
CORBAservices: Common Object
Services Specification

Revised Edition - March 31, 1995
Updated: March 28, 1996
Updated: July 15, 1996
Updated: November 22, 1996
Updated: March 1997
Updated: July 1997
Updated: November 1997
Updated: December 1998

 paid up,
fied ver-
pyright in
g con-

ire use
y be
at are
r protect
Copyright 1996, AT&T/Lucent Technologies, Inc.
Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Limited
Copyright 1996, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd).
Copyright 1995, 1996 Digital Equipment Corporation
Copyright 1996, Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Hewlett-Packard Company
Copyright 1995, 1996 HyperDesk Corporation
Copyright 1995, 1996 ICL plc
Copyright 1995, 1996 Ing. C. Olivetti & C.Sp
Copyright 1995, 1996 International Business Machines Corporation
Copyright 1996, International Computers Limited
Copyright 1995, 1996 Iona Technologies Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1996, Nortel Limited
Copyright 1995, 1996 Novell, Inc.
Copyright 1995, 1996 02 Technologies
Copyright 1995, 1996 Object Design, Inc.
Copyright 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Ontos, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1995, 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996, Sybase, Inc.
Copyright 1996, Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo-
ing themselves against liability for infringement of patents.

 an
ent does

iable for
 profi
 Object

ize devel
 to indi-

-graphic,
thout
s sub-
at
, Inc.
e

ers to
NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be l
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss ofts,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may author-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means-
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government i
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause
DFARS 252.227.7013 OMGÆ and Object Management are registered trademarks of the Object Management Group
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of th
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Table of Contents
lvii
lvii
lvii
iii

lviii

lviii
lix

xlix

l

l

1-1
1-1
-1

1-2
-2
1-3
1-3
-3

1-4
-4

1-5
1-5
1-5
1-6
1-6
Preface . x
0.1 About This Document . x

0.1.1 Object Management Group. x
0.1.2 X/Open . xlv

0.2 Intended Audience . x

0.3 Need for Object Services . x
0.3.1 What Is an Object Service Specification?. x

0.4 Associated Documents .

0.5 Structure of this Manual .

0.6 Acknowledgements .

1. Overview .
1.1 Summary of Key Features .

1.1.1 Naming Service . 1
1.1.2 Event Service .
1.1.3 Life Cycle Service . 1
1.1.4 Persistent Object Service
1.1.5 Transaction Service .
1.1.6 Concurrency Control Service 1
1.1.7 Relationship Service .
1.1.8 Externalization Service. 1
1.1.9 Query Service .
1.1.10 Licensing Service .
1.1.11 Property Service .
1.1.12 Time Service. .
1.1.13 Security Service .
 CORBAservices December 1998 i

Contents

1-7
-7

-1

2-1
-1

2-2
2-2
-2

-2
2-2
2-4
-4

-4

2-4
2-4
-5
-5

2-5

-5
-5

2-5
-6

2-6
2-6
2-6
-6
-7
-7
-7

2-8
2-8
2-9
2-9

2-9
2-9
-9
2-9
-10
1.1.14 Object Trader Service .
1.1.15 Object Collections Service 1

2. General Design Principles. 2

2.1 Service Design Principles. .
2.1.1 Build on CORBA Concepts 2
2.1.2 Basic, Flexible Services
2.1.3 Generic Services. .
2.1.4 Allow Local and Remote Implementations. . . . 2
2.1.5 Quality of Service is an Implementation

Characteristic . 2
2.1.6 Objects Often Conspire in a Service.
2.1.7 Use of Callback Interfaces
2.1.8 Assume No Global Identifier Spaces 2
2.1.9 Finding a Service is Orthogonal to Using It . . . 2

2.2 Interface Style Consistency .
2.2.1 Use of Exceptions and Return Codes
2.2.2 Explicit Versus Implicit Operations 2
2.2.3 Use of Interface Inheritance 2

2.3 Key Design Decisions .
2.3.1 Naming Service: Distinct from Property and

Trading Services . 2
2.3.2 Universal Object Identity 2

2.4 Integration with Future Object Services
2.4.1 Archive Service . 2
2.4.2 Backup/Restore Service
2.4.3 Change Management Service
2.4.4 Data Interchange Service
2.4.5 Internationalization Service 2
2.4.6 Implementation Repository 2
2.4.7 Interface Repository . 2
2.4.8 Logging Service . 2
2.4.9 Recovery Service .
2.4.10 Replication Service. .
2.4.11 Startup Service .
2.4.12 Data Interchange Service

2.5 Service Dependencies .
2.5.1 Event Service .
2.5.2 Life Cycle Service . 2
2.5.3 Persistent Object Service
2.5.4 Relationship Service. 2
ii CORBAservices December 1998

Contents

10
-10
11
-11
-11
-12
-12
-12
-12
-12

-12

12
13
-13
-13
-13
13

-14

-14

-1

3-1
-1
3-2
-3

3-3
-4

3-5

3-6
-8

3-9
-10
-11
-11
12
12

-13
14
15
2.5.5 Externalization Service. 2-
2.5.6 Transaction Service . 2
2.5.7 Concurrency Control Service 2-
2.5.8 Query Service . 2
2.5.9 Licensing Service . 2
2.5.10 Property Service . 2
2.5.11 Time Service. 2
2.5.12 Security Service . 2
2.5.13 Trader Service . 2
2.5.14 Collections Service. 2

2.6 Relationship to CORBA. 2
2.6.1 ORB Interoperability Considerations:

Transaction Service . 2-
2.6.2 Life Cycle Service . 2-
2.6.3 Naming Service . 2
2.6.4 Relationship Service. 2
2.6.5 Persistent Object Service 2
2.6.6 General Interoperability Requirements. 2-

2.7 Relationship to Object Model. 2

2.8 Conformance to Existing Standards 2

3. Naming Service Specification . 3

3.1 Service Description .
3.1.1 Overview . 3
3.1.2 Names. .
3.1.3 Names Library . 3
3.1.4 Example Scenarios .
3.1.5 Design Principles . 3
3.1.6 Resolution of Technical Issues

3.2 The CosNaming Module .
3.2.1 Binding Objects . 3
3.2.2 Resolving Names .
3.2.3 Unbinding Names. 3
3.2.4 Creating Naming Contexts 3
3.2.5 Deleting Contexts . 3
3.2.6 Listing a Naming Context. 3-
3.2.7 The BindingIterator Interface 3-

3.3 The Names Library . 3
3.3.1 Creating a Library Name Component. 3-
3.3.2 Creating a Library Name 3-
CORBAservices December 1998 iii

Contents

-15
-15

16
-16
6
17
17
17
17
8
8
18

-1
4-1
-1
-2

4-2
-4

4-4
-6

4-6
4-6
-7

4-8
4-8
4-9
-9

-10

4-10

10

11

11
2

13

-15
-16
17
17
-17
3.3.3 The LNameComponent Interface 3
3.3.4 The LName Interface . 3

3.3.4.1 Destroying a Library Name Component
 Pseudo Object . 3-

3.3.4.2 Inserting a Name Component. 3
3.3.4.3 Getting the ith Name Component 3-1
3.3.4.4 Deleting a Name Component 3-
3.3.4.5 Number of Name Components 3-
3.3.4.6 Testing for Equality 3-
3.3.4.7 Testing for Order 3-
3.3.4.8 Producing an IDL form 3-1
3.3.4.9 Translating an IDL Form 3-1
3.3.4.10 Destroying a Library Name Pseudo-Object 3-

4. Event Service Specification. 4
4.1 Service Description .

4.1.1 Overview . 4
4.1.2 Event Communication 4
4.1.3 Example Scenario. .
4.1.4 Design Principles . 4
4.1.5 Resolution of Technical Issues
4.1.6 Quality of Service. 4

4.2 Generic Event Communication .
4.2.1 Push Model. .
4.2.2 Pull Model . 4

4.3 The CosEventComm Module .
4.3.1 The PushConsumer Interface
4.3.2 The PushSupplier Interface.
4.3.3 The PullSupplier Interface 4
4.3.4 The PullConsumer Interface 4

4.4 Event Channels .
4.4.1 Push-Style Communication with an Event

Channel . 4-
4.4.2 Pull-Style Communication with an Event

Channel . 4-
4.4.3 Mixed Style Communication with an Event

Channel . 4-
4.4.4 Multiple Consumers and Multiple Suppliers . . 4-1
4.4.5 Event Channel Administration 4-

4.5 The CosEventChannelAdmin Module 4
4.5.1 The EventChannel Interface 4
4.5.2 The ConsumerAdmin Interface 4-
4.5.3 The SupplierAdmin Interface 4-
4.5.4 The ProxyPushConsumer Interface 4
iv CORBAservices December 1998

Contents

18
18
-19

-19
-19
20

-21
-22
23

4-23

-24
-26
26
27
-27
28

-28

-28

-1
5-1

5-3
-3

5-3
5-4
-4
-4
-4
-5
-5
-6
5-6
5-6

5-7

5-8
-9
11

5-11
-12
-14
-14
4.5.5 The ProxyPullSupplier Interface 4-
4.5.6 The ProxyPullConsumer Interface 4-
4.5.7 The ProxyPushSupplier Interface 4

4.6 Typed Event Communication . 4
4.6.1 Typed Push Model . 4
4.6.2 Typed Pull Model . 4-

4.7 The CosTypedEventComm Module 4
4.7.1 The TypedPushConsumer Interface 4
4.7.2 The TypedPullSupplier Interface 4-

4.8 Typed Event Channels .

4.9 The CosTypedEventChannelAdmin Module 4
4.9.1 The TypedEventChannel Interface 4
4.9.2 The TypedConsumerAdmin Interface. 4-
4.9.3 The TypedSupplierAdmin Interface 4-
4.9.4 The TypedProxyPushConsumer Interface. 4
4.9.5 The TypedProxyPullSupplier Interface. 4-

4.10 Composing Event Channels and Filtering 4

4.11 Policies for Finding Event Channels 4

5. Persistent Object Service Specification 5
5.1 Introduction .

5.2 Goals and Properties .
5.2.1 Basic Capabilities . 5
5.2.2 Object-oriented Storage

5.2.2.1 Interfaces to Data
5.2.2.2 Self-description . 5
5.2.2.3 Abstraction . 5

5.2.3 Open Architecture . 5
5.2.4 Views of Service. 5

5.2.4.1 Client . 5
5.2.4.2 Object Implementation 5
5.2.4.3 Persistent Data Service
5.2.4.4 Datastore .

5.3 Service Structure .

5.4 The CosPersistencePID Module. .
5.4.1 PID Interface . 5
5.4.2 Example PIDFactory Interface 5-

5.5 The CosPersistencePO Module .
5.5.1 The PO Interface. 5
5.5.2 The POFactory Interface. 5
5.5.3 The SD Interface. 5
CORBAservices December 1998 v

Contents

5-15

-18

5-19

-21

-21
23
24
24
25
-25
26
28
-29

-30

-30

5-31

5-33

5-34
-36
-37
-37
-38
-38
38
-40

5-43

5-43

5-43

-1
6-1
-1
-3

4
-4
6

6
6-7
-8
-8
5.6 The CosPersistencePOM Module.

5.7 Persistent Data Service (PDS) Overview 5

5.8 The CosPersistencePDS Module .

5.9 The Direct Access (PDS_DA) Protocol 5

5.10 The CosPersistencePDS_DA Module 5
5.10.1 The PID_DA Interface 5-
5.10.2 The Generic DAObject Interface 5-
5.10.3 The DAObjectFactory Interface 5-
5.10.4 The DAObjectFactoryFinder Interface 5-
5.10.5 The PDS_DA Interface 5
5.10.6 Defining and Using DA Data Objects. 5-
5.10.7 The DynamicAttributeAccess Interface 5-
5.10.8 The PDS_ClusteredDA Interface 5

5.11 The ODMG-93 Protocol. 5

5.12 The Dynamic Data Object (DDO) Protocol 5

5.13 The CosPersistenceDDO Module.

5.14 Other Protocols .

5.15 Datastores: CosPersistenceDS_CLI Module
5.15.1 The UserEnvironment Interface 5
5.15.2 The Connection Interface 5
5.15.3 The ConnectionFactory Interface 5
5.15.4 The Cursor Interface. 5
5.15.5 The CursorFactory Interface. 5
5.15.6 The PID_CLI Interface 5-
5.15.7 The Datastore_CLI Interface 5

5.16 Other Datastores. .

5.17 Standards Conformance .

5.18 References .

6. Life Cycle Service Specification . 6
6.1 Service Description .

6.1.1 Overview . 6
6.1.2 Organization of this Chapter. 6
6.1.3 Client’s Model of Object Life Cycle. 6-

6.1.3.1 Client’s Model of Creation 6
6.1.3.2 Client’s Model of Deleting an Object . . . 6-
6.1.3.3 Client’s Model of Copying or

Moving an Object 6-
6.1.4 Factory Finders. .

6.1.4.1 Multiple Factory Finders 6
6.1.5 Design Principles . 6
vi CORBAservices December 1998

Contents

6-9

-10
11
11

-12
-13
-13
13
-14
-15
-16
-17

-18
19
-19

-21

-21
22
33

33

34

34
35
35
36
37
7
38
38
39
39
40
41

1
2

3
3

-53
56
56
57
57
-57
57
57
6.1.6 Resolution of Technical Issues

6.2 The CosLifeCycle Module . 6
6.2.1 The LifeCycleObject Interface 6-

6.2.1.1 copy . 6-
6.2.1.2 move . 6
6.2.1.3 remove . 6

6.2.2 The FactoryFinder Interface 6
6.2.2.1 find_factories . 6-

6.2.3 The GenericFactory Interface 6
6.2.3.1 create_object . 6
6.2.3.2 supports . 6

6.2.4 Criteria . 6

6.3 Implementing Factories . 6
6.3.1 Minimal Factories. 6-
6.3.2 Administered Factories. 6

6.4 Target’s Use of Factories and Factory Finders 6

6.5 Summary of Life Cycle Service . 6
6.5.1 Summary of Life Cycle Service Structure 6-

6.5.1.1 Creating a Compound Life Cycle Operation 6-
6.5.1.2 Applying the Copy Operation to a Graph

of Related Objects 6-
6.5.1.3 Applying the Move Operation to a Graph

of Related Objects 6-
6.5.1.4 Applying the Remove Operation to a Graph

of Related Objects 6-
6.5.1.5 Destroying the Compound Operation. . . . 6-
6.5.1.6 Copying a Node . 6-
6.5.1.7 Moving a Node . 6-
6.5.1.8 Removing a Node. 6-
6.5.1.9 Getting the Node’s Life Cycle Object . . . 6-3
6.5.1.10 Copying a Role 6-
6.5.1.11 Moving a Role . 6-
6.5.1.12 Getting a Propagation Value 6-
6.5.1.13 Copying the Relationship 6-
6.5.1.14 Moving the Relationship 6-
6.5.1.15 Getting a Propagation Value 6-
6.5.1.16 Create a Traversal Criteria Based on

 Life Cycle Propagation Values 6-4
6.5.1.17 Visibility of the Federation Graph 6-5
6.5.1.18 Service Interface vs. Administration

 Interface . 6-5
6.5.1.19 Multiple Service Interfaces 6-5
6.5.1.20 Cycles and Peer-to-Peer Relationships . 6
6.5.1.21 bind_generic_factory 6-
6.5.1.22 unbind_generic_factory 6-
6.5.1.23 resolve_generic_factory 6-
6.5.1.24 list_generic_factories 6-
6.5.1.25 match_service . 6
6.5.1.26 get_hint. 6-
6.5.1.27 get_link_properties 6-
CORBAservices December 1998 vii

Contents

-1

7-1
-1

7-1
7-2
-2
-2
-2
-3
-3
-3

7-3
-4
-4

-4
5
7-5

7-6

7-6

7-7
7-9
-9

-10
-11
-13

1
8-2

8-2
3
-3
-4
-6

8-8

-11

12

-13
-14
-14
-14

4
-14
7. Concurrency Control Service . 7

7.1 Service Description .
7.1.1 Basic Concepts of Concurrency Control. 7

7.1.1.1 Clients and Resources
7.1.1.2 Transactions as Clients.
7.1.1.3 Locks . 7
7.1.1.4 Lock Modes . 7
7.1.1.5 Lock Granularity 7
7.1.1.6 Conflict Resolution 7
7.1.1.7 Conflict Resolution for Transactions . . . 7
7.1.1.8 Lock Duration. 7

7.2 Locking Model .
7.2.1 Lock Modes . 7

7.2.1.1 Read, Write, and Upgrade Locks 7
7.2.1.2 Intention Read and Intention Write Locks 7
7.2.1.3 Lock Mode Compatibility 7-

7.2.2 Multiple Possession Semantics.

7.3 Two-Phase Transactional Locking

7.4 Nested Transactions .

7.5 CosConcurrencyControl Module .
7.5.1 Types and Exceptions .
7.5.2 LockCoordinator Interface 7
7.5.3 LockSet Interface . 7
7.5.4 TransactionalLockSet Interface 7
7.5.5 LockSetFactory Interface 7

8. Externalization Service Specification. 8-
8.1 Service Description .

8.2 Service Structure .
8.2.1 Client’s Model of Object Externalization 8-
8.2.2 Stream’s Model of Object Externalization 8
8.2.3 Object’s Model of Externalization 8
8.2.4 Object’s Model of Internalization 8

8.3 Object and Interface Hierarchies .

8.4 Interface Summary . 8
8.4.1 Externalization Service Architecture:

Audience/Bearer Mapping 8-

8.5 CosExternalization Module . 8
8.5.1 StreamFactory Interface 8

8.5.1.1 Creating a Stream Object 8
8.5.2 FileStreamFactory Interface 8

8.5.2.1 Creating a Stream Objec Associated
with a File. 8-1

8.5.3 Stream Interface . 8
viii CORBAservices December 1998

Contents

14
15
5

15

-16
-19
-20
-21
21

22
-22
-22
-23
23
23
-24
24
24
24
-25
25
25
25
26

6

-26

-27

-28

8-29
30
-31
31

8-31

-1

9-1
9-2

9-3
3

4

-4
8.5.3.1 Externalizing an Object 8-
8.5.3.2 Externalizing Groups of Objects 8-
8.5.3.3 Completing Externalization 8-1
8.5.3.4 Internalizing an Object 8-

8.6 CosStream Module . 8
8.6.1 Standard Stream Data Format 8
8.6.2 The StreamIO Interface 8
8.6.3 The Streamable Interface 8

8.6.3.1 Writing the Object’s State to a Stream . . 8-
8.6.3.2 Reinitializing the Object’s State from

a Stream . 8-
8.6.4 The StreamableFactory Interface 8

8.6.4.1 Creating a Streamable Object 8
8.6.5 The Node Interface . 8

8.6.5.1 Externalizing a Node 8-
8.6.5.2 Internalizing a Node 8-

8.6.6 The Role Interface . 8
8.6.6.1 Externalizing a Role 8-
8.6.6.2 Internalizing a Role 8-
8.6.6.3 Getting a Propagation Value 8-

8.6.7 The Relationship Interface 8
8.6.7.1 Externalizing the Relationship 8-
8.6.7.2 Internalizing the Relationship 8-
8.6.7.3 Getting a Propagation Value 8-

8.6.8 The PropagationCriteriaFactory Interface 8-
8.6.8.1 Create a Traversal Criteria Based

on Externalization Propagation 8-2

8.7 Specific Externalization Relationships 8

8.8 The CosExternalizationContainment Module 8

8.9 The CosExternalizationReference Module 8

8.10 Standard Stream Data Format .
8.10.1 OMG Externalized Object Data 8-
8.10.2 Externalized Repeated Reference Data 8
8.10.3 Externalized NIL Data 8-

8.11 References .

9. Relationship Service Specification . 9

9.1 Service Description .
9.1.1 Key Features of the Relationship Service
9.1.2 The Relationship Service vs. CORBA Object

References .
9.1.2.1 Relationships that Are Multidirectional . 9-
9.1.2.2 Relationships that Allow Third Party

Manipulation . 9-
9.1.2.3 Traversals that Are Supported for Graphs

of Related Objects 9
CORBAservices December 1998 ix

Contents

4
9-4
-4
-4
-5
-5

-5

-5
-6

9-7
-7
-7

-8
-9
10
10
-11

-13
14

-15
-15
-15
-17
17
18
18
-18
-19
19
20
-20
20
-20
23
23
25
26
26
30
32

9-33
33
-35
-35
-35
9.1.2.4 Relationships and Roles that Can Be
Extended with Attributes and Behavior . 9-

9.1.3 Resolution of Technical Issues
9.1.3.1 Modeling and Relationship Semantics . . 9
9.1.3.2 Managing Relationships 9
9.1.3.3 Constraining Relationships 9
9.1.3.4 Referential Integrity 9
9.1.3.5 Relationships and Roles as First Class

Objects . 9
9.1.3.6 Different Models for Navigating and

Constructing Relationships 9
9.1.3.7 Efficiency Considerations 9

9.2 Service Structure .
9.2.1 Levels of Service . 9

9.2.1.1 Level One: Base Relationships. 9
9.2.1.2 Level Two: Graphs of Related Objects . . 9
9.2.1.3 Level Three: Specific Relationships 9

9.2.2 Hierarchy of Relationship Interface 9-
9.2.3 Hierarchy of Role Interface 9-
9.2.4 Interface Summary . 9

9.3 The Base Relationship Model . 9
9.3.1 Relationship Attributes and Operations 9-

9.3.1.1 Rationale . 9
9.3.2 Higher Degree Relationships 9

9.3.2.1 Rationale . 9
9.3.3 Operations . 9

9.3.3.1 Creation . 9-
9.3.3.2 Navigation . 9-
9.3.3.3 Destruction . 9-

9.3.4 Consistency Constraints 9
9.3.5 Implementation Strategies 9
9.3.6 The CosObjectIdentity Module 9-

9.3.6.1 The IdentifiableObject Interface 9-
9.3.6.2 constant_random_id 9
9.3.6.3 is_identical . 9-

9.3.7 The CosRelationships Module 9
9.3.7.1 Example of Containment Relationships . 9-
9.3.7.2 The RelationshipFactory Interface 9-
9.3.7.3 The Relationship Interface 9-
9.3.7.4 Destroying a Relationship 9-
9.3.7.5 The Role Interface 9-
9.3.7.6 The RoleFactory Interface 9-
9.3.7.7 The RelationshipIterator Interface 9-

9.4 Graphs of Related Objects .
9.4.1 Graph Architecture . 9-

9.4.1.1 Nodes . 9
9.4.2 Traversing Graphs of Related Objects 9

9.4.2.1 Detecting and Representing Cycles 9
x CORBAservices December 1998

Contents

-36
-36
37
-37
-38
41
42
43
44
46
46
46

-47
-47
48
-49

9-51

-1
0-2

0-2
-3
-3
-4
-4

-5
0-6
0-6
-6
-6
-7
-8
-8
-8

0-8
0-9
-10
-11

-12
-13
-13
-14
-15
-15
-16
-16
9.4.2.2 Determining the Relevant Nodes and Edges 9
9.4.3 Compound Operations 9
9.4.4 An Example Traversal Criteria 9-

9.4.4.1 Propagation . 9
9.4.5 The CosGraphs Module 9

9.4.5.1 The TraversalFactory Interface 9-
9.4.5.2 The Traversal Interface 9-
9.4.5.3 The TraversalCriteria Interface 9-
9.4.5.4 The Node Interface 9-
9.4.5.5 The NodeFactory Interface 9-
9.4.5.6 The Role Interface 9-
9.4.5.7 The EdgeIterator Interface 9-

9.5 Specific Relationships . 9
9.5.1 Containment and Reference 9
9.5.2 The CosContainment Module 9-
9.5.3 The CosReference Module 9

9.6 References .

10. Transaction Service Specification. 10
10.1 Service Description . 1

10.1.1 Overview of Transactions 1
10.1.2 Transactional Applications 10
10.1.3 Definitions . 10

10.1.3.1 Transactional Client 10
10.1.3.2 Transactional Object 10
10.1.3.3 Recoverable Objects and Resource

 Objects . 10
10.1.3.4 Transactional Server 1
10.1.3.5 Recoverable Server 1

10.1.4 Transaction Service Functionality 10
10.1.4.1 Transaction Models 10
10.1.4.2 Transaction Termination 10
10.1.4.3 Transaction Integrity 10
10.1.4.4 Transaction Context 10
10.1.4.5 Synchronization 10

10.1.5 Principles of Function, Design, and Performance1
10.1.5.1 Functional Requirements 1
10.1.5.2 Design Requirements 10
10.1.5.3 Performance Requirements 10

10.2 Service Architecture. 10
10.2.1 Typical Usage . 10
10.2.2 Transaction Context . 10
10.2.3 Context Management . 10
10.2.4 Datatypes . 10
10.2.5 Structures . 10
10.2.6 Exceptions . 10

10.2.6.1 Standard Exceptions 10
CORBAservices December 1998 xi

Contents

16

-17

0-17
-18
-18
19
19
19
-20
-20
-20
20
-20
-21
-21
-21

-21
-22
22

-22
-23
23
23
-24
-25
-25
-26
-26
-26
-26
-26
26
-26
-27
-27
27
-27
28
-28
-28
28
-29
29
-29
-30
31
31
-31
32
-32
10.2.6.2 Heuristic Exceptions. 10-
10.2.6.3 WRONG_TRANSACTION Exception 10-17
10.2.6.4 Other Exceptions 10

10.3 Transaction Service Interfaces . 1
10.3.1 Current Interface. 10

10.3.1.1 begin . 10
10.3.1.2 commit . 10-
10.3.1.3 rollback . 10-
10.3.1.4 rollback_only . 10-
10.3.1.5 get_status . 10
10.3.1.6 get_transaction_name 10
10.3.1.7 set_timeout . 10
10.3.1.8 get_control . 10-
10.3.1.9 suspend . 10
10.3.1.10 resume . 10

10.3.2 TransactionFactory Interface 10
10.3.2.1 create . 10
10.3.2.2 parameter has a nonzero value n. 10-21
10.3.2.3 recreate . 10

10.3.3 Control Interface. 10
10.3.3.1 get_terminator . 10-
10.3.3.2 get_coordinator 10

10.3.4 Terminator Interface . 10
10.3.4.1 commit . 10-
10.3.4.2 rollback. 10-

10.3.5 Coordinator Interface . 10
10.3.5.1 get_status . 10
10.3.5.2 get_parent_status 10
10.3.5.3 get_top_level_status 10
10.3.5.4 is_same_transaction 10
10.3.5.5 is_ancestor_transaction 10
10.3.5.6 is_descendant_transaction 10
10.3.5.7 is_related_transaction 10
10.3.5.8 is_top_level_transaction 10-
10.3.5.9 hash_transaction 10
10.3.5.10 hash_top_level_tran 10
10.3.5.11 register_resource 10
10.3.5.12 register_synchronization 10-
10.3.5.13 register_subtran_aware 10
10.3.5.14 rollback_only . 10-
10.3.5.15 get_transaction_name. 10
10.3.5.16 create_subtransaction 10
10.3.5.17 get_txcontext . 10-

10.3.6 Recovery Coordinator Interface 10
10.3.6.1 replay_completion 10-

10.3.7 Resource Interface . 10
10.3.7.1 prepare . 10
10.3.7.2 rollback . 10-
10.3.7.3 commit . 10-
10.3.7.4 commit_one_phase 10
10.3.7.5 forget . 10-

10.3.8 Synchronization Interface. 10
xii CORBAservices December 1998

Contents

32
32
-33

-33
33
-34

-34
34

35

35

35

35
-36
-36
-37

-37
37
-38

38
-38
-38
-39
-39
9

-39
-39
-40

-40
-40

1

1
-42
43
44
44
46
-46
-47
47
-48
-48
10.3.8.1 before_completion 10-
10.3.8.2 after_completion 10-

10.3.9 Subtransaction Aware Resource Interface. 10
10.3.9.1 commit_subtransaction 10
10.3.9.2 rollback_subtransaction 10-

10.3.10 TransactionalObject Interface. 10

10.4 The User’s View . 10
10.4.1 Application Programming Models 10-

10.4.1.1 Direct Context Management: Explicit
 Propagation . 10-

10.4.1.2 Indirect Context Management: Implicit
 Propagation . 10-

10.4.1.3 Indirect Context Management: Explicit
 Propagation . 10-

10.4.1.4 Direct Context Management: Implicit
 Propagation . 10-

10.4.2 Interfaces . 10
10.4.3 Checked Transaction Behavior 10
10.4.4 X/Open Checked Transactions 10

10.4.4.1 Reply Check . 10
10.4.4.2 Commit Check . 10-
10.4.4.3 Resume Check . 10

10.4.5 Implementing a Transactional Client: Heuristic
Completions . 10-

10.4.6 Implementing a Recoverable Server 10
10.4.6.1 Recoverable Object 10
10.4.6.2 Resource Object 10
10.4.6.3 Reliable Servers 10

10.4.7 Application Portability 10-3
10.4.7.1 Flat Transactions 10
10.4.7.2 X/Open Checked Transactions 10

10.4.8 Distributed Transactions 10
10.4.9 Applications Using Both Checked and Unchecked

Services . 10
10.4.10 Examples . 10

10.4.10.1 A Transaction Originator: Indirect and
 Implicit . 10-4

10.4.10.2 Transaction Originator: Direct and
 Explicit . 10-4

10.4.10.3 Example of a Recoverable Server 10
10.4.10.4 Example of a Transactional Object . . . 10-

10.4.11 Model Interoperability 10-
10.4.11.1 Importing Transactions 10-
10.4.11.2 Exporting Transactions 10-
10.4.11.3 Programming Rules 10

10.4.12 Failure Models . 10
10.4.12.1 Transaction Originator 10-
10.4.12.2 Transactional Server 10
10.4.12.3 Recoverable Server 10
CORBAservices December 1998 xiii

Contents

-48
-49
-49
50
-56
57
60
-60
61
63
67

0-69
73
-75
-75
75
75
75
75

-76
76
81

1

2
2
3
3
83

-84

-1
1-1

1-1
1-1
1-2
1-3
-4

-5
1-5
1-6
-7
-7
-8
1-9

1-10
-10
10.5 The Implementers’ View . 10
10.5.1 Transaction Service Protocols 10

10.5.1.1 General Principles 10
10.5.1.2 Normal Transaction Completion 10-
10.5.1.3 Failures and Recovery 10
10.5.1.4 Transaction Completion after Failure . . 10-

10.5.2 ORB/TS Implementation Considerations 10-
10.5.2.1 Transaction Propagation 10
10.5.2.2 Transaction Service Interoperation 10-
10.5.2.3 Transaction Service Portability 10-

10.5.3 Model Interoperability 10-

10.6 The CosTransactions Module. 1
10.6.1 The CosTSPortability Module 10-

10.6.1.1 tx_open . 10
10.6.1.2 tx_close . 10
10.6.1.3 tx_begin . 10-
10.6.1.4 tx_rollback . 10-
10.6.1.5 tx_commit and tx_set_commit_return . . 10-
10.6.1.6 tx_set_transaction_control 10-
10.6.1.7 tx_set_transaction_timeout. 10
10.6.1.8 tx_info . 10-
10.6.1.9 OSI TP Transaction Identifiers 10-
10.6.1.10 Incoming OSI TP Communications

 (Imported Transactions) 10-8
10.6.1.11 Outgoing OSI TP Communications

 (Exported Transactions) 10-8
10.6.1.12 LU 6.2 Transaction Identifiers 10-8
10.6.1.13 Incoming LU 6.2 Communications . . . 10-8
10.6.1.14 Outgoing LU 6.2 Communications . . . 10-8
10.6.1.15 ODMG Standard 10-
10.6.1.16 Integration of ODMG ODBMSs with

 the Transaction Service 10

11. Query Service Specification . 11
11.1 Service Description . 1

11.1.1 Overview . 1
11.1.2 Design Principles . 1
11.1.3 Architecture . 1

11.1.3.1 Query Evaluators: Nesting and Federation 1
11.1.3.2 Collections . 11
11.1.3.3 Queryable Collections for Scope and

 Result . 11
11.1.3.4 Query Objects . 1

11.1.4 Query Languages . 1
11.1.4.1 SQL Query . 11
11.1.4.2 OQL . 11
11.1.4.3 SQL Query = OQL 11

11.1.5 Key Features . 1

11.2 Service Structure . 1
11.2.1 Overview . 11
xiv CORBAservices December 1998

Contents

0
0
-10

10
-11

-12
-12
-12

-14
15
15
-16
6

16
7

-17
-17
17
18
18
-18
-18
-18
-18
9

-19
-19
-20
-21
-21

-23
-24
25

25

25
25
-25
-25
-26
-26

26
26
26
11.2.1.1 Type One: Collections 11-1
11.2.1.2 Type Two: Query Framework 11-1

11.2.2 Collection Interface Structure. 11
11.2.3 Query Framework Interface Hierarchy/

Structure . 11-
11.2.4 Interface Overview . 11

11.3 The Collection Model . 11
11.3.1 Common Types of Collections 11
11.3.2 Iterators . 11

11.4 The CosQueryCollection Module. 11
11.4.1 The CollectionFactory Interface 11-

11.4.1.1 Creating a Collection 11-
11.4.2 The Collection Interface 11

11.4.2.1 Determining the Cardinality 11-1
11.4.2.2 Adding an Element 11-
11.4.2.3 Adding Elements from a Collection . . . 11-1
11.4.2.4 Inserting an Element 11
11.4.2.5 Replacing an Element 11
11.4.2.6 Removing an Element 11-
11.4.2.7 Removing all Elements 11-
11.4.2.8 Retrieving an Element 11-
11.4.2.9 Creating an Iterator 11

11.4.3 The Iterator Interface . 11
11.4.3.1 Accessing the Current Element 11
11.4.3.2 Resetting the Iteration 11
11.4.3.3 Testing for Completion of an Iteration . 11-1

11.5 The Query Framework Model . 11
11.5.1 Query Evaluators . 11
11.5.2 Queryable Collections 11
11.5.3 Query Managers . 11
11.5.4 Query Objects. 11

11.6 The CosQuery Module . 11
11.6.1 The QueryLanguageType Interfaces 11

The QueryEvaluator Interface 11-
11.6.1.1 Determining the Supported Query

 Language Types 11-
11.6.1.2 Determining the Default Query

 Language Type 11-
11.6.1.3 Evaluating a Query 11-

11.6.2 The QueryableCollection Interface. 11
11.6.3 The QueryManager Interface 11

11.6.3.1 Creating a Query Object 11
11.6.4 The Query Interface . 11

11.6.4.1 Determining the Associated Query
 Manager . 11-

11.6.4.2 Preparing the Query for Execution 11-
11.6.4.3 Executing the Query 11-
CORBAservices December 1998 xv

Contents

27
27

1-27

-1

2-1
2-2
2-2
-3
2-3
2-4

2-4
-4
-5

2-6
-6

-6

2-7
2-7
2-8
-8
-8

10
10
-12
-13
-13
13
-14

-17
-19
-20

2-22

3-1
3-1

3-1
-2
-2
-3
3-3
11.6.4.4 Determining the Query Status 11-
11.6.4.5 Obtaining the Query Result 11-

11.7 References . 1

12. Licensing Service Specification . 12

12.1 Existing License Management Products. 1
12.1.1 Business Policy. 1
12.1.2 License Types . 1
12.1.3 A History of License Types 12
12.1.4 Asset Management . 1
12.1.5 License Usage Practices 1
12.1.6 Scalability. 1
12.1.7 Reliability . 12
12.1.8 Legacy Applications . 12
12.1.9 Security . 1
12.1.10 Client/Server Authentication 12
12.1.11 Example: Application Acquiring and Releasing a

Concurrent License. 12

12.2 Service Description . 1
12.2.1 Overview . 1
12.2.2 Key Components of a Licensing System 1

12.2.2.1 License Attributes 12
12.2.2.2 Licensing Policy 12
12.2.2.3 Interfaces Isolated From Business

 Policies . 12-
12.2.3 Licensing in the CORBA Environment. 12-
12.2.4 Design Principles . 12
12.2.5 Licensing Service Interfaces. 12

12.2.5.1 Interfaces are Mandatory 12
12.2.5.2 Constraints on Object Behavior 12-

12.2.6 Licensing Event Trace Diagram 12

12.3 The CosLicensing Module . 12
12.3.1 LicenseServiceManager Interface. 12
12.3.2 ProducerSpecificLicenseService Interface 12

12.4 References . 1

13. Property Service . 1
13.1 Overview . 1

13.1.1 Service Description . 1
13.1.1.1 Client’s Model of Properties 13
13.1.1.2 Object’s Model of Properties 13

13.1.2 OMG IDL Interface Summary 13
13.1.3 Summary of Key Features 1
xvi CORBAservices December 1998

Contents

13-4
3-4
3-5
-7
3-9
9
-10
10
-11
-11
-11
-12
-12
-12
-12
-12

3
-14
14
-15

15
16
17
-18
-18
-18
-18
-19
19
-19
20
-20
20
-20
-21

4-1

4-1
4-1
4-1
4-2
4-3
4-4

4-4
-4

4-5
-6
13.2 Service Interfaces .
13.2.1 CosPropertyService Module 1

13.2.1.1 Data Types . 1
13.2.1.2 Exceptions . 13

13.2.2 PropertySet Interface . 1
13.2.2.1 Defining and Modifying Properties 13-
13.2.2.2 define_properties 13
13.2.2.3 Listing and Getting Properties 13-
13.2.2.4 get_all_property_names 13
13.2.2.5 get_property_value 13
13.2.2.6 get_properties . 13
13.2.2.7 get_all_properties 13
13.2.2.8 Deleting Properties 13
13.2.2.9 delete_property 13
13.2.2.10 delete_properties 13
13.2.2.11 delete_all_properties 13
13.2.2.12 Determining If a Property Is Already

 Defined . 13-1
13.2.3 PropertySetDef Interface 13

13.2.3.1 Retrieval of PropertySet Constraints . . . 13-
13.2.3.2 get_allowed_properties 13
13.2.3.3 Defining and Modifying Properties with

 Modes . 13-
13.2.3.4 define_properties_with_modes 13-
13.2.3.5 Getting and Setting Property Modes . . . 13-
13.2.3.6 get_property_modes 13
13.2.3.7 set_property_mode 13
13.2.3.8 set_property_modes 13

13.2.4 PropertiesIterator Interface 13
13.2.4.1 next_one, next_n 13
13.2.4.2 Destroying the Iterator 13-

13.2.5 PropertyNamesIterator Interface. 13
13.2.5.1 Resetting the Position in an Iterator . . . 13-
13.2.5.2 next_one, next_n 13
13.2.5.3 Destroying the Iterator 13-

13.2.6 PropertySetFactory Interface 13
13.2.7 PropertySetDefFactory Interface 13

14. Time Service Specification . 1

14.1 Introduction . 1
14.1.1 Time Service Requirements 1
14.1.2 Representation of Time. 1
14.1.3 Source of Time . 1
14.1.4 General Object Model 1
14.1.5 Conformance Points . 1

14.2 Basic Time Service. 1
14.2.1 Object Model . 14
14.2.2 Data Types . 1

14.2.2.1 Type TimeT . 14
CORBAservices December 1998 xvii

Contents

-6
-6
-6
-6
-7
-7
-7
4-8
-8
-8
-9
-9
-9
-9

4-9
-10
10
10
10
10
-11
-11
11
-11
12
-12
12
12
12

-13
-13
-13
-14
14
-14
15
-15
-15
16
-16
-16
16
-16
-16
-17
-17
-17

4-17
14.2.2.2 Type InaccuracyT 14
14.2.2.3 Type TdfT . 14
14.2.2.4 Type UtcT . 14
14.2.2.5 Type IntervalT . 14
14.2.2.6 Enum ComparisonType 14
14.2.2.7 Enum TimeComparison 14
14.2.2.8 Enum OverlapType 14

14.2.3 Exceptions . 1
14.2.3.1 TimeUnavailable 14

14.2.4 Universal Time Object (UTO) 14
14.2.4.1 Readonly attribute time 14
14.2.4.2 Readonly attribute inaccuracy 14
14.2.4.3 Readonly attribute tdf 14
14.2.4.4 Readonly attribute utc_time 14
14.2.4.5 Operation absolute_time 1
14.2.4.6 Operation compare_time 14
14.2.4.7 Operation time_to_interval 14-
14.2.4.8 Operation interval 14-

14.2.5 Time Interval Object (TIO). 14-
14.2.5.1 Readonly attribute time_interval 14-
14.2.5.2 Operation spans 14
14.2.5.3 Operation overlaps 14
14.2.5.4 Operation time . 14-

14.2.6 Time Service. 14
14.2.6.1 Operation universal_time 14-
14.2.6.2 Operation secure_universal_time 14
14.2.6.3 Operation new_universal_time 14-
14.2.6.4 Operation uto_from_utc 14-
14.2.6.5 Operation new_interval 14-

14.3 Timer Event Service . 14
14.3.1 Object Model . 14
14.3.2 Usage . 14
14.3.3 Data Types . 14

14.3.3.1 Enum TimeType 14-
14.3.3.2 Enum EventStatus 14
14.3.3.3 Type TimerEventT 14-

14.3.4 Exceptions . 14
14.3.5 Timer Event Handler . 14

14.3.5.1 Attribute status 14-
14.3.5.2 Operation time_set 14
14.3.5.3 Operation set_timer 14
14.3.5.4 Operation cancel_timer 14-
14.3.5.5 Operation set_data 14

14.3.6 Timer Event Service . 14
14.3.6.1 Operation register 14
14.3.6.2 Operation unregister 14
14.3.6.3 Operation event_time 14

14.4 Conformance . 1
xviii CORBAservices December 1998

Contents

-1
5-2
5-2
5-3
5-3
5-4
5-5
-5
5-5
-5
-5

-6
-6
6
-6
7
-7
5-7
-7
-8
-8

5-9
-10
-10
1
-11

-12
13
13
-13

-14
15
-15
6

5-17

5-18
18
20
-21
22
-22
-24
25
6

15. Security Service Specification . 15
15.1 Introduction to Security . 1

15.1.1 Why Security? . 1
15.1.2 What Is Security? . 1
15.1.3 Threats in a Distributed Object System 1
15.1.4 Summary of Key Security Features 1
15.1.5 Goals . 1

15.1.5.1 Simplicity . 15
15.1.5.2 Consistency . 1
15.1.5.3 Scalability . 15
15.1.5.4 Usability for End Users 15
15.1.5.5 Usability for Administrators 15
15.1.5.6 Usability for Implementors 15
15.1.5.7 Flexibility of Security Policy 15-
15.1.5.8 Independence of Security Technology . 15
15.1.5.9 Application Portability 15-
15.1.5.10 Interoperability 15
15.1.5.11 Performance . 1
15.1.5.12 Object Orientation 15
15.1.5.13 Specific Security Goals 15
15.1.5.14 Security Architecture Goals 15

15.2 Introduction to the Specification . 1
15.2.1 Specification Structure 15

15.2.1.1 Structure of the Chapter 15
15.2.1.2 Normative and Non-normative Material 15-1
15.2.1.3 Section Summaries 15

15.2.2 CORBA Security and Secure Interoperability
Feature Packages . 15

15.2.2.1 Main Security Functionality Packages . 15-
15.2.2.2 Optional Security Functionality Packages 15-
15.2.2.3 Security Replaceability Packages 15
15.2.2.4 Common Secure Interoperability (CSI)

 Feature packages 15
15.2.2.5 SECIOP Interoperability package 15-
15.2.2.6 Security Mechanism packages 15
15.2.2.7 SECIOP Plus DCE-CIOP Interoperability15-1

15.2.3 Feature Packages and Modules. 1

15.3 Security Reference Model . 1
15.3.1 Definition of a Security Reference Model 15-
15.3.2 Principals and Their Security Attributes. 15-
15.3.3 Secure Object Invocations 15

15.3.3.1 Establishing Security Associations 15-
15.3.3.2 Message Protection 15

15.3.4 Access Control Model 15
15.3.4.1 Object Invocation Access Policy 15-
15.3.4.2 Application Access Policy 15-2
CORBAservices December 1998 xix

Contents

-26
27
27

8
28
-30
31
31
2
35

35
-35
-38
38
41
42
42
44

44

44

45
45

-45
6
46
47
7
8
8

-49
50
-51
-53
53
-55
-56
56
-56
-58
58
5

9
87

-88
15.3.4.3 Access Policies 15
15.3.4.4 Privilege Attributes 15-
15.3.4.5 Control Attributes 15-
15.3.4.6 Access Policies Supported by This

 Specification . 15-2
15.3.5 Auditing . 15-
15.3.6 Delegation . 15

15.3.6.1 Privilege Delegation 15-
15.3.6.2 Overview of Delegation Schemes 15-
15.3.6.3 Facilities Potentially Available 15-3
15.3.6.4 Specifying Delegation Options 15-
15.3.6.5 Technology Support for Delegation

 Options . 15-
15.3.7 Non-repudiation . 15
15.3.8 Domains . 15

15.3.8.1 Security Policy Domains 15-
15.3.8.2 Security Environment Domains 15-
15.3.8.3 Security Technology Domains 15-
15.3.8.4 Domains and Interoperability 15-

15.3.9 Security Management and Administration 15-
15.3.9.1 Managing Security Policy Domains. . . . 15-
15.3.9.2 Managing Security Environment

 Domains . 15-
15.3.9.3 Managing Security Technology

 Domains . 15-
15.3.10 Implementing the Model 15-

15.4 Security Architecture . 15
15.4.1 Different Users’ View of the Security Model . . 15-4

15.4.1.1 Enterprise Management View 15-
15.4.1.2 End User’s View 15-
15.4.1.3 Application Developer’s View 15-4
15.4.1.4 Administrator’s View 15-4
15.4.1.5 Object System Implementor’s View . . . 15-4

15.4.2 Structural Model. 15
15.4.2.1 Application Components 15-
15.4.2.2 ORB Services . 15
15.4.2.3 Security Services 15
15.4.2.4 Security Policies and Domain Objects . 15-

15.4.3 Security Technology . 15
15.4.4 Basic Protection and Communications 15

15.4.4.1 Environment Domains 15-
15.4.4.2 Component Protection 15

15.4.5 Security Object Models 15
15.4.5.1 The Model as Seen by Applications . . . 15-
15.4.5.2 Administrative Model 15-7
15.4.5.3 The Model as Seen by the Objects

 Implementing Security 15-7
15.4.5.4 Summary of Objects in the Model 15-

15.5 Application Developer’s Interfaces 15
xx CORBAservices December 1998

Contents

-88
89
89
-90
0

90
0

1
3
-94
4

95
9
-99
9

01

2
4
05

05
07
08
13

13

14

15
6

16
117
17
18

18
9
20

20
20
1
21

21
23

24

130
131
15.5.1 Introduction . 15
15.5.1.1 Security Functionality Packages 15-
15.5.1.2 Introduction to the Interfaces 15-

15.5.2 Finding Security Features 15
15.5.2.1 Description of Facilities 15-9

15.5.3 Authentication of Principals 15-
15.5.3.1 Description of Facilities 15-9
15.5.3.2 The SecurityLevel2::Principal

 Authenticator Interface 15-9
15.5.3.3 Portability Implications 15-9

15.5.4 The Credentials Object 15
15.5.4.1 Description of Facilities 15-9
15.5.4.2 The SecurityLevel2::Credentials

 Interface . 15-
15.5.4.3 Portability Implications 15-9

15.5.5 Operations on Object Reference 15
15.5.5.1 Description of Facilities 15-9
15.5.5.2 Client-Side Invocation Policy

 Objects . 15-1
15.5.5.3 Security-Relevant Operations in the

 CORBA::Object Interface 15-10
15.5.5.4 Portability Implications 15-10

15.5.6 Security Operations on Current 15-1
15.5.6.1 Description . 15-1
15.5.6.2 The SecurityLevel1::Current Interface . 15-1
15.5.6.3 The SecurityLevel2::Current Interface . 15-1

15.5.7 Security Audit . 15-1
15.5.7.1 Description of Facilities 15-1
15.5.7.2 The SecurityLevel2::AuditDecision

 Interface . 15-1
15.5.7.3 The SecurityLevel2::AuditChannel

 Interface . 15-1
15.5.7.4 Portability Implications 15-11

15.5.8 Administering Security Policy 15-1
15.5.9 Access Control . 15-

15.5.9.1 Description of Facilities 15-1
15.5.9.2 The Access Decision Object 15-1
15.5.9.3 The SecurityLevel2::AccessDecision

 Interface . 15-1
15.5.9.4 Portability Implications 15-11

15.5.10 Delegation Facilities. 15-1
15.5.10.1 Description of Facilities 15-1
15.5.10.2 Operations . 15-1
15.5.10.3 Portability Implications 15-12

15.5.11 Non-repudiation . 15-1
15.5.11.1 Description of Facilities 15-1
15.5.11.2 Non-repudiation Service Data Types . 15-1
15.5.11.3 The NRservice::NRCredentials

 Interface . 15-1

15.6 Administrator’s Interfaces . 15-
15.6.1 Concepts . 15-
CORBAservices December 1998 xxi

Contents

31
31
31
32

32
133
33

34

36
37
37

41
44

44
47
48
49

0

2
53

54
54

156
56

58
58
61

61
62

62
65

66
69
69
69
70
70
170

70
70
15.6.1.1 Administrators . 15-1
15.6.1.2 Policy Domains 15-1
15.6.1.3 Security Policies 15-1

15.6.2 Domain Management 15-1
15.6.3 Security Policies Introduction 15-1
15.6.4 Access Policies . 15-

15.6.4.1 Rights . 15-1
15.6.4.2 The SecurityLevel2::RequiredRights

 Interface . 15-1
15.6.4.3 The SecurityAdmin::AccessPolicy

 Interface . 15-1
15.6.4.4 Specific Invocation Access Policies . . . 15-1
15.6.4.5 The Domain AccessPolicy Object 15-1
15.6.4.6 The SecurityAdmin::DomainAccessPolicy

 Interface . 15-1
15.6.5 Audit Policies . 15-1

15.6.5.1 The SecurityAdmin::AuditPolicy
 Interface . 15-1

15.6.6 Secure Invocation and Delegation Policies. . 15-1
15.6.6.1 Secure Invocation Policies 15-1
15.6.6.2 Secure Association Options 15-1
15.6.6.3 The SecurityAdmin::SecureInvocation

 Policy Interface 15-15
15.6.6.4 The SecurityAdmin::Delegation

 Policy Interface 15-15
15.6.7 Non-repudiation Policy Management 15-1

15.6.7.1 Data Types for Non-repudiation Policy
 Management Interfaces 15-1

15.6.7.2 The NRservice::NRPolicy Interface . . . 15-1

15.7 Implementor’s Security Interfaces 15-
15.7.1 Security Interceptors. 15-1

15.7.1.1 Invocation Time Policies 15-1
15.7.1.2 Secure Invocation Interceptor 15-1
15.7.1.3 Access Control Interceptor 15-1

15.7.2 Implementation-Level Security Object
Interfaces . 15-1

15.7.2.1 The Vault Object 15-1
15.7.2.2 The SecurityReplaceable::Vault

 Interface . 15-1
15.7.2.3 The Security Context Object 15-1
15.7.2.4 The SecurityReplaceable::Security

 Context Interface 15-1
15.7.2.5 The Credentials Object 15-1
15.7.2.6 The Access Decision Object 15-1
15.7.2.7 Audit Objects . 15-1
15.7.2.8 Principal Authentication 15-1
15.7.2.9 Non-repudiation 15-1

15.7.3 Replaceable Security Services 15-
15.7.3.1 Replacing Authentication and Security

 Association Services 15-1
15.7.3.2 Replacing Access Control Policies 15-1
xxii CORBAservices December 1998

Contents

70
71
71
1

172
72
73

74
74
175

75
75

76
77
178

78
79
81
81
83
84
84

84
84
4

85

85
85
86

86

86

87
87
88
88
9
9

0
90

90
15.7.3.3 Replacing Audit Services 15-1
15.7.3.4 Replacing Non-repudiation Services . . . 15-1
15.7.3.5 Other Replaceability 15-1
15.7.3.6 Linking to External Security Services . . 15-17

15.8 Security Interoperability Protocols. 15-
15.8.1 Introduction . 15-1
15.8.2 Interoperability Model 15-1

15.8.2.1 Security Information in the Object
 Reference . 15-1

15.8.2.2 Establishing a Security Association . . . 15-1
15.8.2.3 Protecting Messages 15-
15.8.2.4 Security Mechanisms for Secure Object

 Invocations . 15-1
15.8.2.5 Security Mechanism Types 15-1
15.8.2.6 Interoperating between Security Policy

 Domains . 15-1
15.8.2.7 Secure Interoperability Bridges 15-1

15.8.3 Protocol Enhancements 15-
15.8.4 CORBA Interoperable Object Reference with

Security . 15-1
15.8.4.1 Security Components of the IOR 15-1
15.8.4.2 IOR Example . 15-1
15.8.4.3 Operational Semantics 15-1

15.8.5 Common Secure Interoperability Levels . . . 15-1
15.8.6 Key Distribution Types. 15-1
15.8.7 Security Mechanisms Hosted on SECIOP . . 15-1

15.8.7.1 SPKM Protocol 15-1
15.8.7.2 GSS Kerberos Protocol 15-1
15.8.7.3 CSI-ECMA protocol 15-18

15.8.8 Security Mechanisms Hosted Directly on
IIOP . 15-1

15.8.9 Choices of Protocols, Cryptographic Profiles,
and Key Technologies 15-1

15.8.9.1 Choice of Protocol and Key Technology 15-1
15.8.9.2 Cryptographic Profiles 15-1
15.8.9.3 Conformance to External Security

 Mechanisms . 15-1
15.8.10 Common Secure Interoperability

Requirements . 15-1
15.8.10.1 CORBA Standard Security

 Mechanisms . 15-1
15.8.10.2 International Deployment 15-1
15.8.10.3 Consistency . 15-1
15.8.10.4 Scalability . 15-1
15.8.10.5 Flexibility of Security Policy 15-18
15.8.10.6 Application Portability 15-18
15.8.10.7 Security Services Portability/

 Replaceability 15-19
15.8.10.8 Performance . 15-1
15.8.10.9 Identifying Encumbered Technology . 15-1
CORBAservices December 1998 xxiii

Contents

91
91
91
2
94
94
94
94
94
95
95
95
96
97

97
98

9

0
00

1
01
02

2

03
03
03

204
05
206
07
9

10
211
12

12

13
13
13
14
14
15.8.11 Relation to CORBA Security Facilities and
Interfaces . 15-1

15.8.11.1 Functionality . 15-1
15.8.11.2 Replaceability 15-1
15.8.11.3 Levels of Interoperability 15-19

15.8.12 Security Functionality 15-1
15.8.12.1 Authentication 15-1
15.8.12.2 Access Control 15-1
15.8.12.3 Audit . 15-1
15.8.12.4 Secure Invocation 15-1
15.8.12.5 Delegation Facilities 15-1
15.8.12.6 Non-repudiation 15-1
15.8.12.7 Security Policies 15-1

15.8.13 Model for Use and Contents of Credentials . 15-1
15.8.13.1 Credential Content at the Client 15-1
15.8.13.2 Attributes During Transmission 15-1
15.8.13.3 Attributes at the Target 15-1
15.8.13.4 Mapping Security Names to Externally

 Valid Identities 15-19
15.8.13.5 Mapping Other Attributes to Externally

 Valid IDL Attributes 15-199
15.8.13.6 Mapping to Local Attribute Values . . . 15-20

15.8.14 CORBA Interfaces . 15-2
15.8.14.1 Service Options for Common Secure

 Interoperability 15-20
15.8.14.2 Mechanism Types 15-2
15.8.14.3 Delegation-Related Interfaces 15-2

15.8.15 Support for CORBA Security Facilities and
Extensibility . 15-20

15.8.16 Security Replaceability for ORB Security
Implementors . 15-2

15.8.16.1 Attribute Mapping 15-2
15.8.16.2 Use of GSS-API 15-2

15.9 Secure Inter-ORB Protocol (SECIOP) 15-
15.9.1 Architectural Assumptions 15-2
15.9.2 SECIOP Sequencing Layer. 15-

15.9.2.1 Protocol State . 15-2
15.9.2.2 Protocol Initialization 15-20
15.9.2.3 Upon Receipt of a SequencedData

 Frame . 15-2
15.9.2.4 Sending a SequencedDataFrame 15-

15.9.3 SECIOP Context Management Layer 15-2
15.9.3.1 SECIOP Context Management Layer

 Message Header 15-2
15.9.3.2 SECIOP Context Management Layer

 Protocol . 15-2
15.9.3.3 ContextId . 15-2
15.9.3.4 ContextIdDefn . 15-2
15.9.3.5 TokenType . 15-2
15.9.3.6 Message Definitions 15-2
xxiv CORBAservices December 1998

Contents

17

17

-224
24

225
25
26
7

7

27
227
28

28
28
29
230
30
31
1

231
31

32
32
32
2

32
32
33
33
33
34
34
34

-234
34
4

34
34
35

35
35
15.9.4 SECIOP Context Management Finite State
Machine Tables. 15-2

15.9.4.1 SECIOP Context Management Protocol
 State Tables . 15-2

15.10 The SECIOP-Hosted CSI Protocols 15
15.10.1 IOR. 15-2
15.10.2 Mechanism Tags . 15-
15.10.3 Association Options 15-2
15.10.4 Cryptographic Profiles 15-2

15.10.4.1 Key Establishment Algorithms 15-22
15.10.4.2 Common Message Protection

 Algorithms . 15-22
15.10.4.3 Cryptographic Profiles Supported by

 CSI Protocols . 15-2
15.10.5 Security Name . 15-
15.10.6 Security Administration Domains 15-2
15.10.7 Mapping of Common Elements to the SECIOP

Protocol . 15-2
15.10.7.1 Basic Token Format 15-2
15.10.7.2 Inner Context Tokens 15-2

15.10.8 CSI Protocols . 15-
15.10.8.1 SPKM Protocol 15-2
15.10.8.2 GSS Kerberos Protocol 15-2
15.10.8.3 CSI-ECMA Protocol 15-23

15.11 SPKM Protocol . 15-
15.11.1 Cryptographic Profiles. 15-2

15.11.1.1 MD5_RSA . 15-2
15.11.1.2 MD5_DES_CBC 15-2
15.11.1.3 DES_CBC . 15-2
15.11.1.4 MD5_DES_CBC_SOURCE 15-23
15.11.1.5 DES_CBC_SOURCE 15-2

15.11.2 IOR Encoding. 15-2
15.11.3 Using SPKM for SECIOP 15-2

15.11.3.1 The Initial Context Token 15-2
15.11.3.2 The Final Context Token 15-2
15.11.3.3 The Continuation Context Token 15-2
15.11.3.4 The Message Protection Token 15-2
15.11.3.5 The Context Delete Token 15-2

15.12 GSS Kerberos Protocol . 15
15.12.1 Cryptographic Profiles 15-2

15.12.1.1 DES_CBC_DES_MAC 15-23
15.12.1.2 DES_CBC_MD5 15-2
15.12.1.3 DES_MAC . 15-2
15.12.1.4 MD5 . 15-2

15.12.2 Mandatory and Optional Cryptographic
Profiles . 15-2

15.12.3 IOR Encoding. 15-2
CORBAservices December 1998 xxv

Contents

235
36
36
36
36

37
237
237
38

38
38
239
39
39

40

0
40
40
42
43
43
44
44
244
45
45
45
46
48
249
50

-250
52
52

252
53
53

54

5
55
256
56

257
15.12.4 SECIOP Tokens . 15-
15.12.4.1 The Initial Context Token 15-2
15.12.4.2 The Final Context Token 15-2
15.12.4.3 The Continuation Context Token 15-2
15.12.4.4 The Message Protection Token 15-2

15.13 CSI-ECMA Protocol . 15-2
15.13.1 Concepts . 15-

15.13.1.1 Separation of Concerns 15-
15.13.2 Security Attributes . 15-2

15.13.2.1 Privilege Attributes 15-2
15.13.2.2 Miscellaneous Attributes 15-2

15.13.3 Target Access Enforcement Function 15-
15.13.4 Basic and Dialogue Keys 15-2
15.13.5 Key Distribution Schemes 15-2

15.13.5.1 Basic Symmetric Key Distribution
 Scheme . 15-2

15.13.5.2 Symmetric Key Distribution with
 Asymmetric KDS 15-24

15.13.5.3 Full Public Key Scheme 15-2
15.13.6 Cryptographic Algorithms and Profiles 15-2
15.13.7 PAC Protection and Delegation - Outline . . . 15-2
15.13.8 PPID Method . 15-2
15.13.9 PV/CV Delegation Method. 15-2

15.13.9.1 Restrictions . 15-2
15.13.10 Mechanism Identifiers and IOR Encoding . 15-2
15.13.11 Security Names . 15-

15.13.11.1 Kerberos Naming 15-2
15.13.11.2 Directory Naming 15-2

15.13.12 SECIOP Tokens When Using CSI-ECMA . 15-2
15.13.13 Initial Context Token 15-2

15.13.13.1 TargetAEF Part 15-2
15.13.14 TargetResultToken 15-
15.13.15 ErrorToken . 15-2
15.13.16 Per-Message Tokens 15

15.13.16.1 MICToken . 15-2
15.13.16.2 WrapToken . 15-2

15.13.17 ContextDeleteToken 15-
15.13.18 Security Attributes 15-2

15.13.18.1 Data Structures 15-2
15.13.18.2 Attribute Types 15-2

15.13.19 Privilege and Miscellaneous Attribute
 Definitions . 15-25

15.13.20 Qualifier Attributes 15-2
15.13.21 Target Names . 15-
15.13.22 PAC Format . 15-2
15.13.23 Common Contents Fields 15-
xxvi CORBAservices December 1998

Contents

57
59
60
261
62
62
63
64

64
5

66
67
8

68
69

0
71

72
72
72
72
73

73
73
73

4
6
8

278

80

-1

6-2
-3
-3

6-3
-4

16-4
6-4
15.13.24 Specific Certificate Contents for PACs 15-2
15.13.24.1 Protection Methods 15-2
15.13.24.2 External Control Values Construct . . 15-2

15.13.25 Check Value . 15-
15.13.26 Basic Key Distribution 15-2
15.13.27 Keying Information Syntax. 15-2
15.13.28 Summary of Key Distribution Schemes . . . 15-2
15.13.29 CSI-ECMA Secret Key Mechanism 15-2

15.13.29.1 Profile of Ticket as Used in
 SymmIntradomain Scheme 15-2

15.13.30 CSI-ECMA Hybrid Mechanism 15-26
15.13.30.1 Hybrid Inter-domain Key Distribution

 Scheme Data Elements 15-2
15.13.30.2 Key Establishment Data Elements . . 15-2
15.13.30.3 Key Establishment Algorithm 15-26
15.13.30.4 Profile of Ticket as Used in Hybrid

 Interdomain Scheme 15-2
15.13.31 CSI-ECMA Public Mechanism. 15-2

15.13.31.1 Profile of SPKM_REQ Used in
 Public Key Mechanism 15-27

15.13.32 Dialogue Key Block 15-2

15.14 Integrating SSL with CORBA Security 15-2
15.14.1 Introduction . 15-2
15.14.2 Cryptographic Profiles 15-2
15.14.3 IOR Encoding. 15-2
15.14.4 Relation to SECIOP 15-2
15.14.5 DCE-CIOP with Security 15-2
15.14.6 Goals of Secure DCE-CIOP 15-2
15.14.7 Secure DCE-CIOP Overview 15-2

15.14.7.1 IOR Security Components for
 DCE-CIOP . 15-27

15.14.7.2 TAG_ASSOCIATION_OPTIONS . . . 15-27
15.14.7.3 TAG_SEC_NAME 15-27

15.14.8 DCE RPC Security Services 15-
15.14.8.1 Secure DCE-CIOP Operational

 Semantics . 15-2

16. Trading Object Service Specification. 16

16.1 Overview . 1
16.1.1 Diversity and Scalability. 16
16.1.2 Linking Traders . 16
16.1.3 Policy . 1
16.1.4 Additional ObjectID . 16

16.2 Concepts and Data Types .
16.2.1 Exporter . 1
CORBAservices December 1998 xxvii

Contents

6-4
6-4
-5
6-7
6-7
-8
-8
-9

6-9
6-9
-10
11
-12
-16
6
17
18
18
18
8

-19
20
-21

6-23
-23

23

24

25
6

27
27
-27

6-28
-28
-29
29
30

6-30
-30
31
-35
-35
36
16.2.2 Importer . 1
16.2.3 Service Types . 1

16.2.3.1 Service Type Model 16
16.2.4 Properties . 1
16.2.5 Service Offers. 1

16.2.5.1 Modifiable Properties 16
16.2.5.2 Dynamic Properties 16

16.2.6 Offer Identifier . 16
16.2.7 Offer Selection . 1

16.2.7.1 Standard Constraint Language 1
16.2.7.2 Preferences . 16
16.2.7.3 Links . 16-
16.2.7.4 Policies . 16
16.2.7.5 Trader Policies . 16
16.2.7.6 Link Follow Behavior 16-1
16.2.7.7 Importer Policies 16-
16.2.7.8 Exporter Policies 16-
16.2.7.9 Link Creation Policies 16-

16.2.8 Interworking Mechanisms 16-
16.2.8.1 Link Traversal Control 16-1
16.2.8.2 Federated Query Example 16
16.2.8.3 Proxy Offers . 16-

16.2.9 Trader Attributes. 16

16.3 Exceptions . 1
16.3.1 For CosTrading module 16

16.3.1.1 Exceptions used in more than one
 interface . 16-

16.3.1.2 Additional Exceptions for Lookup
 Interface . 16-

16.3.1.3 Additional Exceptions For Register
 Interface . 16-

16.3.1.4 Additional Exceptions for Link Interface 16-2
16.3.1.5 Additional Exceptions for Proxy Offer

 Interface . 16-
16.3.2 For CosTradingDynamic module 16-
16.3.3 For CosTradingRepos module 16

16.4 Abstract Interfaces . 1
16.4.1 TraderComponents . 16
16.4.2 SupportAttributes . 16
16.4.3 ImportAttributes . 16-
16.4.4 LinkAttributes . 16-

16.5 Functional Interfaces . 1
16.5.1 Lookup . 16

16.5.1.1 Query Operation 16-
16.5.2 Offer Iterator. 16

16.5.2.1 Signature . 16
16.5.2.2 Function . 16-
xxviii CORBAservices December 1998

Contents

-36
39
41
-41
2
4

-45
45
-45
46
-46
-48
48
48
-49
1

52
52
53
3
-54
55
8
58

-59

-67

-68

-69
69
-69
70
70
70

-71
-71
72
-72
72
73
73

-1

7-2

17-2
-3
-4
-5
16.5.3 Register . 16
16.5.3.1 Export Operation 16-
16.5.3.2 Withdraw Operation 16-
16.5.3.3 Describe Operation 16
16.5.3.4 Modify Operation 16-4
16.5.3.5 Withdraw Using Constraint Operation . 16-4
16.5.3.6 Resolve Operation 16

16.5.4 Offer Id Iterator . 16-
16.5.4.1 Signature . 16
16.5.4.2 Function . 16-

16.5.5 Admin. 16
16.5.5.1 Attributes and Set Operations 16
16.5.5.2 List Offers Operation 16-
16.5.5.3 List Proxies Operation 16-

16.5.6 Link . 16
16.5.6.1 Add_Link Operation 16-5
16.5.6.2 Remove Link Operation 16-
16.5.6.3 Describe Link Operation 16-
16.5.6.4 List Links Operation 16-
16.5.6.5 Modify Link Operation 16-5

16.5.7 Proxy . 16
16.5.7.1 Export Proxy Operation 16-
16.5.7.2 Withdraw Proxy Operation 16-5
16.5.7.3 Describe Proxy Operation 16-

16.6 Service Type Repository . 16

16.7 Dynamic Property Evaluation interface 16

16.8 Conformance Criteria. 16
16.8.1 Conformance Requirements for Trading Interfaces

as Server . 16
16.8.1.1 Lookup Interface 16-
16.8.1.2 Register Interface 16
16.8.1.3 Admin Interface 16-
16.8.1.4 Link Interface . 16-
16.8.1.5 Proxy Interface 16-

16.8.2 Conformance Requirements for Implementation
Conformance Classes . 16

16.8.2.1 Query Trader . 16
16.8.2.2 Simple Trader . 16-
16.8.2.3 Stand-alone Trader 16
16.8.2.4 Linked Trader . 16-
16.8.2.5 Proxy Trader . 16-
16.8.2.6 Full-service Trader 16-

17. Object Collection Specification . 17

17.1 Overview . 1

17.2 Service Structure .
17.2.1 Combined Property Collections 17

17.2.1.1 Restricted Access Collections 17
17.2.1.2 Collection Factories 17
CORBAservices December 1998 xxix

Contents

7-5
7-7
-7

-7
-8
-8

-10
-10
-10
-11
-11
11
-12
12
13
-13
-13

7-14
-14

-14
14
-15
-15

-15
-15
15
18
19
21
21
28
31
37
7

42
0

50
52

55

55
-56
-57
57
57
60
-61
-61
17.2.2 Iterators . 1
17.2.3 Function Interfaces . 1

17.2.3.1 Collectible Elements and Type Safety . 17
17.2.3.2 Collectible Elements and the Operations

 Interface . 17
17.2.3.3 Collectible Elements of Key Collections 17

17.2.4 List of Interfaces Defined 17

17.3 Combined Collections . 17
17.3.1 Combined Collections Usage Samples 17

17.3.1.1 Bag, SortedBag 17
17.3.1.2 EqualitySequence 17
17.3.1.3 Heap . 17
17.3.1.4 KeyBag, KeySortedBag 17-
17.3.1.5 KeySet, KeySortedSet 17
17.3.1.6 Map, SortedMap 17-
17.3.1.7 Relation, SortedRelation 17-
17.3.1.8 Set, SortedSet . 17
17.3.1.9 Sequence . 17

17.4 Restricted Access Collections . 1
17.4.1 Restricted Access Collections Usage Samples . 17

17.4.1.1 Deque . 17
17.4.1.2 PriorityQueue . 17-
17.4.1.3 Queue . 17
17.4.1.4 Stack . 17

17.5 The CosCollection Module . 17
17.5.1 Interface Hierarchies . 17

17.5.1.1 Collection Interface Hierarchies 17-
17.5.1.2 Iterator Hierarchy 17-

17.5.2 Exceptions and Type Definitions 17-
17.5.3 Abstract Collection Interfaces 17-

17.5.3.1 The Collection Interface 17-
17.5.3.2 The OrderedCollection Interface 17-
17.5.3.3 The SequentialCollection Interface 17-
17.5.3.4 The SortedCollection Interface 17-
17.5.3.5 The EqualityCollection Interface 17-3
17.5.3.6 The KeyCollection Interface 17-
17.5.3.7 The EqualityKeyCollection Interface . . 17-5
17.5.3.8 The KeySortedCollection Interface 17-
17.5.3.9 The EqualitySortedCollection Interface 17-
17.5.3.10 The EqualityKeySortedCollection

 Interface . 17-
17.5.3.11 The EqualitySequentialCollection

 Interface . 17-
17.5.4 Concrete Collections Interfaces 17

17.5.4.1 The KeySet Interface 17
17.5.4.2 The KeyBag Interface 17-
17.5.4.3 The Map Interface 17-
17.5.4.4 The Relation Interface 17-
17.5.4.5 The Set Interface 17
17.5.4.6 The Bag Interface 17
xxx CORBAservices December 1998

Contents

-61
62
62

-62
-63
-63
-63
-63
-64
-64
-64
64

-65
-65
-66
-67
68
-69

70

4
74
75
75
76
-76
77
77
78
78
79
-79
80
-80
-81
-81
-82
82

-82
82
-83
-83

4
-84
84
85
96
04
06
09
17.5.4.7 The KeySortedSet Interface 17
17.5.4.8 The KeySortedBag Interface 17-
17.5.4.9 The SortedMap Interface 17-
17.5.4.10 The SortedRelation Interface 17
17.5.4.11 The SortedSet Interface 17
17.5.4.12 The SortedBag Interface 17
17.5.4.13 The Sequence Interface 17
17.5.4.14 The EqualitySequence Interface 17
17.5.4.15 The Heap Interface 17

17.5.5 Restricted Access Collection Interfaces 17
17.5.6 Abstract RestrictedAccessCollection Interface. 17

17.5.6.1 The RestrictedAccessCollection Interface 17-
17.5.7 Concrete Restricted Access Collection

Interfaces . 17
17.5.7.1 The Queue Interface 17
17.5.7.2 The Dequeue Interface 17
17.5.7.3 The Stack Interface. 17
17.5.7.4 The PriorityQueue Interface 17-

17.5.8 Collection Factory Interfaces 17
17.5.8.1 The CollectionFactory and Collection

 Factories Interfaces 17-
17.5.8.2 The RACollectionFactory and RA

 CollectionFactories Interfaces 17-7
17.5.8.3 The KeySetFactory Interface 17-
17.5.8.4 The KeyBagFactory Interface 17-
17.5.8.5 The MapFactory Interface 17-
17.5.8.6 The RelationFactory Interface 17-
17.5.8.7 The SetFactory Interface 17
17.5.8.8 The BagFactory Interface 17-
17.5.8.9 The KeySortedSetFactory Interface . . . 17-
17.5.8.10 The KeySortedBagFactory Interface . . 17-
17.5.8.11 The SortedMapFactory Interface 17-
17.5.8.12 The SortedRelationFactory Interface . 17-
17.5.8.13 The SortedSetFactory Interface 17
17.5.8.14 The SortedBagFactory Interface 17-
17.5.8.15 The SequenceFactory Interface 17
17.5.8.16 The EqualitySequence Factory Interface 17
17.5.8.17 The HeapFactory Interface 17
17.5.8.18 The QueueFactory Interface 17
17.5.8.19 The StackFactory Interface 17-
17.5.8.20 The DequeFactory Interface 17
17.5.8.21 The PriorityQueueFactory Interface . . 17-

17.5.9 Iterator Interfaces . 17
17.5.9.1 Iterators as pointer abstraction 17
17.5.9.2 Iterators and support for generic

 programming . 17-8
17.5.9.3 Iterators and performance 17
17.5.9.4 The Managed Iterator Model 17-
17.5.9.5 The Iterator Interface 17-
17.5.9.6 The OrderedIterator Interface 17-
17.5.9.7 The SequentialIterator Interface 17-1
17.5.9.8 The KeyIterator Interface 17-1
17.5.9.9 The EqualityIterator Interface 17-1
CORBAservices December 1998 xxxi

Contents

0
10
10
13

15

15
117
17

21

22

24
31

32
32
33
17.5.9.10 The EqualityKeyIterator Interface 17-11
17.5.9.11 The SortedIterator Interface 17-1
17.5.9.12 The KeySortedIterator Interface 17-1
17.5.9.13 The EqualitySortedIterator Interface . . 17-1
17.5.9.14 The EqualityKeySortedIterator

 Interface . 17-1
17.5.9.15 The EqualitySequentialIterator

 Interface . 17-1
17.5.10 Function Interfaces . 17-

17.5.10.1 The Operations Interface 17-1
17.5.10.2 The Command and Comparator

 Interface . 17-1
17.5.10.3 Identification and Justification of

 Differences . 17-1
17.5.10.4 CosQueryCollection Module Detailed

 Comparison . 17-1
17.5.10.5 Containers . 17-1
17.5.10.6 Algorithms . 17-1
17.5.10.7 Iterators . 17-1
17.5.10.8 Consideration on choice 17-1
xxxii CORBAservices December 1998

List of Figures
2-3

3-2

3-6

14

 4-7

 4-7

-8

-11

-11

4-12

-12

-13

-14
Figure 2-1 An event channel as a collection of objects
conspiring to manage multiple simultaneous
consumer clients. .

Figure 3-1 A Naming Graph .

Figure 3-2 The CosNaming Module .

Figure 3-3 The Names Library Interface in PIDL 3-

Figure 4-1 Push-style Communication Between a Supplier and
a Consumer .

Figure 4-2 Pull-style Communication Between a Supplier and a
Consumer .

Figure 4-3 The OMG IDL Module CosEventComm 4

Figure 4-4 Push-style Communication Between a Supplier and
an Event Channel, and a Consumer and an Event
Channel . 4

Figure 4-5 Pull-style communication between a supplier and
an event channel and a consumer and the event
channel . 4

Figure 4-6 Push-style Communication Between a Supplier and
an Event Channel, and Pull-style Communication
Between a Consumer and an Event Channel

Figure 4-7 An Event Channel with Multiple Suppliers and
Multiple Consumers . 4

Figure 4-8 A newly created event channel. The channel has no
 suppliers or consumers . 4

Figure 4-9 State diagram of a proxy . 4
CORBAservices December 1998 xxxiii

-16

-20

4-21

-22

-25

 5-1

5-8

 5-9

5-12

-15

-18

5-20

-21

-22

-31

-32

-35

6-1

 6-2

6-3

 6-4

 6-5

 . 6-6
Figure 4-10 The CosEventChannelAdmin Module 4

Figure 4-11 Typed Push-style Communication Between a
Supplier and a Consumer . 4

Figure 4-12 Typed Pull-style Communication Between a Supplier
and a Consumer .

Figure 4-13 The IDL Module CosTypedEventComm 4

Figure 4-14 The CosTypedEventChannelAdmin Module 4

Figure 5-1 Roles in the Persistent Object Service

Figure 5-2 Major Components of the POS and their Interactions

Figure 5-3 The CosPersistencePID Module .

Figure 5-4 TheCosPersistencePO Module .

Figure 5-5 The CosPersistencePOM Module 5

Figure 5-6 Example to illustrate POMFunctions 5

Figure 5-7 The CosPersistencePDS Module

Figure 5-8 Direct Access Protocol Interfaces 5

Figure 5-9 The CosPersistencePDS_DA Module 5

Figure 5-10 Structure of a DDO . 5

Figure 5-11 The CosPersistenceDDO Module 5

Figure 5-12 The CosPersistenceDS_CLI Module 5

Figure 6-1 Life Cycle service defines how a client can create
an object “over there”.

Figure 6-2 Life Cycle Service defines how a client can move
or copy an object over there. .

Figure 6-3 The object life cycle problem for graphs of objects is
to determine the boundaries of a graph of objects and
operate on that graph. In the above example, a document
contains a graphic and a logo, refers to a dictionary and
is contained in a folder.

Figure 6-4 To create an object “over there” a client must
possess an object reference to a factory over there.
The client simply issues a request on the factory.

Figure 6-5 An example of a document factory interface. This
interface is defined for clients as a part of application
development. .

Figure 6-6 To delete an object, a client must posses an object
reference supporting the LifeCycleObject interface
and issues a remove request on the object.
xxxiv CORBAservices December 1998

 6-7

6-8

-10

-15

-19

-20

-21

 8-5

 8-6

 8-7

 8-8

-10

-24

 9-7

-8

 9-9

-10

-10

-14

-14

9-15
Figure 6-7 Life cycle services define how a client can move or
copy an object from here to there.

Figure 6-8 The FactoryFinder interface can be “mixed in” with
interfaces of more powerful finding services.

Figure 6-9 The CosLifeCycle Module . 6

Figure 6-10 The Life Cycle service provides a generic creation
capability. . 6

Figure 6-11 Factories assemble resources for the execution of an
object. . 6

Figure 6-12 In an administered environment, factory
implementations can delegate the creation problem
to a generic factory. . 6

Figure 6-13 The copy and move operations are passed a
FactoryFinder to represent "there." 6

Figure 8-1 Externalization control flow when streamable object
is not in a graph of related objects

Figure 8-2 Externalization control flow when streamable object
is a node in a graph of related objects

Figure 8-3 Internalization control flow when object is not in a
graph of related objects .

Figure 8-4 Internalization control flow when object is in a graph
of related objects .

Figure 8-5 Object Externalization Service Booch Class
(=Interface) Diagram . 8

Figure 8-6 Internalizing a node returns the new object and the
corresponding roles. 8

Figure 9-1 Base relationships .

Figure 9-2 Navigation functionality of base relationships 9

Figure 9-3 An example graph of related objects

Figure 9-4 Relationship interface hierarchy . 9

Figure 9-5 Role interface hierarchy . 9

Figure 9-6 Simple relationship type: documents reference books . . . 9

Figure 9-7 Simple relationship instance: my document references
the book “War and Peace“ . 9

Figure 9-8 A ternary check-out relationship type between books,
libraries and persons .
CORBAservices December 1998 xxxv

-16

-16

-17

17

-19

-21

-23

-34

-37

-38

-39

-48

-50

-4

-12

-45

-45

-46

-68

1-3

1-5

1-8

-10

-11

-14

-20

-21

-24

2-7

-14
Figure 9-9 An unsatisfactory representation of the ternary
check-out relationship using binary relationships 9

Figure 9-10 Another unsatisfactory representation 9

Figure 9-11 Creating a role for an object . 9

Figure 9-12 A fully established binary relationship 9-

Figure 9-13 The CosObjectIdentity Module . 9

Figure 9-14 The CosRelationships Module . 9

Figure 9-15 Two binary one-to-many containment relationships. 9

Figure 9-16 An example graph of related objects 9

Figure 9-17 A traversal of a graph for compound copy operation. . . . 9

Figure 9-18 How deep, shallow and none propagation values
affect nodes, roles and relationships. 9

Figure 9-19 The CosGraphs Module . 9

Figure 9-20 The CosContainment Module . 9

Figure 9-21 The CosReference Module . 9

Figure 10-1 Application Including Basic Elements 10

Figure 10-2 This figure illustrates the major components and
interfaces of the Transaction Service 10

Figure 10-3 X/Open client . 10

Figure 10-4 X/Open server . 10

Figure 10-5 Example . 10

Figure 10-6 Model interoperability example . 10

Figure 11-1 Query Evaluators: Nesting and Federation 1

Figure 11-2 Queryable Collections . 1

Figure 11-3 SQL Query = OQL . 1

Figure 11-4 Collection interface structure . 11

Figure 11-5 Query Framework interface hierarchy/structure 11

Figure 11-6 CosQueryCollection Module . 11

Figure 11-7 Query Evaluator and Queryable Collection 11

Figure 11-8 Query Manager and Query Object 11

Figure 11-9 QueryLanguageType Interface Hierarchy 11

Figure 12-1 Licensing Service Relationships . 1

Figure 12-2 Licensing Service Instance Diagram 12
xxxvi CORBAservices December 1998

-16

-17

3-5

3-7

3-9

-11

3-12

-14

-15

-16

3-18

3-19

-20

-20

3-20

-21

-21

-21

-22

4-3

4-5

-8

13

-19

-10

-18

-19

-21

21

5-23
Figure 12-3 Licensing Event Trace Diagram 12

Figure 12-4 CosLicensingManager Module . 12

Figure 13-1 Data types . 1

Figure 13-2 PropertySet interface exceptions . 1

Figure 13-3 Operations used to define new properties or set
new values . 1

Figure 13-4 Operations used to retrieve property names and
values . 13

Figure 13-5 Operations used to delete properties 1

Figure 13-6 is_property_defined operation . 13

Figure 13-7 Operations used to retrieve information related to
constraints . 13

Figure 13-8 Operations used to define new properties or values. . . . 13

Figure 13-9 Operations used to get and set property mode 1

Figure 13-10 reset operation . 1

Figure 13-11 next_one and next_n operations (properties) 13

Figure 13-12 destroy operation . 13

Figure 13-13 reset operation . 1

Figure 13-14 next_one, next_n operations (PropertyNames) 13

Figure 13-15 destroy operation . 13

Figure 13-16 PropetySetFactory interface . 13

Figure 13-17 PropertySetDefFactory interface. 13

Figure 14-1 General Object Model for Service 1

Figure 14-2 Object Model for Time Service . 1

Figure 14-3 Illustration of Interval Overlap . 14

Figure 14-4 Object Model of Timer Event Service 14-

Figure 14-5 Time Service and Proxies . 14

Figure 15-1 Structure of the Specification . 15

Figure 15-2 Modules and Their Relation to Layers of the
Architecture . 15

Figure 15-3 A Security model for object systems 15

Figure 15-4 Credential containing security attributes 15

Figure 15-5 Invocation of Target Object via ORB 15-

Figure 15-6 Message protection . 1
CORBAservices December 1998 xxxvii

-25

-26

-29

-30

-33

-33

-33

-34

-34

-36

-37

-38

-39

-40

-40

-40

-43

-50

-51

-53

-54

-57

-57

-59

-61

-62

-63

-64

-65

-66

-68

-68
Figure 15-7 Access control model . 15

Figure 15-8 Authorization model . 15

Figure 15-9 Auditing model . 15

Figure 15-10 Delegation model . 15

Figure 15-11 No delegation . 15

Figure 15-12 Simple delegation . 15

Figure 15-13 Composite delegation . 15

Figure 15-14 Combined privileges delegation 15

Figure 15-15 Traced delegation . 15

Figure 15-16 Proof of receipt . 15

Figure 15-17 Non-repudiation services . 15

Figure 15-18 Security policy domains . 15

Figure 15-19 Policy domain hierarchies . 15

Figure 15-20 Federated policy domains . 15

Figure 15-21 System- and application-enforced policies 15

Figure 15-22 Overlapping policy domains . 15

Figure 15-23 Framework of domains . 15

Figure 15-24 Structural model . 15

Figure 15-25 ORB services . 15

Figure 15-26 Object reference . 15

Figure 15-27 Domain objects . 15

Figure 15-28 Controlled relationship . 15

Figure 15-29 Object encapsulation . 15

Figure 15-30 Authentication . 15

Figure 15-31 Multiple credentials . 15

Figure 15-32 Changing security attributes . 15

Figure 15-33 Making a secure invocation . 15

Figure 15-34 Target object security . 15

Figure 15-35 Security-unaware intermediate object 15

Figure 15-36 Security-aware intermediate object 15

Figure 15-37 access_allowed application . 15

Figure 15-38 get_policy application . 15
xxxviii CORBAservices December 1998

-69

-69

5-70

5-71

-73

-74

-74

-78

-80

-81

-82

-83

5-85

-86

-87

157

73

196

98

04

204

05

46

56

336

38

340

341

9

363

64
Figure 15-39 audit_write application . 15

Figure 15-40 Audit decision object . 15

Figure 15-41 set_NR_features operation . 1

Figure 15-42 generate_token operation . 1

Figure 15-43 Non-repudiation service . 15

Figure 15-44 verify_evidence operation . 15

Figure 15-45 Proof of origin message . 15

Figure 15-46 Managing security policies . 15

Figure 15-47 Securing invocations . 15

Figure 15-48 get_policy operation . 15

Figure 15-49 ORB Security Services . 15

Figure 15-50 Access decision object . 15

Figure 15-51 Target objects sharing security names 1

Figure 15-52 Object created by application or factory 15

Figure 15-53 Relationship between main objects 15

Figure 15-54 Security Functionality Implemented by Security
Service Objects . 15-

Figure 15-55 Model for Secure Interoperability 15-1

Figure 15-56 Security Functionality Implemented by Security
Service Objects . 15-

Figure 15-57 Attribute Mapper Diagram . 15-1

Figure 15-58 Position of SECIOP Protocol . 15-2

Figure 15-59 Sublayers of SECIOP . 15-

Figure 15-60 Architectural Assumptions . 15-2

Figure 15-61 Initial Context Token . 15-2

Figure 15-62 Generalized Certificate’s Structural Components 15-2

Figure 15-63 Normal System Interactions . 15-

Figure 15-64 Distributed TCB . 15-3

Figure 15-65 Base Protection and Communications 15-

Figure 15-66 Protection Boundaries . 15-

Figure 15-67 Distribution of Security Functionality and Trust 15-34

Figure 15-68 Intended Use by AccessDecision 15-

Figure 15-69 Supporting Overlapping Access Policy Domains. 15-3
CORBAservices December 1998 xxxix

365

366

70

71

372

6-1

6-5

15

-19

-17

-17

-18

126
Figure 15-70 Hierarchical Domains . 15-

Figure 15-71 Retrieving Granted Rights . 15-

Figure 15-72 Mutual Authentication . 15-3

Figure 15-73 Confidential Message with Context Establishment 15-3

Figure 15-74 Fragmented GIOP Request with Context Establishment 15-

Figure 16-1 Interactions between a trader and its clients 1

Figure 16-2 Property Strength . 1

Figure 16-3 Pipeline View of Trader Query Steps and
Cardinality Constraint Application 16-

Figure 16-4 Flow of a query through a trader graph 16

Figure 17-1 Collections Interfaces Hierarchy 17

Figure 17-2 Restricted Access Collections Interface Hierarchy 17

Figure 17-3 Iterator Interface Hierarchy . 17

Figure 17-4 Inheritance Relationships . 17-
xl CORBAservices December 1998

List of Tables
3-9

-10

-10

-11

-14

-16

-17

-11

11

12

-30

-11

-11

-12
Table 3-5 Exceptions Raised by Binding Operations

Table 3-6 Exceptions Raised by Resolve Operation. 3

Table 3-7 Exceptions Raised by Unbind Operation 3

Table 3-8 Exceptions Raised by Creating New
Contexts . 3

Table 6-1 Suggested Conventions for Factory Finder
Keys . 6

Table 6-2 Suggested Conventions for Generic Factory
Keys . 6

Table 6-3 Suggested Criteria. 6

Table 8-1 Client Functional Interfaces support client’s model
of externalization . 8

Table 8-2 Service Construction Interfaces support service
implementation’s model of externalization. 8-

Table 8-3 Compound Externalization Interfaces support
service implementation’s model of graph externalization . 8-

Table 8-4 CORBA Tag Byte Values and Data Formats 8

Table 9-1 Interfaces Defined in the CosObjectIdentity
Module . 9

Table 9-2 Interfaces Defined in the CosRelationships
Module . 9

Table 9-3 Interfaces Defined in the CosGraphs Module 9
CORBAservices December 1998 xli

-12

-13

-36

-12

-19

3-3

-10

3-12

-13

-17

-19

5-17

138

38

139

139

-140

140

140

45

80

181

85
Table 9-4 Interfaces Defined in the CosContainment
Module . 9

Table 9-5 Interfaces Defined in the CosReference
Module . 9

Table 10-1 Use of Transaction Service Functionality. 10

Table 11-1 Interfaces Defined in the CosQueryCollection
Module . 11

Table 12-1 Exceptions Raised by Licensing Service
Operations. 12

Table 13-1 Property Service Interfaces. 1

Table 13-2 Exceptions Raised by Define Operations 13

Table 13-3 Exceptions Raised by List and Get
Properties Operations . 1

Table 13-4 Exceptions Raised by delete_properties
Operations. 13

Table 13-5 Exceptions Raised by define Operations 13

Table 13-6 Exceptions Raised by Get and Set Mode
Operations. 13

Table 15-1 Feature Packages and Modules. 1

Table 15-2 DomainAccessPolicy . 15-

Table 15-3 User Privilege Attributes (Not Defined by
This Specification) . 15-1

Table 15-4 DomainAccessPolicy (with Privilege
Attributes) . 15-

Table 15-5 DomainAccessPolicy (with Delegate
Entry) . 15-

Table 15-6 Interface Instances . 15

Table 15-7 DomainAccessPolicy (with Required
Rights Mapping) . 15-

Table 15-8 RequiredRights for Interfaces c1, c2
and c3 . 15-

Table 15-9 Standard Audit Policy. 15-1

Table 15-10 Definition of Association Options 15-1

Table 15-11 IOR Example . 15-

Table 15-12 CSI Functionality and Protocols. 15-1
xlii CORBAservices December 1998

218

221

41

41

42

55

264

64

68

70

276

79

08

08

309

310

10

18

18

54

54

6-10

-13

-15

-21

-56

7-4

-19
Table 15-13 SECIOP Context Management Finite State Machine
(Table 1) . 15-

Table 15-14 SECIOP Context Management Finite State Machine
(Table 2) . 15-

Table 15-15 Summary of Algorithm Usage 15-2

Table 15-16 Summary of Algorithm Classes 15-2

Table 15-17 Cryptographic Algorithm Usage Profiles 15-2

Table 15-18 Privilege and Miscellaneous Attributes 15-2

Table 15-19 Syntaxes Used for targetKDSpart and targetPart 15-

Table 15-20 Kerberos Ticket’s Mechanism Fields 15-2

Table 15-21 Ticket as Used in Hybrid Interdomain Scheme 15-2

Table 15-22 SPKM-REQ Used in Public Key Mechanism 15-2

Table 15-23 Association Option Mapping to DCE
Security. 15-

Table 15-24 Relationship between DCE-CIOP and DCE RPC
Authorization Service Identifiers 15-2

Table 15-25 Attribute Values . 15-3

Table 15-26 CORBA Rights Family Values 15-3

Table 15-27 System Audit Events . 15-

Table 15-28 Mechanism Ids . 15-

Table 15-29 Cryptographic Profile Ids . 15-3

Table 15-30 CORBA Security Functionality Checklist 15-3

Table 15-31 CORBA Secure Interoperability Checklist 15-3

Table 15-32 CORBA Security Functionality Checklist 15-3

Table 15-33 CORBA Secure Interoperability Checklist 15-3

Table 16-1 Preferences . 1

Table 16-2 Scoping Policies . 16

Table 16-3 Capability Supported Policies . 16

Table 16-4 Trader Attributes. 16

Table 16-5 Primary/Secondary Policy Parameters 16

Table 17-1 Interfaces derived from combinations of collection
properties . 1

Table 17-2 Iterators and Collections . 17
CORBAservices December 1998 xliii

-27

-72

-75

-76

-76

-77

77

8

-78

-79

-79

-80

-80

-81

-82
Table 17-3 Collection interfaces and the iterator interfaces
supported . 17

Table 17-4 Implementation Category Examples 17

Table 17-5 Required element and key-type specific user-defined
information for KeySetFactory. []- implied by
key_compare. . 17

Table 17-6 Required element and key-type specific user-defined
information for KeyBagFactory. []- implied by
key_compare. 17

Table 17-7 Required element and key-type specific user-defined
information for MapFactory. []- implied by
key_compare. . 17

Table 17-8 Required element and key-type specific user-defined
information for RelationFactory.[]- implied by
key_compare. 17

Table 17-9 Required element and key-type specific user-defined
information for SetFactory.[]- implied by compare. 17-

Table 17-10 Required element and key-type specific user-defined
information for BagFactory.[]- implied by compare. . . . 17-7

Table 17-11 Required element and key-type specific user-defined
information for KeySortedSetFactory.[]- implied
by key_compare. . 17

Table 17-12 Required element and key-type specific user-defined
information for KeySortedBagFactory.[]- implied
by key_compare. . 17

Table 17-13 Required element and key-type specific user-defined
information for SortedMapFactory.[]- implied by
key_compare. 17

Table 17-14 Required element and key-type specific user-defined
information for SortedRelationFactory.[]- implied
by key_compare. . 17

Table 17-15 Required element and key-type specific user-defined
information for SortedSetFactory. []- implied
by compare. . 17

Table 17-16 Required element and key-type specific user-defined
information for SortedBagFactory. []- implied
by compare. 17

Table 17-17 Required element and key-type specific user-defined
information for EqualitySequenceFactory. 17
xliv CORBAservices December 1998

-83
Table 17-18 Required element and key-type specific user-defined
information for PriorityQueueFactory. [] - implied
by key_compare. . 17
CORBAservices December 1998 xlv

xlvi CORBAservices December 1998

Preface
ent
 and
 Ltd
ns.

s at
ll
 by
 and

rted
 and
nted

ide a
,
ous

op a

ed.
0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification
later as a full CAE Specification. The collaboration between OMG and X/Open Co
ensures joint review and cohesive support for emerging object-based specificatio

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to fu
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 750 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to devel
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas
CORBAservices December 1998 xlvii

st of

 the

r
eed

elpful
o
sists

ive

d

to
on
g,

e
d in

,
stem
ity.

ized

s, an
antic

en
0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

0.2 Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards fo
object services; the benefits of compliance are outlined in the following section, “N
for Object Services.”

