enable of interrupts

Synopsis

<utilities/bitExceptionUtils.h>

void bitForceIntUnlock(void)

Parameters

No input parameters are required by this method.

Description

This method sets the interrupts-locked reference count to 0 and unlocks all
the interrupts locked by bitIntLock().

Return Values

No return values.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-40 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitIntConnect()

Name

bitIntConnect()—connects an MBIT interrupt handler to the MBIT
interrupt table

Synopsis

<kernel/kernelExceptionUtils.h>

STATUS bitIntConnect(VOIDFUNCPTR *vector,

VOIDFUNCPTR routine,

int param)

Parameters

vector

is the interrupt vector to connect.

routine

is the routine to connect to the specified vector.

param

is the parameter provided to the specified routine (when an interrupt
occurs).

Description

This method connects an MBIT interrupt handler to the MBIT interrupt
table. In software, there may be up to 256 interrupts connected, however,
hardware may limit the actual number available. This method only
connects one handler to any interrupt vector at any one time. All interrupt
handlers not connected, and use this method, remain as they were installed
by the operating system (chained handlers remain chained). To disconnect
the handler from the vector, use bitIntVectorSet() with a NULL entry.

bitIntConnect()

http://www.motorola.com/computer/literature C-41

C

Return Values

OK—no fault detected, success
–1—not successful; vector < 0 or > 0xff

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-42 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

isBitIntEnabled()

Name

isBitIntEnabled()—checks if interrupts are enabled on a level

Synopsis

<kernel/kernelExceptionUtils.h>

STATUS isBitIntEnabled(int level)

Parameters

level

is the interrupt level to be tested.

Description

This method checks if an interrupt is enabled on a specified interrupt level.

Return Values

TRUE—enabled
FALSE—not enabled
–1—interrupt level could not be resolved;
 level < 0
 level > ERR_INTERRUPT_BASE

Refer to Chapter 5, MBIT Faults for more faults.

bitIntVectorSet()

http://www.motorola.com/computer/literature C-43

C

bitIntVectorSet()

Name

bitIntVectorSet()—saves a vector entry in the MBIT interrupt table

Synopsis

<kernel/kernelExceptionUtils.h>

STATUS bitIntVectorSet(VOIDFUNCPTR *vector, INT32 *entry)

Parameters

vector

is the interrupt vector to connect.

entry

is the method to connect to the specified vector.

Description

This method sets a vector entry in the MBIT interrupt table.

Return Values

No return values.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

C-44 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitIntEnable()

Name

bitIntEnable()—enables an interrupt level

Synopsis

<kernel/kernelExceptionUtils.h>

INT32 bitIntEnable(INT32 level)

Parameters

level

is the interrupt level to enable.

Description

This function enables the interrupt level.

Return Values

OK—no fault detected, success
–1—interrupt level could not be resolved;
 level < 0
 level > ERR_INTERRUPT_BASE

Refer to Chapter 5, MBIT Faults for more faults.

bitIntDisable()

http://www.motorola.com/computer/literature C-45

C

bitIntDisable()

Name

bitIntDisable()—disables an interrupt level

Synopsis

<kernel/kernelExceptionUtils.h>

INT32 bitIntDisable(INT32 level)

Parameters

level

is the interrupt level to disable.

Description

This function disables the interrupt level.

Return Values

OK—no fault detected, success
–1—interrupt level could not be resolved;
 level < 0
 level > ERR_INTERRUPT_BASE

Refer to Chapter 5, MBIT Faults for more faults.

Time Utility Methods
This section contains the following time-related methods:

bitUsDelay()

bitMsDelay()

http://www.mcg.mot.com/literature

C-46 Computer Group Literature Center Web Site

Utility Methods’ Reference Pages

C

bitUsDelay()

Name

bitUsDelay()—delays for a requested number of microseconds

Synopsis

<utilities/bitTimeUtils.h>

void bitUsDelay(UINT32 micro)

Parameters

micro

is the number of microseconds to delay.

Description

This method delays micro number of microseconds. Note that the
resolution may be more than a microsecond, so this call gives the smallest
time-out possible in those cases.

Return Values

No return values.

Refer to Chapter 5, MBIT Faults for more faults.

bitMsDelay()

http://www.motorola.com/computer/literature C-47

C

bitMsDelay()

Name

bitMsDelay()—delays for a requested number of milliseconds

Synopsis

<utilities/bitTimeUtils.h>

void bitMsDelay(UINT32 milli)

Parameters

milli

is the number of milliseconds to delay.

Description

This method delays for milli number of milliseconds.

Return Values

No return values.

Refer to Chapter 5, MBIT Faults for more faults.

http://www.mcg.mot.com/literature

D-1

DDInstalling MBIT with Tornado
2.1 and VxWorks

This chapter provides instructions on how to install the board and system
level versions of MBIT with the Tornado 2.1 development system. It also
explains how to modify your MVME5100 board support package (BSP) to
get the full use out of your new diagnostic software.

Installing MBIT from the CD-ROM
The MBIT CD-ROM contains four files: README.txt,
MBITLicense.txt, VDD.html, and objects.tar.

1. Please read the license agreement in MBITLicense.txt. You must
accept this agreement before installing MBIT.

2. Extract objects.tar in your Tornado 2.1 installation directory.

Installing MBIT on a Microsoft Windows Platform

If you are installing MBIT on a Microsoft Windows® platform for
VxWorks development, and using the Winzip program to extract the
object.tar file, change the Winzip configuration as follows:

1. Select Options/Configuration.

2. Select the Miscellaneous tab.

3. Under "Other," uncheck TAR file smart CR/LF conversion.

4. Select OK.

D-2 Computer Group Literature Center Web Site

Installing MBIT with Tornado 2.1 and VxWorks

D

Creating a VxWorks Image with the MBIT API
To create a VxWorks image with MBIT included, and the necessary kernel
extensions for MBIT, do the following:

Note These instructions assume C:\Tornado is the Tornado
installation directory.

1. Create a directory for the project. The following instructions assume
the directory created is D:\BIT.

2. Copy the C:\Tornado\target\config\mv5100\configNet.h,
C:\Tornado\target\src\MBIT\mv5100\50BIT-VME-slave.cdf,
C:\Tornado\target\src\MBIT\mv5100\50MVME5100-512MB-
Memory.cdf,
C:\Tornado\target\src\MBIT\mv5100\60MVME5100.cdf,
C:\Tornado\target\src\MBIT\mv5100\65MBIT.cdf,
C:\Tornado\target\src\MBIT\mv5100\67BITBSPPARAMS.cdf,
and C:\Tornado\target\src\MBIT\mv5100\70BIT.cdf files to
D:\BIT.