0.3 Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is h
to understand their context within OMG’s vision of object management. The key t
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture an
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary
construct any distributed application and are always independent of applicati
domains. For example, the Life Cycle Service defines conventions for creatin
deleting, copying, and moving objects; it does not dictate how the objects ar
implemented in an application. Specifications for Object Services are containe
this manual.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sy
management or electronic mail facility could be classified as a common facil
Information about Common Facilities is contained in CORBAfacilities: Common
Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standard
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
xlviii CORBAservices December 1998

ces,
as
ct

 the

. The
es a

ards

ests

only

subscribers. Meaningful, productive communication depends on additional interfa
protocols, and policies that are agreed upon outside the telephone system, such
telephones, modems and directory services. This is equivalent to the role of Obje
Services.

0.3.1 What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

0.4 Associated Documents

The CORBA documentation set includes the following books:

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the object services.

• CORBAfacilities: Common Facilities Architecture contains information about the
design of Common Facilites; it provides the framework for Common Facility
specifications.

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It also provides information about the policies and procedures of
OMG, such as how standards are proposed, evaluated, and accepted.

OMG collects information for each book in the documentation set by issuing Requ
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path

Framingham, MA 01701

USA

Tel: +1-508-820-4300

pubs@omg.org

http://www.omg.org
Preface Associated Documents December 1998 xlix

 in
 how

ces:

 by

Ltd.)
0.5 Structure of this Manual

In addition to this preface, CORBAservices: Common Object Services contains the
following chapters:

Overview provides an introduction to the CORBA object services, including a
summary of features for each service.

General Design Principles provides information about the principles that were used
designing each service; explains the dependencies among services; and explains
Object Services relate to each other, CORBA, and industry standards in general.

Chapters 3 through 16 each contain a specification for the following Object Servi

• Naming

• Event

• Persistent Object

• Life Cycle

• Concurrency Control

• Externalization

• Relationship

• Transaction

• Query

• Licensing

• Property

• Time

• Security

• Trading

• Collections

0.6 Acknowledgements

The following companies submitted parts of the specifications that were approved
the Object Management Group to become CORBAservices:

AT&T/Lucent Technologies

AT&T/NCR

BNR Europe Limited

Cooperative Research Centre for Distributed Systems Technology (DTSC Pty

Digital Equipment Corporation

Expersoft Corporation

Gradient Technologies, Inc.

Groupe Bull

Hewlett-Packard Company

HyperDesk Corporation

ICL PLC

Ing. C. Olivetti & C.Sp
l CORBAservices December 1998

International Business Machines Corporation

International Computers Limited

Iona Technologies Ltd.

Itasca Systems, Inc.

Nortel Limited

Novell, Inc.

O2 Technologies, SA

Object Design, Inc.

Objectivity, Inc.

Odyssey Research Associates, Inc.

Ontos, Inc.

Oracle Corporation

Persistence Software, Inc.

Servio Corporation

Siemens Nixdorf Informationssysteme AG

Sun Microsystems, Inc.

SunSoft, Inc.

Sybase, Inc.

Taligent, Inc.

Tandem Computers, Inc.

Teknekron Software Systems, Inc.

Tivoli Systems, Inc.

Transarc Corporation

Versant Object Technology Corporation
Preface Acknowledgements December 1998 li

lii CORBAservices December 1998

Overview 1
 a
ngs

tural
on a

. The

the
es

es
volve
1.1 Summary of Key Features

1.1.1 Naming Service

• The Naming Service provides the ability to bind a name to an object relative to
naming context. A naming context is an object that contains a set of name bindi
in which each name is unique. To resolve a name is to determine the object
associated with the name in a given context.

• Through the use of a very general model and dealing with names in their struc
form, naming service implementations can be application specific or be based
variety of naming systems currently available on system platforms.

• Graphs of naming contexts can be supported in a distributed, federated fashion
scalable design allows the distributed, heterogeneous implementation and
administration of names and name contexts.

• Because name component attribute values are not assigned or interpreted by
naming service, higher levels of software are not constrained in terms of polici
about the use and management of attribute values.

• Through the use of a “names library,” name manipulation is simplified and nam
can be made representation-independent thus allowing their representation to e
without requiring client changes.

• Application localization is facilitated by name syntax-independence and the
provision of a name “kind” attribute.
CORBAservices November 1997 1-1

1

in a

ted.

nts.

ties

ng

n

iers

.
e

 The
ent
els

n.

 be
and

cts,

 life

 an

r
1.1.2 Event Service

• The Event Service provides basic capabilities that can be configured together
very flexible and powerful manner. Asynchronous events (decoupled event
suppliers and consumers), event “fan-in,” notification “fan-out,” and (through
appropriate event channel implementations) reliable event delivery are suppor

• The Event Service design is scalable and is suitable for distributed environme
There is no requirement for a centralized server or dependency on any global
service.

• The Event Service interfaces allow implementations that provide different quali
of service to satisfy different application requirements. In addition, the event
service does not impose higher level policies (e.g., specific event types) allowi
great flexibility on how it is used in a given application environment.

• Both push and pull event delivery models are supported: that is, consumers ca
either request events or be notified of events, whichever is needed to satisfy
application requirements. There can be multiple consumers and multiple suppl
events.

• Suppliers can generate events without knowing the identities of the consumers
Conversely, consumers can receive events without knowing the identities of th
suppliers.

• The event channel interface can be subtyped to support extended capabilities.
event consumer-supplier interfaces are symmetric, allowing the chaining of ev
channels (for example, to support various event filtering models). Event chann
can be chained by third-parties.

• Typed event channels extend basic event channels to support typed interactio

• Because event suppliers, consumers and channels are objects, advantage can
taken of performance optimizations provided by ORB implementations for local
remote objects. No extension is required to CORBA.

1.1.3 Life Cycle Service

• The Life Cycle Service defines conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed obje
life cycle services define services and conventions that allow clients to perform
cycle operations on objects in different locations.

• The client’s model of creation is defined in terms of factory objects. A factory is
object that creates another object. Factories are not special objects. As with any
object, factories have well-defined OMG IDL interfaces and implementations in
some programming language.

• The Life Cycle Service defines an interface for a generic factory. This allows fo
the definition of standard creation services.

• The Life Cycle Service defines a LifeCycleObject interface. This interface defines
remove, copy and move operations.
1-2 CORBAservices November 1997

1

) rely

he

or
f the
n be a
,

ases,
es.

t

tions

t

.
 a

 it
te

cess
tiple,
ts are
• The Life Cycle Service has been extended to support compound life cycle
operations on graphs of related objects. Compound objects (graphs of objects
on the Relationship Service for the definition of object graphs.

1.1.4 Persistent Object Service

• The Persistent Object Service (POS) provides a set of common interfaces to t
mechanisms used for retaining and managing the persistent state of objects.

• The object ultimately has the responsibility of managing its state, but can use
delegate to the Persistent Object Service for the actual work. A major feature o
Persistent Object Service is its openness. In this case, that means that there ca
variety of different clients and implementations of the Persistent Object Service
and they can work together. This is particularly important for storage, where
mechanisms useful for documents may not be appropriate for employee datab
or the mechanisms appropriate for mobile computers do not apply to mainfram

1.1.5 Transaction Service

• The Transaction Service supports multiple transaction models, including the fla
(mandatory in the specification) and nested (optional) models.

• The Object Transaction Service supports interoperability between different
programming models. For instance, some users want to add object implementa
to existing procedural applications and to augment object implementations with
code that uses the procedural paradigm. To do so in a transaction environmen
requires the object and procedural code to share a single transaction.

• Network interoperability is also supported, since users need communication
between different systems, including the ability to have one transaction service
interoperate with a cooperating transaction service using different ORBs.

• The Transaction Service supports both implicit (system-managed transaction)
propagation and explicit (application-managed) propagation. With implicit
propagation, transactional behavior is not specified in the operation’s signature
With explicit propagation, applications define their own mechanisms for sharing
common transaction.

• The Transaction Service can be implemented in a TP monitor environment, so
supports the ability to execute multiple transactions concurrently, and to execu
clients, servers, and transaction services in separate processes.

1.1.6 Concurrency Control Service

• The Concurrency Control Service enables multiple clients to coordinate their ac
to shared resources. Coordinating access to a resource means that when mul
concurrent clients access a single resource, any conflicting actions by the clien
reconciled so that the resource remains in a consistent state.
Overview Summary of Key Features November 1997 1-3

1

ith a
tiple
t’s

l lock

es

read-
 that

two
ct in

 can

e

of
to be

can
of

ife

 and
eam
e

zed
e of

fined

 the

.
• Concurrent use of a resource is regulated with locks. Each lock is associated w
single resource and a single client. Coordination is achieved by preventing mul
clients from simultaneously possessing locks for the same resource if the clien
activities might conflict. Hence, a client must obtain an appropriate lock before
accessing a shared resource. The Concurrency Control Service defines severa
modes, which correspond to different categories of access. This variety of lock
modes provides flexible conflict resolution. For example, providing different mod
for reading and writing lets a resource support multiple concurrent clients on a
only transaction. The Concurrency Control Service also defines Intention Locks
support locking at multiple levels of granularity.

1.1.7 Relationship Service

• The Relationship Service allows entities and relationships to be explicitly
represented. Entities are represented as CORBA objects. The service defines
new kinds of objects: relationships and roles. A role represents a CORBA obje
a relationship. The Relationship interface can be extended to add relationship-
specific attributes and operations. In addition, relationships of arbitrary degree
be defined. Similarly, the Role interface can be extended to add role-specific
attributes and operations.

• Type and cardinality constraints can be expressed and checked: exceptions ar
raised when the constraints are violated.

• The Life Cycle Service defines operations to copy, move, and remove graphs
related objects, while the Relationship Service allows graphs of related objects
traversed without activating the related objects.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references: role objects
be located with their objects and need not depend on a centralized repository
relationship information. As such, navigating a relationship can be a local
operation.

• The Relationship Service supports the compound life cycle component of the L
Cycle Service by defining object graphs.

1.1.8 Externalization Service

• The Externalization Service defines protocols and conventions for externalizing
internalizing objects. Externalizing an object is to record the object state in a str
of data (in memory, on a disk file, across the network, and so forth) and then b
internalized into a new object in the same or a different process. The externali
object can exist for arbitrary amounts of time, be transported by means outsid
the ORB, and be internalized in a different, disconnected ORB. For portability,
clients can request that externalized data be stored in a file whose format is de
with the Externalization Service Specification.

• The Externalization Service is related to the Relationship Service and parallels
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for facilities, directory services, and file services
1-4 CORBAservices November 1997

1

s on
ates
ns;

in
f
93,

 that

of

cers

t use
s
d or

rive

s

 the

-
MG

-

1.1.9 Query Service

• The purpose of the Query Service is to allow users and objects to invoke querie
collections of other objects. The queries are declarative statements with predic
and include the ability to specify values of attributes; to invoke arbitrary operatio
and to invoke other Object Services.

• The Query Service allows indexing; maps well to the query mechanisms used
database systems and other systems that store and access large collections o
objects; and is based on existing standards for query, including SQL-92, OQL-
and OQL-93 Basic.

• The Query Service provides an architecture for a nested and federated service
can coordinate multiple, nested query evaluators.

1.1.10 Licensing Service

• The Licensing Service provides a mechanism for producers to control the use
their intellectual property. Producers can implement the Licensing Service
according to their own needs, and the needs of their customers, because the
Licensing Service does not impose it own business policies or practices.

• A license in the Licensing Service has three types of attributes that allow produ
to apply controls flexibly: time; value mapping, and consumer. Time allows licenses
to have start/duration and expiration dates. Value mapping allows producers to
implement a licensing scheme according to units, allocation (through concurren
licensing), or consumption (for example, metering or allowance of grace period
through “overflow licenses.”) Consumer attributes allow a license to be reserve
assigned for specific entities; for example, a license could be assigned to a
particular machine. The Licensing Service allows producers to combine and de
from license attributes.

• The Licensing Service consists of a LicenseServiceManager interface and a
ProducerSpecificLicenseService interface: these interfaces do not impose busines
policies upon implementors.

1.1.11 Property Service

• Provides the ability to dynamically associate named values with objects outside
static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name
value-mode tuples. The names are simple OMG IDL strings. The values are O
IDL anys. The use of type any is significant in that it allows a property service
implementation to deal with any value that can be represented in the OMG IDL
type system. The modes are similar to those defined in the Interface Repository
AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.
Overview Summary of Key Features November 1997 1-5

1

 of

r
ct,

n
ve

ted

ects

ed by

.

pal
et
 it.

t is
ould
• Provides “batch” operations to deal with sets of properties as a whole. The use
“batch” operations is significant in that the systems and network management
(SNMP, CMIP, ...) communities have proven such a need when dealing with
“attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of (o
apply constraints to) the names and types of properties associated with an obje
similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or deletio
of properties (readonly, fixed) similar in nature to the restrictions one would ha
with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.

1.1.12 Time Service

• Enables the user to obtain current time together with an error estimate associa
with it.

• Ascertains the order in which “events” occurred.

• Generates time-based events based on timers and alarms.

• Computes the interval between two events.

• Consists of two services, hence defines two service interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Obj
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represent
the TimerEventService interface.

1.1.13 Security Service

The security functionality defined by this specification comprises:

• Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the princi
(such as role, groups, security clearance) and the control attributes of the targ
object (stating which principals, or principals with which attributes) can access

• Security auditing to make users accountable for their security related actions. I
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.
1-6 CORBAservices November 1997

1

 and

 of
t

t
ice.
voke

vice
ter
e.

nd
ntial
s an

ven

ader
ms in
ir

ins
vice

d
n to
 lists,
form

mple,
t,
ing
• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client
target, which may require authentication of clients to targets and authentication
of targets to clients. It also requires integrit y protection and (optionally)
confidentialit y protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect agains
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

1.1.14 Object Trader Service

The Object Trader Service provides a matchmaking service for objects.

The Service Provider registers the availability of the service by invoking an expor
operation on the trader, passing as parameters information about the offered serv
The export operation carries an object reference that can be used by a client to in
operations on the advertised services, a description of the type of the offered ser
(i.e., the names of the operations to which it will respond, along with their parame
and result types), information on the distinguishing attributes of the offered servic

The offer space managed by traders may be partitioned to ease administration a
navigation. This information is stored persistently by the Trader. Whenever a pote
client wishes to obtain a reference to a service that does a particular job, it invoke
import operation, passing as parameters a description of the service required. Gi
this import request, the Trader checks appropriate offers for acceptability. To be
acceptable, an offer must have a type that conforms to that requested and have
properties consistent with the constraints specified by an imported.

Trading service in a single trading domain may be distributed over a number of tr
objects. Traders in different domains may be federated. Federation enables syste
different domains to negotiate the sharing of services without losing control of the
own policies and services. A domain can thus share information with other doma
with which it has been federated, and it can now be searched for appropriate ser
offers.

1.1.15 Object Collections Service

Collections are groups of objects which, as a group, support some operations an
exhibit specific behaviors that are related to the nature of the collection rather tha
the type of object they contain. Examples of collections are sets, queues, stacks,
binary, and trees. The purpose of the Collection Object Service is to provide a uni
way to create and manipulate the most common collections generically.

Examples of collections are sets, queues, stacks, lists, binary, and trees. For exa
sets might support the following operations: insert new element, membership tes
union, intersection, cardinality, equality test, emptiness test, etc. One of the defin
Overview Summary of Key Features July 1997 1-7

1

into S
tion
semantics of a set is that, if an object O is a member of a set S, then inserting O
results in the set being unchanged. This property would not hold for another collec
type called a bag.
1-8 CORBAservices November 1997

General Design Principles 2
rvices
eir

 of

P-
).
This chapter discusses the principles that were considered in designing Object Se
and their interfaces. It also addresses dependencies between Object Services, th
relationship to CORBA, and their conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10
CORBAservices November 1997 2-1

2

ey
by
erful

may
real

 client
vent
ically

 that
erver
tion

hes
ple,

ts.
t

rent
 is
2.1.2 Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can,
virtue of their structuring as objects, be combined together in interesting and pow
ways.

For example, the event and life cycle services, plus a future relationship service,
play together to support graphs of objects. Object graphs commonly occur in the
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the
object nor, in general, on the type of data passed in requests. For example, the e
channel interfaces accept event data of any type. Clients of the service can dynam
determine the actual data type and handle it appropriately.

2.1.4 Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote s
styles of implementations. This allows considerable flexibility as regards the loca
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approac
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the
interfaces to the event channel are the same for all implementations and all clien
Because rules are not wired into a complex type hierarchy, developers can selec
particular implementations as building blocks and easily combine them with other
components.

2.1.6 Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
2-2 CORBAservices November 1997

2

ngle

 to
ects

ents

faces

ing
ith an

quest
se
e
is

 in
e
g an

at the
 the
A particular service implementation can support the constituent interfaces as a si
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obj
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service inter
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Us
the event service again as an example, when an event consumer is connected w
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then re
events by invoking the appropriate operation on the new “supplier” object. Becau
each client uses a different object reference to interact with the event channel, th
event channel can keep track of and manage multiple simultaneous clients. This
shown graphically in Figure 2-1.

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

The graphical notation shown in Figure 2-1 is used throughout this document and
the full service specifications. An arrow with a vertical bar is used to show that th
target object supports the interface named below the arrow and that clients holdin
object reference to it of this type can invoke operations. In shorthand, one says th
object reference (held by the client) supports the interface. The arrow points from
client to the target (server) object.

event channel

consumer

PullConsumer

PullSupplier

consumer

PullConsumer

PullSupplier

supplier

PushSupplier

PushConsumer
General Design Principles Service Design Principles November 1997 2-3

2

r
re

tiple

 a

to a

n

text.

 within

rvices

as
h
 to be

l
t
ation
A blob (misshapen circle) delineates a conspiracy of one or more objects. In othe
words, it corresponds to a conceptual object that may be composed of one or mo
CORBA objects that together provide some coordinated service to potentially mul
clients making requests using different object references.

2.1.7 Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms

2.1.8 Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some con
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.

2.1.9 Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These se
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured
objects there does not need to be a special way of finding objects associated wit
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

2.2 Interface Style Consistency

2.2.1 Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via outpu
parameters. An example of this is the use of a DONE return code to indicate iter
completion.
2-4 CORBAservices November 1997

2

meter
tion

de

nts
d

ming
,
l as
tely.

y.

ure
2.2.2 Explicit Versus Implicit Operations

Operations are always explicit rather than implied e.g. by a flag passed as a para
value to some “umbrella” operation. In other words, there is always a distinct opera
corresponding to each distinct function of a service.

2.2.3 Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated an
distinct in the type system from the interface used by “normal” clients.

2.3 Key Design Decisions

2.3.1 Naming Service: Distinct from Property and Trading Services

The Naming Service is addressed separately from property and trading services.

Naming contexts have some similarity to property lists (that is, lists of values
associated with objects though not necessarily part of the object’s state). The Na
Service in general also has elements in common with a trading service. However
following the “Bauhaus” principle of keeping services as simple and as orthogona
possible, these services have been kept distinct and are being addressed separa

2.3.2 Universal Object Identity

The services described in this manual do not require the concept of object identit

2.4 Integration with Future Object Services

This section discusses how the Object Services could evolve to integrate with fut
services, such as:

• Archive

• Backup/Restore

• Change Management (Versioning)

• Data Interchange

• Implementation Repository

• Internationalization

• Logging

• Recovery

• Replication

• Startup
General Design Principles Key Design Decisions July 1997 2-5

2

ble to

nt
on
e
 the

rvice
t.

e as

at
ntee
are
hould

nents

on

nge
ject
istent.

nd
2.4.1 Archive Service

Persistent Object Service. The Archive Service copies objects from an
active/persistent store to a backup store and vice versa. This service should be a
archive objects stored with the Persistent Object Service.

Externalization Service. The Archive Service copies objects from an active/persiste
store to a backup store and vice versa. This service could use the Externalizati
Service to get the internal state of objects for saving and to subsequently recreat
objects with this stored state. If only persistent objects need to be archived, then
Object Persistence Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Object Externalization Se
as an underlying mechanism for objects regardless of whether they are persisten

Persistent Object Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Persistent Object Servic
an underlying mechanism for persistent objects.

Transaction Service. The permanence of effect property of a transaction implies th
the state established by the commitment of a transaction will not be lost. To guara
this property, the storage media on which the objects updated by the transaction
stored must be backed-up to secondary storage to ensure that they are not lost s
the primary storage media fail. Similarly, the storage media used by the logging
service must be restorable should the media fail. Since there are multiple compo
which require backup services, a single interface would be advantageous.

2.4.3 Change Management Service

Persistent Object Service. The Change Management Service supports the
identification and consistent evolution of objects including version and configurati
management. This service should work with the Persistent Object Service to allow
persistent objects to evolve from the old to new versions.

2.4.4 Data Interchange Service

Persistent Object Service. The Data Interchange Service enables objects to excha
some or all of their associated state. This service should work with Persistent Ob
Service to allow state to be exchanged when one or more of the objects are pers

2.4.5 Internationalization Service

Naming Service. Naming Service interfaces may also need to be extended (for
example, the structure of names extended, additional name resolution operations
added) to better support representing and resolving names for some languages a
cultures.
2-6 CORBAservices November 1997

2

nt

G
tent
n

ly
es,
ritten
o
ice

 of a

ction

pare

stem
tially

ce, for

e of

ry
ld
2.4.6 Implementation Repository

Persistent Object Service. The Implementation Repository supports the manageme
of object implementations. The Persistent Object Service may depend on this to
determine what persistent data an object contains. This dependency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Service. The Interface Repository supports runtime access to OM
IDL-specified definitions such as object interfaces and type definitions. The Persis
Object Service depends on this to determine if a persistent object supports certai
interfaces.

2.4.8 Logging Service

Transaction Service. A logging service implements the abstract notion of an infinite
long, sequentially-accessible, append-only file. It typically supports multiple log fil
where each log file consists of a sequence of log records. New log records are w
to the end of a log file, old log records can be read from any position in the file. T
stop log files from growing too large for the underlying storage medium, a log serv
must provide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services
log service:

• Transaction Service: during the two-phase commit protocol the Transaction
Service must log its state to ensure that the outcome of the committing transa
can be determined should there be a failure.

• Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.

• Locking service: a log can be used to record the locks held on an object at pre
time to facilitate recovery.

Since there are multiple components within a distributed transaction processing sy
that require the services of a log service, a single log service interface (and poten
server) that is shared between the components is clearly advantageous.

The correctness of a transaction service depends upon the services of a log servi
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapid recovery from the cold start of an application. The
recovery service used by the application (indirectly through the application’s us
recoverable objects) would use the restart facility to establish a checkpoint: a
consistent point in the execution state of the application from which the recove
process can proceed. In the absence of a checkpoint the recovery service wou
have to scan the entire log to ensure restart recovery occurs correctly.
General Design Principles Integration with Future Object Services July 1997 2-7

2

nce

m in
ols

sting
to

out

h of

 (as
ient to
 this
ble,
ble

 to the
ging
n

iant

pies.
s.
2. Buffering and forcing operations.

A log service should provide two classes of operation for writing log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Si
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medium. Used
during the two-phase commit protocol to guarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but
buffered, log records.

3. Robustness.

The log service should ensure the consistency of the underlying storage mediu
which log files are stored. This usually involves the log service employing protoc
that update the storage in a manner that would not result in the loss of any exi
data (i.e. careful updates), along with support for mirroring the storage media
tolerate media failures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it does not grow with
bounds.

5. Efficiency.

Since the log service may be written to by multiple components within a
transaction, the addition of log records must be efficient to avoid the bandwidt
log from becoming a bottleneck in the system.

2.4.9 Recovery Service

Transaction Service. As recoverable objects are updated during a transaction, they
resource managers) keep a record of the changes made to their state that is suffic
undo the updates should the transaction rollback. The component responsible for
task is termed the recovery service. Various different forms of recovery are possi
however the most common form is called value logging and involves the recovera
object recording both the old and new values of the object. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made
object during the transaction. Most recovery services employ the services of a log
service (described in this section) to maintain the “undo” information. The definitio
of a standard recovery service interface is one possible additional CORBA-compl
object service.

2.4.10 Replication Service

Persistent Object Service. The Replication Service provides explicit replication of
objects in a distributed environment and manages the consistency of replicated co
This service could use the Persistent Object Service to manage persistent replica
2-8 CORBAservices November 1997

2

e
ation
sistent.

e or
An

Such
ased
ough

etail.

 of
een

,

2.4.11 Startup Service

Persistent Object Service. The Startup Service supports bootstrapping and
termination of the Persistent Object Service.

2.4.12 Data Interchange Service

Externalization Service. The Data Interchange Service enables objects to exchang
some or all of their associated state. This service could use the Object Externaliz
Service to allow state to be exchanged regardless of whether the objects are per

2.5 Service Dependencies

The interface designs of all the services are general in nature and do not presum
require the existence of specific supporting software in order to implement them.
implementation of the Name Service, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may be based on the naming services provided by ONC or DCE.
an implementation could provide enterprise-wide naming services to both object-b
and non-object-based clients. Object-based software would see such services thr
the use of NamingContext objects.

Although the Object Services do not depend upon specific software, some
dependencies and relationships do exist between services.

2.5.1 Event Service

The Event Service does not depend upon other services.

2.5.2 Life Cycle Service

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service also defines compound operations that depend on the
Relationship Service for the definition of object graphs. Appendix A describes the
topic of compound life cycle, and its dependence on the Relationship Service, in d

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation
an object into a form suitable for storage on an external media or for transfer betw
systems. The Persistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion
copy and equivalence. The Persistent Object Service depends on this service for
creating and deleting all required objects.
General Design Principles Service Dependencies July 1997 2-9

2

d
 to

t the

BA
ct

vice
ects.
d
rt

es

 to

ediate

tent

ed
The Naming Service provides mappings between user-comprehensible names an
CORBA object references. The Persistent Object Service depends on this service
obtain the object reference of, say, a PDS from its name or id.

2.5.4 Relationship Service

The Relationship Service does not depend on other services. Note especially tha
Relationship Service does not depend on any common storage service.

For guidelines about when to use the Relationship Service and when to use COR
object references, refer to the section “The Relationship Service vs CORBA Obje
References,” in Chapter 9.

2.5.5 Externalization Service

The Externalization Service works with the Life Cycle Service in defining
externalization protocols for simple objects, for arbitrarily related objects, and for
graphs of related objects that support compound operations. Specifically, this ser
uses the Life Cycle Service to create and remove Stream and StreamFactory obj
ORB services may be used in Stream implementations to identify InterfaceDef an
ImplementationDef objects corresponding to an externalized object, and to suppo
finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with the Relationship Service.
Implementations of Stream and StreamIO operations could use the Relationship
Service to ensure that multiple references to the same object or circular referenc
don’t result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service adds compound externalization semantics
the containment and reference relationships in the Relationship Service. Detailed
information is provided in “Specific Externalization Relationships” on page 8-26.

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is required to m
access. This is necessary to provide the transaction property of isolation. The
Concurrency Control Service is one possible implementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:

• Concurrency Control Service must support transaction duration locks, which
provide isolation of concurrent requests by different transactions.

• Concurrency Control Service must record transaction duration locks on persis
media, such as a log, as part of the prepare phase of commitment.

• If nested transactions are supported by the Transaction Service then the
Concurrency Control Service must also support locks that provide isolation
between siblings in a transaction family and provide inheritance of locks own
by a subransaction to its parent when the subtransaction commits.
2-10 CORBAservices November 1997

2

d by

 to

state
tion
anged
OS to
hen a

 be

the
 to

)
of a

ions

se
l;

ship,
mined
lso
nforge-
o sup-
• Transactional clients of the Concurrency Control Service are responsible for
ensuring that all locks held by a transaction are dropped after all recovery or
commitment operations have taken place. The drop-licks operation is provide
the LockCoordinator interface for this purpose.

The Transaction Service supports atomicity and durability properties through the
Persistent Object Service (POS). The Transaction Service can work with the POS
support atomic execution of operations on persistent objects. Transactions and
persistence are not provided by the same service. When coordination of multiple
changes are required to persistent data, a persistence service requires a transac
service. The POS can provide persistence, but its implementation needs to be ch
to support transactional behavior. There are no changes to the interfaces of the P
support transactions. The following discussion applies to support of persistence w
transaction service is required.

Support for persistence can be built from other specialized services that can also
shared by other object services. Examples include:

• Recovery service: this supports the atomicity and durability properties.

• Logging service: this is used by the recovery service to assist in supporting
atomicity and durability properties. It is also used by the Transaction Service
support the two-phase commit protocol.

• Backup and restore service: this supports the isolation property.

This view is consistent with the X/Open DTP (Distributed Transaction Processing
model which separates the transaction manager service (i.e. the implementation
generalized two-phase commit protocol) from a resource manager that provides
services for data with a life beyond process execution. This permits both transact
on transient objects and on persistent objects without transactions.

2.5.7 Concurrency Control Service

The Concurrency Control Service does not depend on any other service per se.
Nevertheless, it is designed to work with the Transaction Service.

2.5.8 Query Service

The Query Service does not depend on other service but is closely related to the
Object Services: Life Cycle; Persistent Object; Relationship; Concurrency Contro
Transaction; Property; and Collection.

2.5.9 Licensing Service

The Licensing Service depends on the Event Service. It may depend on the Relation
Property, and Query Services for some implementations. This dependency is deter
by an implementation’s policy definition and entry capability. The Licensing Service a
depends on the Security Service, because the Licensing Service interface can use u
able and secure events. The Licensing Service will use Security Service interfaces t
port the requirements addressed by the challenge mechanism.
General Design Principles Service Dependencies July 1997 2-11

2

ely

 the
 the

ross
fines
s.

ce of
2.5.10 Property Service

The Property Service does not depend upon other services; however, it is closely
related to Collection Service.

2.5.11 Time Service

The Time Service does not depend upon other services.

2.5.12 Security Service

The Security Service does not depend upon other services.

2.5.13 Trader Service

The Trader Service does not depend upon other services.

2.5.14 Collections Service

The Collections Service does not depend upon other services; however, it is clos
related to these services: Concurrency, Naming, Persistent Object, Property, and
Query.

2.6 Relationship to CORBA

This section provides information about the relationship of other services to the
CORBA specification.

2.6.1 ORB Interoperability Considerations: Transaction Service

Some implementations of the Transaction Service will support:

• The ability of a single application to use both object and procedural interfaces to
Transaction Service. This is described as part of the specification, particularly in
sections “The User’s View” and ‘The Implementor’s View.”

• The ability for different Transaction Service implementations to interoperate ac
a single ORB. This is provided as a consequence of this specification, which de
IDL interfaces for all interactions between Transaction Service implementation

• The ability for the same Transaction Service to interoperate with another instan
itself across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

• The ability for different Transaction Services implementations to interoperate
across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)
2-12 CORBAservices November 1997

2

RBs

on.

bject
es the
ying
 the

but
 This

bility
t is,

d on

• A critical dependency for Transaction Service interoperation across different O
is the handling of the propagation_context between ORBs. This includes the
following:
• Efficient transformation between different ORB representations of the

propagation_context.
• The ability to carry the ID information (typically an X/Open XID) between

interoperating ORBs.
• The ability to do interposition to ensure efficient local execution of the

is_same_transaction operation.

2.6.2 Life Cycle Service

The Life Cycle Service assumes CORBA implementations support object relocati

2.6.3 Naming Service

Entities that are not CORBA objects - that is to say, not objects accessed via an O
Request Broker - are used for names (in the guise of pseudo objects). In both cas
interfaces to these entities conform as closely as possible to OMG IDL while satisf
the specific service design requirements, in order to enable maximum flexibility in
future. Specifically, in the Naming Service, name objects are pseudo objects with
interfaces defined in pseudo IDL (PIDL). These objects look like CORBA objects
are specifically designed to be accessed using a programming language binding.
is done for reasons based on the expected use of these objects.

2.6.4 Relationship Service

The Relationship Service requires CORBA Interface Repositories to support the a
to dynamically determine if an InterfaceDef conforms to another InterfaceDef, tha
if it is a subtype. This is needed to implement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Object Service requires CORBA Interface Repositories.

2.6.6 General Interoperability Requirements

Interoperability between Object Services and users of Object Services implemente
different ORBs requires common RepositoryIDs be used to identify types in both
systems. The types identified by these RepositoryIDs must also be consistently
defined. As described in Common Object Request Broker: Architecture and
Specification, Pragma Directives for Repository Id section, all CORBAservice IDL
presented in this specification is implicitly preceded at file scope by the following
directive:

 #pragma prefix “omg.org”
General Design Principles Relationship to CORBA November 1997 2-13

2

st do

 are
ave

d

el

der
Object Service Implementations that choose to extend the standard interfaces mu
so by deriving new interfaces rather than by modifying the standard interfaces.

2.7 Relationship to Object Model

All specifications contained in this manual conform to the OMG Object Model. No
additional components or profiles are required by any service.

2.8 Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor
they structured in a form that is easily mapped to objects. These specifications h
been influenced by existing standards, and services have been designed which
minimize the difficulty of encapsulating supporting software. The naming service
specification is believed to be compatible with X.500, DCE CDS and ONC NIS an
NIS+.

These specifications are broadly conformant to emerging ISO/IEC/CCITT ODP
standards:

• CCITT Draft Recommendations X.900, ISO/IEC 10746 Basic Reference Mod
for Open Distributed Computing

• ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1 - ODP Tra
2-14 CORBAservices November 1997

Naming Service Specification 3
et
o an
t,

ming

ows
 a

ess.
3.1 Service Description

3.1.1 Overview

A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a s
of name bindings in which each name is unique. Different names can be bound t
object in the same or different contexts at the same time. There is no requiremen
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a na
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph all
more complex names to reference an object. Given a context in a naming graph,
sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution proc
Figure 3-1 shows an example of a naming graph.
CORBAservices March 1995 3-1

3

ames

 and

Figure 3-1 A Naming Graph

3.1.2 Names

Many of the operations defined on a naming context take names as parameters. N
have structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

< component1 ; component2 ; component3 >

indicates the sequences of components.

Note – The semicolon (;) characters are simply the notation used in this document
are not intended to imply that names are sequences of characters separated by
semicolon.

A name component consists of two attributes: the identifier attribute and the kind
attribute. Both the identifier attribute and the kind attribute are represented as IDL
strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code, executable,
postscript, or “ ” . The naming system does not interpret, assign, or manage these

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2
3-2 CORBAservices March 1995

3

d
at use

es
e
.c to

tion
es not

tions

mes
eta
mes

hem.

it is
ould
ry
sts by

ote,
of the

 a
s are
the

 the
e
cture

iffer

e-
large,
ers"

values in any way. Higher levels of software may make policies about the use an
management of these values. This feature addresses the needs of applications th
syntactic naming conventions to distinguish related objects. For example Unix us
suffixes such as .c and .o. Applications (such as the C compiler) depend on thes
syntactic convention to make name transformations (for example, to transform foo
foo.o).

The lack of name syntax is especially important when considering internationaliza
issues. Software that does not depend on the syntactic conventions for names do
have to be changed when it is localized for a natural language that has different
syntactic conventions — unlike software that does depend on the syntactic conven
(which must be changed to adopt to new conventions).

To avoid issues of differing name syntax, the Naming Service always deals with na
in their structural form (that is, there are no canonical syntaxes or distinguished m
characters). It is assumed that various programs and system services will map na
from the representation into the structural form in a manner that is convenient to t

3.1.3 Names Library

To allow the representation of names to evolve without affecting existing clients,
desirable to hide the representation from client code. Ideally, names themselves w
be OMG IDL objects; however, names must be lightweight entities that can be ve
efficiently created and manipulated in memory and passed as parameters in reque
value. In order to simplify name manipulation and provide representation
independence, names can be presented to programs through the names library. N
however, it is not necessary to use the names library to use the basic operations
naming service.

The names library implements names as pseudo-objects. A client makes calls on
pseudo-object in the same way it makes calls on an ordinary object. Library name
described in pseudo-IDL. The names library supports two pseudo-IDL interfaces:
LNameComponent interface and the LName interface. The LNameComponent interface
defines the get and set operations associated with name component identifier and
kind attributes.The LName Interface includes operations for manipulating library nam
and library name component pseudo objects and producing and translating a stru
that can be passed as a parameter to a normal object request.

3.1.4 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that d
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterpris
wide naming server such as DCE CDS. The Naming Service is used to construct
enterprise-wide naming graphs where NamingContexts model "directories" or "fold
and other names identify "document" or "file" kinds of objects. In other words, the
Naming Service: v1.0 Service Description March 1995 3-3

3

ch a
lace as

ight
 as

s of
Given
mes
look

lly
nd so

roups

d to
.g.,

and
esent

o
vice.

, a

the
as
is
y

d to
how

tics

naming service is used as the backbone of an enterprise-wide filing system. In su
system, non-object-based access to the naming service may well be as commonp
object-based access to the naming service. For example, the name of an object m
be presented to the DCE directory service as a null-terminated ASCII string such
“/.../DME/nls/moa-1/ID-1”.

The Naming Service provides the principal mechanism through which most client
an ORB-based system locate objects that they intend to use (make requests of).
an initial naming context, clients navigate naming contexts retrieving lists of the na
bound to that context. In conjunction with properties and security services, clients
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externa
visible characteristics with other services (a name service, a properties service, a
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, g
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are use
identify contexts that list the names of services that are available in the system (e
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role
can have a less sophisticated implementation. In this model, naming contexts repr
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used t
register the object references of a mail service, an information service, a filing ser

Given a handful of references to "root objects" obtained from the Naming Service
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system,
Naming Service is used sparingly and instead clients rely on other services such
query services to navigate through large collections of objects. Also, objects in th
scheme rarely register "external characteristics" with another service - instead the
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being use
provide both models of use at the same time. These two scenarios demonstrate
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and seman
which determine how frameworks of application and facilities objects locate other
objects.

3.1.5 Design Principles

Several principles have driven the design of the Naming Service:
3-4 CORBAservices March 1995

3

is is

ation

an-
ich
n of
 kind

 in a

other

her

e

curity

 of

y the
1. The design imparts no semantics or interpretation of the names themselves; th
up to higher-level software. The naming service provides only a structural
convention for names, e.g. compound names.

2. The design supports distributed, heterogeneous implementation and administr
of names and name contexts.

3. Names are structures, not just character strings. A struct is necessary to avoid
encoding information syntactically in the name string (e.g., separating the hum
meaningful name and its type with a “.”, and the type and version with a “!”), wh
is a bad idea with respect to the generality, extensibility, and internationalizatio
the name service. The structure define includes a human-chosen string plus a
field.

4. Naming service clients need not be aware of the physical site of name servers
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

5. The Naming Service is a fundamental object service, with no dependencies on
interfaces.

6. Name contexts of arbitrary and unknown implementation may be utilized toget
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

7. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of th
above features contribute to making this possible.

8. The design does not address name security since there is currently no OMG se
model. The Naming Service can be evolved to provide name security when an
object security service is standardized.

9. The design does not address namespace administration. It is the responsibility
higher-level software to administer the namespace.

3.1.6 Resolution of Technical Issues

This specification addresses the issues identified for a name service in the OMG
Object Services Architecture document1 as follows:

• Naming standards: Encapsulation of existing naming standards and protocols is
allowed using naming contexts. Transparent encapsulation is made possible b
design features outlined above.

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
Naming Service: v1.0 Service Description March 1995 3-5

3

s.

ext,

in a

ntext,
oes

aced

e we
t

ing

or a
• Federation of namespaces: The specification supports distributed federation of
namespaces; no assumptions are made about centralized or universal function
Namespaces may be nested in a graph in any fashion, independent of the
implementation of each namespace. There need be no distinguished root cont
and existing graphs may be joined at any point.

• Scope of names: Name contexts define name scope. Names must be unique with
context. Objects may have multiple names, and may exist in multiple name
contexts. Name contexts may be named objects nested within another name co
and cycles are permitted. The name itself is not a full-fledged ORB object, but d
support structure, so it may have multiple components. No requirements are pl
on naming conventions, in order to support a wide variety of conventions and
existing standards.

• Operations: The specification supports bind, unbind, lookup, and sequence
operations on a name context. It does not support a rename operation, becaus
do not see how to implement this correctly in a distributed environment withou
transactions.

3.2 The CosNaming Module

The CosNaming Module is a collection of interfaces that together define the nam
service. This module contains two interfaces:

• The NamingContext interface
• The BindingIterator interface

This section describes these interfaces and their operations in detail.

The CosNaming Module is shown in Figure 3-2. Note that Istring is a placeholder f
future IDL internationalized string data type.

module CosNaming
{

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

Figure 3-2 The CosNaming Module
3-6 CORBAservices March 1995

3

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
 raises(NotEmpty);
void list (in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

Figure 3-2 The CosNaming Module (Continued)
Naming Service: v1.0 The CosNaming Module March 1995 3-7

3

und,

en

e
g
ssed
The following sections describe the operations of the NamingContext interface:

• binding objects
• name resolution
• unbinding
• creating naming contexts
• deleting contexts
• listing a naming context

3.2.1 Binding Objects

The binding operations name an object in a naming context. Once an object is bo
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind, rebind, bind_context and rebind_context.

bind
Creates a binding of a name and an object in the naming context. Naming
contexts that are bound using bind do not participate in name resolution wh
compound names are passed to be resolved.

A bind operation that is passed a compound name is defined as follows:

ctx->bind(< c1 ; c2 ; ... ; cn >, obj) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind(< cn >, obj)

rebind
Creates a binding of a name and an object in the naming context even if th
name is already bound in the context. Naming contexts that are bound usin
rebind do not participate in name resolution when compound names are pa
to be resolved.

out BindingList bl);
void destroy();

};
};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Figure 3-2 The CosNaming Module (Continued)
3-8 CORBAservices March 1995

3

sing
ssed

lows:

en if
sing

given
 does
t to
 to a

ltiple

he
d

e

d
bind_context
Names an object that is a naming context. Naming contexts that are bound u
bind_context() participate in name resolution when compound names are pa
to be resolved.

A bind_context operation that is passed a compound name is defined as fol

ctx->bind_context(< c1 ; c2 ; ... ; cn >, nc) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_context(< cn >, nc)

rebind_context
Creates a binding of a name and a naming context in the naming context ev
the name is already bound in the context. Naming contexts that are bound u
rebind_context() participate in name resolution when compound names are
passed to be resolved.

Table 3-1 describes the exceptions raised by the binding operations.

3.2.2 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in a
context. The given name must exactly match the bound name. The naming service
not return the type of the object. Clients are responsible for “narrowing” the objec
the appropriate type. That is, clients typically cast the returned object from Object
more specialized interface. The OMG IDL definition of the resolve operation is:

Names can have multiple components; therefore, name resolution can traverse mu
contexts. A compound resolve is defined as follows:

Table 3-1 Exceptions Raised by Binding Operations

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. T
client, however, may be able to continue the operation at the returne
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name. Only on
object can be bound to a particular name in a context. The bind and
the bind_context operations raise the AlreadyBound exception if the
name is bound in the context; the rebind and rebind_context
operations unbind the name and rebind the name to the object passe
as an argument.

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);
Naming Service: v1.0 The CosNaming Module March 1995 3-9

3

e

he
d

he
d
ctx->resolve(< c1 ; c2 ; ... ; cn >) ≡
ctx->resolve(< c1 ; c2 ; ... ; cn-1 >)->resolve(< cn >)

Table 3-2 describes the exceptions raised by the resolve operation.

3.2.3 Unbinding Names

The unbind operation removes a name binding from a context. The definition of th
unbind operation is:

A unbind operation that is passed a compound name is defined as follows:

ctx->unbind(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->unbind(< cn >)

Table 3-3 describes the exceptions raised by the unbind operation.

Table 3-2 Exceptions Raised by Resolve Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. T
client, however, may be able to continue the operation at the returne
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

void unbind(in Name n)
 raises (NotFound, CannotProceed, InvalidName);

Table 3-3 Exceptions Raised by Unbind Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. T
client, however, may be able to continue the operation at the returne
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)
3-10 CORBAservices March 1995

3

erver

an
erver
ents

:

he
d

e
3.2.4 Creating Naming Contexts

The Naming Service supports two operations to create new contexts: new_context and
bind_new_context.

new_context
This operation returns a naming context implemented by the same naming s
as the context on which the operation was invoked. The new context is not
bound to any name.

bind_new_context
This operation creates a new context and binds it to the name supplied as
argument. The newly-created context is implemented by the same naming s
as the context in which it was bound (that is, the naming server that implem
the context denoted by the name argument excluding the last component).

A bind_new_context that is passed a compound name is defined as follows

ctx->bind_new_context(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_new_context(< cn >)

Table 3-4 describes the exceptions raised when new contexts are being created.

3.2.5 Deleting Contexts

The destroy operation deletes a naming context:.

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

Table 3-4 Exceptions Raised by Creating New Contexts

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. T
client, however, may be able to continue the operation at the returne
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name. Only on
object can be bound to a particular name in a context.

void destroy()
raises(NotEmpty);
Naming Service: v1.0 The CosNaming Module March 1995 3-11

3

t bl.

is a

e
If the naming context contains bindings, the NotEmpty exception is raised.

3.2.6 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming
context.

The list operation returns at most the requested number of bindings in BindingLis

• If the naming context contains additional bindings, the list operation returns a
BindingIterator with the additional bindings.

• If the naming context does not contain additional bindings, the binding iterator
nil object reference.

3.2.7 The BindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings using th
next_one or next_n operations:

next_one
This operation returns the next binding. If there are no more bindings, false is
returned.

next_n
This operation returns at most the requested number of bindings.

destroy
This operation destroys the iterator.

enum BindingType {object, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};
3-12 CORBAservices March 1995

3

it is

re
grams

s are
+

 for

ribed

gh the

3.3 The Names Library

To allow the representation of names to evolve without affecting existing clients,
desirable to hide the representation of names from client code. Ideally, names
themselves would be objects; however, names must be lightweight entities that a
efficient to create, manipulate, and transmit. As such, names are presented to pro
through the names library.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library name
described in pseudo-IDL (to suggest the appropriate language binding). C and C+
clients2 use the same client language bindings for pseudo-IDL (PIDL) as they use
IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As desc
in Section 3.2, “The CosNaming Module,” the naming service supports the
NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service throu
NamingContext interface.

Note – It is not a requirement to use the names library in order to use the Naming
Service.

The names library consists of two pseudo-IDL interfaces: the LNameComponent
interface and the LName interface, as shown in Figure 3-3.

2. As anticipated
Naming Service: v1.0 The Names Library March 1995 3-13

3

tion:

e 3-3.
Figure 3-3 The Names Library Interface in PIDL

3.3.1 Creating a Library Name Component

To create a library name component pseudo-object, use the following C/C++ func

The returned pseudo-object can then be operated on using the operations in Figur

interface LNameComponent { // PIDL
exception NotSet{};
string get_id()

raises(NotSet);
void set_id(in string i);
string get_kind()

raises(NotSet);
void set_kind(in string k);
void destroy();

};

interface LName { // PIDL
exception NoComponent{};
exception OverFlow{};
exception InvalidName{};
LName insert_component(in unsigned long i,

in LNameComponent n)
raises(NoComponent, OverFlow);

LNameComponent get_component(in unsigned long i)
 raises(NoComponent);

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

unsigned long num_components();
boolean equal(in LName ln);
boolean less_than(in LName ln);
Name to_idl_form()

raises(InvalidName);
void from_idl_form(in Name n);
void destroy();

};

LName create_lname(); // C /C++
LNameComponent create_lname_component(); // C/C++

LNameComponent create_lname_component(); // C/C++
3-14 CORBAservices March 1995

3

ons in

se

s

 not
3.3.2 Creating a Library Name

To create a library name pseudo-object, use the following C/C++ function.

The returned pseudo-object reference can then be operated on using the operati
Figure 3-3.

3.3.3 The LNameComponent Interface

A name component consists of two attributes: the identifier attribute and the kind
attribute. The LNameComponent interface defines the operations associated with the
attributes.

get_id
The get_id operation returns the identifier attribute’s value. If the attribute ha
not been set, the NotSet exception is raised.

set_id
The set_id operation sets the identifier attribute to the string argument.

get_kind
The get_kind operation returns the kind attribute’s value. If the attribute has
been set, the NotSet exception is raised.

set_kind
The set_kind operation sets the kind attribute to the string argument.

3.3.4 The LName Interface

The following operations are described in this section:

• destroying a library name component pseudo object

• creating a library name

• inserting a name component

• getting the ith name component

• deleting a name component

• number of name components

LName create_lname(); // C/C++

string get_id()
raises(NotSet);

void set_id(in string k);
string get_kind()

raises(NotSet);
void set_kind(in string k);
Naming Service: v1.0 The Names Library March 1995 3-15

3

o
he

t
• testing for equality

• testing for order

• producing an idl form

• translating an idl form

• destroying a library name pseudo object

Destroying a Library Name Component Pseudo Object

The destroy operation destroys library name component pseudo-objects.

Inserting a Name Component

A name has one or more components. Each component except the last is used t
identify names of subcontexts. (The last component denotes the bound object.) T
insert_component operation inserts a component after positioni.

If component i-1 is undefined and component i is greater than 1, the insert_componen
operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the Overflow
exception is raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1.

If the component does not exist, the NoComponent exception is raised.

void destroy();

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

LNameComponent get_component(in unsigned long i)
raises(NoComponent);
3-16 CORBAservices March 1995

3

s one

me.

ame

 as
Deleting a Name Component

The delete_component operation removes and returns the ith component.

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name ha
fewer component and components previously identified as i+1...n are now identified as
i...n-1.

Number of Name Components

The num_components operation returns the number of components in a library na

Testing for Equality

The equal operation tests for equality with library name ln.

Testing for Order

The less_than operation tests for the order of a library name in relation to library n
ln.

This operation returns true if the library name is less than the library name ln passed
an argument. The library implementation defines the ordering on names.

LNameComponent delete_component(in unsigned long i)
raises(NoComponent);

unsigned long num_components();

boolean equal(in LName ln);

boolean less_than(in LName ln);
Naming Service: v1.0 The Names Library March 1995 3-17

3

is a
ing

-
 a

is a
ing

f
and
Producing an IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name
pseudo object; therefore, it cannot be passed across the IDL interface for the nam
service. Several operations in the NamingContext interface have arguments of an IDL
defined structure, Name. The following PIDL operation on library names produces
structure that can be passed across the IDL request.

If the name is of length 0, the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name
pseudo object; therefore, it cannot be passed across the IDL interface for the nam
service. The NamingContext interface defines operations that return an IDL struct o
type Name. The following PIDL operation on library names sets the components
kind attribute for a library name from a returned IDL defined structure, Name.

Destroying a Library Name Pseudo-Object

The destroy operation destroys library name pseudo-objects

Name to_idl_form()
raises(InvalidName);

void from_idl_form(in Name n);

void destroy();
3-18 CORBAservices March 1995

Event Service Specification 4
y an
d
 the
quest
t take

e.

sk
user

t is
 be

the
to

 of
4.1 Service Description

4.1.1 Overview

A standard CORBA request results in the synchronous execution of an operation b
object. If the operation defines parameters or return values, data is communicate
between the client and the server. A request is directed to a particular object. For
request to be successful, both the client and the server must be available. If a re
fails because the server is unavailable, the client receives an exception and mus
some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

• A system administration tool is interested in knowing if a disk runs out of spac
The software managing a disk is unaware of the existence of the system
administration tool. The software simply reports that the disk is full. When a di
runs out of space, the system administration tool opens a window to inform the
which disk has run out of space.

• A property list object is associated with an application object. The property list
object is physically separate from the application object. The application objec
interested in the changes made to its properties by a user. The properties can
changed without involving the application object. That is, in order to have
reasonable response time for the user, changing a property does not activate
application object. However, when the application object is activated, it needs
know about the changes to its properties.

• A CASE tool is interested in being notified when a source program has been
modified. The source program simply reports when it is modified. It is unaware
the existence of the CASE tool. In response to the notification, the CASE tool
invokes a compiler.
CORBAservices March 1995 4-1

4

 in

.
ted

rvice

d

d
an

of
st the
 in

via
rs,
cuss

ped

a
 and

n be

is
ll

 (so
d on
• Several documents are linked to a spreadsheet. The documents are interested
knowing when the value of certain cells have changed. When the cell value
changes, the documents update their presentations based on the spreadsheet
Furthermore, if a document is unavailable because of a failure, it is still interes
in any changes to the cells and wants to be notified of those changes when it
recovers.

4.1.2 Event Communication

The Event Service decouples the communication between objects. The Event Se
defines two roles for objects: the supplier role and the consumer role. Suppliers
produce event data and consumers process event data. Event data are communicate
between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers an
consumers, and two orthogonal approaches to the form that the communication c
take.

The two approaches to initiating event communication are called the push model and
the pull model. The push model allows a supplier of events to initiate the transfer
the event data to consumers. The pull model allows a consumer of events to reque
event data from a supplier. In the push model, the supplier is taking the initiative;
the pull model, the consumer is taking the initiative.

The communication itself can be either generic or typed. In the generic case, all
communication is by means of generic push or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is
operations defined in OMG IDL. Event data is passed by means of the paramete
which can be defined in any manner desired. Section 4.2 through section 4.5 dis
generic event communication in detail; section 4.6 through section 4.9 discuss ty
event communication in detail.

An event channel is an intervening object that allows multiple suppliers to
communicate with multiple consumers asynchronously. An event channel is both
consumer and a supplier of events. Event channels are standard CORBA objects
communication with an event channel is accomplished using standard CORBA
requests.

4.1.3 Example Scenario

This section provides a general scenario that illustrates how the Event Service ca
used.

The Event Service can be used to provide “change notification”. When an object
changed (its state is modified), an event can be generated that is propagated to a
interested parties. For example, when a spreadsheet cell object is modified, all
compound documents which contain a reference (link) to that cell can be notified
the document can redisplay the referenced cell, or recalculate values that depen
4-2 CORBAservices March 1995

4

ers

 in
nel

t

n on

as
ject
 that
it
een

f

g
ly

ome

objects
on
” that

n
 them
they
col

e
d).

annel
cified
ring
the cell). Similarly, when an engineering specification object is modified, all engine
who have registered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested
receiving notifications of changes act as consumers, and one or more event chan
objects are used as intermediaries between consumers and suppliers. Either the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplier interface so that event communication can be discontinued, use the
EventChannel, the SupplierAdmin and the ProxyPushConsumer interfaces to register as
suppliers of events, and use the ProxyPushConsumer interface to push events to even
channels.

When a change occurs to an object, a changeable object invokes a push operatio
the channel. It provides as an argument to the push operation information that
describes the event. This information is of data type any - it can be as simple or
complex as is necessary. For example, the event information might identify the ob
reference of the object that has been changed, it might identify the kind of change
has occurred, it might provide a new displayable image of the changed object or
might identify one or more additional objects that describe the change that has b
made.

If the pull model is used by consumers, all client objects that want to be notified o
changes support the PullConsumer interface so communication can be discontinued,
using the EventChannel, ConsumerAdmin and ProxyPullSupplier interfaces to register
as consumers of events, and using the ProxyPullSupplier interface to pull events from
event channels.

The consumer may use either a blocking or non-blocking mechanism for receivin
notification of changes. Using the try_pull operation, the consumer can periodical
poll the channel for events. Alternatively, the consumer can use the pull operation
which will block the consumer’s execution thread until an event is generated by s
supplier.

Event channels act as the intermediaries between the objects being changed and
interested in knowing about changes. The channels that provide change notificati
can be general purpose, well-known objects (e.g., “persistent server-based objects
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objects (e.g., temporary objects that are created whe
needed). Objects that use event channels may locate the channels by looking for
in a persistently available server (e.g., by looking for them in a naming service) or
may be given references to these objects as part of a specific-to-task object proto
(e.g., when an “open” operation is invoked on an object, the object may return th
reference to an event channel which the caller should use until the object is close

Event channels determine how changes are propagated between suppliers and
consumers, i.e., the qualities of service (Section 4.1.6). For example, an event ch
determines the persistence of an event. The channel may keep an event for a spe
period of time, passing it along to any consumer who registers with the channel du
Event Service: v1.0 Service Description March 1995 4-3

4

ring

 of

c

 been

y

iers.

ore

o

 all

rs.
the

for
 as

that period of time (e.g., it may keep event notifications about changes to enginee
specifications for a week). Alternatively, the channel may only pass on events to
consumers who are currently waiting for notification of changes (e.g., notifications
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basi
building block used in providing higher-level services specific to an application or
common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have
used.

4.1.4 Design Principles

The Event Service design satisfies the following principles:

• Events work in a distributed environment. The design does not depend on an
global, critical, or centralized service.

• Event services allow multiple consumers of an event and multiple event suppl

• Consumers can either request events or be notified of events, whichever is m
appropriate for application design and performance.

• Consumers and suppliers of events support standard OMG IDL interfaces; n
extensions to CORBA are necessary to define these interfaces.

• A supplier can issue a single standard request to communicate event data to
consumers at once.

• Suppliers can generate events without knowing the identities of the consume
Conversely, consumers can receive events without knowing the identities of
suppliers.

• The Event Service interfaces allow multiple qualities of service, for example,
different levels of reliability. It also allows for future interface extensions, such
for additional functionality.

• The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

4.1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in the OMG Object
Services Architecture1 document as follows:

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
4-4 CORBAservices March 1995

4

t be

ered
oes

 a
ific

dicate

 of

at is,
ls can

t
n that

t

e

RB
RB

a
the

t
s.
• Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected from time to time, and do not require
centralized event identification, processing, routing, or other services that migh
a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and deliv
in a very general fashion, with event channels as intermediate routing points. It d
not require (or preclude) polling, nor does it require that an event supplier directly
notify every interested party.

Events involving multi ple objects: Complex events may be handled by constructing
notification tree of event consumer/suppliers checking for successively more spec
event predicates. The specification does not require a general or global event pre
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

Scoping, grouping, and filterin g events: The specification takes advantage of
CORBA’s distributed scoping and grouping mechanisms for the identifier and type
events. Event filtering is easily achieved through event channels that selectively
deliver events from suppliers to consumers. Event channels can be composed; th
one event channel can consume events supplied by another. Typed event channe
provide filtering based on event type.

Registration and generation of events: Consumers and suppliers register with even
channels themselves. Event channels are objects and they are found by any fashio
objects can be found. A global registration service is not required; any object tha
conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of type any that can b
delivered with an event, used for application-specific data.

Forgery and secure events: Because event suppliers are objects, the specification
leverages any ORB work on security for object references and communication.

Performance: The design is a minimalist one, and requires only one ORB call per
event received. It supports both push-style and pull-style notification to avoid
inefficient event polling. Since event suppliers, consumers, and channels are all O
objects, the service directly benefits from a Library Object Adapter or any other O
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneficial to formalize the data associated with an event
(defined in this specification as type any). This can be accomplished by defining
typed structure for this information. Depending on the needs of the environment,
kinds of information included might be a priority, timestamp, origin string, and
confirmation indicator. This information might be solely for the benefit of the even
consumer or might also be interpreted by particular event channel implementation
Event Service: v1.0 Service Description March 1995 4-5

4

be
end

 all

ts.

e
s are

umer
ors

s.

 of

 that

f the
y all

d
Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of reception back to the supplier. This can
supported effectively using a “reverse” event channel through which consumers s
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and
consumers requires additional interfaces.

4.1.6 Quality of Service

Application domains requiring event-style communication have diverse reliability
requirements, from “at-most-once” semantics (best effort) to guaranteed “exactly-
once” semantics, availability requirements, throughput requirements, performance
requirements (i.e., how fast events are disseminated), and scalability requiremen

Clearly no single implementation of the Event Service can optimize such a divers
range of technical requirements. Hence, multiple implementations of event service
to be expected, with different services targeted toward different environments. As
such, the event interfaces do not dictate qualities of service. Different implementations
of the Event Service interfaces can support different qualities of service to meet
different application needs.

For example, an implementation that trades at most once delivery to a single cons
in favor of performance is useful for some applications; an implementation that fav
performance but cannot preclude duplicate delivery is useful for other application
Both are acceptable implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all events is not a useful
implementation. Useful implementations will at least support “best-effort” delivery
events.

Note that the interfaces defined in this chapter are incomplete for implementations
support strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none o
consumers receive an event; and that all events are received in the same order b
consumers.

4.2 Generic Event Communication

There are two basic models for communicating event data between suppliers an
consumers: the push model and the pull model.

4.2.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invoking push operations on the PushConsumer interface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumer and PushSupplier object references. Event communication can be
broken by invoking a disconnect_push_consumer operation on the PushConsumer
4-6 CORBAservices March 1995

4

n

er.

en

r.
interface or by invoking a disconnect_push_supplier operation on the PushSupplier
interface. If the PushSupplier object reference is nil, the connection cannot be broke
via the supplier.

Figure 4-1 illustrates push-style communication between a supplier and a consum

Figure 4-1 Push-style Communication Between a Supplier and a Consumer

4.2.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invoking pull operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange
PullConsumer and PullSupplier object references. Event communication can be brok
by invoking a disconnect_pull_consumer operation on the PullConsumer interface or
by invoking a disconnect_pull_supplier operation on the PullSupplier interface. If the
PullConsumer object reference is nil, the connection cannot be broken via the
consumer.

Figure 4-2 illustrates pull-style communication between a supplier and a consume

Figure 4-2 Pull-style Communication Between a Supplier and a Consumer

PushSupplier

PushConsumer

supplierconsumer

PullConsumer

PullSupplier

supplierconsumer
Event Service: v1.0 Generic Event Communication March 1995 4-7

4

 by

tion
y been
4.3 The CosEventComm Module

The communication styles shown in Figure 4-1 and Figure 4-2 are both supported
four simple interfaces: PushConsumer, PushSupplier, and PullSupplier and
PullConsumer. These interfaces are defined in an OMG IDL module named
CosEventComm, as shown in Figure 4-3.

Figure 4-3 The OMG IDL Module CosEventComm

4.3.1 The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

A supplier communicates event data to the consumer by invoking the push opera
and passing the event data as a parameter. If the event communication has alread
disconnected, the Disconnected exception is raised.

module CosEventComm {

exception Disconnected{};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

 interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};
4-8 CORBAservices March 1995

4

he

tion

ed.
ady

he

n
he
The disconnect_push_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication. T
PushConsumer object reference is disposed.

4.3.2 The PushSupplier Interface

A push-style supplier supports the PushSupplier interface.

The disconnect_push_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PushSupplier object reference is disposed.

4.3.3 The PullSupplier Interface

A pull-style supplier supports the PullSupplier interface to transmit event data.

A consumer requests event data from the supplier by invoking either the pull opera
or the try_pull operation on the supplier.

• The pull operation blocks until the event data is available or an exception is rais2
It returns the event data to the consumer. If the event communication has alre
been disconnected, the Disconnected exception is raised.

• The try_pull operation does not block: if the event data is available, it returns t
event data and sets the has_event parameter to true; if the event is not available, it
sets the has_event parameter to false and the event data is returned as long with a
undefined value. If the event communication has already been disconnected, t
Disconnected exception is raised.

interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

2. This, of course, may be a standard CORBA exception.
Event Service: v1.0 The CosEventComm Module March 1995 4-9

4

ases

he

rs
 event

en
he
 to
 its

ushes
ween
The disconnect_pull_supplier operation terminates the event communication; it rele
resources used at the supplier to support the event communication. The PullSupplier
object reference is disposed.

4.3.4 The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

The disconnect_pull_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication. T
PullConsumer object reference is disposed.

4.4 Event Channels

The event channel is a service that decouples the communication between supplie
and consumers. The event channel is itself both a consumer and a supplier of the
data.

An event channel can provide asynchronous communication of event data betwe
suppliers and consumers. Although consumers and suppliers communicate with t
event channel using standard CORBA requests, the event channel does not need
supply the event data to its consumer at the same time it consumes the data from
supplier.

4.4.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, p
event data to the consumer. Figure 4-4 illustrates a push-style communication bet
a supplier and the event channel, and a consumer and the event channel.

interface PullConsumer {
void disconnect_pull_consumer();

};
4-10 CORBAservices March 1995

4

 pulls
een

umer

tion,

t
nel.

nnel.

Figure 4-4 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

4.4.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn,
event data from the supplier. Figure 4-5 illustrates a pull-style communication betw
a supplier and the event channel, and a consumer and the event channel.

Figure 4-5 Pull-style communication between a supplier and an event channel and a cons
and the event channel

4.4.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communica
and communicate with a consumer using a different style of communication.

Figure 4-6 illustrates a push-style communication between a supplier and an even
channel, and a pull-style communication between a consumer and the event chan
The consumer pulls the event data that the supplier has pushed to the event cha

event channel

supplierconsumer

PushConsumerPushConsumer

PushSupplier PushSupplier

event channel

supplierconsumer

PullConsumerPullConsumer

PullSupplier PullSupplier
Event Service: v1.0 Event Channels March 1995 4-11

4

ll-

lier

ation
Figure 4-6 Push-style Communication Between a Supplier and an Event Channel, and Pu
style Communication Between a Consumer and an Event Channel

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-4, Figure 4-5, and Figure 4-6 illustrate event channels with a single supp
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a
particular implementation, an event channel provides an event to all consumers.

 Figure 4-7 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

Figure 4-7 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communic
models.

event channel

supplierconsumer

PushSupplier

PushConsumer

PullConsumer

PullSupplier

event channel

supplier

consumer

PushSupplier

PushConsumer

PushSupplier

PushConsumer

consumer

PushSupplier

PushConsumer

supplier

PushSupplier

PushConsumer
4-12 CORBAservices March 1995

4

 pull
ers, it

o

des

g

oxy
If an event channel has at least one push-style consumer or at least one pending
request, the event channel requires an event. If the event channel has pull suppli
will issue a request on a pull supplier to satisfy its requirement.

4.4.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, n
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that supports the EventChannel
interface, as illustrated in Figure 4-8.

Figure 4-8 A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation
returning a ConsumerAdmin object for adding consumers, an operation returning a
SupplierAdmin object for adding suppliers, and an operation for destroying the
channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface of a supplier), but inclu
an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of a producer or consumer is a two step process. An event-generatin
application first obtains a proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains a proxy supplier from a channel, then “connects” to the pr
supplier by providing it with a consumer.

event channel

EventChannel
Event Service: v1.0 Event Channels March 1995 4-13

4

sing

e
ull
The reason for the two-step registration process is to support composing event
channels by an external agent. Such an agent would compose two channels by
obtaining a proxy supplier from one and a proxy consumer from the other, and pas
each of them a reference to the other as part of their connect operation.

Proxies are in one of three states: disconnected, connected or destroyed. Figure 4-9
gives a state diagram for a proxy. The nodes of the diagram are the states and th
edges are labelled with the operations that change the state of the proxy. Push/p
operations are only valid in the connected state.

Figure 4-9 State diagram of a proxy.

disconnected connected destroyed
obtain connect disconnect

event
communication
4-14 CORBAservices March 1995

4

s
d in
4.5 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making connection
between suppliers and consumers. The CosEventChannelAdmin module is define
Figure 4-10.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};
Event Service: v1.0 The CosEventChannelAdmin Module March 1995 4-15

4

ers,

ts the

nel.

cts so
. For
y
ply
Figure 4-10 The CosEventChannelAdmin Module

4.5.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding consum
adding suppliers, and destroying the channel.

Any object that possesses an object reference that supports the EventChannel interface
can perform these operations:

• The ConsumerAdmin interface allows consumers to be connected to the event
channel. The for_consumers operation returns an object reference that suppor
ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the event chan
The for_suppliers operation returns an object reference that supports the
SupplierAdmin interface.

• The destroy operation destroys the event channel.

Consumer administration and supplier administration are defined as separate obje
that the creator of the channel can control the addition of suppliers and consumers
example, a creator might wish to be the sole supplier of event data but allow man
consumers to be connected to the channel. In such a case, the creator would sim
export the ConsumerAdmin object.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
4-16 CORBAservices March 1995

4

e

ent
4.5.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to th
event channel; clients use it to obtain proxy suppliers.

The obtain_push_supplier operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns a ProxyPullSupplier object. The
ProxyPullSupplier object is then used to connect a pull-style consumer.

4.5.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the ev
channel; clients use it to obtain proxy consumers.

The obtain_push_consumer operation returns a ProxyPushConsumer object. The
ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns a ProxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

4.5.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};
Event Service: v1.0 The CosEventChannelAdmin Module March 1995 4-17

4

o a
e

ers

so a
e

ers

il
A nil object reference may be passed to the connect_push_supplier operation; if s
channel cannot invoke the disconnect_push_supplier operation on the supplier; th
supplier may be disconnected from the channel without being informed.

If the ProxyPushConsumer is already connected to a PushSupplier, then the
AlreadyConnected exception is raised.

4.5.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull consum
to the event channel.

A nil object reference may be passed to the connect_pull_consumer operation; if
channel cannot invoke a disconnect_pull_consumer operation on the consumer; th
consumer may be disconnected from the channel without being informed.

If the ProxyPullSupplier is already connected to a PullConsumer, then the
AlreadyConnected exception is raised.

4.5.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull suppli
to the event channel.

Implementations should raise the CORBA standard BAD_PARAM exception if a n
object reference is passed to the connect_pull_supplier operation.

If the ProxyPullConsumer is already connected to a PullSupplier, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPullConsumer may put additional requirements on the
interface supported by the pull supplier. If the pull supplier does not meet those
requirements the ProxyPullConsumer raises the TypeError exception. (See section
4.7.2 for an example.)

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

};
4-18 CORBAservices March 1995

4

il

hose
.1

ns.
MG
.

tually

for
ort
4.5.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel.

Implementations should raise the CORBA standard BAD_PARAM exception if a n
object reference is passed to the connect_push_consumer operation.

If the ProxyPushSupplier is already connected to a PushConsumer, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet t
requirements the ProxyPushSupplier raises the TypeError exception. (See section 4.7
for an example.)

4.6 Typed Event Communication

 Section 4.2 discusses generic event communication using push and pull operatio
The next few sections describe how event communication can be described in O
IDL and how typed event channels can support such typed event communication

4.6.1 Typed Push Model

In the typed push model, suppliers call operations on consumers using some mu
agreed interface I. The interface I is defined in IDL, and may contain any operations
subject to the following restrictions:

• All parameters must be in parameters only.
• No return values are permitted

These are the same restrictions as CORBA imposes on oneway operations, and
similar reasons: event communication is unidirectional, and does not directly supp
responses. The operations can be declared oneway, but need not be.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer and PushSupplier object references. (Note that the supplier
interface is the same as the untyped case.) The supplier then invokes the
get_typed_consumer operation of the TypedPushConsumer interface, which returns an
object reference supporting the typed interface, I, referred to as an I-reference. The
particular interface, I, that the reference supports is dependent on the particular

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};
Event Service: v1.0 Typed Event Communication March 1995 4-19

4

e

, this

TypedPushConsumer, and must be mutually agreed by supplier and consumer. Onc
the supplier has obtained the I-reference, it can call operations in interface I on the
consumer.

As in the case of the generic push-style, event communication can be broken by
invoking a disconnect_push_consumer operation on the TypedPushConsumer interface
or by invoking a disconnect_push_supplier operation on the PushSupplier interface. If
the PushSupplier object reference is nil, the connection cannot be broken via the
supplier.

Figure 4-11 illustrates typed push-style communication between supplier and
consumer.

Figure 4-11 Typed Push-style Communication Between a Supplier and a Consumer

4.6.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event
information, using some mutually agreed interface Pull<I> 3. For every interface I
having the properties described in section 4.6.1, an interface Pull<I> is defined as
follows:

• For every operation o in I, Pull<I> contains two operations:

• pull_o, with all in parameters changed to out parameters. When called, this
operation will return with the event data in the out parameters. If no o-event is
currently available, it will block.

• boolean try_o, with all in parameters changed to out parameters. When called
operation will check whether an o-event is currently available. If so, it will
return true, with the event data in the out parameters. If not, it will return false,
with the out parameters undefined

3.Pull<I> is used as notation for a computed interface from interface I. Thus, if I is an interface
DocumentEvents, Pull<I> is an interface PullDocumentEvents.

PushSupplier

TypedPushConsumer

supplierconsumer

I

4-20 CORBAservices March 1995

4

an

er.

mer.
The interface Pull<I> is designed to allow pulling of exactly the same events that c
be pushed using interface I.

To set up typed pull-style communication, consumers and suppliers exchange
PullConsumer and TypedPullSupplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of the TypedPullSupplier, which returns an object
reference supporting the typed interface, Pull<I> , referred to as a Pull<I>-reference.
The particular interface, Pull<I> , that the reference supports is dependent on the
particular TypedPullSupplier, and must be mutually agreed by supplier and consum
Once the consumer has obtained the Pull<I>-reference, it can call operations in
interface Pull<I> on the supplier.

Figure 4-12 illustrates typed pull-style communication between supplier and consu

Figure 4-12 Typed Pull-style Communication Between a Supplier and a Consumer

4.7 The CosTypedEventComm Module

The typed communication styles shown in Figure 4-11 and Figure 4-12 are both
supported by two new interfaces, TypedPushConsumer and TypedPullSupplier and two
existing interfaces, PushSupplier and PullConsumer. The first two interfaces are

PullConsumer

TypedPullSupplier

supplierconsumer

Pull<I>
Event Service: v1.0 The CosTypedEventComm Module March 1995 4-21

4

 were

er

not

to

defined in an OMG IDL module named CosTypedEventComm, as shown in
Figure 4-13. The last two are the same as for untyped event communication, and
defined in the CosEventComm module in Figure 4-3.

Figure 4-13 The IDL Module CosTypedEventComm

4.7.1 The TypedPushConsumer Interface

A typed push-style consumer supports the TypedPushConsumer interface both to
receive event data in the generic manner, and to supply a specific typed interface
through which to receive it in typed form.

The TypedPushConsumer can behave just like an untyped PushConsumer, described in
section 4.3.1. In addition, if the supplier wishes to communicate event data to the
consumer in typed rather than generic form, it first invokes the get_typed_consum
operation. This returns an I-reference supporting an interface I. The particular
interface, I, that the reference supports is dependent on the particular
TypedPushConsumer. The return type of the operation is Object, because different
TypedPushConsumers will return references of different types, so the actual type
cannot be specified in a general definition. Once the supplier has obtained the I-
reference, it can narrow it to I, and then call operations in interface I on the consumer.
Mutual agreement about I is needed between the supplier and consumer. If they do
agree, the narrow operation will fail.

As noted above, a TypedPushConsumer must support the push operation, inherited
from CosEventComm::PushConsumer. Implementing push fully is an unnecessary
burden if the consumer is intended for typed use only. It is therefore permissible
implement a TypedPushConsumer with a null implementation of push that merely
raises the standard CORBA exception NO_IMPLEMENT. Clearly, suppliers must
know this and confine themselves to typed communication with such consumers.

#include “CosEventComm.idl”

module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

};

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};
4-22 CORBAservices March 1995

4

d

lier
.

ot

re

ly,
such

 both
gle
ms

e
4.7.2 The TypedPullSupplier Interface

A typed pull-style supplier supports the TypedPullSupplier interface both to allow
consumers to pull event data in the generic manner, and to supply a specific type
interface through which they can pull it in typed form.

The TypedPullSupplier can behave just like an untyped PullSupplier, described in
section 4.3.3. In addition, if the consumer wishes to pull event data from the supp
in typed rather than generic form, it first invokes the get_typed_supplier operation
This returns a Pull<I>-reference supporting an interface Pull<I> . The particular
interface, Pull<I> , that the reference supports is dependent on the particular
TypedPullSupplier. The return type of the operation is Object, because different
TypedPullSuppliers will return references of different types, so the actual type cann
be specified in a general definition. Once the consumer has obtained the Pull<I>-
reference, it can narrow it to Pull<I> , and then call operations in interface Pull<I> on
the supplier. Mutual agreement about Pull<I> is needed between the supplier and
consumer. If they do not agree, the narrow operation will fail.

As noted above, a TypedPullSupplier must support the pull and try_pull operations,
inherited from CosEventComm::PullSupplier. Implementing these operations fully is
an unnecessary burden if the supplier is intended for typed use only. It is therefo
permissible to implement a TypedPullSupplier with null implementations of pull and
try_pull that merely raise the standard CORBA exception NO_IMPLEMENT. Clear
consumers must know this and confine themselves to typed communication with
suppliers.

4.8 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support
typed and generic event communication. These forms can be mixed at will. A sin
channel can handle events supplied and consumed in any combination of the for
defined earlier (push/pull, generic/typed). An event supplied in typed form can be
consumed in generic form, or vice versa.4

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

4. Doing this does require an understanding on the part of the generic suppliers and consumers of how th
channel packages parameters of typed calls when converting them to generic form. Details of this
packaging are dependent on the implementation of the channel.
Event Service: v1.0 Typed Event Channels March 1995 4-23

4

ns
4.9 The CosTypedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. It is defined in Figure 4-14. Most of its interfaces are specializatio
of the corresponding interfaces in the CosEventChannel module defined in
Figure 4-10.
4-24 CORBAservices March 1995

4

Figure 4-14 The CosTypedEventChannelAdmin Module

#include “CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchImplementation {};
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};
};
Event Service: v1.0 The CosTypedEventChannelAdmin Module March 1995 4-25

4

t
ich

 to

n

n

4.9.1 The TypedEventChannel Interface

This interface is analogous to CosEventChannelAdmin::EventChannel. However, i
returns typed versions of the consumer and supplier administration interfaces, wh
are capable of providing proxies for either generic or typed communication.

4.9.2 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting consumers
typed event channel; clients use it to obtain proxy suppliers.

The obtain_typed_pull_supplier operation takes a Key parameter that identifies a
interface, Pull<I> . The scope of the key is the typed event channel. It returns a
TypedProxyPullSupplier for interface Pull<I> . The TypedProxyPullSupplier will
allow an attached pull consumer to pull events either in generic form or using
operations in interface Pull<I> . It is up to the implementation of
obtain_typed_pull_supplier to create or find an appropriate TypedProxyPullSupplier.
If it cannot, it raises the exception InterfaceNotSupported.

The obtain_typed_push_supplier operation takes a Key parameter that identifies a
interface, I. The scope of the key is the typed event channel. It returns a
ProxyPushSupplier that calls operations in interface I, rather than push operations. It is
up to the implementation of obtain_typed_push_supplier to create or find an
appropriate ProxyPushSupplier5. If it cannot, it raises the exception
NoSuchImplementation.

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

5. see Appendix A for implementation considerations.
4-26 CORBAservices March 1995

4

ce

he

s an

er

an

e or

ned

h
Such a ProxyPushSupplier is guaranteed only to invoke operations defined in interfa
I. Any event on the channel that does not correspond to an operation defined in
interface I is not passed on to the consumer. Such a ProxyPushSupplier is therefore an
event filter based on type.

4.9.3 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers to t
typed event channel; clients use it to obtain proxy consumers.

The obtain_typed_push_consumer operation takes a Key parameter that identifie
interface, I. The scope of the key is the typed event channel. It returns a
TypedProxyPushConsumer for I. An attached supplier can provide events by using
operations in interface I. It is up to the implementation of obtain_typed_push_consum
to create or find an appropriate TypedProxyPushConsumer. If it cannot, it raises the
exception InterfaceNotSupported.

The obtain_typed_pull_consumer operation takes a Key parameter that identifies
interface, Pull<I>. The scope of the key is the typed event channel. It returns a
ProxyPullConsumer that calls operations in interface Pull<I> , rather than pull
operations. It is up to the implementation of obtain_typed_pull_consumer to creat
find an appropriate ProxyPullConsumer. If it cannot, it raises the exception
NoSuchImplementation.

Such a ProxyPullConsumer is guaranteed only to invoke operations defined in
interface Pull<I> . Any event request that does not correspond to an operation defi
in interface Pull<I> is not pulled from the supplier. Such a ProxyPullConsumer is
therefore an event filter based on type.

4.9.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting pus
suppliers to the typed event channel.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };
Event Service: v1.0 The CosTypedEventChannelAdmin Module March 1995 4-27

4

ent

rface

vent

nel

 a

l
• By inheriting from both CosEventChannelAdmin::ProxyPushConsumer and
CosTypedEventComm::TypedPushConsumer, this interface supports:

• Connection and disconnection of push suppliers, exactly as in the generic ev
channel,

• Generic push operation and

• Obtaining the typed view, so that the supplier can use typed push
communication. The reference returned by get_typed_consumer has the inte
identified by the Key used when this TypedProxyPushConsumer was obtained.
(See section 4.9.3)

4.9.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pull
consumers to the typed event channel.

By inheriting from both CosEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier, this interface supports:

• Connection and disconnection of pull consumers, exactly as in the generic e
channel,

• Generic pull and try_pull operations and

• Obtaining the typed view, so that the consumer can use typed pull
communication. The reference returned by get_typed_supplier supports the
interface identified by the Key used when this TypedProxyPullSupplier was
obtained. (See section 4.9.2).

4.10 Composing Event Channels and Filtering

The event channel administration operations defined in section 4.5 support the
composition of event channels. That is, one event channel can consume events
supplied by another. This architecture allows the implementation of an event chan
that filters the events supplied by another.

Since the ProxyPushSupplier for interface I of a typed event channel only pushes
events that correspond to I, it acts as a filter based on type. Similarly, the
ProxyPullConsumer for interface Pull<I> of a typed event channel only pulls events
that correspond to Pull<I> , it also acts as a filter based on type.

4.11 Policies for Finding Event Channels

The Event Service does not establish a policy for finding event channels. Finding
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers wil

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };
4-28 CORBAservices March 1995

4

el are
ies

n

e
dictate when an event channel is created and how references to the event chann
obtained. By representing the event channel as an object, it has all of the propert
that apply to objects, including support by finding mechanisms.

For example, when a user performs a drag-and-drop or cut-and-paste operation, a
event channel could be created and identified to suppliers and consumers.
Alternatively, the event channel could be named in a naming context, or it could b
exported through an operation on an object.
Event Service: v1.0 Policies for Finding Event Channels March 1995 4-29

4

ld
 be

els

his
tyle

ly
rse,

o all

anner

e

 Appendix A Implementing Typed Event Channels

Note – Implementation details do not form part of an OMG specification, and shou
not be standardized. On the other hand, it is not obvious that typed channels can
implemented without extensions to CORBA. This section indicates one strategy for
implementing typed event channels. It is included to show that typed event chann
can be implemented; it is not intended in any way to constrain implementations.
Optimized implementations are certainly possible.

Figure 4-15 demonstrates a possible implementation of a typed event channel. T
appendix concentrates on push style communication. The implementation of pull-s
communication is analogous.

The implementation interposes an encoder between typed-style suppliers and the
channel and a decoder between the channel and typed-style consumers.

Figure 4-15 A possible implementation of a typed event channel.

At the supplier end, an encoder converts operation calls to push calls.

At the consumer end, a decoder converts push calls back to operation calls.

The effect of such a communication is thus that the original operation is eventual
called on the consumer, but the communication is routed via the channel. Of cou
there can be multiple suppliers and multiple consumers on the same channel.
Whenever one of the suppliers calls an operation, it is delivered by the channel t
consumers.

The encoder must package the operation identification and the parameters in a m
that the decoder can unpack them correctly.

Given the OMG IDL definition of an interface, I, an encoder generator could generat
an implementation that supports the interface I and converts all calls on this interface
to push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

event

typedtyped
supplierconsumer

I
channel

PCPCI

PC = PushConsumer

encoderdecoder

 I = interface I
4-30 CORBAservices March 1995

4

 the

ting
 to the
The typed event channel is responsible for finding, creating or implementing the
appropriate encoders. An appropriate encoder is found or created in response to
obtain_typed_push_consumer request on the typed event channel. The encoder is
returned in response to the get_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating or implemen
the appropriate decoders. An appropriate decoder is found or created in response
connect_push_consumer request on the typed event channel.

Implementing Typed Event Channels Policies for Finding Event Channels March 19954-31

4

ing:

ts
ent
 Appendix B An Event Channel Use Example

This section illustrates an example use of the event channel, including the follow

• Creating an event channel

• Consumers and/or suppliers finding the channel

• Suppliers using the event channel

• In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.

• The Document interface defines two operations to return event channels:

The title_changed operation causes the document to generate an event when ititle
is changed; the new_section operation causes the document to generate an ev
when a new section is added. Both operations return ConsumerAdmin object
references. This allows consumers to be added to the event channel.

• The title_changed implementation contains instance variables for using and
administering the event channels.

interface Document {

ConsumerAdmin title_changed();

ConsumerAdmin new_section();

:

};

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */
EventChannelRef event_channel;

ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;
4-32 CORBAservices March 1995

4

nnel
• At some point, the document implementation creates the event channel, gets
supplier and consumer administrative references, and adds itself as a supplier6.

• The title_changed operation returns the ConsumerAdmin object reference.

Clients of this operation can add consumers.

• When the title changes, the document implementation pushes the event to the
channel.

The document implementation similarly initializes, exports, and uses the event cha
for reporting new sections.

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,
doc_side_connection)

6. For readability, exception handling is omitted from these code fragments.

return consumer_admin;

proxy_push_consumer->push(env,data);
Event Channel Use Example Policies for Finding Event Channels March 1995 4-33

4

4-34 CORBAservices March 1995

Persistent Object Service Specification 5
o the

r
nt

ects,
5.1 Introduction

The goal of the Persistent Object Service (POS) is to provide common interfaces t
mechanisms used for retaining and managing the persistent state of objects. The
Persistent Object Service will be used in conjunction with other object services, fo
example, naming, relationships, transactions, life cycle, and so forth. The Persiste
Object Service has the primary responsibility for storing the persistent state of obj
with other services providing other capabilities.

Figure 5-1 Roles in the Persistent Object Service

Client

Object

Persistent Object Service

Dynamic state

Persistent state

Object Reference
CORBAservices March 1995 5-1

5

e

ot

t

ment
ite its
 be

the
.,

ient
ertain

not

istent
s are
t the

o
e

d
no

ill in

rvice.

 5.5
ts, and
n 5.7

to the

S
ols
Figure 5-1 shows the participants in the Persistent Object Service. The state of th
object can be considered in two parts, the dynamic state, which is typically in memory
and is not likely to exist for the whole lifetime of the object (for example, it would n
be preserved in the event of a system failure), and the persistent state, which the object
could use to reconstruct the dynamic state.

Although the ORB provides the ability for an object reference to be persistent, it
cannot ensure that the state of the object will be available just because the objec
reference is still valid.

The object ultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. There is no require
that any object use any particular persistence mechanism. For example, it may wr
data to files using non-CORBA interfaces, or a single-level-store mechanism may
used. However, the Persistent Object Service provides capabilities that should be
useful to a wide variety of objects.

Whether or not the client of an object is aware of the persistent state is a choice
object has. CORBA already provides a persistent reference handling interface (i.e
object_to_string, string_to_object, release, etc.). We expect that this will be suffic
for most clients to manage persistence of their referenced objects. But, because c
kinds of flexibility require the client to manage reference objects’ persistence, the
Persistent Object Service defines object interfaces for doing so. If this flexibility is
required, then these interfaces need not be supported or used.

The size, structure, access patterns and other properties of the dynamic and pers
state of the object varies tremendously. For many objects, their primary semantic
the efficient storage and access of its state for particular purposes. It is critical tha
Persistent Object Service be able to support greatly different styles of usage and
implementation in order to be useful to as many objects as possible.

As usual for object services, the primary task of this persistence specification is t
define the interfaces that are needed to use the Persistent Object Service, and th
conventions for how objects can work together using it.

The architecture of the Persistent Object Service defines multiple components an
interfaces. In a particular situation, different parts of the service may be used. In
case does this specification assume the use of a particular implementation of a
component, and it is expected that different implementations of the components w
fact work together.

Section 5.2 describes the overall goals and properties of the Persistent Object Se
Section 5.3 defines the components which compose it. Section 5.4 presents the
CosPersistencePID module which defines the Persistence Identifier (PID). Section
presents the CosPersistencePO module with interfaces borne by Persistent Objec
Section 5.6 presents the interface to the Persistent Object Manager (POM). Sectio
presents an overview of the Persistent Data Service (PDS) which interfaces both
Protocol which communicates between PO and PDS, and to the Datastore which
actually stores the data; following this, Section 5.8 defines the CosPersistencePD
Module which defines base functionality inherited by every protocol. Three protoc
are presented in this specification although more are possible; the Direct Access
5-2 CORBAservices March 1995

5

ata

ted
ne
ms, is
6.

he
ted
ides

.

uced
rties

make

 of the
ject
to be
bject
 that

nt can
nt
eed
n not

ecific

r of
Protocol (PDS_DA) is described in Section 5.9 and its IDL module is presented in
Section 5.10. The ODMG-93 Protocol is described in Section 5.11. The Dynamic D
Object (DDO) Protocol is described in Section 5.12, and its IDL module is presen
in Section 5.13. Other possible protocols are discussed briefly in Section 5.14. O
possible datastore, implementable using a number of database and file mechanis
described in Section 5.15; other possible datastores are discussed in Section 5.1
Finally, Section 5.18 lists outside works referenced in this chapter.

5.2 Goals and Properties

The Persistent Object Service plays a key role in structuring the object system. T
model of how many objects work is critically dependent on consistent and integra
use of persistence. Like other object services, the Persistent Object Service prov
interfaces that can support different implementations in order to obtain different
qualities of service. Those interfaces allow different components to work together

The overall persistence architecture has multiple components. Each will be introd
in turn in this section, following presentation of some basic capabilities and prope
provided by the overall architecture.

5.2.1 Basic Capabilities

The principle requirement to be supported is the need for an object to be able to
all or part of its state be persistent. Although the CORBA system defines object
references as persistent (that is, they are usable until they are released regardless
life time of their containing address space), it defined no particular way for the ob
to make its state persistent. The Persistent Object Service is intended ultimately
the most common way to implement this. Therefore, there must be a way for the o
to decide what state needs to be made persistent, and ways to store and retrieve
state.

It is often necessary to expose the persistent state from an object, so that the clie
control the object’s persistence to achieve certain types of flexibility. The Persiste
Object Service defines a convention for doing this. Clients of objects sometimes n
ways to refer to the persistent state, and request various operations on it. It is ofte
necessary to expose the persistent state from an object, so that the object
implementation itself determines its persistence. In these cases, no persistence-sp
object interfaces need be supported.

5.2.2 Object-oriented Storage

In existing non-object-oriented systems, persistence is accomplished by a numbe
data storage mechanisms. Generally, such mechanisms do not provide the key
properties that object systems provide—uniform interfaces, self-description, and
abstraction. The Persistent Object Service brings these properties to storage by
applying object technology and principles.
Persistent Object Service: v1.0 Goals and Properties March 1995 5-3

5

fined
red,
ing
ce a
d in a
ort

ntation
n.

ssed

hat
t a
isible

 the
up,
 state

rove
esire
jects

t the

pend

 in a

 and
is is
Interfaces to Data

To manage object persistence, the POS defines an architecture with interfaces de
using the CORBA IDL type system. Whether detailing the particular data to be sto
describing the protocol for accessing the state, or defining the convention for mak
state visible for client control, the same “language” is used. This makes persisten
natural part of the software environment. These interfaces are designed to be use
wide variety of situations, creating uniformity by encouraging most objects to supp
them, while allowing optimization and evolution.

By accessing data through an interface, many problems of data manipulation and
exchange can be avoided. For example, programs always see data in the represe
that is appropriate for the machine, programming language, etc., of the applicatio
Data can be translated as needed to facilitate use in different object types and
implementations and for different storage formats or underlying persistent storage
mechanisms (e.g. stream files, record files, or various databases) when it is acce
through the interface.

Self-description

A powerful characteristic of object-oriented systems is that the elements are self-
describing. It is possible to determine from an object what kind of object it is and w
interfaces it supports. In the persistence architecture this means, for example, tha
client can determine whether or not an object wishes to make its persistent state v
by checking to see if the object supports the interface for doing so.

It also means that the data can be manipulated to some degree independently of
objects whose state they represent. This can allow generic facilities such as back
migration, storage accounting, etc., to be done independent of the objects whose
is being stored.

Abstraction

In order to support a wide and evolving set of uses, a service must be able to imp
and replace its implementations without affecting the clients of that service. The d
for reuse of objects requires that those objects not depend too strictly on other ob
and services, but rather be willing to work with any other components that suppor
required interface.

A variety of value-added products are also possible assuming that the objects de
only on the defined interfaces. By interposing unexpected implementations, for
example, it may be possible to support features such as replication or versioning
transparent way.

5.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG architecture) is its
openness. In this case, that means that there can be a variety of different clients
implementations of the Persistent Object Service, and they can work together. Th
5-4 CORBAservices March 1995

5

ents
for

l,
ture
 when

 of a
ight

 Name
ey
cts,

g and

nd
ment
xpect

s to be
upport

r
t yet

 only

t, are
d its
 data
ct

he
particularly important for storage, where the mechanisms that are useful for docum
may not be appropriate for employee databases, or the mechanisms appropriate
mobile computers may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerfu
leveraging decades of experience with database systems. Of course, the architec
specifies several interfaces, but also shows how new interfaces can be introduced
needed while still exploiting the rest of the architecture.

As with other object services, the Persistent Object Service is intended to be part
collection of services. As a result, it does not attempt to solve all problems that m
relate to storage. Rather, it assumes other services will provide the solutions. For
example, the Persistent Object Service does not do naming, but assumes that the
Service will perform that function; it does not do transactions, but assumes that th
will be added as appropriate; it does not handle issues of general compound obje
but assumes that there will be a scheme that spans persistence, lifecycle, printin
other services.

A key idea in object systems that is critical for persistence is the ability for new a
existing storage services to be able to integrate into the architecture. The require
for such components to “plug and play” together is paramount, since one cannot e
all data to be maintained in a particular kind of file or database system. Thus, the
architecture has features to allow existing databases or other storage mechanism
used for persistence, and for new storage mechanisms to be developed that can s
both Persistent Object Service clients and other kinds of clients.

The POS architecture is open with respect to PersistentDataService, Datastore,
Protocol, and PID interfaces. Although we define some minimum requirements fo
these in some cases, many alternatives are allowed, including ones that have no
been defined.

5.2.4 Views of Service

There are multiple views of the service, and each participant may need to consider
a part of the architecture.

Client

It is common for clients of objects to need to control or to assist in managing
persistence. In particular, the timing of when the persistent state is preserved or
restored, and the identification of which persistent state is to be used for an objec
two aspects often of interest to clients. The ability of a client to see the object an
data separately allows different object implementations to be used with the same
and allows different files or databases and formats to be used with the same obje
implementation.

However, the client need only deal with such complexity when this type of
functionality is necessary. The client of the object can be completely ignorant of t
persistence mechanism, if the object chooses to hide it.
Persistent Object Service: v1.0 Goals and Properties March 1995 5-5

5

 want
ndon

nt

in
t is
s is
ice in

ta to

 of
 to be

tate
e

 data
way
re.

rage
e
f a

 are
since
een
The Persistent Object Service provides an interface for objects to use when they
to expose their persistence to their clients. The interface does not completely aba
encapsulation, but gives the client visibility to those functions it needs. In fact, the
client is generally unaware of how or if the object uses other parts of the Persiste
Object Service.

Object Implementation

The object has the most involvement with the persistence, and the most options
deciding how to use it. Defining and manipulating the persistent state of the objec
often the most crucial part of its implementation. The first decision the object make
what interface to its data it needs. The Persistent Object Service captures that cho
the selection of the Protocol used by the object. Some Protocols provide simple
interfaces and limited functionality, others may provide more control and more
powerful operations.

The object also has the choice of delegating the management of its persistent da
other services, or maintaining fine-grained control over it. The Persistent Object
Service defines a Persistent Object Manager that handles much of the complexity
establishing connections between objects and storage, allowing new components
introduced without affecting the objects or their clients.

The object may also provide the ability for its clients to manipulate its persistent s
in various ways. This is important for creating a uniform view of persistence in th
system.

Persistent Data Service

The Persistent Data Service (PDS) actually implements the mechanism for making
persistent and manipulating it. A particular PDS supports a Protocol defining the
data is moved in and out of the object, and an interface to an underlying Datasto

The PDS has the responsibility of translating from the object world above it to the
storage world below it. It plays critical roles in identifying the storage as well as
providing convenient and efficient access to it.

We define multiple kinds of PDSs, each tuned to a particular protocol and data sto
mechanism, since the range of requirements for performance, cost, and qualitativ
features is so large. Multiple PDSs must work together to create the impression o
uniform persistence mechanism. The Persistent Object Manager provides the
framework for PDSs to cooperate this way.

Datastore

The lowest-level interface we define is a Datastore. Although Datastore interfaces
the least visible part of the persistence architecture, it may be the most valuable,
there are so many different Datastores offering a wide spectrum of tradeoffs betw
availability, data integrity, resource consumption, performance and cost, and it is
5-6 CORBAservices March 1995

5

jects
ectly

the
t
for

y
hich

1 on

data

nally

ce
ingle
d

for
nce

of an

data
expected that more will be created. By having an interface that is hidden from ob
and their clients, a Datastore can provide service to any and all objects that indir
use the Datastore interface.

The Datastore plays a key role in interoperating with other storage services. It is
manifestation in the object world of the various means of storing data that are no
objects. Generally, standards for Datastore interfaces have already been defined
different kinds of data repositories - relational, object-oriented, and file systems.

5.3 Service Structure

This section presents an overview of each of the major components and how the
interrelate. Subsequent sections present the OMG IDL as divided into modules w
correspond closely (but not exactly) to these components, as noted below.

The major components of the Persistent Object Service are illustrated in Figure 5-
page 1. They are:

• Persistent Identifier (PID) - This describes the location of an object’s persistent
in some Datastore and generates a string identifier for that data.

• Persistent Object (PO) - This is an object whose persistence is controlled exter
by its clients.

• Persistent Object Manager (POM) - This component provides a uniform interfa
for the implementation of an object’s persistence operations. An object has a s
POM to which it routes its high-level persistence operations to achieve plug an
play.

• Persistent Data Service (PDS) - This component provides a uniform interface
any combination of Datastore and Protocol, and coordinates the basic persiste
operations for a single object.

• Protocol - This component provides one of several ways to get data in and out
object.

• Datastore - This component provides one of several ways to store an object’s
independently of the address space containing the object.
Persistent Object Service: v1.0 Service Structure March 1995 5-7

5

 by

e PO

Figure 5-2 Major Components of the POS and their Interactions

The term “persistent object” is used to refer both to objects whose persistence is
controlled internally or externally. Either kind of persistent object can be supported
the Persistent Object Service’s POM, PDS, Protocol and Datastore interfaces. Th
interface supports externally controlled persistence.

5.4 The CosPersistencePID Module

The CosPersistencePID module contains the basic interface for retrieving a PID:

• The PID Interface

This section describes this interface, plus an example factory interface, and their
operations in detail.

Client

PersistentObjectManager

PersistentDataService

Datastore

Protocol

Persistent Object PO

PDS

POM

PID Persistent Identifier
5-8 CORBAservices March 1995

5

ct
D,

re
ed or
t the

urDoc
nd

same
d
ee a
e
The CosPersistencePID Module is shown in Figure 5-3: .

The PID identifies one or more locations within a Datastore that represent the
persistent data of an object and generates a string identifier for that data. An obje
must have a PID in order to store its data persistently. The client can create a PI
initialize its attributes, and connect it to the object. A persistent object’s
implementation uses the POM interface by passing the object and the PID as
parameters.

The PID should not be confused with the CORBA object reference (OID). They a
similar in that both have an operation that produces a string form that can be stor
communicated in whatever ways strings may be manipulated and later used to ge
original PID or OID. They differ in that the PID identifies data while the OID
identifies a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDoc and yo
objects. If mySpreadSheet’s OID is stored persistently with myDoc and yourDoc a
then all three are brought into memory, then both documents will always see the
spreadsheet object. If mySpreadSheet’s PID is stored persistently with myDoc an
yourDoc and then all three object are brought into memory, each document will s
different spreadsheet object whose states will be the same initially but will diverg
over time.

5.4.1 PID Interface

The OMG IDL definition for the PID is as follows

The PID contains at least one attribute:

module CosPersistencePID {

interface PID {
attribute string datastore_type;
string get_PIDString();

};

};

Figure 5-3 The CosPersistencePID Module

interface PID {
 attribute string datastore_type;

string get_PIDString();
 };
Persistent Object Service: v1.0 The CosPersistencePID Module March 1995 5-9

5

be
e
ns

tent
ing

ent
ws

urn a
a
tes
tores.

een
h a
y

es
attribute string datastore_type;
This identifies the interface of a Datastore. Example datastore_types might
“DB2”, “PosixFS” and “ObjectStore”. The PDS hides the Datastore’s interfac
from the client, the ppersistent object and the POM, but PDS implementatio
are dependent on the Datastore’s interface.

Other attributes can be added via subtyping the PID base type to reflect more
specialized PIDs. Unless the datastore_type contains only a single object’s persis
data, there is a need for more specific location information in the PID. The follow
example PID subtypes illustrate this:

The PID provides a single operation:

string get_PIDString();
This operation returns a string version of the PID called the PIDString. A cli
should only obtain the PIDString using the get_PIDString operation. This allo
the PID implementation to decide the form of the PIDString.

Some implementations may simply concatenate the PID attributes. Others may ret
more compact form specialized for specific Datastores or even databases within
Datastore. Still others may return a universally unique identifier (UUID) that facilita
movement of its persistent data either within a single Datastore or between Datas
A UUID-based PID might be implemented by overriding the get and set attribute
operations and the get_PIDString operation to bind and lookup the mapping betw
UUID and location information in a special context in the Name Service. Using suc
UUID-based PID, when an object is moved, the new location would be changed b
setting the attributes to indicate the new location, and the PID would make the
modification in the Name Service. The PIDString would contain the UUID that do
not change when an object’s data is moved, so that references remain intact.

Some applications need to be able to restore an object given a PID but without
knowing which type or implementation to use. The PID can be subtyped to
accommodate this by adding the type or implementation as a PID attribute.

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::PID {
attribute string database_name; // name of a database

};

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

};

interface PID_OODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; //object id within a segment

};
5-10 CORBAservices March 1995

5

lude
e

his

 in

 key
 is
ed

istent

orne
5.4.2 Example PIDFactory Interface

The OMG IDL definition for an example PIDFactory is as follows (others are also
possible):

This example PIDFactory provides three ways of creating a PID:

CosPersistencePID::PID create_PID_from_key(in string key);
This creates an instance of a PID given a key that identifies a particular PID
implementation.

CosPersistencePID::PID create_PID_from_string(in string pid_string);
This creates an instance of a PID given a PIDString. The PIDString must inc
some way to identify a particular PID implementation (the PID’s key) in som
way that allows this operation to extract the PID’s key from the PIDString. T
key identifies the PID implementation for the newly created PID.

CosPersistencePID::PID create_PID_from_string_and_key(in string pid_string,
string key);

This creates an instance of a PID whose implementation is identified by the
in the input parameter instead of the key in the PIDString, and whose value
determined by the PIDString. This is useful for when persistent data is mov
between Datastores that require different PID interfaces.

5.5 The CosPersistencePO Module

The CosPersistencePO Module collects the interfaces which are borne by a pers
object to allow its clients and the POM to control the PO’s relationship with its
persistent data. This module includes two interfaces:

• The PO Interface

• The SD Interface

plus an example factory interface.

The PO interface is borne by the PO and used by the client. The SD interface is b
by the PO and used by the POM.

This section describes these interfaces and their operations in detail.

interface PIDFactory {
CosPersistencePID::PID create_PID_from_key(in string key);
CosPersistencePID::PID create_PID_from_string(

in string pid_string);
CosPersistencePID::PID create_PID_from_string_and_key(

in string pid_string, in string key);
};
Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-11

5

trol

nd its
ration
O and
an

nd its

hen
ations
may

for

ion
 or
The CosPersistencePO Module is shown in Figure 5-4::

5.5.1 The PO Interface

The PO interface provides two mechanisms for allowing a client to externally con
the PO’s relationship with its persistent data:

• Connection: This mechanism establishes a close relationship between the PO a
Datastore where the two data representations can be viewed as one for the du
of the connection. When the connection is ended, the data is the same in the P
the Datastore, and the relationship between them no longer exists. An object c
have only one connection at a time.

• Store/restore: These operations allow the client to move data between the PO a
Datastore in each direction separately, with each movement in each direction
explicitly initiated by the client.

The PO interface operations allow client control of a single PO’s persistent data. W
one of these operations is performed on a PO, what data is included in these oper
is up to that PO’s implementation. For example, only part of the PO’s private data
be included. Other POs may be included based on any criteria. If other POs are
included, the target PO’s implementation becomes their client and is responsible
controlling their persistence.

A PO client is responsible for the following:

• Creating a PID for the PO and initializing the PID. For storage, whatever locat
information is not specified will be determined by the Datastore. For a retrieval
delete operation, the location information must be complete.

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};

interface SD {
void pre_store();
void post_restore();

};
};

Figure 5-4 TheCosPersistencePO Module
5-12 CORBAservices March 1995

5

s is
itself.

ation
e
tence

tion
ot

e

d by

d by

o the
e
hout
• Controlling the relationship between the data in the PO and the Datastore. Thi
done by asking the PO to connect(), disconnect(), store(), restore() or delete()

The OMG IDL definition for a PO is as follows:

The PO interface has the following operations:

CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);
This begins a connection between the data in the PO and the Datastore loc
indicated by the PID. The persistent state may be updated as operations ar
performed on the object. This operation returns the PDS that handles persis
for use by those Protocols that require the PO to call the PDS.

void disconnect (in CosPersistencePID::PID p);
This ends a connection between the data in the PO and the Datastore loca
indicated by the PID. It is undefined whether or not the object is usable if n
connected to persistent state. The PID can be nil.

void store (in CosPersistencePID::PID p);
This copies the persistent data out of the object in memory and puts it in th
Datastore location indicated by the PID. The PID can be nil.

void restore (in CosPersistencePID::PID p);
This copies the object’s persistent data from the Datastore location indicate
the PID and inserts it into the object in memory. The PID can be nil.

void delete (in CosPersistencePID::PID p);
This deletes the object’s persistent data from the Datastore location indicate
the PID. The PID can be nil.

To adhere to the plug and play philosophy, objects pass these requests through t
POM, so that the interface for PO parallels that of the POM. This delegation to th
POM allows objects to change PDSs (combination of Datastore and Protocol) wit
changing their implementation.

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};
Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-13

5

_id);
 pid

 such
rface
a.

ta.

ta.

ight
ata:
5.5.2 The POFactory Interface

The OMG IDL definition for an example POFactory is as follows (others are also
possible):

The example POFactory provides the following operation:

CosPersistencePO::PO create_PO(in CosPersistencePID::PID p, in string pom
This creates an instance of a PO that knows which POM to use and with its
attribute already assigned.

5.5.3 The SD Interface

Some objects may be implemented knowing they are going to be persistent. Many
objects have both transient and persistent data. The Synchronized Data (SD) Inte
is provided to allow such objects to synchronize their transient and persistent dat
Operations on the SD are invoked only by the POM. Persistent objects whose
persistence is controlled either internally or externally (PO) can support the SD
interface.

The OMG IDL definition for SD is as follows:

The interface for SD provides two operations:

void pre_store();
This ensures that the persistent data are synchronized with the transient da

void post_restore();
This ensures that the transient data are synchronized with the persistent da

A word processing document provides a good example of how these operations m
be implemented. Suppose the document type is implemented with the following d

• text buffer (persistent)

#include "CosPersistencePO.idl"
// CosPersistencePO.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (

in CosPersistencePID::PID p,
in string pom_id);

};

interface SD {
void pre_store();
void post_restore();

};
5-14 CORBAservices March 1995

5

Then
a that
t any
ration
tent

 and
• attributes (persistent)

• text cache (transient)

• cursor location (transient)

The document could be implemented such that all work is done in the text cache.
at store time, the text buffer needs to be updated, since it contains the actual dat
will be stored. As such, the pre_store operation should be implemented such tha
updates in the text cache are propagated to the text buffer. The post_restore ope
should be implemented such that the text cache is inititialized with a state consis
with the text buffer.

5.6 The CosPersistencePOM Module

The CosPersistencePOM module contains the interface which is borne by the POM
used by the PO. It contains a single interface:

• The POM Interface

This section describes this interface and its operations in detail.

The CosPersistencePOM Module is shown in Figure 5-5:

Figure 5-5 The CosPersistencePOM Module

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {

CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
};
Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-15

5

 PO
ally

col)

tion
e
e

ation
ot

by

d by
Clients of a PO will see the operations of the POM interface indirectly through the
interface. The implementation of a persistent object with either externally or intern
controlled persistence can use the POM interface. The POM provides a uniform
interface across all PDSs, so different PDSs (combination of Datastore and Proto
can be used without changing the object’s implementation.

The OMG IDL definition of the POM is as follows:

The POM interface has the following operations:

CosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);
This begins a connection between data in the object and the Datastore loca
indicated by the PID. The persistent state may be updated as operations ar
performed on the object. This operation returns the PDS that is assigned th
object’s PID for use by those Protocols that require the PO to call the PDS.

void disconnect (in Object obj, in CosPersistencePID::PID p);
This ends a connection between the data in the object and the Datastore loc
indicated by the PID. It is undefined whether or not the object is usable if n
connected to persistent state. The PID can be nil.

void store (in Object obj, in CosPersistencePID::PID p);
This gets the persistent data out of the object in memory and puts it in the
Datastore location indicated by the PID. The PID can be nil.

void restore (in Object obj, in CosPersistencePID::PID p);
This gets the object’s persistent data from the Datastore location indicated
the PID and inserts it into the object in memory. The PID can be nil.

void delete (in Object obj, in CosPersistencePID::PID p);
This deletes the object’s persistent data from the Datastore location indicate
the PID. The PID can be nil.

interface POM {
CosPersistencePDS::PDS connect (

in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
5-16 CORBAservices March 1995

5

, the

can

set
ted

pe)
tion
 to
ay

s
 POM

e

he

ext

a
OM,

B2
The major function of the POM is to route requests to a PDS that can support the
combination of Protocol and Datastore needed by the persistent object. To do this
POM must know which PDSs are available and which Protocol and Datastore
combinations they support. There are several possible ways that this information
be made available to a POM:

• How a Protocol is associated with an object. One possibility is for the client to
the Protocol for that object. Another possibility is for the Protocol to be associa
with the object’s type or implementation.

• How a POM finds out the set of available PDSs and which Protocol (or object ty
and Datastores they support. One possibility is for the POM to find the informa
in a configuration file or a registry. Another possibility is to provide an interface
the POM for registering the information. The best or most natural technique m
depend on the environment.

Because there are multiple ways to accomplish the above and more experience i
needed to better understand whether there is a best way and what that might be, a
interface for registering this information in the POM is not specified at this time.

When the POM is asked to store an object, the following steps logically occur:

1. From the PID, the POM gets the datastore_type attribute.

2. Regardless of how the Protocol is associated with the object, the POM uses th
combination of Protocol and datastore_type to determine the PDS.

3. The POM passes the store request through to the PDS.

4. The PDS gets data from the object using a Protocol and stores the data in the
Datastore.

The routing function of the POM serves to shield the client from having to know t
details of how actual data storage/retrieval takes place. A client can change the
repository of an object by changing the PID. The change will result in routing the n
store/restore request to whatever the appropriate PDS is for the new Datastore.

Figure 5-6 illustrates an example of the routing logic for the storage of myDoc in
DB2 database. This figure and the following example steps assume that, for this P
the Protocol is associated with object type:

1. The POM is asked to perform a store on myDoc with pid1.

2. The POM finds the datastore_type associated with pid1 (e.g., DB2).

3. The POM finds the object type of myDoc (e.g., document).

4. The POM determines that myDoc will use a particular PDS (e.g., pds1).

5. The POM routes the store/restore to pds1.

6. The PDS gets the persistent data using protocol1 and stores the data in the D
Datastore at pid1.
Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-17

5

on of

re

5.16.

ata
DSs
t, or

her

ys in
ays in
PDS

Figure 5-6 Example to illustrate POMFunctions

5.7 Persistent Data Service (PDS) Overview

The PDS implementation is responsible for the following:

• Interacting with the object to get data in and out of the object using a protocol.
Protocols are introduced in this section; three example protocols and a discussi
additional protocols are presented in Section 5.9 through Section 5.14.

• Interacting with the Datastore to get data in and out of the object. Datastores a
introduced in this section, and an example datastore plus a discussion of
implementing additional datastores are presented in Section 5.15 and Section

A PDS performs the work for moving data into and out of an object and moving d
into and out of a Datastore. There can be a wide variety of implementations of P
which provide different performance, robustness, storage efficiency, storage forma
other characteristics, and which are tuned to the size, structure, granularity, or ot
properties of the object’s state.

Because the range of storage requirements is so large, there may be different wa
which the object can best access its persistent data, and there may be different w
which the PDS can store that data. The way in which the object interacts with the

POM

mySpreadSheetmyDoc

datastore_type=DB2
...

datastore_type=ObjectStore
...

pid1 pid2

pds2pds1

DB2 ObjectStore

protocol1
protocol2

pds3

FS

yourDoc

datastore_type=FS
...

pid1

protocol2

document,DB2 pds1
spreadSheet,ObjectStore pds2

document,FS pds3

PDS Registry
object_type,datastore_type PDS
5-18 CORBAservices March 1995

5

alls
, or
t to
tent
d,
at

icular
d”
ol,
lso

 can

 base
dule

l-
is called the Protocol. A Protocol may consist of calls from the object to the PDS, c
from the PDS to the object, implicit operations implemented with hidden interfaces
some combination. The interaction might be explicit, for example, asking the objec
stream out its data, or implicit, for example, the object might be mapped into persis
virtual memory. The Protocol is initiated when an object’s persistent state is store
restored, or connected; this may be initiated by a POM or by the object itself. Wh
happens after that depends on the particular Protocol. An object that uses a part
Protocol can work with any PDS that supports that Protocol. There is no “standar
protocol. This specification defines three Protocols: the Direct Attribute (DA) Protoc
the ODMG Protocol, and the Dynamic Data Object (DDO) Protocol. A PDS might a
use a programming language-specific or runtime environment-specific or other
Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A
Datastore might be a file, virtual memory, some kind of database, or anything that
store information. This specification defines one Datastore interface that can be
implemented by a variety of databases (Section 5.15).

The PDS component interface is specified here as one module containing only the
PDS interface, plus one additional module per protocol. Each protocol-specific mo
inherits from the base module, augmenting the base functionality as needed.

5.8 The CosPersistencePDS Module

The CosPersistencePDS Module contains the base interface upon which protoco
specific interfaces are built. It contains a single interface: the PDS Interface.

This section describes this interface and its operations in detail.
Persistent Object Service: v1.0 The CosPersistencePDS Module March 1995 5-19

5

uire
re is

end on

ious
ormed

r or

ified
tate.

The CosPersistencePDS module is shown in Figure 5-7. Some Protocols may req
specialization of the PDS interface. However, no matter what Protocol or Datasto
used, a PDS always supports at least the following interface:

The exact semantics of the connect, disconnect, store, and restore operations dep
the Protocol, since there may be other steps involved in the Protocol. In all four
operations, the persistent state is determined by the PID of the object.

PDS connect (in Object obj, in CosPersistencePID::PID p);
This connects the object to its persistent state, after disconnecting any prev
persistent state. The persistent state may be updated as operations are perf
on the object.

void disconnect (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from the persistent state. It is undefined whethe
not the object is usable if not connected to persistent state.

void store (in Object obj, in CosPersistencePID::PID p);
This saves the object’s persistent state.

void restore (in Object obj, in CosPersistencePID::PID p);
This loads the object’s persistent state. The persistent state will not be mod
unless a store or other mutating operation is performed on the persistent s

void delete (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from its persistent state and deletes the object’s
persistent data from the Datastore location indicated by the PID.

#include "CosPersistencePID.idl"

module CosPersistencePDS {

interface Object;
interface PDS {

PDS connect (in Object obj,
in CosPersistencePID::PID p);

void disconnect (in Object obj,
in CosPersistencePID::PID p);

void store (in Object obj,
in CosPersistencePID::PID p);

void restore (in Object obj,
in CosPersistencePID::PID p);

void delete (in Object obj,
in CosPersistencePID::PID p);

};
};

Figure 5-7 The CosPersistencePDS Module
5-20 CORBAservices March 1995

5

The

e
ore

graph

ct

ied in

 using
riate

 a
ting

. The

fine
5.9 The Direct Access (PDS_DA) Protocol

The first protocol to be described here is the PDS_DA or Direct Access Protocol.
Direct Access Protocol supports direct access to persistent data through typed
attributes organized in data objects that are defined in a Data Definition Languag
(DDL). An object using this Protocol would represent its persistent data as one or m
interconnected data objects. For uniformity, the persistent data of an object is
described as a single data object; however, that data object might be the root of a
of data objects interconnected by stored data object references. If an object uses
multiple data objects, the object traverses the graph by following stored data obje
references.

An object must define the types of the data objects it uses. Those types are specif
DDL, which is a subset of the OMG Interface Definition Language (OMG IDL) in
which objects consist solely of attributes. The state of the data object is accessed
the attribute access operations defined in CORBA in conjunction with the approp
programming language mapping.

Figure 5-8 Direct Access Protocol Interfaces

The PDS_DA Protocol has two parts, as shown in Figure 5-8. When connected to
PDS, the object (which is effectively the client of the PDS) has an object represen
the PDS which supports the PDS_DA interface. The object performs operations
defined in the PDS_DA interface to get references to the data objects in the PDS
persistent data is manipulated by performing operations using the data object
references to get and set attributes on the collection of data objects in the PDS.

5.10 The CosPersistencePDS_DA Module

The CosPersistencePDS_DA Module is a collection of interfaces which together de
the protocol. This module contains the following interfaces:

• The PID_DA Interface

Object (Client of PDS)

PDS_DA

data objects

i=1
j=4

i=3 x=1
A B x=5

x=0
y=7
z=9

Data Object References PDS Object Reference
Persistent Object Service: v1.0 The Direct Access (PDS_DA) Protocol March 1995 5-21

5

• The DAObject Interface

• The DAObjectFactory Interface

• The DAObjectFactoryFinder Interface

• The PDS_DA Interface

• The DynamicAttributeAccess Interface

• The PDSClustered_DA Interface

This section describes these interfaces and their operations in detail.

The CosPersistencePDS_DA Module is shown in Figure 5-9: :

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePDS_DA {

typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

Figure 5-9 The CosPersistencePDS_DA Module
5-22 CORBAservices March 1995

5

that
sion

nce
5.10.1 The PID_DA Interface

The Persistent Identifiers (PIDs) used by the PDS_DA contain an object identifier
is local to the particular PDS. This value may be accessed with the following exten
to the CosPersistencePID interface:

The DAObjectID has the following attribute:

attribute DAObjectID oid();
This returns the data object identifier used by this PDS for the data object
specified by the PID.The DAObjectID type is defined as an unbounded seque
of bytes that may be vendor-dependent.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA{

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};

};

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

Figure 5-9 The CosPersistencePDS_DA Module
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-23

5

s

ace.
ce to

 the
s for

ct

 data

and
erved
ly a

tory
5.10.2 The Generic DAObject Interface

The DAObject interface defined below provides operations that many data object
clients need. A Datastore implementation may provide support for these operation
automatically for its data objects. A data object is not required to support this interf
A client can obtain access to these operations by narrowing a data object referen
the DAObject interface:

The DAObject has the following operations:

boolean dado_same(in DAObject d);
This returns true if the target data object and the parameter data object are
same data object. This operation can be used to test data object reference
identity.

DataObjectID dado_oid();
This returns the object identifier for the data object. The scope of data obje
identifiers is implementation-specific, but is not guaranteed to be global.

PID_DA dado_pid();
This returns a PID_DA for the data object.

void dado_remove();
This deletes the object from the persistent store and deletes the in-memory
object.

void dado_free();
This informs the PDS that the data object is not required for the time being,
the PDS may move it back to persistent store. The data object must be pres
and must be brought back the next time it is referenced. This operation is on
hint and is provided to improve performance and resource usage.

5.10.3 The DAObjectFactory Interface

The scheme for factories is consistent with that of the Life Cycle Service. The fac
supports the following interface:

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};
5-24 CORBAservices March 1995

5

y

PDS.

ust
The DAObjectFactory has the following operation:

DAObjectFactory create();
creates a new data object in the PDS.

5.10.4 The DAObjectFactoryFinder Interface

This scheme for factories follows the Life Cycle Services specification. The factor
finder supports the following interface:

The DAObjectFactoryFinder has the following operation:

DAObjectFactoryFinder find_factory(in string key);
This finds a factory for data objects as specified by the key.

5.10.5 The PDS_DA Interface

The DA Protocol uses an extended PDS interface called PDS_DA:

The PDS_DA provides the following operations:

DAObject get_data();
This returns the single root data object of the PDS.

void set_data(in DAObject new_data);
This sets the single root data object

DAObject lookup(in DAObjectID id);
This finds a data object by object id.

PID_DA get_pid();
This constructs a PID that corresponds to the single root data object of this

PID_DA get_object_pid(in DAObject dao);
This constructs a PID that corresponds to the specified data object, which m
be in this PDS.

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-25

5

a

face
ns as
ts
re and

g
s to
ces.

ade
s, one

vide
DAObjectFactoryFinder data_factories();
This returns a factory finder. The factory finder will provide factories for the
creation of new data objects within the PDS.

5.10.6 Defining and Using DA Data Objects

A PDS_DA implements data objects that have a set of attributes defined in a Dat
Definition Language (DDL). DDL is a subset of OMG IDL. In DDL, all interfaces
consist only of attributes; that is, there are no operations. The programming inter
for accessing the persistent state is the CORBA-defined attribute access operatio
specified in the particular programming language mapping. A PDS_DA implemen
those accessor operations and transfers the persistent state between the Datasto
data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated usin
object references, sometimes called “data object references”. Language mapping
data object interfaces are generated just like language mappings for other interfa

To define a DA data object (DADO), the developer decides what state must be m
persistent. For example, suppose the object’s persistent data consists of two value
integer and one floating point number. The developer would define a data object
interface MyDataObject describing this data:

The DDL definition must be compiled, installed and linked with the object
implementation as necessary for the particular PDS and CORBA environment.
Mechanisms similar to those for creating stubs for IDL interfaces are used to pro
the callable routines and create the runtime information necessary for the PDS
implementation. The precise mechanisms are not defined in this specification.

interface MyDataObject {
attribute short my_short;
attribute float my_float;

};
5-26 CORBAservices March 1995

5

 above
bject

st
ect to

g a
Once the object has been connected to the PDS, the factory operations described
are used to create the data object and set it as the root object in the PDS. The o
gets or sets values for the attributes using the CORBA accessor operations, for
example:

The DA Protocol allows developers to build simple object implementations that ju
read and write attribute values whenever they need to. There is no need for an obj
cache persistent data in its transient store or to explicitly request it to be read or
written.

Attributes can be defined using the full flexibility of the DDL type system. A
particular PDS may restrict the attribute types it supports.

A data object may contain object references to other data objects and to ordinary
CORBA objects. Here is an example that extends the previous example by addin
data object reference attribute and an ordinary CORBA object reference:

// PDS_DA Examples
// C++ code
// Include IDL compiler output from CosPersistencePDS_DA.idl
#include "CosPersistencePDS_DA.xh"
// CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl
// connect to PDS
CosPersistencePDS_DA::PDS_DA my_pds =

pom->connect(my_object,my_PID);
// get factory finder
DAObjectFactoryFinder daoff = my_pds->data_factories();
// get factory for MyDataObject
DAObjectFactory my_factory =

daoff->find_factory(“MyDataObject”);
// create an instance of MyDataObject
MyDataObjectRef my_obj = my_factory->create();
// set the object to be the root object
my_pds->set_data(my_obj);
// put persistent state in attributes
my_obj->my_short(42);
my_obj->my_float(3.14159);
// use persistent state
my_obj->my_short(my_obj->my_short()+12);

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref;

};
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-27

5

. For

g

 In
nce

e of

ace
ntify
es,
 that
d
 this
tions

This example allows an instance of MyDataObject to refer to another instance. A
Datastore implementation might restrict the scope of stored data object references
example, it might permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semantics identical to IDL. In the followin
example, a new type of data object is defined that has all the attributes of
MyDataObject, plus an additional integer:

Like other CORBA objects, data objects support operations on object references.
particular, the get_interface operation, which returns an interface repository refere
to the object’s most derived interface, is useful for dynamically determining the typ
a data object.

5.10.7 The DynamicAttributeAccess Interface

Because data objects are CORBA objects, the CORBA Dynamic Invocation Interf
can be used to get and set data object attributes dynamically, using strings to ide
attributes at run time. However, to simplify dynamic access to data object attribut
the DynamicAttributeAccess interface is defined. This interface defines operations
allow determination of the names of the attributes of a data object and getting an
setting individual attribute values by name. A data object is not required to support
interface. It can be determined whether or not a data object supports these opera
by narrowing a data object reference to the DynamicAttributeAccess interface.

AttributeNames attribute_names();
This returns a sequence containing the names of the object’s attributes.

any attribute_get(in string name);
This returns the value of the specified attribute.

void attribute_set(in string name, in any value);
This sets the value of the named attribute to the value specified by the any
parameter.

interface DerivedObject : MyDataObject {
attribute short my_extra;

};

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};
5-28 CORBAservices March 1995

5

lude

ce,
e

 the

tore.

s a

y be
5.10.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons inc
locking, sharing, performance, etc. The PDS_ClusteredDA is an extension to the
PDS_DA. A non-clustered PDS_DA is effectively a single cluster.

Each cluster is represented as a distinct instance of the PDS_ClusteredDA interfa
although they will typically all be implemented by the same service using the sam
Datastore.

In addition to supporting the normal PDS_DA interface, a Clustered PDS_DA has
following interface:

ClusterID cluster_id();
This returns the id of this cluster.

string cluster_kind();
This returns the kind of this cluster.

ClusterIDs clusters_of();
This returns a sequence of ClusterIDs listing all of the clusters in this Datas

PDS_ClusteredDA create_cluster(in string kind);
This creates a new cluster of the specified kind in this Datastore and return
PDS_ClusteredDA instance to represent it.

PDS_ClusteredDA open_cluster(in ClusterID cluster);
This opens an existing cluster that has the specified ClusterID.

PDS_ClusteredDA copy_cluster(in PDS_DA source);
creates a new cluster, loading its state from the specified cluster, which ma
implemented in a different Datastore.

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA {

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-29

5

s
93.

 of

e

-93.

 be
S.

e

hose
 set of
e and

 it
5.11 The ODMG-93 Protocol

A group of Object-Oriented Database Management System (ODBMS) vendors ha
recently endorsed and published a common ODBMS specification called ODMG-
That specification defines an extended version of IDL for defining ODBMS object
types as well as programming language interfaces for object manipulation.

The ODMG-93 Protocol is similar to the DA Protocol, in that the object accesses
attributes organized as data objects. The primary difference is that the ODMG-93
Protocol uses the Object Definition Language (ODL) defined in ODMG-93 instead
DDL, and it uses the programming language mapping defined for data objects
specified in ODMG-93, rather than the CORBA IDL attribute operations.

If the ODMG-93 database object inherits the PDS_DA interface, then the databas
object can be used with the rest of this specification. Objects using the ODMG-93
Protocol would manipulate persistent data using the interfaces specified in ODMG

Note that in addition to using the ODMG-93 interface as another protocol, it would
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PD
Since the DA Protocol is a subset of the functionality in ODMG-93, in most
programming languages the language mapping for the DDL attributes would be a
trivial layer on the ODMG-93 mapping. Using the ODMG-93 Protocol would fully
exploit the capabilities of ODMG-93; using an ODMG-93 ODBMS to implement th
DA Protocol captures those objects that use DA Protocol.

5.12 The Dynamic Data Object (DDO) Protocol

The DDO is a Datastore-neutral representation of an object’s persistent data. Its
purpose is to contain all of the data for a single object. Figure 5-1 illustrates an
example of a DDO. A DDO has a single PID, object_type and set of data items w
cardinality is data_count. Each piece of data has a data_name, data_value and a
properties whose cardinality is property_count. Each property has a property_nam
a property value.

Although any data can be stored in a DDO, the following example illustrates how
might map onto a row in a table:

• a DDO = a row

• data_count = number of rows

• data_item = column

• data_name = column name

• data_value = column value

• property_count = number of column properties

• property_name = e.g., type or size

• property_value = e.g., character or 255
5-30 CORBAservices March 1995

5

e. In
t. It
ich

e,
ypes
ta in

col.
Figure 5-10 Structure of a DDO

A DDO provides a Protocol when the persistent object supports the DDO interfac
this case, the DDO interface is used to get data in and out of the persistent objec
may even provide the way that the persistent object stores its internal data, in wh
case a copy and reformat step is avoided.

To facilitate fast and simple storage and retrieval in specialized types of Datastor
DDOs can be used with particular conventions that are more suitable to different t
of Datastore. If the DDO is used for both a Protocol and as a direct way to get da
and out of a Datastore, then copy and format costs are greatly reduced.

5.13 The CosPersistenceDDO Module

The CosPersistenceDDO module contains the OMG IDL to support the DDO proto
The module contains oneinterface, the DDO interface.

This section describes the CosPersistenceDDO module in detail.

The CosPersistenceDDO Module is shown in Figure 5-11.

PID object_typedata_count=2

data_id=1

property_count=2

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

property_id=2

property_value=any

a property

property_name=””

data_id=2

property_count=1

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

a DDO
Persistent Object Service: v1.0 The CosPersistenceDDO Module March 1995 5-31

5

ccess

rns
data
A DDO has two attributes:

attribute string object_type;
This identify the object_type that this DDO is associated with.

attribute CosPersistencePID::PID p;
This identify the PID of the DDO.

A DDO has the following operations for getting data in and out of the DDO:

short add_data();
This adds a new data item and returns a new data_id that can be used to a
it.

short add_data_property (in short data_id);
This adds a new property within the data item identified by data_id and retu
the new property_id that can be used to access it within the context of the
item.

short get_data_count();
This gets the number of data items in the DDO.

#include "CosPersistencePID.idl"

module CosPersistenceDDO {

interface DDO {
attribute string object_type;
attribute CosPersistencePID::PID p;
short add_data();
short add_data_property (in short data_id);
short get_data_count();
short get_data_property_count (in short data_id);
void get_data_property (in short data_id,

in short property_id,
out string property_name,
out any property_value);

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

void get_data (in short data_id,
out string data_name,
out any data_value);

void set_data (in short data_id,
in string data_name,
in any data_value);

};
};

Figure 5-11 The CosPersistenceDDO Module
5-32 CORBAservices March 1995

5

by

 the

 the

 this
ent
hen

bject

ols.

rfaces
 this
 and

a

ough
vide
lar
short get_data_property_count (in short data_id);
This gets the number of properties associated with the data item identified
data_id.

void get_data_property (in short data_id,
in short property_id,
out string property_name,
out any property_value);

This gets the name and value of the property identified by property_id within
data item identified by data_id.

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

This sets the name and value of the property identified by property_id within
data item identified by data_id.

void get_data (in short data_id,
out string data_name,
out any data_value);

This gets the name and value of the data item identified by data_id.

void set_data (in short data_id,
in string data_name,
in any data_value);

This sets the name and value of the data item identified by data_id.

5.14 Other Protocols

This specification includes three protocols, but other protocols can be supported in
architecture. The proliferation of protocols would reduce the commonality of differ
objects, so it is desirable to use an existing protocol if that is possible. However, w
a new protocol is required, it is still possible to use other parts of the Persistent O
Service with it. In general, the protocol should be independent of the Datastore
interface, although some Datastore interfaces will be better suited to some protoc

Some protocols are already defined and are not specified here. Such standard inte
as POSIX files are already in wide use, and there is no need to respecify them. In
case, the PID would include the file name, and the protocol would consist of reads
writes.

Other protocols are intended to be value-added and non-standard. For example,
LISP-specific PDS might take advantage of knowledge of the LISP runtime
environment to create the appearance of a single-level store of LISP objects. Alth
such a PDS would not be usable from other programming languages, it could pro
significant value to LISP programmers. Of course, it is also possible for a particu
value-added protocol to be implemented as a layer on a standard Protocol.

This specification allows such protocols to be integrated in the overall POS
architecture without changing that architecture.
Persistent Object Service: v1.0 Other Protocols March 1995 5-33

5

tions
a

es,
 may
ct-

es

s

pen

n any

DO is
ter to
t

nd
 the
5.15 Datastores: CosPersistenceDS_CLI Module

The last major component in the architecture is a DataStore, which provides opera
on a data repository underneath the Protocols just discussed. As with Protocols,
variety of DataStore interfaces may be defined. There is no “standard” DataStore
interface. Only one kind of DataStore is defined here, for record-oriented databas
because other standard interfaces already exist at this level and many customers
choose to omit this level of the architecture altogether for performance in an obje
oriented database by using the DA or ODMG Protocol directly on the DBMS.

Datastore_CLI provides a uniform interface for accessing many different Datastor
either individually or simultaneously. The acronym CLI refers to the X/Open Data
Management Call Level Interface on which the module is based. Datastore_CLI i
especially suited for record database and file systems (e.g., relational, IMS,
hierarchical databases, and VSAM file systems) that support user sessions,
connections, transactions, and scanning through data items using cursors.

The specification of this framework, where appropriate, is consistent with the X/O
CLI, IDAPI, and ODBC standards. These are industry standards which specify
procedure-oriented application programming interfaces for accessing data stored i
type of Datastore.

More detailed explanations and enumeration of the options in the Datastore_CLI
operations can be found in the X/Open CLI Specification.

DDOs are used as the way data are passed into the Datastore_CLI interface. If D
also being used as the Protocol, the PDS can use this DDO directly as a parame
calls to the Datastore_CLI. When a different Protocol is being used, the PDS mus
create a new DO and populate it with data prior to calling the Datastore_CLI.

The CosPersistenceDS_CLI module contains the interfaces derived from ODBC a
IDAPI, providing cursors into relational and other databases. The module contains
following interfaces:

• The UserEnvironment Interface

• The Connection Interface

• The ConnectionFactory Interface

• The Cursor Interface

• The CursorFactory Interface

• The PID_CLI Interface

• The Datastore_CLI Interface

This section describes these interfaces and their operations in detail.
5-34 CORBAservices March 1995

5

The CosPersistenceDS_CLI Module is shown in Figure 5-12:

#include "CosPersistenceDDO.idl"
// CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {

void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

 interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-35

5

5.15.1 The UserEnvironment Interface

The UserEnvironment OMG IDL is as follows:

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

};

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

Figure 5-12 The CosPersistenceDS_CLI Module
5-36 CORBAservices March 1995

5

ified

 that

ified

 that
The UserEnvironment has the following operations:

void set_option (in long option, in any value);
This sets the option to the desired value. The list of settable options is spec
in the X/Open CLI Specification and the IDAPI Specification.

void get_option (in long option, out any value);
This gets the value of the option. The list of gettable options is the same as
for set_option().

void release();
This releases all resources associated with the UserEnvironment.

5.15.2 The Connection Interface

The Connection OMG IDL is as follows:

The Connection interface contains the following operations:

void set_option (in long option,in any value);
This sets the option to the desired value. The list of settable options is spec
in the IDAPI Specification.

void get_option (in long option, out any value);
This gets the value of the option. The list of gettable options is the same as
for set_option.

5.15.3 The ConnectionFactory Interface

The ConnectionFactory OMG IDL is as follows:

The ConnectionFactory has the following operation:

 Connection create_object (
 in UserEnvironment user_envir);

This creates an instance of Connection. A Connection is created within the
context of a single UserEnvironment.

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-37

5

e
s:

ns is

e

 a
on
5.15.4 The Cursor Interface

The Cursor OMG IDL is as follows:

A cursor is a movable pointer into a list of DDOs, through which a client can mov
about the list or fetch a DDO from the list. The Cursor has the following operation

void set_position (in long position, in any value);
This sets the Cursor position to the desired value. The list of settable positio
specified in the IDAPI Specification.

CosPersistenceDDO::DDO fetch_object();
This fetches the next DDO from the list, based on the current position of th
Cursor.

5.15.5 The CursorFactory Interface

The CursorFactory OMG IDL is as follows:

The CursorFactory has the following operations:

Cursor create_object (in Connection connection);
This create an instance of Cursor. A Cursor is created within the context of
single Connection. See the X/Open CLI Specification and IDAPI Specificati
for more information.

5.15.6 The PID_CLI Interface

The PID_CLI IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};
5-38 CORBAservices March 1995

5

d for

rt

 row
file
PID_CLI subtypes the PID base type (see Section 5.4.1), adding attributes require
the Datatstore_CLI interface. The PID_CLI interface has the following attributes:

attribute string datastore_id;
This identifies the specific datastore in use. Most datastore products suppo
multiple datastores. For a relational database, this might be the name of a
particular database containing multiple tables. For a Posix file system, this
might be the pathname of a file.

attribute string id;
This identifies a particular data element within a datastore. For a relational
database, this might be a table name and primary key indicating a particular
in a table. For a Posix file system, this might be a logical offset within the
indicating where the data starts.
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-39

5

Os:

ues.

pen a
5.15.7 The Datastore_CLI Interface

The Datastore_CLI OMG IDL is as follows:

In general, a client goes through the following steps to store, restore or delete DD

1. Create a UserEnvironment and set the appropriate options to their desired val

2. Create a Connection and set the appropriate options to their desired values. O
connection to the Datastore, via connect().

3. To store a DDO, call add_object() or update_object(). To restore a DDO, call
retrieve_object(). To delete a DDO, call delete_object().

4. If necessary, call transact() to commit or abort a Datastore transaction.

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};
5-40 CORBAservices March 1995

5

ing

n
t at a
ction.

egins

ema

ma

ache
5. Repeat steps 3 and 4 as necessary.

6. Close the connection to the Datastore, via disconnect(). Delete the correspond
Connection.

7. Delete the UserEnvironment.

The Datastore_CLI connection operations are:

 void connect (in Connection connection,
 in string datastore_id,
 in string user_name,
 in string authentication);

This opens a connection to the Datastore using the Connection. A client ca
establish more than one connection, but only one connection can be curren
time. The connection that connect() establishes becomes the current conne

void disconnect (in Connection connection);
This closes the Connection.

Connection get_connection (
in string datastore_id,
in string user_name);

This returns the Connection associated with the datastore_id.

When any of the data manipulation operations is called, a datastore transaction b
implicitly if the Connection involved is not already active. A Connection becomes
active once the transaction begins and remains active until transact() is called.

The Datastore_CLI data manipulation operations are:

 void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

This adds the DDO to the Datastore. If necessary, get the mapping schema
information for the DDO first.

 void delete_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This deletes the DDO from the Datastore. If necessary, get the mapping sch
information for the DDO first.

void update_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This updates the DDO in the Datastore. If necessary, get the mapping sche
information for the DDO first.

void retrieve_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This retrieves the DDO from the Datastore. If necessary, get the mapping
schema information for the DDO first. To improve performance, the
DBDatastore_CLI may obtain access to more than one DDO at a time and c
these.

Cursor select_object (in Connection connection,
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-41

5

re.

e

ion

s. As

d

 call
 are

t

f the

 Its id
with

in string key);
This selects and retrieve the DDO(s) which match the key from the Datasto
The DDO(s) are returned through the Cursor. If necessary, get the mapping
schema information for the key first. This operation is provided to support th
Query Service. In addition, the Datastore_CLI will support any other operat
required by the Object Query Service.

The Datastore_CLI functions as a resource manager for the DDOs that it manage
such, it will support all resource manager operations specified by the Transaction
Service. When the Transaction Service is not being used, a transaction is initiate
implicitly by either a Connection or a transact(), and ended with a transact():

void transact (in UserEnvironment user_envir,
 in short completion_type);

This completes (commit or rollback) a Datastore transaction. Transaction
completion enacts or undoes any add_object(), update_object() or
delete_object() operations performed on any Connection within the
UserEnvironment since the connection was established or since a previous
to transact() for the same UserEnvironment. The values of completion_type
specified in the X/Open CLI Specification.

The Datastore_CLI PID Operations are:

void assign_PID (in PID_CLI p);
This assign a value for the id attribute of the pid. The first attribute,
datastore_type, must be filled in before calling this operation. If only the firs
attribute is filled in, then this operation will fill in the second attribute,
datastore_id, as well.

void assign_PID_relative (in PID_CLI source_pid,
in PID_CLI target_pid);

This assigns values for the attributes of the target_pid based on the values o
source_pid. The target_pid’s first two attributes, datastore_type and
datastore_id, will be assigned the same values as those of the source_pid.
attribute will be assigned a new value which is based on some relationship
that of the source_pid. The algorithm defining that relationship is up to the
implementation.

boolean is_identical_PID (in PID_CLI pid_1, in PID_CLI pid_2);
This tests to see if the two pids are identical. In order for the two pids to be
identical, the following conditions must be true:

1. Both pids must be managed by this PDS

2. all three attributes of the pids must be identical individually.

string get_object_type (in PID_CLI p);
This gets the object_type of the pid.

Other Datastore_CLI operations are:
5-42 CORBAservices March 1995

5

_file
l

urned

 the

d may
LI
r

ts, the
ts
tore

ores

void register_mapping_schema (in string schema_file);
This registers the mapping schema information contained within the schema
with the Datastore_CLI. The mapping schema generally consist of individua
mappings each of which is applicable to a given pair of object_type and
datastore_type.

Cursor execute (in Connection connection,
 in string command);

This executes a command on the Datastore. If there are any DDOs to be ret
as a result, this is done through the Cursor.

5.16 Other Datastores

There are other Datastore interfaces that can be used by PDSs. Some of these
interfaces are not CORBA object interfaces, in that they are not defined in IDL and
Datastores are not objects.

Some Datastores are simple, such as POSIX files. Others may be databases, an
use generic interfaces for databases and record files such as SQL, the X/Open C
API, IDAPI or ODBC. Some Datastores are tuned to support nested documents o
other specific kinds of objects such as Bento.

Because the Datastore interface is not exposed to object implementations or clien
choice of Datastore interface is up to the PDS. So long as the PDS can support i
Protocol using the particular Datastore interface, any implementation of the Datas
can be used by that PDS. The identification of data within different types of Datast
is facilitated by the PID, which can be specialized to each Datastore type.

5.17 Standards Conformance

This service is specified in standard OMG IDL.

The Datastore_CLI portion of the Persistent Object Service is consistent with the
X/Open CLI draft standard.

The ODMG-93 PDS Object Protocol incorporates the ODMG-93 specificiation.

5.18 References

The X/Open CLI standard is documented in X/Open Data Management Call Level
Interface (CLI) Draft Preliminary Specification. Reading, UK: X/Open Ltd., 1993.

The IDAPI standard is documented in IDAPI Working Draft. Scotts Valley, CA:
Borland International, August 1993.

The term “ODBC” refers to Microsoft Open Database Connectivity Software
Development Kit, Programmer Reference, Version 1.0. Redmond, WA: Microsoft
Corp., 1992.
Persistent Object Service: v1.0 Other Datastores March 1995 5-43

5

The term “Bento” refers to Jed Harris and Ira Rubin, The Bento Specification, Revision
1.0d5. Cupertino, CA: Apple Computer, Inc., July 15, 1993,

The term “ODMG-93” refers to R.G.G.Cattell, T.Atwood, J.Duhl, G.Ferran,
M.Loomis, and D.Wade, The Object Database Standard: ODMG-93. San Mateo, CA:
Morgan Kaufmann, 1993.
5-44 CORBAservices March 1995

Life Cycle Service Specification 6
 and
, the

red:
6.1 Service Description

6.1.1 Overview

Life Cycle Service defines services and conventions for creating, deleting, copying
moving objects. Because CORBA-based environments support distributed objects
Life Cycle Service defines conventions that allow clients to perform life cycle
operations on objects in different locations.

This overview describes the life cycle problem for distributed object systems.

The problem of creation

Figure 6-1 illustrates the problem of a client in one location creating an object in
another.

Figure 6-1 Life Cycle service defines how a client can create an object “over there”.

To create an object in a different location, the following questions must be answe

• Can the client control the location for the new object?

THERE

Client

HERE
CORBAservices November 1996 6-1

6

tered

ted?

e

.

d:

tered
• On the other hand, can the location be determined according to some adminis
policy?

• What entity does the client communicate with in order that a new object is crea

• How does the client find that entity?

• How much control does the client have over deciding the implementation of th
created object?

• Can the client influence the initial values of the newly created object?

• Can the client create an object in an implementation specific fashion?

The problem of moving or copying an object

Figure 6-2 illustrates the problem of moving or copying an object in a distributed
object system.

Figure 6-2 Life Cycle Service defines how a client can move or copy an object over there

To support moving or copying an object, the following questions must be answere

• Can the client control the location for the copied or migrated object?

• On the other hand, can the location be determined according to some adminis
policy?

• What entity does the client communicate with to copy or migrate the object?

• How does the client find that entity?

• What happens to the implementation code of a copied or migrated object?

THEREHERE

DocumentClient

SOMEWHERE
6-2 CORBAservices November 1996

6

ts.

ries
ment
er.

ent,

to

lts in

ues.

 of
The problem of operating on a graph of distributed objects

Distributed objects do not float in space; they are connected to one another. The
connections are called relationships. Relationships allow semantics to be added to
references between objects. For example, relationships allow one object to contain
another. Life Cycle services must work in the presence of graphs of related objec

Figure 6-3 The object life cycle problem for graphs of objects is to determine the bounda
of a graph of objects and operate on that graph. In the above example, a docu
contains a graphic and a logo, refers to a dictionary and is contained in a fold

Figure 6-3 illustrates the object life cycle problem for graphs of objects. In the
example, the folder contains a document, the document contains a graphic and a logo
and references a dictionary. The graphic references the logo that is contained in the
document. For graphs of objects, life cycle services must answer the following
questions:

• What are the boundaries of the graph? For example, if a client copies the docum
which objects are affected?

• If multiple objects are affected, how is the life cycle operation actually applied
those objects?

• Are cycles in the graph preserved? For example, if copying the document resu
copying the graphic and the logo, is the cycle preserved in the copy?

6.1.2 Organization of this Chapter

This specification defines services and conventions to answer these life cycle iss

Section 6.1.3 specifies a client’s model of object life cycle. It describe the model a
client has of factories and life cycle operations. A wide variety of implementations
this model are possible.

Section 6.1.4 discusses factory finders in detail.

THEREHERE

Document

graphic

logo

Folder

Dictionary

SOMEWHERE

Client
Life Cycle Service: v1.0 Service Description November 1996 6-3

6

rt the

le
ests

n

ing

the
Section 6.2 defines the CosLifeCycle module. This module defines the service
interfaces and the interface supported by objects that participate in the service.

Section 6.3 discusses factory implementation strategies.

Section 6.4 discusses how objects can use factories and factory finders to suppo
copy and move operations.

Section 6.5 summarizes the object life cycle framework.

Appendix A contains an addendum to the Life Cycle Service; the addendum
provides a specification for compound life cycle operations.

This chapter also includes additional appendices that are not part of the Life Cyc
Service specification: they are included as background material. Appendix B sugg
a filtering language for the filter criteria. Appendix C discusses administration of
generic factories. Appendix D discusses support for PCTE objects.

6.1.3 Client’s Model of Object Life Cycle

A client is any piece of code that initiates a life cycle operation for some object. A
client has a simple view of the life cycle operations.

Client’s Model of Creation

The client’s model of creation is defined in terms of factory objects. A factory is a
object that creates another object. Factories are not special objects. As with any object,
factories have well-defined IDL interfaces and implementations in some programm
language.

Figure 6-4 To create an object “over there” a client must posses an object reference to a
factory over there. The client simply issues a request on the factory.

There is no standard interface for a factory. Factories provide the client with
specialized operations to create and initialize new instances in a natural way for
implementation. Figure 6-5 illustrates a factory for a document.

interface DocFactory {

Document create();

Document create_with_title(in string title);

THERE

Client

HERE

DocFactory
6-4 CORBAservices November 1996

6

 as

t

dard

 may

t

ates.
 of
s its

ader,

pports.

.

Document create_for(in natural_language nl);

};

Figure 6-5 An example of a document factory interface. This interface is defined for clients
a part of application development.

Factories are object implementation dependent. A different implementation of the
document could define a different factory interface.

While there is no standard interface for a factory, a generic factory interface is defined
by the life cycle service in section 6.2.3. A generic factory is a creation service. I
provides a generic operation for creation. Instead of invoking an object specific
operation on a factory with statically defined parameters, the client invokes a stan
operation whose parameters can include information about resource filters, state
initialization, policy preferences, etc.

To create an object, a client must possess an object reference for a factory, which
be either a generic factory or an object-specific factory, and issue an appropriate
request on the factory. As a result, a new object is created and typically an objec
reference is returned.

There is nothing special about this interaction.

A factory assembles the resources necessary for the existence of an object it cre
Therefore, the factory represents a scope of resource allocation, which is the set
resources available to the factory. A factory may support an interface that enable
clients to constrain the scope.

Clients find factory objects in the same fashion they find any object. Two common
scenarios for clients to find factories are:

• Clients use a finding mechanism, such a naming context, drag-and-drop, or a tr
to find factories.

• Clients are passed factory objects as a parameter to an operation the client su

Various implementation strategies for factories are discussed in detail in section 6.3
Life Cycle Service: v1.0 Service Description November 1996 6-5

6

 an

e of

Client’s Model of Deleting an Object

A client that wishes to delete an object issues a remove1 request on an object
supporting the LifeCycleObject interface. (The LifeCycleObject interface is defined in
section 6.2.) The object receiving the request is called the target.

Figure 6-6 To delete an object, a client must posses an object reference supporting the
LifeCycleObject interface and issues a remove request on the object.

Figure 6-6 illustrates a client deleting the document.

Client’s Model of Copying or Moving an Object

A client that wishes to move or copy an object issues a move or copy request on
object supporting the LifeCycleObject interface. The object receiving the request is
called the target.

The move and copy operations expect an object reference supporting the
FactoryFinder interface. The factory finder represents the “THERE” in Figure 6-7.
The client is indicating to move or copy the target using a factory within the scop
the factory finder. Section 6.1.4 describes factory finders in more detail.

1. The operation is named remove, rather than delete, because delete collides with the delete operator in
C++.

HERE

DocumentClient

SOMEWHERE

LifeCycleObject
6-6 CORBAservices November 1996

6

iate
d

to

e
.

ith
uture

and

ph of
s a
up of

cally
in
 the
The implementations of move and copy can use the factory finder to find appropr
factories “over there”. Section 6.4 describes how objects can implement move an
copy using the factory finder. This is invisible to the client.

Figure 6-7 Life cycle services define how a client can move or copy an object from here
there.

In the example of Figure 6-7, client code would simply issue a copy request on th
document and pass it an object supporting the FactoryFinder interface as an argument

When a client issues a copy request on a target, it is assumed that the target, the
factory finder, and the newly created object can all communicate via the ORB. W
externalization/internalization there is no such assumption. In the presence of a f
externalization service, the externalized form of the object can exist outside of the
ORB for arbitrary amounts of time, be transported by means outside of the ORB
can be internalized in a different, disconnected ORB.

Note – In general, a client is unaware of how a target and a factory finder are
implemented. The target may represent a simple object or it may represent a gra
objects. Similarly, a factory finder may represent a very concrete location, such a
specific storage device, or it may represent a more abstract location, such as a gro
machines. The client uses the same interface in all of these cases.

6.1.4 Factory Finders

Factory finders support an operation, find_factories, which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typi
invoke this operation to find a factory to interact with. (This is described in detail
section 6.4.) The new copy or the migrated object will then be within the scope of
factory finder.

Some examples of locations that a factory finder might represent are:

• somewhere on a work group’s local area network

• storage device A on machine X

• Susan’s notebook computer

THEREHERE

DocumentClient

SOMEWHERE

Factory
Finder

LifeCycleObject
Life Cycle Service: v1.0 Service Description November 1996 6-7

6

ity
tion

G is
hat

ly
 of a
,

that

 a
.

n

s

 and

bject
Multiple Factory Finders

The factory finder interface given in section 6.2 represents the minimal functional
supported by all factory finders. Target implementations can depend on this opera
being available. More sophisticated factory finding facilities can be provided by
extended finding services.

Currently, the only finding service being considered for standardization by the OM
the naming service. Others are likely to be standardized in the future. It is likely t
there will always be multiple finding services, of different expressive powers, in
distributed object systems.

As demonstrated in Figure 6-8, the FactoryFinder interface can be mixed-in with
interfaces for finding services, allowing multiple finding services. Many clients simp
pass factory finders on to target objects. However, objects that need the services
more powerful finding mechanism can narrow the factory finder to an appropriate
more specific interface.

Figure 6-8 The FactoryFinder interface can be “mixed in” with interfaces of more powerful
finding services.

The power of a factory finder is determined by the power of the finding service.

6.1.5 Design Principles

Several principles have driven the design of the Life Cycle Service:

1. A factory object registered at a factory finder represents an implementation at
location. Thus, a factory finder allows clients to query a location for an
implementation.

2. Object implementations can embody knowledge of finding a factory, relative to
location. Object implementations usually do not embody knowledge of location

3. The desired result for life cycle operations such as copy and move depends o
relationships between the target object and other objects. The design given in
Appendix A has built-in support for the two most basic kinds of relationships,
containment and reference, and supports the definition of new kinds of relationship
and propagation semantics.

4. The Life Cycle Service is not dependent on any particular model of persistence
is suitable for distributed, heterogeneous environments.

5. The design does not include an object equivalence service nor rely on global o
identifiers.

FactoryFinder

NamingBasedFactoryFinder

FactoryFinder

TradingBasedFactoryFinder

NamingContext Trading
6-8 CORBAservices November 1996

6

ycle

bject

.

m
n
f

ect.
age
-
.

tial

tion.
, and
w

ject
ns
6.1.6 Resolution of Technical Issues

This specification addresses the following issues that were identified for the Life C
Service in the OMG Object Services Architecture2 :

• Creation: Many of the parameters supplied to an object create operator will be
implementation-dependent, so that a standardized universal IDL signature for o
creation is not possible. IDL signatures for object creation will be defined for
various kinds of object factories, but the signatures will be specific to type,
implementation, and persistent storage mechanism of the object to be created

• Deletion: A remove operator is defined on any object supporting the
LifeCycleObject interface. This model for deletion supports any desired paradig
for referential integrity. Appendix A describes support for the two most commo
paradigms, based on reference and containment relationships. Only one type o
deletion is supported; a different operation should be used for archiving an obj
This interface can support many paradigms for storage management, e.g. garb
collection and reference counts. Since storage management is implementation
dependent, its interface does not belong in the generalized life cycle interfaces

• Copying: Appendix A describes support for shallow and deep copy, and referen
integrity. A scheme based on reference and containment relationships defines
scopes for operations such as copy. The concept of an factory finder is used for
object location. This paradigm for copying, deleting, and moving objects works
regardless of an object’s ORB, persistent storage mechanism, and implementa
This design is extensible because objects participate in the traversal algorithm
the relationship service presented in the appendix supports the definition of ne
kinds of relationships with different behavior.

• Equivalence: There was no need for an object equivalence service or global ob
identifiers in the design of the Life Cycle Service to support real world applicatio
or other object services.

2.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
Life Cycle Service: v1.0 Service Description November 1996 6-9

6

6.2 The CosLifeCycle Module

Client code accesses the basic life cycle functionality via the CosLifeCycle module.
This module defines the FactoryFinder, LifeCycleObject and GenericFactory
interfaces and describes the operations of these interfaces in detail.

#include “Naming.idl”

module CosLifeCycle{

typedef Naming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struct NVP {

Naming::Istring name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;

exception NoFactory {
Key search_key;

};
exception NotCopyable { string reason; };
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception InvalidCriteria{

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};

Figure 6-9 The CosLifeCycle Module
6-10 CORBAservices November 1996

6

f the
t

6.2.1 The LifeCycleObject Interface

The LifeCycleObject interface defines copy, move and remove operations. Objects
participate in the life cycle service by supporting this interface.

copy

The copy operation makes a copy of the object. The copy is located in the scope o
factory finder passed as the first parameter. The copy operation returns an objec
reference to the new object. The new object is initialized from the existing object.

The first parameter, there, may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with the NoFactory
exception.

interface FactoryFinder {
Factories find_factories(in Key factory_key)

raises(NoFactory);
};

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,

 CannotMeetCriteria);
void move(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,

 CannotMeetCriteria);
void remove()

raises(NotRemovable);
};

interface GenericFactory {
boolean supports(in Key k);
Object create_object(

in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

};
};

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

Figure 6-9 The CosLifeCycle Module
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-11

6

 be

2.4

ld
e
t

y

der
valid

 be

.2.4

ver

e
 but

,
ve
The second parameter, the_criteria, allows for a number of optional parameters to
passed. Typically, the target simply passes this parameter to the factory used in
creating the new object. The criteria parameter is explained in detail in section 6.

If the target cannot find an appropriate factory to create a copy “over there”, the
NoFactory exception is raised. An implementation that refuses to copy itself shou
raise the NotCopyable exception. If the target does not understand the criteria, th
InvalidCriteria exception is raised. If the target understands the criteria but canno
satisfy the criteria, the CannotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for the copied object,
NO_RESOURCES will be raised. Similarly, if a target does not implement the cop
operation, the NO_IMPLEMENT exception will be raised.

It is implementation dependent whether this operation is atomic.

move

The move operation on the target moves the object to the scope of the factory fin
passed as the first parameter. The object reference for the target object remains
after move has successfully executed.

The first parameter, there, may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with the NoFactory
exception.

The second parameter, the_criteria, allows for a number of optional parameters to
passed. Typically, the target simply passes this parameter to the factory used in
migrating the new object. The criteria parameter is explained in detail in section 6

If the target cannot find an appropriate factory to support migration of the object “o
there”, the NoFactory exception is raised. An implementation that refuses to move
itself should raise the NotMovable exception. If the target does not understand th
criteria, the InvalidCriteria exception is raised. If the target understands the criteria
cannot satisfy the criteria, the CannotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for migrating the object
NO_RESOURCES will be raised. Similarly, if a target does not implement the mo
operation, the NO_IMPLEMENT exception will be raised.

It is implementation dependent whether this operation is atomic.

void move(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);
6-12 CORBAservices November 1996

6

is no
r

ove

cally
in

The
h the
ches,

s to
remove

Remove instructs the object to cease to exist. The object reference for the target
longer valid after remove successfully completes. The client is not responsible fo
cleaning up any resources the object uses. An implementation that refuses to rem
itself should raise the NotRemovable exception. In addition to this exception,
implementations may raise standard CORBA exceptions.

6.2.2 The FactoryFinder Interface

Factory finders support an operation, find_factories, which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typi
invoke this operation to find a factory to interact with. (This is described in detail
section 6.4.)

The factory finder interface represents the minimal functionality supported by all
factory finders.

find_factories

The find_factories operation is passed a key used to identify the desired factory.
key is a name, as defined by the naming service. More than one factory may matc
key. As such, the factory finder returns a sequence of factories. If there are no mat
the NoFactory exception is raised.

The scope of the key is the factory finder. The factory finder assigns no semantic
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

void remove()
raises(NotRemovable);

Factories find_factories(in Key factory_key)
raises(NoFactory);
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-13

6

ce of

 are

jects
types
 to

this

be
t of

 of

d

It is beyond the scope of this specification to standardize the key space. The spa
keys is established by convention in particular environments. The kind field3 of the key
is useful for partitioning the key space. Suggested values for the id and kind fields
given in Table 6-1.

6.2.3 The GenericFactory Interface

In many environments, management of a set of resources that are allocated to ob
at creation time is required. This needs to be done in a coordinated fashion for all
of objects. The Life Cycle Service provides a framework for this which is intended
be usable in a variety of administrative environments. However, the differing
environments will administer a variety of resources and it is beyond the scope of
framework to identify all the possible types of resource.

While there is no standard interface for a factory, a GenericFactory interface is
defined. The GenericFactory interface defines a generic creation operation,
create_object. By defining a generic interface for creation, a creation service can
implemented. This is particularly useful in environments where administering a se
resources is important.

Such a generic factory can implement resource policies and represent multiple
locations. In administered environments, object specific factories, such as the
document factory described in section , may delegate the creation process to the
generic factory. This is described in detail in section 6.3.2.

The job of the generic factory is to match the creation criteria specified by clients
the GenericFactory interface with offers made on behalf of implementation specific
factories.

3. See the naming service specification.

Table 6-1 Suggested conventions for factory finder keys.

id field kind field meaning

name of object
interface

“object interface” Find factories that create objects supporting
the named interface.

name of equivalent
implementations

“implementation
equivalence class”

Find factories that create objects with
implementations in a named equivalence
class of implementations.1

1. An example of an implementation equivalence class is a set of object implementations that have compatible externalize
forms.

name of object
implementation

“object
implementation”

Find factories that create objects of a
particular implementation.

name of factory
interface

“factory interface” Find factories supporting the named factory
interface.
6-14 CORBAservices November 1996

6

an

 a

 be
Figure 6-10 illustrates the structure of a creation service.

Figure 6-10 The Life Cycle service provides a generic creation capability. Ultimately,
implementation specific creation code is invoked by the creation service. The
implementation specific code also supports the GenericFactory interface.

The client of the GenericFactory interface invokes the create_object operation and c
express criteria for creation.

Ultimately, this request will be passed to an implementation specific factory which
supports the GenericFactory interface. To get there, the request may travel through
number of generic factories. However, all of this is transparent to the client.

create_object

The create_object operation is passed a key used to identify the desired object to
created. The key is a name, as defined by the Naming Service.

Object create_object(
in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

GenericFactory

GenericFactory

creation service

implementation
specific code

resources

GenericFactory

implementation
specific code

resources
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-15

6

ntics

ce of

 be

y is

d. If

n the

d
The scope of the key is the generic factory. The generic factory assigns no sema
to the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the created object.

It is beyond the scope of this specification to standardize the key space. The spa
keys is established by convention in particular environments. The kind field4 of the key
is useful for partitioning the key space. Suggested values for the id and kind fields are
given in Table 6-2.

The second parameter, the_criteria, allows for a number of optional parameters to
passed. Criteria are explained in detail in section 6.2.4

If the generic factory cannot create an object specified by the key, then NoFactor
raised.

If the target does not understand the criteria, the InvalidCriteria exception is raise
the target understands the criteria but cannot satisfy the criteria, the
CannotMeetCriteria exception is raised.

supports

The supports operation returns true if the generic factory can create an object, give
key. Otherwise false is returned.

4. See the naming service specification.

Table 6-2 Suggested conventions for generic factory keys.

id field kind field meaning

name of object
interface

“object interface” Create an object that supports the named
interface.

name of equivalent
implementations

“implementation
equivalence class”

Create an object whose implementation is in
a named equivalence class of
implementations.1

1. An example of an implementation equivalence class is a set of object implementations that have compatible externalize
forms

name of object
implementation

“object
implementation”

Create objects of a particular
implementation.

boolean supports(in Key k);
6-16 CORBAservices November 1996

6

his

le and
 and
m on

.
ble.

tions

 a

ry
6.2.4 Criteria

The create_object operation of the GenericFactory interface expects a parameter
specifying the creation criteria. The move and copy operations of the LifeCycleObject
interface also expects this parameter; typically they pass it through to a factory. T
section documents this parameter.

The criteria parameter is expressed as an IDL sequence of name-value pairs. In
particular, it is described by the following data structure given in the CosLifeCycle
module:

The parameter is given as a sequence of name-value pairs in order to be extensib
support “pass-through”; that is, new name-value pairs can be defined in the future
objects can be written that do not interpret the name-value pairs, but just pass the
to other objects.

Note – It is beyond the scope of this specification to standardize particular criteria
Supporting criteria is optional. Furthermore, supporting different criteria is accepta
The criteria given here are suggestions.

Table 6-3 suggests criteria to be supported by the generic factory. Detailed descrip
follow.

typedef struct NVP {
Naming::Istring name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;

Table 6-3 Suggested criteria.

criterion name type of criterion value interpretation

“initialization” sequence<NameValuePair> initialization parameters, given as
sequence of name-value pairs.

“filter” string allows clients of the generic factory
to express a constraint on the
created object.

“logical location” sequence<NameValuePair> allows clients of the generic facto
to express a connection for the
object, for example a PCTE
relationship.

“preferences” string a way for clients to influence the
policies that a generic factory may
use when creating an object
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-17

6

o
ay
cific

rful

es.

age is

ct is

eric
oose

cribed

other

ing an
t the
“initialization”

The “initialization” criterion is a sequence of name-value pairs which is intended t
contain application specific initialization values. Typically, the generic factory will p
no attention to the initialization criterion and simply passes it on to application spe
factory code.

“filter”

The filter criterion is a constraint expression which provides the client with a powe
way of expressing its requirements on creation. The generic factory will use the
constraint expression to make decisions about the allocation of particular resourc
For example, a client could give a constraint “operating system” != “windows nt”.

These constraints are expressed in some Constraint Language. A constraint langu
suggested in Appendix B.

Filters are potentially complex and InvalidCriteria will be raised if the filter is too
complex for the factory or is syntactically incorrect.

“logical location”

The “logical location” criterion allows a client to express where a
created/copied/migrated object is logically created. For example, in PCTE an obje
always in a relationship with another object. In such an environment, the logical
location would specify another object and a relationship.

“preferences”

The “preferences” criterion allows the client to influence the policies which the gen
factory uses to make decisions. For example, a generic factory might arbitrarily ch
a machine from a set of machines. Using the preferences criterion, a client could
express its preference for a particular machine. Policies and preferences are des
in more detail in Appendix B.

6.3 Implementing Factories

As defined under Client’s Model of Creation on page 4, any object that creates an
object in response to some request is called a factory. Clients depend only on the
definitions in that section.

The client’s model of object life cycle has intentionally been defined abstractly. This
allows a wide variety of implementation strategies.

Factories are not special objects. They have well-defined IDL interfaces and
implementations in programming languages. Defining factory interfaces and
implementing them are a normal part of application development.

Ultimately, the creation process requires implementation dependent code that
assembles resources for the storage and execution of an object. The act of creat
object requires assembling and initializing all of the resources required to suppor
execution and storage of the object. The resources typically include:
6-18 CORBAservices November 1996

6

rces

 set of

ation

hat
c
• the allocation of one or more BOA object references, and
• resources related to persistence storage.

6.3.1 Minimal Factories

Figure 6-11 illustrates a minimal implementation of a factory that assembles resou
in a single factory object.

Figure 6-11 Factories assemble resources for the execution of an object. A minimal
implementation achieves this with a single factory implementation.

6.3.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a
resources. The generic factory may apply policies to all creation requests.

Eventually such a generic creation service, needs to communicate with implement
specific code that actually assembles the resources for the object. Figure 6-12
illustrates an object specific factory, such as the document factory of Figure 6-5 t
delegates the creation problem to the generic creation service. The object-specifi
factory effectively adds a statically typed wrapper around the generic factory.

Object specific factory interface

factory

resources

specific code
Life Cycle Service: v1.0 Implementing Factories November 1996 6-19

6

n
.

Figure 6-12 In an administered environment, factory implementations can delegate the creation
problem to a generic factory. The generic factory can apply resource allocatio
policies. Ultimately the creation service communicates with implementation
specific code that assembles resources for the object.

Object specific factory interface

GenericFactory

GenericFactory

life cycle service

factory
specific code

implementation
specific factory

Factory client

resources

GenericFactory

implementation
specific factory

resources
6-20 CORBAservices November 1996

6

ate.
fined

eing
f to

ed on
d in

ry
w
wer.
imal
6.4 Target’s Use of Factories and Factory Finders

Figure 6-13 The copy and move operations are passed a FactoryFinder to represent “there.”
The implementation of the target uses the FactoryFinder to find a factory object
for creation over there. The protocol between the object and the factory is priv
They can communicate and transfer state according to any implementation-de
protocol.

A client passes a factory finder as a parameter to a copy or move request.

Clients do not generally understand the implementation constraints of the object b
copied. Clients cannot express what the target object needs in order to copy itsel
the new location.

Target object implementations, on the other hand, put constraints on factories bas
implementation concerns. It is unlikely that target implementation code is intereste
further constraining location.

To find an appropriate factory, the target object implementation may use the facto
finder with its minimal interface defined in section 6.2.2 or it may attempt to narro
the factory finder to a more sophisticated finding service with more expressive po
The target object implementation can always depend on the existence of the min
interface.

Once the target object implementation finds a factory, it communicates with the
factory using a private, implementation-defined, interface.

6.5 Summary of Life Cycle Service

The problem of distributed object life cycle is the problem of

• Creating an object

• Deleting an object

Document

FactoryFinder

Private

THEREHERE

Factory
Life Cycle Service: v1.0 Target’s Use of Factories and Factory Finders November 19966-21

6

ve

• Moving and copying an object

• Operating on a graph of distributed objects.

The client’s model of object life cycle is based on factories and target objects
supporting the LifeCycleObject interface. Factories are objects that create other
objects. The LifeCycleObject interface defines operations to delete an object, to mo
an object and to copy an object.

A GenericFactory interface is defined. The generic factory interface is sufficient to
create objects of different types. By defining a GenericFactory interface,
implementations that administer resources are enabled.

6.5.1 Summary of Life Cycle Service Structure

The Life Cycle Service specification consists of these interfaces:

• LifeCycleObject

• FactoryFinder

• GenericFactory

• Interfaces described in Appendix A, an addendum to the Life Cycle Service
6-22 CORBAservices November 1996

6

 the
cle

s of

It

a

ting

e

ed to
cle

s

ated

ycle
ns

, roles

d
 Appendix A Addendum to Life Cycle Service: Compound Life Cycle
Specification

This appendix contains the specification for the compound life cycle component of
Life Cycle Service .The compound life cycle specification depends on the Life Cy
Service for the definition of the client view of Life Cycle operations. Moreover, it
extends the Life Cycle Service to support compound life cycle operations on graph
related objects. In addition, the compound life cycle specification depends on the
Relationship Service for the definition of object graphs.