3. Edit configNet.h as described in GD82559ER Ethernet Testing on
page D-9.

Building a VxWorks Image
To build a VxWorks image, complete the following steps:

1. Start Tornado.

2. Select File/New Project....

3. Select Create a bootable VxWorks image (custom configured).
Choose OK.

4. Enter project name, description, and workspace as desired.

5. Enter project location as D:\BIT (the .cdf files must be in the same
directory as the project file). Choose Next.

6. Select A BSP.

Building a VxWorks Image

http://www.motorola.com/computer/literature D-3

D

7. Select mv5100 from the drop down list next to the "A BSP" radio
button. Choose Next and then Finish.

8. Select the VxWorks tab in the workspace window.

9. Select the + next to the new project to display the project options.

10. Display "development tool components/WDB agent
components/select WDB connection" using the + controls.

11. Right click on "WDB END driver connection" and select Exclude
WDB END driver connection. Choose OK.

12. Display "development tool components/WDB agent
components/select WDB mode" using the + controls.

13. Right click on "WDB system debugging" and select Exclude WDB
system debugging. Choose OK.

14. Display "development tool components/WDB agent
components/WDB agent services" using the + controls.

15. Right click on "WDB system agent hardware fpp support" and select
Exclude WDB system agent hardware fpp support. Choose OK.

16. Display "development tool components/WDB agent
components/select WDB connection" using the + controls.

17. Right click on "WDB network connection" and select Include WDB
network connection. Choose OK.

18. Display "hardware/Diagnostics/BIT Diagnostics/BIT API Install
Selection" using the + controls.

19. Right click on "BIT API Install" and select Include ’BIT API
Install...’. Choose OK.

20. Display "hardware/Diagnostics/BIT Diagnostics/BIT API Selection"
using the + controls.

21. Right click on "BIT API" and select Include BIT API.... Choose OK.

http://www.mcg.mot.com/literature

D-4 Computer Group Literature Center Web Site

Installing MBIT with Tornado 2.1 and VxWorks

D

22. (Optional) For VME location monitor testing, setup a VME location
monitor window as described in VME Location Monitor Window Setup
on page D-12.

23. Select the Builds tab in the workspace window.

24. Click the + next to project name to display the "default" build.

25. Select the default build.

26. Right click in the workspace window and select Properties from the
pop-up menu.

27. Select the C/C++ compiler tab and add -DINCLUDE_I8250_SIO
and -IC:/Tornado/target/h/MBIT to the list of compiler options.

28. Click on Apply.

29. Select the Assembler tab and add -IC:/Tornado/target/h/MBIT to
the list of compiler options.

30. Click on Apply and OK.

31. Select the Files tab in the workspace window.

32. Right click on the new project and select Add Files....

33. Browse to C:\Tornado\target\src\MBIT\mv5100\ and select
kernelExceptionUtilsAsm.s in the "Add Source File to..." dialog box.
Choose Add.

34. Right click on the new project and select Dependencies.... Choose
OK.

35. Wait for the dependency building to complete.

36. Right click on the new project and select ReBuild All (VxWorks).

37. This produces "default\vxWorks" under the new project directory.

Building a VxWorks VME Slave Image

http://www.motorola.com/computer/literature D-5

D

Building a VxWorks VME Slave Image
The following instructions assume Tornado 2.1 is installed on
Windows NT in C:\Tornado and the project for the VME slave image is
in C:\Tornado\target\proj\vmeslave.

Note: It is not necessary to complete step 2 of Creating a VxWorks Image
with the MBIT API on page D-2 prior to building this slave kernel.

To build a VxWorks VME slave image, complete the following steps:

1. After extracting the objects.tar file
mkdir C:\Tornado\target\proj\vmeslave, copy
C:\Tornado\target\src\MBIT\mv5100\50BIT-VME-slave.cdf,
C:\Tornado\target\src\MBIT\mv5100\65MBIT.cdf, and
C:\Tornado\target\src\MBIT\mv5100\67BITBSPPARAMS.cdf to
C:\Tornado\target\proj\vmeslave.

2. Start Tornado 2.1.

3. Select the New tab in the "Create Project in New/Existing Workspace"
dialog box.

4. Select Create a bootable VxWorks image (custom configured) in
the New tab area. Choose OK.

5. In the "Create a bootable VxWorks image (custom configured): step 1"
dialog box, change the location to
C:\Tornado\target\config\proj\vmeslave. Choose Next.

6. In the "Create a bootable VxWorks image (custom configured): step 2"
dialog box, select the A BSP radio button.

7. Select mv5100 from the drop-down list. Choose Next.

8. In the "Create a bootable VxWorks image (custom configured): step 2"
dialog box, choose Finish.

9. In the "Workspace: ..." dialog box, select the VxWorks tab.

10. Using the + controls, navigate to and select hardware/buses/Special
BIT VME Slave Memory Configuration. Right click on "Special
BIT VME Slave Memory Configuration."

http://www.mcg.mot.com/literature

D-6 Computer Group Literature Center Web Site

Installing MBIT with Tornado 2.1 and VxWorks

D

11. In the pop-up menu, select Include ’Special BIT VME Slave
Memory Configuration’.

12. In the "Include Component(s)" dialog box, choose OK.

13. In the "Workspace: ..." dialog box, choose the Builds tab.

14. Using the + controls, navigate to and select the default build for the
new project. Right click in the "Workspace: ..." window.

15. In the pop-up menu, choose Dependencies....

16. In the "Dependencies" dialog box, choose OK.

17. Right click in the "Workspace: ..." window. In the pop-up menu, select
Rebuild all (vxWorks).

18. In the "Dependencies" dialog box, choose OK.

Configuring the Target
This information is in the VxWorks documentation and
target/config/mv5100/target.nr from the MVME5100 BSP.

Booting the Target
This information is in the VxWorks documentation and
target/config/mv5100/target.nr from the MVME5100 BSP.

Modifying the Image
The file kernelExceptionUtils.c in the kernel directory needs to be
compiled into the VxWorks image. This is required because the VxWorks
image files cannot be compiled with the -mlongcall option. In other words,
the Tornado distribution CD-ROM contains only objects for the required
files and a source is not available for the exception handling functions.