The Life Cycle Service specification describes a client’s view of object life cycle.
describes how a client can create, copy, move and remove objects in a distributed
object system. To create objects, clients find factory objects and issue create requests
on factories. To copy, move and remove objects, clients issue requests on target
objects supporting the LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of
graph of related objects, the target provides an implementation for each of the
operations in the LifeCycleObject interface.

If, on the other hand, the target object uses the Relationship Service for represen
relationships with other objects, additional services are available to implement the
compound life cycle operations. The specification in this appendix describes thos
services.

 A.1 Key Features

The compound life cycle specification:

• Addresses the issues of copying, moving and removing objects that are relat
other objects. Depending on the semantics of the relationships, these life cy
operations are applied to:

• the object, to the relationship and to the related objects

• the object and to the relationship

• the object

• Coordinates compound life cycle operations on graphs of related objects, thu
relieving object developers from implementing compound operations.

• Illustrates a general model for applying compound operations to graphs of rel
objects. The Externalization Service also illustrates the model.

 A.2 Service Structure

The specification in this appendix defines a service that applies a compound life c
operation to a graph of related objects, given a starting node. Compound operatio
traverse a graph of related objects and apply the operation to the relevant nodes
and relationships of the graph. The service supports the
CosCompoundLifeCycle::Operations interface. Implementations of the service depen
on the CosCompoundLifeCycle::Node , CosCompoundLifeCycle::Role and
CosCompoundLifeCycle::Relationship interfaces which are subtypes of the Node , Role
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-23

6

ships
the

.

t

and Relationship interfaces defined in the Relationship Service. The
CosCompoundLifeCycle::Node , CosCompoundLifeCycle::Role and
CosCompoundLifeCycle::Relationship interfaces add operations to copy, remove and
move nodes, roles and relationships.

The Relationship Service defines interfaces for containment and reference relation
and their roles. This appendix defines interfaces that inherit those interfaces and
compound life cycle interfaces.

 A.3 Interface Overview

Table 6-4 and Table 6-5 summarize the interfaces defined in the
CosCompoundLifeCycle module. The CosCompoundLifeCycle module is described in
detail in sectionSection A.4.2.

Table 6-4 Interfaces defined in the CosCompoundLifeCycle module for initiating compound life
cycle operations.

Interface Purpose

Operations Defines compound life cycle operations on graphs of related
objects.

OperationsFactory Defines an operation to create an object that supports the
Operations interface.

Table 6-5 Interfaces defined in the CosCompoundLifeCycle module that are used by
implementations of compound life cycle operations

Interface Inherits Pur pose

Node CosGraphs::Node Defines life cycle
operations on nodes in
graphs of related objects

Relationship CosRelationships::Relationship Defines life cycle
operations on
relationships.

Role CosGraphs::Role Defines life cycle
operations on roles.

PropagationCriteriaFactory Creates an object that
supports the
CosGraphs::TraversalCri
eria interface that uses
relationship propagation
values.
6-24 CORBAservices November 1996

6

ined

es
.
o
g the

 a
Table 6-6 and Table 6-7 summarize the interfaces that combine the specific
relationships defined by the Relationship Service and the life cycle interfaces def
in this appendix.

 A.4 Compound Life Cycle Operations

The Life Cycle specification describes a client’s view of object life cycle. It describ
how a client can create, copy, move and remove objects in a distributed object system
To create objects, clients find factory objects and issue create requests on factories. T
copy, move and remove objects, clients issue requests on target objects supportin
LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of
graph of related objects, the target provides an implementation for each of the
operations in the LifeCycleObject interface.

Table 6-6 Interfaces defined in the CosLifeCycleContainment module.

Interface Inherits Pur pose

Relationship CosContainment::Containment
and
CosCompoundLifeCycle::Relationship

Combines both
interfaces.
No additional
operations are defined.

ContainsRole CosContainment::ContainsRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

ContainedInRole CosContainment::ContainedInRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

Table 6-7 Interfaces defined in the CosLifeCycleReference module.

Interface Inherits Pur pose

Relationship CosContainment::Reference
and
CosCompoundLifeCycle::Relationship

Combines both
interfaces.
No additional
operations are defined.

ReferencesRole CosContainment::ReferencesRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

ReferencedByRole CosContainment::ReferencedByRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-25

6

legate
tion.

e

d

rly

 the
t the

t
If the target participates as a node in a graph of related objects, the target can de
the life cycle operation to a service that implements the compound life cycle opera
In particular, the target simply creates an object that supports the
CosCompoundLifeCycle::Operations interface and issues the corresponding life cycl
request on it. The compound life cycle operations expect a CompoundLifeCycle::Node
object reference as a starting node. The target simply passes its
CompoundLifeCycle::Node object reference as the starting node.

When the life cycle object has completed issuing compound life cycle requests, it
simply issues the destroy request to destroy the compound operation.

Figure 6-14 illustrates the target’s delegation of the life cycle request to compoun
operation.

Figure 6-14 A life cycle object that is part of a graph of related objects delegates the orde
operation on the graph to an object that implements the compound life cycle
operation.

 A.4.1 Applying the Copy Operation to the Example

We now use the example in the Relationship Service Specification (Figure 9-3 on
page 9-9) to illustrate applying the copy operation to a graph. Figure 6-15 illustrates
graph and the compound operation prior to applying the copy operation. Recall tha
folder contains the document; the document is contained in the folder. The document
contains the figure; the figure is contained in the document. The document contains
the logo and the logo is contained in the document. On the other hand, the documen
references the book; the book is referenced by the document. Finally, the figure
references the logo; the logo is referenced by the figure.

CompoundLifeCycle::Node
compound operations

target

CosCompoundLifeCycle::Operations

CosLifeCycle::LifeCycleObject
6-26 CORBAservices November 1996

6

t
 as
y

e

Figure 6-15 Prior to applying copy to the graph.

In this example, the copy is performed in two passes. The first pass creates a lis
representation of the relevant edges of the graph. The second pass takes the list
input, copies the relevant nodes and roles, then creates all the necessary links b
copying the relevant relationships.

A compound copy request is initiated by issuing a LifeCycleObject::copy request on
the folder. Since the folder participates in a graph of related objects, it creates an
object supporting the CosCompoundLifeCycle::Operations interface (the Operations
object). Then the folder issues a CosCompoundLifeCycle::Operations::copy request on
the Operations object, passing in its own CosCompoundLifeCycle::Node object
reference as the starting node. The copy operation will copy the graph of related
objects and return an object reference for the copy of the folder object.

The remainder of this section provides a description of how the Operations object
might implement the copy operation.

First Pass of the Compound Copy Operation

The first pass consists of creating a list representation of the relevant edges of th
graph. The Operations object uses an object supporting the CosGraphs::Traversal
interface to do most of the work.

The Operations object creates an object supporting the CosGraphs::TraversalCriteria
interface by calling CosCompoundLifeCycle::PropagationCriteriaFactory::create.

compound
operation

figure

logo

folder

book

document

deep

shallow

deep
shallow

none

shallow

noneshallow

shallow
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-27

6

he

 is

ons”

 the

stinct

ce.

The Operations object then creates a CosGraphs::Traversal object by calling
CosGraphs::TraversalFactory::create_traversal_on, passing in the object supporting
the CosGraphs::TraversalCriteria interface. Calls on the CosGraphs::Traversal object
yield an unordered list of CosGraphs::Traversal::ScopedEdges containing the
following information.

(folder, ContainsRole, Containment, ContainedInRole, document)

(document, ReferencesRole, Reference, ReferencedByRole, book)

(document, ContainedInRole, Containment, ContainsRole, folder)

(document, ContainsRole, Containment, ContainedInRole, figure)

(document, ContainsRole, Containment, ContainedInRole, logo)

(figure, ReferencesRole, Reference, ReferencedByRole, logo)

(figure, ContainedInRole, Containment, ContainsRole, document)

(logo, ContainedInRole, Containment, ContainsRole, document)

This list will be referred to as the OriginalEdgeList.

Since the propagation value for copy from the document to the book is shallow, t
traversal did not visit the book. As such, the edge:

(book, ReferencedByRole, Reference, References, document)

is not included. Although the traversal did visit the logo, the edge

(logo, ReferencedByRole, Reference, ReferencesRole, figure)

is not included because the propagation value for copy from the logo to the figure
none.

For more detailed information regarding the output of the CosGraphs::Traversal
object with respect to the use of propagation semantics, see “Compound Operati
on page 9-36 of the Relationship Service.

Second Pass of the Compound Copy Operation

The second pass copies all the relevant nodes and then relates them by copying
relevant relationships.

First, the set of nodes to be copied must be determined. This consists of all the di
nodes in the left column of the OriginalEdgeList . Since a node may be involved in
multiple edges, it may appear multiple times in the list; it should only be copied on
Each node in this set is copied by issuing a CosCompoundLifeCycle::Node::copy_node
request. This request will cause the node and all of its roles to be copied; the new node
and its roles will be returned.

• For each returned role of the copied node, an entry is made in a table of new
roles. Each entry consists of:

• The role object is the data and

• The node’s CosGraphs::Traversal::TraversalScopedId and the role’s
CORBA::InterfaceDef together serve as a key.
6-28 CORBAservices November 1996

6

inct

.

ated
inal

ew

er.

alue,

The final step is to create all the relationships for the copied graph. All of the dist
relationships in the center column of the OriginalEdgeList need to be copied. Although
a relationship may appear multiple times in the list, it should only be copied once
Each relationship is copied by issuing a
CosCompoundLifeCycle::Relationship::copy_relationship request. The arguments to
CosCompoundLifeCycle::Relationship::copy_relationship include the list of roles to be
included in the new relationship. Some of these roles will be copies that were cre
as a result of processing deep propagation values; others will be roles in the orig
graph.

Thus, copy each unique relationship in the OriginalEdgeList, using NamedRoles as
follows:

For each role in an entry in the OriginalEdgeList, make a role key using the node’s
TraversalScopedId and the role’s CORBA::InterfaceDef to search the table of n
roles.

a. If the role was copied, the key will find the role’s copy. The role’s RoleName is
obtained from the entry in the OriginalEdgeList. The role’s copy and the
RoleName are combined to form a CosGraphs::NamedRole which will then be
included in the list of CosGraphs::NamedRoles passed to the
CosCompoundLifeCycle::Relationship::copy_relationship method.

b. If no copy is found, the original CosGraphs::NamedRole is used instead.

Once all the Relationships have been copied, the
CosCompoundLifeCycle::Operations::copy method is done.

Figure 6-16 illustrates the result of applying copy to the graph, starting at the fold

Figure 6-16 The result of applying copy to the graph, starting at the folder.

When the copy operation propagates to a node because of a deep propagation v
other shallow propagation values to that node are promoted. That is, they are processed
as if they were deep; relationships are formed with the copied node, not with the

figure

logo

folder

document

new

new

new

new

book

figure

logo

document

folder
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-29

6

ure
 figure

s

f
original. This happened in the example; the shallow propagation value from the fig
to the logo was promoted to deep because the logo was copied. As such, the new
references the new logo, not the original logo.

 A.4.2 The CosCompoundLifeCycle Module

The CosCompoundLifeCycle module defines

• The Operations interface for initiating compound life cycle operations on graph
of related objects,

• OperationsFactory interface for creating compound operations,

• The Node, Role, Relationship and PropagationCriteriaFactory interfaces for use
by implementations of compound life cycle operations.

The CosCompoundLifeCycle module is given in Figure 6-17. Detailed descriptions o
the interfaces follow.

#include <LifeCycle.idl>
#include <Relationships.idl>
#include <Graphs.idl>

module CosCompoundLifeCycle {
interface OperationsFactory;
interface Operations;
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

enum Operation {copy, move, remove};

struct RelationshipHandle {
Relationship the_relationship;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};

interface OperationsFactory {
Operations create_compound_operations();

};

Figure 6-17 The CosCompoundLifeCycle Module
6-30 CORBAservices November 1996

6

interface Operations {
Node copy (

in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);

void destroy();
};

interface Node : ::CosGraphs::Node {
exception NotLifeCycleObject {};
void copy_node (in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

};

Figure 6-17 The CosCompoundLifeCycle Module (Continued)
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-31

6

interface Role : ::CosGraphs::Role {
Role copy_role (in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,

::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

};

interface Relationship :
::CosRelationships::Relationship {

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

};

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create(in Operation op);

};

};

Figure 6-17 The CosCompoundLifeCycle Module (Continued)
6-32 CORBAservices November 1996

6

e
that

d

er,
ycle

s a

, the
 the

aise
e
 A.4.3 The OperationsFactory Interface

Creating a Compound Life Cycle Operation

The create_compound_operations operation creates an object that implements th
compound life cycle operations, that is, the factory creates and returns an object
supports the CosCompoundLifeCycyle::Operations interface.

The Operations Interface

The Operations interface defines compound life cycle operations to copy, move an
remove objects, given a starting node in a graph.

Applying the Copy Operation to a Graph of Related Objects

The copy operation applies the copy operation to a graph of related objects. The
starting node is provided as the starting_node parameter. The copy should be
collocated with the factory finder given by the there parameter. The final paramet
the_criteria, allows unspecified values to be passed. This is explained in the Life C
specification in detail.

If a node, role or relationship in the graph refuses to be copied, the NotCopyable
exception is raised with the node, role or relationship object reference returned a
parameter to the exception.

If appropriate factories to create a copies of the nodes and roles cannot be found
NoFactory exception is raised. The exception value indicates the key used to find
factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may r
standard CORBA exceptions. For example, if resources cannot be acquired for th
copied graph, NO_RESOURCES will be raised.

Operations create_compound_operations();

Node copy (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-33

6

e
uld be
er,
ycle

s a

ctory
.

ise
e

. The

able
s a
It is implementation dependent whether this operation is atomic.

Applying the Move Operation to a Graph of Related Objects

The move operation applies the move operation to a graph of related objects. Th
starting node is provided as the starting_node parameter. The migrated graph sho
collocated with the factory finder given by the there parameter. The final paramet
the_criteria, allows unspecified values to be passed. This is explained in the Life C
specification in detail.

If a node, role or relationship in the graph refuses to be moved, the NotMovable
exception is raised with the node, role or relationship object reference returned a
parameter to the exception.

If appropriate factories to migrate the nodes and roles cannot be found, the NoFa
exception is raised. The exception value indicates the key used to find the factory

In addition to the NoFactory and NotMovable exceptions, implementations may ra
standard CORBA exceptions. For example, if resources cannot be acquired for th
migrated graph, NO_RESOURCES will be raised.

It is implementation-dependent whether this operation is atomic.

Applying the Remove Operation to a Graph of Related Objects

The remove operation applies the remove operation to a graph of related objects
starting node is provided as the starting_node parameter.

If a node, role or relationship in the graph refuses to be removed, the NotRemov
exception is raised with the node, role or relationship object reference returned a
parameter to the exception.

It is implementation dependent whether this operation is atomic.

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);
6-34 CORBAservices November 1996

6

oles
al
ained
Destroying the Compound Operation

The destroy operation indicates to the compound operation that the client has
completed operating on the graph. The compound operation object is destroyed.

The Node Interface

The Node interface defines operations to copy, move and remove a node.

Copying a Node

The copy operation makes a copy of the node and its roles. The new node and r
should be collocated with the factory finder given by the there parameter. The fin
input parameter, the_criteria, allows unspecified values to be passed. This is expl
in the Life Cycle specification in detail.

The result of a copy operation is a:

• Node object reference for the new node and

• Sequence of roles

void destroy();

void copy_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-35

6

ted”.

aised

on is

aise
e

 and
he
ined

ised

 the
Figure 6-18 illustrates the result of a copy. A node, when it is born, is not in any
relationships with other objects. That is, the roles in the new node are “disconnec
It is the compound copy operation’s job to correctly establish new relationships.

Figure 6-18 Copying a node returns the new object and the corresponding roles.

If the node or one of its roles refuses to be copied, the NotCopyable exception is r
with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory excepti
raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may r
standard CORBA exceptions. For example, if resources cannot be acquired for th
copied node, NO_RESOURCES will be raised.

Moving a Node

The move operation transfers some or all of the node’s resources from “here” to
“there”. The move operation migrates a the node and its roles. The migrated node
roles should be collocated with the factory finder given by the there parameter. T
final parameter, the_criteria, allows unspecified values to be passed. This is expla
in the Life Cycle specification in detail.

If the node or one of its roles refuses to be moved, the NotMovable exception is ra
with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to support migration “over there” cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
factory.

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

THEREHERE

original
document

new
document
6-36 CORBAservices November 1996

6

ise
e

n is
ption.

jects

tion
a

the
In addition to the NoFactory and NotMovable exceptions, implementations may ra
standard CORBA exceptions. For example, if resources cannot be acquired for th
migrated node, NO_RESOURCES will be raised.

Removing a Node

The remove operation removes the node and its roles.

If the node or one of its roles refuses to be removed, the NotRemovable exceptio
raised with the node or role object reference returned as a parameter to the exce

Getting the Node’s Life Cycle Object

Some nodes not only participate in the life cycle protocols for graphs of related ob
but they also support the client’s view of life cycle services. That is, the node also
supports the ::CosLifeCycle::LifeCycleObject interface described in the Life Cycle
Service specification. The get_life_cycle_object operation returns the
::CosLifeCycle::LifeCycleObject object reference for the node.

If the node does not support the ::CosLifeCycle::LifeCycleObject interface, the
NotLifeCycleObject exception is raised.

The Role Interface

The Role interface defines operations to copy and move a role. (The destroy opera
is defined by the base Relationship Service. As such, there is no need to define
remove operation.) The Role interface also defines an operation to return the
propagation values for the copy, move and remove operations.

The implementation of a CompoundLifeCycle::Node operation can call these
operations on roles. For example, an implementation of copy on a node can call
copy operation on the Role.

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-37

6

 with

g the

on is

aise
e

ation
iven
s to

bject

.
Copying a Role

The copy operation makes a copy of the role. The new role should be collocated
the factory finder given by the there parameter. The final parameter, the_criteria,
allows unspecified values to be passed. This is explained in the Life Cycle
specification in detail.

The result of a copy operation is an object reference for the new object supportin
Role interface.

If the role refuses to be copied, the NotCopyable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory excepti
raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may r
standard CORBA exceptions. For example, if resources cannot be acquired for th
copied role, NO_RESOURCES will be raised.

Moving a Role

The move operation transfers some or all of the role’s resources. The move oper
migrates the role. The migrated role should be collocated with the factory finder g
by the there parameter. The final parameter, the_criteria, allows unspecified value
be passed. This is explained in the Life Cycle specification in detail.

If the role refuses to be moved, the NotMovable exception is raised with the role o
reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory

Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
6-38 CORBAservices November 1996

6

ise
e

n

e
d to

eter,
ycle
In addition to the NoFactory and NotMovable exceptions, implementations may ra
standard CORBA exceptions. For example, if resources cannot be acquired for th
migrated role, NO_RESOURCES will be raised.

Getting a Propagation Value

The life_cycle_propagation operation returns the propagation value to the role
to_role_name for the life cycle operation op and the relationship rel. If the role ca
guarantee that the propagation value is the same for all relationships in which it
participates, same_for_all is true.

The Relationship Interface

The Relationship interface defines operations to copy and move a relationship. (Th
destroy operation is defined by the Relationship Service. As such, there is no nee
define a remove operation.) The Relationship interface also defines an operation to
return the propagation values for the copy, move and remove operations.

Copying the Relationship

The copy operation creates a new relationship. The new relationship should be
collocated with the factory finder given by the there parameter. The second param
the_criteria, allows unspecified values to be passed. This is explained in the Life C
specification in detail.

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-39

6

p

g the

the

on is

aise
e

ve
d
ria,

he

.

ise
e
The values of the newly created relationship’s attributes are defined by the
implementation of this operation. However, the named_roles attribute of the newly
created relationship must match new_roles. That is, the newly created relationshi
relates objects represented by new_roles parameter, not the by the original
relationship’s named roles.

The result of a copy operation is an object reference for the new object supportin
Relationship interface.

If the relationship refuses to be copied, the NotCopyable exception is raised with
relationship object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory excepti
raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may r
standard CORBA exceptions. For example, if resources cannot be acquired for th
copied role, NO_RESOURCES will be raised.

Moving the Relationship

The move operation transfers some or all of the relationship’s resources. The mo
operation migrates the relationship. The migrated relationship should be collocate
with the factory finder given by the there parameter. The final parameter, the_crite
allows unspecified values to be passed. This is explained in the Life Cycle
specification in detail.

If the relationship refuses to be moved, the NotMovable exception is raised with t
relationship object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory

In addition to the NoFactory and NotMovable exceptions, implementations may ra
standard CORBA exceptions. For example, if resources cannot be acquired for th
migrated relationship, NO_RESOURCES will be raised.

void move_relationship (
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
6-40 CORBAservices November 1996

6

rom
le
for all

es

alues

tion.

ny
nd, is
n be
Getting a Propagation Value

The life_cycle_propagation operation returns the relationship’s propagation value f
the role from_role to the role to_role_name for the life cycle operation op. If the ro
named by from_role_name can guarantee that the propagation value is the same
relationships in which it participates, same_for_all is true.

The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the ::CosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropgationCriteriaFactory creates a TraversalCriteria object that determines
which edges to emit and which nodes to visit based on propagation values for the
compound life cycle operations.

Create a Traversal Criteria Based on Life Cycle Propagation Valu

The create operation returns a TraversalCriteria object for an operation op that
determines which edges to emit and which nodes to visit based on propagation v
for op. For a more detailed discussion see section A.4.1 of this appendix and
“Traversing Graphs of Related Objects” on page 9-35 of the Relationship specifica

 A.4.4 Specific Life Cycle Relationships

The Relationship service defines two important relationships, containment and
reference. Containment is a one-to-many relationship. A container can contain ma
containees; a containee is contained by one container. Reference, on the other ha
a many-to-many relationship. An object can reference many objects; an object ca
referenced by many objects.

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

::CosGraphs::TraversalCriteria create(in Operation op);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-41

6

s:

.

e
Containment is represented by a relationship with two roles: the ContainsRole, and the
ContainedInRole. Similarly, reference is represented by a relationship with two role
ReferencesRole and ReferencedByRole.

The compound life cycle specification adds life cycle semantics to these specific
relationships. That is, it defines propagation values for containment and reference

 A.4.5 The CosLifeCycleContainment Module

The CosLifeCycleContainment module defines three interfaces
• the Relationship interface
• the ContainsRole interface and
• the ContainedInRole interface.

The CosLifeCycleContainment module does not define new operations. It merely
“mixes in” interfaces from the CosCompoundLifeCycle and CosContainment modules.
Although it does not add any new operations, it refines the semantics of these
attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise DegreeError if
the number of roles passed as arguments is not 2. It will raise RoleTypeError if th
roles are not CosLifeCycleContainment::ContainsRole and

#include <Containment.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleContainment {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainsRole {};

interface ContainedInRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainedInRole {};

};

Figure 6-19 The CosLifeCycleContainment module

RelationshipFactory
attribute value

relationship_type CosLifeCycleContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosLifeCycleContainment::ContainsRole;
“ContainedInRole”,CosLifeCycleContainment::ContainedInRole
6-42 CORBAservices November 1996

6

ort the

 the

ort the

 the

CosLifeCycleContainment::ContainedInRole. It will raise MaxCardinalityExceeded if
the CosLifeCycleContainment::ContainedInRole is already participating in a
relationship.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosCompoundLifeCycle::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not conform to
CosLifeCycleContainment::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosCompoundLIfeCycle::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not conform to
CosLifeCycleContainment::Relationship interface. The
CosRelationships::RoleFactory::link operation will raise MaxCardinalityExceeded if it
is already participating in a containment relationship.

The CosLifeCycleContainment::ContainsRole::life_cycle_propagation operation returns
the following:

RoleFactory attribute for
ContainsRole value

role_type CosLifeCycleContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ContainedInRole value

role_type CosLifeCycleContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosCompoundLifeCycle::Node

operation ContainsRole to ContainedInRole

copy deep

move deep

remove deep
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-43

6

s

d
The CosLifeCycleContainment::ContainedInRole::life_cycle_propagation operation
returns the following::

 A.4.6 The CosLifeCycleReference Module

The CosLifeCycleReference module defines three interfaces
• the Relationship interface,
• the ReferencesRole interface and
• the ReferencedByRole interface.

The CosLifeCycleReference module does not define new operations. It merely “mixe
in” interfaces from the CosCompoundLifeCycle and CosReference modules. Although
it does not add any new operations, it refines the semantics of these attributes an
operations:

operation ContainedInRole to ContainsRole

copy shallow

move shallow

remove shallow

#include <Reference.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleReference {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencedByRole {};

};

Figure 6-20 The CosLifeCycleReference module

RelationshipFactory
attribute value

relationship_type CosLifeCycleReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosLifeCycleReference::ReferencesRole;
“ReferencedByRole”,CosLifeCycleReference::ReferencedByRole
6-44 CORBAservices November 1996

6

e

ort the

 the

ort the

 the

The CosRelationships::RelationshipFactory::create operation will raise DegreeError if
the number of roles passed as arguments is not 2. It will raise RoleTypeError if th
roles are not CosReference::ReferencesRole and CosReference::ReferencedByRole.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosCompoundLifeCycle::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not conform to
CosLifeCycleReference::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosCompoundLifeCycle::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not conform to
CosLifeCycleRelationship::Relationship interface.

The CosLifeCycleReference::ReferencesRole::life_cycle_propagation operation returns
the following:

RoleFactory attribute for
ReferencesRole value

role_type CosLifeCycleReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosLifeCycleReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

operation ReferencesRole to ReferencedByRole

copy shallow

move shallow

remove shallow
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-45

6

ort the

e

iam
The CosLifeCycleReference::ReferencedByRole::life_cycle_propagation operation
returns the following::

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosCompoundLifeCycle::Node interface.
The CosRelationships::RelationshipFactory::create operation will raise DegreeError if
the number of roles passed as arguments is not 2. It will raise RoleTypeError if th
roles are not CosLifeCycleReference::ReferencesRole and
CosLifeCycleReference::ReferencedByRole.

 A.5 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Will
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

operation ReferencedByRole to ReferencesRole

copy none

move shallow

remove shallow
6-46 CORBAservices November 1996

6

 a
le of

cate

lient
limit
ch

y be

nts.

ope,
be
is

ter is
d

r
ntial

e
raint

ich
se are
 Appendix B Filters

Note – Appendix B is not part of the Life Cycle Services specification. It sketches
mechanism for expressing filters. This appendix is included to provided an examp
how a filter might be provided.

A factory represents a scope of resource allocation, which is the set of resources
available to the factory. Whenever it receives a creation request, a factory will allo
resources according to any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a c
is exerting some control over the allocation of resources. Therefore, a client can
the scope of resource allocation, by issuing the request on a different factory whi
represents a smaller set of resources.

However, there are two problems with this. Firstly, the granularity of resources ma
much smaller than the granularity represented by the factories in a system. For
example, there are unlikely to be factories which represent individual disk segme

Secondly, the client may wish to rule out the use of particular resources within a sc
but avoid having a general reduction in scope. For example, the client might not
concerned with which machine within a LAN an object is created on, providing it
not on machine X.

Both of these needs can be addressed by providing a filter. In the first case, the fil
relatively simple; it will simply limit the scope of resource allocation. In the secon
case, the filter will need to be more sophisticated.

This appendix describes one way of providing filters using properties and constraint
expressions. These concepts appear in the development of Trading in the
ISO/IEC/CCITT Open Distributed Processing standards. Service providers registe
their service with the Trader and use properties to describe the service offer. Pote
clients may then use a constraint expressions to describe the requirements which
service offers must satisfy.

Similarly, the life cycle service may define a number of properties to represent th
different kinds of resources available within in a system and clients may use const
expressions to place the restrictions upon the use of those resources.

Note – The Object Services Architecture identifies an Object Properties Service wh
enables an object to have a set of arbitrary named values associated with it. The
very similar to the concept of properties as used in Trading and in this appendix.
Filters Summary of Life Cycle Service November 1996 6-47

6

t and
ll

s that

ators
es

e

s

 can

er of

t in
 B.1 Resources as Properties

Resource properties are application and generic factory implementation dependen
it is beyond the scope of this specification to identify standard properties which a
generic factory implementations will recognize. The properties described in this
appendix are given as examples only. Table 6-8 gives some examples of propertie
might be supported by a generic factory.

 B.2 Constraint Expressions

Constraints are expressed in a Constraint Language which provides a set of oper
which allow arbitrarily complex expressions involving properties and potential valu
to be specified. A property lists satisfies a constraint if the constraint expression is tru
when evaluated with respect to the property list.

Constraint expressions are very flexible. For example, if a client has an object
executing on a machine called ‘Host1’ and wishes to create another object which inot
on the same machine, the client can specify the constraint “Host != ‘Host1’”.

The constraint expression described here works with properties for which the value
be a string, a number, or a set of values.

The constraint language consists of:

• comparative functions: ==, !=, >, >=, <, <=, in
• constructors: and, or, not
• property names
• numeric and string constants
• mathematical operators: +, -, *, /
• grouping operators: (,), [,]

The following precedence relations hold in the absence of parentheses, in the ord
lowest to highest:

• + and -
• * and /
• or
• and
• not

The comparative operator in checks for the inclusion of a particular string constan
the list which is the value of a property.

Table 6-8 Examples of properties supported by a generic factory

Property Name Meaning

Host Host name of the machine

Architecture Machine architecture, e.g. “intel”, “sparc”

OSArchitecture Operating system architecture e.g. “solaris”, “hpux”
6-48 CORBAservices November 1996

6

 B.3 BNF for Constraint Expressions

<ConstraintExpr> := [<Expr>]

<Expr> := <Expr> ”or” <Expr>
| <Expr> ”and” <Expr>
| ”not” <Expr>
| ”(” <Expr> ”)”
| <SetExpr> <SetOp> <SetExpr>
| <StrExpr> <StrOp> <StrExpr>
| <NumExpr> <NumOp> <NumExpr>
| <NumExpr> ”in” <SetExpr>
| <StrExpr> ”in” <SetExpr>

<NumOp> := ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=”

<StrOp> := ”==” | ”!=”

<SetOp> := ”==” | ”!=”

<NumExpr> := <NumTerm>
| <NumExpr> ”+” <NumTerm>
| <NumExpr> ”-” <NumTerm>

<NumTerm> := <NumFactor>
| <NumTerm> ”*” <NumFactor>
| <NumTerm> ”/” <NumFactor>

<NumFactor> := <Identifier>
| <Number>
| ”(” <NumExpr> ”)”
| ”-” <NumFactor>

<StrExpr> := <StrTerm>
| <StrExpr> ”+” <StrTerm>

<StrTerm> := <Identifier>
| <String>
| ”(” <StrExpr> ”)”

<SetExpr> := <SetTerm>
| <SetExpr> ”+” <SetTerm>

<SetTerm> := <Identifier>
| <Set>
| ”(” <SetExpr> ”)”

<Identifier> := <Word>
Filters Summary of Life Cycle Service November 1996 6-49

6

<Number> := <Integer>
| <Float>

<Integer> := { <Digit> }+

<Float> := <Mantissa> [<Sign>] [<Exponent>]

<Mantissa> := <Integer> [”.” [<Integer>]]
| ”.” <Integer>

<Sign> := ”-”
| ”+”

<Exponent> := ”e” <Integer>
| ”E” <Integer>

<Word> := <Letter> { <AlphaNum> }*

<AlphaNum> := <Letter>
| <Digit>
| ”_”

<String> := ”’” { <Char> }* ”’”

<Char> := <Letter>
| <Digit>
| <Other>

<Set> := ”{” <Elements> ”}”

<Elements> := [<Element> { <Sp>+ <Element> }*]

<Element> := <Number>
| <Word>
| <String>

<Letter> := a | b | c | d | e | f | g | h | i | j | k
| l | m | n | o | p | q | r | s | t | u | v
| w | x | y | z | A | B | C | D | E | F | G
| H | I | J | K | L | M | N | O | P | Q | R
| S | T | U | V | W | X | Y | Z

<Digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Other> := <Sp> | ~ | ! | @ | # | $ | % | ^ | & | * | (
|) | - | _ | = | + | [| { |] | } | ; | :
| “ | \ | | | , | < | . | > | / | ?

<Sp> := ” ”
6-50 CORBAservices November 1996

6

w

ories

h, a
f

g

to
tisfy
raph

s,

st one

il,
ludes

s the

.

 Appendix C Administration

Note – Appendix C is not part of the Life Cycle Services specification. This
description is included as a suggested way of administering generic factories.

The specification for the life cycle service includes the GenericFactory interface.
There will be at least two styles of object which support that interface:

• implementation specific factories that actually assemble the resources for a ne
object, and

• generic factories which pass requests on to either implementation specific fact
or other generic factories.

By configuring generic factories and implementation specific factories into a grap
creation service can be built which administers the allocation of a large number o
resources and can use them to create a wide variety of objects.

To ensure that the creation service is scalable, it is essential that the principle of
federation is adopted – each component retains its autonomy rather than becomin
subordinate to another.

Whenever the creation service receives a creation request, the request will need
traverse the graph until it reaches an implementation specific factory which can sa
the request. As the request traverses the graph, each non-terminal node in the g
(i.e. the generic factories) will decide which link the request will traverse next.
Decisions will be based upon information about each available link, any policies in
force at that node and, of course, the actual request.

Clearly, the configuration and policies of such a creation service will need to be
administered. However, the specification does not include the specification of an
administration interface. This is because the principle of federation is not only
important to the life cycle service. It will be essential to a number of other service
notably trading, and the OMG plans to address the issue of federation for all object
services, rather than making a premature specification addressing the needs of ju
service.

The remainder of this appendix describes the principle of federation in more deta
outlines the use of policies and preferences to support federation, and then conc
with a suggestion for how an administration interface might look.

 C.1 Federation

Federation is essential in large-scale distributed systems where the existence of
centralized ownership and universal control cannot be assumed. In these system
only way to achieve cooperation between autonomous systems without creating a
hierarchical structure is to use federation. Federation is also beneficial to smaller
systems which can exploit the high degree of flexibility which federation provides
Administration Summary of Life Cycle Service November 1996 6-51

6

eir
t” in

is
mes

bal

lso

le.
 of

ing
n can
text

ed in a

y
lients

rnal
ific

t to

ice.
Federation differs from the more conventional approach of adopting a strictly
hierarchical organization in a number of ways. Firstly, components can provide th
service to any number of others, not just the single component which is its “paren
the hierarchy. Secondly, components can establish peer-to-peer relationships,
eliminating the need for a single component at the top of the hierarchy. Finally, th
approach avoids the necessity of maintaining a global namespace. Instead, all na
are relative to the context in which they are used.

Federation enables previously distinct systems to be unified without requiring glo
changes to their naming structures and system management hierarchies. The
administration functions must ensure the systems are configured appropriately,
e.g. avoiding circular references in those graphs which must be kept acyclic.

 C.1.1 Federation in Object Services

In addition to the use of federation in configuring generic factories, federation is a
applicable to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirab
Consequently, there will be multiple traders, each representing a different portion
the offer space. Offers held by one trader can be made available to the clients of
another trader through federation.

The naming service specification also demonstrates attributes of federation. Nam
contexts can be bound to other naming contexts and requests for name resolutio
be passed across the links. However, it is entirely the concern of the naming con
how it resolves the name within its domain, i.e. it is autonomous.

 C.1.2 Federation Issues

There are a number of issues which need to be addressed for federation to be us
cohesive fashion across all object services.

Visibility of the Federation Graph

The naming service makes the configuration of naming contexts into a graph ver
visible to the clients. This is essential, because the naming service must provide c
with a structured namespace.

On the other hand, it is not clear that a client should ever be able to see the inte
structure of a life cycle creation service built with generic and implementation spec
factories.

The trading service falls in between the two extremes. It may be useful for a clien
be able to navigate the structure of a trading service graph in order to have more
control over the visibility of offers. However, this may make clients too dependent
upon the organization of the trading service and limit the flexibility of the system
administrator in reorganizing the trading service to provide the most effective serv
6-52 CORBAservices November 1996

6

 that
e

tial
uish
.
ting,

ces,
e the

 an
ich,

er-to-
er-to-
s to
th

h to
ht be
rvice,
te up
ld

 in
any
Service Interface vs. Administration Interface

In general, it is desirable to federate using the service interface for the links and
reserve the administration interface for the administrators. This approach ensures
autonomy is retained. However, this precludes the use of compound names in th
administration functions because the administration functions cannot traverse the
graph; only simple names can be used in administration only functions.

However, this is inappropriate for services where graph manipulation is an essen
part of the service. For example, the naming service specification does not disting
between administration functions for manipulating the graph and service functions
This is clearly correct; the clients need to be able to manipulate the graph by crea
binding and destroying contexts.

Multiple Service Interfaces

A node in a federation graph may be a conspiracy and offer multiple service interfa
perhaps one for each point it is bound into the graph. However, for services wher
administration is kept distinct from the service, it is likely that the conspiracy will
support only one administration interface.

In these situations, it becomes necessary for an administrator to be able to match
service interfaces to conspiracies, i.e. to match one or more service interfaces to
administrative interface. The example in Section C.3 provides a solution to this wh
in theory, will scale, but there may be better ways of doing this.

Cycles and Peer-to-Peer Relationships

The introduction of cycles into a federation graph is a contentious issue. Since pe
peer relationships are a degenerate form of cycle, any service which supports pe
peer relationships must be capable of handling cycles. The major impact of this i
provide loop detection on operations which would otherwise go out of control. Bo
trading and naming services are examples of this kind of service.

However, some services may not be able to handle cycles effectively and will wis
proscibe them. This probably covers peer-to-peer relationships, although that mig
an acceptable special case. An example of this might be the life cycle creation se
where information about the current usage of the available resources must percola
the graph in order to make informed decisions, but the introduction of cycles wou
make this information unclear or even meaningless.

 C.2 Policies

It is frequently necessary to configure the way in which operations are performed
order to tune the performance, e.g how long a search operation may take, how m
matches can be returned, or how much memory to use for a cache.
Administration Summary of Life Cycle Service November 1996 6-53

6

ains
on the
d
ts
n be

hard

hoice

ly
y is
s

ences.

licy
ns

ugh

 be
The same problems exist in distributed systems except that such configuration
parameters must be explicitly passed around. Where different administrative dom
are connected, such configuration parameters cannot be enforced by one domain
other. Similarly, users may want to control the configuration but must be prevente
from hogging resources, e.g memory, disk space, etc. Some configuration elemen
must be enforced, e.g disk quotas, some elements may specify defaults which ca
changed and some elements may be requests which may or may not clash with
limits e.g max memory per process.

Policies are used as a generic solution to this problem – wherever some kind of c
needs to be made, policies may be used to guide the decision making process.

Table 6-9 provides some examples of policies. which a federated service might
support.

When invoking operations, clients can specify preferences for particular policies.
Providing the service has no value set for that policy, the preference will be simp
added to the policy list for the duration of the request. However, if a service polic
already specified then the preference will either be ignored or, for policies such a
“maximum_distance”, the more constraining value will be adopted.

As a request traverses a graph, each node will pass its current policy set as prefer
In this way, the autonomy of individual administrative domains is preserved.

When an object doesn’t implement all choices of a policy, it should not allow its po
to be modified to an unsupported value. This means that implementation limitatio
are handled as Administrative hard limits which provides the correct semantics.

Where no policy is specified by either administrator or client, the implementation
determines its own behavior. However, this decision would not be propagated thro
the graph (as a preference), leaving it to each node in the graph to make its own
decision.

Table 6-9 Example policies

Policy Name Meaning

search_algorithm determines whether the federation graph should be
traversed in a depth first or breadth first fashion.

cross_ boundaries determines whether administrative boundaries should
crossed.

maximum_distance how far to traverse a graph before failing a request.
6-54 CORBAservices November 1996

6

n
 C.3 An Example LifeCycleService Module

Administrators access the administration functions via the LifeCycleService module,
which defines the LifeCycleServiceAdmin interface. This example is intended to work
with the GenericFactory interface in the specification. As a result, the administratio
functions cannot make use of compound names.

#include “LifeCycle.idl”

module LifeCycleService {

typedef sequence <Lifecycle::NameValuePair> PolicyList;
typedef sequence <Lifecycle::Key> Keys;
typedef sequence <Lifecycle::NameValuePair> PropertyList;
typedef sequence <Naming::NameComponent> NameComponents;

interface LifeCycleServiceAdmin {

attribute PolicyList policies;

void bind_generic_factory(
in Lifecycle::GenericFactory gf,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();

boolean match_service (in Lifecycle::GenericFactory f);

string get_hint();

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (Naming::NotFound, Naming::InvalidName);
};

};

Figure 6-20 The LifeCycleService Module
Administration Summary of Life Cycle Service November 1996 6-55

6

 the

then

de

ble
ort.

ort.

ciated
(s)

ever

ble to
.

 C.3.1 The LifeCycleServiceAdmin Interface

The LifeCycleServiceAdmin interface provides the basic administration operations
required to enable the lifecycle service to be administered by a set of tools or an
administration service. The operations enable configuration of factories supporting
GenericFactory interface into a graph and setting of policies for those factories.

bind_generic_factory

This operation binds a factory supporting the GenericFactory interface into a graph.
The name must be unique within the context of the target of the operation. From
on, that factory can be identified by that name.

In order to make a good decision about which link to choose for a request, the no
needs to be provided with additional information about those factories. This
information may be fairly dynamic, e.g. the current usage of the resources availa
through the link, or more static, e.g. the Keys for which the link can provide supp

The key_set parameter is a list of the keys for which the factory can provide supp
In the case of an implementation specific factory, this list will often only have one
member.

The other_properties parameter can be used to provide other static properties asso
with the factory. For example, an “Architectures” property would indicate the type
of machine which the factory could create objects on.

Changes to the static information as well as more dynamic information can be
monitored through the Events service. Each factory would generate events when
the information changed significantly (e.g. a new GenericFactory interface with new
keys is bound to the factory, or there is a change in the usage of resources availa
the factory) and these can then be passed to those factories which need to know

unbind_generic_factory

This operation unbinds the generic factory identified by the name.

void bind_generic_factory(
in Lifecycle::GenericFactory gf,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);
6-56 CORBAservices November 1996

6

et.

.

resolve_generic_factory

This operation takes the name supplied and returns the reference to the GenericFactory
object.

list_generic_factories

This operation returns a list of the names of all the bound factories.

match_service

This operation returns true if the generic factory interface is supported by the targ

get_hint

This operation returns a hint associated with the target, see Building a Map of a Graph
below.

get_link_properties

This operation returns the key_set and other_properties associated with the name

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();

boolean match_service (in Lifecycle::GenericFactory f);

string get_hint();

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (Naming::NotFound, Naming::InvalidName);
Administration Summary of Life Cycle Service November 1996 6-57

6

nd

ries
ell-

 for
 each
ice.

lved

 be a
e
al
the
Building a Map of a Graph

Administration tools may wish to build a map of a federation graph from scratch a
some of the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the facto
to be administered. These might be obtained from a number of sources, e.g. a w
known trading context.

For each interface, the list_generic_factories operation obtains a list of all the links
each node. Using resolve_generic_factory, a service interface can be obtained for
link. These can then be matched to an administration interface using match_serv

Clearly, this does not scale well if there are many nodes involved because of the
average number of invocations of match_service required. This problem can be so
if one of the other_properties associated with each service interface is a hint and a hint
is available for each administration interface. If the hints are the same, there may
match and match_service is called to check. If the hints could be guaranteed to b
unambiguous, the invocation could be avoided altogether, but this requires a glob
namespace for the hints. The best that can reasonably be achieved is to reduce
chance of a clash to a minimum.

The get_hint and get_link_properties can be used for this purpose.
6-58 CORBAservices November 1996

6

dix

be
s
. It

,
 can

CTE.

. Any
hip
een

r
 an
in
s

tory
me
opy

 Appendix D Support for PCTE Objects5

Note – Appendix D is not part of the Life Cycle Services specification. This appen
defines a set of criteria6 suitable for supporting PCTE objects.

It is intended that objects in a PCTE repository be among those objects that can
managed though this lifecycle interface. It is reasonable to expect that application
written for PCTE will use the PCTE APIs to manage the life-cycle of PCTE objects
is also reasonable to expect that clients not specifically written for relationship-
oriented objects will not be able to manipulate the life-cycles of PCTE objects.
However, between these two, one can envision clients which desire to be flexible
working on objects which may or may not be stored in the PCTE repository. One
also envision object factories, constructed to make use of PCTE which provide
services to clients that are not PCTE applications because they do not have the
appropriate working schemas, etc.

Support for these clients employs a series of conventional interpretations of the
lifecycle operations. This appendix provides one such set of conventions to
demonstrate the feasibility of the use of these interfaces in a context supporting P

Object references appear in constraint expressions in the form of character strings
implementation of PCTE as a CORBA Object Adapter has to establish a relations
between these and the corresponding CORBA types, and be able to convert betw
them.

 D.1 Overview

A PCTE repository can be viewed as a generic factory. Using whatever naming o
trading services are appropriate, a client wishing to use the PCTE factory obtains
object reference to it. To support the simple applications intending to operate with
the context of a single PCTE repository, the PCTE factory supports the operation
defined by both the GenericFactory and FactoryFinder interfaces. The client can then
invoke the PCTE factory’s create_object operation, or pass the factory as the “fac
finder” when invoking the move or copy operations to move or copy within the sa
PCTE repository. These clients include the servers implementing the move and c
operations for various PCTE objects as well.

5. PCTE details used here are from the PCTE Abstract Specification, Standard ECMA-149 available from
the European Computer Manufacturers Association.

6. As defined in section 6.2.4 of the life cycle specification.
Support for PCTE Objects Summary of Life Cycle Service November 1996 6-59

6

teria.
terest

t be
 of

orts

the

ed

ct
cated
ugh
ed by

e by

 to

”
Lifecycle creation, copy, and move operations are influenced by a sequence of cri
Criteria are specified as a sequence of name/value pairs. Certain criteria are of in
to the PCTE factories:

“logical location”

The logical location is used to express the logical connection information that mus
specified when creating or copying a PCTE object. Logical location is a sequence
name/value pairs expressing a connection for the object. The PCTE factory supp
and requires two:

ORIGIN A string representation of the reference to the object to which
newly created object is to be connected.

ORIGINLINK The name of the origin object’s link which is to hold the link
from the origin object to the newly created object.

“filter”

The filter is used to express the fact that an object being created, copied, or mov
should reside on the same volume as some other, nearby, object. A filter is an
expression as described in B.3. For PCTE, the term “NEAR=” followed by an obje
reference to the designated nearby object indicates that the new object is to be lo
at least as near as the same volume to the specified object. “authorization” Altho
omitted from table 1-4 because no proposal on authorization has yet been accept
OMG, this lifecycle criterion is required to create PCTE objects.

 D.2 Object Creation

The LifeCycle::GenericFactory::create_object operation in this specification is born
factory objects. It has two parameters:

1. a key used to identify the desired object to be created and

2. a set of criteria expressed in an NVP-list.

The corresponding PCTE operation is called OBJECT_CREATE. The parameters
OBJECT_CREATE are obtained from the LifeCycle::GenericFactory::create_object
parameters.

The PCTE operation OBJECT_CREATE has six parameters:

1. the type of object to be created This is the “key” from LifeCycle create_object.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string identified as the named “LINKKEY
of the initialization criteria.
6-60 CORBAservices November 1996

6

ue of

all

 to
out

TE
le

with
 has

pied
5. an object near whose location the object is to be created This is the string val
a required filter expression value by the qualifier “NEAR”.

6. an access mask This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

 D.3 Object Deletion

The LifeCycle::LifeCycleObject::remove operation in this specification is borne by
life-cycle objects. It has no parameters.

The corresponding PCTE operation is called OBJECT_DELETE. The parameters
OBJECT_DELETE are obtained from the object to be deleted using information ab
that object defined in PCTE’s schema information about the object.

The PCTE operation OBJECT_DELETE has two parameters:

1. the origin object of a relation anchoring the object to be deleted and

2. the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually deleted and maintain the PC
referential integrity constraints the following steps are performed for each reversib
link emanating from the controlling object:

1. Determine the object, o, that the link refers to.

2. Determine the name, r&prime., of the reverse link back from o.

3. Perform PCTE OBJECT_DELETE(o, r&prime.)

The objective is accomplished when all outgoing, reversible links have been dealt
thus, or before that if one of the OBJECT_DELETE calls fails because the object
already been deleted.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

 D.4 Object Copying

The LifeCycle::LifeCycleObject::copy operation in this specification is borne by all
life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provides resources for the co
object

2. a set of criteria expressed in an NVP-list
Support for PCTE Objects Summary of Life Cycle Service November 1996 6-61

6

eters

f the

”

ue of

hich

.

l

ved

om

ue of
The corresponding PCTE operation is called OBJECT_COPY. Some of the param
to OBJECT_COPY can be obtained directly from the LifeCycle copy parameters.
Other required information is obtained from the constraint expression parameter o
LifeCycle copy.

The PCTE operation OBJECT_COPY has six parameters:

1. the object to be copied This is the bearer object of LifeCycle copy operation.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string identified as the named “LINKKEY
of the initialization criteria.

5. an object near whose location the object is to be created This is the string val
a required filter expression value by the qualifier “NEAR”.

6. an access mask This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

The semantics of the copy operation corresponds to the PCTE OBJECT_COPY
semantics. They are based upon details of the object types involved, including w
attributes, links and destination objects are “duplicable”.

Exceptions raised by PCTE are mapped to suitable CORBA standard exceptions

 D.5 Object Moving

The LifeCycle::LifeCycleObject::move operation in this specification is borne by al
life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provide resources for the mo
object

2. a set of criteria expressed in an NVP-list

The corresponding PCTE operation is called OBJECT_MOVE. The parameters to
OBJECT_MOVE can be obtained directly from the LifeCycle copy parameters or fr
defaults.

The PCTE operation OBJECT_MOVE has three parameters:

1. the object to be copied This is the bearer object of LifeCycle move operation.

2. an object near whose location the object is to be created This is the string val
a required filter expression value by the qualifier “NEAR”.

3. scope - whether to move the object itself or the object and all its components

This will be defaulted to ATOMIC.
6-62 CORBAservices November 1996

Concurrency Control Service 7
 to an
 by

ency

es

side
 for

l
lock
ck

 are

lients
7.1 Service Description

The purpose of the Concurrency Control Service is to mediate concurrent access
object such that the consistency of the object is not compromised when accessed
concurrently executing computations.

The Concurrency Control Service consists of multiple interfaces that support both
transactional and non-transactional modes of operation. The user of the Concurr
Control Service can choose to acquire locks in one of two ways:

• On behalf of a transaction (transactional mode.) The Transaction Service driv
the release of locks as the transaction commits or aborts.

• By acquiring locks on behalf of the current thread (that must be executing out
the scope of a transaction). In this non-transactional mode, the responsibility
dropping locks at the appropriate time lies with the user of the Concurrency
Control Service.

The Concurrency Control Service ensures that transactional and non-transactiona
clients are serialized. Hence a non-transactional client that attempts to acquire a
(in a conflicting mode) on an object that is locked by a transactional client will blo
until the transactional client drops the lock.

7.1.1 Basic Concepts of Concurrency Control

Clients and Resources

The Concurrency Control Service enables multiple clients to coordinate their access to
shared resources. Coordinating access to a resource means that when multiple,
concurrent clients access a single resource, any conflicting actions by the clients
reconciled so that the resource remains in a consistent state.

The Concurrency Control Service does not define what a resource is. It is up to the c
CORBAservices March 1995 7-1

7

n-
rce,
te

c-
pes

s see

s are
 be
ons.

n

citly
 the
l cli-
 sin-
essary)

ks. A
ular
 is

, a

t res-
rce

The

at are

t with
of the Concurrency Control Service to define resources and to properly identify pote
tially conflicting uses of those resources. In a typical use, an object would be a resou
and the object implementation would use the concurrency control service to coordina
concurrent access to the object by multiple clients.

Transactions as Clients

The Concurrency Control Service differentiates between two types of client: a transa
tional client and a non-transactional client. Conflicting access by clients of different ty
is managed by the Concurrency Control Service, thereby ensuring that clients alway
the resource in a consistent state.

The Concurrency Control Service does not define what a transaction is. Transaction
defined by the Transaction Service. The Concurrency Control Service is designed to
used with the Transaction Service to coordinate the activities of concurrent transacti

The Transaction Service supports two modes of operation: implicit and explicit. Whe
operating in the implicit mode, a transaction is implicitly associated with the current
thread of control. When executing in the explicit mode, a transaction is specified expli
by the reference to the coordinator that manages the current transaction. To simplify
model of locking supported by the Concurrency Control Service when a transactiona
ent is operating in the implicit transaction mode, transactional clients are limited to a
gle thread per transaction (nested transactions can be used when parallelism is nec
and that thread can be executing on behalf of at most one transaction at a time.

Locks

The Concurrency Control service coordinates concurrent use of a resource using loc
lock represents the ability of a specific client to access a specific resource in a partic
way. Each lock is associated with a single resource and a single client. Coordination
achieved by preventing multiple clients from simultaneously possessing locks for the
same resource if the activities of those clients might conflict. To achieve coordination
client must obtain an appropriate lock before accessing a shared resource.

Lock Modes

The Concurrency Control Service defines several lock modes, which correspond to differ-
ent categories of access. Having a variety of lock modes allows more flexible conflic
olution. For example, providing different modes for reading and writing allows a resou
to support multiple concurrent clients that are only reading the data of the resource.
Concurrency Control Service also defines intention locks that support locking at multiple
levels of granularity.

Lock Granularity

The Concurrency Control Service does not define the granularity of the resources th
locked. It defines a lock set, which is a collection of locks associated with a single
resource. It is up to clients of the Concurrency Control Service to associate a lock se
7-2 CORBAservices March 1995

7

 and
ts) is
e one

rvice
uld
ds
ith a

tions
sted

her
.

 are
 an
n
ion

ervice
by a
gether
 of
ks

p-
es the

-trans-
g, and
 mode.
each resource. Typically, if an object is a resource, the object would internally create
retain a lock set. However, the mapping between objects and resources (and lock se
up to the object implementation; the mapping could be one to one, but it could also b
to many, many to many, or many to one.

Conflict Resolution

A client obtains a lock on a resource using the Concurrency Control Service. The se
will grant a lock to a client only if no other client holds a lock on the resource that wo
conflict with the intended access to the resource. The decision to grant a lock depen
upon the modes of the locks held or requested. For example, a read lock conflicts w
write lock. If a write lock is held on a resource by one client, a read lock will not be
granted to another client.

Conflict Resolution for Transactions

The decision to grant a lock also depends upon the relationships among the transac
that hold or request a lock. In particular, if the transactions are related by nesting (ne
transactions), a lock may be granted that would otherwise be denied.

Lock Duration

Typically, a transaction will retain all of its locks until the transaction is completed (eit
committed or aborted). This policy supports serializability of transactional operations
Using the two phase commit protocol, locks held by a transaction are automatically
dropped when the transaction completes.

There are also situations where levels of isolation that are weaker than serializability
acceptable, such as when an application does not want other applications to change
object while reading it and does not refer to the object again within the transaction. I
these circumstances, it is acceptable to release locks before the containing transact
completes, hence the duration will be shorter than the containing transaction.

To manage the release of the locks held by a transaction, the Concurrency Control s
defines a lock coordinator. Lock sets that are related (for example, by being created
resource manager for resources of the same type) and that should drop their locks to
when a transaction commits or aborts may share a lock coordinator. It is up to clients
the concurrency control service to associate lock sets together and to release the loc
when a transaction commits or aborts.

7.2 Locking Model

This section covers a number of important issues that relate to the locking model su
ported by the Concurrency Control Service. For a complete discussion of these issu
reader is directed to one of the standard texts on the subject1.

The Lock Modes section applies to clients that operate in both transactional and non
action modes. The Multiple Possession Semantics, Two-Phase Transactional Lockin
Nested Transaction sections are relevant only to clients that operate in transactional
Concurrency Control: v1.0 Locking Model March 1995 7-3

7

ks,

rm
 same
ccur

uests a

y
ewer
e
ore
ck
rvice,
e

ing

 dif-

se con-
d, a
nts
ly

 lock

r(s)
tains
g the
d
7.2.1 Lock Modes

Read, Write, and Upgrade Locks

The Concurrency Control service defines read (R) and write (W) lock modes that support
the conventional multiple readers, one writer policy. Read locks conflict with write loc
and write locks conflict with other write locks.

In addition, the Concurrency Control service defines an upgrade (U) mode. An upgrade
mode lock is a read lock that conflicts with itself. It is useful for avoiding a common fo
of deadlock that occurs when two or more clients attempt to read and then update the
resource. If more than one client holds a read lock on the resource, a deadlock will o
as soon as one of the clients requests a write lock on the resource. If each client req
single upgrade lock followed by a write lock, this deadlock will not occur.

Intention Read and Intention Write Locks

The granularity of the resources locked by an application determines the concurrenc
within the application. Coarse granularity locks incur low overhead (since there are f
locks to manage) but reduce concurrency since conflicts are more likely to occur. Fin
granularity locks improve concurrency but result in a higher locking overhead since m
locks are requested. Selecting a suitable lock granularity is a balance between the lo
overhead and the degree of concurrency required. Using the Concurrency Control se
an application can be developed to use coarse or fine granularity locks by defining th
associated resources appropriately.

In addition, the Concurrency Control service supports variable granularity locking us
two additional lock modes, intention read (IR) and intention write (IW). These additional
lock modes are used to exploit the natural hierarchical relationship between locks of
ferent granularity.

For example, consider the hierarchical relationship inherent in a database: a databa
sists of a collection of files, with each file holding multiple records. To access a recor
coarse grain lock may be set on the database, but at the cost of restricting other clie
from accessing the database. Clearly, this level of locking is unsuitable. However, on
setting a lock on the record is also inappropriate, because another client might set a
on the file holding the record and delete or modify the file.

Using variable granularity locking, a client first obtains intention locks on the ancesto
of the required resource. To read a record in the database, for example, the client ob
an intention read lock (IR) on the database and the file (in this order) before obtainin
read lock (R) on the record. Intention read locks (IR) conflict with write locks (W), an
intention write locks (IW) conflict with read (R) and write (W) locks.

1. See Concurrency Control and Recovery in Database Systems by P.A. Bernstein, V. Hadzilacos, and N.
Goodman, or Transaction Processing: Concepts and Techniques by J.N. Gray and A. Reuter.
7-4 CORBAservices March 1995

7

s

lock on
s its
ts
ts are
t is a

the

pos-
rce
ulti-
num-
s
n the
xist-

 is pro-
ranted
Lock Mode Compatibility

Table 1, “Lock Compatibility,” on page 5 defines the compatibility between the variou

locking modes (the symbol * is used to indicate when locks conflict). When a client
requests a lock on a resource that cannot be granted because another client holds a
the resource in a conflicting mode, the client must wait until the holding client release
lock. The Concurrency Control Service enforces a queueing policy such that all clien
waiting for a new lock are serviced in a first in, first out order, and subsequent reques
blocked by the first request waiting to be granted the lock, unless the requesting clien
transaction that is a member of the same transaction family as an existing holder of
lock.

7.2.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model called multiple
session semantics. In this model, a client can hold multiple locks on the same resou
simultaneously. The locks can be of different modes. In addition, a client can hold m
ple locks of the same mode on the same resource; effectively, a count is kept of the
ber of locks of a given mode that have been granted to the client. When a client hold
locks on a resource in more than one mode, other clients will not be granted a lock o
resource unless the requested lock mode is compatible with all of the modes of the e
ing locks.

In contrast, using the conventional locking model,2 when a client holding a lock on a
resource requests a lock on the same resource in a stronger mode, the existing lock
moted from the weaker mode to the stronger mode (once the stronger lock can be g
without causing a conflict). Since lock modes form only a partial order, there will not

Table 1: Lock Compatibility

Granted
Mode

Requested Mode

 IR R U IW W

Intention
Read (IR)

*

Read (R) * *

Upgrade
(U)

* * *

Intention
Write
(IW)

* * *

Write (W) * * * * *
Concurrency Control: v1.0 Locking Model March 1995 7-5

7

 pro-

the
cond
t
d
of the

ed
ati-
 Con-

ay be

 serial-
ock.
idual

icts
ctions
nre-
ermit-
ated

on can-
cess-

nd

cquire
nci-
ne
always be a stronger mode; in cases where neither mode is stronger, the lock will be
moted to the weakest mode that is at least as strong as either of the two modes.

7.3 Two-Phase Transactional Locking

The Concurrency Control Service provides primitives to support transaction-duration
locking. Transaction duration locking is a special case of strict two-phase locking. In
first phase (the growing phase), a transaction obtains locks that are kept until the se
phase (the shrinking phase), at which point they are released. A transaction must no
release locks during the first phase, and must not obtain new locks during the secon
phase, otherwise concurrent computations may be able to view intermediate results
transaction.

Two-phase locking is sufficient to guarantee serializability, hence this technique is us
by transactions. During the normal execution of a transaction, no locks will be autom
cally dropped before the end of the transaction. When the transaction completes, the
currency Control Service must be informed so that the locks the transaction holds m
released. While releasing locks, no new locks may be obtained by the transaction.

When a transaction holds a lock that is no longer needed to ensure the transaction’s
izability, or if a weaker level of isolation is acceptable, it is permissible to release the l
The Concurrency Control Service therefore provides an operation that releases indiv
locks. This operation should be used with caution to ensure that the isolation level is
appropriate for the application.

7.4 Nested Transactions

Lock conflicts within a transaction family are treated somewhat differently than confl
between unrelated transactions. The underlying principle is the same for both: transa
must not be able to observe the effects of other transactions that might later abort. U
lated transactions can abort independently; therefore, one transaction must not be p
ted to acquire a lock that conflicts with a lock on the same resource held by an unrel
transaction.

Nesting imposes abort dependencies among related transactions. A parent transacti
not abort without causing all of its children to abort. A child transaction that ends suc
fully cannot abort without causing its parent to abort. A transaction that cannot abort
without causing another related transaction to abort (according to these guidelines a
logical deductions) is said to be committed relative to that other transaction.

These dependencies make it possible to relax the rule that two transactions cannot a
locks of conflicting modes on the same resource, without breaking the underlying pri
ple. No partial effects can be observed and committed if all transactions that have do

2. See Notes On Data Base Operating Systems in Operating Systems: An Advanced Course (ed. Bayer,
Graham, and Seegmuller) by J.N. Gray for further information.
7-6 CORBAservices March 1995

7

 sim-
ted
ts.

h
nflict-
ck, it is
 to
cks on

p that
t did
cquire
r to

ns-
eady
f the
to its
ous
ly.
t it

es of

port.

orted
t

ional

lient

perat-
work cannot abort without the observer being aborted. This property translates into a
ple rule for nested locking: if all transactions holding locks on a resource are commit
with respect to a transaction trying to acquire a lock on the resource, no conflict exis

The multiple possession model (see previous section) facilitates the use of locks wit
nested transactions. In this model, multiple related transactions may hold locks of co
ing modes on a resource at the same time. When a nested transaction requests a lo
granted if all of the transactions holding locks on the resource are committed relative
the requestor. Both the requestor and previous holders are then considered to hold lo
the resource.

A child transaction can acquire a lock on a resource locked by its parent and then dro
lock without causing its parent to lose its lock. A transaction cannot drop a lock that i
not acquire itself. The lock possession semantics also require that each transaction a
locks on its own behalf. It is improper to take locks on behalf of another transaction o
depend on locks held by other transactions.

Other approaches to nested transactions3 treat a resource as being locked by a single tra
action at a time. When a nested transaction requests a lock on a resource that is alr
locked by an ancestor transaction, the nested transaction becomes the new owner o
lock. When a nested transaction commits, ownership of all of its locks is transferred
parent. When a nested transaction aborts, ownership of its locks reverts to the previ
owners. The Concurrency Control service performs these lock transfers automatical
The multiple possession semantics model is functionally equivalent to this model, bu
supports simpler interfaces.

7.5 CosConcurrencyControl Module

The Concurrency Control Service is defined by the CosConcurrencyControl module,
which provides interfaces that support both transactional and non-transactional mod
operation. This section defines the interfaces and describes the operations they sup

• The interfaces provide two modes of operation that correspond to those supp
by the Transaction Service; in both modes, locks are identified by the lock se
they are associated with and the mode of the lock.

• A client of the Concurrency Control Service may operate in an implicit mode
such that locks are acquired on behalf of the current transaction (for transact
clients) or current thread (for non-transactional clients).

• For transactional clients, a second alternative is possible that involves the c
identifying the transaction by means of a reference to the transaction’s
coordinator object (the explicit mode of operation).

Locks are acquired on lock sets. Two sets of operations are provided by the LockSetFac-
tory interface to create lock sets, one creates a lock set that can be used by clients o

3. See Nested Transactions: An Approach To Reliable Distributed Computing by J.E.B. Moss for further
information.
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-7

7

face,
trans-
ing in the implicit mode (the LockSet interface), the other creates a lock set for explicit
mode transactional clients (the TransactionalLockSet interface). In addition, the LockCo-
ordinator interface is provided to allow a client to release all locks held by a specific
transaction.

The following sections define the types and exceptions common to both types of inter
the interfaces themselves, and describes the responsibilities of a user for managing
action-duration locks.

OMG IDL for the CosConcurrencyControl module shown on the following page.

 #include <CosTransactions.idl>
module CosConcurrencyControl {

 enum lock_mode {
 read,
 write,
 upgrade,
 intention_read,
 intention_write
 };

 exception LockNotHeld{};

 interface LockCoordinator
 {
 void drop_locks();
 };

 interface LockSet
 {
 void lock(in lock_mode mode);
 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface TransactionalLockSet
 {
 void lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 boolean try_lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 void unlock(in CosTransactions::Coordinator current,
 in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in CosTransactions::Coordinator current,
 in lock_mode held_mode,
7-8 CORBAservices March 1995

7

.

de of

a
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface LockSetFactory
 {
 LockSet create();
 LockSet create_related(in LockSet which);
 TransactionalLockSet create_transactional();
 TransactionalLockSet create_transactional_related(in
 TransactionalLockSet which);
 };
};

7.5.1 Types and Exceptions

The types and exceptions described in this section apply to both the Lockset and
TransactionalLockset interfaces.

lock_mode

The lock_mode type represents the types of lock that can be acquired on a resource

LockNotHeld

The LockNotHeld exception is raised when an operation to unlock or change the mo
a lock is called and the specified lock is not held.

7.5.2 LockCoordinator Interface

The LockCoordinator interface enables a transaction service to drop all locks held by
transaction. The LockSet and TransactionalLockSet interfaces create instances of the

TABLE 2.

module CosConcurrencyControl {

 enum lock_mode {

 read,

 write,

 upgrade,

 intention_read,

 intention_write

 };

 exception LockNotHeld{};
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-9

7

ctional
 must
or a
are

 sets

r
e the

en it is

rmine
LockCoordinator for each transaction. The LockCoordinator interface provides a single
operation:

drop_locks

Releases all locks held by the transaction. This call is designed to be used by transa
clients when a transaction commits or aborts. For nested transactions, this operation
be called when the nested transaction aborts, but the call need only be made once f
transaction family when that family commits (recall that nested transaction commits
handled implicitly by the Concurrency Control service).

7.5.3 LockSet Interface

For clients operating in the implicit mode, locks are acquired and released on lock
which are defined by means of the LockSet interface. The LockSet interface only
provides operations to acquire and release locks on behalf of the calling thread o
transaction. The interface does not provide support for transactional clients that us
explicit Transaction Service interfaces.

When calls to acquire or release locks are made outside the scope of a transaction th
assumed that the client is operating in the non-transactional mode (the concurrency con-
trol implementation must use the appropriate Transaction Service operation to dete

TABLE 3.

interface LockCoordinator {

 void drop_locks();

};

TABLE 4.

interface LockSet {

 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)

. raises(LockNotHeld);

 void change_mode(in lock_mode held_mode,

 in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in

 CosTransactions::Coordinator which);

};
7-10 CORBAservices March 1995

7

e
k the
c-

com-
that

 can
n the

e lock
n the
be
of
sed.
n the

n a
whether the current thread is executing on behalf of a transaction).

lock

Acquires a lock on the specified lock set in the specified mode. If a lock is held on th
same lock set in an incompatible mode by another client then the operation will bloc
calling thread of control until the lock is acquired. If a call that is on behalf of a transa
tional client is blocked and the transaction is aborted then the call will return with the
Transactions::TransactionRolledBack exception.

try_lock

Attempts to acquire a lock on the specified lock set. If the lock is already held in an in
patible mode by another client then the operation returns a FALSE result to indicate
the lock could not be acquired.

unlock

Drops a single lock on the specified lock set in the specified mode (recall that a lock
be held multiple times in the same mode). Calls to drop a lock that is not held result i
LockNotHeld exception being raised

change_mode

Changes the mode of a single lock (recall that multiple locks may be held on the sam
set). If the new mode conflicts with an existing mode held by an unrelated client, the
change_mode operation blocks the calling thread of control until the new mode can
granted. Like the lock call, if the client is a transaction and it aborts while the thread
control if blocked then the Transactions::TransactionRolledBack exception will be rai
Similarly, when a call is made to change the mode of a lock, but the lock is not held i
specified mode, the LockNotHeld exception will be raised.

get_coordinator

Returns the lock coordinator associated with the specified transaction.

7.5.4 TransactionalLockSet Interface

The TransactionalLockSet interface provides operations to acquire and release locks o
lock set on behalf of a specific transaction. The operations that make up the Transaction-
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-11

7

ugh
alLockSet interface are:

The operations provided by the TransactionalLockSet interface operate in an identical
manner to the equivalent operations provided by the LockSet interface. The interfaces dif-
fer in that for the TransactionalLockSet interface the identity of the transaction is passed
explicitly as a reference to the coordinator for the transaction instead of implicitly thro
an association with the calling thread.

TABLE 5.

interface TransactionalLockSet {

 void lock(in CosTransactions::Coordinator which,

 in lock_mode mode);

 boolean try_lock(in CosTransactions::Coordinator which,

 in lock_mode mode);

 void unlock(in CosTransactions::Coordinator which,

 in lock_mode mode)

 raises(LockNotHeld);

 void change_mode(in CosTransactions::Coordinator which,

 in lock_mode held_mode,

 in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in

 CosTransactions::Coordinator which);

};
7-12 CORBAservices March 1995

7

their

onal

k sets
7.5.5 LockSetFactory Interface

Lock sets are created using the LockSetFactory interface.

This interface provides two sets of operations that return new LockSet and Transactional-
LockSet instances.

create

Creates a new lock set and lock coordinator.

create_related

Creates a new lock set that is related to an existing lock set. Related lock sets drop
locks together.

create_transactional

Creates a new transactional lock set and lock coordinator for explicit mode transacti
clients.

create_transactional_related

Creates a new transactional lock set that is related to an existing lock set. Related loc
drop their locks together.

TABLE 6.

interface LockSetFactory {

 LockSet create();

 LockSet create_related(in LockSet which);

 TransactionalLockSet create_transactional();

 TransactionalLockSet

 create_transactional_related(in

 TransactionalLockSet which);

};
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-13

7

7-14 CORBAservices March 1995

Externalization Service Specification 8

to
 with
Contents

This chapter contains the following topics.

Note – Dec. 1998: OMG made some editorial changes. These changes involved
merging the old CosCompoundExternalization section and IDL into the CosStream
section and IDL. Those were the only changes, along with a few text references
CosCompoundExternalization that became CosStream, which have been marked
changebars.

Topic Page

“Service Description” 8-2

“Service Structure” 8-2

“Object and Interface Hierarchies” 8-8

“Interface Summary” 8-11

“CosExternalization Module” 8-13

“CosStream Module” 8-16

“Specific Externalization Relationships” 8-26

“The CosExternalizationContainment Module” 8-27

“The CosExternalizationReference Module” 8-28

“Standard Stream Data Format” 8-29

“References” 8-31
 CORBAservices December 1998 8-1

8

s and
a

d
s

 by
data

y

there
re”

re.”

 the

d

to
ed

am
ir

8.1 Service Description

The Externalization Service specification defines protocols and conventions for
externalizing and internalizing objects. To externalize an object is to record the
object’s state in a stream of data. Objects which support the appropriate interface
whose implementations adhere to the proper conventions can be externalized to
stream (in memory, on a disk file, across the network, etc.) and subsequently be
internalized into a new object in the same or a different process. The externalize
form of the object can exist for arbitrary amounts of time, be transported by mean
outside of the ORB, and can be internalized in a different, disconnected ORB.

Many different externalized data formats and storage mediums can be supported
service implementations. But, for portability, clients can request that externalized
be stored in a file using a standardized format that is defined as part of this
Externalization Service specification.

Externalizing and internalizing an object is similar to copying the object. The cop
operation creates a new object that is initialized from an existing object. The new
object is then available to provide service. Furthermore, with the copy operation,
is an assumption that it is possible to communicate via the ORB between the “he
and “there”. Externalization, on the other hand, does not create an object that is
initialized from an existing object. Externalization “stops along the way”. New
objects are not created until the stream is internalized. Furthermore, there is no
assumption that is possible to communicate via the ORB between “here” and “the

The Externalization Service is related to the Relationship Service. It also parallels
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for graphs of related objects that support compoun
operations. (For more information, refer to the Service Dependencies section in
Chapter 2.)

The Externalization Service defines protocols in these areas:

• Client’s view of externalization, composed of the interfaces used by a client
externalize and internalize objects. The client’s view of externalization is defin
by the Stream interface.

• Object’s view of externalization, composed of the interfaces used by an
externalizable object to record and retrieve their object state to and from the
stream’s external form. The object’s view is defined by the StreamIO interface.

• Stream’s view of externalization, composed of the interfaces used by the stre
to direct an externalizable object or graph of objects to record or retrieve the
state from the stream’s external form. The stream’s view of externalization is
given by the Streamable , Node , Role and Relationship interfaces.

8.2 Service Structure

This section explains the model of externalization for client and stream. It also
describes the model of externalization and internalization for objects.
8-2 CORBAservices December 1998

8

s

a

ata

n

n

of

ame
st
e

unts
a

isms,
e

 may
the
8.2.1 Client’s Model of Object Externalization

A client has a simple view of the externalization service. A client that wishes to
externalize an object first must have an object reference for a Stream object. A
Stream object owns and provides access to the externalized form of one or more
objects. Streams may be provided that hold externalized data on various medium
such as in memory or on disk. All Externalization Service implementors provide
Stream object that saves the externalized data in a file. A client may create a Stream
object using the create() operation on a StreamFactory object, or may specify that a
file be used to store the externalized data using the create() operation of a
FileStreamFactory object.

The client can create a Stream object that supports a standardized externalization d
format. Externalization data that follows this format will be internalizable on all
CORBA-compliant ORBs that can locate compatible object implementations. By
including support for a specific external representation format in the Externalizatio
Service, portability of object state is provided across different CORBA-compliant
implementations and hardware architectures.

Once a client has a Stream object, the client may externalize an object by issuing a
externalize() request on the Stream object, providing the object reference to the
object that should be externalized. In general, the client is unaware of whether
externalizing an object causes any other related objects to be externalized. An
externalizable object may represent a simple object, a set of objects, or a graph
related objects. The client uses the same interface in all cases.

If a client wishes to externalize multiple objects (or related sets of objects) to the s
stream, the client issues a begin_context() request before the first externalize reque
and then issues an end_context() following the last externalize request for that sam
stream.

The externalized form of the object can exist in the stream object for arbitrary amo
of time, be transported by means outside of the ORB, and can be internalized in
different, disconnected ORB.

A client that wishes to internalize an object issues an internalize() request on the
appropriate Stream object, providing a factory finder. The Stream object interacts
with the specified factory finder, or uses other implementation dependent mechan
to create an implementation of the object that matches the externalized data. Th
client is returned an object reference to the newly internalized object.

8.2.2 Stream’s Model of Object Externalization

A Stream object provides the Stream interface for use by clients. The Stream object
is also responsible for providing an object that supports a StreamIO interface for
actually reading and writing data to the externalized data form. The stream object
support the StreamIO interfaces itself, or may create another object that supports
StreamIO interfaces. This is considered an implementation detail.
Externalization Service: v1.0 Service Structure December 1998 8-3

8

 the

n

e

 data.
n

m
n

he

p
cts

quent

r
Note – When the behavior described in this section may be implemented in either
Stream or StreamIO objects (or other internal objects they may use), the term
“stream service” is used.

When a stream object receives an externalize request from a client, it also gets a
object reference to the object to be externalized. The stream cooperates with the
externalizable object to accomplish externalization and internalization, using the
object’s Streamable interfaces.

The stream service uses the readonly Key attribute of the externalizable object to
decide what information to put into the external data in order to be able to find th
correct factory and implementation with which to subsequently internalize an
equivalent object. The stream service then issues an externalize_to_stream() request
to the externalizable object, providing an object reference to a StreamIO object that is
to be used by the externalizable object to record its state in the stream service’s
external data.

When a Stream object receives an internalize request from a client, it also gets a
factory finder. The stream service holds the external form of the object, or set of
objects, to be internalized. The stream service reads the key from its externalized
It may then pass the key to the factory finder to locate a factory that can create a
object with an implementation that matches the recorded object state. The strea
service implementation may use other implementation specific ways of creating a
appropriate object. The stream service then issues an internalize_from_stream()
request to the newly created object, providing an object reference to a StreamIO
object that is used by the externalizable object to initialize its state according to t
stream service’s externalized data.

When a Stream object receives a begin_context() request, the stream service sets u
a context during which the stream service ensures that externalizing multiple obje
that may have overlapping object references and/or object relationships produces
single instances of those objects on internalization. An end_context() request causes
the stream service to remove the previous internal context, and externalize subse
objects without regard to whether they have already been externalized in this Stream ’s
data.

8.2.3 Object’s Model of Externalization

Every object that wishes to be externalizable must support the Streamable interface,
and follow conventions on use of the StreamIO interfaces to record and retrieve thei
object state from a Stream ’s data.

When a Streamable object receives an externalize_to_stream request from the
stream service, it must write all of its state necessary for internalization to the
StreamIO object provided by the stream service. StreamIO provides
write_<type>() operations for writing each of the CORBA basic data types, plus
string types. If an object has object references that are part of its state, the StreamIO
write_object() operation may be used to cause the object specified by an object
reference to also be externalized to the stream’s data.
8-4 CORBAservices December 1998

8

d

e the

e

e

)

Figure 8-1 Externalization control flow when streamable object is not in a graph of relate
objects

A streamable object may be a node in a graph of related objects, that is, it may us
Relationship Service to connect to other objects and support the CosStream::Node
interface. Such a streamable object simply delegates the
Streamable::externalize_to_stream() request back to the stream service, using th
StreamIO::write_graph() operation.

The stream service then coordinates the externalization of the graph and calls th
object back using the object’s CosStream::Node interface.

Client calls Stream::externalize(Streamable object)

Stream writes a key for this object to the external representation.

Stream calls the Streamable::write_to_stream(StreamIO this_sio) so that the ob-
ject can write out whatever internal state it needs to save.

If Streamable object is a node in a graph of related objects, flow is given
in Figure 8-2

Streamable object writes out its non-object data using the primitive
StreamIO::write_...(data) functions

Streamable object writes out other objects using the
StreamIO::write_object(Streamable object) function

Externalization Control Flow (streamable object is not a node
Externalization Service: v1.0 Service Structure December 1998 8-5

8

lated

ce to

Figure 8-2 Externalization control flow when streamable object is a node in a graph of re
objects

8.2.4 Object’s Model of Internalization

When a streamable object receives an internalize_from_stream() request from a
stream, it must read data from the StreamIO object provided by the stream service,
and initialize its state to match the externalized state. The externalizable object
requests data from the stream service using the StreamIO read_<type>() operations
for basic data, and string types. If the object being internalized includes a referen
another object as part of its state, the StreamIO read_object() operation may be used
to have that object also internalized from the stream’s data.

Streamable object, recognizing that it is a node in a graph of related ob-
jects, delegates the externalization of the graph to the stream service using
StreamIO::write_graph (this_node) operation.

Externalization Control Flow (streamable is a node)

Node writes out its non-object data using the primitive
StreamIO::write_...(data) functions

Node writes out other objects using the
StreamIO::write_object(Streamable object) function

StreamIO::write_graph ,coordinates the externalization of the
graph using Node::externalize_node(this_sio) operation.

StreamIO object externalizes the involved relationships using
Relationship::externalize() . StreamIO writes traversal scoped ids for
the externalized roles and relationships to the Stream ’s data.

Node writes out its role objects using the
Role::externalize_role(this_sio) operation.

StreamIO::write_graph uses propagation value to deter-
mine next nodes and writes a key for next node
8-6 CORBAservices December 1998

8

e the

g

er

al

e)

Figure 8-3 Internalization control flow when object is not in a graph of related objects

A streamable object may be a node in a graph of related objects, that is, it may us
Relationship Service to connect to other objects and support the CosStream::Node
interface. Such a streamable object simply delegates the
Streamable::internalize_from_stream() request back to the stream service, usin
the StreamIO::write_graph() operation.

Client calls Streamable = Stream::internalize(FactoryFinder f)

Stream reads key from the external representation, and uses this and the factory find
to create an object of the correct interface and implementation. The stream may use the
StreamableFactory interface.

Stream calls the Streamable::read_from_stream(StreamIO this_sio) so that
the object can read the data in its external representation and reset or calculate its intern
state

If Streamable object is a node in a graph of related objects, flow is given in
Figure 8-4

Streamable object reads in its non-object data using the primitive
StreamIO::read_...(data) functions

Streamable object internalizes other objects using the
Streamable = StreamIO::read_object() function

Internalization Control Flow (streamable object is not a nod
Externalization Service: v1.0 Service Structure December 1998 8-7

8

e

at

The stream service then coordinates the externalization of the graph and calls th
object back using the object’s CosStream::Node interface.

Figure 8-4 Internalization control flow when object is in a graph of related objects

8.3 Object and Interface Hierarchies

This section identifies the objects required for the Externalization Service and
important inheritance and use relationships that exist between their interfaces.

The Object Externalization Service can only externalize and internalize objects th
inherit the Streamable interface. Streamable does not inherit any other interfaces.
However, it must have an associated StreamableFactory that the Externalization
Service implementation can find and use when internalizing the object.

Streamable object, recognizing that it is a node in a graph of related ob-
jects, delegates the internalization of the graph to the stream service using
StreamIO::read_graph(this_node) operation.

Internalization Control Flow (streamable is a node)

Node reads its non-object data using the primitive
StreamIO::read_...(data) functions

Node read other objects using the
StreamIO::read_object(Streamable object) function

StreamIO::read_graph ,coordinates the internalization of the
graph using Node::internalize_node(this_sio) operation.

StreamIO object internalizes the traversal scoped identifiers for the exter-
nalized roles and relationships and internalizes the relationships using
Relationship::internalize() .

Node reads its role objects using the
Role::internalize_role(this_sio) operation.

StreamIO::read_graph reads the key for next node and
uses the StreamableFactory interface to create the next node.
8-8 CORBAservices December 1998

8

n

igure

its
y

he

tation
e
Stream inherits the LifeCycleObject interface because clients of the Externalizatio
Service need to remove these objects. The StreamFactory or File StreamFactory
interfaces may be used to create stream objects.

In addition to the inheritance relationships described above, the class diagram in F
1 also shows the usage relationships between the service objects. Stream
externalize() and internalize() operations invoke the Streamable
externalize_to_stream() and internalize_from_stream() operations to write and
read the appropriate object internal state. A StreamIO object is passed as an
argument to these operations. The externalized object determines how much of
state must be put in the external representation, and can minimize saved state b
recreating some state upon internalization. The Streamable
externalize_to_stream() and internalize_from_stream() use StreamIO
operations to actually put various data types and contained object references in t
external representation. This allows StreamIO to put appropriate headers in the
external representation so that the object can be recreated correctly during
internalization. The Stream is responsible for providing an object that supports the
StreamIO interface. The Stream object may support the StreamIO interface itself,
or create another object that supports the StreamIO interface. The Stream and
StreamIO implementations decide on the storage medium and data type represen
conversion for different hardware, without requiring different implementation of th
objects being externalized.
Externalization Service: v1.0 Object and Interface Hierarchies December 1998 8-9

8

Figure 8-5 Object Externalization Service Booch Class (=Interface) Diagram

write_object()
read_object()
write_graph()
read_graph()
write_...
read_...

external_form_id
externalize_to_stream()
internalize_from_stream()

StreamableFactory

LifeCycleObject

Streamable

IdentifiableObject

Stream

StreamIO

StreamFactory

B inherits from A

A B A has B

A B A uses B

A B

LEGEND

Node Relationship

Role
8-10 CORBAservices December 1998

8

vel
be the

8.4 Interface Summary

The Externalization Service defines interfaces (using OMG IDL) to support the
functionality described in the previous sections. The following tables give high le
descriptions of the Externalization Service interfaces. Subsequent sections descri
interfaces in more detail.

Table 8-1 Client Functional Interfaces support client’s model of externalization

Interface Purpose Primar y Client

Stream Holds external form of objects. Clients that need to externalize
and internalize objects.

StreamFactory Creates and initializes stream
objects.

Clients that need to create
stream objects.

FileStreamFactory Creates and initializes stream
objects that stores data in a file.

Clients that need to create
stream objects, and want the
externalized data in a file.

Table 8-2 Service Construction Interfaces support service implementation’s model of
externalization

Interface Purpose Primar y Client

Streamable Provides its state to a stream
for externalization, and gets
its state from the stream on
internalization.

The stream service
implementation of
externalization and
internalization.

StreamableFactory Creates and initializes
streamable objects

The stream service
internalization implementation.

StreamIO Part of stream
implemenation that writes
and reads object state to
appropriately converted
external form.

The externalizable objects that
need to record and retrieve their
state from a stream.
Externalization Service: v1.0 Interface Summary December 1998 8-11

8

may

f
8.4.1 Externalization Service Architecture: Audience/Bearer Mapping

Stream and StreamFactory are solely functional interfaces. Their audience is the
client of the Externalization Service.

Streamable , StreamableFactory , and StreamIO are solely construction interfaces.
The audience for Streamable is both the Stream and StreamIO objects. To be
“externalizable,” objects must inherit the Streamable interface and provide
implementations of its operations. The audience for StreamIO interface is the
externalizable Streamable and StreamableNode objects. The StreamIO objects
are part of the Externalization Service implementation.

The Stream , StreamFactory , and StreamIO objects are specific objects because
their purpose is to provide a part of the Externalization Service. However, there
be many Stream and StreamIO instances in a system, since each represents a
particular external representation of an object or group of objects.

Streamable and StreamableFactory objects are generic objects because their
primary purpose is unrelated to the Externalization Service. Any definer or
implementor of an object may choose to inherit the Streamable interface in order to
support externalization/internalization of that object.

In summary:
- Stream and StreamFacto ry are specific functional interfaces
- Streamabl e and StreamableFactory are generic construction interfaces
- StreamIO is a specific construction interface

Table 8-3 Compound Externalization Interfaces support service implementation’s model o
graph externalization

Interface Purpose Primar y Client

Node Defines externalization and
internalization operations on
nodes in graphs of related
objects.

The stream service
implementation of
externalization and
internalization.

Relationship Defines externalization and
internalization operations on
relationships.

The stream service
implementation of
externlization and
internalization.

Role Defines externalization and
internalization operations on
roles.

The stream service
implementation of
externalization and
internalization.
8-12 CORBAservices December 1998

8

:

e

lize
8.5 CosExternalization Module

The client-functional interfaces defined by the the CosExternalization module are

• StreamFactory interface, which creates a stream.

• FileStreamFactory interface, which has an operation that lets clients cause
externalized data be stored in a file or internalize objects from a file they hav
been given.

• Stream interface, which can externalize one object or a group of objects; fina
the externalization, and internalize an object.

/File: CosExternalization.idl
//Part of the Externalization Service

#ifndef _COS_EXTERNALIZATION_IDL_
#define _COS_EXTERNALIZATION_IDL_

#include <CosLifeCycle.idl>
#include <CosStream.idl>

#pragma prefix “omg.org”

module CosExternalization {
exception InvalidFileNameError{};
exception ContextAlreadyRegistered{};
interface Stream: CosLifeCycle::LifeCycleObject{

void externalize(
in CosStream::Streamable theObject);

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

CosStream::StreamDataFormatError);
void begin_context()

raises(ContextAlreadyRegistered);
void end_context();
void flush();

};
interface StreamFactory {

Stream create();
};
interface FileStreamFactory {

Stream create(
in string theFileName)
raises(InvalidFileNameError);

};
};
#endif /* ifndef _COS_EXTERNALIZATION_IDL_ */
Externalization Service: v1.0 CosExternalization Module December 1998 8-13

8

The

to

ring
rmal
ation

ct

ect
ed to

ed
8.5.1 StreamFactory Interface

8.5.1.1 Creating a Stream Objec

Stream create();

Clients of the Object Externalization Service must create a Stream object before they
can externalize or internalize any objects. Two factory interfaces are supported.
first, the StreamFactory interface has a create() operation that creates a stream
without specifying any special characteristics of the implementation.

8.5.2 FileStreamFactory Interface

8.5.2.1 Creating a Stream Objec Associated with a File

Stream create(
in string theFileName)
raises(InvalidFileNameError);

For clients that want to cause the externalized data stored in a file, or that need
internalize objects from a file they have been given, the FileStreamFactory interface
has a create() operation that takes a string input parameter. The client sets this st
to the filename of the file that will be used by the stream service to hold the exte
representation of the objects externalized, or that contains the external represent
of objects that the client wishes to internalize. Stream::externalize() requests will
append to any existing data in the file associated with a stream.

8.5.3 Stream Interface

8.5.3.1 Externalizing an Object

void externalize(
in CosStream::Streamable theObject);

Clients of the Object Externalization Service invoke externalize() on a Stream
object passing the object reference of a CosStream::Streamable object, theObject ,
to be externalized. Only objects that are of type CosStream::Streamable can be
externalized. Subsequently, clients invoke the internalize() operation on the Stream
containing the external representation, and Stream internalize() operation creates a
new object with state identical to what was externalized and returns the new obje
reference.

The implementation of externalize() writes implementation specific header
information to the external representation it is maintaining, so that the correct obj
can be recreated at internalization time. This could be the factory key that was us
create the CosStream::Streamable object, or could include the interface type,
implemenation repository, or factory object names. The factory key may be obtain
by from the external_form_id attribute of theObject . The externalize()
8-14 CORBAservices December 1998

8

in

r

re

f
dles
e

anism

s

 final

to the
implementation must then invoke the CosStream::Streamable
externalize_to_stream() operation on theObject to cause the object’s internal state
to be written to the external respresentation. The Stream is responsible for providing
an object that supports the StreamIO interfaces for the externalizable object to use
writing data to the stream service.

8.5.3.2 Externalizing Groups of Objects

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();

If a client wishes to externalize a set of objects with overlapping references and/o
object relationships, the client invokes begin_context() on the Stream . This must
be called before externalizing any of the set of objects, and end_context() must be
called on the Stream after the entire set of objects has been externalized and befo
the Stream is used with another set of objects.

The Stream implementation establishes an association with the specified Stream
object and a logical “context”. The Stream ensures that all objects externalized to
this stream while this association lasts will be externalized in such a way that
internalization will not create any duplicate objects. That is, the implementation o
Stream checks for “context”, and for objects externalized in the same context han
overlapping or circular references and/or relationships between those objects. Th
association lasts until end_context() is called. The Stream raises the
ContextAlreadyRegistered exception if begin_context() is called and a context is
already established, perhaps through some other implementation dependent mech
or perhaps because end_context() has not been called following a previous
begin_context() .

8.5.3.3 Completing Externalization

void flush();

Clients invoke flush() to request that the external representation is committed to it
final storage medium, whatever that may be. The implementation of flush() should
attempt to ensure that the external respresentation is completely up-to-date in its
storage (e.g. memory buffer, file, tape, ...).

8.5.3.4 Internalizing an Object

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

CosStream::StreamDataFormatError);

The implementation of internalize() must create an object with the correct interface
and implementation to match the externalized representation and return a pointer
new CosStream::Streamable object. The internalize() implementation must then
invoke the internalize_from_stream() operation on the new object. The
Externalization Service: v1.0 CosExternalization Module December 1998 8-15

8

te

In

 The
CosStream::StreamDataFormatError exception should be raised if an error is
detected in the data format of the object header. The CosLifeCycle::NoFactory
exception should be raised if the object cannot be created because an appropria
factory cannot be found. If the object cannot be created due to other reasons, an
ObjectCreationError exception should be raised. Additional
CosStream::StreamDataFormat exceptions may be raised by the read_<type>
operations invoked by internalize_from_stream() operation due to errors in the
externalized data format.

8.6 CosStream Module

The service construction interfaces defined by the CosStream module are:

• Streamable interface

• StreamableFactory interface

• StreamIO interface

If a Streamable object participates as a node in a graph of related objects, the
Streamable object can delegate the externalization operation to the stream service.
particular, the Streamable object simply uses the write_graph() operation. The
write_graph() operation expects a streamable object reference as a starting node.
stream service narrows the streamable object reference to CosStream::Node . The
write_graph() then coordinates the orderly externalization of the graph of related
objects. For more details on compound operations, see the Relationship Service
specification and the Compound Life Cycle section in the Life Cycle Service
specification.

The CosStream module defines interfaces for use by the write_graph() operation.:

• Node interface

• Role interface

• Relationship interface

• PropagationCriteriaFactory interface

//File: CosStream.idl
//Part of the Externalization Service
// Modified from version 1.0 to include the previous CosCompoundExternal-
ization module

#ifndef _COS_STREAM_IDL_
#define _COS_STREAM_IDL_

#include <CosLifeCycle.idl>
#include <CosObjectIdentity.idl>
#include <CosGraphs.idl>

#pragma prefix “omg.org”

module CosStream {
exception ObjectCreationError{};
exception StreamDataFormatError{};
8-16 CORBAservices December 1998

8

interface StreamIO;
interface Node;
interface Role;
interface Relationship;

interface Streamable:
 CosObjectIdentity::IdentifiableObject {

readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(

in StreamIOtargetStreamIO);
void internalize_from_stream(

in StreamIOsourceStreamIO,
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

ObjectCreationError,
StreamDataFormatError);

};

interface StreamableFactory {
Streamable create_uninitialized();

};

interface StreamIO {
 void write_string(in string aString);
 void write_char(in char aChar);
 void write_octet(in octet anOctet);
 void write_unsigned_long(

in unsigned long anUnsignedLong);
 void write_unsigned_short(

in unsigned short anUnsignedShort);
 void write_long(in long aLong);
 void write_short(in short aShort);
 void write_float(in float aFloat);
 void write_double(in double aDouble);
 void write_boolean(in boolean aBoolean);
 void write_object(in Streamable aStreamable);

 void write_graph(in Node aNode);
string read_string()

raises(StreamDataFormatError);
char read_char()

raises(StreamDataFormatError);
octet read_octet()

raises(StreamDataFormatError);
unsigned long read_unsigned_long()

raises(StreamDataFormatError);
unsigned short read_unsigned_short()

raises(StreamDataFormatError);
long read_long()

raises(StreamDataFormatError);
Externalization Service: v1.0 CosStream Module December 1998 8-17

8

short read_short()
raises(StreamDataFormatError);

float read_float()
raises(StreamDataFormatError);

double read_double()
raises(StreamDataFormatError);

boolean read_boolean()
raises(StreamDataFormatError);

Streamable read_object(
in CosLifeCycle::FactoryFinder there,
in Streamable aStreamable)
raises(StreamDataFormatError);

 void read_graph(
 in Node starting_node,

in CosLifeCycle::FactoryFinder there)
raises(StreamDataFormatError);

};

 // the following are required for compound externalization

struct RelationshipHandle {
CosRelationships::Relationship theRelationship;
CosObjectIdentity::ObjectIdentifier constantRandomId;

};

interface Node : CosGraphs::Node, CosStream::Streamable{
void externalize_node (in CosStream::StreamIO sio);
void internalize_node (in CosStream::StreamIO sio,

in CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (CosLifeCycle::NoFactory);
};

interface Role : CosGraphs::Role {
void externalize_role (in CosStream::StreamIO sio);
void internalize_role (in CosStream::StreamIO sio);
CosGraphs::PropagationValue externalize_propagation (

in RelationshipHandle rel,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

interface Relationship : CosRelationships::Relationship {
void externalize_relationship (

in CosStream::StreamIO sio);
void internalize_relationship(

in CosStream::StreamIO sio,
in CosGraphs::NamedRoles newRoles);

CosGraphs::PropagationValue externalize_propagation (
in CosRelationships::RoleName fromRoleName,
in CosRelationships::RoleName toRoleName,
8-18 CORBAservices December 1998

8

, the

m

lso

out boolean sameForAll);
};

interface PropagationCriteriaFactory {
 CosGraphs::TraversalCriteria create_for_externalize();
};

};
#endif /* ifndef _COS_STREAM_IDL_ */

Since IDL only supports template instantiations rather than templates themselves
fixed-point decimal template type cannot be used directly for the write_fixed and
read_fixed operations. Instead, the fixed type instances must be passed to and fro
these routines as anys with TypeCode s of tk_fixed .

8.6.1 Standard Stream Data Format

The standard stream format for each new IDL type is shown in the table below. A
shown are the standard formats for types char and string , which have been extended
to state explicitly that data is encoded as defined by ISO 8859-1.

The first two entries in the table describe the current formats for char and string ,
modified only to state explicitly, rather than implicitly, that the encoding used is
defined by ISO 8859-1. These existing formats are unchanged for backward
compatibility purposes.

Tag CORBA Type Data Format
x’F1’ char one byte, encoded as defined by ISO 8859-1

x’FA’ string null-terminated sequence of bytes, encoded as
defined by ISO 8859-1

x’E1’ char an unsigned long code set tag, followed by a one byte
data value, encoded as defined by code set tag

x’E2’ string an unsigned long code set tag, followed by a null-ter-
minated sequence of characters, encoded as defined
by code set tag

x’E3’ fixed<d,s> an unsigned short byte count (d+2)/2), followed by
(d+2)/2 bytes in CDR format.

x’FE’ wchar an unsigned long code set tag, followed by a data
value, encoded as defined by code set tag

x’FF’ wstring an unsigned long code set tag, followed by a null-ter-
minated sequence of wchar, encoded as defined by
code set tag

x’FB’ long long eight bytes, big-endian format

x’FC’ unsigned long long eight bytes, big-endian format

x’FD’ long double sixteen bytes, IEEE 754 format, sign bit in first byte
Externalization Service: v1.0 CosStream Module December 1998 8-19

8

vent
SO
wo
 ISO
an

lized

te
 loss
string
d be
ble

n
ire

tion.
es

ernal
may

nt
ory,
dian

s
t” on

ata

ze.
The next two entries (x’E1’ and x’E2’) define tagged formats for char and string ,
which consist of a code set tag (from the OSF Character and Code Set Registry)
followed by an actual data value. The motivation for these tagged formats is to pre
information loss, which may occur for some native code sets when converted to I
8859-1 (i.e., when such data is externalized in the formats described in the first t
entries). However, if character and string data is externalized in a form other than
8859-1, some ORBs may not be able to internalize it successfully (e.g., because
appropriate converter is not available), thus reducing the portability of the externa
data. So, if maximum portability is desired, character and string data should be
externalized in ISO 8859-1 form.

The remaining entries in the table describe the formats for the new IDL types. No
that the previous discussion about the tradeoff between portability and information
for externalized character and string data also applies to wide character and wide
data. If maximum portability is desired, wide character and wide string data shoul
externalized in Unicode form, while if using this form would result in an unaccepta
loss of information, then a form other than Unicode should be used.

Data values of type wchar and wstring are represented as one or more octets, or a
unsigned integer, depending on the code set used. This is similar to the on-the-w
representation of wchar and wstring data.

8.6.2 The StreamIO Interface

The write_<type>() and read_<type>() operations on StreamIO are used by
Streamable externalize_to_stream() and internalize_from_stream() operations
to cause internal object state to be written to or read from the external representa
The externalize_to_stream() decomposes the internal state of an object in a seri
of primitive data type values that can be written and read with these operations.
StreamIO supports writing and reading all the CORBA basic data types.

The implementation of the write_ ... and read_ ... operations are responsible for any
desired conversion of the data and transfering the data to or from the desired ext
representation. Actual transfer of the representation to the final storage medium
be deferred until the flush() operation. All details of the external representation
format, storage medium, and buffering are specific to the implementation. Differe
implementations may support buffering of the external representation data in mem
converting data values to a canonical binary form for exchange across big/little en
CPU hardware, conversion of data to a canonical text form for readability or to
facilitate mailing objects across networks, use of various storage mediums such a
memory, filesystem, tape or other differences. See “Standard Stream Data Forma
page 8-19 for information on a portable external representation. A
StreamDataFormatError exception should be raised if errors are detected in the d
format of the external representation.

In support of integrating the Externalization Service with the Transaction and
Persistent Object Services, the read_object operation supports the internalization to
existing objects. The semantics of the operation are that if the aStreamable parameter
is Null, then the FactoryFinder parameter is used to create an instance for internali
If the aStreamable parameter is not Null, then the StreamIO implementation will
8-20 CORBAservices December 1998

8

e to
ion on

cles or
me

tion

ave
on to

d

es,

nces
internalize to a streamable object. This semantic allows the Externalization Servic
be used as a Persistent Object Service protocol and to support the restore operat
existing objects in the case of an aborted transaction.

8.6.3 The Streamable Interface

Object implementors must inherit from the Streamable interface if they want an
object to be externalizable. Three operations must be implemented.

Comparing Streamable Objects

boolean CosObjectIdentity::IdentifiableObject::is_identical(
in CosObjectIdentity::IdentifiableObject anObject);

readonly unsigned long constant_random_id;

A Streamable object inherits from CosObjectIdentity::IdentifiableObject , and
therefore must support a constant_random_id attribute and an is_identical()
operation. The stream service uses these to compare objects when detecting cy
overlapping references in objects being externalized to the same stream in the sa
context or within the same graph. The constant_random_id attribute value does not
have to be unique, but a unique value may substantially speed up the externaliza
process.

Creation Key for a Streamable Object

readonly attribute CosLifeCycle::Key external_form_id;

An Streamable object must support a readonly attribute, external_form_id , which
is a key that can be given to a factory finder in order to find a factory that could h
created this object. The stream service may use this attribute during internalizati
create an object that can reinitialize itself from the externalized data.

8.6.3.1 Writing the Object’s State to a Stream

void externalize_to_stream(
in StreamIOtargetStreamIO);

The externalize_to_stream() operation is responsible for decomposing an
externalizable object’s internal state into a series of primitive data type values an
object references. The externalize_to_stream() function must write out all the
neccessary primitive data values using the write_<type>() operations on the
targetStreamIO for non-object data types. If this object has other object referenc
then, normally, those objects should also be written out using the write_object()
operation on the targetStreamIO . However, it is up to the Streamable implementor
to decide which referenced objects should be externalized with this object. The
primitive data values must all be written before any of the embedded objects refere
are written.

If the Streamable is a node in a graph, then it should delegate the
externalize_to_stream() to the StreamIO by invoking write_graph() . The object
would subsequently receive an externalize_node_to_stream() and write out its
Externalization Service: v1.0 CosStream Module December 1998 8-21

8

ate

using

s

rived

er.

in

he
internal state as described above. Node objects should not call write_object() for
other nodes in their graph, but may call write_object() for object references that are
not for nodes in their graph.

8.6.3.2 Reinitializing the Object’s State from a Stream

void internalize_from_stream(
in StreamIOsourceStreamIO,
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

ObjectCreationError,
StreamDataFormatError);

The internalize_from_stream() operation is responsible for reinitializing the
object’s internal state from the series of primitive data type values and object
references that are written/flattened during externalize_to_stream() . The
internalize_from_stream() operation should read in all the neccessary internal st
of the object using the read_<type>() operations on the sourceStreamIO for non-
object data types. If this object has other object references that were externalized
write_object() , then those objects should be recreated using the read_object()
operation on the sourceStreamIO with the same FactoryFinder argument as the
there parameter passed in to the internalize_from_stream() operation. The
read_<type>() and read_object() operations for the various portions of the object’
internal state must be invoked in the same order in which they are written by the
externalize_to_stream() implementation. The internalize_from_stream() must
also initialize any additional state that was not externalized because it can be de
from other state information. Therefore, the externalize_to_stream() and
internalize_from_stream() operations must be designed to complement each oth

If the Streamable is a node in a graph, then it should delegate the
internalize_to_stream() to the sourceStreamIO by invoking read_graph() with
the same FactoryFinder argument as the there parameter passed in to the
internalize_from_stream() operation. The Streamable (also Node) object would
subsequently receive an internalize_node_to_stream() and read in its internal state
as described above. Node objects should not call read_object() for other nodes in
their graph, but may call read_object() for object references that are not for nodes
their graph..

The ObjectCreationError and StreamDataFormatError exceptions originate from t
read_object() and read_<type> operations on the sourceStreamIO , and are not
explicitly raised by the internalize_from_stream() code.

8.6.4 The StreamableFactory Interface

8.6.4.1 Creating a Streamable Object

Streamable create_uninitialized();
8-22 CORBAservices December 1998

8

g
the
reate

able

y
de

om
The stream service must be able to create a Streamable object in order to internalize
an object from the stream’s externalized data. For any externalizable object, a
StreamableFactory object must exist that supports creation of that object. This
factory must be findable using the readonly external_form_id Key attribute of the
streamable object. The stream service implementation could store this key durin
externalization and use it during internalization to find the factory that can create
externalized object. However, a stream implementation may use other means to c
the object during internalization. The create_uninitialized() operation on the
StreamableFactory should create the associated streamable object. This stream
object does not have to be initialized, since that can be done on the subsequent
internalize_from_stream() operation on the newly created streamable object.

8.6.5 The Node Interface

The Node interface defines operations to internalize and externalize a node.

8.6.5.1 Externalizing a Node

void externalize_node (in CosStream::StreamIO sio);

The externalize_node() operation transfers the node’s state to the stream given b
the sio parameter. The node is responsible to externalize its roles as well. The no
can accomplish this by writing the role’s key to the stream and using the
Role::externalize_role() operation.

8.6.5.2 Internalizing a Node

void internalize_node (in CosStream::StreamIO sio,
in CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (CosLifeCycle::NoFactory);

The internalize_node() operation causes a node and its roles to be internalized fr
the stream sio .

It is the node’s responsibility to create and internalize its roles. It can do this by
reading the key for a role from the stream and using the
CosStream::StreamableFactory interface to create the uninitialized role and the
CosStream::internalize_role() operation to internalize the role. The new roles
should be collocated with the factory finder given by the there parameter.

The result of a internalize_node() operation is a sequence of roles.
Externalization Service: v1.0 CosStream Module December 1998 8-23

8

any
ted”.

y.

A
e,

lize

ven
Figure 8-6 illustrates the result of an internalize. A node, when it is born, is not in
relationships with other objects. That is, the roles in the new node are “disconnec
It is the read_graph() operation’s job to correctly establish new relationships.

Figure 8-6 Internalizing a node returns the new object and the corresponding roles.

If an appropriate factory to internalize the roles cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factor

In addition to the NoFactory exception, implementations may raise standard CORB
exceptions. For example, if resources cannot be acquired for the internalized nod
NO_RESOURCES will be raised.

8.6.6 The Role Interface

The Role interface defines operations to externalize and internalize a role. The Role
interface also defines an operation to return the propagation value for the externa
operation.

The implementation of a CosStream::Node operation can call these operations on
roles. For example, an implementation of externalize on a node can call the
externalize operation on the Role .

8.6.6.1 Externalizing a Role

void externalize_role (in CosStream::StreamIO sio);

The externalize_role() operation transfers the role’s state to the stream sio .

8.6.6.2 Internalizing a Role

void internalize_role (in CosStream::StreamIO sio);

The internalize_role() operation causes a role to read its state from the stream gi
by sio .

8.6.6.3 Getting a Propagation Value

CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

internalized
document
8-24 CORBAservices December 1998

8

e

m

The externalize_propagation() operation returns the propagation value to the rol
toRoleName for the externalization operation and the relationship rel . If the role can
guarantee that the propagation value is the same for all relationships in which it
participates, sameForAll is true.

8.6.7 The Relationship Interface

The Relationship interface defines operations to externalize and internalize a
relationship. The Relationship interface also defines an operation to return the
propagation values for the exteranlize operations.

8.6.7.1 Externalizing the Relationship

void externalize_relationship (
in CosStream::StreamIO sio);

The externalize_relationship() operation transfers the role’s state to the stream sio .

8.6.7.2 Internalizing the Relationship

void internalize_relationship(
in CosStream::StreamIO sio,
in CosGraphs::NamedRoles newRoles);

The internalize_relationship() operation internalizes the state of a relationship fro
the stream given by sio .

The values of the internalized relationship’s attributes are defined by the
implementation of this operation. However, the named_roles attribute of the newly
created relationship must match newRoles . That is, the internalized relationship
relates objects represented by newRoles parameter, not the by the original
relationship’s named roles.

8.6.7.3 Getting a Propagation Value

CosGraphs::PropagationValue externalize_propagation (
in CosRelationships::RoleName fromRoleName,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

The propagation_for() operation returns the relationship’s propagation value from
the role fromRoleName to the role toRoleName for the externalization operation. If
the role named by fromRoleName can guarantee that the propagation value is the
same for all relationships in which it participates, sameForAll is true.
Externalization Service: v1.0 CosStream Module December 1998 8-25

8

alues

n

 on
rvice

any
and, is
n be

o

.

8.6.8 The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the CosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropagationCriteriaFactory creates a TraversalCriteria object that
determines which edges to emit and which nodes to visit based on propagation v
for the compound externalization operations.

8.6.8.1 Create a Traversal Criteria Based on Externalization Propagatio

CosGraphs::TraversalCriteria create_for_externalize();

The create_for_externalize operation returns a TraversalCriteria object for an
operation op that determines which edges to emit and which nodes to visit based
propagation values for op. For a more detailed discussion see the Relationship Se
chapter.

8.7 Specific Externalization Relationships

The Relationship Service defines two important relationships: containment and
reference. Containment is a one-to-many relationship. A container can contain m
containees; a containee is contained by one container. Reference, on the other h
a many-to-many relationship. An object can reference many objects; an object ca
referenced by many objects.

Containment is represented by a relationship with two roles: the ContainsRole , and
the ContainedInRole, Similarly, reference is represented by a relationship with tw
roles: ReferencesRole and ReferencedByRole .

Compound externalization adds externalization semantics to these specific
relationships. That is, it defines propagation values for containment and reference
8-26 CORBAservices December 1998

8

8.8 The CosExternalizationContainment Module

The CosExternalizationContainment module defines the following interfaces:

• Relationship interface
• ContainsRole interface
• ContainedInRole interface

//File: CosExternalizationContainment.idl
//Part of the Externalization Service
// modified from version 1.0 to use CosStream module
// instead of CosCompoundExternalization

#ifndef _COS_EXTERNALIZATION_CONTAINMENT_IDL_
#define _COS_EXTERNALIZATION_CONTAINMENT_IDL_

#include <CosContainment.idl>
#include <CosStream.idl>

#pragma prefix “omg.org”

module CosExternalizationContainment {

interface Relationship :
CosStream::Relationship,
CosContainment::Relationship {};

interface ContainsRole :
CosStream::Role,
CosContainment::ContainsRole {};

interface ContainedInRole :
CosStream::Role,
CosContainment::ContainedInRole {};

};
#endif /* ifndef _COS_EXTERNALIZATION_CONTAINMENT_IDL_*/

The CosExternalizationContainment module does not define new operations. It
merely “mixes in” interfaces from the CosStream and CosContainment modules.
Although it does not add any new operations, it refines the semantics of these
operations:

The CosExternalizationContainment::ContainsRole::propagation_for
operation returns the following:

operation ContainsRole to
ContainedInRole

externalize deep
Externalization Service: v1.0 The CosExternalizationContainment Module December 1998

8

port
The CosExternalizationContainment::ContainedInRole::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory::create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not sup
the CosStream::Node interface.

The CosRelationships::RelationshipFactory::create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not
CosExternalizationContainment::ContainsRole and
CosExternalizationContainment::ContainedInRole . It will raise
MaxCardinalityExceeded if the
CosExternalizationContainment::ContainedInRole is already participating in a
relationship.

8.9 The CosExternalizationReference Module

The CosExternalizationReference module defines these interfaces:
• Relationship interface
• ReferencesRole interface
• ReferencedByRole interface

//File: CosExternalizationReference.idl
//Part of the Externalization Service
// modified from version 1.0 to use CosStream module
// instead of CosCompoundExternalization

#ifndef _COS_EXTERNALIZATION_REFERENCE_IDL_
#define _COS_EXTERNALIZATION_REFERENCE_IDL_

#include <CosReference.idl>
#include <CosStream.idl>

#pragma prefix “omg.org”

module CosExternalizationReference {

interface Relationship :
CosStream::Relationship,
CosReference::Relationship {};

interface ReferencesRole :
CosStream::Role,
CosReference::ReferencesRole {};

operation ContainedInRole to
ContainsRole

externalize none
8-28 CORBAservices December 1998

8

port

interface ReferencedByRole :
CosStream::Role,
CosReference::ReferencedByRole {};

};
#endif /* ifndef _COS_EXTERNALIZATION_REFERENCE_IDL_ */

The CosExternalizationReference module does not define new operations. It
merely “mixes in” interfaces from the CosStream and CosReference modules.
Although it does not add any new operations, it refines the semantics of these
operations:

The CosExternalizationReference::ReferencesRole::propagation_for()
operation returns the following:

The CosExternalizationReference::ReferencedByRole::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory::create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not sup
the CosStream::Node interface.

The CosRelationships::RelationshipFactory::create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not
CosExternalizationReference::ReferencesRole and
CosExternalizationReference::ReferencedByRole .

8.10 Standard Stream Data Format

An externalization client may create a stream that supports a specific external
representation data format that is intended to be portable across different CORBA
implementations and on different CPU hardware. A client creates such a Stream
object using a factory found by specifying a Key whose only NameComponent has
an NameComponent ::id whose value is the string literal
“StandardExternalizationFormat”.

That format is described in this section.

operation ReferencesRole to
ReferencedByRole

externalize none

operation ReferencedByRole to
ReferencesRole

externalize none
Externalization Service: v1.0 Standard Stream Data Format December 1998 8-29

8

o
the

tes

t the
to

s
r
annot

asic
8.10.1 OMG Externalized Object Data

A leading “tag” byte with a value of x”F0” marks the beginning of an object’s
externalized data. Following this is data associated with a Key that can be used t
internalize the object. The key information is then followed by the data written to
StreamIO for the object’s state.

Key Info

The key information consists of a byte containing an integer value, “i”, that indica
how many CosNaming::NameComponent s make up the associated Key.

This byte is followed by “i” null-terminated sequences of char values that represen
CosNaming::NameComponent::id values for the Key. These values correspond
the C mapping of a CORBA string type. The NameComponent::kind values are not
stored in this external data format.

Object Info

The object information is the sequence of bytes generated for one or more
write_<type> operation. For each write_<type> operation, a single “tag” byte
identifying the type of the primitive data is followed by the data. The tag byte give
the internalization implementation enough information to skip past object state fo
objects that cannot be created, for example when a compatible implementation c
be found on the internalizing ORB.

The tag byte values, and data formats for each type are as indicated below for b
CORBA data types:

Table 8-4 CORBA Tag Byte Values and Data Formats

tag CORBA type data format

x’F1’ Char one byte

x’F2’ Octet one byte

Key info Object infotag byte = x’F0’

1 byte

1st id string 2nd id stringlength = i

1 byte

i’th id string. . .

data valuetag byte

1 byte

tag byte data value . . .

1 byte
8-30 CORBAservices December 1998

8

d of
tored

m.

t

it
8.10.2 Externalized Repeated Reference Data

This format is used only when multiple objects reference the same object. Instea
storing the referenced object multiple times, the duplicate reference objects are s
in this format. Note that the object is represented by a long object number which
indicates that the object has been stored already.

8.10.3 Externalized NIL Data

This is a special format used to indicate that there is no object stored in the strea

8.11 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296

x’F3’ Unsigned Long four bytes, big-endian format

x’F4’ Unsigned Short two bytes, big-endian format

x’F5’ Long four bytes, big-endian format

x’F6’ Short two bytes, big-endian format

x’F7’ Float four bytes, IEEE 754 single precision format, sign bi
in first byte

x’F8’ Double eight bytes, IEEE 754 double precision format, sign b
first byte

x’F9’ Boolean TRUE=>one byte==1, FALSE=>one byte==0

x’FA’ String null-terminated sequence of bytes

Table 8-4 CORBA Tag Byte Values and Data Formats

x’04’

1 (bytes)4

Object number

x’05’

1 (byte)
Externalization Service: v1.0 References December 1998 8-31

8

iam
2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Will
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

3. Grady Booch, “Object Oriented Design with Applications.” The
Benjamin/Cummings Publishing Componay, Inc., 1991.
8-32 CORBAservices December 1998

Relationship Service Specification 9
h,

ment
9.1 Service Description

Distributed objects are frequently used to model entities in the real world. As suc
distributed objects do not exist in isolation. They are related to other objects.

Consider some examples of real world entities and relationships:

• A person owns cars; a car is owned by one or more persons.

• A company employs one or more persons; a person is employed by one or more
companies.

• A document contains figures; a figure is contained in a document.

• A document references a book; a book is referenced by one or more documents.

• A person checks out books from libraries. A library checks out books to people.
A book is checked out by a person from a library.

These examples demonstrate several relationships:

• Ownership relationships between people and cars

• Employment relationships between companies and people

• Containment relationships between documents and figures

• Reference relationships between books and documents

• Check out relationships between people, books and libraries.

Such relationships can be characterized along a number of dimensions:

Type
Related entities and the relationships themselves are typed. In the examples,
employment is an relationship defined between people and companies. The type of
the relationship constrains the types of entities in the relationship; a company
cannot employ a monkey since a monkey is not a person. Furthermore, employ
is distinct from other relationships between people and companies.
CORBAservices March 1995 9-1

9

son
 an

nder

ins

-to-
ners.
n
on

ee

s two

 are

used
The roles of entities in relationships
A relationship is defined by a set of roles that entities have. In an employment
relationship, a company plays an employer role and a person plays an employee
role.

A single entity can have different roles in distinct relationships. Notice that a per
can play the owner role in an ownership relationship and the employee role in
employment relationship.

Degree
Degree refers to the number of required roles in a relationship. The check out
relationship is a ternary relationship; it has three roles: the borrower role, the le
role and the material role. A person plays the borrower role, a library plays the
lender role and a book plays the material role. Ownership, employment,
containment and reference, on the other hand, are of degree 2, or binary
relationships.

Cardinalit y
For each role in a relationship type, the maximum cardinality specifies the
maximum number of relationships that may involve that role.

The containment relationship is a many-to-one relationship; a document conta
many figures; a figure is contained in exactly one document. A many-to-many
relationship is between two sets of entities. The ownership example is a many
many relationship; a person can own multiple cars; a car can have multiple ow
The check out relationship is a many-to-one-to-many relationship. A person ca
check out many books from many libraries. A book is checked out by one pers
from one library and a library can loan many books to many people.

Relationship Semantics
Relationships often have relationship-specific semantics; that is they define
operations and attributes. For example, job title is an attribute of the employment
relationship, while it is not an attribute of an ownership relationship. Similarly, due
date is an attribute of the check out relationship.

For more discussion on object-oriented modeling and design with relationships, s
[2.].

9.1.1 Key Features of the Relationship Service

• The Relationship Service allows entities and relationships to be explicitly
represented. Entities are represented as CORBA objects. The service define
new kinds of objects: relationships and roles. A role represents a CORBA object
in an relationship. A relationship is created by passing a set of roles to a
relationship factory.

• Relationships of arbitrary degree can be defined.

• Type and cardinality constraints can be expressed and checked. Exceptions
raised when cardinality and type constraints are violated. The Relationship
Service does not define a new type system. Instead, the IDL type system is
to represent relationship and role types. This allows the service to leverage
CORBA solutions for type federation.
9-2 CORBAservices March 1995

9

tes
ic

ecific.

el
bjects

es
us,
ity

s

e a

here

f the

hout

 stored
riate

 the

be
ip
• The Relationship interface can be extended to add relationship specific attribu
and operations. Similarly, the Role interface can be extended to add role specif
attributes and operations.

• The Relationship Service defines three levels of service: base, graph, and sp

• The base level defines relationships and roles.

• When objects are related, they form graphs of related objects. The graph lev
extends the base level service with nodes and traversal objects. Traversal o
iterate through the edges of a graph. Traversals are useful in implementing
compound operations on graphs, among other things.

• Specific relationships are defined by the third level.

4. A conforming Relationship Service implementation must implement level 1 or
levels 1 and 2 or levels 1, 2 and 3.

• The Relationship Service requires a notion of object identify. As such, it defin
a simple, efficient mechanism for supporting object identity in a heterogeneo
CORBA-based environment. We believe the mechanism to be of general util
for other services.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references; role object
can be collocated with their objects and need not depend on a centralized
repository of relationship information. As such, navigating a relationship can b
local operation.

• The Relationship Service allows so-called immutable objects to be related. T
are no required interfaces that objects being related must support. As such,
objects whose state and implementation were defined prior to the definition o
Relationship Service can be related objects.

• The Relationship Service allows graphs of related objects to be traversed wit
activating related objects.

• The Relationship Service is extensible. Programmers can define additional
relationships.

9.1.2 The Relationship Service vs. CORBA Object References

CORBA: Common Object Request Broker Architecture and Specification defines object
references that clients use to issue requests on objects. Object references can be
persistently. When is it appropriate to use object references and when is it approp
to use the Relationship Service?

The Relationship Service is appropriate to use when an application needs any of
following capabilities that are not available with CORBA object references:

Relationships that Are Multidirectional

When objects are related using the Relationship Service, the relationship can
navigated from any role to any other role. The service maintains the relationsh
between related objects. CORBA object references, on the other hand, are
Externalization Service: v1.0 Service Description March 1995 9-3

9

 only

orted
ple

nnot

lated
g the

d

t
 well-
 to

ps
nts
r

to
ner
e.

n a
unidirectional. Objects that posses CORBA object references to each other can
do so in an ad hoc fashion; there is no way to maintain and manipulate the
relationship between the objects.

Relationships that Allow Third Party Manipulation

Since roles and relationships are themselves CORBA objects, they can be exp
to third parties. This allows third parties to manipulate the relationship. For exam
a third party could create, destroy or navigate the relationship. Third parties ca
manipulate object references.

Traversals that Are Supported for Graphs of Related Objects

When objects are related using the Relationship Service, they form graphs of re
objects. Interfaces are defined by the Relationship Service to support traversin
graph.

Relationships and Roles that Can Be Extended with Attributes an
Behavior

Relationships have relationship-specific semantics. For example, the employmen
relationship has a job title attribute. Since relationships and roles are objects with
defined OMG IDL interfaces, they can be extended through OMG IDL inheritance
add such relationship-specific attributes and operations.

9.1.3 Resolution of Technical Issues

Modeling and Relationship Semantics

An application designer models a problem as a set of objects and the relationshi
between those objects. Using OMG IDL, the application designer directly represe
the objects of the model. Using the Relationship Service, the application designe
directly represents the roles and relationships of the model.

The Relationship and Role interfaces can be extended using OMG IDL inheritance
add relationship and role specific attributes and operations. For example, a desig
might define the employment relationship to have an operation returning a job titl

Managing Relationships

The RelationshipFactory interface defines an operation to create a relationship, give
set of roles. The Role and Relationship interfaces define operations to delete and
navigate relationships between objects.
9-4 CORBAservices March 1995

9

tion.

re is

. This

ole

tion

ict
a
s,
e

mely
nship,

sed
Constraining Relationships

Type, cardinality and degree constraints on relationships are expressed in the
interfaces.

The RoleFactory::create_role operation can raise a RelatedObjectTypeError excep
This allows implementations of the Role interface to place further constraints on the
type of the related objects. For example, an EmployedByRole can ensure related objects
are people. An attempt to have it represent a monkey would raise a
RelatedObjectTypeError exception.

Similarly, the RelationshipFactory::create operation can raise a RoleTypeError
exception. This allows implementations of the Relationship interface to put constraints
on the type of the roles. For example an Employment relationship can ensure the
an EmployerRole and an EmployeeRole.

The RelationshipFactory::create operation can also raise a DegreeError exception
ensures that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A r
can raise a MaxCardinalityExceeded exception and refuse to participate in a
relationship if its maximum cardinality would be exceeded. Roles define an opera
to ask if their minimum cardinality constraint is being met.

Referential Integrity

If the Relationship Service is used in an environment supporting transactions, str
referential integrity is achieved. That is, if an related object refers to another (via
relationship), then the other related object will also refer to it. Without transaction
strict referential integrity cannot be achieved since a failure during execution of th
relationship construction protocol could cause a dangling reference.

Relationships and Roles as First Class Objects

Our design defines both relationships and roles as first class objects. This is extre
important because it encapsulates and abstracts the state to represent the relatio
allows third party manipulation of the relationship and allows the roles and
relationships themselves to support operations and attributes.

Different Models for Navigating and Constructing Relationships

The Relationship Service defines interfaces for constructing and navigating
relationships component-by-component. These building block operations can be u
by a higher-level service, such as a query service.
Externalization Service: v1.0 Service Description March 1995 9-5

9

al
tions
jects.

 the
Efficiency Considerations

Our design has several features that allow for highly optimized implementations.
Performance optimizations are achieved by clustering and/or caching of connection
information.

Clients can cluster related objects and their roles by their selection of factories.

Our design defines the containment relationship logically. It does not imply physic
clustering of state or execution, However, it serves as a good hint to implementa
for clustering. An environment can choose to cluster containers and contained ob

The get_other_related_object operation can be implemented to cache remote related
objects. The cached information is immutable; once a relationship is established,
roles and related objects will not change.
9-6 CORBAservices March 1995

9

rvice

hs of
these

ent

s
ip.

.

9.2 Service Structure

This section provides information about the levels of service; the specification is
organized around these levels. It also describes the hierarchy of Relationship Se
interfaces and explains the main purpose of each interface.

9.2.1 Levels of Service

The Relationship Service defines three levels of service: base relationships, grap
related objects, and specific relationships. The specification is organized around
levels.

Level One: Base Relationships

The Relationship and Role interfaces define the base Relationship Service.
Figure 9-1 illustrates two instances of the containment relationship. The docum
plays the container role; the figure and the logo play the containee role.

The diamond is an object supporting the Relationship interface. The small circles
are objects supporting the Role interface.

Figure 9-1 Base relationships.

Roles represent objects in relationships. Roles have a maximum cardinality. A
illustrated, the container role can be involved in many instances of a relationsh
The containee roles can only be involved in a single instance of a relationship

figure

logo

document
Externalization Service: v1.0 Service Structure March 1995 9-7

9

he
 one
e to

cts
fines

 and
e
Figure 9-2 illustrates the navigation functionality of relationships; for example t
arrow between a role and another role indicates it is possible to navigate from
role to another. The arrow does not, however, indicate that the object referenc
the other role is necessarily stored by the role.

Figure 9-2 Navigation functionality of base relationships

Table 9-1 lists the interfaces to support relationships and roles.

Level Two: Graphs of Related Objects

Distributed objects do not exist in isolation. They are connected together. Obje
connected together form graphs of related objects. The Relationship Service de
the Traversal interface. The Traversal interface defines an operation to traverse a
graph. The traversal object cooperates with extended roles supporting the
CosGraphs::Role interface and objects supporting the Node interface.

Figure 9-3 illustrates a graph of related objects. The folder, the figure, the logo
the book all support the Node interface. The small circles are roles supporting th
CosGraphs::Role interface.

figuredocument
9-8 CORBAservices March 1995

9

vice
Figure 9-3 An example graph of related objects.

Table 9-3 lists the interfaces to support graphs of related objects.

Level Three: Specific Relationships

Containment and reference are two important relationships. The Relationship Ser
defines these two binary relationships. Table 9-4 and Table 9-5 list the interfaces
defining specific relationships.

figure

logo

folder

person

library

document

book

containment

reference

check_out
Externalization Service: v1.0 Service Structure March 1995 9-9

9

-5.

e
9.2.2 Hierarchy of Relationship Interface

The relationship interfaces are arranged into the interface hierarchy illustrated in
Figure 9-4.

Figure 9-4 Relationship interface hierarchy

9.2.3 Hierarchy of Role Interface

The role interfaces are arranged into the interface hierarchy illustrated in Figure 9

Figure 9-5 Role interface hierarchy

The Role interface defines operations to efficiently navigate relationships between
related objects.

The CosGraphs::Role interface defines an operation to return the edges that involv
the role. This is used by the traversal service defined at the graph level.

Finally, ContainsRole, ContainedInRole, ReferencesRole and ReferencedByRole are
specific roles for two important relationships: containment and reference.

Relationship

Containment Reference

CosRelationships module

specific relationships

(Base level)

CosRelationships::Role

CosGraphs::Role

ContainsRole

ContainedInRole

ReferencesRole

ReferencedByRole

CosRelationships module

CosGraphs module

specific relationships

(Base level)

(graph level)
9-10 CORBAservices March 1995

9

 in

e
9.2.4 Interface Summary

The Relationship Service defines interfaces to support the functionality described
section 9.2.

Table 9-1 through Table 9-5 give high level descriptions of the Relationship Servic
interfaces.

Table 9-1 Interfaces defined in the CosObjectIdentity module

Interface Purpose IPrimary Clients

CosObjectIdentity::

IdentifiableObject To determine if two objects
are identical.

There are many clients. The
graph level of the
Relationship Service is one.

Table 9-2 Interfaces defined in the CosRelationships module

Interface Purpose Primary Clients

CosRelationships::

Relationship Represents an instance of a
relationship type.

Clients that navigate
between related objects.

RelationshipFactory Supports the creation of
relationships.

Clients establishing
relationships.

Role Defines navigation
operations for relationships.
Implements type and
cardinality constraints.

Clients that navigate
between related objects.
Relationship factories.

RoleFactory Supports the creation of
roles.

Objects participating in
relationships.

RelationshipIterator Iterates the relationships in
which a particular role object
participates.

Clients that navigate
relationships.
Externalization Service: v1.0 Service Structure March 1995 9-11

9

Table 9-3 Interfaces defined in the CosGraphs module

Interface Purpose Primary Client(s)

CosGraphs::

Traversal Defines an operation to
traverse a graph, given a
starting node and traversal
criteria.

Clients that want a standard
service to traverse graphs.

TraversalFactory Supports the creation of a
traversal object.

Clients that want a standard
service to traverse graphs.

TraversalCriteria Provides navigation behavior
between nodes.

Traversal implementations.

Role Extends the
CosRelationships::Role
interface to return edges

Clients that traverse graphs
of related objects.

EdgeIterator Returns additional edges
from a role.

Clients that traverse graphs
of related objects.

Node Defines operations for a
related object to reveal its
roles.

Clients that traverse graphs
of related objects.

NodeFactory Supports the creation of
nodes.

Clients that create nodes in
graphs.

Table 9-4 Interfaces defined in the CosContainment module

Interface Purpose Primary Client(s)

CosContainment::

Relationship one-to-many relationship Clients that depend on
Containment relationship
type.

ContainsRole Represents an object that
contains other objects.

Clients that navigate
containment relationships
between objects.

ContainedInRole Represents an object that is
contained in other objects.

Clients that navigate
containment relationships
between objects.
9-12 CORBAservices March 1995

9

ships
re

s
s are

esents

he

tes

ere
9.3 The Base Relationship Model

The base level of the Relationship Service defines interfaces that support relation
between two or more CORBA objects. Objects that participate in a relationship a
called related objects. Relationships that share the same semantics form relationship
types. A relationship is an instance of a relationship type and has an identity.

Each related object is connected with the relationship via a role. Roles are object
which characterize a related object‘s participation in a relationship type. Role type
used for expressing the role´s characteristics by an IDL interface. Cardinality
represents the number of relationship instances connected to a role. Degree repr
the number of roles in a relationship. All characteristics are expressed by
corresponding IDL interfaces. Relationship and role types are built by subtyping t
Relationship and Role interfaces.

Figure 9-6 gives a graphical representation of a simple relationship type. It illustra
that documents reference books. Documents are in the ReferencesRole and books are in
the ReferencedByRole. Documents, reference, the roles and books are all types; th
are interfaces (written in OMG IDL) for all five.

Table 9-5 Interfaces defined in the CosReference module

Interface Purpose Primary Clients

CosReference::

Relationship many-to-many relationship Clients that depend on the
reference relationship type.

ReferencesRole Represents an object that
references other objects.

Clients that navigate
reference relationships
between objects.

ReferencedByRole Represents an object that is
referenced by other objects.

Clients that navigate
reference relationships
between objects.
Externalization Service: v1.0 The Base Relationship Model March 1995 9-13

9

a

es

ce“

he
Figure 9-6 Simple relationship type: documents reference books

Figure 9-7, on the other hand, gives a graphical representation of an instance of
relationship type. It illustrates that “my document”, an instance of Document,
references “War and Peace”, an instance of Book. Most of the figures in this
specification represent instances of related objects, roles and relationships. Figur
describing object and relationship type are clearly marked.

Figure 9-7 Simple relationship instance: my document references the book “War and Pea

9.3.1 Relationship Attributes and Operations

Relationships may have attributes and operations. For example, the reference
relationship of Figure 9-6 has an attribute indicating the date the reference from t
document to the book was established.

Document
ReferencesRole

ReferencedByRole
Book

Reference Relationship
attribute date_of_reference

my doc
ReferencesRole

ReferencedByRole

War and Peace

Reference Relationship
May 30, 1994
9-14 CORBAservices March 1995

9

o be
gs and
rries

t”
nnot
many

han
 can

rts

 a
book

y
ts. It

ints for
hat
Rationale

If relationships are not allowed to define attributes and operations, they will have t
assigned to one of the related objects. This approach is prone to misunderstandin
inconsistencies. The approach to define an artificial related object, which then ca
the attributes, is equally unsatisfactory.

The date attribute of the example of Figure 9-7 is clearly an attribute of the
relationship, not one of related objects. It cannot be an attribute of “my documen
since “my document” can reference many books on different dates. Similarly, it ca
be an attribute of “War and Peace” since “War and Peace” can be referenced by
books on different dates.

9.3.2 Higher Degree Relationships

The Reference relationship in Figure 9-6 is a binary relationship; that is, it is defined
by two roles. The Relationship Service can also support relationships with more t
two roles. The fact that three or more related objects may be part of a relationship
be expressed directly by means of the same concept as in the binary case. The degree
represents the number of roles in a relationship. The Relationship Service suppo
higher degree relationships, that is relationships with degree greater than two.

Figure 9-8 shows a ternary “check out” relationship between books, libraries and
persons. The semantics of this relationship is that a person borrows a book from
library. The relationship also defines an attribute that indicates the date when the
is due to be returned by the person to the library.

Figure 9-8 A ternary check-out relationship type between books, libraries and persons.

Rationale

The Relationship Service represents higher degree relationships directly. It clearl
defines the number of expected related objects as well as other integrity constrain
is more readable, more understandable and easier to enforce consistency constra
related objects with a direct representation than with alternative representations t
simulate higher degree relationships using a set of binary relationships. When

Book

Person

material role

borrower role

check_out relationship
attribute due_dateLibrary

lender role
Externalization Service: v1.0 The Base Relationship Model March 1995 9-15

9

r
y

ary

ip of
 is

eeds

pture
simulating higher degree relationships, the relationship information is spread ove
multiple object and relationship type definitions, as are the corresponding integrit
constraints.

Figure 9-9 shows an alternative representation of the ternary relationship from
Figure 9-8 using binary relationships. Note that the first representation is not
equivalent to that of Figure 9-8 since cardinalities and other integrity constraints
cannot be expressed correctly in this alternative representation.

Figure 9-9 An unsatisfactory representation of the ternary check-out relationship using bin
relationships.

Figure 9-10 illustrates a second alternative representation of the ternary relationsh
Figure 9-8. It uses an additional (artificial) related object type. This representation
equivalent to Figure 9-8 if Check-out is constrained to participate in exactly one
instance of each of the three binary relationship types. However, this alternative n
three relationship types and one additional related object type (Check-out) instead of
only one relationship type, and therefore is much more complex and harder to ca
when compared to the representation using one relationship type with degree 3.

Figure 9-10 Another unsatisfactory representation

Book

Library Person

Book

Library Person

Check_out
9-16 CORBAservices March 1995

9

er of

ting
 When
ctory.
r of
ed by

or the
cated
pes
ed
.

e

ts
 A
Since the Relationship Service supports higher order relationships directly, the us
the service need not resort to the unsatisfactory representations using binary
relationships of Figure 9-9 and Figure 9-10.

9.3.3 Operations

The base level of the Relationship Service provides operations to:

• Create role and relationship objects

• Navigate relationships

• Destroy roles and relationships

• Iterate over the relationships in which a role participates

Creation

Roles are constructed independently using a role factory. Roles represent an exis
related object that is passed as a parameter to the RoleFactory::create operation.
creating a new role object, the type of the related object can be checked by the fa
The minimum and maximum cardinality, e.g. the minimal and the maximal numbe
relationship instances to which the new role object may be connected, are indicat
attributes on the factory.

Figure 9-11 illustrates a newly created role.

Figure 9-11 Creating a role for an object

A new relationship is created by passing a sequence of named roles to a factory f
relationship. The expected degree and role types for the new relationship are indi
by attributes on the factory. During the creation of the new relationship, the role ty
and the maximum cardinality can be checked. Duplicate role names are not allow
since the names are used to distinguish the roles in the scope of the relationship

When creating a relationship, the factory creates “links” between the roles and th
relationship using the link operation on the role.

Figure 9-12 illustrates a fully established binary relationship. Figure 9-12 represen
navigation functionality; it does not necessarily represent stored object references.
variety of implementation strategies are described in section 9.3.5.

Object
Externalization Service: v1.0 The Base Relationship Model March 1995 9-17

9

ates

e

 and

hip
nts in

s in

stroy

es

ces

ote

lity
Figure 9-12 A fully established binary relationship

Navigation

Figure 9-12 illustrates the navigational functionality of a relationship. In particular,

• a relationship defines an attribute that indicates a read-only attribute that indic
the named roles of the relationship,

• a role defines a read-only attribute that indicates the related object that the rol
represents,

• A role supports the get_other_role operation, that given a relationship object
a role name, returns the other role object,

• A role supports the get_other_related_object operation, that given a relations
object and a role name, returns the related object that the named role represe
the relationship and

• A role supports the get_relationships operation which returns the relationship
which the role participates.

Destruction

For both roles and relationship objects, the Relationship Services introduces a de
operation. The destroy operation for relationship objects also destroys the links
between the relationship and all of the role objects.

9.3.4 Consistency Constraints

For each role two cardinalities are defined: minimum and maximum.

• The minimum cardinality indicates the minimum number of relationship instanc
in which a role must participate.

• The maximum cardinality indicates the maximum number of relationship instan
in which a role can participate.

Maximum cardinality constraint can be checked when relationships are created. N
that the relationship mechanism cannot, by itself, enforce the minimum cardinality
constraint. However, a role can be asked explicitly if it meets its minimum cardina
constraint using the check_minimum_cardinality operation.

figuredocument
9-18 CORBAservices March 1995

9

s and
ked

, or

ries.
the
d
 at the

cts
ps are

ject
Type integrity is preserved by CORBA mechanisms because related objects, role
relationships are instances of CORBA object types. Type constraints can be chec
when roles and relationships are created.

9.3.5 Implementation Strategies

 Figure 9-12 illustrates the navigational functionality of a fully established binary
relationship. There are a variety of implementation strategies possible. The
get_other_role and the get_other_related_object operations can be:

• Implemented by caching object references to other roles and related objects

• Computed when needed using the relationship object.

The appropriate implementation strategy typically depends on distribution bounda
If the roles and relationship objects are clustered, then only storing the values at
relationship object optimizes space. If, on the other hand, the roles and the relate
objects are clustered, caching object references to other roles and related objects
roles allows the relationship to be efficiently navigated without involving a remote
relationship object.

Role implementations that cache object references to other roles and related obje
need not worry about updating the cache. Once the related objects and relationshi
established, they cannot be changed.

9.3.6 The CosObjectIdentity Module

CORBA: Common Object Request Broker Architecture and Specification does not
define a notion of object identity for objects. The Relationship Service requires ob
identity for the objects it defines. As such, the Relationship Service assumes the
CosObjectIdentity module specified in Figure 9-13 . This is defined in a separate
module; other Object Services may find this module to be generally useful.

module CosObjectIdentity {

typedef unsigned long ObjectIdentifier;

interface IdentifiableObject {
readonly attribute ObjectIdentifier constant_random_id;
boolean is_identical (

in IdentifiableObject other_object);
};

};

Figure 9-13 The CosObjectIdentity Module
Externalization Service: v1.0 The Base Relationship Model March 1995 9-19

9

nt
ased

he

able

.

ip

s

The IdentifiableObject Interface

Objects that support the IdentifiableObject interface implement an attribute of type
ObjectIdentifier and the is_identical operation. This mechanism provides an efficie
and convenient method of supporting object identity in a heterogeneous CORBA-b
environment.

constant_random_id

Objects supporting the IdentifiableObject interface define an attribute of type
ObjectIdentifier. The value of the attribute must not change during the lifetime of t
object.

A typical client use of this attribute is as a key in a hash table. As such, the more
randomly distributed the values are, the better.

The value of this attribute is not guaranteed to be unique; that is, another identifi
object can return the same value. However, if objects return different identifiers,
clients can determine that two identifiable objects are not identical.

To determine if two identifiable objects are identical, the is_identical operation must
be used.

is_identical

The is_identical operation returns true if the object and the other_object are identical
Otherwise, the operation returns false.

9.3.7 The CosRelationships Module

The CosRelationships module defines the interfaces of the base level Relationsh
Service. In particular, it defines

• Relationship and Role interfaces to represent relationships and roles,

• RelationshipFactory and RoleFactory interfaces to create relationships and role

• RelationshipIterator interface to enumerate the relationships in which a role
participates

readonly attribute ObjectIdentifier constant_random_id;

boolean is_identical (
in IdentifiableObject other_object);
9-20 CORBAservices March 1995

9

The CosRelationships module is shown in Figure 9-14.

#include <ObjectIdentity.idl>

module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;
interface Relationship;
interface Role;
interface RelationshipIterator;

typedef Object RelatedObject;
typedef sequence<Role> Roles;
typedef string RoleName;
typedef sequence<RoleName> RoleNames;

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

struct RelationshipHandle {
Relationship the_relationship;
CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {
struct NamedRoleType {

RoleName name;
::CORBA::InterfaceDef named_role_type;

};
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};
exception DuplicateRoleName {NamedRoles culprits;};
exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

};

Figure 9-14 The CosRelationships Module
Externalization Service: v1.0 The Base Relationship Model March 1995 9-21

9

interface Relationship :
CosObjectIdentity::IdentifiableObject {

exception CannotUnlink {
Roles offending_roles;

};
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

};

interface Role {
exception UnknownRoleName {};
exception UnknownRelationship {};
exception RelationshipTypeError {};
exception CannotDestroyRelationship {

RelationshipHandles offenders;
};
exception ParticipatingInRelationship {

RelationshipHandles the_relationships;
};

readonly attribute RelatedObject related_object;
RelatedObject get_other_related_object (

in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);
void get_relationships (

in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);

void destroy() raises(ParticipatingInRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,

in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,

RelationshipTypeError);
void unlink (in RelationshipHandle rel)

raises (UnknownRelationship);
};

interface RoleFactory {
exception NilRelatedObject {};
exception RelatedObjectTypeError {};
readonly attribute ::CORBA::InterfaceDef role_type;

Figure 9-14 The CosRelationships Module (Continued)
9-22 CORBAservices March 1995

9

ribe
nt

a
 that
Example of Containment Relationships

The example of Figure 9-15 is referred to throughout the following sections to desc
roles and relationships. The figure represents two binary, one-to-many containme
relationships between a document and a figure and a logo.

Figure 9-15 Two binary one-to-many containment relationships.

The RelationshipFactory Interface

The RelationshipFactory interface defines an operation for creating an instance of
relationship among a set of related objects. The factory also defines two attributes
specify the degree and role types of the relationships it creates.

readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence

<::CORBA::InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_object)

raises (NilRelatedObject, RelatedObjectTypeError);
};

interface RelationshipIterator {
boolean next_one (out RelationshipHandle rel);
boolean next_n (in unsigned long how_many,

out RelationshipHandles rels);
void destroy ();

};

};

Figure 9-14 The CosRelationships Module (Continued)

figure

logo

document

relationship B

relationship D

ContainedInRole A

ContainsRole C

ContainedInRole E
Externalization Service: v1.0 The Base Relationship Model March 1995 9-23

9

sed a

g

e in
, the

n the

 of the

roles

t of role

he

s the
 If
tion.

 scope

, the

Creating a Relationship

The create operation creates a new instance of a relationship. The factory is pas
sequence of named roles that represent the related objects in the newly created
relationship. The factory, in turn, informs the roles about the new relationship usin
the link operation described in section .

Roles implement maximum cardinality constraints. A role may refuse to participat
a new relationship because it would violate a cardinality constraint. In such a case
MaxCardinalityExceeded exception is raised and the offending roles are returned i
exception.

The number of roles passed to the create operation must be the same as the value
degree attribute. If not, the DegreeError exception is raised.

Role names are used to associate each actual role object with one of the formal
expected by the relationship to be created.

The set of role names passed to the create operation must be the same as the se
names in the factory’s named_role_types attribute. If not, the UnknowRoleName
exception is raised, and the unrecognized names are returned in the exception. T
sequence order of the named_roles parameter and the sequence order of the
named_role_types need not correspond.

The type of each role passed to the create operation must be of the same type a
type indicated for the corresponding role name in the named_role_types attribute.
not, the RoleTypeError is raised and the offending roles are returned in the excep

The names of the roles passed to the create operation must be unique within the
of this relationship type. If not, the DuplicateRoleName exception is raised.

Example of Figure 9-15

The document and the figure were related, that is relationship B was created, by
passing roles A and C to the create operation of the relationship factory. Similarly
document and the logo were related by passing roles C and E to the relationship
factory for relationship D.

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);
9-24 CORBAservices March 1995

9

ted

y the

or the
here

ce of

the
Determining the Created Relationship’s Type

The relationship created by a factory may be a subtype of the Relationship interface.
The rrelationship_type attribute indicates the actual types of the relationships crea
by the factory.

Determining the Degree of a Relationship Type

The degree attribute indicates the number of roles for the relationships created b
factory.

Example of Figure 9-15

The relationship factory for containment has a degree attribute whose value is 2
because containment is a binary relationship.

Determining Names and Types of the Roles of a Relationship Type

The named_role_types attribute indicates the required names and types of roles f
relationships created by the factory. NamedRoleTypes are defined as structures w
the role type is given by the CORBA::InterfaceDef for the role objects.

Example of Figure 9-15

The relationship factory for containment has an attribute whose value is a sequen
two CORBA::InterfaceDefs: one for ContainsRole and one for ContainedInRole.

The Relationship Interface

The Relationship interface defines an attribute whose value is the named roles of
relationship and an operation to destroy the relationship.

readonly attribute ::CORBA::InterfaceDef relationship_type;

readonly attribute unsigned short degree;

readonly attribute NamedRoleTypes named_role_types;
Externalization Service: v1.0 The Base Relationship Model March 1995 9-25

9

e

s
C”,

re
 be
nked

roles
Determining the Roles of a Relationship and Their Names

The named_roles attribute returns the roles of the relationship. The roles have th
names that were indicated in the create operation defined by the RelationshipFactory
interface.

Example of Figure 9-15

Relationship B has an attribute whose value is a sequence <“A”,InterfaceDef for
ContainedInRole; “C”, InterfaceDef for ContainsRole>. Similarly, relationship D ha
an attribute whose value is a sequence <“E”, InterfaceDef for ContainedInRole; “
InterfaceDef for ContainsRole>.

Destroying a Relationship

The destroy operation destroys the relationship between the objects. The roles a
unlinked by the relationship implementation before it is destroyed. If roles cannot
unlinked, the CannotUnlink exception is raised and the roles that could not be unli
are returned in the exception.

Example of Figure 9-15

If destroy is requested of relationship B, the unlink operation is requested of both
A and C and the relationship B is destroyed.

The Role Interface

The Role interface defines operations to:

• navigate the relationship from one role to another,

• enumerate the relationships in which the role participates,

• destroy all relationships in which the role participates,

• link a role to a newly created relationship and

• unlink a role in the destruction process of a relationship and

• destroy the role itself,

readonly attribute NamedRoles named_roles;

void destroy () raises(CannotUnlink);
9-26 CORBAservices March 1995

9

he
eration

d

e

C
of

, the

le
Determining the Related Object That a Role Represents

The related_object attribute indicates the related object that the role represents. T
related object that the role represents is specified as a parameter to the create op
defined by the RoleFactory interface.

Getting Another Related Object

The get_other_related_object operation navigates the relationship rel to the relate
object represented by the role named target_name.

If the role does not know about a role named target_name, the UnknownRoleNam
exception is raised. If the role does not know about the relationship rel, the
UnknownRelationship exception is raised.

Example of Figure 9-15

Assuming role A is named “A”, requesting get_other_related_object(B,”A”) of role
returns the figure. On the other hand, requesting get_other_related_object(D,”E”)
role C returns the logo.

Getting Another Role

The get_other_role operation navigates the relationship rel to the role named
target_name. The role is returned.

If the role does not know about a role named target_name for the relationship rel
UnknownRoleName exception is raised. If the role does not know about the
relationship rel, the UnknownRelationship exception is raised.

Example of Figure 9-15

Assuming role A is named “A”, requesting get_other_role(B,”A”) of role C returns ro
A. On the other hand, requesting get_other_role(D,”E”) of role C returns role E.

readonly attribute RelatedObject related_object;

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);
Externalization Service: v1.0 The Base Relationship Model March 1995 9-27

9

ates.

d

y of

 the
 be

 On
nd D
Getting All Relationships in Which a Role Participates

The get_relationships operation returns the relationships in which the role particip

The size of the list is determined by the how_many argument. If there are more
relationships than specified by the how_many argument, an iterator is created an
returned with the additional relationships. If there are no more relationships, a nil
object reference is returned for the iterator. (The RelationshipIterator interface is a
standard iterator described in the next section.)

Example of Figure 9-15

Requesting get_relationships on role C would return the relationships B and D.

Destroying All Relationships in Which a Role Participates

The destroy_relationships operation destroys all relationships in which the role
participates.

The destroy_relationships operation is semantically equivalent to requesting destro
each relationship in which the role participates. The operation is not required to be
implemented in that fashion.

If the destroy_relationships operation cannot destroy one of the relationships, then
CannotDestroyRelationship exception is raised and the relationships that could not
destroyed are returned in the exception.

Example of Figure 9-15

Requesting destroy_relationships of role A causes relationship B to be destroyed.
the other hand, requesting destroy_relationships of role C causes relationships B a
to be destroyed.

void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);
9-28 CORBAservices March 1995

9

le is
he

ips
ded,
s not
Destroying a Role

The destroy operation destroys the role. The role must not be participating in any
relationships. If it is, the ParticipatingInRelationship exception is raised and the
relationships in which the role participates are returned in the exception.

Example of Figure 9-15

Requesting destroy_role of role A destroys relationship B and role A.

Checking Minimum Cardinality of a Role

The check_minimum_cardinality operation returns true if a role satisfies its minimum
cardinality constraints. Otherwise, the operation returns false.

Example of Figure 9-15

Requesting check_minimum_cardinality of role A would return true since it is
participating in relationship B.

Linking a Role in a Newly Created Relationship

Note – The link operation is not intended for general purpose clients that create,
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship factory create operation.

The link operation informs the role that a new relationship is being created. The ro
passed a relationship and a set of named roles that represent related objects in t
relationship.

A role can have a maximum cardinality, that is it may limit the number of relationsh
in which it participates. If the link request would cause the maximum to be excee
the MaxCardinalityExceeded exception is raised. If the type of the relationship doe
agree with the relationship type that the role expects, the RelationshipTypeError
exception is raised.

void destroy() raises(ParticipatingInRelationship);

boolean check_minimum_cardinality ();

void link (in RelationshipHandle rel,
in NamedRoles named_roles)

raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);
Externalization Service: v1.0 The Base Relationship Model March 1995 9-29

9

ion

,

of
ip B.

 a

eter.

ctory

If the
ption
Example of Figure 9-15

When creating relationship B, the factory for B requested the link (B, A,C) operat
on roles A and C. This allows roles A and C to support the navigation and
administration operations for relationship B.

Removing a Role from a Relationship

Note – The unlink operation is not intended for general purpose clients that create
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship destroy operation.

The unlink operation causes the role to delete its record of the relationship.

If the relationship passed as an argument is unknown to the role, the
UnknownRelationship exception is raised.

Example of Figure 9-15

The implementation of the destroy operation on relationship B requests unlink(B)
roles A and C. This causes roles A and C to forget their participation in relationsh

The RoleFactory Interface

The RoleFactory interface defines attributes describing the roles that it creates and
single operation to create a role.

Creating a Role

The create_role operation creates a role for the related object passed as a param

A role must represent a related object. If a nil object reference is passed to the fa
for the related object, the NilRelatedObject exception is raised.

Role factories can restrict the type of objects the roles they create will represent.
interface of the related object does not conform, the RelatedObjectTypeError exce
is raised.

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);
9-30 CORBAservices March 1995

9

pport

ich

ich

nce
ort
.

Example of Figure 9-15

Clients that created roles A, C and E used the create operation of factories that su
the RoleFactory interface.

Determining the Created Role’s Type

The role created by a factory may be a subtype of the Role interface. The role_type
attribute indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

The max_cardinality attribute indicates the maximum number of relationships in wh
a role (created by the factory) participates.

Example of Figure 9-15

The factory for role A returns 1, since a ContainedIn role can be in no more than one
relationship. Attempts to add role A to more than one relationship result in
MaxCardinalityExceeded exceptions. (See the create operation of the
RelationshipFactory interface and the link operation of the Role interface.)

Determining the Minimum Cardinality of a Role

The min_cardinality attribute indicates the minimum number of relationships in wh
a role (created by the factory) participates.

Note, that unlike maximum cardinality, minimum cardinality cannot be enforced si
roles will be below their minimum during relationship construction. Roles do supp
the check_minimum_cardinality operation to report if they are below their minimum

Example of Figure 9-15

The factory for role A returns 1, since a ContainedIn role should be in one
relationship.

readonly attribute ::CORBA::InterfaceDef role_type;

readonly attribute unsigned long max_cardinality;

readonly attribute unsigned long min_cardinality;
Externalization Service: v1.0 The Base Relationship Model March 1995 9-31

9

ed
_type

st, it

more
Determining the Related Object Types for a Role

The factory creates roles that represent related objects in relationships. The relat
objects must support at least one of the interfaces indicated by the related_object
attribute.

Example of Figure 9-15

The factory for role C returns the CORBA::InterfaceDef for a document.

The RelationshipIterator Interface

The RelationshipIterator interface is returned by the get_relationships operation
defined by the Role interface. It allows clients to iterate through any additional
relationships in which the role participates.

next_one

The next_one operation returns the next relationship; if no more relationships exi
returns false.

next_n

The next_n operation returns at most the requested number of relationships; if no
relationships exist, it returns false.

destroy

The destroy operation destroys the iterator.

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

boolean next_one (out RelationshipHandle rel);

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

void destroy ();
9-32 CORBAservices March 1995

9

f
,
 and

s of

are
ed

ed

 other

etc.
. The

elated
ips
9.4 Graphs of Related Objects

When objects are related using the Relationship Service, graphs of related objects are
formed. This section focuses on how the Relationship Service supports graphs o
related objects. We first describe the graph architecture supported by the service
describe support for traversing the graph and implementing compound operations
then specify the CosGraphs module in detail.

Graphs are important for distributed, object-oriented applications. A few example
graphs are:

Distributed Desktops

Folders and objects are connected together. Folders contain some objects and
reference others. Folders may contain or reference other folders. The objects
distributed; they span multiple machines. The distributed desktop is a distribut
graph.

Composed Applications

Applications are built out of existing objects that are connected together. An
example of such a composed application is a shared white board. The compos
application is a graph.

User Interface Hierarchies

Presentation objects visualize semantic objects for users. Presentations contain
presentation objects. For example, a window might contain a button. The user
interface hierarchy is a graph.

Compound Documents

A compound document architecture allows graphics, animation, sound, video,
to be connected together to give the user the impression of a single document
compound document is a graph.

9.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are r
objects that support the Node interface and edges are represented by the relationsh
that relate nodes.

Figure 9-3 on page 9-9 illustrates an example of a graph.
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-33

9

h.

mall

out

 than
Figure 9-16 An example graph of related objects.

The folder, book, document, figure, library, person and logo are nodes in the grap
The edges of the graph are represented by the relationships:

• containment: the folder and document,

• containment: the document and the figure

• containment: the document and the logo

• reference: the figure and the logo

• reference: the document and the book,

• check_out: the book, the library and the person

The graph architecture supports multiple kinds of relationships. For example, in
Figure 9-16, there are containment, reference and check_out relationships. The s
circles depict roles for a reference relationship, the solid circles depict roles for a
containment relationship and the shaded circles represent the roles of the check_
relationship.

A node can participate in more than one kind of relationship and thus have more
one role. In the example the document has three kinds of roles:

• The ContainsRole
• The ContainedInRole
• The ReferencesRole

figure

logo

folder

person

library

document

book

containment

reference

check_out
9-34 CORBAservices March 1995

9

raphs

the

f the

jects

t

s to a

ips,

ing

rough
ct.

he
Nodes

Nodes are identifiable objects that support the Node interface. Nodes collect roles of a
related object and the related object itself. A node enables standard traversals of g
of related objects because it supports the following:

• A readonly attribute defining all of its roles

• An operation allowing roles of a particular type to be returned

• Operations to add and remove roles

The Node interface can be inherited by related objects or an object implementing
Node interface can be instantiated and interposed in front of related objects.
Interposition is particularly useful in these cases:

• When connecting immutable objects, which are objects that are not aware o
Relationship Service

• In order to traverse graphs of related objects without activating the related ob

As such, the Node interface defines an attribute whose value is the related object i
represents.

9.4.2 Traversing Graphs of Related Objects

The Relationship Service defines a traversal object that, given a starting node,
produces a sequence of directed edges of the graph. A directed edge correspond
relationship. In particular, it consists of:

• An instance of a relationship,

• A starting node and a starting named role of the edge to indicate direction and

• A sequence containing the remaining nodes and named roles. For binary
relationships, there is a single remaining node and role. For n-ary relationsh
there are n-1 remaining nodes and roles.

The traversal object works like an iterator, where directed edges are the items be
returned.

The traversal object, the nodes and the roles cooperate in traversing the graph. Th
the operations of the Node interface, the node reveals its roles to the traversal obje
Through the operations of the CosGraphs::Role interface, a role reveals its directed
edges to other nodes. (The CosGraphs::Role interface defines an operation allowing a
role to reveal directed edges.)

In traversing a graph, the traversal object must detect and represent cycles, and
determine the relevant nodes and edges.

Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In t
example of Figure 9-3, the document, the figure, and the logo form a cycle.
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-35

9

 are

s for

 the

s on a

ude in
rsal
, the

there

 the

list of
 the

ding
epth
 is

on
ly to
tions

ut
tion
ip

ound
ration
To detect cycles in the graph, the traversal object depends on the fact that nodes
identifiable objects, that is they support the IdentifiableObject interface defined in
section 9.3.6.

To represent cycles in the graph, the traversal object defines a scope of identifier
the nodes and relationships in the graph. That is, a given traversal assigns identifiers to
the nodes and relationships that are guaranteed to be unique within the scope of
traversal.

Determining the Relevant Nodes and Edges

A traversal begins at the starting node, emits directed edges and may continue to other
related nodes. The traversal object is programmable in the criteria it uses for
determining the edges to emit and the nodes to visit. The traversal object depend
“call-back” object supporting the TraversalCriteria interface.

Given a node, the traversal criteria computes a sequence of directed edges to incl
the traversal. For each edge, the traversal criteria can indicate whether the trave
should continue to an adjacent node. Based on the results of the traversal criteria
traversal object emits edges and visits other nodes. The process continues until
are no more edges to emit and no more nodes to visit.

Three standard traversal modes are defined to allow clients flexibility in controlling
search order: depth first, breadth first, and best first. In order to understand the
differences between the modes, consider that the traversal maintains an ordered
the edges which have been produced by visiting nodes. This list initially contains
edges which result from visiting the root node. In each iteration the first edge is
removed from the list to be returned and its destination nodes are visited. Depen
upon the traversal mode, these edges are: inserted in the beginning of the list (d
first), appended to the end of the list (breadth first), or inserted into the list which
sorted by the edge’s weight (best first).

9.4.3 Compound Operations

Traversal objects are especially important in implementing compound operations
graphs of related objects. By compound operations, we mean operations that app
some subset of the nodes and edges in the graph. Examples of compound opera
include operations, such as copy, move, remove, externalize, print, and so forth.

Note – The Relationship Service defines a framework for compound operations b
does not define specific compound operations. The Life Cycle and the Externaliza
Service specifications define compound operations that depend on the Relationsh
Service.

A compound operation may be implemented either in one or two passes. A comp
operation implemented in one pass traverses the graph itself and applies the ope
as it proceeds.
9-36 CORBAservices March 1995

9

ed by
nt
ss.

ion
ether
l. The

und

lue

e

ation

he

or
t to

ed
ion

it the
A compound operation implemented in two passes uses the traversal object defin
the Relationship Service to determine the relevant nodes and detect and represe
cycles. The second pass simply applies the operation to the results of the first pa

A compound operation implemented in two passes provides a TraversalCriteria object
for the traversal service.

9.4.4 An Example Traversal Criteria

Consider a traversal of a graph with a traversal criteria object that uses propagat
values defined by the relationships to determine whether to emit an edge and wh
to proceed to another node. The traversal criteria is given a node by the traversa
traversal criteria then requests propagation values from each of the node’s roles.

Figure 9-17 illustrates a traversal of a graph using a traversal criteria for a compo
copy operation. Using the propagation_for operation defined by
CompoundLifeCycle::Role interface, the traversal criteria obtains the propagation va
for the copy operation from each of the node’s roles.

Figure 9-17 A traversal of a graph for compound copy operation.

Propagation

Compound operations may propagate from one node to another depending on th
semantics of the relationship between the nodes. The propagation semantics of a
relationship depend on the direction the relationship is being traversed. A propag
value is either deep, shallow, inhibit or none.

Deep means that the operation is applied to the node, to the relationship and to t
related objects. In the example of Figure 9-17, the propagation value for the copy
operation is deep from the document to the logo; the copy propagates from the
document to the logo across the containment relationship. The traversal criteria f
copy that encounters a deep propagation value would instruct the traversal objec
emit the edge and visit the logo.

Shallow means that the operation is applied to the relationship but not to the relat
objects. In the example of Figure 9-17, the propagation value for the copy operat
from the logo to the document is shallow. The traversal criteria for copy that
encounters a shallow propagation value would instruct the traversal object to em
edge but the document is not visited.

document logo
Node

Role

TraversalCriteria

copy=deep

Node

Role

copy=shallow
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-37

9

the
d not

odes,

ode’s
ed

s the

l
None means that the operation has no effect on the relationship and no effect on
related objects. A traversal criteria that encounters a none propagation value woul
return any edges and related nodes are not visited.

Figure 9-18 summarizes how deep, shallow and node propagation values affect n
roles and relationships.

Figure 9-18 How deep, shallow and none propagation values affect nodes, roles and
relationships.

Inhibit means that the operation should not propagate to the node via any of the n
roles. Inhibit is particularly meaningful for the remove operation to provide so-call
“existence-ensuring relationships”.

For more discussion of propagation values, see [1.].

9.4.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It define
following interfaces:

• TraversalFactory interface for creating traversal objects

• Traversal interface for enumerating directed edges of a graph,

• TraversalCriteria “call-back” interface to allow programmability of the traversa
object

• Node interface for collecting the roles of a related object

• NodeFactory interface for creating nodes

• Role interface to support traversals

shallow

deep

none
9-38 CORBAservices March 1995

9

The CosGraphs module is shown in Figure 9-14.

#include <Relationships.idl>
#include <ObjectIdentity.idl>

module CosGraphs {

interface TraversalFactory;
interface Traversal;
interface TraversalCriteria;
interface Node;
interface NodeFactory;
interface Role;
interface EdgeIterator;

struct NodeHandle {
Node the_node;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {
Role the_role;
::CosRelationships::RoleName the_name;

};
typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;

};
typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

};
typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {
Traversal create_traversal_on (

in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

};

Figure 9-19 The CosGraphs Module
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-39

9

interface Traversal {
typedef unsigned long TraversalScopedId;
struct ScopedEndPoint {

EndPoint point;
TraversalScopedId id;

};
typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {

::CosRelationships::RelationshipHandle
scoped_relationship;

TraversalScopedId id;
};
struct ScopedEdge {

ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,

out ScopedEdges the_edges);
void destroy ();

};

interface TraversalCriteria {
struct WeightedEdge {

Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,

in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,

out WeightedEdges the_edges);
void destroy();

};

Figure 9-19 The CosGraphs Module (Continued)
9-40 CORBAservices March 1995

9

The TraversalFactory Interface

The TraversalFactory interface creates traversal objects. The Traversal interface is
used by clients that want to traverse graphs of related objects according to some
traversal criteria.

interface Node: ::CosObjectIdentity::IdentifiableObject {
typedef sequence<Role> Roles;
exception NoSuchRole {};
exception DuplicateRoleType {};

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;
Roles roles_of_type (

in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)

raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of_type)

raises (NoSuchRole);
};

interface NodeFactory {
Node create_node (in Object related_object);

};

interface Role : ::CosRelationships::Role {
void get_edges (in long how_many,

out Edges the_edges,
out EdgeIterator the_rest);

};

interface EdgeIterator {
boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,

out Edges the_edges);
void destroy ();

};

};

Figure 9-19 The CosGraphs Module (Continued)
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-41

9

ode.

ether

ersal
also
o the

ip and
he
ntifier

xist, it
create_traversal_on

The create_traversal_on operation creates a traversal object starting at the root_n
The created traversal object uses the TraversalCriteria object to determine which
directed edges to emit and which nodes to visit. The mode parameter indicates wh
the traversal will proceed in a depth first, breadth first or best first fashion.

The Traversal Interface

Traversal objects iterate through ScopedEdges of the graph according to the trav
criteria and the mode established when the traversal was created. The traversal
defines a scope for the nodes and edges it returns; that is, it assigns identifiers t
nodes and edges it returns. The identifiers are unique within the scope of a given
traversal. ScopedEdges are given by the following structure:

A ScopedEdge consists of a distinguished scoped end point, a scoped relationsh
a sequence of scoped end points. The distinguished scoped end point indicates t
direction of the edge. The scoped end point consists of a node, a role, and an ide
for the node that is unique within the scope of the traversal.

next_one

The next_one operation returns the next scoped edge; if no more scoped edges e
returns false.

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;
};
typedef sequence<ScopedEdge> ScopedEdges;

boolean next_one (out ScopedEdge the_edge);
9-42 CORBAservices March 1995

9

wing

g if
best

es
next_n

The next_n operation returns at most the requested number of scoped edges.

destroy

The destroy operation destroys the traversal.

The TraversalCriteria Interface

The TraversalCriteria interface is used by the traversal object to determine which
edges to emit and which nodes to visit from a given node. The traversal criteria
behaves like an iterator of weighted edges. Weighted edges are given by the follo
structure:

A WeightedEdge consists of an edge, a weight and a sequence of nodes indicatin
the traversal should continue to the nodes. The weight is only meaningful for the
first traversal.

next_one

The next_one operation returns the next weighted edge; if no more weighted edg
exist, it returns false.

boolean next_n (in short how_many,
out ScopedEdges the_edges);

void destroy ();

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;
};
typedef sequence<WeightedEdge> WeightedEdges;

boolean next_one (out WeightedEdge the_edge);
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-43

9

edges.

he
ia,
.

ed

 roles
.

next_n

The next_n operation returns at most the requested number of weighted directed

destroy

The destroy operation destroys the traversal criteria.

visit_node

The visit_node operation establishes the node for which the traversal criteria will
iterate and indicates the current search mode. As the traversal object traverses t
graph, it visits nodes by requesting the visit_node operation of the traversal criter
followed by next_one/next_n requests to obtain the outgoing edges from the node

For depthFirst and breadthFirst modes, the weight field in the weighted edges is
ignored. In the bestFirst mode, the weight value is utilized to order the traversal’s
edges list which is sorted by this value in ascending order.

If weighted edges from a previous node remain when visit_node is requested, the
traversal criteria discards the previous edges.

The Node Interface

The Node interface defines operations that are useful in navigating graphs of relat
objects. In particular, it defines:

• Areadonly attribute giving all of the node’s roles

• An operation allowing roles conforming to a particular type to be returned

• Operations to add and remove roles

Roles are distinguished in nodes in the OMG IDL of their interfaces.

A node cannot posses two roles where one role is a subtype of the other. This is
precluded by the add_role operation.

A node can posses two or more roles that have a common supertype. The set of
can be obtained by passing the common supertype to the roles_of_type operation

boolean next_n (in short how_many,
out WeightedEdges the_edges);

void destroy();

void visit_node(in NodeHandle a_node,
in Mode search_mode);
9-44 CORBAservices March 1995

9

s is

e of

same
d.

eter.
.

related_object

The related_object attribute gives the related object that the node represents. Thi
useful when relating immutable objects.

roles_of_node

The roles_of_node attribute gives all of the node’s roles.

roles_of_type

The roles_of_type operation returns the node’s roles that conform to the role_type
parameter. A role conforms to role_type if it’s interface is the same or is a subtyp
role_type.

add_role

The add_role operation adds a role to the node. If the node posses a role of the
type, a supertype or a subtype of a_role, the DuplicateRoleType exception is raise

remove_role

The remove_role operation removes all the roles that conform to the of_type param
If no roles conform to the of_type parameter, the NoSuchRole exception is raised

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;

Roles roles_of_type (
in ::CORBA::InterfaceDef role_type);

void add_role (in Role a_role)
raises (DuplicateRoleType);

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-45

9

zed to

oints.

dges
there
The NodeFactory Interface

The NodeFactory interface defines a single operation for creating nodes.

create_node

The create_node operation creates a node whose related_object attribute is initiali
the related_object parameter.

The Role Interface

The CosGraphs::Role interface extends the CosRelationships::Role interface with a
single operation to return a role’s view of it’s relationships. The role’s view of a
relationship is given by the following Edge structure:

The edge structure is defined by an end point, a relationship and the other end p
The from end point is the role and its related object.

get_edges

The get_edges operation returns the edges in which the role participates.

The size of the list is determined by the how_many argument. If there are more e
than specified by the how_many argument, an iterator is created and returned. If
are no more edges, a nil object reference is returned for the iterator.

The EdgeIterator Interface

The EdgeIterator interface is returned by the get_edges operation defined by the
CosGraphs::Role interface. It allows clients to iterate through any additional
relationships in which the role participates.

Node create_node (in Object related_object);

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;
};
typedef sequence<Edge> Edges;

void get_edges (in long how_many,
out Edges the_edges,
out EdgeIterator the_rest);
9-46 CORBAservices March 1995

9

on

ees;
ny-to-
nced

ment
em as
next_one

The next_one operation returns the next edge; if no more edges exist, it returns false.

next_n

The next_n operation returns at most the requested number of edges.

destroy

The destroy operation destroys the iterator.

9.5 Specific Relationships

The Relationship Service defines two important relationships, containment and
reference as part of its specification. The example used throughout this specificati
has been in terms of these two relationships.

9.5.1 Containment and Reference

Containment is a one-to-many relationship. A container can contain many contain
a containee is contained by one container. Reference, on the other hand, is a ma
many relationship. An object can reference many objects; an object can be refere
by many objects.

Containment and reference are examples of relationships. However, since contain
and reference are very common relationships, the Relationship Service defines th
standard.

Containment is defined by interfaces for a relationship and two roles: the
CosContainment::Relationship interface, the CosContainment::ContainsRole interface,
and the CosContainment::ContainedInRole interface. Relationship is a subtype of
CosRelationships::Relationship and ContainedInRole and ContainsRole are subtypes
of CosGraphs::Role.

boolean next_one (out Edge the_edge);

boolean next_n (in unsigned long how_many,
out Edges the_edges);

void destroy ();
Externalization Service: v1.0 Specific Relationships March 1995 9-47

9

L
fines

e
Similarly, reference is defined by interfaces for a relationship and two roles: the
CosReference::Relationship interface, the CosReference::ReferencesRole interface,
and the CosReference::ReferencedByRole interface. Relationship is a subtype of
CosRelationships::Relationship and ReferencesRole and ReferencedByRole are
subtypes of CosGraphs::Role.

9.5.2 The CosContainment Module

The CosContainment module is shown in Figure 9-14.

The CosContainment module does not define new operations. It introduces new ID
types to represent containment. Although it does not add any new operations, it re
the semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise DegreeError if
the number of roles passed as arguments is not 2. It will raise RoleTypeError if th
roles are not CosContainment::ContainsRole and CosContainment::ContainedInRole. It
will raise MaxCardinalityExceeded if the CosContainment::ContainedInRole is already
participating in a relationship.

#include <Graphs.idl>

module CosContainment {

 interface Relationship :
 ::CosRelationships::Relationship {};

 interface ContainsRole : ::CosGraphs::Role {};

 interface ContainedInRole : ::CosGraphs::Role {};

};

Figure 9-20 The CosContainment Module

RelationshipFactory
attribute value

relationship_type CosContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosContainment::ContainsRole;
“ContainedInRole”,CosContainment::ContainedInRole
9-48 CORBAservices March 1995

9

ort the

ort the
The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosGraphs::Node interface. The CosRelationships::RoleFactory::link operation will
raise RelationshipTypeError if the rel parameter does not conform to the
CosContainment::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosGraphs::Node interface. The CosRelationships::RoleFactory::link operation will
raise RelationshipTypeError if the rel parameter does not conform to the
CosContainment::Relationship interface. The CosRelationships::RoleFactory::link
operation will raise MaxCardinalityExceeded if it is already participating in a
containment relationship.

9.5.3 The CosReference Module

The CosReference module is given in Figure 9-21.

RoleFactory attribute for
ContainsRole value

role_type CosContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ContainedInRole value

role_type CosContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosGraphs::Node

#include <Graphs.idl>

module CosReference {

interface Relationship :
::CosRelationships::Relationship {};

Figure 9-21 The CosReference Module
Externalization Service: v1.0 Specific Relationships March 1995 9-49

9

es
e

e

ort the
The CosReference module does not define new operations. It introduces new IDL typ
to represent reference. Although it does not add any new operations, it refines th
semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise DegreeError if
the number of roles passed as arguments is not 2. It will raise RoleTypeError if th
roles are not CosReference::ReferencesRole and CosReference::ReferencedByRole.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosGraphs::Node interface. The CosRelationships::RoleFactory::link operation will
raise RelationshipTypeError if the rel parameter does not conform to the
CosReference::Relationship interface.

interface ReferencesRole : CosGraphs::Role {};

interface ReferencedByRole : ::CosGraphs::Role {};

};

RelationshipFactory
attribute value

relationship_type CosReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosReference::ReferencesRole;
“ReferencedByRole”,CoReference::ReferencedByRole

RoleFactory attribute for
ReferencesRole value

role_type CosReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

Figure 9-21 The CosReference Module (Continued)
9-50 CORBAservices March 1995

9

ort the

iam
The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
CosGraphs::Node interface. The CosRelationships::RoleFactory::link operation will
raise RelationshipTypeError if the rel parameter does not conform to the
CosRelationship::Relationship interface.

9.6 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296.

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Will
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.
Externalization Service: v1.0 References March 1995 9-51

9

9-52 CORBAservices March 1995

Transaction Service Specification 10
n of
.

mer,

 terms.
This chapter provides the following information about the Transaction Service:

• A description of the service, which explains the functional, design, and
performance requirements that are satisfied by this specification.

• An overview of the Transaction Service that introduces the concepts used
throughout this chapter.

• A description of the Transaction Service’s architecture and a detailed definitio
the Transaction Service, including definitions of its interfaces and operations

• A user’s view of the Transaction Service as seen by the application program
including client and object implementer.

• An implementer’s view of the Transaction Service, which will interest
Transaction Service and ORB providers.

This chapter also contains an appendix that explains the relationship between the
Transaction Service and TP standards, and an appendix that contains transaction

Contents

This chapter contains the following sections.

Section Title Page

“Service Description 10-2

“Service Architecture 10-12

“Transaction Service Interfaces 10-17

“The User’s View 10-34

“The Implementers’ View 10-48
CORBAservices November 1997 10-1

10

 the

ed
der
re

 unit

ns.
ly.

ey

or
d
de by

 to
it all

ose
10.1 Service Description

The concept of transactions is an important programming paradigm for simplifying
construction of reliable and available applications, especially those that require
concurrent access to shared data. The transaction concept was first deployed in
commercial operational applications where it was used to protect data in centraliz
databases. More recently, the transaction concept has been extended to the broa
context of distributed computation. Today it is widely accepted that transactions a
the key to constructing reliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developing reliable distributed applications, and the object
paradigm, key to productivity and quality in application development, together to
address the business problems of commercial transaction processing.