Modifying the MVME5100 BSP

http://www.motorola.com/computer/literature D-7

D

Modifying the MVME5100 BSP
After installing MBIT, some modifications to the MVME5100 BSP are
required to run the complete set of MBIT subtests. Modifications must be
made to Flash Memory Testing and GD82559ER Ethernet Testing.

Flash Memory Testing

Access to each block of Flash memory is software programmable by three
software programmable control register bits: an overall enable, a write
enable, and a reset vector enable (refer to the MVME5100 Single Board
Computer Programmer’s Reference Guide). At reset, the default access
settings enable the first 1MB of Flash A to $FF000000-$FF100000 and
Flash B to $FF400000-$FF500000. In addition, Flash B is enabled at
$FFF00000-$FFFFFFFF. Since the visibility test does not modify the
settings of these register bits, the MV5100 BSP needs modification to
reflect the default settings for each block of Flash.

The following changes need to be made to
\\Tornado\target\config\mv5100\mv5100.h

Note An exclamation point (!) indicates where changes need to be
made.

Original:

 #define HAWK_PHB_BASE_ADRS 0xfeff0000

 #define HAWK_PHB_REG_SIZE 0x00010000

! #define FLASH_BASE_ADRS 0xF4000000

! #define FLASH_MEM_SIZE 0x01000000

/* MPIC configuration defines */

Modify and Add:

 #define HAWK_PHB_BASE_ADRS 0xfeff0000

 #define HAWK_PHB_REG_SIZE 0x00010000

! #define FLASH_BASE_ADRS 0xFF000000

http://www.mcg.mot.com/literature

D-8 Computer Group Literature Center Web Site

Installing MBIT with Tornado 2.1 and VxWorks

D

! #define FLASH_MEM_SIZE 0x00100000

! #define FLASHB_BASE_ADRS 0xFF400000

! #define FLASHB_MEM_SIZE 0x00100000

! #define FLASH_IO_BASE_ADRS 0xFFF00000

! #define FLASH_IO_MEM_SIZE 0x00100000

/* MPIC configuration defines */

The following changes need to be made to

\\Tornado\target\config\mv5100\sysLib.c

Original:

 FLASH_MEM_SIZE,

 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |

VM_STATE_MASK_CACHEABLE,

 VM_STATE_VALID | VM_STATE_WRITABLE |

VM_STATE_CACHEABLE_NOT

! }

};

int sysPhysMemDescNumEnt = NELEMENTS (sysPhysMemDesc);

Modify and Add:

 FLASH_MEM_SIZE,

 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |

VM_STATE_MASK_CACHEABLE,

 VM_STATE_VALID | VM_STATE_WRITABLE |

VM_STATE_CACHEABLE_NOT

! },

! {

! (void *) FLASHB_BASE_ADRS,

! (void *) FLASHB_BASE_ADRS,

GD82559ER Ethernet Testing

http://www.motorola.com/computer/literature D-9

D

! FLASHB_MEM_SIZE,

! VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |

VM_STATE_MASK_CACHEABLE,

! VM_STATE_VALID | VM_STATE_WRITABLE |

VM_STATE_CACHEABLE_NOT

! },

! {

! (void *) FLASH_IO_BASE_ADRS,

! (void *) FLASH_IO_BASE_ADRS,

! FLASH_IO_MEM_SIZE,

! VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |

VM_STATE_MASK_CACHEABLE,

! VM_STATE_VALID | VM_STATE_WRITABLE |

VM_STATE_CACHEABLE_NOT

! }

};

int sysPhysMemDescNumEnt = NELEMENTS (sysPhysMemDesc);

GD82559ER Ethernet Testing

The GD82559ER Ethernet tests require they be run before the VxWorks
Ethernet driver is started. One way to accomplish this is to prevent the
drivers from starting during boot and then starting them after completing
the Ethernet testing. 65MBIT.cdf redefines the INCLUDE_END
component to remove the INIT_RTN of usrEndLibInit. In addition,
endDevTbl in target/config/mv5100/configNet.h must be modified to set
the processed field of the entries for the GD82559ER instances to TRUE
so they are skipped during boot. After booting and running the
GD82559ER tests, the VxWorks driver may be started by setting the
processed field to FALSE and executing usrEndLibInit, then attaching
and configuring the interface.

http://www.mcg.mot.com/literature

D-10 Computer Group Literature Center Web Site

Installing MBIT with Tornado 2.1 and VxWorks

D

To modify endDevTbl, copy target/config/mv5100/configNet.h to the
project directory and edit it as follows:

Note An exclamation point (!) indicates where changes need to be
made.

Original:

END_TBL_ENTRY endDevTbl [] =

{

! { 0, END_LOAD_FUNC, END_LOAD_STRING, END_BUFF_LOAN, NULL,

FALSE},

#ifdef INCLUDE_SECONDARY_ENET

! { 1, END_LOAD_FUNC, END_LOAD_STRING, END_BUFF_LOAN, NULL,

FALSE},

#endif /* INCLUDE_SECONDARY_ENET */

 { 0, END_TBL_END, NULL, 0, NULL, FALSE},

};

New:

END_TBL_ENTRY endDevTbl [] =

{

! { 0, END_LOAD_FUNC, END_LOAD_STRING, END_BUFF_LOAN, NULL,

TRUE},

#ifdef INCLUDE_SECONDARY_ENET

! { 1, END_LOAD_FUNC, END_LOAD_STRING, END_BUFF_LOAN, NULL,

TRUE},

#endif /* INCLUDE_SECONDARY_ENET */

 { 0, END_TBL_END, NULL, 0, NULL, FALSE},

};

GD82559ER Ethernet Testing

http://www.motorola.com/computer/literature D-11

D

To start the Ethernet interfaces after testing, code similar to the following
(with appropriate changes to the network mask and IP address) may be
used:

#include <vxWorks.h>

#include <end.h>

#include <config.h>

void startEthernet(void)

{

 int i;

 extern END_TBL_ENTRY endDevTbl[];

 for (i = 0; endDevTbl[i].endLoadFunc != END_TBL_END; i++)

 {

 endDevTbl[i].processed = FALSE;

 }

 usrEndLibInit();

 ipAttach(0,"er");

 ifMaskSet("er0", 0xffffff00);

 ifAddrSet("er0","192.168.0.3");

#ifdef INCLUDE_SECONDARY_ENET

 ipAttach(1,"er");

 ifMaskSet("er1", 0xffffff00);

 ifAddrSet("er1","192.168.1.3");

#endif

}

http://www.mcg.mot.com/literature

D-12 Computer Group Literature Center Web Site

Installing MBIT with Tornado 2.1 and VxWorks

D

VME Location Monitor Window Setup

Complete the steps in this section to set up a VME location monitor
window to allow testing of the VME location monitor. The optional steps
below (that is, 5, 6,and 7) are only required if a VME location monitor
window has not been previously configured for the user application. The
optional steps require adding code to sysPhysMemDesc[] in sysLib.c to
configure the location monitor window.