10.1.1 Overview of Transactions

The Transaction Service supports the concept of a transaction. A transaction is a
of work that has the following (ACID) characteristics:

• A transaction is atomic; if interrupted by failure, all effects are undone (rolled
back).

• A transaction produces consistent results; the effects of a transaction preserve
invariant properties.

• A transaction is isolated; its intermediate states are not visible to other transactio
Transactions appear to execute serially, even if they are performed concurrent

• A transaction is durable; the effects of a completed transaction are persistent; th
are never lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed
rolled back. When a transaction is committed, all changes made by the associate
requests are made permanent. When a transaction is rolled back, all changes ma
the associated requests are undone.

The Transaction Service defines interfaces that allow multiple, distributed objects
cooperate to provide atomicity. These interfaces enable the objects to either comm
changes together or to rollback all changes together, even in the presence of
(noncatastrophic) failure. No requirements are placed on the objects other than th
defined by the Transaction Service interfaces.

“The CosTransactions Module 10-69

Appendix A “Relationship of Transaction Service to TP
Standards

10-74

Appendix B “Transaction Service Glossary 10-85

Section Title Page
10-2 CORBAservices November 1997

10

te

n-

s of a

e of
g

xt
s are
n

e
d

out

s the
ction
he

e
o
hen

ontext

:

Transaction semantics can be defined as part of any object that provides ACID
properties. Examples are ODBMSs and persistent objects. The value of a separa
transaction service is that it allows:

• Transactions to include multiple, separately defined, ACID objects.

• The possibility of transactions which include objects and resources from the no
object world.

10.1.2 Transactional Applications

The Transaction Service provides transaction synchronization across the element
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scop
a transaction is defined by a transaction context that is shared by the participatin
objects. The Transaction Service places no constraints on the number of objects
involved, the topology of the application or the way in which the application is
distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an
object defined by the Transaction Service), which establishes a transaction conte
associated with the client thread. The client then issues requests. These request
implicitly associated with the client’s transaction; they share the client’s transactio
context. Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a consequence of th
client’s requests would then be committed; otherwise, the changes would be rolle
back.

In this scenario, the transaction context is transmitted implicitly to the objects, with
direct client intervention—See “Application Programming Models” on page 10-34.
The Transaction Service also supports scenarios where the client directly control
propagation of the transaction context. For example, a client can pass the transa
context to an object as an explicit parameter in a request. An implementation of t
Transaction Service might limit the client’s ability to explicitly propagate the
transaction context, in order to guarantee transaction integrity (See “Application
Programming Models” on page 10-34, Subsection "Direct Context Management:
Explicit Propagation").

The Transaction Service does not require that all requests be performed within th
scope of a transaction. A request issued outside the scope of a transaction has n
associated transaction context. It is up to each object to determine its behavior w
invoked outside the scope of a transaction; an object that requires a transaction c
can raise a standard exception.

10.1.3 Definitions

Applications supported by the Transaction Service consist of the following entities

• Transactional Client (TC)

• Transactional Objects (TO)
Transaction Service: v1.1 Service Description November 1997 10-3

10

nts.

y
• Recoverable Objects

• Transactional Servers

• Recoverable Servers

The following figure shows a simple application which includes these basic eleme

Figure 10-1 Application Including Basic Elements

Transactional Client

A transactional client is an arbitrary program that can invoke operations of many
transactional objects in a single transaction.

The program that begins a transaction is called the transaction originator.

Transactional Object

We use the term transactional object to refer to an object whose behavior is affected
by being invoked within the scope of a transaction. A transactional object typicall
contains or indirectly refers to persistent data that can be modified by requests.

transaction completion,
may force rollbackmay force rollback

transaction completion

Transaction Service

Distributed

transaction
context

Client/Server Application

Participates in

Resource

Recoverable
Server

Transactional
Server

Transactional
Client

Transactional
Operation

Transactional
Operation

begin or
 end

not involved in
transaction completion,

registers resource in

transaction

Transactional
Object Object

Recoverable
10-4 CORBAservices November 1997

10

avior,

ests

s

es
done

ut not
est.

n be

ls

it
bject

n be

lient

s so

es

d to
n a
ed on
The Transaction Service does not require that all requests have transactional beh
even when issued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requ
but not others.

We use the term nontransactional object to refer to an object none of whose operation
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the chang
produced by the request might not survive a failure and the changes will not be un
if the transaction associated with the request is rolled back.

An object can also choose to support transactional behavior for some requests b
others. This choice can be exercised by both the client and the server of the requ

The Transaction Service permits an interface to have both transactional and
nontransactional implementations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional behavior ca
a quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:

• Transactional Server

• Recoverable Server

Recoverable Objects and Resource Objects

To implement transactional behavior, an object must participate in certain protoco
defined by the Transaction Service. These protocols are used to ensure that all
participants in the transaction agree on the outcome (commit or rollback) and to
recover from failures.

To be more precise, an object is required to participate in these protocols only if
directly manages data whose state is subject to change within a transaction. An o
whose data is affected by committing or rolling back a transaction is called a
recoverable object.

A recoverable object is by definition a transactional object. However, an object ca
transactional but not recoverable by implementing its state using some other
(recoverable) object. A client is concerned only that an object is transactional; a c
cannot tell whether a transactional object is or is not a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It doe
by registering an object called a Resource with the Transaction Service. The
Transaction Service drives the commit protocol by issuing requests to the resourc
registered for a transaction.

A recoverable object typically involves itself in a transaction because it is require
retain in stable storage certain information at critical times in its processing. Whe
recoverable object restarts after a failure, it participates in a recovery protocol bas
the contents (or lack of contents) of its stable storage.
Transaction Service: v1.1 Service Description November 1997 10-5

10

ire

cted

l
e

le.

tions
uired

n of
pen
A transaction can be used to coordinate non-durable activities which do not requ
permanent changes to storage.

Transactional Server

A transactional server is a collection of one or more objects whose behavior is affe
by the transaction, but which have no recoverable states of their own. Instead, it
implements transactional changes using other recoverable objects. A transactiona
server does not participate in the completion of the transaction, but it can force th
transaction to be rolled back.

Recoverable Server

A recoverable server is a collection of objects, at least one of which is recoverab

A recoverable server participates in the protocols by registering one or more Resource
objects with the Transaction Service. The Transaction Service drives the commit
protocol by issuing requests to the resources registered for a transaction.

10.1.4 Transaction Service Functionality

The Transaction Service provides operations to:

• Control the scope and duration of a transaction

• Allow multiple objects to be involved in a single, atomic transaction

• Allow objects to associate changes in their internal state with a transaction

• Coordinate the completion of transactions

Transaction Models

The Transaction Service supports two distributed transaction models: flat transac
and nested transactions. An implementation of the Transaction Service is not req
to support nested transactions.

Flat Transactions

The Transaction Service defines support for a flat transaction model. The definitio
the function provided, and the commitment protocols used, is modelled on the X/O
DTP transaction model definition.1

A flat transaction is considered to be a top-level transaction—see the next
section—that cannot have a child transaction.

1. See Distributed Transaction Processing: The XA Specification, X/Open Document C193. X/Open Company Ltd.,
Reading, U.K., ISBN 1-85912-057-1.
10-6 CORBAservices November 1997

10

tions
res
d not

 in an

ildren

g. The
e

on

.
s to

a
 has

ion.
rallel,

tion.
the

w
hich
Nested Transactions

The Transaction Service also defines a nested transaction model. Nested transac
provide for a finer granularity of recovery than flat transactions. The effect of failu
that require rollback can be limited so that unaffected parts of the transaction nee
rollback.

Nested transactions allow an application to create a transaction that is embedded
existing transaction. The existing transaction is called the parent of the subtransaction;
the subtransaction is called a child of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The ch
of one parent are called siblings.

Subtransactions can be embedded in other subtransactions to any level of nestin
ancestors of a transaction are the parent of the subtransaction and (recursively) th
parents of its ancestors. The descendants of a transaction are the children of the
transaction and (recursively) the children of its descendants.

A top-level transaction is one with no parent. A top-level transaction and all of its
descendants are called a transaction family.

A subtransaction is similar to a top-level transaction in that the changes made on
behalf of a subtransaction are either committed in their entirety or rolled back.
However, when a subtransaction is committed, the changes remain contingent up
commitment of all of the transaction’s ancestors.

Subtransactions are strictly nested. A transaction cannot commit unless all of its
children have completed. When a transaction is rolled back, all of its children are
rolled back.

Objects that participate in transactions must support isolation of transactions. The
concept of isolation applies to subtransactions as well as to top level transactions
When a transaction has multiple children, the children appear to other transaction
execute serially, even if they are performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within
subtransaction fails, only the subtransaction is rolled back. The parent transaction
the opportunity to correct or compensate for the problem and complete its operat
Subtransactions can also be used to perform suboperations of a transaction in pa
without the risk of inconsistent results.

Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transac
Typically, a transaction is terminated by the client that originated the transaction—
transaction originator. Some implementations of the Transaction Service may allo
transactions to be terminated by Transaction Service clients other than the one w
created the transaction.
Transaction Service: v1.1 Service Description November 1997 10-7

10

ally).

a
rs

of the

s is

cked
f a

ll

rt of
mers

ides

on

l,
Any participant in a transaction can force the transaction to be rolled back (eventu
If a transaction is rolled back, all participants rollback their changes. Typically, a
participant may request the rollback of the current transaction after encountering
failure. It is implementation-specific whether the Transaction Service itself monito
the participants in a transaction for failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints on the use
Transaction Service interfaces in order to guarantee integrity equivalent to that
provided by the interfaces which support the X/Open DTP transaction model. Thi
called checked transaction behavior.

For example, allowing a transaction to commit before all computations acting on
behalf of the transaction have completed can lead to a loss of data integrity. Che
implementations of the Transaction Service will prevent premature commitment o
transaction.

Other implementations of the Transaction Service may rely completely on the
application to provide transaction integrity. This is called unchecked transaction
behavior.

Transaction Context

As part of the environment of each ORB-aware thread, the ORB maintains a
transaction context. The transaction context associated with a thread is either nu
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environment or in multiple
execution environments.

The transaction context can be implicitly transmitted to transactional objects as pa
a transactional operation invocation. The Transaction Service also allows program
to pass a transaction context as an explicit parameter of a request.

Synchronization

The Transaction Service defines support for a synchronization interface. This prov
a protocol by which an object may be notified prior to the start of the two-phase
commit protocol within the coordinator with which it is registered. An implementati
of the Transaction Service is not required to support synchronization.

10.1.5 Principles of Function, Design, and Performance

The Transaction Service defined in this specification fulfills a number of functiona
design, and performance requirements.
10-8 CORBAservices November 1997

10

he

erve
sfully

re on
 will

ction

n

.

d

on-

ere
y.

tion
ORB.
Functional Requirements

The Transaction Service defined in this specification addresses the following
functional requirements:

Support for multi ple transaction models. The flat transaction model, which is widely
supported in the industry today, is a mandatory component of this specification. T
nested transaction model, which provides finer granularity isolation and facilitates
object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is the ability
to “wrapper” existing programs (coarse grain objects) to allow these functions to s
as building blocks for new business applications. This technique has been succes
used to marry object-oriented end-user interfaces with commercial business logic
implemented using classical procedural techniques.

It can similarly be used to encapsulate the large body of existing business softwa
legacy environments and leverage that in building new business applications. This
allow customers to gradually deploy object technology into their existing
environments, without having to reimplement all existing business functions.

Model Interoperabilit y. Customers desire the capability to add object
implementations to existing procedural applications and to augment object
implementations with code that uses the procedural paradigm. To do so in a transa
environment requires that a single transaction be shared by both the object and
procedural code. This includes the following:

• A single transaction which includes ORB and non-ORB applications and
resources.

• Interoperability between the object transaction service model and the X/Ope
Distributed Transaction Processing (DTP) model.

• Access to existing (non-object) programs and resource managers by objects

• Access to objects by existing programs and resource managers.

• Coordination by a single transaction service of the activities of both object an
non-object resource managers.

• The network case: A single transaction, distributed between an object and n
object system, each of which has its own Transaction Service.

The Transaction Service accommodates this requirement for implementations wh
interoperability with X/Open DTP-compliant transactional applications is necessar

Network Intero perabilit y. Customers require the ability to interoperate between
systems offered by multiple vendors:

• Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate with itself using a single ORB.

• Multiple transaction services, single ORB - It must be possible for one transac
service to interoperate with a cooperating transaction service using a single

• Single transaction service, multiple ORBs - It must be possible for a single
transaction service to interoperate with itself using different ORBs.
Transaction Service: v1.1 Service Description November 1997 10-9

10

ng

n.

ects

d
l

al
ing
f
action

,
easy

hat

m
• Multiple transaction services, multiple ORBs - It must be possible for one
transaction service to interoperate with a cooperating transaction service usi
different ORBs.

The Transaction Service specifies all required interactions between cooperating
Transaction Service implementations necessary to support a single ORB. The
Transaction Service depends on ORB interoperability (as defined by the CORBA
specification) to provide cooperating Transaction Services across different ORBs.

Flexible transaction propagation control. Both client and object implementations
can control transaction propagation:

• A client controls whether or not its transaction is propagated with an operatio

• A client can invoke operations on objects with transactional behavior and obj
without transactional behavior within the scope of a single transaction.

• An object can specify transactional behavior for its interfaces.

The Transaction Service supports both implicit (system-managed) propagation an
explicit (application-managed) propagation. With implicit propagation, transactiona
behavior is not specified in the operation’s signature. With explicit propagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors . Customers need object technology to build mission-critic
applications. These applications are deployed on commercial transaction process
systems where a TP Monitor provides both efficient scheduling and the sharing o
resources by a large number of users. It must be possible to implement the Trans
Service in a TP monitor environment. This includes:

• The ability to execute multiple transactions concurrently.

• The ability to execute clients, servers, and transaction services in separate
processes.

The Transaction Service is usable in a TP Monitor environment.

Design Requirements

The Transaction Service supports the following design requirements:

Exploitation of OO Technology. This specification permits a wide variety of ORB
and Transaction Service implementations and uses objects to enable ORB-based
secure implementations. The Transaction Service provides the programmer with
to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applications can be constructed using interfaces t
are as simple or simpler than their procedural equivalents.

Low Im plementation Cost. The Transaction Service specification considers cost fro
the perspective of three users of the service - clients, ORB implementers, and
Transaction Service providers.
10-10 CORBAservices November 1997

10

ms

o
ot

sting

rvice
n

tions.
at

ing
 same
ions

avior
nces
ot

are
vers
et

ent
e

eas:
• For clients, it allows a range of implementations which are compliant with the
proposed architecture. Many ORB implementations will exist in client
workstations which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platfor
that implement transactions.

• The specification provides for minimal impact to the ORB. Where feasible,
function is assigned to an object service implementation to permit the ORB t
continue to provide high performance object access when transactions are n
used.

• Since this Transaction Service will be supported by existing (procedural)
transaction managers, the specification allows implementations that reuse exi
procedural Transaction Managers.

Portabilit y. The Transaction Service specification provides for portability of
applications. It also defines an interface between the ORB and the Transaction Se
that enables individual Transaction Service implementations to be ported betwee
different ORB implementations.

Avoidance of OMG IDL interface variants. The Transaction Service allows a single
interface to be supported by both transactional and non-transactional implementa
This approach avoids a potential “combinatorial explosion” of interface variants th
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threaded and multi-threaded implementations. The
Transaction Service defines a flexible model that supports a variety of programm
styles. For example, a client with an active transaction can make requests for the
transaction on multiple threads. Similarly, an object can support multiple transact
in parallel by using multiple threads.

A wide spectrum of implementation choices. The Transaction Service allows
implementations to choose the degree of checking provided to guarantee legal beh
of its users. This permits both robust implementations which provide strong assura
for transaction integrity and lightweight implementations where such checks are n
warranted.

Performance Requirements

The Transaction Service is expected to be implemented on a wide range of hardw
and software platforms ranging from desktop computers to massively parallel ser
and in networks ranging in size from a single LAN to worldwide networks. To me
this wide range of requirements, consideration must be given to algorithms which
scale, efficient communications, and the number and size of accesses to perman
storage. Much of this is implementation, and therefore not visible to the user of th
service. Nevertheless, the expected performance of the Transaction Service was
compared to its procedural equivalent, the X/Open DTP model in the following ar

• The number of network messages required.

• The number of disk accesses required.

• The amount of data logged.
Transaction Service: v1.1 Service Description November 1997 10-11

10

r

ction
n.

ed

a

ister

The objective of the specification was to achieve parity with the X/Open model fo
equivalent function, where technically feasible.

10.2 Service Architecture

Figure 10-2 illustrates the major components and interfaces defined by the Transa
Service. The transaction originator is an arbitrary program that begins a transactio
The recoverable server implements an object with recoverable state that is invok
within the scope of the transaction, either directly by the transaction originator or
indirectly through one or more transactional objects.

The transaction originator creates a transaction using a TransactionFactory; a Control
is returned that provides access to a Terminator and a Coordinator. The transaction
originator uses the Terminator to commit or rollback the transaction. The Coordinator
is made available to recoverable servers, either explicitly or implicitly (by implicitly
propagating a transaction context with a request). A recoverable server registers
Resource with the Coordinator. The Resource implements the two-phase commit
protocol which is driven by the Transaction Service. A recoverable server may reg
a Synchronization with the Coordinator. The Synchronization implements a dependent
object protocol driven by the Transaction Service. A recoverable server can also
register a specialized resource called a SubtransactionAwareResource to track the
completion of subtransactions. A Resource uses a RecoveryCoordinator in certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most applications use the Current pseudo object, which provides
access to an implicit per-thread transaction context.

Transaction Service

(transmitted with request)

transaction originator

SubtransactionAwareResource

transaction
context

transaction
context

(associated with thread)

transaction
context

(associated with thread)

Control

Resource

Figure 10-2 Major Components and Interfaces of the Transaction Service

TransactionFactory

Current CurrentTerminator
Coordinator

Control

recoverable server

RecoveryCoordinator

Synchronization
10-12 CORBAservices November 1997

10

action
ead
text

s
bject

each

ata.

d.
col

ame

est on
iated
ued

lities
n

uest
10.2.1 Typical Usage

A typical transaction originator uses the Current object to begin a transaction, which
becomes associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve
transactional objects. When a request is issued to a transactional object, the trans
context associated with the invoking thread is automatically propagated to the thr
executing the method of the target object. No explicit operation parameter or con
declaration is required to transmit the transaction context. Propagation of the
transaction context can extend to multiple levels if a transactional object issues a
request to a transactional object.

Using the Current object, the transactional object can unilaterally rollback the
transaction and can inquire about the current state of the transaction. Using the Current
object, the transactional object also can obtain a Coordinator for the current
transaction. Using the Coordinator, a transactional object can determine the
relationship between two transactions, to implement isolation among multiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object ha
persistent data that must be managed as part of the transaction. A recoverable o
uses the Coordinator to register a Resource object as a participant in the transaction.
The resource represents the recoverable object’s participation in the transaction;
resource is implicitly associated with a single transaction. The Coordinator uses the
resource to perform the two-phase commit protocol on the recoverable object’s d

After the computations involved in the transaction have been completed, the
transaction originator uses the Current object to request that the changes be committe
The Transaction Service commits the transaction using a two-phase commit proto
wherein a series of requests are issued to the registered resources.

10.2.2 Transaction Context

The transaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted for multiple threads to be associated with the same transaction at the s
time.

When a thread in an object server is used by an object adapter to perform a requ
a transactional object, the object adapter initializes the transaction context assoc
with that thread by effectively copying the transaction context of the thread that iss
the request. An implementation of the Transaction Service may restrict the capabi
of the new transaction context. For example, an implementation of the Transactio
Service might not permit the object server thread to request commitment of the
transaction.

The object adapter is not required to initialize the transaction context of every req
handler. It is required to initialize the transaction context only if the interface
supported by the target object is derived from the TransactionalObject interface.
Otherwise, the initial transaction context of the thread is undefined.
Transaction Service: v1.1 Service Architecture November 1997 10-13

10

eption
s
tions”
ise

 of
s) so

 to the
rred

ar

ntext
ction

e

an be

all
nable

ad.

s

,
When a thread retrieves the response to a deferred synchronous request, an exc
may be raised if the thread is no longer associated with the transaction that it wa
associated with when the deferred synchronous request was issued. (See “Excep
on page 10-16, subsection “WRONG_TRANSACTION Exception” for a more prec
definition.)

When nested transactions are used, the transaction context remembers the stack
nested transactions started within a particular execution environment (e.g., proces
that when a subtransaction ends, the transaction context of the thread is restored
context in effect when the subtransaction was begun. When the context is transfe
between execution environments, the received context refers only to one particul
transaction, not a stack of transactions.

10.2.3 Context Management

The Transaction Service supports management and propagation of transaction co
using objects provided by the Transaction Service. Using this approach, the transa
originator issues a request to a TransactionFactory to begin a new top-level
transaction. The factory returns a Control object specific to the new transaction that
allows an application to terminate the transaction or to become a participant in th
transaction (by registering a Resource). An application can propagate a transaction
context by passing the Control as an explicit request parameter.

The Control does not directly support management of the transaction. Instead, it
supports operations that return two other objects, a Terminator and a Coordinator. The
Terminator is used to commit or rollback the transaction. The Coordinator is used to
enable transactional objects to participate in the transaction. These two objects c
propagated independently, allowing finer granularity control over propagation.

An implementation of the Transaction Service may restrict the ability for some or
of these objects to be transmitted to or used in other execution environments, to e
it to guarantee transaction integrity.

An application can also use the Current object operations get_control, suspend, and
resume to obtain or change the implicit transaction context associated with its thre

When nested transactions are used, a Control can include a stack of nested transaction
begun in the same execution environment. When a Control is transferred between
execution environments, the received Control refers only to one particular transaction
not a stack of transactions.
10-14 CORBAservices November 1997

10
10.2.4 Datatypes

The CosTransactions module defines the following datatypes:

10.2.5 Structures

The CosTransactions module defines the following structures:

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

struct otid_t {
long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};
Transaction Service: v1.1 Service Architecture November 1997 10-15

10

 of

made
al

ill

 rolled

se
een
10.2.6 Exceptions

Standard Exceptions

The CosTransactions module adds new standard exceptions to CORBA for
TRANSACTION_REQUIRED, TRANSACTION_ROLLEDBACK, and
INVALID_TRANSACTION. These exceptions are defined in Chapter 3, Section 3.15
the Common Object Request Broker: Architecture and Specification.

Heuristic Exceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. Heuristic decisions are normally
only in unusual circumstances, such as communication failures, that prevent norm
processing. When a heuristic decision is taken, there is a risk that the decision w
differ from the consensus outcome, resulting in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting incorrect
heuristic decisions or the possibility of incorrect heuristic decisions:

HeuristicRollback Exception

The commit operation on Resource raises the HeuristicRollback exception to report that a
heuristic decision was made and that all relevant updates have been rolled back.

HeuristicCommit Exception

The rollback operation on Resource raises the HeuristicCommit exception to report that a
heuristic decision was made and that all relevant updates have been committed.

HeuristicMixed Exception

A request raises the HeuristicMixed exception to report that a heuristic decision was
made and that some relevant updates have been committed and others have been
back.

HeuristicHazard Exception

A request raises the HeuristicHazard exception to report that a heuristic decision may
have been made, the disposition of all relevant updates is not known, and for tho
updates whose disposition is known, either all have been committed or all have b
rolled back. (In other words, the HeuristicMixed exception takes priority over the
HeuristicHazard exception.)

exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};
10-16 CORBAservices November 1997

10

n
quest.

ions
s:

n
se the
WRONG_TRANSACTION Exception

The CosTransactions module adds the WRONG_TRANSACTION exception that ca
be raised by the ORB when returning the response to a deferred synchronous re
This exception is defined in Chapter 4 of the Common Object Request Broker:
Architecture and Specification.

Other Exceptions

The CosTransactions module defines the following additional exceptions:

These exceptions are described below along with the operations that raise them.

10.3 Transaction Service Interfaces

The interfaces defined by the Transaction Service reside in the CosTransactions
module. (OMG IDL for the CosTransactions module is shown in “The CosTransact
Module” on page 10-69.) The interfaces for the Transaction Service are as follow

• Current

• TransactionFactory

• Terminator

• Coordinator

• RecoveryCoordinator

• Resource

• Synchronization

• Subtransaction Aware Resource

• Transactional Object

No operations are defined in these interfaces for destroying objects. No applicatio
actions are required to destroy objects that support the Transaction Service becau
Transaction Service destroys its own objects when they are no longer needed.

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-17

10

ice

for
nd to

vior

d by

ould

d so
ntly
10.3.1 Current Interface

The Current interface defines operations that allow a client of the Transaction Serv
to explicitly manage the association between threads and transactions. The Current
interface also defines operations that simplify the use of the Transaction Service
most applications. These operations can be used to begin and end transactions a
obtain information about the current transaction.

The Current interface is designed to be supported by a pseudo object whose beha
depends upon and may alter the transaction context associated with the invoking
thread. It may be shared with other object services (e.g., security) and is obtaine
using a resolve initial references(“TransactionCurrent”) operation on the CORBA::ORB
interface. Current supports the following operations:

Note – In order to pass the transaction from one thread to another, a program sh
not use the Current object. It should pass the Control object to the other thread.

begin

A new transaction is created. The transaction context of the client thread is modifie
that the thread is associated with the new transaction. If the client thread is curre
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otherwise, the new transaction is a top-level transaction.

interface Current : CORBA::Current {
void begin()

raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)

raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};
10-18 CORBAservices November 1997

10

port

 the

ct of

may

, the

ct of

so
uest
The SubtransactionsUnavailable exception is raised if the client thread already has an
associated transaction and the Transaction Service implementation does not sup
nested transactions.

commit

If there is no transaction associated with the client thread, the NoTransaction exception
is raised. If the client thread does not have permission to commit the transaction,
standard exception NO_PERMISSION is raised. (The commit operation may be restricted
to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effe
this request is equivalent to performing the commit operation on the corresponding
Terminator object (see “Terminator Interface” on page 10-23); see “Terminator
Interface and “Exceptions” on page 10-16 for a description of the exceptions that
be raised.

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request. Otherwise,
the thread’s transaction context is set to null.

rollback

If there is no transaction associated with the client thread, the NoTransaction exception
is raised. If the client thread does not have permission to rollback the transaction
standard exception NO_PERMISSION is raised. (The rollback operation may be restricted
to the transaction originator in some implementations; however, the rollback_only
operation, described below, is available to all transaction participants.)

Otherwise, the transaction associated with the client thread is rolled back. The effe
this request is equivalent to performing the rollback operation on the corresponding
Terminator object (see “Terminator Interface” on page 10-23).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request. Otherwise,
the thread’s transaction context is set to null.

rollback_only

If there is no transaction associated with the client thread, the NoTransaction exception
is raised. Otherwise, the transaction associated with the client thread is modified
that the only possible outcome is to rollback the transaction. The effect of this req
is equivalent to performing the rollback_only operation on the corresponding
Coordinator object (see “Coordinator Interface” on page 10-24).
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-19

10

ted

rned.

cts

ext

scope
st

e

scope
st

ith no
get_status

If there is no transaction associated with the client thread, the StatusNoTransaction value
is returned. Otherwise, this operation returns the status of the transaction associa
with the client thread. The effect of this request is equivalent to performing the
get_status operation on the corresponding Coordinator object (see “Coordinator
Interface” on page 10-24).

get_transaction_name

If there is no transaction associated with the client thread, an empty string is retu
Otherwise, this operation returns a printable string describing the transaction. The
returned string is intended to support debugging. The effect of this request is
equivalent to performing the get_transaction_name operation on the corresponding
Coordinator object (see “Coordinator Interface” on page 10-24).

set_timeout

This operation modifies a state variable associated with the target object that affe
the time-out period associated with top-level transactions created by subsequent
invocations of the begin operation. If the parameter has a nonzero value n, then top-
level transactions created by subsequent invocations of begin will be subject to being
rolled back if they do not complete before n seconds after their creation. If the
parameter is zero, then no application specified time-out is established.

get_control

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, a Control object is returned that represents the transaction cont
currently associated with the client thread. This object can be given to the resume
operation to reestablish this context in the same thread or a different thread. The
within which this object is valid is implementation dependent; at a minimum, it mu
be usable by the client thread. This operation is not dependent on the state of th
transaction; in particular, it does not raise the TRANSACTION_ROLLEDBACK
exception.

suspend

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that represents the transaction context
currently associated with the client thread. This object can be given to the resume
operation to reestablish this context in the same thread or a different thread. The
within which this object is valid is implementation dependent; at a minimum, it mu
be usable by the client thread. In addition, the client thread becomes associated w
transaction. This operation is not dependent on the state of the transaction; in
particular, it does not raise the TRANSACTION_ROLLEDBACK exception.
10-20 CORBAservices November 1997

10

ith no
ent,
us

e

n

, it

ro,

resume

If the parameter is a null object reference, the client thread becomes associated w
transaction. Otherwise, if the parameter is valid in the current execution environm
the client thread becomes associated with that transaction (in place of any previo
transaction). Otherwise, the InvalidControl exception is raised. See “Control Interface”
on page 10-22 for a discussion of restrictions on the scope of a Control. This operation
is not dependent on the state of the transaction; in particular, it does not raise th
TRANSACTION_ROLLEDBACK exception.

10.3.2 TransactionFactory Interface

The TransactionFactory interface is provided to allow the transaction originator to
begin a transaction. This interface defines two operations, create and recreate, which
create a new representation of a top-level transaction. A TransactionFactory is located
using the FactoryFinder interface of the life cycle service and not by the
resolve_initial_reference operation on the ORB interface defined in “Example Object
Adapters” in Chapter 2 of the Common Object Request Broker: Architecture and
Specification.

create

A new top-level transaction is created and a Control object is returned. The Control
object can be used to manage or to control participation in the new transaction. A
implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum
can be used by the client thread.

If the parameter has a nonzero value n, then the new transaction will be subject to being
rolled back if it does not complete before n seconds have elapsed. If the parameter is ze
then no application specified time-out is established.

recreate

A new representation is created for an existing transaction defined by the
PropagationContext and a Control object is returned. The Control object can be used
to manage or to control participation in the transaction. An implementation of the
Transaction Service which supports interposition (see “ORB/TS Implementation
Considerations” on page 10-60) uses recreate to create a new representation of the
transaction being imported, subordinate to the representation in ctx. The recreate
operation can also be used to import a transaction which originated outside of the
Transaction Service.

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-21

10

tion

o
ing
 that

, it

o

, it

, it
10.3.3 Control Interface

The Control interface allows a program to explicitly manage or propagate a transac
context. An object supporting the Control interface is implicitly associated with one
specific transaction.

The Control interface defines two operations, get_terminator and get_coordinator. The
get_terminator operation returns a Terminator object, which supports operations to end
the transaction. The get_coordinator operation returns a Coordinator object, which
supports operations needed by resources to participate in the transaction. The tw
objects support operations that are typically performed by different parties. Provid
two objects allows each set of operations to be made available only to the parties
require those operations.

A Control object for a transaction is obtained using the operations defined by the
TransactionFactory interface or the create_subtransaction operation defined by the
Coordinator interface. It is possible to obtain a Control object for the current
transaction (associated with a thread) using the get_control or suspend operations defined
by the Current interface (see “Current Interface” on page 10-18). (These two
operations return a null object reference if there is no current transaction.)

An implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum
can be used within a single thread.

get_terminator

An object is returned that supports the Terminator interface. The object can be used t
rollback or commit the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Terminator
object to be transmitted to or used in other execution environments; at a minimum
can be used within the client thread.

get_coordinator

An object is returned that supports the Coordinator interface. The object can be used
to register resources for the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Coordinator
object to be transmitted to or used in other execution environments; at a minimum
can be used within the client thread.

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};
10-22 CORBAservices November 1997

10

 the
nates

ent

.

he
e
eted.

de in
s or
er
urces.

scope
d
tions
10.3.4 Terminator Interface

The Terminator interface supports operations to commit or rollback a transaction.
Typically, these operations are used by the transaction originator.

An implementation of the Transaction Service may restrict the scope in which a
Terminator can be used; at a minimum, it can be used within a single thread.

commit

If the transaction has not been marked rollback only, and all of the participants in
transaction agree to commit, the transaction is committed and the operation termi
normally. Otherwise, the transaction is rolled back (as described below) and the
TRANSACTION_ROLLEDBACK standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report inconsist
or possibly inconsistent outcomes using the HeuristicMixed and HeuristicHazard
exceptions (defined in “Exceptions” on page 10-16). A Transaction Service
implementation may optionally use the Event Service to report heuristic decisions

The commit operation may rollback the transaction if there are subtransactions of t
transaction that have not themselves been committed or rolled back or if there ar
existing or potential activities associated with the transaction that have not compl
The nature and extent of such error checking is implementation-dependent.

When a top-level transaction is committed, all changes to recoverable objects ma
the scope of this transaction are made permanent and visible to other transaction
clients. When a subtransaction is committed, the changes are made visible to oth
related transactions as appropriate to the degree of isolation enforced by the reso

rollback

The transaction is rolled back.

When a transaction is rolled back, all changes to recoverable objects made in the
of this transaction (including changes made by descendant transactions) are rolle
back. All resources locked by the transaction are made available to other transac
as appropriate to the degree of isolation enforced by the resources.

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-23

10

of
e
10.3.5 Coordinator Interface

The Coordinator interface provides operations that are used by participants in a
transaction. These participants are typically either recoverable objects or agents
recoverable objects, such as subordinate coordinators. Each object supporting th
Coordinator interface is implicitly associated with a single transaction.

.

An implementation of the Transaction Service may restrict the scope in which a
Coordinator can be used; at a minimum, it can be used within a single thread.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

};

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

PropagationContext get_txcontext ()
raises(Unavailable);

};
10-24 CORBAservices November 1997

10

ect:

tive
d and
ack.

een

tion

me
e

.

g for

to
 for

he
to
 for

 this
e
get_status

This operation returns the status of the transaction associated with the target obj

• StatusActive - A transaction is associated with the target object and it is in the ac
state. An implementation returns this status after a transaction has been starte
prior to a coordinator issuing any prepares unless it has been marked for rollb

• StatusMarkedRollback - A transaction is associated with the target object and has b
marked for rollback, perhaps as the result of a rollback_only operation.

• StatusPrepared - A transaction is associated with the target object and has been
prepared (i.e., all subordinates have responded VoteCommit). The target object may
be waiting for a superior’s instructions as to how to proceed.

• StatusCommitted - A transaction is associated with the target object and it has
completed commitment. It is likely that heuristics exists; otherwise, the transac
would have been destroyed and StatusNoTransaction returned.

• StatusRolledBack - A transaction is associated with the target object and the outco
has been determined as rollback. It is likely that heuristics exists, otherwise th
transaction would have been destroyed and StatusNoTransaction returned.

• StatusUnknown - A transaction is associated with the target object, but the
Transaction Service cannot determine its current status. This is a transient
condition, and a subsequent invocation will ultimately return a different status.

• StatusNoTransaction - No transaction is currently associated with the target object
This will occur after a transaction has completed.

• StatusPreparing - A transaction is associated with the target object and it is the
process of preparing. An implementation returns this status if it has started
preparing, but has not yet completed the process, probably because it is waitin
responses to prepare from one or more resources.

• StatusCommitting - A transaction is associated with the target object and is in the
process of committing. An implementation returns this status if it has decided
commit, but has not yet completed the process, probably because it is waiting
responses from one or more resources.

• StatusRollingBack - A transaction is associated with the target object and it is in t
process of rolling back. An implementation returns this status if it has decided
rollback, but has not yet completed the process, probably because it is waiting
responses from one or more resources.

get_parent_status

If the transaction associated with the target object is a top-level transaction, then
operation is equivalent to the get_status operation. Otherwise, this operation returns th
status of the parent of the transaction associated with the target object.
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-25

10

ciated
on is

ect

et

2 or

et

or of

et
ction
 that

et
o

bject.

get_top_level_status

This operation returns the status of the top-level ancestor of the transaction asso
with the target object. If the transaction is a top-level transaction, then this operati
equivalent to the get_status operation.

is_same_transaction

This operation returns true if, and only if, the target object and the parameter obj
both refer to the same transaction.

is_ancestor_transaction

This operation returns true if, and only if, the transaction associated with the targ
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction T2 if and only if T1 is the same as T
T1 is an ancestor of the parent of T2.

is_descendant_transaction

This operation returns true if, and only if, the transaction associated with the targ
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if, and only if, T2 is an ancest
T1 (see above).

is_related_transaction

This operation returns true if, and only if, the transaction associated with the targ
object is related to the transaction associated with the parameter object. A transa
T1 is related to a transaction T2 if, and only if, there exists a transaction T3 such
T3 is an ancestor of T1 and T3 is an ancestor of T2.

is_top_level_transaction

This operation returns true if, and only if, the transaction associated with the targ
object is a top-level transaction. A transaction is a top-level transaction if it has n
parent.

hash_transaction

This operation returns a hash code for the transaction associated with the target o
Each transaction has a single hash code. Hash codes for transactions should be
uniformly distributed.
10-26 CORBAservices November 1997

10

e will
ction.

eption

et
h the
on’s
 in the
ll not

g

es
the
y

ill be
re

tion.
hash_top_level_tran

This operation returns the hash code for the top-level ancestor of the transaction
associated with the target object. This operation is equivalent to the hash_transaction
operation when the transaction associated with the target object is a top-level
transaction.

register_resource

This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transaction is terminated, the resourc
receive requests to commit or rollback the updates performed as part of the transa
These requests are described in the description of the Resource interface. The Inactive
exception is raised if the transaction has already been prepared. The standard exc
TRANSACTION_ROLLEDBACK may be raised if the transaction has been marked
rollback only.

If the resource is a subtransaction aware resource (it supports the
SubtransactionAwareResource interface) and the transaction associated with the targ
object is a subtransaction, then this operation registers the specified resource wit
subtransaction and indirectly with the top-level transaction when the subtransacti
ancestors have completed. Otherwise, the resource is registered as a participant
current transaction. If the current transaction is a subtransaction, the resource wi
receive prepare or commit requests until the top-level ancestor terminates.

This operation returns a RecoveryCoordinator that can be used by this resource durin
recovery.

register_synchronization

This operation registers the specified Synchronization object such that it will be
notified to perform necessary processing prior to prepare being driven to resourc
registered with this Coordinator. These requests are described in the description of
Synchronization interface. The Inactive exception is raised if the transaction has alread
been prepared. The SynchronizationUnavailable exception is raised if the Coordinator
does not support synchronization. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the transaction has been marked
rollback only.

register_subtran_aware

This operation registers the specified subtransaction aware resource such that it w
notified when the subtransaction has committed or rolled back. These requests a
described in the description of the SubtransactionAwareResource interface.

Note that this operation registers the specified resource only with the subtransac
This operation cannot be used to register the resource as a participant in the
transaction.
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-27

10

r)

nly.

sible

h the

the
en

t

he
ility
.

n

ses
The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. The Inactive exception is raised if the subtransaction (or any ancesto
has already been terminated. The standard exception TRANSACTION_ROLLEDBACK
may be raised if the subtransaction (or any ancestor) has been marked rollback o

rollback_only

The transaction associated with the target object is modified so that the only pos
outcome is to rollback the transaction. The Inactive exception is raised if the transaction
has already been prepared.

get_transaction_name

This operation returns a printable string describing the transaction associated wit
target object. The returned string is intended to support debugging.

create_subtransaction

A new subtransaction is created whose parent is the transaction associated with
target object. The Inactive exception is raised if the target transaction has already be
prepared. An implementation of the Transaction Service is not required to suppor
nested transactions. If nested transactions are not supported, the exception
SubtransactionsUnavailable is raised.

The create_subtransaction operation returns a Control object, which enables the
subtransaction to be terminated and allows recoverable objects to participate in t
subtransaction. An implementation of the Transaction Service may restrict the ab
for the Control object to be transmitted to or used in other execution environments

get_txcontext

The get_txcontext operation returns a PropagationContext object, which is used by one
Transaction Service domain to export the current transaction to a new Transactio
Service domain. An implementation of the Transaction Service may also use the
PropagationContext to assist in the implementation of the is_same_transaction operation
when the input Coordinator has been generated by a different Transaction Service
implementation.

The Unavailable exception is raised if the Transaction Service implementation choo
to restrict the availability of the PropagationContext.
10-28 CORBAservices November 1997

10

used

n
n

 non-

p-

orting
te
10.3.6 Recovery Coordinator Interface

A recoverable object uses a RecoveryCoordinator to drive the recovery process in
certain situations. The object reference for an object supporting the
RecoveryCoordinator interface, as returned by the register_resource operation, is
implicitly associated with a single resource registration request and may only be
by that resource.

replay_completion

This operation can be invoked at any time after the associated resource has bee
prepared. The Resource must be passed as the parameter. Performing this operatio
provides a hint to the Coordinator that the commit or rollback operations have not been
performed on the resource. This hint may be required in certain failure cases. This
blocking operation returns the current status of the transaction. The NotPrepared
exception is raised if the resource has not been prepared.

10.3.7 Resource Interface

The Transaction Service uses a two-phase commitment protocol to complete a to
level transaction with each registered resource. The Resource interface defines the
operations invoked by the transaction service on each resource. Each object supp
the Resource interface is implicitly associated with a single top-level transaction. No

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-29

10

is

. The

ction,

mit

that in the case of failure, the completion sequence will continue after the failure
repaired. A resource should be prepared to receive duplicate requests for the commit or
rollback operation and to respond consistently.

prepare

This operation is invoked to begin the two-phase commit protocol on the resource
resource can respond in several ways, represented by the Vote result.

If no persistent data associated with the resource has been modified by the transa
the resource can return VoteReadOnly. After receiving this response, the Transaction
Service is not required to perform any additional operations on this resource.
Furthermore, the resource can forget all knowledge of the transaction.

If the resource is able to write (or has already written) all the data needed to com
the transaction to stable storage, as well as an indication that it has prepared the
transaction, it can return VoteCommit. After receiving this response, the Transaction
Service is required to eventually perform either the commit or the rollback operation on
this object. To support recovery, the resource should store the RecoveryCoordinator
object reference in stable storage.

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};
10-30 CORBAservices November 1997

10

action
r

hen
uristic

ction.

used
on is

tion. If

used
on is

on. If

ised,

The resource can return VoteRollback under any circumstances, including not having
any knowledge about the transaction (which might happen after a crash). If this
response is returned, the transaction must be rolled back. Furthermore, the Trans
Service is not required to perform any additional operations on this resource. Afte
returning this response, the resource can forget all knowledge of the transaction.

The resource reports inconsistent outcomes using the HeuristicMixed and HeuristicHazard
exceptions (described in “Exceptions” on page 10-16). Heuristic outcomes occur w
a resource acts as a sub-coordinator and at least one of its resources takes a he
decision after a VoteCommit return.

rollback

If necessary, the resource should rollback all changes made as part of the transa
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptions” on page 10-16) are
to report heuristic decisions related to the resource. If a heuristic outcome excepti
raised, the resource must remember this outcome until the forget operation is performed
so that it can return the same outcome in case rollback is performed again. Otherwise,
the resource can immediately forget all knowledge of the transaction.

commit

If necessary, the resource should commit all changes made as part of the transac
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptions” on page 10-16) are
to report heuristic decisions related to the resource. If a heuristic outcome excepti
raised, the resource must remember this outcome until the forget operation is performed
so that it can return the same outcome in case commit is performed again. Otherwise,
the resource can immediately forget all knowledge of the transaction.

The NotPrepared exception is raised if the commit operation is performed without first
performing the prepare operation.

commit_one_phase

If possible, the resource should commit all changes made as part of the transacti
it cannot, it should raise the TRANSACTION_ROLLEDBACK standard exception.

If a failure occurs during commit_one_phase, it must be retried when the failure is
repaired. Since their can only be a single resource, the HeuristicHazard exception is used
to report heuristic decisions related to that resource. If a heuristic exception is ra
the resource must remember this outcome until the forget operation is performed so that
it can return the same outcome in case commit_one_phase is performed again. Otherwise,
the resource can immediately forget all knowledge of the transaction.
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-31

10

tion
e

bject
ger
-

te
lso
e

 the

ble to

edure

d by

of the
forget

This operation is performed only if the resource raised a heuristic outcome excep
to rollback, commit, or commit_one_phase. Once the coordinator has determined that th
heuristic situation has been addressed, it should issue forget on the resource. The
resource can forget all knowledge of the transaction.

10.3.8 Synchronization Interface

The Transaction Service provides a synchronization protocol which enables an o
with transient state data that relies on an X/Open XA conformant Resource Mana
for ensuring that data is made persistent, to be notified before the start of the two
phase commitment protocol, and after its completion. An object with transient sta
data that relies on a Resource object for ensuring that data is made persistent can a
make use of this protocol, provided that both objects are registered with the sam
Coordinator. Each object supporting the Synchronization interface is implicitly
associated with a single top-level transaction.

before_completion

This operation is invoked prior to the start of the two-phase commit protocol within
coordinator the Synchronization has registered with. This operation will therefore be
invoked prior to prepare being issued to Resource objects or X/Open Resource
Managers registered with that same coordinator. The Synchronization object must
ensure that any state data it has that needs to be made persistent is made availa
the resource.

Only standard exceptions may be raised. Unless there is a defined recovery proc
for the exception raised, the transaction should be marked rollback only.

after_completion

This operation is invoked after all commit or rollback responses have been receive
this coordinator. The current status of the transaction (as determined by a get_status on
the Coordinator) is provided as input.

Only standard exceptions may be raised and they have no effect on the outcome
commitment process.

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

};
10-32 CORBAservices November 1997

10

n by

 they

ip
a

 used

face

ction

dard

of its
tion is

ction
10.3.9 Subtransaction Aware Resource Interface

Recoverable objects that implement nested transaction behavior may support a
specialization of the Resource interface called the SubtransactionAwareResource
interface. A recoverable object can be notified of the completion of a subtransactio
registering a specialized resource object that offers the SubtransactionAwareResource
interface with the Transaction Service. This registration is done by using the
register_resource or the register_subtran_aware operation of the current Coordinator object.
A recoverable object generally uses the register_resource operation to register a resource
that will participate in the completion of the top-level transaction and the
register_subtran_aware operation to be notified of the completion of a subtransaction.

Certain recoverable objects may want a finer control over the registration in the
completion of a subtransaction. These recoverable objects will use the register_resource
operation to ensure participation in the completion of the top-level transaction and
will use the register_subtran_aware operation to be notified of the completion of a
particular subtransaction. For example, a recoverable object can use the
register_subtran_aware operation to establish a “committed with respect to” relationsh
between transactions; that is, the recoverable object wants to be informed when
particular subtransaction is committed and then perform certain operations on the
transactions that depend on that transaction’s completion. This technique could be
to implement lock inheritance, for example.

The Transaction Service uses the SubtransactionAwareResource interface on each
Resource object registered with a subtransaction. Each object supporting this inter
is implicitly associated with a single subtransaction.

commit_subtransaction

This operation is invoked only if the resource has been registered with a subtransa
and the subtransaction has been committed. The Resource object is provided with a
Coordinator that represents the parent transaction. This operation may raise a stan
exception such as TRANSACTION_ROLLEDBACK.

Note that the results of a committed subtransaction are relative to the completion
ancestor transactions, that is, these results can be undone if any ancestor transac
rolled back.

rollback_subtransaction

This operation is invoked only if the resource has been registered with a subtransa
and notifies the resource that the subtransaction has rolled back.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-33

10

t
 with

ation

nage

ation

 on a
y

 the
t
 the

licit

ny

te
10.3.10 TransactionalObject Interface

The TransactionalObject interface is used by an object to indicate that it is
transactional. By supporting the TransactionalObject interface, an object indicates tha
it wants the transaction context associated with the client thread to be associated
all operations on its interface.

The TransactionalObject interface defines no operations. It is simply a marker.

10.4 The User’s View

The audience for this section is object and client implementers; it describes applic
use of the Transaction Service functions.

10.4.1 Application Programming Models

A client application program may use direct or indirect context management to ma
a transaction.

• With indirect context management, an application uses the Current object provided
by the Transaction Service, to associate the transaction context with the applic
thread of control.

• In direct context management, an application manipulates the Control object and
the other objects associated with the transaction.

Propagation is the act of associating a client’s transaction context with operations
target object. An object may require transactions to be either explicitly or implicitl
propagated on its operations.

Implicit propagation means that requests are implicitly associated with the client’s
transaction; they share the client’s transaction context. It is transmitted implicitly to
objects, without direct client intervention. Implicit propagation depends on indirec
context management, since it propagates the transaction context associated with
Current object. Explicit propagation means that an application propagates a
transaction context by passing objects defined by the Transaction Service as exp
parameters.

An object that supports implicit propagation would not typically expect to receive a
Transaction Service object as an explicit parameter.

A client may use one or both forms of context management, and may communica
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects. They are described below.

interface TransactionalObject {
};
10-34 CORBAservices November 1997

10

he

eter

ntext

the

d.
Direct Context Management: Explicit Propagation

The client application directly accesses the Control object, and the other objects which
describe the state of the transaction. To propagate the transaction to an object, t
client must include the appropriate Transaction Service object as an explicit param
of an operation.

Indirect Context Management: Implicit Propagation

The client application uses operations on the Current object to create and control its
transactions. When it issues requests on transactional objects, the transaction co
associated with the current thread is implicitly propagated to the object.

Indirect Context Management: Explicit Propagation

For an implicit model application to use explicit propagation, it can get access to
Control using the get_control operation on Current. It can then use a Transaction
Service object as an explicit parameter to a transactional object. This is explicit
propagation.

Direct Context Management: Implicit Propagation

A client that accesses the Transaction Service objects directly can use the resume
operation on Current to set the implicit transaction context associated with its threa
This allows the client to invoke operations of an object that requires implicit
propagation of the transaction context.
Transaction Service: v1.1 The User’s View November 1997 10-35

10

 A

 their

ne
ss

se it
by
me
ion
10.4.2 Interfaces

Note – For clarity, subtransaction operations are not shown.

10.4.3 Checked Transaction Behavior

Some Transaction Service implementations will enforce checked behavior for the
transactions they support, to provide an extra level of transaction integrity. The
purpose of the checks is to ensure that all transactional requests made by the
application have completed their processing before the transaction is committed.
checked Transaction Service guarantees that commit will not succeed unless all
transactional objects involved in the transaction have completed the processing of
transactional requests.

There are many possible implementations of checking in a Transaction Service. O
provides equivalent function to that provided by the request/response inter-proce
communication models defined by X/Open.

The X/Open Transaction Service model of checking is particularly important becau
is widely implemented. It describes the transaction integrity guarantees provided
many existing transaction systems. These transaction systems will provide the sa
level of transaction integrity for object-based applications by providing a Transact
Service interface that implements the X/Open checks.

Table 10-1Use of Transaction Service Functionality

Context management

Function Used by Direct Indirect 1

1. All Indirect context management operations are on the Current object interface

Create a transaction Transaction
originator

TransactionFactory::create
Control::get_terminator
Control::get_coordinator

begin,set_timeout

Terminate a transaction Transaction originator—implicit
All— explicit

Terminator::commit
Terminator::rollback

commit
rollback

Rollback a transaction Server Terminator::rollback_only rollback_only

Control propagation
of transaction to a server

Server Declaration of method parameter TransactionalObject
interface

Control by client
of transaction
propagation
to a server

All Request parameters get_control
suspend
resume

Become a participant
in a transaction

Recoverable Server Coordinator::register_resource Not applicable

Miscellaneous All Coordinator::get_status
Coordinator::get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable
Not applicable
10-36 CORBAservices November 1997

10

 the

ctions

tion.
ven
ner of
ove

below
 before

hich

 by a
r.

or
lients

action

nsure

ot be

n
10.4.4 X/Open Checked Transactions

In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing
X/Open model of checking provides equivalent function to that provided by the
XATMI and TxRPC interfaces defined by X/Open for transactional applications.
X/Open DTP Transaction Managers are examples of transaction management fun
that implement checked transaction behavior.

This implementation of checked behavior depends on implicit transaction propaga
When implicit propagation is used, the objects involved in a transaction at any gi
time may be represented as a tree, the request tree for the transaction. The begin
the transaction is the root of the tree. Requests add nodes to the tree, replies rem
the replying node from the tree. Synchronous requests, or the checks described
for deferred synchronous requests, ensure that the tree collapses to a single node
commit is issued.

If a transaction uses explicit propagation, the Transaction Service cannot know w
objects are or will be involved in the transaction; that is, a request tree cannot be
constructed or assured. Therefore, the use of explicit propagation is not permitted
Transaction Service implementation that enforces X/Open-style checked behavio

Applications that use synchronous requests implicitly exhibit checked behavior. F
applications that use deferred synchronous requests, in a transaction where all c
and objects are in the domain of a checking Transaction Service, the Transaction
Service can enforce this property by applying a reply check and a commit check.

The Transaction Service must also apply a resume check to ensure that the trans
is only resumed by application programs in the correct part of the request tree.

Reply Check

Before allowing an object to reply to a transactional request, a check is made to e
that the object has received replies to all its deferred synchronous requests that
propagated the transaction in the original request. If this condition is not met, an
exception is raised and the transaction is marked as rollback-only, that is, it cann
successfully committed.

A Transaction Service may check that a reply is issued within the context of the
transaction associated with the request.

Commit Check

Before allowing commit to proceed, a check is made to ensure that:

1. The commit request for the transaction is being issued from the same executio
environment that created the transaction.
Transaction Service: v1.1 The User’s View November 1997 10-37

10

d of

s
ait

ts
r the

n in

d in

ions,

ted.

lar
at
 a

ready
2. The client issuing commit has received replies to all the deferred synchronous
requests it made that caused the propagation of the transaction.

Resume Check

Before allowing a client or object to associate a transaction context with its threa
control, a check is made to ensure that this transaction context was previously
associated with the execution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

10.4.5 Implementing a Transactional Client: Heuristic Completions

The commit operation takes the boolean report_heuristics as input. If the report_heuristics
argument is false, commit can complete as soon as the root coordinator has made it
decision to commit or rollback the transaction. The application is not required to w
for the coordinator to complete the commit protocol by informing all the participan
of the outcome of the transaction. This can significantly reduce the elapsed time fo
commit operation, especially where participant Resource objects are located on remote
network nodes. However, no heuristic conditions can be reported to the applicatio
this case.

Using the report_heuristics option guarantees that the commit operation will not complete
until the coordinator has completed the commit protocol with all resources involve
the transaction. This guarantees that the application will be informed of any non-
atomic outcomes of the transaction via the HeuristicMixed or HeuristicHazard exceptions,
but increases the application-perceived elapsed time for the commit operation.

10.4.6 Implementing a Recoverable Server

A Recoverable Server includes at least one recoverable object and one Resource
object. The responsibilities of each of these objects are explained in the following
sections.

Recoverable Object

The responsibilities of the recoverable object are to implement the object’s operat
and to register a Resource object with the Coordinator so commitment of the
recoverable object’s resources, including any necessary recovery, can be comple

The Resource object identifies the involvement of the recoverable object in a particu
transaction. This means a Resource object may only be registered in one transaction
a time. A different Resource object must be registered for each transaction in which
recoverable object is concurrently involved.

A recoverable object may receive multiple requests within the scope of a single
transaction. It only needs to register its involvement in the transaction once. The
is_same_transaction operation allows the recoverable object to determine if the
transaction associated with the request is one in which the recoverable object is al
registered.
10-38 CORBAservices November 1997

10

f

quest.

n use
jects
ble

y
uests

ction

vior.
e the
ent
 will
The hash_transaction operations allow the recoverable object to reduce the number o
transaction comparisons it has to make. All coordinators for the same transaction
return the same hash code. The is_same_transaction operation need only be done on
coordinators which have the same hash code as the coordinator of the current re

Resource Object

The responsibilities of a Resource object are to participate in the completion of the
transaction, to update the Recoverable Server’s resources in accordance with the
transaction outcome, and ensure termination of the transaction, including across
failures. The protocols that the Resource object must follow are described in
“Transaction Service Protocols” on page 10-49.

Reliable Servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server ca
the same interface as a Recoverable Server to ensure application integrity for ob
that do not have recoverable state. In the case of a Reliable Server, the recovera
object can register a Resource object that replies VoteReadOnly to prepare if its integrity
constraints are satisfied (e.g., all debits have a corresponding credit), or replies
VoteRollback if there is a problem. This approach allows the server to apply integrit
constraints which apply to the transaction as a whole, rather than to individual req
to the server.

10.4.7 Application Portability

This section considers application portability across the broadest range of Transa
Service implementations.

Flat Transactions

There is one optional function of the Transaction Service, support for nested
transactions. For an application to be portable across all implementations of the
Transaction Service, it should be designed to use the flat transaction model. The
Transaction Service specification treats flat transactions as top-level nested
transactions.

X/Open Checked Transactions

Transaction Service implementations may implement checked or unchecked beha
The transaction integrity checks implemented by a Transaction Service need not b
same as those defined by X/Open. However, many existing transaction managem
systems have implemented the X/Open model of interprocess communication, and
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.
Transaction Service: v1.1 The User’s View November 1997 10-39

10

ill
e, as
or.

oss a

s
o

ed
plied

ts of

a
cked

he

ion

ey

th
Applications written to conform to the transaction integrity constraints of X/Open w
be portable across all implementations of an X/Open checked Transaction Servic
well as all Transaction Service implementations which support unchecked behavi

10.4.8 Distributed Transactions

The Transaction Service can be implemented by multiple components located acr
network. The different components can be based on the same or on different
implementations of the Transaction Service.

A single transaction can involve clients and objects supported by more than one
instance of the Transaction Service. The number of Transaction Service instance
involved in the transaction is not visible to the application implementer. There is n
change in the function provided.

10.4.9 Applications Using Both Checked and Unchecked Services

A single transaction can include objects supported by both checked and uncheck
Transaction Service implementations. Checked transaction behavior cannot be ap
to the transaction as a whole.

It is possible to provide useful, limited forms of checked behavior for those subse
the transaction’s resources in the domain of a checked Transaction Service.

• First, a transactional or recoverable object, whose resources are managed by
checked Transaction Service, may be accessed by unchecked clients. The che
Transaction Service can ensure, by registering itself in the transaction, that the
transaction will not commit before all the integrity constraints associated with t
request have been satisfied.

• Second, an application whose resources are managed by a checked Transact
Service may act as a client of unchecked objects, and preserve its checked
semantics.

10.4.10 Examples

Note – All the examples are written in pseudo code based on C++. In particular th
do not include implicit parameters such as the ORB::Environment, which should appear
in all requests. Also, they do not handle the exceptions that might be returned wi
each request.
10-40 CORBAservices November 1997

10

ment
e
h

t and

se

A Transaction Originator: Indirect and Implicit

In the code fragments below, a transaction originator uses indirect context manage
and implicit transaction propagation; txn_crt is an example of an object supporting th
Current interface; the client uses the begin operation to start the transaction whic
becomes implicitly associated with the originator's thread of control:

The program commits the transaction associated with the client thread. The
report_heuristics argument is set to false so no report will be made by the Transaction
Service about possible heuristic decisions.

Transaction Originator: Direct and Explicit

In the following example, a transaction originator uses direct context managemen
explicit transaction propagation. The client uses a factory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction and uses the
returned Control object to retrieve the Terminator and Coordinator objects.

The client issues requests, some of which involve transactional objects, in this ca
explicit propagation of the context is used. The Control object reference is passed as
an explicit parameter of the request; it is declared in the OMG IDL of the interface.

...
txn_crt.begin();
// should test the exceptions that might be raised
...
// the client issues requests, some of which involve
// transactional objects;
BankAccount1->makeDeposit(deposit);
...

....
txn_crt.commit(false);
...

...
CosTransactions::Control c;
CosTransactions::Terminator t;
CosTransactions::Coordinator co;

c = TFactory->create(0);
t = c->get_terminator();
...

...
transactional_object->do_operation(arg, c);
Transaction Service: v1.1 The User’s View November 1997 10-41

10

ct's

t
The transaction originator uses the Terminator object to commit the transaction; the
report_heuristics argument is set to false: so no report will be made by the Transaction
Service about possible heuristic decisions.

Example of a Recoverable Server

BankAccount1 is an object with internal resources. It inherits from both the
TransactionalObject and the Resource interfaces:

Upon entering, the context of the transaction is implicitly associated with the obje
thread. The pseudo object supporting the Current interface is used to retrieve the
Coordinator object associated with the transaction.

Before registering the Resource, the object must check whether it has already been
registered for the same transaction. This is done using the hash_transaction and
is_same_transaction operations on the current Coordinator to compare a list of saved
coordinators representing currently active transactions. In this example, the objec

...
t->commit(false);

interface BankAccount1:
CosTransactions::TransactionalObject,CosTransactions::Resource

{
...
 void makeDeposit (in float amt);
...
};

class BankAccount1
{
public:
...
void makeDeposit(float amt);
...
}

void makeDeposit (float amt)
{
CosTransactions::Control c;
CosTransactions::Coordinator co;

c = txn_crt.get_control();
co = c->get_coordinator();
...
10-42 CORBAservices November 1997

10

n
n
registers itself as a Resource. This requires the object to durably record its registratio
before issuing register_resource to handle potential failures and imposes the restrictio
that the object may only be involved in one transaction at a time.

If more parallelism is required, separate Resource objects can be registered for each
transaction the object is involved in.

Example of a Transactional Object

BankAccount2 is an object with external resources that inherits from the
TransactionalObject interface:

RecoveryCoordinator r;
r = co->register_resource (this);

// performs some transactional activity locally
balance = balance + f;
num_transactions++;
...
// end of transactional operation
};

interface BankAccount2: CosTransactions::TransactionalObject
{
...
 void makeDeposit(in float amt);
...
};

class BankAccount2
{
public:
...
void makeDeposit(float amt);
...
}

Transaction Service: v1.1 The User’s View November 1997 10-43

10

ct's
l,

the
h the

g
ional
f the
Upon entering, the context of the transaction is implicitly associated with the obje
thread. The makeDeposit operation performs some transactional requests on externa
recoverable servers. The objects res1 and res2 are recoverable objects. The current
transaction context is implicitly propagated to these objects.

10.4.11 Model Interoperability

The Transaction Service supports interoperability between Transaction Service
applications using implicit context propagation and procedural applications using
X/Open DTP model. A single transaction management component may act as bot
Transaction Service and an X/Open Transaction Manager.

Interoperability is provided in two ways:

• Importing transactions from the X/Open domain to the Transaction Service
domain.

• Exporting transactions from the Transaction Service domain to the X/Open
domain.

Importing Transactions

X/Open applications can access transactional objects. This means that an existin
application, written to use X/Open interfaces, can be extended to invoke transact
operations. This causes the X/Open transaction to be imported into the domain o
Transaction Service.

void makeDeposit(float amt)
{

balance = res1->get_balance(amt);
balance = balance + amt;
res1->set_balance(balance);

res2->increment_num_transactions();
} // end of transactional operation
10-44 CORBAservices November 1997

10
The X/Open application may be a client or a server.

Figure 10-3 X/Open Client

Figure 10-4 X/Open Server

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

TX

X/Open

Client

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

X/Open

Server
X/Open
client
Transaction Service: v1.1 The User’s View November 1997 10-45

10

tion
ction

ice
ne

y

n
Exporting Transactions

Transactional objects can use X/Open communications and resource manager
interfaces, and include the resources managed by these components in a transac
managed by the Transaction Service. This causes the Transaction Service transa
to be exported into the domain of the X/Open transaction manager.

Figure 10-5 Sample Transaction Managed by the Transaction Service

Programming Rules

Model interoperability results in application programs that use both X/Open and
Transaction Service interfaces.

A transaction originator may use the X/Open TX interface or the Transaction Serv
interfaces to create and terminate a transaction. Only one style may be used in o
originator.

A single application may inherit a transaction with an application request either b
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of both X/Ope
resource manager interfaces and transactional object interfaces.

An X/Open client or server may invoke operations of transactional objects. The
X/Open transaction is imported into the Transaction Service domain using the recreate
operation on TransactionFactory.

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB

RM API

Transaction

Manager

New Application (Objects)

X/Open
Resource
Manager

CM API

X/Open
server
10-46 CORBAservices November 1997

10

th
Open

ce of
r of
ior

ilure
al
t

tion
ut

he
f the

he

ion

ery),
A transactional object with a Current object that associates a transaction context wi
a thread of control, can call X/Open Resource Managers. How requests to the X/
Resource managers become associated with the transaction context of the Current
object is implementation-dependent.

10.4.12 Failure Models

The Transaction Service provides atomic outcomes for transactions in the presen
application, system or communication failures. This section describes the behavio
application entities when failures occur. The protocols used to achieve this behav
are described in “Transaction Service Protocols” on page 10-49.

From the viewpoint of each user object role, two types of failure are relevant: a fa
affecting the object itself (local failure) and a failure external to the object (extern
failure), such as failure of another object or failure in the communication with tha
object.

Transaction Originator

Local Failure

A failure of a transaction originator prior to the originator issuing commit will cause the
transaction to be rolled back. A failure of the originator after issuing commit and before
the outcome is reported may result in either commitment or rollback of the transac
depending on timing; in this case completion of the transaction takes place witho
regard to the failure of the originator.

External Failure

Any external failure affecting the transaction prior to the originator issuing commit will
cause the transaction to be rolled back; the standard exception
TRANSACTION_ROLLEDBACK will be raised in the originator when it issues commit.

A failure after commit and before the outcome has been reported will mean that t
client may not be informed of the transaction outcome, depending on the nature o
failure, and the use of the report_heuristics option of commit. For example, the
transaction outcome will not be reported to the client if communication between t
client and the coordinator fails.

A client may use get_status on the Coordinator to determine the transaction outcome.
However, this is not reliable because the status NoTransaction is ambiguous: it could
mean that the transaction committed and has been forgotten, or that the transact
rolled back and has been forgotten.

If an originator needs to know the transaction outcome, including in the case of
external failures, then either the originator’s implementation must include a Resource
object so that it will participate in the two-phase commit procedure (and any recov
or the originator and coordinator must be located in the same failure domain (for
example, the same execution environment).
Transaction Service: v1.1 The User’s View November 1997 10-47

10

,
as

nal

n of

ase

” on

cols

rvice

ered:
Transactional Server

Local Failure

If the Transactional Server fails then optional checks by a Transaction Service
implementation may cause the transaction to be rolled back; without such checks
whether the transaction is rolled back depends on whether the commit decision h
already been made (this would be the case where an unchecked client invokes commit
before receiving all replies from servers).

External Failure

Any external failure affecting the transaction during the execution of a Transactio
Server will cause the transaction to be rolled back. If this occurs while the
transactional object’s method is executing, the failure has no effect on the executio
this method. The method may terminate normally, returning the reply to its client.
Eventually the TRANSACTION_ROLLEDBACK exception will be returned to a client
issuing commit.

Recoverable Server

Behavior of a recoverable server when failures occur is determined by the two ph
commit protocol between the coordinator and the recoverable server’s Resource
object(s). This protocol, including the local and external failure models and the
required behavior of the Resource, is described in “Transaction Service Protocols
page 10-49.

10.5 The Implementers’ View

This section contains three major categories of information.

1. “Transaction Service Protocols” on page 10-49 defines in more detail the proto
of the Transaction Service for ensuring atomicity of transactions, even in the
presence of failure.

This section is not a formal part of the specification but is provided to assist in
building valid implementations of the specification. These protocols affect
implementations of Recoverable Servers and the Transaction Service.

2. “ORB/TS Implementation Considerations” on page 10-60 provides additional
information for implementers of ORBs and Transaction Services in those areas
where cooperation between the two is necessary to realize the Transaction Se
function.

The following aspects of ORB and Transaction Service implementation are cov

• transaction propagation.

• interoperation between different transaction service implementations.

• ORB changes necessary to support portability of transaction service
implementations.
10-48 CORBAservices November 1997

10

ves

 the
ers,
ss)
ties
tate
ilures.

e

ed

action
ants
 on

d

oes

 by

so

mits
otten

e,
3. “Model Interoperability” on page 10-67 describes how an implementation achie
interoperation between the Transaction Service and procedural transaction
managers.

10.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols be followed to implement
atomicity property. These protocols affect the implementation of recoverable serv
(recoverable objects that register for participation in the two-phase commit proce
and the coordinators that are created by a transaction factory. These responsibili
ensure the execution of the two-phase commit protocol and include maintaining s
information in stable storage, so that transactions can be completed in case of fa

General Principles

The first coordinator created for a specific transaction is responsible for driving th
two-phase commit protocol. In the literature, this is referred to as the root Transaction
Coordinator or simply root coordinator. Any coordinator that is subsequently creat
for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a coordinator is referred to as a subordinate
Transaction Coordinator or simply subordinate coordinator and by registering a
resource becomes a transaction participant. Recoverable servers are always trans
participants. The root coordinator initiates the two-phase commit protocol; particip
respond to the operations that implement the protocol. The specification is based
the following rules for commitment and recovery:

1. The protocol defined by this specification is a two-phase commit with presume
rollback.

This permits efficient implementations to be realized since the root coordinator d
not need to log anything before the commit decision and the participants (i.e.,
Resource objects) do not need to log anything before they prepare.

2. Resource objects—including subordinate coordinators—do not start commitment
themselves, but wait for prepare to be invoked.

3. The prepare operation is issued at most once to each resource.

4. Participants must remember heuristic decisions until the coordinator or some
management application instructs them to forget that decision.

5. A coordinator knows which Resource objects are registered in a transaction and
is aware of resources that have completed commitment.

In general, the coordinator must remember this information if a transaction com
in order to ensure proper completion of the transaction. Resources can be forg
early if they do not vote to commit the transaction.

6. A participant should be able to request the outcome of a transaction at any tim
including after failures occurring subsequent to its Resource object being prepared.
Transaction Service: v1.1 The Implementers’ View November 1997 10-49

10

ng

ery
y

f the
 a
s the
ilure

 the

here

es

d

cted

e

 of

t
7. Participants should be able to report the completion of the transaction (includi
any heuristic condition).

The recording of information relating to the transaction which is required for recov
is described as if it were a log file for clarity of description; an implementation ma
use any suitable persistent storage mechanism.

Normal Transaction Completion

Transaction completion can occur in two ways; as part of the normal execution o
Current::commit or Terminator::commit operations or independent of these operations if
failure should occur before normal execution can complete. This section describe
normal (no failure) case. “Failures and Recovery” on page 10-56 describes the fa
cases.

Coordinator Role

The root coordinator implements the following protocol:

• When the client asks to commit the transaction, and no prior attempt to rollback
the transaction has been made, the coordinator issues the before_completion request
to all registered synchronizations.

• When all registered synchronizations have responded, the coordinator issues
prepare request to all registered resources.

• If all registered resources reply VoteReadOnly, then the root coordinator replies to
the client that the transaction committed (assuming that the client can still be
reached).

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies to the client. T
is no requirement for the coordinator to log in this case.

• If any registered resource replies VoteRollback or cannot be reached then the
coordinator will decide to rollback and will so inform those registered resourc
which already replied VoteCommit.

• Once a VoteRollback reply is received, a coordinator need not send prepare to the
remaining resources. Rollback will be subsequently sent to resources that replie
VoteCommit.

If the report_heuristics parameter was specified on commit, the client will be
informed of the rollback outcome when any heuristic reports have been colle
(and logged if required).

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly, a root coordinator may decide to commit th
transaction.

• Before issuing commit operations on those registered resources which replied
VoteCommit, the coordinator must ensure that the commit decision and the list
registered resources—those that replied VoteCommit—is stored in stable storage.

• If the coordinator receives VoteCommit or VoteReadOnly responses from each
registered resource, it issues the commit request to each registered resource tha
responded VoteCommit.
10-50 CORBAservices November 1997

10

n

g

tatus

y
ack

 a

The

needs
e

on
rs any

ions
• After having received all commit or rollback responses, if synchronizations exist,
the root coordinator issues after_completion to each of them passing the transactio
outcome as status before responding to the client.

• The root coordinator issues forget to a resource after it receives a heuristic
exception.

• This responsibility is not affected by failure of the coordinator. When receivin
commit replies containing heuristic information, a coordinator constructs a
composite for the transaction.

• The root coordinator forgets the transaction after having logged its heuristic s
if heuristics reporting was requested by the originator.

• The root coordinator can now trigger the sending of the reply to the commit
operation if heuristic reporting is required. If no heuristic outcomes were
recorded, the coordinator can be destroyed.

One Phase Commit

If a coordinator has only a single registered resource, it can perform the
commit_one_phase operation on the resource instead of performing prepare and then
commit or rollback. If a synchronization exists, before_completion is issued prior to
commit_one_phase and after_completion is issued when the response to commit_one_phase
has been received. If a failure occurs, the coordinator will not be informed of the
transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction coordinator must notify an
registered subtransaction aware resources of the subtransaction’s commit or rollb
status using the commit_subtransaction or rollback_subtransaction operations of the
SubtransactionAwareResource interface.

A transaction service implementation determines how it chooses to respond when
resource responds to commit_subtransaction with a system exception. The service may
choose to rollback the subtransaction or it may ignore the exceptional condition.
SubtransactionAwareResource operations are used to notify the resources of a
subtransaction when the subtransaction commits in the case where the resource
to keep track of the commit status of its ancestors. They are not used to direct th
resources to commit or rollback any state. The operations of the Resource interface are
used to commit or rollback subtransaction resources registered using the
register_resource operation of the Coordinator interface.

When the subtransaction is committed and after all of the registered subtransacti
aware resources have been notified of the commitment, the subtransaction registe
resources registered using register_resource with its parent Coordinator or it may
register a subordinate coordinator to relay any future requests to the resources.

From the application programmer point of view, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The report_heuristics
parameter on commit is ignored since heuristics are not produced when subtransact
are committed.
Transaction Service: v1.1 The Implementers’ View November 1997 10-51

10

y. The
half
d

e

on

ake
ange

rable
they

e
n
Recoverable Server Role

A recoverable server includes at least one recoverable object and one Resource object.
The recoverable object has state that demonstrates at least the atomicity propert
Resource object implements the two-phase commit protocol as a participant on be
of the recoverable object. The responsibilities of each of these objects is describe
below.

Synchronization Registration

A recoverable server may need to register a Synchronization object to ensure that
object state data which is persistently managed by a resource is returned to the
resource prior to starting the commitment protocol.

Top-Level Registration

A recoverable object registers a Resource object with the Coordinator so commitment
of the transaction including any necessary recovery can be completed.

A recoverable object uses the is_same_transaction operation to determine whether it is
already registered in this transaction. It can also use hash_transaction to reduce the
number of comparisons. This relies on the definition of the hash_transaction operation to
return the same value for all coordinators in the same transaction even if they ar
generated by multiple Transaction Service implementations.

Once registered, a recoverable server assumes the responsibilities of a transacti
participant.

Subtransaction Registration

A Recoverable Server registers for subtransaction completion only if it needs to t
specific actions at the time a subtransaction commits. An example would be to ch
ownership of locks acquired by this subtransaction to its parent.

A recoverable object uses the is_same_transaction operation to determine whether it is
already registered in this subtransaction. It can also use hash_transaction to reduce the
number of comparisons.

Top Level Synchronization

Synchronization objects ensure that persistent state data is returned to the recove
object managed by a resource or to the underlying database manager. To do so
implement a protocol which moves the data prior to the prepare phase and does
necessary processing after the outcome is complete.

Top-Level Completion

Resource objects implement a recoverable object’s involvement in transaction
completion. To do so, they must follow the two-phase commit protocol initiated by
their coordinator and maintain certain elements of their state in stable storage. Th
responsibilities of a Resource object with regard to a particular transaction depend o
how it will vote:
10-52 CORBAservices November 1997

10

a

lure is
e

f

get

efined

ut
date
may
me

ly the
1. Returning VoteCommit to prepare

Before a Resource object replies VoteCommit to a prepare operation, it must
implement the following:

• make persistent the recoverable state of its recoverable object.

The method by which this is accomplished is implementation dependent. If
recoverable object has only transient state, it need not be made persistent.

• ensure that its object reference is recorded in stable storage to allow it to
participate in recovery in the event of failure.

How object references are made persistent and then regenerated after a fai
outside the scope of this specification. The Persistent Object Service or som
other mechanism may be used. How persistent Resource objects get restarted
after a failure is also outside the scope of this specification.

• record the RecoveryCoordinator object reference so that it can initiate recovery o
the transaction later if necessary.

• the Resource then waits for the coordinator to invoke commit or rollback.

• A Resource with a heuristic outcome must not discard that information until it
receives a forget from its coordinator or some administrative component.

2. Returning VoteRollback to prepare

A Resource which replies VoteRollback has no requirement to log. Once having
replied, the Resource can return recoverable resources to their prior state and for
the transaction.

3. Returning VoteReadOnly to prepare

A Resource which replies VoteReadOnly has no requirement to log. Once having
replied, the Resource can release its resources and forget the transaction.

Subtransaction Completion

The role of the subtransaction aware resource at subtransaction completion are d
by the subtransaction aware resource itself. The coordinator only requires that it
respond to commit_subtransaction or rollback_subtransaction.

All resources need to be notified when a transaction commits or is rolled back. B
some resources need to know when subtransactions commit so that they can up
local data structures and track the completion status of ancestors. The resource
have rules that are specific to ancestry and must perform some work as all or so
ancestors complete. The nested semantics and effort required by the Resource object
are defined by the object and not the Transaction Service.

Once the resource has been told to prepare, the resource's obligations are exact
same as a top-level resource.
Transaction Service: v1.1 The Implementers’ View November 1997 10-53

10

tion
ction

tion
nt

) in
ervice

ators
ave
s or

n

d
re

erver.

a
For example, in the Concurrency Control Service, a resource in a nested transac
might want to know when the subtransaction commits because another subtransa
may be waiting for a lock held by that subtransaction. Once that subtransaction
commits, others may be granted the lock. There is no requirement to make lock
ownership persistent until a prepare message is received.

For the Persistent Object Service, it is important to keep separate update informa
associated with a subtransaction. When that subtransaction commits, the Persiste
Object Service may need to reorganize its information (such as undo information
case the parent subtransaction chooses to rollback. Again, the Persistent Object S
resource need not make updates permanent until a prepare message is received. At that
point, it has the same responsibilities as a top-level resource.

Subordinate Coordinator Role

An implementation of the Transaction Service may interpose subordinate coordin
to optimize the commit tree for completing the transaction. Such coordinators beh
as transaction participants to their superiors and as coordinators to their resource
inferior coordinators.

Synchronization

A subordinate coordinator may register a Synchronization object with its superior
coordinator if it needs to perform processing before its prepare phase begins.

Registration

A subordinate coordinator registers a Resource with its superior coordinator. Once
registered, a subordinate coordinator assumes the responsibilities of a transactio
participant and implements the behavior of a recoverable server.

Subtransaction Registration

If any of the resources registered with the subordinate coordinator support the
SubtransactionAwareResource interface, the subordinate coordinator must register a
subtransaction aware resource with its parent coordinator. If any of the resources
registered with the subordinate using the register_resource operation, the subordinate
must register a Resource with its superior. If both types of resources were registere
with the subordinate, the subordinate only needs to register a subtransaction awa
resource with its superior.

Top-level Completion

A subordinate coordinator implements the completion behavior of a recoverable s

Subtransaction Completion

A subordinate coordinator implements the subtransaction completion behavior of
recoverable server.
10-54 CORBAservices November 1997

10

he
s
ribed
r (or

ase;

ed

ived,

its

eport

come

ome

ic
Subordinate Coordinator

A subordinate coordinator does not make the commit decision but simply relays t
decision of its superior (which may also be a subordinate coordinator) to resource
registered with it. A subordinate coordinator acts as a recoverable server as desc
previously, in terms of saving its state in stable storage. A subordinate coordinato
indeed any resource) may log the commit decision once it is known (as an
optimization) but this is not essential.

• A subordinate coordinator issues the before_completion operation to any
synchronizations when it receives prepare from its superior.

• When all responses to before_completion have been received, a subordinate
coordinator issues the prepare operation to its registered resources.

• If all registered resources reply VoteReadOnly, then the subordinate coordinator will
decide to reply VoteReadOnly.

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies VoteReadOnly to its
superior. There is no requirement for the subordinate coordinator to log in this c
the subordinate coordinator takes no further part in the transaction and can be
destroyed.

• If any registered resource replies VoteRollback or cannot be reached then the
subordinate coordinator will decide to rollback and will so inform those register
resources which already replied VoteCommit.

Once a VoteRollback reply is received, the subordinate coordinator need not send
prepare to the remaining resources. The subordinate coordinator issues
after_completion to any synchronizations and, after all responses have been rece
replies VoteRollback to its superior.

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly, a subordinate coordinator may decide to reply
VoteCommit.

The subordinate coordinator must record the prepared state, the reference of
superior RecoveryCoordinator and its list of resources that responded VoteCommit in
stable storage before responding to prepare.

• A subordinate coordinator issues the commit operation to its registered resources
which replied VoteCommit when it receives a commit request from its superior.

• If any resource reports a heuristic outcome, the subordinate coordinator must r
a heuristic outcome to its superior.

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, reports the heuristic out
to its superior. The specific outcome reported depends on the other heuristic
outcomes received. The subordinate coordinator must record the heuristic outc
in stable storage.

• After having received all commit replies, a subordinate coordinator logs its heurist
status (if any).
Transaction Service: v1.1 The Implementers’ View November 1997 10-55

10

ristic

s

s the
 its

ristic

uing
ing

th it.
n the

n

cols
• The subordinate coordinator then replies to the commit from its superior coordinator.

Before doing so, it issues after_completion to any registered synchronizations and,
after all responses have been received, it then replies to its superior. If no heu
report was sent the Coordinator is destroyed.

• A subordinate coordinator performs the rollback operation on its registered resource
when it receives a rollback request from its superior.

If any resource reports a heuristic outcome, the subordinate coordinator record
appropriate heuristic outcome in stable storage and will report this outcome to
superior. Before doing so, however, it issues after_completion to any registered
synchronizations and, after receiving all the responses, reports the heuristic
outcome to its superior.

• The subordinate coordinator then replies to the rollback from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations and,
after all responses have been received, it then replies to its superior. If no heu
report was sent the Coordinator is destroyed.

• If a subordinate coordinator receives a commit_one_phase request, and it has a single
registered resource, it can simply perform the commit_one_phase request on its
resource. Before doing so, if a synchronization exists, it issues before_completion to
the synchronization, then, after receiving the commit_one_phase response, issues
after_completion to the synchronization.

If it has multiple registered resources, it behaves like a superior coordinator, iss
before_completion to any synchronizations and, after receiving the responses, issu
prepare to each resource to determine the outcome, then issuing commit or rollback
requests, followed by after_completion requests if synchronizations exist.

• A subordinate coordinator performs the forget operation on those registered
resources that reported a heuristic outcome when it receives a forget request from its
superior.

Subtransactions

A subordinate coordinator for a subtransaction relays commit_subtransaction and
rollback_subtransaction requests to any subtransaction aware resources registered wi
In addition, it performs the same roles as a top-level subordinate coordinator whe
top-level transaction commits. It must relay prepare and commit requests to each of the
resources that registered with it using the register_resource operation.

Failures and Recovery

The previous descriptions dealt with the protocols associated with the Transactio
Service when a transaction completes without failure. To ensure atomicity and
durability in the presence of failure, the transaction service defines additional proto
to ensure that transactions, once begun, always complete.
10-56 CORBAservices November 1997

10

 each

mit

 must

 must

ion

mit

e the
lity
ions
urce
w.
Failure Processing

The unit of failure is termed the failure domain. It may consist of the coordinator and
some local resources registered with it, or the coordinator and the resources may
be in its own failure domain.

Local Failure

Any failure in the transaction during the execution of a coordinator prior to the com
decision being made will cause the transaction to be rolled back.

A coordinator is restarted only if it has logged the commit decision.

• If the coordinator only contains heuristic information, nothing is done.

• If the transaction is marked rollback only, a coordinator can send rollback to its
resources and inferior coordinators.

• If the transaction outcome is commit, the coordinator sends commit to prepared
registered resources and the regular commitment procedure is started.

• If any registered resources exist but cannot be reached, then the coordinator
try again later.

If registered resources no longer exist, then this means that they completed
commitment before the coordinator failed and have no heuristic information.

• If a subordinate coordinator is prepared, then it must contact its superior
coordinator to determine the transaction outcome.

• If the superior coordinator exists but cannot be reached, then the subordinate
retry recovery later.

• If the superior coordinator no longer exists, then the outcome of the transact
can be presumed to be rollback.

The subordinate will inform its registered resources.

External Failure

Any failure in the transaction during the execution of a coordinator prior to the com
decision being made will cause the transaction to be rolled back.

Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point wher
failure occurred. That means that the coordinator will usually have the responsibi
for sending the commit decision to its registered resources. Certain failure condit
will require that the resource initiate the recovery procedure—recall that the reso
might also be a subordinate coordinator. These are described in more detail belo
Transaction Service: v1.1 The Implementers’ View November 1997 10-57

10

a

 elect
ke a
me

the

eport.

 not
rces

d, as

 once

s

aged

its
Resources

A resource represents some collection of recoverable data associated with a
transaction. It supports the Resource interface described in “Resource Interface” on
page 10-29. When recovering from failure after its changes have been prepared,
resource uses the replay_completion operation on the RecoveryCoordinator to determine
the outcome of the transaction and continue completion.

Heuristic Reporting

If the coordinator does not complete the two-phase commit in a timely manner, a
subordinate (i.e., a resource or a subordinate coordinator) in the transaction may
to commit or rollback the resources registered with it in a prepared transaction (ta
heuristic decision). When the coordinator eventually sends the outcome, the outco
may differ from that heuristic decision. The result is referred to as HeuristicMixed or
HeuristicHazard.The result is reported by the root coordinator to the client only when
report_heuristics option on commit is selected. In these circumstances, the participant
(subordinate) and the coordinator must obey a set of rules that define what they r

Coordinator Role

A root coordinator that fails prior to logging the commit decision can unilaterally
rollback the transaction. If its resources have also rolled back because they were
prepared, the transaction is returned to its prior state of consistency. If any resou
are prepared, they are required to initiate the recovery process defined below.

• A root coordinator that has a committed outcome will continue the completion
protocol by sending commit.

• A root coordinator that has a rolled back outcome will continue the completion
protocol by sending rollback.

Synchronizations

Synchronization objects are not persistent so they are not restarted after failure an
a result, their operations are not invoked during failure processing.

Subtransactions

Subtransactions are not durable, so there is no completion after failure. However,
the top-level coordinator issues prepare, a subtransaction subordinate coordinator has
the same responsibilities as a top-level subordinate coordinator.

Recoverable Server role

The Transaction Service imposes certain requirements on the recoverable object
participating in a transaction. These requirements include an obligation to retain
certain information at certain times in stable storage (storage not likely to be dam
as the result of failure). When a recoverable object restarts after a failure, it
participates in a recovery protocol based on the contents (or lack of contents) of
stable storage.
10-58 CORBAservices November 1997

10

e

 to

uing
e
 the

ain

.

is

d in

r is

d for

is
Once having replied VoteCommit, the resource remains responsible for discovering th
outcome of the transaction (i.e., whether to commit or rollback). If the resource
subsequently makes a heuristic decision, this does not change its responsibilities
discover the outcome.

If No Heuristic Decision is Made

A resource that is prepared is responsible for initiating recovery. It does so by iss
replay_completion to the RecoveryCoordinator. The reply tells the resource the outcom
of the transaction. The coordinator can continue the completion protocol allowing
resource to either commit or rollback. The resource can resend replay_completion if the
completion protocol is not continued.

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::OBJECT_NOT_EXIST, it will know that the Coordinator no longer exists
and therefore the outcome was to rollback (presumed rollback).

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::COMM_FAILURE, it will know only that the Coordinator may or may not
exist. In this case, the resource retains responsibility for initiating recovery ag
at a later time.

When a Heuristic Decision is Made

Before acting on a heuristic decision, it must record the decision in stable storage

• If the heuristic decision turns out to be consistent with the outcome, then all
well and the transaction can be completed and the heuristic decision can be
forgotten.

• If the heuristic decision turns out to be wrong, the heuristic damage is recorde
stable storage and one of the heuristic outcome exceptions
(HeuristicCommit,HeuristicRollback,HeuristicMixed, or HeuristicHazard) is returned
when completion continues.

The heuristic outcome details must be retained persistently until the resource is
instructed to forget. In this case, the resource remains persistent until the forget is
received.

Subordinate Coordinator Role

The behavior of a subordinate coordinator after a failure of its superior coordinato
implementation-dependent; however, it does follow the following protocols:

• Since it appears as a resource to its superior coordinator, the protocol define
recoverable servers applies to subordinate coordinators.

• Since it is also a subordinate coordinator for its own registered resources, it
permitted to send duplicate commit, rollback, and forget requests to its registered
resources.

• It is required to (eventually) perform either commit or rollback on any resource to
which it has received a VoteCommit response to prepare.

• It1 is required to (eventually) perform the forget operation on any resource that
reported a heuristic outcome.
Transaction Service: v1.1 The Implementers’ View November 1997 10-59

10

re

ion

 a
ot

d

rm a

e

tood
plicit

ith
text

 to

 to

ed to
n

, no

ed by
Since subtransactions are not durable, it has no responsibility in this area for failu
recovery.

10.5.2 ORB/TS Implementation Considerations

The Transaction Service and the ORB must cooperate to realize certain Transact
Service function. This is discussed in greater detail in the following sections.

Transaction Propagation

The transaction is represented to the application by the Control object. Within the
Transaction Service, an implicit context is maintained for all threads associated with
transaction. Although there is some common information, the implicit context is n
the same as the Control object defined in this specification and is distinct from the
ORB Context defined by CORBA. It is the implicit context that must be transferre
between execution environments to support transaction propagation.

The objects using a particular Transaction Service implementation in a system fo
Transaction Service domain. Within the domain, the structure and meaning of the
implicit context information can be private to the implementation. When leaving th
domain, this information must be translated to a common form if it is to be unders
by the target Transaction Service domain, even across a single ORB. When the im
context is transferred, it is represented as a PropagationContext.

No OMG IDL declaration is required to cause propagation of the implicit context w
a request. The minimum amount of information that could serve as an implicit con
is the object reference of the Coordinator. However, an identifier (e.g., an X/Open
XID) is also required to allow efficient (local) execution of the is_same_transaction and
hash_transaction operations when interposition is done. Implementations may choose
also include the Terminator object reference if they support the ability for ending the
transaction in other execution environments than the originator’s. Transferring the
implicit context requires interaction between the Transaction Service and the ORB
add or extract the implicit context from ORB messages. This interaction is also us
implement the checking functions described in “X/Open Checked Transactions” o
page 10-37.

When the Control object is passed as an operation argument (explicit propagation)
special transfer mechanism is required.

Interposition

When a transaction is propagated, the implicit context is exported and can be us
the importing Transaction Service implementation to create a new Control object
which refers to a new (local) Coordinator. This technique, interposition, allows a

1. or some “agent” acting on its behalf: for example a system management application.
10-60 CORBAservices November 1997

10

or
sages
rvice

nator

n

 to

r is

 any
rlying

te

n

vice
 an

hat

tion
surrogate to handle the functions of a coordinator in the importing domain. These
coordinators act as subordinate coordinators. When interposition is performed, a single
transaction is represented by multiple Coordinator objects.

Interposition allows cooperating Transaction Services to share the responsibility f
completing a transaction and can be used to minimize the number of network mes
sent during the completion process. Interposition is required for a Transaction Se
implementation to implement the is_same_transaction and hash_transaction operations as
local method invocations, thus improving overall systems performance.

An interposed coordinator registers as a participant in the transaction with the
Coordinator identified in the PropagationContext of the received request. The
relationships between coordinators in the transaction form a tree. The root coordi
is responsible for completing the transaction.

Many implementations of the Transaction Service will want to perform interpositio
and thus create Control objects and subsequently Coordinator objects for each
execution environment participating in the transaction. To create a new (local) Control,
an importing Transaction Service uses the information in the propagation context
recreate a Control object using a TransactionFactory. Interposition must be complete
before the get_control operation can complete in the target object. An object adapto
one possible place to implement interposition.

Subordinate Coordinator Synchronization

A subordinate coordinator may register with its superior coordinator to ensure that
local state data maintained by the subordinate coordinator is returned to the unde
resource prior to the subordinate coordinator’s associated Resource seeing prepare.

Subordinate Coordinator Registration

A subordinate coordinator must register with its superior coordinator to orchestra
transaction completion for its local resources. The register_resource operation of the
Coordinator can be used to perform this function. The subordinate coordinator ca
either support the Resource interface itself or provide another Resource object which
will support transaction completion. Some implementations of the Transaction Ser
may wish to perform this function as a by-product of invoking the first operation on
object in a new domain as is done with the X/Open model. This requires that the
information necessary to perform registration be added to the reply message of t
first operation.

Transaction Service Interoperation

The Transaction Service can be implemented by multiple components at different
locations. The different components can be based on the same or different
implementations of the Transaction Service. As stated in “Principles of Function,
Design, and Performance” on page 10-8, it is a requirement that multiple Transac
Services interoperate across the same ORB and different ORBs.
Transaction Service: v1.1 The Implementers’ View November 1997 10-61

10

orted

r
ice.
 two-

is

 in
d the

es for
made

ry

n for

s

e

 set

on.
Transaction Service interoperation is specified by defining the data structures exp
between different implementations of the Transaction Service. When the implicit
context is propagated with a request, the destination uses it to locate the superio
coordinator. That coordinator may be implemented by a foreign Transaction Serv
By registering a resource with that coordinator, the destination arranges to receive
phase commit requests from the (possibly foreign) Transaction Service.

The Transaction Service permits many configurations; no particular configuration
mandated. Typically, each program will be directly associated with a single
Transaction Service. However, when requests are transmitted between programs
different Transaction Service domains, both Transaction Services must understan
shared data structures to interoperate.

An interface between the ORB and the Transaction Service is defined that arrang
the implicit context to be carried on messages that represent method invocations
within the scope of a transaction.

Structure of the Propagation Context

The PropagationContext structure is defined in “Structures” on page 10-15. For the
functions defined within the base section of the propagation context, it is necessa
only to send it with requests. Implementations may use the vendor specific portio
additional functions (for example, to register an interposed coordinator with its
superior), which may require the propagation context to be returned. Whether it i
returned or not, is implementation specific.

otid_t

The otid_t structure is a more efficient OMG IDL version of the X/Open defined
transaction identifier (XID). The otid_t can be transformed to an X/Open XID and vic
versa.

TransIdentity

A structure that defines information for a single transaction. It consists of a coord, an
optional term, and an otid.

coord

The Coordinator for this transaction in the exporting Transaction Service domain.

term

The Terminator for this transaction in the exporting Transaction Service domain.
Transaction Services that do not allow termination by other than the originator will
this field to a null reference (OBJECT_NIL).

otid

An identifier specific to the current transaction or subtransaction. This value is
intended to support efficient (local) execution of the is_same_transaction and
hash_transaction operations when the importing Transaction Service does interpositi
10-62 CORBAservices November 1997

10

action
does
n-

back
on.

by

 be

RBA
tely
 by

n
timeout

The timeout value associated with the transaction in the relevant set_timeout operation
(or the default timeout).

<TransIdentity> parents

A sequence of TransIdentity structures representing the parent(s) of the current
transaction. The ordering of the sequence starts at the parent of the current trans
and includes all ancestors up to the top-level transaction. An implementation that
not support nested transactions would send an empty sequence. This allows a no
nested transaction implementation to know when a nested transaction is being
imported. It also supports efficient (local) execution of the Coordinator operations
which test parentage when the importing Transaction Service does interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed
with the rest of the context if the transaction is re-imported into that implementati

Appearance of the Propagation Context in Messages

The appearance of the PropagationContext in messages is defined by the CORBA
interoperability specification (see the General Inter-ORB Protocol chapter of the
Common Object Request Broker: Architecture and Specification). The Transaction
Service passes the PropagationContext to the ORB via the TSPortability interface
defined in “The Transaction Service Callbacks” on page 10-65.

• When exporting a transaction, the ORB sets the PropagationContext into the
ServiceContext::context_data field and marshals the PropagationContext as defined
the GIOP message format and marshalling rules.

• When importing a transaction, the ORB demarshalls the ServiceContext::context_data
according to the GIOP formatting rules and extracts the PropagationContext to
presented to the Transaction Service.

For more information, see the General Inter-ORB Protocol chapter of the Common
Object Request Broker: Architecture and Specification.

Transaction Service Portability

This section describes the way in which the ORB and the Transaction Service
cooperate to enable the PropagationContext to be passed and any X/Open-style
checking to be performed on transactional requests.

Because it is recognized that other object services and future extensions to the CO
specification may require similar mechanisms, this component is specified separa
from the main body of the Transaction Service to allow it to be revised or replaced
a mechanism common to several services independently of any future Transactio
Service revisions.
Transaction Service: v1.1 The Implementers’ View November 1997 10-63

10

y to

e
aces.

f to
nal

ks)

 the

ing
lbacks
annot

e

in.
To enable a single Transaction Service to work with multiple ORBs, it is necessar
define a specific interface between the ORB and the Transaction Service, which
conforming ORB implementations will provide, and demanding Transaction Servic
implementations can rely on. The remainder of this section describes these interf
There are two elements of the required interfaces:

1. An additional ORB interface that allows the Transaction Service to identify itsel
the ORB when present in order to be involved in the transmission of transactio
requests.

2. A collection of Transaction Service operations (the Transaction Service callbac
that the ORB invokes when a transactional request is sent and received.

These interfaces are defined as pseudo-IDL to allow them to be implemented as
procedure calls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to
ORB within its domain to establish the transaction callbacks to be used for
transactional requests and replies.

The Transaction Service identifies itself to the ORB using the following interface.

The callback routines identified in this operation are always in the same address
domain as the ORB. On most machine architectures, there are a unique set of cal
per address space. Since invocation is via a procedure call, independent failures c
occur.

NotAvailable

The NotAvailable exception is raised if the ORB implementation does not support th
CosTSPortability module.

AlreadyIdentified

The AlreadyIdentified exception is raised if the identify_sender or identify_receiver
operation had previously identified callbacks to the ORB for this addressing doma

interface TSIdentification { // PIDL
exception NotAvailable {};
exception AlreadyIdentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, AlreadyIdentified);

void identify_receiver(in CosTSPortability::Receiver receiver)
raises (NotAvailable, AlreadyIdentified);

};
10-64 CORBAservices November 1997

10

tion
tified.

he

B

se the
identify_sender

The identify_sender operation provides the interface that defines the callbacks to be
invoked by the ORB when a transactional request is sent and its reply received.

identify_receiver

The identify_receiver operation provides the interface that defines the callbacks to be
invoked by the ORB when a transactional request is received and its reply sent.

The Transaction Service must identify itself to the ORB at least once per Transac
Service domain. Sending and receiving transactional requests are separately iden
If the callback interfaces are different for different processes within a Transaction
Service domain, they are identified to the ORB on a per process basis. Only one
Transaction Service implementation per addressing domain can identify itself to t
ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requests can identify only the receiver callbacks.

The Transaction Service Callbacks

The CosTSPortability module defines two interfaces. Both interfaces are defined as
PIDL. The Sender interface defines a pair of operations which are called by the OR
sending the request before it is sent and after its reply is received. The Receiver
interface defines a pair of operations which are called by the ORB receiving the
request when the request is received and before its reply is sent. Both interfaces u
PropagationContext structure defined in “Structures” on page 10-15.

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env);

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};
Transaction Service: v1.1 The Implementers’ View November 1997 10-65

10

 of
rvice

 The

e
ed.

from

ere
ion
ds to

ces:

citly
 ORB

le to
us
uest
ReqId

The ReqId is an unique identifier generated by the ORB which lasts for the duration
the processing of the request and its associated reply to allow the Transaction Se
to correlate callback requests and replies.

Sender::sending_request

A request is about to be sent. The Transaction Service returns a PropagationContext to
be delivered to the Transaction Service at the server managing the target object.
TRANSACTION_REQUIRED standard exception is raised when invoked outside the
scope of a transaction.

Sender::received_reply

A reply has been received. The PropagationContext from the server is passed to the
Transaction Service along with the returned environment. The Transaction Servic
examines the Environment to determine whether the request was successfully perform
If the Environment indicates the request was unsuccessful, the
TRANSACTION_ROLLEDBACK standard exception is raised.

Receiver::received_request

A request has been received. The PropagationContext defines the transaction making
the request. It is associated with the target object only if the target object inherits
the TransactionalObject interface.

Receiver::sending_reply

A reply is about to be sent. A checking transaction service determines whether th
are outstanding deferred requests or subtransactions and raises a system except
using the normal mechanisms. The exception data from the callback operation nee
be re-raised by the calling ORB.

Behavior of the Callback Interfaces

The following sections describe the protocols associated with the callback interfa

Requirements on the ORB

The ORB will invoke the sender callbacks only when a transactional operation is
issued for an object in a different process. Objects within the same process impli
share the same transaction context. The receiver callbacks are invoked when the
receives a transactional request from a different process.

The ORB must generate a request identifier for each outgoing request and be ab
associate the identifier with the reply when it is returned. For deferred synchrono
invocations, this allows the Transaction Service to correlate the reply with the req
to implement checked behavior. The request identifier is passed on synchronous
invocations to permit the same interface to be used.
10-66 CORBAservices November 1997

10

is
essed

.

ion at
d on

ables
d

s and

 is

d
ad

iates

ces

The callbacks are invoked in line with the processing of requests and replies. Th
means that the callbacks will be executed on the same thread that issued or proc
the actual request or reply. When the DII is used, the received_reply callback must be
invoked on the same thread that will subsequently process the response.

Requirements on the Transaction Service

Within a single process, the transaction context is part of the thread specific state
Multiple threads executing on behalf of the same transaction will share the same
transaction context since a thread can only execute on behalf of a single transact
a time. Since the callbacks are defined as PIDL (procedure calls), they are invoke
the client’s thread when sending and the server’s thread when receiving. This en
the Transaction Service to locate the proper transaction context when sending an
associate the received transaction context with the thread that will process the
transactional operation. The callback interfaces may only raise standard exception
may not make additional object invocations using the ORB.

10.5.3 Model Interoperability

The indirect context management programming model of the Transaction Service
designed to be compatible with the X/Open DTP standard, and implementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associate
with a thread of control. Some X/Open Transaction Managers support a single thre
of control in a process, others allow multiple threads of control per process.

Model interoperability is possible because the Transaction Service design is
compatible with the X/Open DTP model of a Transaction Manager. X/Open assoc
an implicit current transaction with each thread of control.

This means that a single transaction management service can provide the interfa
defined for the Transaction Service and also provide the TX and XA interfaces of
X/Open DTP. This is illustrated in Figure 10-6.
Transaction Service: v1.1 The Implementers’ View November 1997 10-67

10

re

ipate
Figure 10-6 Model Interoperability Example

The transactional object making the SQL call, and the SQL Resource manager, a
both executing on the same thread of control. The transaction manager is able to
recognize the relationship between the transaction context of the object, and the
transaction associated with the SQL DB.

The Current and Coordinator interfaces of the Transaction Service implement two-
phase commit for the objects in the transaction. The Resource Manager will partic
in the two-phase commitment process via the X/Open XA interface.

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB
XA

SQL

Transaction

Manager

New Application (Objects) SQL Data Base

SQL DB
Resource
Manager
10-68 CORBAservices November 1997

10
10.6 The CosTransactions Module

#include <Corba.idl>
module CosTransactions {
// DATATYPES
enum Status {

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

// Structure definitions
struct otid_t {

long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};

// Forward references for interfaces defined later in module
interface Current;
interface TransactionFactory;
interface Control;
interface Terminator;
interface Coordinator;
Transaction Service: v1.1 The CosTransactions Module November 1997 10-69

10
interface RecoveryCoordinator;
interface Resource;
interface Synchronization;
interface SubtransactionAwareResource;
interface TransactionalObject;

// Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

// Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};

// Current transaction
interface Current : CORBA::Current {

void begin()
raises(SubtransactionsUnavailable);

void commit(in boolean report_heuristics)
raises(

NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};
10-70 CORBAservices November 1997

10
interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();
Control create_subtransaction()

raises(SubtransactionsUnavailable, Inactive);
Transaction Service: v1.1 The CosTransactions Module November 1997 10-71

10
PropagationContext get_txcontext ()
raises(Unavailable);

};

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};

interface TransactionalObject {
};

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

};

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

}; // End of CosTransactions Module
10-72 CORBAservices November 1997

10
10.6.1 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env);

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};
Transaction Service: v1.1 The CosTransactions Module November 1997 10-73

10

ing

ined

rvice
Appendix A Relationship of Transaction Service to TP Standards

This appendix discusses the relationship and possible interactions with the follow
related standards:

• X/Open TX interface

• X/Open XA interface

• OSI TP protocol

• LU 6.2 protocol

• ODMG standard

A.1 Support of X/Open TX Interface

A.1.1 Requirements

The X/Open DTP model1 is now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-def
interface to delineate transactions, to interact with a Transaction Manager. (The
Transaction Manager is the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence between the TX interface primitives and the Transaction Se
operations (Current interface) are as follows:

1. See “Distributed Transaction Processing: The XA Specification, X/Open Document C193.” X/Open Company Ltd.,
Reading, U.K., ISBN 1-85912-057-1.

Table 10-2TX mappings

TX interface Current interface

tx_open() no equivalent

tx_close() no equivalent

tx_begin() Current::begin()

tx_rollback() Current::rollback() or
Current::rollback_only()

tx_commit() Current::commit()

tx_set_commit_return() report_heuristics parameter of
Current::commit()

tx_set_transaction_control() no equivalent
(chained transactions not supported)

tx_set_transaction_timeout() Current::set_timeout()
10-74 Transaction Service: v1.1 Support of X/Open TX Interface November 1997

10

n
n does
hen

ment.

on
n does

)

a

e it
tx_open

tx_open() provides a way to open, in a given execution environment, the Transactio
Manager and the set of Resource Managers that are linked to it. Such an operatio
not exist in the Transaction Service; such processing may be implicitly executed w
the first operation of the Transaction Service is executed in the execution environ

This processing is also related to a future Initialization Service.

tx_close

tx_close() provides a way to close, in a given execution environment, the Transacti
Manager and the set of Resource Managers that are linked to it. Such an operatio
not exist in the Transaction Service.

tx_begin

tx_begin() corresponds to Current::begin() or to TransactionFactory::create().

tx_rollback

tx_rollback() corresponds to Current::rollback(), Terminator::rollback(), Current::rollback_only(
or Coordinator::rollback_only() . In TX, when a server calls tx_rollback(), the transaction
may be rolled back or set as rollback only, as in the Transaction Service.

tx_commit and tx_set_commit_return

tx_commit() corresponds to Current::commit(. The Transaction Service operations have
parameter, report_heuristics, corresponding to the commit_return parameter of TX.

tx_set_transaction_control

tx_set_transaction_control() is used, in TX, to switch between unchained and chained
mode; this function is not needed in the Transaction Service environment becaus
does not support chained transactions.

tx_info() - XID Coordinator::get_txcontext()
Current::get_name()1

tx_info() - COMMIT_RETURN no equivalent

tx_info() - TRANSACTION_TIME_OUT no equivalent

tx_info() - TRANSACTION_STATE Current::get_status()

1. A printable string is output: not guaranteed to be the XID in all implementations.

Table 10-2TX mappings

TX interface Current interface
Transaction Service: v1.1 Support of X/Open TX Interface November 1997 10-75

10

e

ace

used

pen

s of
n and
tx_set_transaction_timeout

tx_set_transaction_timeout() corresponds to Current::set_timeout() or
TransactionFactory::create().

tx_info

tx_info() returns information related to the current transaction. In the Transaction
Service:

• the XID may be retrieved by Coordinator::get_txcontext();

• the XID (in effect) may be retrieved by Current::get_transaction_name();

• the transaction state may be retrieved by Current::get_status();

• the commit return attribute is not needed because this attribute is given in th
commit() operation;

• the timeout attribute cannot be obtained.

A.2 Support of X/Open Resource Managers

A.2.1 Requirements

X/Open DTP-compliant Resource Managers, simply called X/Open Resource
Managers or RMs, are Resource Managers that can be involved in a distributed
transaction by allowing their two-phase commit protocol to be controlled via the
X/Open XA Interface. Many RDBMS suppliers currently offer (or intend to offer)
X/Open Resource Managers. Many OODBMS’ intend also to support the XA Interf
(some have already implemented it).

The Transaction Service must therefore be able to interact with X/Open Resource
Managers. This section will illustrate how an X/Open Resource Manager may be
by a Transaction Service-compliant system.

The architecture of Transaction Service, based on the same concepts as the X/O
DTP Model, allows mapping of Transaction Service operations to and from XA
interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mapping between XA primitives
offered by an X/Open Resource Manager (called RM hereafter) and the interface
the Transaction Service and their operations in the different phases of a transactio
during recovery.
10-76 Transaction Service: v1.1 Support of X/Open Resource Managers November 1997

10

d of

 state.

ion
by
.

The mappings are summarized in the following table:

In the X/Open DTP model all the interactions are made in the same X/Open threa
control.

A.2.3 XID

An XID is the Transaction Identifier. As defined by X/Open, this XID is the only
information used by Resource Managers to associate logged information to the
transaction, including objects’ before images, after images, locks, and transaction

The contents of an XID is defined by X/Open as follows:

The XID uniquely and unambiguously identifies a distributed transaction (informat
contained in the gtrid part of the XID) and a transaction-branch, the work performed
a node in the transaction tree (information contained in the bqual part of the XID)

Table 10-3XA mappings

X/Open Object Transaction Service

xa_start()
ax_reg()

Receiver::received_request
Current::resume

xa_end() Receiver::sending_reply
Current::suspend

ax_unreg() no equivalent

xa_prepare() Resource::prepare

xa_commit() Resource::commit

xa_rollback() Resource::rollback

xa_recover() no equivalent

no equivalent RecoveryCoordinator::replay_completion()

xa_forget() Resource::forget()

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64
 /* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64
 /* maximum size in bytes of bqual */

struct xid_t {
 long formatID;/* format identifier */
 long gtrid_length;
 /* value not to exceed 64 */
 long bqual_length;
 /* value not to exceed 64 */
 char data [XIDDATASIZE];
};
typedef struct xid_t XID;
Transaction Service: v1.1 Support of X/Open Resource Managers November 199710-77

10

pen
 the
f a

r in
se

y a

 used
t

r it

has

this

as to

ed

e
tion.
” and
nt.
g

to
k
To facilitate the use of distributed transaction in heterogeneous environments, X/O
has adopted the structure of the Transaction Identifier used in OSI TP but allows
use of other Transaction Identifiers formats, which may be defined by the value o
Format Identifier field contained in the XID structure. The OSI TP Transaction
Identifier contains information about the initiator of the transaction and the superio
the transaction tree; this information may be used, during recovery, to contact the
entities and obtain the outcome of the transaction.

In the Transaction Service, tightly-coupled concurrency is assumed (a lock held b
transaction may be accessed by any participant of the same transaction) and the
transaction branch part of the XID must not be given to RMs.

Interactions with an XA-compliant RM

Model

To model the relationship between the XA interface and the Transaction Service
operation, an X/Open Transaction Manager has been modeled; this component is
here as a way to describe the interactions and may be implemented in a differen
manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:

• Static registration, in which the Transaction Service involves the RM wheneve
is itself involved in a new transaction.

• Dynamic registration, in which the RM notifies the Transaction Service that it
been requested to perform some work and request the XID of the current
transaction.

An RM gets involved in a transaction when it has to perform some new work for
transaction. This happens in one of the following situations:

• A request carrying a transaction context has just been received and the RM h
perform work for the target object of this request;

• A method performing a request that is carrying a transaction context is resum
(by a Current::resume() operation).

An object may receive several requests carrying a transaction context for the sam
transaction. An RM may also perform work for several objects in the same transac
Thus an RM may be involved several times in the same transaction; the “resume
the “join” concepts of XA may be used to notify the RM of any multiple involveme
When an RM has to get involved in a transaction, it must obtain the correspondin
XID from the Transaction Service through an xa_start() primitive or by a return
parameter of an ax_reg() primitive. This XID is transmitted to the RM as a parameter
xa_start() or ax_reg() and is used by the RM to relate any work performed or any loc
obtained to the transaction.
10-78 Transaction Service: v1.1 Support of X/Open Resource Managers November 1997

10

ntil

n to

s an

es an

M

er
in

ly if
If the Transaction Service is called by an ax_reg() while it is not aware of any
transaction, it returns a null XID to the RM. The RM is then free to start a local
transaction of its own, and no Transaction Service transaction will be accepted u
the RM issues an ax_unreg().

Refer to X/Open documents for more information about propagation of a transactio
an RM.

First phase of Commitment

When the first phase of commitment is started, the Transaction Service issues an
xa_prepare() primitive and process its results to determine its decision.

Second Phase of Commitment

When the second phase of commitment is started, the Transaction Service issue
xa_commit() primitive and process its results to determine the heuristic situation.

One-phase commitment

When the Transaction Service wants to perform a one-phase commitment, it issu
xa_commit() primitive and process its results to determine the heuristic situation.

In the XA interface, there is no specific primitive for one-phase commitment: an R
must consider an xa_commit() without preceding xa_prepare() as a request to perform a
one-phase commitment.

Rollback

When a rollback has to be performed, the Transaction Service issues an xa_rollback()
primitive and process its results to determine the heuristic situation.

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manag
which issues an xa_recover(); the RM then gives back a list of all XIDs that are either
the Ready state or have been heuristically completed.

In the Transaction Service recovery is performed by a resource that issues a
replay_completion operation to a Coordinator (see Subsection "Transaction Completion
after Failure" in “Transaction Service Protocols” on page 10-49).

Failure of an Operation

Any failure of an operation typically leads to a rollback of the transaction, especial
it is not possible to determine whether the operation has been performed or not.
However, in the decided commit state, the commit operation must be retried until the
reply has been received (unless a heuristic hazard condition is detected).
Transaction Service: v1.1 Support of X/Open Resource Managers November 199710-79

10

er().
M

tions

,

d
rt

tion
e
e

 and
SI

is

 and

 by
Failure of an RM

If an RM fails, the Transaction Service detecting the failure will issue an xa_recov
The Transaction Service will then get a list of XIDs of transactions for which the R
is in the ready state and transactions that have been heuristically completed.

The Transaction Service will then:

• Call xa_rollback() for all transactions that it knows to be neither in the prepared
state nor in the decided commit state.

• Call xa_commit() for all transactions that it knows to be in the decided commit
state.

• Wait for the decisions commit or rollback for the other.

Failure of Transaction Service

Upon warm restart of the Transaction Service and retrieval of the states of transac
needing recovery from stable storage, the Transaction Service will call xa_recover() to
get the list of transactions for which the RM needs recovery (see failure of an RM
here above).

A.3 Interoperation with Transactional Protocols

A.3.1 Transactional Protocols

A CORBA application may sometimes need to interoperate with one or more
applications using one of the de-facto standard transactional protocol: OSI TP an
SNA LU 6.2. In this case, the Transaction Service must be able to import or expo
transactions using one of these protocols.

Export is the ability to relate a transaction of the Transaction Service to a transac
of a foreign transactional protocol. Importing means relating a Transaction Servic
transaction to a transaction started on a remote application and propagated via th
foreign transactional protocol.

Since the model used by the Transaction Service is similar to the model of OSI TP
the X/Open DTP model, the interactions with OSI TP are straightforward. Since O
TP is a compatible superset of SNA LU 6.2, a mapping to SNA communications
easily accomplished.

To interoperate, a mapping should be defined for the two-phase commit, rollback,
recovery mechanisms, and for the transaction identifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.2 OSI TP Interoperability

OSI TP [ISO92] is the transactional protocol defined by ISO. It has been selected
X/Open to allow the distribution of transactions by one of the communication
interfaces: remote procedure call1, client-server 2 or peer-to-peer (CPI-C Level-2 API
[CIW93]).
10-80 Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

ues
are

he
h

d

the

acts
tion

g the

ll

 will
er a

e

ters
mit)

may

the
The Transaction Service supports only unchained transactions. The use of dialog
using the Chained Transactions functional unit is possible only if restrictive rules
defined. These rules are not described in this document.

OSI TP Transaction Identifiers

In OSI TP, loosely-coupled transactions are supported and every node of the
transaction tree possesses a transaction branch identifier which is composed of t
transaction identifier (or atomic action identifier) and a branch identifier (the branc
identifier being null for the root node of the transaction tree). Both the transaction
identifier and the branch identifier contains an AE-Title (Application Entity Title) an
a suffix that make it unique within a certain scope.

The format of the standard X/Open XID is compatible with the OSI TP identifiers,
gtrid corresponding to the atomic action identifier and the bqual corresponding to the
branch identifier.

Incoming OSI TP Communications (Imported Transactions)

The Transaction Service is a subordinate in an OSI TP transaction tree and inter
with its superior by regular PDUs as defined by the OSI TP protocol. The Transac
Service introduces the transaction identifier received on the OSI TP dialogue usin
TransactionFactory::recreate operation.

The Transaction Service maps the OSI TP commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an OSI TP Prepare message, wi
enter the first phase of commitment procedure.

• When it enters the prepared state for the transaction, the Transaction Service
trigger the sending of an OSI TP Ready message to its superior. (It may trigg
Recover (Ready) message when normal communications are broken with th
superior).

• The Transaction Service, upon reception of an OSI TP Commit message, en
the second phase of commitment procedure. (It may receive a Recover (Com
when normal communications are broken with the superior.)

• The Transaction Service, upon reception of an OSI TP Rollback message (it
be a Recover (Unknown) when normal communications are broken with the
superior or any other rollback-initiating condition) will enter its rollback
procedure (unless a rollback is already in progress).

• The Transaction Service, upon reception of the last rollback reply, will trigger
sending of a Rollback Response/Confirm message to its superior.

1. See “Distributed Transaction Processing: The TxRPC Specification, X/Open Document P305.” X/Open Company
Ltd., Reading, U.K..

2. See “Distributed Transaction Processing: The XATMI Specification, X/Open Document P306.” X/Open Company
Ltd., Reading, U.K..
Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

d
l.

ll

t
mit)

may
ss

firm
lback

s

e
ble

tarted
for a
after
of an

t for

 is

itted.
Outgoing OSI TP Communications (Exported Transactions)

The Transaction Service behaves as a superior in an OSI TP transaction tree an
interacts with its subordinates by regular PDUs as defined by the OSI TP protoco

The Transaction Service will map the OSI TP commitment procedure as follows:

• The Transaction Service, during the first phase of commitment procedure wi
invoke an OSI TP Prepare message to all its subordinates.

• Upon reception of an OSI TP Ready message, the Transaction Service will
process this message as a successful reply to prepare.

• The Transaction Service, upon entering the second phase of the commitmen
procedure will send an OSI TP Commit message (it may be a Recover (Com
when normal communications are broken with the subordinate) to all
subordinates.

• The Transaction Service, upon reception of an OSI TP Rollback message (it
be any other rollback-initiating condition) will enter its rollback procedure (unle
a rollback is already in progress).

• The Transaction Service, upon reception of the last Rollback Response/Con
message from its subordinates, will process this message as a reply to a rol
operation and determine the heuristic situation.

A.3.3 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88b]) is a transactional protocol defined by IBM. It i
widely used for transaction distribution. The standard interface to access LU 6.2
communications is CPI-C (Common Programming Interface for Communications)
defined by IBM in the context of SAA [CPIC93] and currently being evolved by th
CPI-C Implementers' Workshop to become CPI-C level 2, a modern interface usa
for LU 6.2 and OSI TP communications [CIW93].

LU 6.2 supports only chained transactions but, at a given node, a transaction is s
only when resources have been involved in the transaction. LU 6.2 can be used
portion of an “unchained” transaction tree if the LU 6.2 conversations are ended
each transaction by any node that has both LU 6.2 conversations and dialogues
unchained transaction.

LU 6.2 Transaction Identifiers

SNA LU 6.2 also supports loosely-coupled transactions and uses a specific forma
transaction identifiers: the Logical Unit of Work (LUWID) corresponds to the OSI
Transaction Identifier. The LUWID is composed of:

• The Fully Qualified Logical Unit Name, which is composed of up to 17 bytes,
unique in an SNA network or a set of interconnected SNA networks.

• An instance number which is unique at the LU that create the transaction.

• The sequence number that is incremented whenever the transaction is comm
10-82 Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

tring
the
 of

r
 and

cts
tocol.
tion

enter

, the
o is

it
oken

the

 the

se of
.

)
The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a s
of 1 to 8 bytes which are unique within the context of the LU having established
conversation and is meaningful when combined with the Fully Qualified LU Name
this Logical Unit.

Incoming LU 6.2 Communications

The LU 6.2 two-phase commit protocol is different from the OSI TP protocol: the
system sending a Prepare message has to perform logging and is responsible fo
recovery. LU 6.2 does also support features like last-agent optimization, read-only
allows any node in the transaction tree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction tree and intera
with its superior using SNA requests and responses as defined by the LU 6.2 pro
The Transaction Service maps the LUWID corresponding to the incoming conversa
to an OMG otid_t and issues TransactionFactory::recreate to import the transaction.

The Transaction Service maps the LU 6.2 commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an LU 6.2 Prepare message will
the first phase of commitment procedure.

• The Transaction Service, upon entering the prepared state for the transaction
Transaction Service will trigger the sending of a Request Commit message t
superior.

• The Transaction Service, upon reception of an LU 6.2 Committed message (
may be a Compare States (Committed) when normal communications are br
with the superior) will enter the second phase of commitment procedure.

• The Transaction Service, upon leaving the decided commit state, will trigger
sending of a Forget message to is superior (it may be a Reset when normal
communications are broken with the superior).

Due to the two-phase commit difference, the Transaction Service will never send
equivalent of the Recover(Ready) unless prompted by the superior.

The last-agent and read-only features may also be supported by the Transaction
Service.

Outgoing LU 6.2 Communications

The Transaction Service has to log when the Prepare message is sent and, in ca
communication failure or restart of the Transaction Service, a recovery is needed

ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Management Group
describing portable interface to access Object Database Management Systems
(ODBMS).
Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

ion

tion
rnal
 in a

eans
ion

, in

-

l
If the
k,

 be
Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transact
Service.

A.4 ODMG Model

The ODMG model defines optional transactions and supports the nested transac
concept. The ODMG model does not cover the integration of ODBMS with an exte
Transaction Service, allowing other resources and communications to be involved
transaction. No two-phase commit or recovery protocol is described.

A transaction object must be created. The transactional operations are:

• Begin (or start) to begin a transaction (or a subtransaction).

• Commit to request commitment of a transaction.

• Abort to rollback a transaction.

• Checkpoint to commit the transaction but keep the locks. This feature is not
supported by the current version of the Transaction Service.

• abort_to_top_level to request rollback of a nested transaction family. The
Transaction Service does not directly support this feature but does provide m
to perform this functionality by resuming the context of the top-level transact
and then requesting rollback.

If the transaction object is destroyed, the transaction is rolled back.

Integration of ODMG ODBMSs with the Transaction Service

Since ODMG-93 does not define any way to integrate an ODBMS into an existing
transaction, the integration is difficult unless the ODBMS supports the XA interface
which case the section on XA-compliant RM is applicable.

In the future, it is anticipated that ODBMS will implement the Transaction Service
defined interfaces and be considered as a recoverable server.

A possibility is to use, at a root node, an ODBMS as a last resource and, after al
subordinates are prepared, to request a one-phase commitment to the ODBMS.
outcome for the ODBMS is commit, the transaction will be committed, if it is rollbac
the transaction will be rolled back. The mechanism may work if it is possible to
determine, after a crash, whether the ODBMS committed or rolled back; this may
done at application level.
10-84 Transaction Service: v1.1 ODMG Model November 1997

10
 Appendix B Transaction Service Glossary

B.1 TransactionTerms

2PC: See Two-phase commit.

Abort: See Rollback

Active: The state of a transaction when processing is in progress and completion of the
transaction has not yet commenced.

Atomicit y: A transaction property that ensures that if work is interrupted by failure, any
partially completed results will be undone. A transaction whose work completes
is said to commit. A transaction whose work is completely undone is said to
rollback (abort).

Begin: An operation on the Transaction Service which establishes the initial boundary
of a transaction.

Commit: Commit has two definitions as follows:

An operation in the Current and Terminator interfaces that a program uses to
request that the current transaction terminate normally and that the effects of
that transaction be made permanent.

An operation in the Resource interface which causes the effects a transaction to
be made permanent.

Commit coordinator: In a two-phase commit protocol, the program that collects the vote from the
participants.

Commit partici pant: In a two-phase commit protocol, the program that returns a vote on the
completion of a transaction.

Committed: The property of a transaction or a transactional object, when it has successfully
performed the commit protocol. See also in-doubt, active, and rolled back.

Completion: The processing required (either by commit or rollback) to obtain the durable
outcome of a transaction.
Glossary TransactionTerms November 1997 10-85

10
Coordinator: A coordinator involves Resource objects in a transaction when they are
registered. A coordinator is responsible for driving the two-phase commit
protocol. See also Commit coordinator and Commit participant.

Consistency: A property of a transaction that ensures that the transaction’s actions, taken as a
group, do not violate any of the integrity constraints associated with the state of
its associated objects. This requires that the application program be
implemented correctly: the Transaction Service provides the functionality to
support application data consistency.

Decided commit state: A root coordinator enters the decided commit state when it has written a log-
commit record; a subordinate coordinator or resource is in the decided commit
state when it has received the commit instruction from its superior; in the latter
case, a log-commit record may be written but this is not essential.

Decided rollback state: A coordinator or resource enters the decided rollback state when it decides to
rollback the transaction or has received a signal to do so.

Direct context management: An application manipulates the Control object and the other objects associated
with the transaction. See also Indirect context management.

Durabilit y: A transaction property that ensures the results of a successfully completed
transaction will never be lost, except in the event of catastrophe. It is generally
implemented by a combination of persistent storage and a logging service that
provides a backup copy of permanent changes.

Execution environment: An implementation-dependent factor that may determine the outcome of certain
operations on the Transaction Service. Typically the execution environment is
the scope within which shared state is managed.

Flat Transaction: A transaction that has no subtransactions—and that cannot have subtransactions.

Forgotten "state": This is not really a transaction state at all, because there is no memory of the
transaction: it has either completed or rolled back and all records on permanent
storage have been deleted.

Heuristic Commit or
Rollback:

To unilaterally make the commit or rollback decision about in-doubt
transactions when the coordinator fails or contact with the coordinator fails.

Indirect context management: An application uses the Current object, provided by the Transaction Service, to
associate the transaction context with the application thread of control. See also
Direct context management.
10-86 Glossary TransactionTerms November 1997

10
In-doubt: The state of a transaction if it is controlled by a transaction manager that can not
be contacted, so the commit decision is in doubt. See also active, committed,
rolled back.

Inter position: Adding a sequence of one or more subordinate coordinators between a root
coordinator and its participants.

Isolation: A transaction property that allows concurrent execution, but the results will be
the same as if execution was serialized. Isolation ensures that concurrently
executing transactions cannot observe inconsistencies in shared data.

Lock service: Called the Concurrency Control Service, it is an Object Service used by
resources to control access to shared objects by concurrently executing methods.

Log-ready record (and
contents):

for an intermediate coordinator a log-ready record contains identification of the
(superior) coordinator and of Resource objects (including subordinate
coordinators) registered with the coordinator which replied VoteCommit (i.e., it
excludes registered objects which replied VoteReadOnly); for a Resource object
a log-ready record includes identification of the coordinator with which it is
registered.

Log-commit record (and
contents):

A log-commit record contains identification of all registered Resource objects
which replied VoteCommit.

Log-heuristic record: This contains a record of a heuristic decision either HeuristicCommit or
HeuristicRollback.

Log-damage record: This contains a record of heuristic damage i.e. where it is known that a heuristic
decision conflicted with the decided outcome (HeuristicMixed) or where there is
a risk that a heuristic decision conflicted with the decided outcome
(HeuristicHazard).

Log service: A service used by resource managers for recording recovery information and the
Transaction Service for recording transaction state durably.

Nested transaction: A transaction that either has subtransaction or is a subtransaction on some other
transaction.

Participant: See Commit participant.
Glossary TransactionTerms November 1997 10-87

10
Persistent storage: Generally speaking, a synonym for Stable storage. In the context of the OMA,
the Persistent Object Service (POS) provides an object representation of stable
storage.

Prepared: The state that a transaction is in when phase one of a two-phase commit has
completed.

Presumed rollback: An optimization of the two-phase commit protocol that results in more efficient
performance as the root coordinator does not need to log anything before the
commit decision and the Participants (i.e. Resource objects) do not need to log
anything before they prepare. So called because, at restart, if no record of the
transaction is found, it is safe to assume the transaction rolled back.

Propagation: A function of the Transaction Service that allows the Transaction context of a
client to be associated with a transactional operation on a server object. The
Transaction Service supports both implicit and explicit propagation of
transaction context.

Recoverable Object: An object whose data is affected by committing or rolling back a transaction.

Recoverable Server: A transactional object with recoverable state that registers a Resource (not
necessarily itself) with a Coordinator to participate in transaction completion.

Recovery Service: A service used by resource managers for restoring the state of objects to a prior
state of consistency.

Resource: An object in the Transaction Service that is registered for involvement in two-
phase commit—2PC. Corresponds to a Resource Manager.

Resource Manager: An X/Open term for a component which manages the integrity of the state of a
set of related resources.

Rollback: Rollback (also known as Abort) has two definitions, as follows:

An operation in the Current and Terminator interfaces used to indicate that the
current transaction has terminated abnormally and its effects should be
discarded.

An operation in the Resource interface which causes all state changes in the
transaction to be undone.
10-88 Glossary TransactionTerms November 1997

10
Rolled Back: The property of a transaction or a transactional object when it has discarded all
changes made in the current transaction. See also in-doubt, active, and
committed.

Root Coordinator: The first coordinator in a sequence of coordinators where there is interposition.
The coordinator associated with the transaction originator.

Security Service: An object service which provides identifications of users (authentication),
controls access to resources (authorization), and provides auditing of resource
access.

Stable storage: Storage not likely to be damaged as the result of node failure.

Sub-coordinator: See Subordinate Coordinator.

Subordinate Coordinator: A coordinator subordinate to the root coordinator when interposition has been
performed. A subordinate coordinator appears as a Resource object to its
superior. Also known as a Sub-coordinator.

Synchronization: An object in the Transaction Service which controls the transfer of persistent
object state data so it can be made durable by its associated resource.

Thread: The entity that is currently in control of the processor.

Thread Service: A service which enables methods to be executed concurrently by the same
process. Where two or more methods can execute concurrently each method is
associated with its own thread of control.

TP monitor: A system component that accepts input work requests and associates resources
with the programs that act upon these requests to provide a run-time
environment for program execution.

Transaction: A collection of operations on the physical and abstract application state.

Transactional client: An arbitrary program that can invoke operations of many transactional objects
in a single transaction. Not necessarily the Transaction originator.

Transaction Context: The transaction information associated with a specific thread. See Propagation.

Transactional operation: An operation on an object that participates in the propagation of the current
transaction.
Glossary TransactionTerms November 1997 10-89

10
Transaction originator: An arbitrary program—typically, a transactional client, but not necessarily an
object—that begins a transaction.

Transaction Manager: A system component that implements the protocol engine for 2-phase commit
protocol. See also Transaction Service.

Transactional object: An object whose operations are affected by being invoked within the scope of a
transaction.

Transactional server: A collection of one or more objects whose behavior is affected by the
transaction, but has no recoverable state of its own.

Transaction Service: An Object Service that implements the protocols required to guarantee the
ACID (Atomicity, Consistency, Isolation, and Durability) properties of
transactions. See also Transaction Manager.

TSPortabilit y: An interface of the Transaction Service which allows it to track transactional
operations and propagate transaction context to another Transaction Service
implementation.

Two-Phase commit: A transaction manager protocol for ensuring that all changes to recoverable
resources occur atomically and furthermore, the failure of any resource to
complete will cause all other resource to undo changes. Also called 2PC.
10-90 Glossary TransactionTerms November 1997

Query Service Specification 11
s are
g

eral

fy a

hese

cified

n
h

 the
11.1 Service Description

11.1.1 Overview

The Query Service provides query operations on collections of objects. The querie
predicate-based and may return collections of objects. They can be specified usin
object derivatives of SQL and/or other styles of object query languages, including
direct manipulation query languages.

The term “query” has read-only connotations, but we use it to denote general
manipulation operations including selection, insertion, updating and deletion on
collections of objects. Throughout this chapter, the term “object” is used in the gen
sense to include data.

The Query Service can be used to return collections of objects that may be:

• Selected from source collections based on whether their member objects satis
given predicate.

• Produced by query evaluators based on the evaluation of a given predicate. T
query evaluators may manage implicit collections of objects.

The source and result collections may be typed. The source collection may be spe
by the client or may be the result of previous queries.

11.1.2 Design Principles

The Query Service exists to allow arbitrary users and objects to invoke queries o
arbitrary collections of other objects. Such queries are declarative statements wit
predicates, including the ability to specify values of attributes; to invoke arbitrary
operations; and to invoke arbitrary services within the OMG environment, such as
Life Cycle, Persistent Object, and Relationship Services.
CORBAservices July 1996 11-1

11

 any

nce

and
the

n
r

rvice
rvice

ultiple
To support the OMG architecture, the Query Service must allow querying against
objects, with arbitrary attributes and operations.

To be useful in practical situations, the Query Service must allow use of performa
enhancing mechanisms, such as indexing.

To be useful in environments with database systems—object-oriented, relational,
other—and with other systems that store and access large collections of objects,
Query Service must map well to these native systems’ internal mechanisms for
specifying collections and using indexing. The Query Service must also allow the
native systems to contribute to specifying collections and indexing.

To maximize usefulness to the community at large, the Query Service is based o
existing standards for query and extended when necessary to accommodate othe
design principles.

The Query Service also supports flexibility in implementation and extensions.

11.1.3 Architecture

The Query Service design provides an architecture for a nested and federated se
that can coordinate multiple nested query evaluators, much as the Transaction Se
provides an architecture for a nested and federated service that can coordinate m
nested resources managers.
11-2 CORBAservices July 1996

11

any
uery
ct

r all

e
s
 such

s
ch
Query Evaluators: Nesting and Federation

Figure 11-1 Query Evaluators: Nesting and Federation

Objects may participate in the Query Service in two ways. The simplest involves
CORBA object as is. The Query Evaluator is then responsible for evaluating the q
predicate and performing all query operations by invoking operations on that obje
through its published OMG IDL interfaces. Any non-supported operations trigger
exceptions. This mechanism provides the greatest generality, including support fo
CORBA objects, but with the least optimization.

In a more involved manner, objects participate as members of a collection, either
explicit or implicit. The collection supports a specific query interface (that is, the
collection is itself a Query Evaluator). In this case, the Query Evaluator passes th
query predicate to the collection, which then evaluates the predicate and perform
query operations on an appropriate member object, receives any result, combines
results with all other participating object results, and returns this to the caller. Thi
accomplishes the nesting, by passing the query evaluation on to a lower level. Su
nesting may continue to an arbitrary number of levels, without limit.

Client

Query Evaluator

Query Evaluator

Native Query
System

Query Evaluator

Object

Object
Query Service: v1.0 Service Description July 1996 11-3

11

s to
d to

in
ery

ion
ntly

.

ng
h a

pe

s,

w a

hly
ss
rge
This second way allows Query Evaluators or any associated native query system
evaluate the query using the internal optimization at their disposal. This is expecte
include faster access, caching, and indexing. Interpretation of names embedded
query predicates is determined by the Query Evaluator or its associated native qu
systems.

The Query Service specification does not define evaluation, indexing or optimizat
mechanisms. These are in the province of the implementor and may vary significa
in different environments. The Query Service simply provides a mechanism for
passing the query to such systems and allowing their optimizations to take effect

Collections

The Query Service provides definitions and interfaces for creating and manipulati
collections of objects. These (explicit) collections may form both the scope to whic
query may be applied and the result of the query, when the result is one or more
objects.

The collections are defined as objects, with methods for adding and removing
members. They may be arbitrary in nature. In particular, they are not limited to ty
extents, as in some object systems, though type extents are examples of such
collections. They may map directly to collections managed by native query system
for optimization, and may also include arbitrary CORBA objects.

Associated iterators are defined to allow manipulation of collections, including
traversal over and retrieval of the objects within the collections. Such iterators allo
constant interface that can be invoked and implemented for arbitrary situations,
including mixtures of general CORBA objects; native query system collections; hig
distributed collections that could not be simultaneously accessed; collections acro
multiple heterogeneous products and systems; very small collections; and very la
collections that could not be materialized physically.
11-4 CORBAservices July 1996

11

query,

d
f
 of the
ll

e to
dd or
llows

o
)
es
Queryable Collections for Scope and Result

For collections to serve as both the result of a query and as a scope for another
these collections must themselves be Query Evaluators. Such collections are called
Queryable Collections. They support both the Query Evaluator and collection
interfaces, as illustrated in Figure 11-2.

Figure 11-2 Queryable Collections

One of the issues that arises in using Queryable Collections is scoping in a neste
environment. If the collection being queried allows adding arbitrary objects, and i
objects are then added which are outside the scope of the evaluation mechanism
Queryable Collection, then the Queryable Collection would have to provide the fu
functionality of a top-level Query Evaluator, evaluating predicates on arbitrary
CORBA objects. This would defeat the purpose of nesting.

To solve this problem, we allow Queryable Collection implementations, in respons
the invocation of the add and replace operations, to internally decide whether to a
replace the specified object, and to raise an exception if they decide not to. This a
arbitrary Queryable Collections—which are always supported at the top Query
Evaluator level, and sublevel implementations that scope Queryable Collections t
their own domain—to use whatever local mechanisms their (possibly pre-existing
query engines use. Examples of local mechanisms include optimization capabiliti
such as physical and logical indices; clustering; caching, and so forth.

Query Objects

Since queries can be complex and resource-demanding, there are numerous
circumstances under which one would like to:

• Use graphical means to construct a query.

Query
Evaluator Collection

Queryable
Collection

Queryable
Collection

...

query

query

query query
Query Service: v1.0 Service Description July 1996 11-5

11

 and

 back

bort.

e use
 a
t

rch

t and

uery
e, a
ages

ery
er

e
tions.
QL.)

92
ry,

ge
t is,
• Save a query and re-execute it later on, maybe with different set of search
parameters.

• Precompile a query for later execution; this may be for the purpose of syntax
semantics checking and/or query optimization.

• Execute a query in an asynchronous manner; go do something else and come
for the result.

• Check the status of a long-running query and decide whether to continue or a

The Query Service provides the preceding capabilities and extensions through th
of Query objects. A Query object is created by calling a Query Manager, which is
more powerful form of Query Evaluator. Once created, a client of the Query objec
can:

• Use whatever means appropriate to construct the query specification.

• Prepare the query for later execution.

• Execute the query any number of times, with the same or different set of sea
parameters.

• Check the status of the query.

• Obtain the result of the query.

How the Query object does the preceding tasks is determined by the Query objec
its associated Query Manager.

11.1.4 Query Languages

By using a very general model and by using predicates to deal with queries, the Q
Service is designed to be independent of any specific query languages. Therefor
particular Query Service implementation can be based on a variety of query langu
and their associated query processors.

However, in order to provide query interoperability among the widest variety of qu
systems and to provide object-level query interoperability, a Query Service provid
must support one of the following two query languages: SQL Query or OQL.

(Query capability is commonly implemented in database systems, hence there ar
many products, tools, trained users, and experiences based on these implementa
To leverage this, we base the query language specification on SQL Query and O

• SQL Query. Specifically, SQL-92 Query, which is defined in Chapter 7 (Entry
SQL), and Sections 13.7, 13.8 and 13.10 (Entry SQL) of Reference 1 on page
11-27. SQL Query is used as the generic term to denote the evolution of SQL-
Query. That is, it is envisioned that SQL-92 Query will evolve into SQL-9x Que
and so forth. These will be future versions of SQL Query. SQL-92 Query is the
current version.

• OQL. Specifically, OQL-93, which is defined in Chapter 4 of Reference 4 on pa
11-27. OQL is used as the generic term to denote the evolution of OQL-93. Tha
it is envisioned that OQL-93 will evolve into OQL-9x, and so on. These will be
future versions of OQL. OQL-93 is the current version.
11-6 CORBAservices July 1996

11

l
ice

QL-

ility

 and
es.

QL-92

,

ect
ith
s the

s of

f data
QL-

ws
 of

age
ore

,

hence
For those Query Service providers who intend to provide only basic object-leve
query interoperability (for example, to support the needs of the Life Cycle Serv
or Property Service), the following must also be supported:

• OQL Basic. Specifically, OQL-93 Basic, which is defined in Sections 4.11.1.2,
4.11.1.3, 4.11.1.4, 4.11.1.5, 4.11.1.6 (set only), 4.11.1.7 (except first and last) and
4.11.1.10 in Reference 4 on page 11-27.

Ideally we would like to specify a single query language, for complete query
interoperability. The most widely used query language in currently available query
systems is SQL-92 Query, which does not support full object query capabilities. O
93 does support full object query capabilities and contains a near- (but not exact)
subset of SQL-92 Query. Including SQL-92 Query provides the widest interoperab
with the most query systems, while including OQL-93 provides full OMG Object
Model support and full object query capabilities.

X3H2 and ODMG have started working together toward merging SQL Query and
OQL with the goal of specifying a single standard query language. As SQL Query
OQL evolve, the OMG will revise of the Query Service to conform to future chang

SQL Query

In the relational database world the accepted standard for database language is S
(Reference 1 on page 11-27). The ANSI X3H2 committee is working on a new
version, SQL3 (Reference 5 on page 11-27), which will include object extensions
among other things. The committee is still working on the details of the modeling
constructs; the object model under consideration is different from the OMG’s Obj
Model. It is important for the eventual SQL object model to be fully compatible w
the OMG Object Model so that SQL Query, the query subset of SQL, can serve a
query lingua franca in the OMG environment.

SQL-92 is a full database language. Functionally, it consists of the following type
language statements: schema; data; transaction; commection; session; dynamic;
diagnostics; and embedded exception declaration. Among these, only a subset o
statements deal directly with query. This subset is defined to be SQL-92 Query. S
92 Query basically deals with query over tables (special kind of collections) of ro
(special kind of dynamic data structures). As such, it concerns with a sub-domain
object query.

OQL

In the object database world the leading standard is ODMG-93 (Reference 4 on p
11-27). The ODMG-93 standard includes an object model, based on the OMG’s C
Object Model, with extensions, to form the proposed object database profile. Also
included is the Object Definition Language, ODL, which is a strict superset of IDL
providing a means to define objects in this profile model. All extensions, including
attributes and relationships, are visible in the object interfaces as operations, and
remain compatible with OMG IDL and the OMG architecture.
Query Service: v1.0 Service Description July 1996 11-7

11

QL-
 the

ons.
a
ility
ility

y.
e

and

es
 of
ps
ODMG-93 also includes OQL (that is, OQL-93). OQL-93 is an adaptation of the S
92 Query capability to extend to all objects in the ODMG object model. It includes
ability to include operation invocation in queries, to query over object inheritance
hierarchies, to invoke inter-object relationships, and to query over arbitrary collecti
OQL-93 is a query-only language; that is, it allows evaluation of a predicate and
returned result, but includes no specific constructs for object modification. The ab
within OQL-93 to invoke operations provides the insert, update and delete capab
without violating encapsulation.

The OQL-93 syntax and semantics are not exactly compatible with SQL-92 Quer
However, ODMG is working with X2H2 to address this issue. It is important for th
eventual OQL to be fully compatible with SQL Query so that there is only one
standard query language. .

SQL Query = OQL

Both X3H2 and ODMG have agreed upon a vision of the evolution of SQL Query
OQL, as illustrated in Figure 11-3.

Figure 11-3 SQL Query = OQL

In Figure 11-3, solid lines indicate existing, defined specifications, while dotted lin
indicate future specifications. As can be seen, SQL-92 Query is the query portion
SQL-92. OQL-93, being a query only language and having object features, overla
with SQL-92 and is almost exactly compatible with it.

SQL-92
SQL Query
= OQL

SQL-92
Query

OQL-93

SQL
11-8 CORBAservices July 1996

11

93
e

,

ons
jects

 the

s in

s.

ce

ects.

sed.
r any
ty

on
SQL-92 will evolve toward a future SQL, which is a full database language. OQL-
will evolve toward a future OQL. The agreement from X3H2 and ODMG is to mak
the query subset of SQL, SQL Query, and OQL identical so that there is a single
common query language specification.

11.1.5 Key Features

The following are key features of the Query Service:

• Provides operations of selection, insertion, updating, and deletion on collecti
of objects. The objects may be transient or persistent, local or remote; the ob
may have arbitrary attributes and operations.

• Accommodates different granularity of objects accessed by queries, including
good support for high performance access to fine-grained objects.

• Allows the scope of the objects accessible in and via the collections that are
immediate operands of the query operations.

• Supports querying and/or returning complex data structures.

• Supports operating on user defined collections of objects.

• Supports operating on other kinds of collections and sets.

• Allows the use of attributes, inheritance, and procedurally-specified operation
the query predicate and in the computation of results.

• Allows the use of available interfaces defined by OMG-adopted specification

• Allows the use of relationships for navigation, including testing for the existen
of a relationship between objects.

• Does not require breaking the encapsulation provided by the interfaces to obj

In addition, the Query Service:

• Provides an extensible framework for dealing with object query.

• Is independent of the specific syntax and semantics of the query language u
The query language can be SQL Query, OQL, a graphical query language, o
other suitable object query language. In order to provide query interoperabili
among the widest variety of query systems and object-level query
interoperability, a Query Service provider must support either SQL Query or
OQL (OQL Basic with basic object-level interoperability) as specified in Secti
11.1.4 on page 11-6.

• Allows for associative query and navigational query.
Query Service: v1.0 Service Description July 1996 11-9

11

ound

e

ents

hich

e
y

e
11.2 Service Structure

11.2.1 Overview

The Query Service defines two types of service. The specification is organized ar
these types.

Type One: Collections

The Collection and Iterator interfaces define the interfaces to create and manipulat
collections of objects. The Collection interface is defined with operations for adding,
retrieving, replacing, and removing member objects. The collections that it repres
may be arbitrary in nature. The Iterator interface is defined with operations for
traversing over and retrieving objects within a collection.

Type Two: Query Framework

The Query Framework interfaces define a flexible and extensible framework for
dealing with object query. The QueryLanguageType interface provides the scheme to
use the OMG IDL type system to classify query language types. The QueryEvaluator
interface defines the basic operation to evaluate a query. The result of the query, w
can serve as the scope for further queries, is represented by the QueryableCollection.
The QueryManager interface defines a more powerful QueryEvaluator which can b
called upon to create arbitrary Query objects. Such objects can provide the capabilit
for graphical query construction, pre-compilation and optimization, asynchronous
query execution, and so forth.

11.2.2 Collection Interface Structure

The collection interfaces are arranged into the interface structure illustrated in
Figure 11-4. Dotted arrows represent association.

Figure 11-4 Collection interface structure

11.2.3 Query Framework Interface Hierarchy/Structure

The query framework interfaces are arranged into the interface hierarchy/structur
illustrated in Figure 11-5. Solid arrows represent inheritance and dotted arrows
represent association.

Collection IteratorCollectionFactory
11-10 CORBAservices July 1996

11

ces.
n
Figure 11-5 Query Framework interface hierarchy/structure

11.2.4 Interface Overview

The Query Service defines the interfaces to support the functionality described in
Section 11.1 on page 11-1.

Table 11-1 and Table 11-2 give high level summaries of the Query Service interfa
Collection interfaces are described in detail starting in the section Section 11.3 o
page 11-12. Query interfaces are described in Section 11.5 on page 11-19.

Table 11-1 Interfaces defined in the CosQueryCollection module

Interface Purpose

CollectionFactory To create collections

Collection To aggregate objects

Iterator To iterate over collections

 QueryEvaluator

QueryableCollection

QueryQueryManager

Collection CosQuery-
Collection
module

QueryLanguageType

.
Query Service: v1.0 Service Structure July 1996 11-11

11

 that

ch

n

s can

ts
can

he
.

tion
ts of

he

11.3 The Collection Model

11.3.1 Common Types of Collections

The Collection interface allows you to manipulate objects in a group. The objects
are part of a Collection are called its elements. Examples of common types of
Collections are as follows:

• An Equality Collection has elements that can be checked for equality among ea
other. An example is a set.

• A Key Collection uses keys to identify elements (a key is part of an element). A
example is a key bag.

• An Ordered Collection has its elements arranged so that there is always a first
element, last element, next element, and previous element. Ordered Collection
be further classified as one of the following types:

• A Sequential Collection has sequentially ordered elements. An example is a
sequence.

• A Sorted Collection has sorted elements. An example is a sorted set (which is
also an equality Collection).

The Query Service defines only a top-level, basic Collection interface that suppor
query on arbitrary collections without restriction to any particular type. Subtyping
be used to map this basic Collection interface into a variety of collection classes,
including the ANSI C++ Standard Template Library (STL), ODMGs, and others. T
OMG Collection Service, available in the future, is expected to fit in similarly well

11.3.2 Iterators

An Iterator is a movable pointer into a Collection. An Iterator is created in associa
with a Collection and can be used by a client to move through the member elemen
the Collection. When an Iterator is created for an ordered Collection, it points to t

Table 11-2 Interfaces defined in the CosQuery module

Interface Purpose

QueryLanguageType and its
subtypes

To represent query language
types

QueryEvaluator To evaluate query predicates
and execute query operations

QueryableCollection To represent the scope and
result of queries

QueryManager To create query objects and
perform query processing

Query To represent queries
11-12 CORBAservices July 1996

11

 it
to the

tly
d to
n.
e or

leted
e and
a
t can
beginning or the first element of the Collection. A series of next operations move
through subsequent elements until it passes through the last element and points
end of the Collection. For unordered Collections, the elements are visited in an
arbitrary order. Each element is visited exactly once.

The Iterator interface allows traversing a Collection in a way that works consisten
for arbitrarily large Collections. In addition to the next operation, which can be use
move through the next element, it provides a reset operation to restart the iteratio
Multiple Iterators can be created to maintain state concerning traversal of the sam
different Collections.

The behavior of an Iterator can become undefined if elements are added to or de
from its associated Collection. This means that its behavior depends upon the typ
implementation of the Collection. In particular, an Iterator may become invalid as
result of such actions. Once an Iterator becomes invalid, it must be reset before i
be used for traversal again.
Query Service: v1.0 The Collection Model July 1996 11-13

11

,
11.4 The CosQueryCollection Module

The CosQueryCollection module defines the Collection interfaces of the Query
Service. In particular, it defines the
• CollectionFactory interfaces, to create Collections.
• Collection interface, to represent generic collections.
• Iterator interface, to enumerate the Collections.

The CosQueryCollection module is shown below.

module CosQueryCollection {

exception ElementInvalid {};
exception IteratorInvalid {};
exception PositionInvalid {};

enum ValueType {TypeBoolean, TypeChar, TypeOctet, TypeShort, TypeUShort,
TypeLong, TypeULong, TypeFloat, TypeDouble, TypeString, TypeObject, TypeAny,
TypeSmallInt, TypeInteger, TypeReal, TypeDoublePrecision, TypeCharacter, TypeDecimal
TypeNumeric};

struct Decimal {long precision; long scale; sequence<octet> value;}
union Value switch(ValueType) {

case TypeBoolean: boolean b;
case TypeChar: char c;
case TypeOctet: octet o;
case TypeShort : short s;
case TypeUShort : unsigned short us;
case TypeLong : long l;
case TypeULong : unsigned long ul;
case TypeFloat : float f;
case TypeDouble : double d;
case TypeString : string str;
case TypeObject : Object obj;
case TypeAny : any a;
case TypeSmallInt : short si;
case TypeInteger : long i;
case TypeReal : float r;
case TypeDoublePrecision : double dp;
case TypeCharacter : string ch;
case TypeDecimal : Decimal dec;
case TypeNumeric : Decimal n;

};
typedef boolean Null;
union FieldValue switch(Null) {

case false : Value v;
};
typedef sequence<FieldValue> Record;

typedef string Istring;
struct NVPair {Istring name; any value;};
typedef sequence<NVPair> ParameterList;

interface Collection;

Figure 11-6 CosQueryCollection Module
11-14 CORBAservices July 1996

11

;

11.4.1 The CollectionFactory Interface

The CollectionFactory interface defines an operation for creating an instance of a
Collection.

Creating a Collection

Collection create (in ParameterList params);

interface Iterator;

interface CollectionFactory {
Collection create (in ParameterList params);

};

interface Collection {
readonly attribute long cardinality;

void add_element (in any element) raises(ElementInvalid);
void add_all_elements (in Collection elements) raises(ElementInvalid);

void insert_element_at (in any element, in Iterator where) raises(IteratorInvalid,
ElementInvalid);

void replace_element_at (in any element, in Iterator where) raises(IteratorInvalid,
PositionInvalid, ElementInvalid);

void remove_element_at (in Iterator where) raises(IteratorInvalid, PositionInvalid)
void remove_all_elements ();

any retrieve_element_at (in Iterator where) raises(IteratorInvalid, PositionInvalid);

Iterator create_iterator ();
};

interface Iterator {
any next () raises(IteratorInvalid, PositionInvalid);

void reset ();
boolean more ();

};
};

module CosQueryCollection {

Figure 11-6 CosQueryCollection Module
Query Service: v1.0 The CosQueryCollection Module July 1996 11-15

11

t of

lly
hat

me

ents
ions

ay
able
f the
ta

r;
MG
This operation creates a new instance of a Collection. The factory is passed a lis
parameters, one of which must be:

“initial_size”, type long

which represents an initial, estimated number of elements. The Collection is initia
empty and may grow dynamically, both in elements and size. Other parameters t
may be passed include, for example, “hints” relating to indexing, and so forth.

The ParameterList is defined to be a sequence of name-value pairs, of which the na
is defined to be of type Istring. As is the case in the Naming Service, Istring is a
placeholder for a future OMG IDL internationalized string data type.

11.4.2 The Collection Interface

The Collection interface defines operations to:

• Add elements
• Replace elements
• Remove elements
• Retrieve elements

to and from a collection and an operation to create iterators for traversing the
collection.

The element type of a collection can be any. This is designed to accommodate
generality. For most common queries, the result collections tend to consist of elem
that are records or objects. For some specific queries, however, the result collect
may consist of elements of any data type.

Record is defined to be a sequence of FieldValues. A FieldValue may be Null or m
have a value. This is designed to provide direct mapping to similar features avail
in a wide variety of existing query systems. The type of a FieldValue can be one o
OMG IDL base types, string, Object or one of the suggested mappings to SQL da
types: TypeSmallInt; TypeInteger; TypeReal; TypeDoublePrecision; TypeCharacte
TypeDecimal; and TypeNumeric. (TypeFloat is the same as that defined for the O
IDL base type.)

Determining the Cardinality

readonly attribute long cardinality;

This attribute identifies the number of elements that a Collection contains.

Adding an Element

void add_element (in any element) raises(ElementInvalid);

This operation adds an element to a Collection. Behaviors of all Iterators of the
Collection become undefined when the element is added.
11-16 CORBAservices July 1996

11

ator

ents

). If
ined.

nput
me

or,
ty as
ning

 The

or.
A Collection implementation, in response to the invocation of the add_element()
operation, may internally decide whether to add the specified element, raising the
ElementInvalid exception if it decides not to add it. As discussed in “Queryable
Collections for Scope and Result” on page 11-5, this allows sublevel Query Evalu
implementations that scope Queryable Collections to their own domain.

Adding Elements from a Collection

void add_all_elements (in Collection elements) raises
(ElementInvalid);

This operation adds all elements of the input Collection to a Collection. The elem
are added in the Iterator order of the input Collection and are consistent with the
semantics of add_element(). This operation is really a sequence of add_element(
any elements are added, behaviors of all Iterators of the Collection become undef

Inserting an Element

void insert_element_at (in any element, in Iterator where)
raises(IteratorInvalid, ElementInvalid);

This operation inserts an element to a Collection at the position pointed to by the i
Iterator. Behaviors of all Iterators of the Collection, except the input Iterator, beco
undefined when the element is inserted.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. The
ElementInvalid exception will be raised as it is for the add_element() operation.

Replacing an Element

void replace_element_at (in any element, in Iterator where)
raises(IteratorInvalid, PositionInvalid, ElementInvalid);

This operation replaces the element of a Collection, pointed to by the input Iterat
with the input element. The input element must have the same positioning proper
the replaced element. (Only equality Collections and key Collections have positio
property.)

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be raised.
ElementInvalid exception will be raised in the same manner as it is for the
add_element() operation.

Removing an Element

void remove_element_at (in Iterator where) raises
(IteratorInvalid, PositionInvalid);

This operation removes the element of a Collection, pointed to by the input Iterat
After removal, behaviors of all Iterators of the Collection become undefined.
Query Service: v1.0 The CosQueryCollection Module July 1996 11-17

11

f all

or.

e

d
n if
t at

et to
If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be raised.

Removing all Elements

void remove_all_elements ();

This operation removes all elements from a Collection. After removal, behaviors o
Iterators of the Collection become undefined.

Retrieving an Element

any retrieve_element_at (in Iterator where) raises
(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the input Iterat

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be raised.

Creating an Iterator

Iterator create_iterator ();

This operation creates an Iterator for a Collection. The Iterator is initially set at th
beginning of the Collection.

11.4.3 The Iterator Interface

The Iterator interface defines operations to:

• Access and navigate through elements of a collection

• Reset the iteration

• Test for completion of an iteration

Accessing the Current Element

any next () raises(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the Iterator, an
advances the Iterator position. The operation will raise the IteratorInvalid exceptio
the Iterator is invalid, and the PositionInvalid exception if the Iterator does not poin
an element.

Resetting the Iteration

void reset ();

This operation resets the iteration to begin anew. The position of the Iterator is res
the beginning of a Collection.
11-18 CORBAservices July 1996

11

h
et of
se

cts

t can
cts
0).
Testing for Completion of an Iteration

boolean more ();

This operation returns true if there are more elements to be accessed and false if there
are not.

11.5 The Query Framework Model

The Query Framework interfaces provide an extensible framework for dealing wit
query. This is accomplished in two ways. First, by providing a standard, generic s
object interfaces for handling query. Second, by providing extensibility so that the
object interfaces can be subtyped for further functionality.

The Query Framework interfaces define two levels of interfaces. The base level
consists of QueryEvaluator and QueryableCollection interfaces and provides the
minimal functionality for query. The advanced level consists of QueryManager and
Query interfaces and provides an extensible functionality for dealing with all aspe
of query.

11.5.1 Query Evaluators

A Query Evaluator is any object that supports the operation to evaluate a query. I
be a single object, an implicit collection of objects, or an explicit collection of obje
(particularly a Queryable Collection, as discussed in Section 11.5.2 on page 11-2
An example of a Query Evaluator that manages implicit collections of persistent
objects is a database system.
Query Service: v1.0 The Query Framework Model July 1996 11-19

11

s, but

 are

ions

nd by

mber
 (the
d so
The result of a query evaluation can be anything. In most cases, it is a Queryable
Collection, as illustrated in Figure 11-7. (The solid arrow represents operation
invocation and the dotted arrows represent association.)

Figure 11-7 Query Evaluator and Queryable Collection

11.5.2 Queryable Collections

A Queryable Collection supports the QueryEvaluator interface and, therefore, can be
used not only to represent the result of a query that consists of one or more object
also to define the scope to which further queries may be applied. An especially
interesting kind of Queryable Collection is the type extent, whose member objects
instances of a certain object type.

A Queryable Collection evaluates a query by either invoking the evaluation operat
on its member objects if they are Query Evaluators—or by evaluating the query
predicate on the attributes and operations of its member objects if they are not—a
combining the results from such invocations and evaluations. As such, the query
predicate must be a valid predicate for the Queryable Collection object and its me
objects. If any one of its member objects is a Queryable Collection, the predicate
applicable part, that is) must further be a valid predicate for its member objects, an
on. Therefore, the QueryableCollection interface provides a mechanism for nesting
queries to an arbitrary number of levels.

Queryable
Collection

Query
Evaluator

Source
Collection

evaluate

Iterator
Result
Collection

CosQuery-
Collection
module
11-20 CORBAservices July 1996

11

ages

d. A
iverse

cal

n,
ly or

on,
text,
 in a
11.5.3 Query Managers

A Query Manager is a more powerful form of Query Evaluator. It provides the
operation to create Query objects. Working in tandem with a Query object, it man
the overall query processing and monitors the query execution. The QueryManager
contains the universe of collections of objects over which queries can be specifie
specific query, as represented by a Query object, operates on a subset of this un
of collections.

The relationship between a Query object and its Query Manager is shown in
Figure 11-8. (Dotted boxes represent logical entities; dotted arrows represent logi
associations.)

Figure 11-8 Query Manager and Query Object

11.5.4 Query Objects

A Query object represents a query and logically consists of the query specificatio
query status and query results. In addition, it contains the reference, either explicit
implicitly through the Query Manager, to the queryable collection that defines its
scope.

The Query object is responsible for composing and containing a query specificati
including parameters. The query specification may be represented in the form of
graphic, etc. A user may select a subset of the query specification to be executed
query. This is particularly useful for query debugging. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for
composing and selecting the query specification.

Query
Specification

Queryable

Query
Result

Query
Status

Query
Manager

Source
Collection

Result
Collection

Collection

Query
Query Service: v1.0 The Query Framework Model July 1996 11-21

11

sing
ults or
, and
The Query object is responsible for maintaining the status information and log
information regarding a query. The Query interface is expected to be extended by
vendors or users to provide the additional functionality for displaying the status
information.

The Query object also contains the results of a query. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for brow
query results. For example, successive results may be appended to previous res
replace them. A user may browse query results by specifying the version numbers
so forth.
11-22 CORBAservices July 1996

11

. In

t as

;

11.6 The CosQuery Module

The CosQuery module defines the query framework interfaces of the Query Service
particular, it defines the following interfaces:

• QueryLanguageType interfaces to denote query language types.
• QueryEvaluator interface to represent query evaluators.
• QueryableCollection interface to denote collections which can serve as the resul

well as the source of a query.
• QueryManager interface to create queries and perform query processing.
• Query interface to represent queries.

The CosQuery module is shown below.

 module CosQuery {

exception QueryInvalid {string why};
exception QueryProcessingError {string why};
exception QueryTypeInvalid {};

enum QueryStatus {complete, incomplete};

typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;

interface QueryLanguageType {};
interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};
interface OQL_93 : OQL {};
interface OQL_93Basic : OQL_93, OQLBasic {};

interface QueryEvaluator {
readonly attribute sequence<QLType> ql_types;
readonly attribute QLType default_ql_type;

any evaluate (in string query, in QLType ql_type, in ParameterList params)
raises(QueryTypeInvalid, QueryInvalid, QueryProcessingError);

};

interface QueryableCollection : QueryEvaluator, CosQueryCollection::Collection {}

interface QueryManager : QueryEvaluator {
Query create (in string query, in QLType ql_type, in ParameterList params)

raises(QueryTypeInvalid, QueryInvalid);
};

interface Query {
Query Service: v1.0 The CosQuery Module July 1996 11-23

11

ce

93
uery
th
readonly attribute QueryManager query_mgr;

void prepare (in ParameterList params) raises(QueryProcessingError);
void execute (in ParameterList params) raises(QueryProcessingError);

QueryStatus get_status ();
any get_result ();

};

};

11.6.1 The QueryLanguageType Interfaces

The QueryLanguageType interfaces consist of seven interfaces that form the interfa
hierarchy illustrated in Figure 11-9.

Figure 11-9 QueryLanguageType Interface Hierarchy

A Query Service provider is expected to use subtyping from SQL_92Query, OQL_
or OQL_93Basic to denote the query language that it supports. For example, if a Q
Service provider supports a query language, Object SQL, which complies with bo
SQL-92Query and OQL-93Basic, then its interface type, ObjectSQL, should be
defined to be a subtype of SQL_92Query and OQL_93Basic:

interface ObjectSQL : SQL_92Query, OQL_93Basic {};

QueryLanguageType

SQLQuery

OQL_93

OQL_93Basic

OQL

OQLBasic

SQL_92Query
11-24 CORBAservices July 1996

11

y. For
cts).

uery

ntics

Error

 It can

orks
ring
11.6.2 The QueryEvaluator Interface

The QueryEvaluator interface defines an operation for evaluating queries. It lets a
client determine the query language types, and the default one, that it supports.

The result type of a query can be any. This is designed to accommodate generalit
most common queries, the results tend to be Collections (mostly of records or obje
For some specific queries, however, the result may be of any data type.

Determining the Supported Query Language Types

readonly attribute sequence<QLType> ql_types;

This attribute identifies the query language types supported by the QueryEvaluator.

Determining the Default Query Language Type

readonly attribute QLType default_ql_type;

This attribute identifies the default query language type supported by the
QueryEvaluator.

Evaluating a Query

any evaluate (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid, QueryProcessingError);

This operation evaluates a query and performs required query processing. If the q
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryEvaluator.
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or sema
is incorrect or if the input parameter list is incorrect, the QueryInvalid exception is
raised. If any error is encountered during query processing, the QueryProcessing
exception is raised.

11.6.3 The QueryableCollection Interface

The QueryableCollection interface is a subtype of both the QueryEvaluator and
CosQueryCollection::Collection interfaces. Any collection that supports this interface
can be used to represent the result of a query that consists of one or more objects.
also be used to define the scope to which further queries may be applied.

11.6.4 The QueryManager Interface

The QueryManager interface is a subtype of the QueryEvaluator interface. It defines
an additional operation for creating Query objects. The QueryManager interface w
in tandem with a Query object in managing the overall query processing and monito
the query execution.
Query Service: v1.0 The CosQuery Module July 1996 11-25

11

ntics

uery
tion

ill
e
Creating a Query Object

Query create (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid);

This operation creates a Query object representing the input query. If the query
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryManager.
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or sema
is incorrect or if the input parameter list is incorrect, the QueryInvalid exception is
raised.

11.6.5 The Query Interface

The Query interface defines operations to:

• Prepare the query for execution
• Execute the query
• Determine the preparation and execution status of the query
• Obtain the result of the query

Determining the Associated Query Manager

readonly attribute QueryManager query_mgr;

This attribute identifies the QueryManager associated with the Query object.

Preparing the Query for Execution

void prepare (in ParameterList params) raises
(QueryProcessingError);

This operation performs the necessary processing, including optimization, on the q
so that it is ready for execution. Query preparation may be carried out in coopera
with the associated QueryManager.

If the input parameter list is incorrect or if any error is encountered during query
preparation, the QueryProcessingError exception is raised.

Executing the Query

void execute (in ParameterList params) raises
(QueryProcessingError);

This operation executes the query. If the query has not been prepared before, it w
prepare the query first. Query execution may be carried out in cooperation with th
associated QueryManager.

If the input parameter list is incorrect or if any error is encountered during query
execution, the QueryProcessingError exception is raised.
11-26 CORBAservices July 1996

11

may

e
Determining the Query Status

QueryStatus get_status ();

This operation returns the preparation and/or execution status of the query. This
be carried out in cooperation with the associated QueryManager.

Obtaining the Query Result

any get_result ();

This operation returns the result of the query.

11.7 References

1. American National Standard X3.135-1992, Database Language - SQL, January,
1993.

2. Object Management Group. CORBA: Common Object Request Broker Architectur
and Specification. Published by the OMG, Framingham, MA. 1995.

3. Object Management Group. Object Services RFP 4, OMG Document Number
94.4.18, May, 1994.

4. Cattell, R.G.G. (ed), The Object Database Standard: ODMG-93, v1.2, Morgan
Kaufmann Publishers, San Mateo, California. 1994.

5. Melton, Jim (ed), SQL3 Part 2: Foundation, ANSI X3H2-94-329, August, 1994.
Query Service: v1.0 References July 1996 11-27

11
11-28 CORBAservices July 1996

Licensing Service Specification 12
rs
w of

ense

ucts.
mon
vided
ctual

lica-

on-

s for
ns-

on-
s PCs
ents.

 and
cy.
. The
ns-

nsing
ven-
r busi-
12.1 Existing License Management Products

This section, “Background on Existing License Management Products,” is for reade
who are unfamiliar with the management of software licenses. It provides an overvie
licensing and addresses issues that must be faced in developing and selecting a lic
management system.

Application suppliers need methods for controlling the access to and use of their prod
In most cases, this is necessary to ensure fair compensation for use. The most com
control method used by software suppliers is licensing, where the license can be pro
through technical (software- or hardware-based) or contractual means. While contra
licensing is a viable option, it does not provide the same level of control as technical
licensing, which uses hardware or software tools to control licensing. Therefore, app
tion suppliers continue to require technical licensing methods to complement legal c
tracts.

Along with the expanding need for technical licensing, there are specific requirement
licensing that must change to reflect today's computing environments. Traditional lice
ing methods (nodelocked licensing and site licensing) evolved from computing envir
ments of the past, specifically timesharing systems and stand-alone systems such a
and workstations. These older licensing methods are insufficient for current environm

While today’s computing environments provide significant advantages for application
suppliers and end users, they also present opportunities. It is apparent that software
hardware resources can be managed on a network-wide basis for maximum efficien
However, the resulting requirement for network-wide license sharing is less apparent
traditional licensing methods (expensive site licensing and inflexible nodelocked lice
ing) do not complement today’s fleixible and efficient computing environments.

Given these realities, sophisticated technical licensing tools are required. These lice
tools are important to all constituents in the market: application suppliers; hardware
dors; and application users. Software suppliers need a licensing tool to support thei
CORBAservices March 1996 12-1

12

ort
their
n

 must
act
em.
ct, it
 need

tices
 is

nge
.

fers
age

er,
g
ng

ation
ey
nli-

he
e
ys
lica-
a sin-
ness and pricing models. Hardware vendors embed and offer the technology to supp
software developers and end users, and act themselves as application suppliers for
internally developed applications. End users interact with licensing technologies whe
they use, manage, and pay for software applications.

12.1.1 Business Policy

In the development and selection of software licensing systems, the licensing system
not impose its business practices on users. The software license is, in effect, a contr
between suppliers and customers that establishes a business relationhip between th
Because a software licensing system plays an important role in regulating this contra
must provide mechanisms to implement the flexible business practices that suppliers
to deal with a diverse customer base.

One danger in developing a licensing system is that it could reflect the business prac
of the developing organization. This is sometimes the case when a licensing system
developed for internal use in a large organization and then offered for general use. A
licensing system may work for one company, but will probably not address a wide ra
of business policies and practices. Often this problem manifests itself in subtle ways

12.1.2 License Types

If not fully considered beforehand, it is possible to construct a software licensing
scheme that forces the software suppliers and end users into a limited model of
software licensing. If a licensing system offers only limited license types and/or of
few options for applying them, software suppliers are limited in the way they man
business relationships with their software customers.

Because software licensing touches many aspects of a relationship with a custom
including upgrades, support, enhancements, and follow-on purchases, a licensin
system must provide a wide range of license options and many options for applyi
them. Software suppliers—not licensing system developers—must choose which
licensing options they want to use.

The options allowed within various license types are also critical to ensure that applic
suppliers have all the capabilities necessary to establish the business relationship th
desire with their customers. Capabilities such as allowing a grace period to provide u
censed users access to the software for a limited period may be critical in retaining t
goodwill of a large and influential customer. Other licensing features include selectiv
user inclusion or exclusion lists; reserved licensing (to ensure that a license is alwa
available to high-priority users); and multi-use rules that allow multiple use of an app
tion with a single license. In addition, different license types can be used together in
gle application. This ensures that the supplier, not the licensing system, determines
business policies.
12-2 CORBAservices March 1996

12

 are

e
tation
s
l way
at

liers
 they
 site
e

 of a
 to
e net-

o the
s end
e com-
urrent

 are
d

rporate
cing
 its
 be

 need
eep
 move

stand-
 lower

ast.
 (per-
12.1.3 A History of License Types

Providing a wide-ranging portfolio of license types ensures that application suppliers
able to conduct business and arrange business policies as they deem appropriate.

Nodelocked licenses (which evolved from timesharing) allow a software product to b
used at the single node for which the license was created. As the stand-alone works
market grew, new licensing models were required. Major workstations users, such a
insurance companies, banks, and industrial corporations, needing a more economica
to purchase software, demanded that application suppliers offer a business model th
would provide unlimited use at a given site. That need gave rise to site licensing.

Site licensing often resulted in dissatisfaction of both suppliers and customers. Supp
were asked to assess a price for usage they did not fully understand. They often felt
were being asked to discount their future revenue too deeply. Customers felt that the
license fees were excessive and made them pay for usage that might not occur in th
future.

As networks of computers developed, system vendors began to introduce the notion
concurrent use license. Concurrent use licenses define the number of users allowed
access an application at a given time. These licenses are allowed to “float” around th
work, temporarily appropriated by users as applications are invoked, then returned t
license repository when an application is terminated. Concurrent use licensing allow
users to purchase licenses to match their usage and allows software providers to b
pensated for use of their products. Additionally, end users can easily add more conc
licenses as needed.

12.1.4 Asset Management

Licenses protect expensive corporate assets. Since licenses exist only as data they
harder to secure than a server or workstation, but every bit as important to control an
manage. Control helps ensure that licenses are used in a manner which supports co
goals, such as improving compliance with paper software license contracts and redu
exposure to legal action. This helps keep the corporation out of court and enhances
relationship with its software suppliers. Large corporate software purchasers want to
treated as equal partners with their suppliers; licensing makes this easier.

Managing both existing and new licenses maximizes their value. Old licenses might
to be redeployed as projects and budgets change. If the license administrator can k
track of software licenses, know which licenses are and are not being used, and can
them to where they are needed, corporate waste will be reduced and productivity
improved.

Similarly, if a corporation has software usage metrics, it has a strong basis for under
ing future needs. These metrics permit a corporation to purchase licenses in bulk at
prices with the confidence that they are not over or under buying.

A corporation can also measure whether they have over or under purchased in the p
An important metric is the "shelfware" measure. How much software was purchased
Licensing Service: v1.0 Existing License Management Products March 1996 12-3

12

case?
soft-

e
w

ight
tion
at
g the

oft-
on a
er try
ermis-
w

er
d and
h as
 or if
s are
ion
ither

ands
ppli-

t

 it. A
revent
haps as unused components of "suites" of software) that never leaves the user's book
Reducing such waste is a major incentive for software customers to use automated
ware licensing and asset management.

12.1.5 License Usage Practices

Application suppliers can implement one or more of the license types in their softwar
products. An application can be programmed to require multiple license types, to allo
the supplier to sell the product in different ways to different customers.

An ideal licensing system should be transparent to end users. For example, a user m
invoke an application, which makes calls to a licensing library. Then, the library func
locates a server with a valid license. Assuming that a valid license is available and th
person is authorized to use the license, a grant is returned to the application, allowin
program to execute, all completely transparent to the end user.

If no licenses are immediately available, the application developer can program the s
ware to respond in a variety of ways. The application can automatically put the user
wait queue, query the user as to the course of action to take, recommend that the us
again later, or grant permission to run anyway. (The developer can choose to grant p
sion to run without a license if, for example, there is a “grace period” instituted to allo
for a smooth transition to a network licensing model.) If all licenses are temporarily
checked out and users go on a wait queue, the next available license can be granted
according to user priority settings defined at the end user site.

These choices and how they are implemented comprise the policy a software provid
chooses as a business model. Policy can be further broken into two components: fixe
variable. Fixed components are coded into the application and determine things suc
what license types are permitted; whether multiple use rules apply to the application;
a grace period will be extended when a license is not available. Variable component
defined externally to the client application and include such things as external definit
of the hours a product may be used, or an external list of people allowed to use it. E
list may be producer- or end user-created.

12.1.6 Scalability

Some networks are small, consisting of just a few nodes, while others grow to thous
of machines. Typically, large user communities on large networks demand licensed a
cations from many different vendors. A licensing system and its runtime environmen
must, therefore, scale well to the network and all its software.

12.1.7 Reliability

Sometimes, an application obtains a license from a license server and never returns
licensing system must be designed to prevent licenses from being stranded and to p
other client-server breakdowns.
12-4 CORBAservices March 1996

12

net-
 could
use
ility

k-in.
, the

e
sing
 are its
 on
 con-
 serv-

r
y the
This
 sup-
 and

ns
ec-
es a

e
ose to
 the

.

urce
 avail-
ll and
 eco-

ake
vi-
ified
alue
 the
Breakdowns occur for several reasons. The application or server could abort, or the
work could become partitioned between the application and server. These situations
arise unintentionally or maliciously (for example, in an attempt to gain unauthorized
of an application). Any design must make careful trade-offs between license availab
and security enforcement. All designs require a scheme to detect breakdowns.