The VME location monitor window is described by the following
parameters:

BIT_VME_LM_SLV_SIZE—VME location monitor slave size
(default = 0x00001000)

BIT_VME_LM_MSTR_SIZE—VME location monitor master size
(default = 0x00001000)

BIT_VME_LM_MSTR_LOCAL—VME location monitor master local
address (default =
(VME_RAI_MSTR_LOCAL+VME_RAI_MSTR_SIZE)

BIT_VME_LM_MSTR_BUS—VME location monitor master bus
address (default =
(VME_RAI_MSTR_BUS+VME_RAI_MSTR_SIZE)

To configure the location monitor window complete the following steps:

1. Display hardware/Diagnostics using the + controls.

2. Right click on "BIT VME Location Monitor Window Description
Parameters" and select Properties....

3. Select the Params tab in the "Properties..." window.

4. Modify the parameters described above to configure the location
monitor window. Choose OK.

Note If a VME location monitor has not been configured, the
defaults may be used. Otherwise, modify parameters to
match existing VME location monitor window.

VME Location Monitor Window Setup

http://www.motorola.com/computer/literature D-13

D

5. Edit \\Tornado\target\config\mv5100\sysLib.c to add the
following to sysPhysMemDesc[]:

{

(void *) BIT_VME_LM_MSTR_LOCAL,

(void *) BIT_VME_LM_MSTR_LOCAL,

BIT_VME_LM_MSTR_SIZE,

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |

VM_STATE_MASK_CACHEABLE,

VM_STATE_VALID | VM_STATE_WRITABLE |

VM_STATE_CACHEABLE_NOT

}

6. Display hardware/Diagnostics using the + controls.

7. Right click on "BIT VME Location Monitor Window Setup" and
select Include ’BIT VME Location Monitor Window Setup’.
Choose OK.

http://www.mcg.mot.com/literature

E-1

EEKnown Issues

This release of the MBIT diagnostic software (1.01) has the following
known issues:

Installation
Please refer to Appendix D, Installing MBIT with Tornado 2.1 and
VxWorks, for the most up to date installation instructions. Your CD-ROM
may not have the latest installation updates.

Subtest Results
1. For the MVME5110 models only:

The interrupt controller test list reports "MPIC interrupt controller
marginal." for test #1. The test plan indicates that the expected
result should be
"Operation succeeded – Test successful.".

2. For the MVME5106 models only:

The Ethernet test list for Ethernet device 2 reports "Data
miscompare on write and read sequence." for test #6. The test plan
indicates that the expected result should be
"Operation succeeded – Test successful.".

The parameter verification for the Ethernet External Loopback
subtest on Ethernet device 2 reports "Data miscompare on write
and read sequence." for tests #2 and #6. The test plan indicates the
expected result should be
"Operation succeeded – Test successful.".

E-2 Computer Group Literature Center Web Site

Known Issues

E

3. For the MVME5101/5107/5110 models:

For the SCSI subtests with fault level 3, all tests report the correct
expected results, but additional VxWorks output indicates
"interrupt: MPIC Spurious Interrupt!". Only MBIT test results are
expected; any additional VxWorks output indicates an error
condition.

For the L2 Cache Lock subtest with fault level 3, the test reports
"Operation succeeded – Test successful.". The test plan indicates
that the expected result should be "Data miscompare on write and
read sequence.".

For the MVME5100/5101/5106/5107/5110 models:

For the L2 Cache Invalidate test with fault level 3, test reports
"Operation succeeded – Test successful.". The test plan indicates
that the expected result should be "Data miscompare on write and
read sequence.".

For the Serial Port 3 tests, the monitored output from the device
was incomplete.

F-1

FFRelated Documentation

Motorola Computer Group Documents
The Motorola publications listed below are referenced in this manual. You
can obtain paper or electronic copies of Motorola Computer Group
publications by:

❏ Contacting your local Motorola sales office

❏ Visiting Motorola Computer Group’s World Wide Web literature
site, http://www.motorola.com/computer/literature

To obtain the most up-to-date product information in PDF or HTML
format, visit http://www.motorola.com/computer/literature.

Table F-1. Motorola Computer Group Documents

Document Title
Motorola Publication
Number

Motorola Built-In Test (MBIT) Diagnostic
Software Test Reference Guide

MBITA/RM

MVME5100 Single Board Computer Installation
and Use

V5100A/IH

MVME5100 Single Board Computer
Programmer’s Reference Guide

V5100A/PG

IPMC712/761 Module Installation and Use VIPMCA/IH

MVME712M Transition Module Installation and
Use

MVE712MA/IH

MVME761 Transition Module Installation and Use VME761A/IH

http://www.mcg.mot.com/literature
http://www.mcg.mot.com/literature

F-2 Computer Group Literature Center Web Site

Related Documentation

F

Manufacturers’ Documents
For additional information, refer to the following table for manufacturers’
data sheets or user’s manuals. As an additional help, a source for the listed
document is provided. Please note that, while these sources have been
verified, the information is subject to change without notice.

Table F-2. Manufacturers’ Documents

Document Title and Source Publication Number

PowerPCTM Microprocessor Family: The Programming Environment
for 32-Bit Microprocessors

Literature Distribution Center for Motorola
Telephone: 1-800- 441-2447
FAX: (602) 994-6430 or (303) 675-2150

Web Site: http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com

OR

IBM Microelectronics
Programming Environment Manual
 Web Site:
http://www.chips.ibm.com/techlib/products/powerpc/manuals

MPCFPE/AD

G522-0290-01

LSI53C895A PCI to Ultra2 SCSI Controller Technical Manual

LSI Logic Corporation
http://www.lsilogic.com/techlib/techdocs/storage_stand_prod/PCISCS
ICont/Chips/895a.pdf

v2.1

DS1621 Thermometer Data Sheet

Dallas Semiconductor

http://www.dalsemi.com

DS1621

http://e-www.motorola.com/webapp/DesignCenter/
mailto:ldcformotorola@hibbertco.com
http://www.chips.ibm.com/techlib/products/powerpc/manuals
http://www.chips.ibm.com/techlib/products/powerpc/manuals
http://www.lsilogic.com/techlib/techdocs/storage_stand_prod/PCISCSICont/Chips/895a.pdf
http://www.lsilogic.com/techlib/techdocs/storage_stand_prod/PCISCSICont/Chips/895a.pdf
http://www.dalsemi.com

URLs

http://www.motorola.com/computer/literature F-3

F

URLs
The following URLs (uniform resource locators) may provide helpful
sources of additional information about this product, related services, and
development tools. Please note that, while these URLs have been verified,
they are subject to change without notice.

❏ Motorola Computer Group, http://www.motorola.com/computer

❏ Motorola Computer Group OEM Services,
http://www.motorola.com/computer/support

❏ Wind River Systems, Inc., http://www.windriver.com

http://www.mcg.mot.com/literature
http://www.mcg.mot.com
http://www.mcg.mot.com/support
http://www.windriver.com

IN-1

A
abortBitTests() 2-7, A-17
addBitDeviceIdent() 3-2, B-4
addBitFaultIdent() 3-3, 3-11, B-6
addBitSubtestIdent() 3-2, 3-10, B-2
ADDR_INFO 3-25 to 3-38, 4-13 to 4-15
ADDR_TYPE 3-31
address and data nodes 1-4
address information 3-28
address types 3-31
analysis process 1-4
API methods 2-1, A-1

abortBitTests() 2-7, A-17
buildBitDefaultTestEntry() 2-6, A-13
buildBitDefaultTestList() 2-5, A-11
executeBitTests() 2-4, A-7
getBitDeviceDesc() 2-10, A-20
getBitDeviceFault() 1-7, 2-9, A-18
getBitDeviceIdByName() 2-8, A-23
getBitFaultDesc() 2-11, A-21
getBitFaultIdByName() 2-9, A-24
getBitMaxTestListEntries() 2-12, A-28
getBitNumberOfDevices() 2-12, A-26
getBitNumberOfFaults() 2-12, A-27
getBitNumberOfSubtests() 2-11, A-25
getBitResponse() 2-6, A-14
getBitSubtestDesc() 2-10, A-19
getBitSubtestIdByName() 2-8, A-22
getNumBitResponses() 2-7, A-16
initBit() 2-2, 2-13, A-3
isBitInitializationComplete() 2-3, A-6
reinitBit() 1-7, 2-3, 2-9, A-5, A-18
terminateBit() 2-13, A-29

application programming interface
(API) 1-6

associations

create 3-3, 3-43, B-8
obtain number of 3-6, B-15

B
BIT_AUTO_BASE_ADDR 3-29, 3-33
BIT_PCI_INFO 3-25
BIT_TEST_CONTROL 3-7
bitDataCacheDisable() 4-3, C-4
bitDataCacheEnable() 4-2, C-3
bitDataCacheFlush() 4-3, C-6
bitDataCacheFlushInvalidate() 4-4, C-7
bitDataCacheInvalidate() 4-4, C-8
bitDataCacheIsEnabled() 4-3, C-5
bitDataCacheLock() 4-5, C-9
bitDataCacheUnlock() 4-5, C-10
bitForceIntUnlock() 4-17, C-39
bitIn() 4-15, C-34
bitIn8/16/32() 3-37, B-45
bitInstCacheDisable() 4-6, C-12
bitInstCacheEnable() 4-5, C-11
bitInstCacheIsEnabled() 4-6, C-13
bitInstCacheLock() 4-6, C-14
bitInstCacheUnlock() 4-7, C-15
bitInSwap16/32() 3-38, B-47
bitIntConnect() 4-17, C-40
bitIntDisable() 4-19, C-45
bitIntEnable() 4-19, C-44
bitIntLock() 4-16, C-37
bitIntUnlock() 4-17, C-38
bitIntVectorSet() 4-18, C-43
bitL2CacheDisable() 4-8, C-18
bitL2CacheEnable() 4-7, C-17
bitL2CacheFill() 4-12, C-28
bitL2CacheFlush() 4-9, C-22
bitL2CacheFlushInvalidate() 4-10, C-23
bitL2CacheInvalidate() 4-10, C-24
bitL2CacheIsEnabled() 4-9, C-21

Index

IN-2 Computer Group Literature Center Web Site

I
N
D
E
X

bitL2CacheIsLockable() 4-11, C-27
bitL2CacheIsWritebackCapable() 4-12,

C-30
bitL2CacheLock() 4-11, C-25
bitL2CacheOff() 4-9, C-20
bitL2CacheOn() 4-8, C-19
bitL2CacheSizeGet() 4-7, C-16
bitL2CacheUnlock() 4-11, C-26
bitMsDelay() 4-20, C-47
bitOut() 4-15, C-35
bitOut8/16/32() 3-37, B-46
bitOutSwap16/32() 3-39, B-48
bitPciRead32() 3-40, B-50
bitPciWrite32() 3-39, B-49
bitProbeIn8/16/32() 3-34, B-41
bitProbeInSwap16/32() 3-35, B-43
bitProbeOut8/16/32() 3-35, B-42
bitProbeOutSwap16/32() 3-36, B-44
bitTrackChanges() 4-14, C-33
bitUsDelay() 4-20, C-46
board level MBIT 1-1
boot the target D-6
build VxWorks image D-2
build VxWorks VME slave image D-5
buildBitDefaultTestEntry() 2-6, A-13
buildBitDefaultTestList() 2-5, A-11
built-in faults 5-1

C
cache utility methods 4-1, C-1

bitDataCacheDisable() 4-3, C-4
bitDataCacheEnable() 4-2, C-3
bitDataCacheFlush() 4-3, C-6
bitDataCacheFlushInvalidate() 4-4, C-7
bitDataCacheInvalidate() 4-4, C-8
bitDataCacheIsEnabled() 4-3, C-5
bitDataCacheLock() 4-5, C-9
bitDataCacheUnlock() 4-5, C-10
bitInstCacheDisable() 4-6, C-12
bitInstCacheEnable() 4-5, C-11
bitInstCacheIsEnabled() 4-6, C-13
bitInstCacheLock() 4-6, C-14

bitInstCacheUnlock() 4-7, C-15
bitL2CacheDisable() 4-8, C-18
bitL2CacheEnable() 4-7, C-17
bitL2CacheFill() 4-12, C-28
bitL2CacheFlush() 4-9, C-22
bitL2CacheFlushInvalidate() 4-10,

C-23
bitL2CacheInvalidate() 4-10, C-24
bitL2CacheIsEnabled() 4-9, C-21
bitL2CacheIsLockable() 4-11, C-27
bitL2CacheIsWritebackCapable() 4-12,

C-30
bitL2CacheLock() 4-11, C-25
bitL2CacheOff() 4-9, C-20
bitL2CacheOn() 4-8, C-19
bitL2CacheSizeGet() 4-7, C-16
bitL2CacheUnlock() 4-11, C-26

clearing the fault database 1-7
comments, sending xviii
configure the target D-6
conventions used in the manual xix
create associations 3-3, 3-43, B-8
create test lists 2-4
create VxWorks image D-2
createBitTestAssociations() 3-3, 3-43, B-8

D
data and address nodes 1-4
default device descriptor values, setup 3-24
default parameters, set 3-5
default test entries 2-5
default test entry, single 2-6
DEV_DESC 3-28, 4-13
DEV_TYPE 3-33
device address table 3-27
device descriptor fields 3-25
device descriptor structure 3-25
device driver

implementing 3-12
interface 3-17

device driver interface, generic 3-12
device driver methods 3-18, B-28

http://www.motorola.com/computer/literature IN-3

I
N
D
E
X

devXXXClose() 3-20, B-34
devXXXDeinstall() 3-19, B-31
devXXXInstall() 3-18, B-29
devXXXIoctl() 3-22, B-39
devXXXOpen() 3-19, B-33
devXXXRead() 3-20, B-35
devXXXWrite() 3-21, B-37

device entry, add 3-2
device fault database 1-7
device hardware address 3-27
device initialization method 3-24

an outline of 3-41
create 3-40

device read/write utility methods 3-33, B-40
bitIn8/16/32() 3-37, B-45
bitInSwap16/32() 3-38, B-47
bitOut8/16/32() 3-37, B-46
bitOutSwap16/32() 3-39, B-48
bitPciRead32() 3-40, B-50
bitPciWrite32() 3-39, B-49
bitProbeIn8/16/32() 3-34, B-41
bitProbeInSwap16/32() 3-35, B-43
bitProbeOut8/16/32() 3-35, B-42
bitProbeOutSwap16/32() 3-36, B-44

device types 3-33
devices, obtain number of 2-12
devXXXClose() 3-20, B-34
devXXXDeinstall() 3-19, B-31
devXXXInstall() 3-18, B-29
devXXXIoctl() 3-22, B-39
devXXXOpen() 3-19, B-33
devXXXRead() 3-20, B-35
devXXXWrite() 3-21, B-37
diagnostic configuration method 3-43

example 3-45
diagnostic device utility methods 4-13, C-30

bitIn() 4-15, C-34
bitOut() 4-15, C-35
bitTrackChanges() 4-14, C-33
getDeviceDescriptor() 4-13, C-31
getDevTablePtr() 4-14, C-32

diagnostic integration methods 3-1, B-1

addBitDeviceIdent() 3-2, B-4
addBitFaultIdent() 3-3, B-6
addBitSubtestIdent() 3-2, B-2
createBitTestAssociations() 3-3, B-8
getBitNumberOfAssociations() 3-1,

3-6, B-15
installBitDriver() 3-4, B-10
installBitSubtestEntries() 3-5, B-12

documentation, related F-1
driver entry points 3-23
driver methods, generic 3-13
DRV_DESC 3-5, 3-24, 3-25, 3-44
drvClose() 3-15, B-22
drvDeinstall() 3-14, B-19
drvInstall() 3-13, B-17
drvIoctl() 3-16, B-27
drvOpen() 3-14, B-21
drvRead() 3-15, B-23
drvWrite() 3-16, B-25

E
Ethernet testing D-9
examples

create device initialization method 3-40
device address table C structure 3-29
diagnostic configuration method 3-45
generic device address table C

structure 3-30
installBitDriver() 3-23
subtest configuration 3-11
subtest parameter configuration 3-9
subtest structure 3-8
using MBIT 2-13

executeBitTests() 2-4, 3-8, A-7
executing a test 1-7
executing test lists 2-5

F
fault database 1-7
fault entry, add 3-3
faults

built-in 5-1

http://www.mcg.mot.com/literature

IN-4 Computer Group Literature Center Web Site

I
N
D
E
X

pre-defined 5-4
faults, obtain number of 2-12
features, MBIT 1-3
Flash memory testing D-7

G
generic device address table 3-30
generic device driver interface 3-12
generic device driver methods B-15

drvClose() 3-15, B-22
drvDeinstall() 3-14, B-19
drvInstall() 3-13, B-17
drvIoctl() 3-16, B-27
drvOpen() 3-14, B-21
drvRead() 3-15, B-23
drvWrite() 3-16, B-25

getBitDeviceDesc() 2-10, A-20
getBitDeviceFault() 1-7, 2-9, A-18
getBitDeviceIdByName() 2-8, A-23
getBitFaultDesc() 2-11, A-21
getBitFaultIdByName() 2-9, A-24
getBitMaxTestListEntries() 2-12, A-28
getBitNumberOfAssociations() 3-1, 3-6,

B-15
getBitNumberOfDevices() 2-12, A-26
getBitNumberOfFaults() 2-12, A-27
getBitNumberOfSubtests() 2-11, 3-10, A-25
getBitResponse() 2-6, A-14
getBitSubtestDesc() 2-10, A-19
getBitSubtestIdByName() 2-8, A-22
getDeviceDescriptor() 4-13, C-31
getDevTablePtr() 4-14, C-32
getNumBitResponses() 2-7, A-16

H
HALT_ON_ERROR 2-5, A-8
hardware

address information 3-28
address types 3-31

I
image modification D-6

implementing a device driver 3-12
INIT_STAT 3-25
initBit() 2-2, 2-13, A-3
initialization status 2-3
initializing diagnostic devices 3-24
initializing MBIT 2-2
installBitDriver() 3-4, 3-13, B-10
installBitSubtestEntries() 3-5, 3-8, 3-11,

B-12
installing a device driver 3-23
installing MBIT D-1

on a Microsoft Windows platform D-1
integrating custom diagnostics B-1
interrupt utility methods 4-16, C-36

bitForceIntUnlock() 4-17, C-39
bitIntConnect() 4-17, C-40
bitIntDisable() 4-19, C-45
bitIntEnable() 4-19, C-44
bitIntLock() 4-16, C-37
bitIntUnlock() 4-17, C-38
bitIntVectorSet() 4-18, C-43
isBitIntEnabled() 4-18, C-42

isBitInitializationComplete() 2-3, A-6
isBitIntEnabled() 4-18, C-42
issues, known E-1

K
known issues E-1

installation E-1
subtest results E-1

L
list control

HALT_ON_ERROR 2-5
RUN_TILL_COMPLETION 2-5

LOCMON testing D-12

M
man pages

API methods A-1
cache utility methods C-1
device driver methods B-28

http://www.motorola.com/computer/literature IN-5

I
N
D
E
X

device read/write utility methods B-40
diagnostic device utility methods C-30
diagnostic integration methods B-1
generic device driver methods B-15
interrupt utility methods C-36
time utility methods C-45

manual conventions xix
manufacturers’ documents F-2
maximum test entries 2-12
MBIT

API reference pages A-1
board level description 1-1
executing subtests 2-3
faults 5-1
features 1-3
initialization status 2-3
initializing 2-2
overview of MBIT 1-1
re-initializing 2-3
system level description 1-2
terminate 2-13
use 2-1
use example 2-13

memory testing D-7
message passing 1-5
modify the image D-6
modify the VME5100 BSP D-7

N
number of test list results 2-7

O
obtain faults in MBIT 2-9
obtain IDs in MBIT 2-8
obtain number counts in MBIT 2-11
obtain string descriptions in MBIT 2-10
operating system 3-12
overview 1-1

P
pre-defined faults 5-4
process (MBIT), explanation of 1-5

processing, test list 1-6
public methods

test de-installation 3-7
test execution 3-7
test installation 3-7

R
reference pages

API methods A-1
cache utility methods C-1
device driver methods B-28
device read/write utility methods B-40
diagnostic device utility methods C-30
diagnostic integration methods B-1
generic device driver methods B-15
interrupt utility methods C-36
time utility methods C-45

reinitBit() 1-7, 2-3, 2-9, A-5, A-18
related documentation F-1
requirements, system 1-3
results, test list requests 2-6
RUN_TILL_COMPLETION 2-5, A-8

S
set default parameters 3-5
setup default device descriptor values 3-24
special operations 3-22
structures

ADDR_INFO 3-25 to 3-38, 4-13 to
4-15

BIT_PCI_INFO 3-25
BIT_TEST_CONTROL 3-7
DEV_DESC 3-28, 4-13
DEV_TYPE 3-33
DRV_DESC 3-5, 3-24, 3-25, 3-44
INIT_STAT 3-25
TEST_ENTRY 3-8

submitting tests for execution 2-5
subtest

addition 3-10
configuration 3-10

example 3-11

http://www.mcg.mot.com/literature

IN-6 Computer Group Literature Center Web Site

I
N
D
E
X

control 1-6
implementing 3-6
installation 3-11
parameters 3-8
parameters (example) 3-9
structure 3-6, 3-7
structure (example) 3-8

subtest entry points, install 3-5
subtest entry, add 3-2
subtest envelope task 1-7
subtests, obtain number of 2-11
subtest-specific faults 3-11
suggestions, submitting xviii
system level MBIT 1-2
system requirements 1-3

T
target booting D-6
target configuration D-6
terminate MBIT 2-13
terminate tests 2-7
terminateBit() 2-13, A-29
test list results 2-6
test list results, obtain number of 2-7
test list, execute 2-5

test lists, create 2-4
test time 1-6
TEST_ENTRY 3-8
time utility methods 4-20, C-45

bitMsDelay() 4-20, C-47
bitUsDelay() 4-20, C-46

typeface, meaning of xix

U
URLs (uniform resource locators) F-3
using MBIT 2-1
utility methods 4-1, C-1

cache 4-1, C-1
device read/write 3-33, B-40
diagnostic device 4-13, C-30
interrupt 4-16, C-36
reference pages C-1
time 4-20, C-45

V
VME LOCMON testing D-12
VxWorks image, build D-2
VxWorks image, create D-2
VxWorks VME slave image, build D-5

	Contents
	List of Tables
	About This Manual
	Overview of Contents
	Comments and Suggestions
	Conventions Used in This Manual

	MBIT Overview
	Introduction
	System Requirements
	Installation
	MBIT Features
	MBIT Process
	Diagnostic Application
	Test List Processing Task
	Subtest Control Task
	Subtest Envelope Task
	Device Fault Database

	Using MBIT
	Using MBIT
	Initializing MBIT
	initBit()
	reinitBit()
	isBitInitializationComplete()

	Executing Subtests in MBIT
	executeBitTests()
	buildBitDefaultTestList()
	buildBitDefaultTestEntry()
	getBitResponse()
	getNumBitResponses()
	abortBitTests()

	Obtaining IDs in MBIT
	getBitSubtestIdByName()
	getBitDeviceIdByName()
	getBitFaultIdByName()

	Obtaining Faults in MBIT
	getBitDeviceFault()

	Obtaining String Descriptions in MBIT
	getBitSubtestDesc()
	getBitDeviceDesc()
	getBitFaultDesc()

	Obtaining Counts in MBIT
	getBitNumberOfSubtests()
	getBitNumberOfDevices()
	getBitNumberOfFaults()
	getBitMaxTestListEntries()

	Terminating MBIT
	terminateBit()

	Example: Using MBIT

	Integrating Custom Diagnostics
	Introduction
	Diagnostic Integration Methods
	addBitSubtestIdent()
	addBitDeviceIdent()
	addBitFaultIdent()
	createBitTestAssociations()
	installBitDriver()
	installBitSubtestEntries()
	getBitNumberOfAssociations()

	Implementing Subtests
	Subtest Structure
	Example: Subtest Structure

	Subtest Parameters
	Example: Subtest Parameter Configuration

	Subtest Configuration
	Subtest Addition
	Subtest Installation
	Addition of Subtest-Specific MBIT Faults
	Example: Subtest Configuration

	Implementing an MBIT Device Driver
	Generic Device Driver Interface
	drvInstall()
	drvDeinstall()
	drvOpen()
	drvClose()
	drvRead()
	drvWrite()
	drvIoctl()

	Device Driver Interface
	devXXXInstall()
	devXXXDeInstall()
	devXXXOpen()
	devXXXClose()
	devXXXRead()
	devXXXWrite()
	devXXXIoctl()

	Installing a Device Driver into the MBIT Environment

	Initializing the Diagnostic Devices
	Device Initialization Method
	Device Descriptor Structure (DEV_DESC)
	Device Address Table Array (part of DEV_DESC)
	Generic Device Address Table Structure (part of DEV_DESC)
	Address Type (ADDR_TYPE)
	Device Type (DEV_TYPE)
	Device Read and Write Utility Methods

	Creating a Device Initialization Method

	Creating Diagnostic Associations
	Using the Diagnostic Configuration Method
	Example: Diagnostic Configuration Method

	Utility Methods
	Introduction
	Cache Utility Methods
	bitDataCacheEnable()
	bitDataCacheDisable()
	bitDataCacheIsEnabled()
	bitDataCacheFlush()
	bitDataCacheFlushInvalidate()
	bitDataCacheInvalidate()
	bitDataCacheLock()
	bitDataCacheUnlock()
	bitInstCacheEnable()
	bitInstCacheDisable()
	bitInstCacheIsEnabled()
	bitInstCacheLock()
	bitInstCacheUnlock()
	bitL2CacheSizeGet()
	bitL2CacheEnable()
	bitL2CacheDisable()
	bitL2CacheOn()
	bitL2CacheOff()
	bitL2CacheIsEnabled()
	bitL2CacheFlush()
	bitL2CacheFlushInvalidate()
	bitL2CacheInvalidate()
	bitL2CacheLock()
	bitL2CacheUnlock()
	bitL2CacheIsLockable()
	bitL2CacheFill()
	bitL2CacheIsWritebackCapable()

	Diagnostic Device Utility Methods
	getDeviceDescriptor()
	getDevTablePtr()
	bitTrackChanges()
	bitIn()
	bitOut()

	Interrupt Utility Methods
	bitIntLock()
	bitIntUnlock()
	bitForceIntUnlock()
	bitIntConnect()
	isBitIntEnabled()
	bitIntVectorSet()
	bitIntEnable()
	bitIntDisable()

	Time Utility Methods
	bitUsDelay()
	bitMsDelay()

	MBIT Faults
	Built-In MBIT Faults
	Pre-Defined MBIT Faults

	API Method’s Reference Pages
	initBit()
	reinitBit()
	isBitInitializationComplete()
	executeBitTests()
	buildBitDefaultTestList()
	buildBitDefaultTestEntry()
	getBitResponse()
	getNumBitResponses()
	abortBitTests()
	getBitDeviceFault()
	getBitSubtestDesc()
	getBitDeviceDesc()
	getBitFaultDesc()
	getBitSubtestIdByName()
	getBitDeviceIdByName()
	getBitFaultIdByName()
	getBitNumberOfSubtests()
	getBitNumberOfDevices()
	getBitNumberOfFaults()
	getBitMaxTestListEntries()
	terminateBit()

	Integrating Custom Diagnostics’ Reference Pages
	Diagnostic Integration Methods
	addBitSubtestIdent()
	addBitDeviceIdent()
	addBitFaultIdent()
	createBitTestAssociations()
	installBitDriver()
	installBitSubtestEntries()
	getBitNumberOfAssociations()

	Generic Device Driver Methods
	drvInstall()
	drvDeinstall()
	drvOpen()
	drvClose()
	drvRead()
	drvWrite()
	drvIoctl()

	Device Driver Methods
	devXXXInstall()
	devXXXDeinstall()
	devXXXOpen()
	devXXXClose()
	devXXXRead()
	devXXXWrite()
	devXXXIoctl()

	Device Read and Write Utility Methods
	bitProbeIn8/16/32()
	bitProbeOut8/16/32()
	bitProbeInSwap16/32()
	bitProbeOutSwap16/32()
	bitIn8/16/32()
	bitOut8/16/32()
	bitInSwap16/32()
	bitOutSwap16/32()
	bitPciWrite32()
	bitPciRead32()

	Utility Methods’ Reference Pages
	Cache Utility Methods
	bitDataCacheEnable()
	bitDataCacheDisable()
	bitDataCacheIsEnabled()
	bitDataCacheFlush()
	bitDataCacheFlushInvalidate()
	bitDataCacheInvalidate()
	bitDataCacheLock()
	bitDataCacheUnlock()
	bitInstCacheEnable()
	bitInstCacheDisable()
	bitInstCacheIsEnabled()
	bitInstCacheLock()
	bitInstCacheUnlock()
	bitL2CacheSizeGet()
	bitL2CacheEnable()
	bitL2CacheDisable()
	bitL2CacheOn()
	bitL2CacheOff()
	bitL2CacheIsEnabled()
	bitL2CacheFlush()
	bitL2CacheFlushInvalidate()
	bitL2CacheInvalidate()
	bitL2CacheLock()
	bitL2CacheUnlock()
	bitL2CacheIsLockable()
	bitL2CacheFill()
	bitL2CacheIsWritebackCapable()

	Diagnostic Device Utility Methods
	getDeviceDescriptor()
	getDevTablePtr()
	bitTrackChanges()
	bitIn()
	bitOut()

	Interrupt Utility Methods
	bitIntLock()
	bitIntUnlock()
	bitForceIntUnlock()
	bitIntConnect()
	isBitIntEnabled()
	bitIntVectorSet()
	bitIntEnable()
	bitIntDisable()

	Time Utility Methods
	bitUsDelay()
	bitMsDelay()

	Installing MBIT with Tornado 2.1 and VxWorks
	Installing MBIT from the CD-ROM
	Installing MBIT on a Microsoft Windows Platform

	Creating a VxWorks Image with the MBIT API
	Building a VxWorks Image
	Building a VxWorks VME Slave Image
	Configuring the Target
	Booting the Target
	Modifying the Image
	Modifying the MVME5100 BSP
	Flash Memory Testing
	GD82559ER Ethernet Testing
	VME Location Monitor Window Setup

	Known Issues
	Installation
	Subtest Results

	Related Documentation
	Motorola Computer Group Documents
	Manufacturers’ Documents
	URLs

	Index