Generally, there are two detection methods: continuous detection or occasional chec
Continuous detection methods ensure that while a license is in use by an application
application and server are both continuously aware of each other's existence and ar
immediately notified of a breakdown. These schemes are typically implemented by u
a connection protocol such as a port. The main advantages of a continuous scheme
directness, immediacy, and simplicity. The main disadvantage is its negative impact
network performance. If a redundant server high availability model is employed, then
tinuous connections need to be maintained between the application and each of the
ers, thereby multiplying network traffic.

Occasional detection provides a method for the application to check in with the serve
periodically before some time out has occurred. The breakdown is identified either b
server (if the time out occurs), or by the application (if the check-in is unsuccessful).
method is very scalable and has a negligible impact on performance. The application
plier should be able to adjust the time-out to allow trade-offs between higher security
higher availability.

Additionally, the occasional detection model is very tolerant of momentary interruptio
on the network. Continuous detection is not tolerant of such interruptions. Lost conn
tions between the client and the server in a system using continuous detection caus
breakdown or program termination.

Application suppliers will want to determine for themselves which action to take in th
case of a client-server breakdown. Some may want more strict enforcement and cho
terminate an application; others might choose to display a polite message and allow
application to continue.

12.1.8 Legacy Applications

Managing a business relationship with a minimum of disruption includes the ability to
accommodate existing customer applications within the scope of the licensing system
This must be done without requiring access to or modification of the application's so
code, as the apparently simple solution of modifying source code may not always be
able. Consider the personal computer, for which there are tens of thousands of sma
inexpensive applications. Modifying the sources of all these applications would be an
nomically unacceptable approach even if the source code were available.

Software suppliers are eagerly awaiting an integrated licensing technology that will t
existing “shrink-wrapped” applications and enhance them to function in a licensed en
ronment. It may not be possible to provide a security fence as high as a source-mod
application, but the level of license security could be made commensurate with the v
of the application and well beyond the economic justification for attempting to defeat
security.
Licensing Service: v1.0 Existing License Management Products March 1996 12-5

12

-

ring;
ust

ility
m to
 An
 com-
e that

 a
us
rity,
ir

reate
rity,

ation
ssed,
ally
g the

nse

 var-

 see no
ld.
 to
cili-
ing

e the
 nor-
reby
12.1.9 Security

Until recently, licensing systems were required to enforce only simple, single-system
application use. Security infractions caused few implications. Today, security require
ments must be designed to operate in more complex networks.

The distributed computing networks in use today are designed for easy resource sha
demand more complex licensing models (presenting new security challenges); and m
support mass distribution of software (on compact disk, for example). A supplier's ab
to ship trial copies of applications relies heavily on the security of the licensing syste
ensure that prospective customers do not transgress the intended use permissions.
application supplier must also rely on the licensing system’s security when it ships a
plete set of applications to its entire installed base: the licensing system must ensur
only the purchased applications are used.

Each application supplier has a different security need. Each will want to choose from
spectrum of trade-offs, such as security versus availability, and effect of breach vers
development effort. A licensing system should not dictate one particular level of secu
but should allow application suppliers to choose the security level appropriate for the
business needs.

12.1.10 Client/Server Authentication

A secure licensing system should address the possibility of someone attempting to c
an impostor license server (an imposter server always grants licenses). Without secu
an impostor could be established by eavesdropping on valid client-server communic
and then mimicking the license grant protocol. Impostor clients should also be addre
since a successful impostor client could disrupt legitimate license activities by artifici
returning a license to the license server when it is actually still in use, thereby makin
returned license available for other users.

12.1.11 Example: Application Acquiring and Releasing a Concurrent Lice

This section contains an example of how an application might interact with one of the
ious license management products that exist today.

In a system that uses concurrenct licensing, end users at their workstations and PCs
change in their normal working routine. They start applications as they normally wou
The application has calls to the license library that transparently go over the network
request a license for the application. Using transport-specific naming and location fa
ties, a server holding a valid license is located and a “yes” is returned to the request
application.

The application need not be downloaded over the network to the workstation each tim
application is invoked. The application, once loaded, remains at the workstation as it
mally would. Only a request for a license and a return grant go over the network, the
providing a rapid response time that is virtually unnoticed by users.
12-6 CORBAservices March 1996

12

ver

rver
 imple-
nse
 of
er
ically
nd

ir
In
cens-
ervice
When end users close an application, the license is “returned” to the server. The ser
then can make this license available for other requests as they come in.

Administration and reporting tools act as clients to the license server, tapping into se
databases and log files to access the stored information. The license servers, though
mented as multiple physical servers, operate as a single repository managing all lice
activity for the network. This single, “logical” server handles licenses for any number
vendors, for any number of products, with any number of product versions. The serv
also handles any number of clients making requests for its facilities, thereby automat
scaling to accommodate increases in the number of users, machines, applications, a
licenses.

12.2 Service Description

Licensing Service terms are defined in Appendix A.

12.2.1 Overview

Figure 12-1 Licensing Service Relationships

The Licensing Service provides a mechanism for producers to control the use of the
intellectual property in a manner determined by their business and customer needs.
Figure 12-1, the Licensing Service Manager, Producer Licensing Service, and the Li
ing System are shown as three distinct objects. Implementations of the Licensing S

Implementation

Licensing
System

Cos Producer

Service

Service
Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

License
Licensing Service: v1.0 Service Description March 1996 12-7

12

 dotted

s. A

s

ool

rds
 to
um

n

tion

tem

m to
iate,
nst.

ed for
may differ. The dotted line indicates components that depend on the implementation
design and are addressed in terms of an example solution. Components outside the
line are addressed in this chapter.

12.2.2 Key Components of a Licensing System

License Attributes

To implement controls, the Licensing Service needs a set of fundamental attribute
license can be thought of as having three dimensions of attributes:

Time includes, but is not limited to the attribute of Expiration/Duration. All license
should be able to have start/duration and expiration dates.

Value Mapping includes, but is not limited to, the following attributes:

• A unit is a quantity that can be used by policy mechanisms.

• Allocative. Use of an license with an allocative attribute removes it from the p
of available allocative licenses for a given product until it is returned. This is
traditionally known as concurrent use licensing.

• Consumptive. Use of a license with a consumptive attribute permanently reco
its use. This can be used to provide metering capability. It can also be used
implement a “grace period” via the use of overflow licenses when the maxim
number of allowed concurrent licenses has been met.

Consumer includes, but is not limited to, the following attributes:

• Assignment or Reservation. All licenses should be able to be assigned to or
reserved for a specific entity or collection of entities. The definition of what a
entity may be is implementation-specific. One example is where an entity is
defined to be a specific user and a collection of entities is a specific organiza
comprised of a collection of specific users. Other examples of what an entity
might be include a specific machine or collection of machines, a specific sys
resource or resource collection, such as printers and adapters.

Licensing Policy

The Licensing Service allows the license attributes to be combined and derived fro
form any policy deemed necessary. This allows the producer and, where appropr
the end user administrators to control product use to fit their business environme

The following derived attributes are representative examples of those that can be us
a flexible policy implementation:

• Time windows

• Value

• Use by a collection of related objects

• Postage meter

• Gas meter
12-8 CORBAservices March 1996

12

a
the

tual
t use
trol
 the
s of
cific
any

he
sent
ture
he

ently
ver

 pool

ain

1.
Time Windows

It may be necessary for some policies to constrain the time periods within which
particular license unit may be used. A time window attribute can be derived from
expiration/duration attribute.

Value

 A Producer can define, as part of their Producer Policy, the mapping between ac
use of their intellectual property and the way license units are associated with tha
in the Licensing System. A simplistic example might be where a single unit of con
represents a single active implementation of a given object with no constraints on
number of instances. A more complex example may be where the number of unit
control required may be calculated to satisfy a combination of requirements: a spe
machine size where an implementation is active, how many instances, and how m
method activations are allowed in parallel.

Use By a Collection of Related Objects

The definition of granularity is very broad. In an OMA-compliant system, the
Licensing Service will allow control from the fine grain of a method activation to t
coarse grain control of a suite of objects acting together in a relationship to repre
an application. The relationship may be defined with the Relationship Service, a fu
Collection Service or any other Service providing relational capability for objects. T
Producer Policy can discover all theseobjects according to the implementation.

Postage Meter

Derived from consumptive, use of a license with a postage meter attribute perman
removes it from the pool of available licenses. The total number of licenses is ne
less than zero (0) for any product.

Gas Meter

Derived from consumptive, use of a license with a gas meter attribute adds to the
of consumed licenses. The total number of licenses is initialized to 0.

Examples of how these attributes can be used in license policy are as follows:

• An end user administrator could be empowered by the Licensing Service to
combine assignment and time constraints on installed license units to constr
the use of certain products to a set of individuals outside of the normal work
week.

• A producer could provide a personal use license by combining an allocative
attribute with an assignment attribute to an individual with a unit attribute of

• A producer could enhance the previous example by allowing end user
administrators to reassign the license to a particular group.
Licensing Service: v1.0 Service Description March 1996 12-9

12

only
rop-
sing

icens-
d it.
one.
limit
ro-
ver-
e

s the
y

will
 of the

ticular
e pro-
p
ships
 their
ta-

e of
not

t is

f

l
es
aint,

n
ict
Interfaces Isolated From Business Policies

The Licensing Service interfaces are isolated from policy issues. The client interface
delivers notification that a producer wants some or all of the producer’s intellectual p
erty to be controlled reliably and securely. Once the notification is made, the Licen
Service can identify the appropriate policy.

For example, consider a producer who wants to restrict the activation of a particular
method to a certain simultaneous number of users. The producer need only tell the L
ing Service interface to indicate that a method has been activated and who activate
When the method activation is complete, an indication must be sent that the use is d
The LS can then, in an implementation-specific way, determine if a producer-defined
has been met. The Licensing Service can notify the object, telling it what to do if a p
ducer policy is activated from overuse or another condition. The Producer can still o
ride a generic policy with an alternate behavior for a particular Producer Client , sinc
policy responses are inside the Client implementation.

A Producer Policy implementation requires the use of other object services such a
Relationship and Property Services. As other services are defined, producer polic
implementations will broaden to use them. The producer client might change to
address any new producer policy, but the underlying Licensing Service interface
not require change. These services can be used to find out about objects outside
objects themselves.

For example, consider the Relationship Service. If producers choose to license a par
set of their objects that are related in a manner defined by the relationship service, th
ducer policy implementation can obtain relationship information using the relationshi
service. The objects involved need to have no special knowledge about their relation
to one another other than that required to conspire together in the relation to achieve
desired functionality. Mechanisms provided to support this by an particular implemen
tion will vary. One implementation may choose to support this using a document styl
policy delivery, others may support producer policy object implementation. This can
be defined or restricted by the Licensing Service client interface.

A mechanism for license document delivery is not defined in the Licensing Service: i
implementation-specific.

12.2.3 Licensing in the CORBA Environment

Licensing in the CORBA world faces many issues. The provision of services by
objects in the ORB environment must allow for service producers to control use o
their intellectual property according to their business models.

Constraint of use must range from strict control to benign monitoring of intellectua
property. Strict control might allow only a specific number or combination of servic
to be used. Benign monitoring mechanisms might allow service use without constr
but would track usage for later examination.

If producers require strict control, they will also require assurance that the informatio
provided by their licensing mechanism is secure. It would be pointless to choose str
12-10 CORBAservices March 1996

12

lli-
evel
cy.
ervice

g all
is

sers

h
 can
 tens
y the

licies
ight
ring
olicy.
e cus-

n mon-
w

r is a
ple-

asily
 “I

 to
 and
ing Ser-
e

ppli-
ing

e
 inter-
rate

r-
n
ents
control if it were a trivial matter to replace some component within the ORB which nu
fied strict control enforcement without the producers’ services being aware of it. The l
of trust in the Licensing Service must meet the producer’s chosen enforcement poli
For example, suppose a producer has selected a policy that allows use of his object s
by an end user without constraint, but the policy requires the Licensing Service to lo
service usage so a monthly post-facto charge can be made for use of the service. Th
capability is of limited use if the Licensing Service’s logging mechanism allows end u
to illicitly modify the logs to show low usage.

To enable usage control, there must be a mechanism that provides the end user wit
appropriate authorization. This authorization is usually conveyed as a text string that
be thought of as a License Document. The size of this document may vary from a few
of characters to a few thousand characters depending on the functionality provided b
underlying Licensing Service. The content of the document must be protected by an
implementation-specific mechanism.

To support a wide variety of business models, producers require usage constraint po
(producer policies) that can vary for end user conditions. For example, a producer m
deliver a demonstration of a client service that allows unlimited use of the service du
the demonstration period, but upon purchase requires a strict usage enforcement p
The enforcement policy may need to be varied depending on customer needs. A larg
tomer may negotiate a post-sale period where analysis of use is supported by benig
itoring and later moved to strict enforcement. Interfaces to the Licensing Service allo
this and many other varieties of usage controls without requiring changes to the pro-
ducer’s fundamental product.

The ability for an end user to apply constraints beyond those specified by a produce
well-recognized benefit to the end user. The capability in this area will vary across im
mentations of the Licensing Service.

Because we live in a dynamic economic environment, a producer’s policies must be e
changed. The best approach for a Licensing Service specification is to separate the
want to be controlled!” requirements of the application or service from the “how am I
be controlled?” requirements of the policy that have to deal with all of the exceptions
producer business practices. This separation enables a producer to choose a Licens
vice implementation based on considerations of how well a specific Licensing Servic
supports the producer’s business practices, as instantiated by the producer policies.

The interface to the Licensing Service accomplishes this by allowing the controlled a
cations or services to notify the Licensing Service of its wish to be controlled specify
how the enforcement is to be performed.

Administration and policy issues are not addressed in detail by the Licensing Servic
interface; instead, they are left to implementors. End users need to control their own
face and reporting capabilities. The ability of the underlying Licensing Service to gene
management reports, both of historical and snapshot-of-time usage, will vary widely
depending on the implementation. The administrative interfaces for the Licensing Se
vices include command line only, GUI only, and combined GUI and command line. A
administrative interface would affect the ability of end users to manage their environm
as they choose, so it is not defined by the Licensing Service.
Licensing Service: v1.0 Service Description March 1996 12-11

12

 a
 LS

o the
ce is
cts

e

nd/or

t can
ying
ince,
ment.
the

m.

 are
 of a

ous
a very
s, to

d

sing
ense
ction-

hosen
12.2.4 Design Principles

The design of the Licensing Service interface satisfies the following principles:

Neutralit y. The Licensing Service should not introduce any constraint on the way
Producer can use the interfaces because of some underlying dependency on the
implementation. Producers need to be able to choose Licensing Service
implementations that allow them to deliver their products in a manner best suited t
individual Producer's business needs without requirements on the way the interfa
used. It is expected that LS implementations will allow many Producer Client obje
to reference a single instance of the associated ProducerSpecificLicenseService
interface to reduce the overhead of object creation.

Extensibilit y. The Licensing Service allows for extensions to support styles of
Producer Policies that are not currently obvious. The Licensing Service provides
extensibility in its object reference in the returned Action structure in the check-us
operation. This allows implementation-specific extensions to the notification
mechanism. The interface can also be extended by adding additional arguments a
operations; for example, in support of the Security Service.

Security. The Licensing Service provides a mechanism such that a degree of trus
be established between the users of the interface (the Producers) and the underl
license management system. This is different from a typical secure environment s
the Producer does not usually trust the end user or the end user security environ
A mechanism is provided to allow the Producer to authenticate, in real time, that
underlying license management system is a legitimate provider of the Licensing
Service. End user administration can not circumvent this authenticating mechanis

Performance. Implementations of the Licensing Service may choose to optimize
performance by the manner in which Producer Specific Licensing Service objects
managed. For example, an implementation could choose to allow multiple copies
Producer Specific Licensing Service to distribute client operations.

The Licensing Service mechanisms must allow both synchronous and asynchron
messages so a producer can decide what is best for its application. For example,
short duration method activation may well be best suited, for performance reason
using asynchronous meechanisms. On the other hand, if producers want to be
extremely strict, they might choose synchronous messages to prevent misuse an
accept the resulting loss of performance.

The Licensing Service provides mechanisms so that an application using the Licen
Service cannot accidentally orphan a license by acquiring an allocative style of lic
and never releasing when an application fails. Current mechanisms include conne
oriented, client-server communications; client-server heartbeat mechanisms; and
server-based, client status query mechanisms. Keep in mind that the mechanism c
may place a performance burden on the producer client.
12-12 CORBAservices March 1996

12

l

nces

te

rted
s to

med on

sen

t in

ce

vices

vent

ion
12.2.5 Licensing Service Interfaces

The Licensing Service defines the interface between the Producer Client and the
Licensing Service Manager (LicenseServiceManager interface) and the interface
between the Producer Client and the Producer Licensing Service
(ProducerSpecificLicenseService interface). The interfaces enable Producers to contro
use of their intellectual property in any manner they deem appropriate for their
business model. The isolation of policy from the Licensing Service interfaces enha
Producer flexibility. The interfaces for administration, policy creation, and license
document creation are not addressed, because they are implementation-specific.

The LicenseServiceManager interface provides a mechanism for the Producer to loca
an object supporting the second interface, ProducerSpecificLicenseService. All of the
operations required to constrain use of producers’ intellectual property are suppo
by the second interface. This design allows the implementors of Licensing Service
make trade-offs such as those between client performance, licensing system
performance, and ease of administration.

Once a Producer Client implementation has obtained a ProducerSpecificLicenseService
object reference, the three operations (start_use, end_use, check_use) can be perfor
this interface within the Client where the Producer deems it correct. The information
returned from these operations provides the basis for the Producer to enforce its cho
usage constraint policy.

Interfaces are Mandatory

All the interfaces are mandatory for all implementations. Optional arguments exis
the LicenseServiceManager interface. For the check_use operation the
ProducerNotification component of the returned Action can be a nil object referen
indicating that the implementation does not support this kind of notification
mechanism. In the start_use operation the call_back argument can be a nil object
reference indicating that the Producer client implementation is not using event ser
and is designed to operate in a poll only mode. The properties argument to start_use,
check_use, and end_use can be nil.

Constraints on Object Behavior

The Licensing Service interface assumes the provision of an Event Service (the E
Service is specified in Chapter 4 of this manual. If an Event Service implementation
supports true asynchronous events—where delivery of an event can interrupt an
object’s task to invoke the push operation—then the Producer Client implementat
must manage its internal state in a re-entrant world.
Licensing Service: v1.0 Service Description March 1996 12-13

12

) or

turns
rence
menta-

in the
vious

jects
am.

e.
Figure 12-2 Licensing Service Instance Diagram

In Figure 12-2, the Producer Client performs the operation
obtain_producer_specific_license_service on the LicenseServiceManager interface (Step
1). The Licensing Service Manager implementation creates an object (Steps 2 and 3
locates an object reference to an object who has an interface ProducerSpecificLicenseSer-
vice and who is capable of responding to the particular producer challenge. It then re
the reference to the Producer Client (Step 4). The producer client now uses the refe
to perform the operations start_use, check_use, and end_use (Steps 5 & 6). In imple
tions that support true asynchronous events, the ProducerSpecificLicenseService object
can asynchronously perform the push operation using the reference to the interface
Producer Client provided as one of the arguments to the start_use operation in a pre
step (in Step 5).

12.2.6 Licensing Event Trace Diagram

Figure 12-3 on page 12-16 represents the flow of events through Producer Client ob
and a Licensing Service implementation. The steps below are illustrated in the diagr

1. Producer Client gets an object reference to the Producer Specific Licensing Servic

Licensing
System

Cos Producer

 Service

 Service
 Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

1

4

6
5

3

2
 License
12-14 CORBAservices March 1996

12

e

ks for

ntrol is

inated.

ll”
2. Producer Client determines that usage control is required and performs the
start_use operation.

3. Producer Client does an intial check_use c all to retrieve the initial
recommended_check_interval.

4. Producer Specific Licensing Service instance interprets policy and interacts with th
Licensing System as necessary.

5. If asynchronous events are supported, the Producer Specific Licensing Service as
event notification to the particular Producer Client at an interval determined by Pol-
icy.(See page 35 for information on asynchronous events).

6. Event Service delivers the event to the Producer Client.

7. Producer Client responds to the event by performing the check_use operation.

Steps 4,5,6,7 are repeated until the Producer Client instance indicates that usage co
no longer necessary.

8. Producer Client performs the end_use operation when usage control is to be term

If asynchronous events are not supported, the Client implementation will need to “po
the Producer Specific Licensing Service with the check_use operation at an interval
defined by the check_interval argument to the check_use operation. To initially
Licensing Service: v1.0 Service Description March 1996 12-15

12
retrieve this check_interval value, the Client will need to invoke a check_use immedi-
ately after the start_use call.

Figure 12-3 Licensing Event Trace Diagram

Client License Producer
Specific

License
Manager

Event
Service

1

2

5
6

7

4

5
6

8

1-obtain_producer_specific_license_service
2.start_use

4.inquiry to the Licensing System
5.ask for event notification
6.event notification
7.check_use
8.end_use

License
Service

Service
Manager

4

3

3.Initial check_use
12-16 CORBAservices March 1996

12

e
12.3 The CosLicensing Module

The CosLicensing module is a collection of interfaces that together define the
Licensing Service. The module contains two interfaces:

The LicenseServiceManager interface consisting of the following operation:

• obtain_producer_specific_license_service

The ProducerSpecificLicenseService interface consisting of the following operations:

• start_use

• check_use

• end_use

This section describes the LicenseServiceManager and ProducerSpecificLicenseService
interfaces and their operations.

The CosLicensing module is shown below. Note that this module definition uses som
definitions from the CosEventComm module (in the Event Service) and the CosProperty-
Service module (in the Property Service).

#include “CosEventComm.idl”
#include “CosPropertyService.idl”

Module CosLicensingManager {
 exception InvalidProducer{};
 exception InvalidParameter{};
 exception ComponentNotRegistered{};

typedef Object ProducerSpecificNotification;

enum ActionRequired { continue, terminate};

enum Answer { yes, no };

struct Action {
 ActionRequired action ;
 Answer notification_required ;
 Answer wait_for_user_confirmation_after_notification ;
 unsigned long notification_duration;
 ProducerSpecificNotification producer_notification;
 string notification_text;
};

struct ChallengeData {
 unsigned long challenge_index;
 unsigned long random_number;
 string digest;

};

Figure 12-4 CosLicensingManager Module
Licensing Service: v1.0 The CosLicensing Module March 1996 12-17

12
struct Challenge {
 enum challenge_protocol { default, producer_defined };
 unsigned long challenge_data_size;
 any challenge_data;

};

typedef any LicenseHandle;

interface ProducerSpecificLicenseService {

 readonly attribute string producer_contact_info
 readonly attribute string
producer_specific_license_service_info

 LicenseHandle start_use (
 in Principle principle,
 in string component_name,
 in string component_version,
 inProperty::PropertySet license_use_context,
 CosEventComm::PushConsumer call_back,
 inout Challenge challenge
)

 raises (InvalidParameter, ComponentNotRegistered);

 void check_use (
 in LicenseHandle handle,

 in Property::PropertySet
license_use_context,
 out unsigned long recommended_check_interval,
 out Action action_to_be_taken,
 inout Challenge challenge
)

 raises (InvalidParameter);

 void end_use (
 in LicenseHandle handle,
 Property::PropertySet license_use_context,
 inout Challenge challenge
)

 raises (InvalidParameter);

};

interface LicenseServiceManager {
 ProducerSpecificLicenseService

obtain_producer_specific_license_service (
 in string producer_name,
 inout Challenge challenge
)

#include “CosEventComm.idl”

Figure 12-4 CosLicensingManager Module
12-18 CORBAservices March 1996

12

e
uiring

at

Table 12-1Exceptions Raised by Licensing Service Operations

12.3.1 LicenseServiceManager Interface

The LicenseServiceManager interface defines a single operation: obtaining the
producer specific Licensing Service object.

The LicenseServiceManager interface allows a producer to control the use of their
intellectual property. The
obtain_producer_specific_license_service opera tion returns an
object reference that supports the ProducerSpecificLicenseService interface. This
operation is protected by the use of a producer challenge.

It is likely that implementations of the License ServiceManager will make use of other
Object Services, such as Life Cycle, to create a producer-specific instance of the
Licensing Service. The Life Cycle Service is not used directly in order to allow th
service implementation to cache object references for performance reasons. Req
instance creation on every use of the
obtain_producer_specific_license_service operation is not desirable,
but can be allowed in a particular implementation.

The operation obtain_producer_specific_license_service raises the
InvalidProducer and InvalidParameter exceptions.

 raises (InvalidProducer, InvalidParameter };
 };
};

Exception Raised Description

 InvalidProducer Indicates that the producer argument is not correct or th
an appropriate producer cannot be found.

 InvalidParameter Indicates that one of the parameters is invalid. No
additional detail is provided in this document since this will
include a failed challenge. Additional information could
assist if someone wanted to make a deliberate attempt to
work out the challenge of a producer.

 ComponentNotRegistered Indicates that the specific component has not been
registered with the Licensing System.

#include “CosEventComm.idl”

Figure 12-4 CosLicensingManager Module
Licensing Service: v1.0 The CosLicensing Module March 1996 12-19

12

d

ar

g
sing

e

llow

be
n be

he
e.

 the

e

er to

e-

o be
at

lient
12.3.2 ProducerSpecificLicenseService Interface

The ProducerSpecificLicenseService interface defines three operations: notification
that a product has started to be used, notification that a product is still in use, an
notification that a product has finished being used.

Any object that possesses an object reference that supports the ProducerSpecific
LicenseService interface and is capable of satisfying the challenge for that particul
instance of the ProducerSpecificLicenseService interface can perform the following
operations:

• The start_use operation which allows producers to notify the License
Service that some aspect of their product has started to be used and is to be
controlled by the service.

• The check_use operation which allows the producers to notify the Licensin
Service that some aspect of their product that previously notified the service u
a start_use operation is still in use.

• The end_use operation which allows the producers to notify the Licensing
Service that an aspect of their product, previouslynotified to the service in th
start_use operation, has completed its use.

All of the previously listed operations are protected by a challenge mechanism to a
a producer to be satisfied that the instance of the Licensing ServiceManager is a
legitimate one to control the producer’s intellectual property.

The attribute producer_contact_info may be used to provide information that can
displayed to an end user. The attribute producer_specific_license_service_info ca
used, if necessary, for a Producer Client to alter the way it interacts with different
ProducerSpecificLicenseService objects. These attributes are defined at creation of t
ProducerSpecificLicenseService instance and do not change during the instance’s lif

The start_use, check_use and end_use capture and propagate information about
user's runtime context to the Licensing Service via the license_use_context parameter.
This information will typically include the user's name, their node's name, network
address, local time, and so on. This information can then be used by the Licens
System for a variety of purposes:

• In an access control mechanism to determine whether or not to allow the us
continue.

• In a private, possibly secure, usage logging mechanism.

• To provide data for peripheral management functions, such as triggering an
mail message to the network administrator when resources run out.

The operations start_use, check_use , and end_use raise the InvalidParameter
exception.

The action_to_be_taken output parameter in the check_use operation is used to
give the ProducerClient information on actions to be taken as a result of its request t
active or running. The following describes the Action structure in more detail. Note th
only the action field must be specified. All other fields can return a value of NULL in
which case behavior is determined by the coded policy defined within the ProducerC
implementation.
12-20 CORBAservices March 1996

12

 its

ing.

ith

ing
e

 if

ions
.

ive
e

 the

er

n as
m
ctive.
ent
o on.

ly sat-
• action : This field indicates if the ProducerClient should continue or terminate
processing depending on whether the requested license is available from the
Licensing System.

• notification_required : Indicates whether or not the ProducerClient needs to
prompt the local user with a message indicating the results of the licensing
request.

• wait_for_user_confirmation_after_notification : Indicates whether the
ProducerClient needs to wait for a confirmation before continuing its process
This is applicable only if a notification has been requested.

• notification_duration : If the user notification is required without confirmation,
this indicates how long the ProducerClient needs to wait before continuing w
its processing.

• producer_notification : This provides a reference to an object used by a Licens
System to return implementation specific results and control information to th
ProducerClient. For example, producer policy instructions can be part of this
object interface. It could also communicate the expiration date and time.

• notification_text : This provides the text to be communicated to the local user
required.

The check_use operation thus collects into a single client action the ability to address
the following requirements:

• Give the capability to the producer client to get both the results from and the act
to be performed following a request for permission to be active and/or running

• Give the capability to the producer client to periodically verify the right to be act
and/or running in the case of 'time dependent' licensing policy (for example, tim
based consumable licenses, expiration times, and so forth). The
recommended_check_interval is the parameter strictly tied to this verification.

• Give the capability to both the producer client and the Licensing Service
implementation to detect the following unexpected conditions and then either
release the related active license and/or stop the usage accounting:

• Abnormal termination of either the producer client or the Licensing Service.

• Unrecoverable breakdown in communication between the Producer Client and
Licensing Service.

• The indirect detection of these conditions is performed by forcing the produc
client to issue a check request within the check interval.

The check request concept is left to the specific Licensing System implementations.
However, that does not prevent the Licensing Service from using the check operatio
the heartbeat mechanism. The heartbeat mechanism is a general purpose mechanis
required inside a client/server based application to determine if the other end is still a
Some applications dedicate a specific process or task to this purpose and rely on ev
detection, others use a polling mechanism, others use system notification exits, and s
Furthermore, because of the different concepts, the polling and exits could not be ful
isfied by a single checking rate.
Licensing Service: v1.0 The CosLicensing Module March 1996 12-21

12

12.4 References

Object Management Group. Object Services RFP 4, OMG Document Number 94.4.18,
May, 1994.
12-22 CORBAservices March 1996

12

ure
y are
sh to

po-
.

 is

of a

l
histi-
 the

con-

 pro-
 of
.

 One
ike
he
 As an
possi-

s
cer to
ens-
 Appendix A Licensing Service Glossary

License Document: Represents the fundamental element of control. It provides a sec
delivery vehicle describing such things as how many copies of the intellectual propert
allowed, how long each copy may be used, and other elements of how producers wi
constrain usage of their intellectual property.

Licensing Service: The general term for the complete service, it consists of three com
nents: Producer Client; Producer Licensing Service; and Licensing Service Manager

Licensing Service Manager: The Common Object Service Licensing Service Manager
responsible for managing and creating the Producer Licensing Service objects.

License Unit: License documents may contain the concept of license units that are inter-
preted in a producer-specific manner by the producer policy. A typical example of a
license unit could be one where a single unit is to represent a single concurrent use
producer’s intellectual property by an individual user. The term license can be used to
refer to the smallest indivisible quantity of license units that a given Licensing System
implementation supports.

Licensing System: The implementation-specific component that provides fundamenta
usage control that, in conjunction with the Producer Licensing Service, provides sop
cated producer policies. The Licensing System is responsible for securely managing
fundamental units of control - the License Documents for all Producers.

Producer: The company or individual who owns the intellectual property that requires
usage control.

Producer Client: Any object, or component of an object, that wants to have its usage
trolled or metered via a Licensing Service.

Producer Policy: A Producer Policy is a collection of data that describes the detailed
terms and conditions, or business policies, which govern control and monitoring of a
ducer’s intellectual property wherever the property can be used. The implementation
producers’ policies is very specific to the Producer’s selection of a Licensing System
There are two components to business policy implementation in a licensing system.
component is contained in the License Document and includes fundamental things l
expiration date and quantities. The other component, the Producer Policy, includes t
broader aspects of business policy and may be derived from the License Document.
example of the broader issues that require Policy, the Producer Policy deals with all
ble licensing exceptions such as when no license is found.

Producer-Specific Licensing Service: A producer-specific implementation that interact
with and selects the particular Licensing System and Policy used by a specific Produ
control the Producer’s intellectual property. In this chapter, the Producer-Specific Lic
ing Service is is also referred to as the Producer Licensing Service.
Licensing Service: v1.0 References March 1996 12-23

12

e

ing
n
y to
hod)
ore

of

on
hat

antic
men-

to the
e.
n is

cture

eing
 Appendix B Use of Other Services

This appendix describes the relationship between the Licensing Service and thes
Object Services: Property; Relationship; and Security.

 B.1 Property Service

The properties argument to the start_use , check_use and end_use operations
enables implementations to choose between using the Property Service or provid
name value pairs directly to the Licensing Service. This decision can be based o
performance considerations or other practical concerns. For example, the inabilit
differentiate ownership where a single property is used in a single operation (met
but has differing values (as far as the Licensing Service is concerned) because m
than one principal is using the particular instance’s method at one time.

Examples of properties that are useful:

• UNITS_TO_RESERVE provides a hint to the producer policy implementation
indicating that the currently controlled aspect of the producers intellectual
property has some idea about what it is going to ‘use’ over the next amount
time.

• VALUE_TO_CONSUMER provides a hint to the producer policy implementati
indicating that the currently controlled aspect has some idea of the value of w
it is currently doing.

• NODE_NAME provides a hint to the producer policy implementation about
where the currently being controlled object is executing.

These are currently always producer-specific. The Licensing Service places no sem
or syntactic interpretation on these properties but makes them available, in an imple
tation-specific way, to the producers policy.

 B.1.1 License_Use_Context

There will need to be a set of information about each producer client made available
ProducerSpecificLicenseService as a "PropertySet" as specified by the Property Servic
The PropertySet is a dynamic equivalent of CORBA attributes. This set of informatio
made available to the start_use, check_use and end_use operations for the Licensing Sys-
tem to use in determining various aspects of policy. As one example, this data stru
could contain:

• All data from the principal, as retrieved through the new context information
provided by the CORBA 2.0 specification and as used, for example, by the
Transaction Service.

• Any data the producer client may need, either in the present or the future. B
all inclusive early on reduces the need to re-deploy the licensed software if
subsequent licenses need additional data.

• Fields from the example list of licensing attributes (provided below.)
12-24 CORBAservices March 1996

12

ense
tions
nta-
ch it

 many
st for
The example list is useful to allow people other than the original producer to create lic
documents for an object implementation. This happens in the case of either acquisi
or distribution agreements. The example list makes it easier for one object impleme
tion to be licensed by multiple license systems depending on the environment in whi
finds itself.

The list items are suggestions. Currently, no central registry of names exists; also,
items are not clearly defined. The list is a starting point and can serve as a check li
Producers.

Canonical List of user_context Properties:

• DATE_TODAY

• Today's date and time.

• GROUP_ID

• Integer group

• ID GROUP_NAME

• Name of group of users

• HARDWARE_FAMILY

• String of compatible hardware family

• HARDWARE_MODEL

• Hardware model

• HARDWARE_PRODUCER

• Manufacturer name

• NETWORK_ID

• Integer network identifier

• NETWORK_NAME

• String network identifier

• NETWORK_PROTOCOL

• String protocol name, for example, "TCP/IP" or "DECnet"

• NETWORK_STYLE

• 1 is local, 2 is LAN, 3 is WAN.

• NODE_ID

• Integer node identifier

• NODE_NAME

• Name of computer

• OPERATING_SYSTEM

• String identifying the OS

• OS_VERSION

• String identifying the OS version

• PROCESS_FAMILY

• String identifying a group of related processes

• PROCESS_ID

• Integer identifying a process number

• PROCESS_NAME
Licensing Service: v1.0 References March 1996 12-25

12

iron-
ng a
e
n
cense
nown

se is
trol.

rately.
s fol-
• String identifying the name of the process

• PROCESS_TYPE

• 1 is batch, 2 is interactive, 3 is other

• PRODUCT_NAME

• Name of intellectual property being protected

• PRODUCT_PUBLISHER

• Owner of intellectual property being protected

• PRODUCT_VERSION

• Version string of intellectual property

• PUBLIC_KEY

• String containing public key to test against Product

• RELEASE_DATE

• Integer indicating the date the software was released

• USER_ID

• Integer indicating user

• USER_NAME

• String containing user name

 B.1.2 Dependent Licenses

The Licensing Service can examine not only the most recent set of user runtime env
ment data but it can also examine data from previous runtime contexts collected alo
particular thread of control. For example, a user may log in as "Fred" and begin som
action under that name. This action may include an operation being dispatched to a
object implementation logged in as "root". If this second process needs to obtain a li
which was reserved for "Fred" then it ought to be able to do so. The user should be k
by all the names associated with that thread of control.

Another example of a recursive license right is the "embedded" license. Such a licen
not valid unless another object implementation was used earlier on the thread of con
A database software vendor might issue License Documents for use within, say, an
accounting package. Other uses which might be worth more must be licensed sepa
An example of an interface which would support a stack of License Use Context is a
lows:

interface UserContext {
Property::PropertySet License_Use_Context create ();
void push(in Property::PropertySet License_Use_Context);
void pop ();
unsigned long getDepth ();
Property::PropertySet License_Use_Context top ();
Property::PropertySet License_Use_Context get (in unsigned long

which_frame);

void clear ();
void remove ();
}

12-26 CORBAservices March 1996

12

e
is
 use

equire-

nage
ong

or.

the

not

re

eals
 B.2 Relationship Service

Support for collections and relationships will be determined by the mechanisms mad
available to producers by the particular implementations of the Licensing Service. It
expected that the preferred mechanisms will be to allow the Producer Policy to make
of Object Services such as the Relationship and Property Services, but this is not a r
ment of the Licensing Service.

Each implementation of the Licensing Service can address the problem of how to ma
the relationships among licenses. The types of relations one can assume exists am
licenses can be generically classified as follows:

• Prerequisite licenses, for example. the previous example of a database vend

• Corequisite licenses, that is, a set of licenses which must all coexist to give
producer client the right to be running.

• Exrequisite licenses, that is, a set of licenses that can run only if others are
active.

• Generic dependent licenses, that is, a set of licenses whose dependencies a
described through a specific constraint expression.

 B.3 Security Service

The Security Service will probably replace the logic in each Licensing System that d
with producer client authentication and access control.
Licensing Service: v1.0 References March 1996 12-27

12

bject
e

ration

tation

ds to

se
se the

oose
ased

ties to
the
nce

 each
tation

sed to

n is
rence

ned in
 Appendix C Producer Client Implementation Issues

 C.1 Client Implementation

In this example, a Producer decides to control method activation. In the Producer’s o
activation, the implementation performs the obtain_producer_specific_license_servic
operation on the LicenseServiceManager interface and stores the resultant object refer-
ence. In the implementation of each method that is to be controlled, the start_use ope
is performed on the stored object reference.

Depending on whether asynchronous events are supported, the Producer implemen
will vary as follows:

• If true asynchronous events are supported, the Producer implementation nee
provide an interface inherited from CosEventComm, the PushConsumer interface.

• If asynchronous events are not supported, or the Producer chooses to not u
events, then each implementation that uses the start_use operation needs to u
check_use operation no less frequently than the period specified in the
recommended_check_interval argument until the implementation performs an
end_use operation. If, within the recommended check interval, the Producer
Client does not perform the check_use operation, the Producer Policy may ch
to release the associated licenses assuming that the Producer Client has ce
functioning.

Producers must decide how they want to use the Property Service to provide proper
the start_use, check_use and end_use operations. In the Producer implementation,
returned argument action_to_be_taken from the check_use operation needs to influe
how the object continues after each check_use operation.

The Producer needs to determine the name for each component and the version for
component. The Producer will then need to produce the Licensing System implemen
dependant policy and license document for the Producer's chosen policy.

When a particular use of the Producer object is completed the end_use operation is u
let the Licensing Service know that control is no longer required for that component.

 C.2 Asynchronous Events

In CORBA implementations where true asynchronous events are supported, provisio
made in the start_use operation to provide the Licensing Service with the object refe
that corresponds to a client PushConsumer interface. This will allow the license service to
asynchronously send a push event to the specified interface with the arguments defi
the following pseudocode:

 C.3 Pseudocode
12-28 CORBAservices March 1996

12
struct AsyncLicenseData{

ProducersSpecificLicenseService service;

LicenseHandle handle;

Challenge challenge;

};

/* Producer client implements an interface for the 'push' operation: */

void xxxx_push(Object o, Environment *e, any data)

{

struct AsyncLicenseData *check;

/* get the actual information that is needed to proceed */

check = (struct AsyncLicenseData *)(data->_value);

/*

perform producer specific testing and lookup on:

 check->handle

 check->challenge

need to make sure that the component of this instance

that handle refers to is still active and that the

challenge is valid.

 */

 /*

 providing all is well, cause a check_use operation for

 the handle. Have to assemble the challenge, decide which

 properties are important for this handle and so forth.

 */

check->service->check_use(ev,

 check->handle,

 properties,

 interval,

 action,

 challenge);
Licensing Service: v1.0 References March 1996 12-29

12

ine
nvoke
h oper-
an-

te
rding
/* test the challenge returned and so forth */

}

When the Producer Client has the push operation invoked, activating the routine
xxxx_push in the pseudocode example, the producer implementation should determ
which aspect of the implementation is referenced by the handle argument and then i
the check_use operation on the handle provided as one of the arguments to the pus
ation. At thar point, the implementation should determine if the object related to the h
dle is still active; determine if the challenge is valid; and then perform the check_use
operation on the provided object reference. The results from this operation will indica
whether any action is to be taken and, if so, the implementation should proceed acco
to the Producer Policy.
12-30 CORBAservices March 1996

12

 be
ed by

at is

 pro-
. This
om

g
 the

he

ed in
 sets

ventu-
.

n

sents
This

t

or
 Appendix D Challenge Mechanism

 D.1 Default

For a producer to verify that a particular instance of the LicenseServiceManager is legiti-
mate, a challenge mechanism is required. This requirement may either disappear or
reduced if the Security Service delivers a similar mechanism that can then be inherit
the LicenseServiceManager.

The mechanism proposed, by default, assumes the use of shared secrets in the producer
implementations of their objects and the specific instance of the Licensing Service th
involved to control the producer’s intellectual property.

The challenge mechanism is straightforward. When any operation is requested by a
ducer’s instance a challenge structure is provided along with the normal parameters
challenge structure consists of the MD5 of all the arguments to the operation, a rand
number, and a forward secret value known only to the producer. The Licensing Service
instance for this producer can confirm that the client instance is legitimate by verifyin
that the challenge is correct. In return the instance of the license system sends back
MD5 of the same random number and a reverse secret value again known only to the pro-
ducer. The instance invoking the operation on the Licensing Service can verify that t

Licensing Service is legitimate by validating the generated MD5.1 The challenge mecha-
nism defined in the proposed interfaces supports more than one set of shared for-
ward/reverse secrets. As part of the ChallengeData structure an index is provided,
challenge_index, that allows the client to choose which shared secret set is to be us
the challenge. A conforming implementation of the LS needs to support at least four
of shared secrets whose indices are 0 through 3.

This mechanism is not intended to be completely secure. Instead, it provides trust
between the producer and the producer-specific instance of the Licensing Service. E
ally, the Security Service will probably replace the need for the challenge mechanism

 D.2 Alternative

As an alternative to the default challenge, a Producer can choose to define its ow
challenge protocol. By setting the challenge_protocol enumerated element of a
challenge to 'producer_defined' the definition of what the challenge element repre
becomes the responsibility of the producer and not the Licensing Service directly.

1. MD5 is a message digest algorithm defined by R. Rivest in the Internet RFC 1321. It is in the public
domain and provides a mechanism to generate a 128-bit “fingerprint” of messages of arbitrary length. I
is conjectured that the difficulty of coming up with two messages that have the same digest is 2^64
operations and that generating a specific digest for a message is 2^128 operations, making it suitable f
the basis of the challenge protocol described in this specification.
Licensing Service: v1.0 References March 1996 12-31

12

s
ce is

one
hal-
cer
rovid-
r.

echa-
, this
e, that
n of
ider

-

will depend on the implementation of the Licensing Service, since the mechanism
available to the producer to support this are defined by the way a Licensing Servi
implemented.

Note

If the object producer so chooses, the same program can be licensed by more than
Licensing System. It is simply a matter of who satisfies the challenge. In fact, the c
lenge mechanism supports as many Licensing Service providers as an object produ
chooses to pick up. They can choose sets of challenge data to deal with particular p
ers and use a standard set of challenge data to get the first available service provide

It is not guaranteed to be true that all object producers will use the same challenge m
nism. However, as long as the object producer chooses to use the default challenge
will be the case. As soon as an object producer decides to use an alternate challeng
will be defined by the license system provider. At that point, only that implementatio
the Licensing Service can satisfy the challenge and remove the multiple service prov
capability. Default challenge mechanisms must be supported; however, if licensing sys
tem providers offer an alternative, a producer need not use the default.
12-32 CORBAservices March 1996

 Property Service 13
. The
y

e of

t
; it

t
 all

iated

ring
o
13.1 Overview

13.1.1 Service Description

An object supports an interface. An interface consists of operations and attributes
interface is statically defined in OMG IDL. Two objects are of the same type if the
support the same interface.

Properties are typed, named values dynamically associated with an object, outsid
the type system. There are many useful cases for properties. For example:

• Object Classification -- A particular document may be classified as important; i
must be read by the end of the day. Another document is marginally important
must be read by the end of the month. Yet another document is not marked
important. The classification of the document was invented by the user. It is no
part of the document’s type. However, a user may use a standard utility to find
documents marked important.

• Object Usage Count -- An on-line service download utility increments a counter
every time an object has been downloaded by a user. The information is assoc
with the object but it is not part of the object’s type.

The property service implements objects supporting the PropertySet interface or the
PropertySetDef interface. The PropertySet interface supports a set of properties. A
property is two tuple of: <property_name, property_value>. property_name is a st
that names the property. property_value is of type any and carries the value assigned t
the property.

The PropertySetDef interface is a specialization (subclass) of the PropertySet interface
that exposes the characteristics (or metadata) of each property (e.g. readonly or
read/write access). In general, this specification will use the term PropertySet to refer
to the collection of properties and will only use the term PropertySetDef when
explicitly referring to operations related to property metadata.
CORBAservices July 1996 13-1

13

ail.

ith an
ce of

ode.

ber
tions

f

ch,

r
e

e

 is
The association of properties with an object is considered an implementation det
This property service specification allows for the creation of PropertySets or
PropertySetDefs via factory interfaces, or an object may inherit the PropertySet or
PropertySetDef interfaces.

Client’s Model of Properties

As with CORBA attributes, clients can get and set property values. However, with
properties, clients can also dynamically create and delete properties associated w
object. Clients can manipulate properties individually or in batches using a sequen
the Property data type called Properties.

In addition, when using objects that support the PropertySetDef interface, clients can
create and manipulate properties and their characteristics, such as the property m
The PropertySetDef interface also provides operations for clients to retrieve constraint
information about a PropertySet, such as allowed property types.

To aid in the client’s view of properties associated with an object, the client may
request a list of property names (PropertyNames) or the number of properties.

Iterators are used by the property service to return lists of properties when the num
of properties exceeds that which is expected by the client. Iterators contain opera
that allow clients fine-grained control over the enumeration of properties.

Object’s Model of Properties

Every object that wishes to provide a property service must support either the
PropertySet or PropertySetDef interface. PropertySet is the interface that provides
operations for defining, deleting, enumerating and checking for the existence of
properties. The PropertySetDef interface is a subclass of PropertySet that provides
operations to retrieve PropertySet constraints, define and modify properties with
modes, and to get and set property modes.

Subclasses of PropertySet or PropertySetDef may impose restrictions on some or all o
the properties they store.

Properties are intended to be the dynamic equivalent of CORBA attributes. As su
the PropertySet interface provides exceptions to allow implementors to support the
concepts of a readonly property and a fixed property (i.e., a property that cannot be
deleted). In addition, the PropertySetDef interface provides operations for
implementors to declare their PropertySet constraints to clients. This mechanism is fo
those implementations that need the dynamics of properties, yet want the interfac
control of CORBA attributes.

A PropertySet object may support the storage of property data types itself, or ther
may be a “generic” PropertySet implementation that handles the parsing of property
data types and the memory management associated with storing properties. This
considered an implementation detail.
13-2 CORBAservices July 1996

13

tion

rty

n

erty

ty

 the

-

When a PropertySet object receives a define_property request from a client, it must
ensure there are no property_name conflicts and then retain the property informa
such that the object can later respond to get_property, delete_property, and
is_property_defined requests from clients.

When a PropertySet object receives a define_property request to an existing prope
from a client, it must ensure that the any TypeCode of the property_value of the
request matches the existing property’s any TypeCode.

Use of property modes within a PropertySet is an implementation issue, as clients ca
neither access nor modify a property mode. For example, an implementation may
define some initial readonly properties at create time and raise the ReadOnlyProp
exception if a client attempts to define a new property value.

13.1.2 OMG IDL Interface Summary

The property service defines interfaces to support functionality described in the
previous sections. The following table gives a high-level description of the proper
service interfaces.

13.1.3 Summary of Key Features

The following are key features of the Property Service:

• Provides the ability to dynamically associate named values with objects outside
static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name
value-mode tuples.

Table 13-1Property Service Interfaces

Interface Purpose

PropertySet Supports operations for defining, deleting, enumerating and
checking for the existence of properties.

PropertySetDef Supports operations for retrieving PropertySet constraints
and getting and setting property modes.

PropertiesIterator Supports operations to allow clients fine-grained control over
the enumeration of properties.

PropertyNamesIterator Supports operations to allow clients fine-grained control over
the enumeration of property names.

PropertySetFactory Creates PropertySets.

PropertySetDefFactory Creates PropertySetDefs.
Property Service: v1.0 Overview July 1996 13-3

13

al
es

r
ct,

n
ve

ts of
The names are simple OMG IDL strings. The values are OMG IDL anys. The use
of type any is significant in that it allows a property service implementation to de
with any value that can be represented in the OMG IDL-type system. The mod
are similar to those defined in the Interface Repository AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.

• Provides “batch” operations to deal with sets of properties as a whole.

The use of “batch” operations is significant in that the systems and network
management (SNMP, CMIP, ...) communities have proven such a need when
dealing with “attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of (o
apply constraints to) the names and types of properties associated with an obje
similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or deletio
of properties (readonly, fixed) similar in nature to the restrictions one would ha
with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.

13.2 Service Interfaces

13.2.1 CosPropertyService Module

The CosPropertyService module defines the entire property service, which consis
data types, exceptions and the following interfaces:

• PropertySet

• PropertySetDef

• PropertySetFactory

• PropertySetDefFactory

• PropertiesIterator

• PropertyNamesIterator
13-4 CORBAservices July 1996

13

ata

 a

ith

the
Data Types

The CosPropertyService module provides a number of structure and sequence d
types to manipulate PropertySet and PropertySetDef information.

A property is a two tuple of: <property_name, property_value>. property_name is
string, which names the property. property_value is of type any and carries the value
assigned to the property. This data type is considered the base type for dealing w
property data and is used throughout the PropertySet interface.

Clients can manipulate properties individually or in batches using a sequence of
Property data type called Properties or, when appropriate, a sequence of the
PropertyName data type called PropertyNames.

/***/
/* Data Types */
/***/

 typedef string PropertyName;
 struct Property {
 PropertyName property_name;
 any property_value;
 };

 enum PropertyModeType {
 normal,
 read_only,
 fixed_normal,
 fixed_readonly,
 undefined
 };

 struct PropertyDef {
 PropertyName property_name;
 any property_value;
 PropertyModeType property_mode;
 };

 struct PropertyMode {
 PropertyName property_name;
 PropertyModeType property_mode;
 };

 typedef sequence<PropertyName> PropertyNames;
 typedef sequence<Property> Properties;
 typedef sequence<PropertyDef> PropertyDefs;
 typedef sequence<PropertyMode> PropertyModes;
 typedef sequence<TypeCode> PropertyTypes;

Figure 13-1 Data types
Property Service: v1.0 Service Interfaces July 1996 13-5

13

perty.
ata

ata.

ence

ata
of

ce of

w

nly

 to

t the

.

ple,
rty
A PropertyDef is a three tuple of: <property_name, property_value,
property_mode_type>. property_name is a string, which names the property.
property_value is of type any and carries the value assigned to the property.
property_mode_type is an enumeration that defines the characteristics of the pro
A property definition combines property characteristics (metadata) and property d
information and is used in the PropertySetDefFactory and PropertySetDef interfaces.
The PropertyDef data type provides clients access and control of property metad

Clients can manipulate property definitions individually or in batches using a sequ
of the PropertyDef data type called PropertyDefs.

A PropertyMode is a two tuple of: <property_name, property_mode_type>.
property_name is a string, which names the property. property_mode_type is an
enumeration that defines the characteristics of the property. The PropertyMode d
type is used in the PropertySetDef interface and provides clients access and control
property metadata.

Clients can manipulate property modes individually or in batches using a sequen
the PropertyMode data type called PropertyModes.

There are five mutually exclusive property mode types defined:

• Normal means there are no restrictions to the property. A client may define ne
values to an existing property or delete this property.

• Readonly means clients can only get the property information. However, a reado
property may be deleted.

• Fixed_Normal means the property cannot be deleted. However, clients are free
define new values to an existing property.

• Fixed_Readonly means the property cannot be deleted and clients can only ge
property information.

• Undefined is used to signify PropertyNotFound when requesting a multiple get
mode request. Using this on an operation that sets the mode of a property (e.g
set_mode or define_property_with_mode) will raise the UnsupportedMode
exception.

Restrictions on the property_mode_type field is an implementation issue. For exam
a PropertySetDef implementation may choose to not support a client setting a prope
to the fixed_readonly mode.
13-6 CORBAservices July 1996

13
Exceptions

The PropertySet interface supports the following exceptions.

/***/
/* Exceptions */
/***/
 exception ConstraintNotSupported{};
 exception InvalidPropertyName {};
 exception ConflictingProperty {};
 exception PropertyNotFound {};
 exception UnsupportedTypeCode {};
 exception UnsupportedProperty {};
 exception UnsupportedMode {};
 exception FixedProperty {};
 exception ReadOnlyProperty {};

 enum ExceptionReason {
 invalid_property_name,
 conflicting_property,
 property_not_found,
 unsupported_type_code,
 unsupported_property,
 unsupported_mode,
 fixed_property,
 read_only_property
 };

 struct PropertyException {
 ExceptionReason reason;
 PropertyName failing_property_name;
 };

 typedef sequence<PropertyException> PropertyExceptions;

 exception MultipleExceptions {
 PropertyExceptions exceptions;
 };

Figure 13-2 PropertySet interface exceptions.
Property Service: v1.0 Service Interfaces July 1996 13-7

13

ns

he

n is

data
• ConstraintNotSupported

Indicates that either the allowed_property_types, allowed_properties, or
allowed_property_defs parameter could not be properly supported by this
PropertySet or PropertySetDef.

• InvalidPropertyName

Indicates that the supplied property_name is not valid. For example, a
property_name of length 0 is invalid. Implementations may place other restrictio
on property_name.

• ConflictingProperty

Indicates that the user is trying to modify an existing property_name with an any
TypeCode in a property_value that is different from the current.

• PropertyNotFound

Indicates that the supplied property_name is not in the PropertySet.

• UnsupportedTypeCode

Indicates that a user is trying to define a property having an any TypeCode that is
not supported by this PropertySet.

• UnsupportedProperty

Indicates that a user is trying to define a property not supported by this PropertySet.

• FixedProperty

Indicates that a user is trying to delete a property that the PropertySet considers
undeletable.

• ReadOnlyProperty

This indicates that a user is trying to modify a property that the PropertySet
considers to be readonly.

• MultipleExceptions

This exception is used to return a sequence of exceptions when dealing with t
“batch” operations of define_properties and delete_all_properties in the PropertySet
interface, define_properties_with_modes and set_property_modes in the
PropertySetDef interface, create_initial_propertyset in the PropertySetFactory
interface, and create_initial_propertysetdef in the PropertySetDefFactory interface.
Each operation defines the valid entries that may occur in the sequence.

A PropertyException is a two tuple of: <reason, failing_property_name>. reaso
an enumeration reflecting one of the exceptions defined above.
failing_property_name is a string, which names the property. The sequence of
property exceptions returned as MultipleExceptions is the PropertyExceptions
type.
13-8 CORBAservices July 1996

13

nd

ies,
s is

ch

s.
e to

his

 flag
 to

ty
13.2.2 PropertySet Interface

The PropertySet interface provides operations to define and modify properties, list a
get properties, and delete properties.

The PropertySet interface also provides “batch” operations, such as define_propert
to deal with sets of properties as a whole. The execution of the “batch” operation
considered best effort (i.e., not an atomic set) in that not all suboperations need
succeed for any suboperation to succeed.

For define_properties and delete_properties, if any suboperation fails, a
MultipleExceptions exception is returned to identify which property name had whi
exception.

For example, a client may invoke define_properties using three property structure
The first property could be accepted (added or modified), the second could fail du
an InvalidPropertyName, and the third could fail due to a ConflictingProperty. In t
case a property is either added or modified in the PropertySet, and a
MultipleExceptions is raised with two items in the PropertyExceptions sequence.

The get_properties and delete_all_properties “batch” operations utilize a boolean
to identify that mixed results occurred and additional processing may be required
fully analyze the exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.

Defining and Modifying Properties

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

define_property

 /* Support for defining and modifying properties */
 void define_property(
 in PropertyName property_name,
 in any property_value)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 ReadOnlyProperty);

 void define_properties(
 in Properties nproperties)
 raises(MultipleExceptions);

Figure 13-3 Operations used to define new properties or set new values
Property Service: v1.0 Service Interfaces July 1996 13-9

13

not

 is
erty

ne
Will modify or add a property to the PropertySet. If the property already exists, then
the property type is checked before the value is overwritten. If the property does
exist, then the property is added to the PropertySet.

To change the any TypeCode portion of the property_value of a property, a client must
first delete_property, then invoke the define_property.

define_properties

Will modify or add each of the properties in Properties parameter to the PropertySet.
For each property in the list, if the property already exists, then the property type
checked before overwriting the value. If the property does not exist, then the prop
is added to the PropertySet.

This is a batch operation that returns the MultipleExceptions exception if any defi
operation failed.

Table 13-2Exceptions Raised by Define Operations

Listing and Getting Properties

This set of operations is used to retrieve property names and values from a
PropertySet.

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict in
the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the property_value field
is not supported in this PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported in this
PropertySet, either due to PropertyName restrictions or
specific name-value pair restrictions.

ReadOnlyProperty Indicates that the property does not support client
modification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.

 /* Support for Getting Properties and their Names */
 unsigned long get_number_of_properties();

Figure 13-4 Operations used to retrieve property names and values
13-10 CORBAservices July 1996

13

y

ixed
get_number_of_properties

Returns the current number of properties associated with this PropertySet.

get_all_property_names

Returns all of the property names currently defined in the PropertySet. If the
PropertySet contains more than how_many property names, then the remaining propert
names are put into the PropertyNamesIterator.

get_property_value

Returns the value of a property in the PropertySet.

get_properties

Returns the values of the properties listed in property_names.

When the boolean flag is true, the Properties parameter contains valid values for all
requested property names. If false, then all properties with a value of type tk_void may
have failed due to PropertyNotFound or InvalidPropertyName.

A separate invocation of get_property for each such property name is necessary to
determine the specific exception or to verify that tk_void is the correct any TypeCode
for that property name.

This approach was taken to avoid a complex, hard to program structure to carry m
results.

 void get_all_property_names(
 in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

 any get_property_value(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_properties(
 in PropertyNames property_names,
 out Properties nproperties);

 void get_all_properties(
 in unsigned long how_many,
 out Properties nproperties,
 out PropertiesIterator rest);

Figure 13-4 Operations used to retrieve property names and values
Property Service: v1.0 Service Interfaces July 1996 13-11

13
get_all_properties

Returns all of the properties defined in the PropertySet. If more than how_many
properties are found, then the remaining properties are returned in

Table 13-3Exceptions Raised by List and Get Properties Operations

Deleting Properties

This set of operations can be used to delete one or more properties from a PropertySet.

delete_property

Deletes the specified property if it exists from a PropertySet.

delete_properties

Deletes the properties defined in the property_names parameter. This is a batch
operation that returns the MultipleExceptions exception if any delete failed.

delete_all_properties

Variation of delete_properties. Applies to all properties.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined for
this PropertySet.

InvalidPropertyName Indicates the property name is invalid. (A property name of
length 0 is invalid; implementations may place other
restrictions on property names.)

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.

 /* Support for Deleting Properties */
 void delete_property(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName,
 FixedProperty);

 void delete_properties(
 in PropertyNames property_names)
 raises(MultipleExceptions);

 boolean delete_all_properties();

Figure 13-5 Operations used to delete properties
13-12 CORBAservices July 1996

13

 all
erties

fore

e
Since some properties may be defined as fixed property types, it may be that not
properties are deleted. The boolean flag is set to false to indicate that not all prop
were deleted.

A client could invoke get_number_of_properties to determine how many properties
remain. Then invoke get_all_property_names to extract the property names remaining. A
separate invocation of delete_property for each such property name is necessary to
determine the specific exception.

Note – If the property is in a PropertySetDef, then the set_mode operation could be
invoked to attempt to change the property mode to something other than fixed be
using delete_property.

This approach was taken to avoid the use of an iterator to return an indeterminat
number of exceptions.

Table 13-4Exceptions Raised by delete_properties Operations

Determining If a Property Is Already Defined

The is_property_defined operation returns true if the property is defined in the
PropertySet, and returns false otherwise.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

FixedProperty Indicates that the PropertySet does not support the deletion
of the specified property.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.

 boolean is_property_defined(
 in PropertyName property_name)
 raises(InvalidPropertyName);

Figure 13-6 is_property_defined operation
Property Service: v1.0 Service Interfaces July 1996 13-13

13

the

e.
ic

d.

fails,
ich

rty
e

e a

ixed

ty

 on a
13.2.3 PropertySetDef Interface

The PropertySetDef interface is a specialization (subclass) of the PropertySet interface.
The PropertySetDef interface provides operations to retrieve PropertySet constraints,
define and modify properties with modes, and to get or set property modes.

It should be noted that a PropertySetDef is still considered a PropertySet. The
specialization operations are simply to provide more client access and control of
characteristics (metadata) of a PropertySet.

The PropertySetDef interface also provides “batch” operations, such as
define_properties_with_modes, to deal with sets of property definitions as a whol
The execution of the “batch” operations is considered best effort (i.e., not an atom
set) in that not all suboperations need to succeed for any suboperation to succee

For define_properties_with_modes and set_property_modes, if any suboperation
a MultipleExceptions exception is returned to identify which property name had wh
exception.

For example, a client may invoke define_properties_with_modes using four prope
definition structures. The first property could be accepted (added or modified), th
second could fail due to an UnsupportedMode, the third could fail due to a
ConflictingProperty, and the fourth could fail due to ReadOnlyProperty. In this cas
property is either added or modified in the PropertySetDef and a MultipleExceptions
exception is raised with three items in the PropertyExceptions sequence.

The get_property_modes “batch” operation utilizes a boolean flag to signal that m
results occurred and additional processing may be required to fully analyze the
exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.

Retrieval of PropertySet Constraints

This set of operations is used to retrieve information related to constraints placed
PropertySet.

get_allowed_property_types

 /* Support for retrieval of PropertySet constraints*/
 void get_allowed_property_types(
 out PropertyTypes property_types);

 void get_allowed_properties(
 out PropertyDefs property_defs);

Figure 13-7 Operations used to retrieve information related to constraints
13-14 CORBAservices July 1996

13

at

Indicates which types of properties are supported by this PropertySet. If the output
sequence is empty, then there is no restrictions on the any TypeCode portion of the
property_value field of a Property in this PropertySet, unless the get_allowed_properties
output sequence is not empty.

For example, a PropertySet implementation could decide to only accept properties th
had any TypeCodes of tk_string and tk_ushort to simplify storage processing and
retrieval.

get_allowed_properties

Indicates which properties are supported by this PropertySet. If the output sequence is
empty, then there is no restrictions on the properties that can be in this PropertySet,
unless the get_allowed_property_types output sequence is not empty.

Defining and Modifying Properties with Modes

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

 /* Support for defining and modifying properties */
 void define_property_with_mode(
 in PropertyName property_name,
 in any property_value,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 UnsupportedMode,
 ReadOnlyProperty);

 void define_properties_with_modes(
 in PropertyDefs property_defs)
 raises(MultipleExceptions);

Figure 13-8 Operations used to define new properties or values
Property Service: v1.0 Service Interfaces July 1996 13-15

13

perty
s not

e

n the

ne
define_property_with_mode

This operation will modify or add a property to the PropertySet. If the property already
exists, then the property type is checked before the value is overwritten. The pro
mode is also checked to be sure a new value may be written. If the property doe
exist, then the property is added to the PropertySet.

To change the any TypeCode portion of the property_value of a property, a client must
first delete_property, then invoke the define_property_with_mode.

define_properties_with_modes

This operation will modify or add each of the properties in the Properties parameter to
the PropertySet. For each property in the list, if the property already exists, then th
property type is checked before overwriting the value. The property mode is also
checked to be sure a new value may be written. If the property does not exist, the
property is added to the PropertySet.

This is a batch operation that returns the MultipleExceptions exception if any defi
operation failed.

Table 13-5Exceptions Raised by define Operations

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict in
the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the property_value field
is not supported in this
PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported in this
PropertySet, either due to PropertyName restrictions or
specific name-value pair restrictions.

UnsupportedMode Indicates that the mode supplied is not supported in this
PropertySet.

ReadOnlyProperty Indicates that the property does not support client
modification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.
13-16 CORBAservices July 1996

13

ne or
Getting and Setting Property Modes

This set of operations is used to get and set the property mode associated with o
more properties.

get_property_mode

 /* Support for Getting and Setting Property Modes */
 PropertyModeType get_property_mode(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_property_modes(
 in PropertyNames property_names,
 out PropertyModes property_modes);

 void set_property_mode(
 in PropertyName property_name,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 PropertyNotFound,
 UnsupportedMode);

 void set_property_modes(
 in PropertyModes property_modes)
 raises(MultipleExceptions);
 };

Figure 13-9 Operations used to get and set property mode
Property Service: v1.0 Service Interfaces July 1996 13-17

13

s for
pe of

ixed

mpts

h
Returns the mode of the property in the PropertySet.

get_property_modes

Returns the modes of the properties listed in property_names.

When the boolean flag is true, the property_modes parameter contains valid value
all requested property names. If false, then all properties with a property_mode_ty
undefined failed due to PropertyNotFound or InvalidPropertyName. A separate
invocation of get_property_mode for each such property name is necessary to
determine the specific exception for that property name.

This approach was taken to avoid a complex, hard to program structure to carry m
results.

set_property_mode

Sets the mode of a property in the PropertySet.

Protection of the mode of a property is considered an implementation issue. For
example, an implementation could raise the UnsupportedMode when a client atte
to change a fixed_normal property to normal.

set_property_modes

Sets the mode for each property in the property_modes parameter. This is a batc
operation that returns the MultipleExceptions exception if any set failed.

Table 13-6Exceptions Raised by Get and Set Mode Operations

13.2.4 PropertiesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_properties operation of
the PropertySet interface returns a sequence of Property structures (Properties). If there
are additional properties, the get_all_properties operation returns an object supporting
the PropertiesIterator interface with the additional properties.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

UnsupportedMode Indicates that the mode supplied (set operations only) is not
supported in this PropertySet.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.
13-18 CORBAservices July 1996

13

irs

xists.

rator
s
ifies

ng
The PropertiesIterator interface allows a client to iterate through the name-value pa
using the next_one or next_n operations.

Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property, if one e

next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property. A return of false signifies no more
items in the iterator.

The next_n operation returns true if an item exists at the current position in the ite
and the how_many parameter was set greater than zero. The output is a propertie
sequence with at most the how_many number of properties. A return of false sign
no more items in the iterator.

Destroying the Iterator

The destroy operation destroys the iterator.

13.2.5 PropertyNamesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_property_names
operation returns a sequence of names (PropertyNames). If there are additional names,
the get_all_property_names operation returns an object supporting the
PropertyNamesIterator interface with the additional names.

The PropertyNamesIterator interface allows a client to iterate through the names usi
the next_one or next_n operations.

 void reset();

Figure 13-10reset operation

 boolean next_one(out Property aproperty);
 boolean next_n(
 in unsigned long how_many,
 out Properties nproperties);

Figure 13-11next_one and next_n operations (properties)

 void destroy();

Figure 13-12destroy operation
Property Service: v1.0 Service Interfaces July 1996 13-19

13

 one

o

rator
ames
 no
Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property name, if
exists.

next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property name. A return of false signifies n
more items in the iterator.

The next_n operation returns true if an item exists at the current position in the ite
and the how_many parameter was set greater than zero. The output is a PropertyN
sequence with at most the how_many number of names. A return of false signifies
more items in the iterator.

Destroying the Iterator

The destroy operation destroys the iterator.

13.2.6 PropertySetFactory Interface

The create_propertyset operation returns a new PropertySet. It is considered an
implementation issue as to whether the PropertySet contains any initial properties or
has constraints.

The create_constrained_propertyset operation allows a client to create a new
PropertySet with specific constraints. The modes associated with the allowed
properties is considered an implementation issue.

 void reset();

Figure 13-13reset operation

 boolean next_one(out PropertyName property_name);
 boolean next_n(
 in unsigned long how_many,
 out PropertyNames property_names);

Figure 13-14next_one, next_n operations (PropertyNames)

 void destroy();

Figure 13-15destroy operation
13-20 CORBAservices July 1996

13

e
The create_initial_propertyset operation allows a client to create a new PropertySet
with specific initial properties. The modes associated with the initial properties is
considered an implementation issue.

Deletion of any initial properties is an implementation concern. For example, an
implementation may choose to initialize the PropertySet with a set of fixed_readonly
properties for create_propertyset or choose to initialize all allowed_properties to b
fixed_normal for create_constrained_propertyset.

The relationship of a PropertySet to a specific object is an implementation issue.

13.2.7 PropertySetDefFactory Interface

The create_propertysetdef operation returns a new PropertySetDef. It is considered an
implementation issue as to whether the PropertySetDef contains any initial properties
or has constraints.

The create_constrained_propertysetdef operation allows a client to create a new
PropertySetDef with specific constraints, including property modes.

The create_initial_propertysetdef operation allows a client to create a new PropertySetDef
with specific initial properties, including property modes.

 interface PropertySetFactory
 {
 PropertySet create_propertyset();
 PropertySet create_constrained_propertyset(
 in PropertyTypes allowed_property_types,
 in Properties allowed_properties)
 raises(ConstraintNotSupported);
 PropertySet create_initial_propertyset(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };

Figure 13-16 PropertySetFactory interface

 interface PropertySetDefFactory
 {
 PropertySetDef create_propertysetdef();
 PropertySetDef create_constrained_propertysetdef(
 in PropertyTypes allowed_property_types,
 in PropertyDefs allowed_property_defs)
 raises(ConstraintNotSupported);
 PropertySetDef create_initial_propertysetdef(
 in PropertyDefs initial_property_defs)
 raises(MultipleExceptions);
 };

Figure 13-17 PropertySet Def Factory interface
Property Service: v1.0 Service Interfaces July 1996 13-21

13

ty
t
It should be noted that deletion of intial or allowed properties is tied to the proper
mode setting for that property. In other words, initial or allowed properties are no
inherently safe from deletion.
13-22 CORBAservices July 1996

13

data
 Appendix A Property Service IDL

The CosPropertyService module defines the entire property service, consisting of

types, exceptions, and interfaces described in previous sections.

module CosPropertyService
{
/***/
/* Data Types */
/***/

 typedef string PropertyName;
 struct Property {
 PropertyName property_name;
 any property_value;
 };

 enum PropertyModeType {
 normal,
 read_only,
 fixed_normal,
 fixed_readonly,
 undefined
 };

 struct PropertyDef {
 PropertyName property_name;
 any property_value;
 PropertyModeType property_mode;
 };

 struct PropertyMode {
 PropertyName property_name;
 PropertyModeType property_mode;
 };

 typedef sequence<PropertyName> PropertyNames;
 typedef sequence<Property> Properties;
 typedef sequence<PropertyDef> PropertyDefs;
 typedef sequence<PropertyMode> PropertyModes;
 typedef sequence<TypeCode> PropertyTypes;

 interface PropertyNamesIterator;
 interface PropertiesIterator;
 interface PropertySetFactory;
 interface PropertySetDef;
 interface PropertySet;

/***/
/* Exceptions */
/***/
 exception ConstraintNotSupported{};
 exception InvalidPropertyName {};
 exception ConflictingProperty {};
Property Service: v1.0 Service Interfaces July 1996 13-23

13
 exception PropertyNotFound {};
 exception UnsupportedTypeCode {};
 exception UnsupportedProperty {};
 exception UnsupportedMode {};
 exception FixedProperty {};
 exception ReadOnlyProperty {};

 enum ExceptionReason {
 invalid_property_name,
 conflicting_property,
 property_not_found,
 unsupported_type_code,
 unsupported_property,
 unsupported_mode,
 fixed_property,
 read_only_property
 };

 struct PropertyException {
 ExceptionReason reason;
 PropertyName failing_property_name;
 };

 typedef sequence<PropertyException> PropertyExceptions;

 exception MultipleExceptions {
 PropertyExceptions exceptions;
 };

/***/
/* Interface Definitions */
/***/
 interface PropertySetFactory
 {
 PropertySet create_propertyset();
 PropertySet create_constrained_propertyset(
 in PropertyTypes allowed_property_types,
 in Properties allowed_properties)
 raises(ConstraintNotSupported);
 PropertySet create_initial_propertyset(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };

/*---*/
 interface PropertySetDefFactory
 {
 PropertySetDef create_propertysetdef();
 PropertySetDef create_constrained_propertysetdef(
 in PropertyTypes allowed_property_types,
 in PropertyDefs allowed_property_defs)
 raises(ConstraintNotSupported);
 PropertySetDef create_initial_propertysetdef(
 in PropertyDefs initial_property_defs)
 raises(MultipleExceptions);
13-24 CORBAservices July 1996

13
 };

/*---*/
 interface PropertySet
 {
 /* Support for defining and modifying properties */
 void define_property(
 in PropertyName property_name,
 in any property_value)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 ReadOnlyProperty);

 void define_properties(
 in Properties nproperties)
 raises(MultipleExceptions);

 /* Support for Getting Properties and their Names */
 unsigned long get_number_of_properties();

 void get_all_property_names(
 in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

 any get_property_value(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_properties(
 in PropertyNames property_names,
 out Properties nproperties);

 void get_all_properties(
 in unsigned long how_many,
 out Properties nproperties,
 out PropertiesIterator rest);

 /* Support for Deleting Properties */
 void delete_property(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName,
 FixedProperty);

 void delete_properties(
 in PropertyNames property_names)
 raises(MultipleExceptions);

 boolean delete_all_properties();

 /* Support for Existence Check */
Property Service: v1.0 Service Interfaces July 1996 13-25

13
 boolean is_property_defined(
 in PropertyName property_name)
 raises(InvalidPropertyName);
 };

/*---*/
 interface PropertySetDef:PropertySet
 {
 /* Support for retrieval of PropertySet constraints*/
 void get_allowed_property_types(
 out PropertyTypes property_types);

 void get_allowed_properties(
 out PropertyDefs property_defs);

 /* Support for defining and modifying properties */
 void define_property_with_mode(
 in PropertyName property_name,
 in any property_value,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 UnsupportedMode,
 ReadOnlyProperty);

 void define_properties_with_modes(
 in PropertyDefs property_defs)
 raises(MultipleExceptions);

 /* Support for Getting and Setting Property Modes */
 PropertyModeType get_property_mode(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_property_modes(
 in PropertyNames property_names,
 out PropertyModes property_modes);

 void set_property_mode(
 in PropertyName property_name,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 PropertyNotFound,
 UnsupportedMode);

 void set_property_modes(
 in PropertyModes property_modes)
 raises(MultipleExceptions);
 };

/*---*/
 interface PropertyNamesIterator
13-26 CORBAservices July 1996

13
 {
 void reset();
 boolean next_one(
 out PropertyName property_name);
 boolean next_n (
 in unsigned long how_many,
 out PropertyNames property_names);
 void destroy();
 };

/*---*/
 interface PropertiesIterator
 {
 void reset();
 boolean next_one(
 out Property aproperty);
 boolean next_n(
 in unsigned long how_many,
 out Properties nproperties);
 void destroy();
 };
};
Property Service: v1.0 Service Interfaces July 1996 13-27

13
13-28 CORBAservices July 1996

 Time Service Specification 14
ser to

:

sed in

ed in
 to

ly the

cast
h is
14.1 Introduction

14.1.1 Time Service Requirements

The requirements explicitly stated in the RFP ask for a service that enables the u
obtain current time together with an error estimate associated with it.

Additionally, the RFP suggests that the service also provide the following facilities

• Ascertain the order in which “events” occurred.

• Generate time-based events based on timers and alarms.

• Compute the interval between two events.

Although the RFP mentions specification of a synchronization mechanism, the
submitters deemed it inappropriate to specify a single such mechanism as discus
Section 14.1.3, Source of Time.

14.1.2 Representation of Time

Time is represented many ways in programs. For example the X/Open DCE Time
Service [1] defines three binary representations of absolute time, while the UNIX
SVID defines a different representation of time. Other systems use time represent
myriads of different ways. It is not a goal of the service defined in this submission
deal with all these different representations of time or to propose a new unifying
representation of time.

To satisfy the set of requirements that are addressed, we have chosen to use on
Universal Time Coordinated (UTC) representation from the X/Open DCE Time
Service. Global clock synchronization time sources, such as the UTC signals broad
by the WWV radio station of the National Bureau of Standards, deliver time, whic
relatively easy to handle in this representation. UTC time is defined as follows.
CORBAservices July 1997 14-1

14

ne.

f time

at

ime

re

eter.

d
 the

s.

 time

tware

f the
d by
Time units 100 nanoseconds (10-7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

UTC time in this service specification always refers to time in Greenwich Time Zo
The corresponding binary representations of relative time is the same one as for
absolute time, and hence with similar characteristics:

Time units 100 nanoseconds (10-7 seconds)

Approximate range +/- 30,000 years

In order to ease implementation on existing systems, migration from them and
interoperation with them, care has been taken to ensure that the representation o
used interoperates with X/Open DCE Time Service [1], and that the operation for
getting current time is easy to implement on X/Open DCE Time Service, NTP [2] (and
for that matter any other reasonable distributed time synchronization algorithm th
one might come up with, e.g. ones presented in [3]) with appropriate values for
inaccuracies.

14.1.3 Source of Time

The services defined in this chapter depend on the availability of an underlying T
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these services. The following assumptions a
made about the underlying time synchronization service:

• The Time Service is able to return current time with an associated error param

• Within reasonable interpretation of the terms, the Time Service is available an
reliable. The time provided by the underlying service can be trusted to be within
inaccuracy window provided by the underlying system.

• The time returned by the Time Service is from a monotonically increasing serie

Additionally, if the underlying Time Service meets the criteria to be followed for
secure time presented in Appendix A, Implementation Guidelines, then the Time
Service object is able to provide trusted time.

No additional assumptions are made about how the underlying service obtains the
that it delivers to this service. For example it could utilize a range of techniques
whether it be using a Cesium clock attached to each node or some hardware/sof
time synchronization method. It is assumed that the underlying service may fail
occasionally. This is accounted for by providing an appropriate exception as part o
interface. The availability and accuracy of trusted time depends on what is provide
the underlying Time Service.
14-2 CORBAservices July 1997

14

f a

cts

d by

14.1.4 General Object Model

The general architectural pattern used is that a service object manages objects o
specific category as shown in Figure 14-1.

Figure 14-1 General Object Model for Service

The service interface provides operations for creating the objects that the service
manages and, if appropriate, also provides operations for getting rid of them.

The Time Service object consists of two services, and hence defines two service
interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Obje
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represente
the TimerEventService interface.

The underlying facility that delivers time is associated with the UniversalTime and
SecureUniversalTime operation of the TimeService interface as described in Section
14.2, Basic Time Service.

Service

Service Interface

Instances managed by

Instance
Interface

Object

the Service Object
Time Service: v1.0 Introduction July 1997 14-3

14

 in

 the

int.

 in

y
the

ice.
ime

nd
an

e

ect
s so
 and
round,
14.1.5 Conformance Points

There are two conformance points for this service.

• Basic Time Service. This service consists of all data types and interfaces defined
the TimeBase and CosTime modules in Section 14.2, Basic Time Service. It
provides operations for getting time and manipulating time. A complete
implementation of the TimeBase and the CosTime modules is necessary and
sufficient to conform to the Time Service object standard. An implementation of
CosTime module in which the universal_time operation always raises the
TimeUnavailable exception is not acceptable for satisfying this conformance po

• Timer Event Service. This service consists of all data types and interfaces defined
the CosTimerEvent module in Section 14.3, Timer Event Service. It provides
operations for managing time-triggered event handlers and the events that the
handle. A complete implementation of this module is necessary to conform to
optional Timer Event Service component of the Time Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible to
conform just to the Timer Event Service without conforming to Basic Time Serv
To claim conformance to Timer Event Service, both Timer Event Service and T
Service must be provided.

14.2 Basic Time Service

All data structures pertaining to the basic Time Service, Universal Time Object, a
Time Interval Object are defined in the TimeBase module so that other services c
make use of these data structures without requiring the interface definitions. The
interface definitions and associated enums and exceptions are encapsulated in th
CosTime module.

14.2.1 Object Model

The object model of this service is depicted in Figure 14-2. The Time Service obj
manages Universal Time Objects (UTOs) and Time Interval Objects (TIOs). It doe
by providing methods for creating UTOs and TIOs. Each UTO represents a time,
each TIO represents a time interval, and reference to each can be freely passed a
subject to the caveats discussed in Appendix A, Implementation Guidelines.
14-4 CORBAservices July 1997

14

ions
ted
ion of
 to
ing
Figure 14-2 Object Model for Time Service

14.2.2 Data Types

A number of types and interfaces are defined and used by this service. All definit
of data structures are placed in the TimeBase module. All interfaces, and associa
enum and exception declarations are placed in the CosTime module. This separat
basic data type definitions from interface related definitions allows other services
use the time data types without explicitly incorporating the interfaces, while allow
clients of those services to use the interfaces provided by the Time Service to
manipulate the data used by those services.

module TimeBase {

typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;

Time Service

TimeService interface

UTO interface

universal_time

new_universal_time

absolute _time
compare_time

secure_universal_time

interval
time
inaccuracy
tdf
utc_time

UTO

TIO

UTO

TIO

TIO interface
spans
time
overlap
time_interval

uto_from_utc
new_interval
Time Service: v1.0 Basic Time Service July 1997 14-5

14

er of
se is 15
ted

s. As

 of

 The

s no
i
lds
ime
ocal

to

 the

the
ase
TimeT upper_bound;
};

};

Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the numb
100 nanoseconds that have passed since the base time. For absolute time the ba
October 1582 00:00 of the Gregorian Calendar. All absolute time shall be compu
using dates from the Gregorian Calendar.

Type InaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100 nanosecond
per the definition of the inaccuracy field in the X/Open DCE Time Service [1], 48 bits
is sufficient to hold this value.

Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the form
minutes of displacement from the Greenwich Meridian. Displacements East of the
meridian are positive, while those to the West are negative.

Type UtcT

UtcT defines the structure of the time value that is used universally in this service.
basic value of time is of type TimeT that is held in the time field. Whether a UtcT
structure is holding a relative or absolute time is determined by its history. There i
explicit flag within the object holding that state information. The iacclo and inacch
fields together hold a 48-bit estimate of inaccuracy in the time field. These two fie
together hold a value of type InaccuracyT packed into 48 bits. The tdf field holds t
zone information. Implementation must place the time displacement factor for the l
time zone in this field whenever they create a UTO.

The contents of this structure are intended to be opaque, but in order to be able
marshal it correctly, at least the types of fields need to be identified.

Type IntervalT

This type holds a time interval represented as two TimeT values corresponding to
lower and upper bound of the interval. An IntervalT structure containing a lower
bound greater than the upper bound is invalid. For the interval to be meaningful,
time base used for the lower and upper bound must be the same, and the time b
itself must not be spanned by the interval.

module CosTime {
enum TimeComparison {

TCEqualTo,
14-6 CORBAservices July 1997

14

.
turn

n,
ing
rically

ime
jects

ins
me

n
rlap
,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType {
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
};

Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported.
IntervalC comparison does the comparison taking into account the error envelope
MidC comparison just compares the base times. A MidC comparison can never re
TCIndeterminate.

Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result of
comparing two UTOs. The values are self-explanatory. In an IntervalC compariso
TCIndeterminate value is returned if the error envelopes around the two times be
compared overlap. For this purpose the error envelope is assumed to be symmet
placed around the base time covering time-inaccuracy to time+inaccuracy. For
IntervalC comparison, two UTOs are deemed to contain the same time only if the T
attribute of the two objects are equal and the Inaccuracy attributes of both the ob
are zero.

Enum OverlapType

OverlapType specifies the type of overlap between two time intervals. Figure 14-3
depicts the meaning of the four values of this enum. When interval A wholly conta
interval B, then it is an OTContainer of interval B and the overlap interval is the sa
as the interval B. When interval B wholly contains interval A, then interval A is
OTContained in interval B and the overlap region is the same as interval A. Whe
neither interval is wholly contained in the other but they overlap, then the OTOve
case applies and the overlap region is the length of interval that overlaps. Finally
when the two intervals do not overlap, the OTNoOverlap case applies.
Time Service: v1.0 Basic Time Service July 1997 14-7

14

e

le to

TO

ould
ond
Figure 14-3 Illustration of Interval Overlap

14.2.3 Exceptions

This service returns standard CORBA exceptions where specified in addition to th
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

TimeUnavailable

This exception is raised when the underlying trusted time service fails, or is unab
provide time that meets the required security assurance.

14.2.4 Universal Time Object (UTO)

The UTO provides various operations on basic time. These include the following
groups of operations:

• Construction of a UTO from piece parts, and extraction of piece parts from a U
(as read only attributes).

• Comparison of time.

• Conversion from relative to absolute time, and conversion to an interval.

Of these, the first operation is required for completeness, since in its absence it w
be difficult to provide a time input to the timer event handler, for example. The sec
operation is required by the RFP, and the third is required for completeness and
usability.

module CosTime {
interface TIO; // forward declaration
interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyT inaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(

Interval A

Interval B
OTContainerOTContained OTOverlap OTNoOverlap
14-8 CORBAservices July 1997

14

s for
tting
ll as

ime

cyT.

 of

 to

ative
in ComparisonType comparison_type,
in UTO uto

);

TIO time_to_interval(
in UTO uto

);

TIO interval();
};

};

The UTO interface corresponds to an object that contains utc time, and is the mean
manipulating the time contained in the object. This interface has operations for ge
a UtcT type data structure containing the current value of time in the object, as we
operations for getting the values of individual fields of utc time, getting absolute t
from relative time, and comparing and doing bounds operations on UTOs. The UTO
interface does not provide any operation for modifying the time in the object. It is
intended that UTOs are immutable.

Readonly attribute time

This is the time attribute of a UTO represented as a value of type TimeT.

Readonly attribute inaccuracy

This is the inaccuracy attribute of a UTO represented as a value of type Inaccura

Readonly attribute tdf

This is the time displacement factor attribute tdf of a UTO represented as a value
type TdfT.

Readonly attribute utc_time

This attribute returns a properly populated UtcT structure with data corresponding
the contents of the UTO.

Operation absolute_time

This attribute returns a UTO containing the absolute time corresponding to the rel
time in object. Absolute time = current time + time in the object. Raises
CORBA::DATA_CONVERSION exception if the attempt to obtain absolute time
causes an overflow.
Time Service: v1.0 Basic Time Service July 1997 14-9

14

eter
d

n
bject

eter

he
l
t
wo

s a

als.

th
Operation compare_time

Compares the time contained in the object with the time given in the input param
uto using the comparison type specified in the in parameter comparison_type, an
returns the result. See the description of TimeComparison in Section 14.2.2, Data
Types, for an explanation of the result. See the explanation of ComparisonType i
Section 14.2.2 for an explanation of comparison types. Note that the time in the o
is always used as the first parameter in the comparison. The time in the utc param
is used as the second parameter in the comparison.

Operation time_to_interval

Returns a TIO representing the time interval between the time in the object and t
time in the UTO passed in the parameter uto. The interval returned is the interva
between the midpoints of the two UTOs and the inaccuracies in the UTOs are no
taken into consideration. The result is meaningless if the time base used by the t
UTOs are different.

Operation interval

Returns a TIO representing the error interval around the time value in the UTO a
time interval. TIO.upper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound =
UTO.time - UTO.inaccuracy.

14.2.5 Time Interval Object (TIO)

The TIO represents a time interval and contains operations relevant to time interv

module CosTime {
interface TIO {

readonly attribute TimeBase::IntervalT time_interval;

OverlapType spans (
in UTO time,
out TIO overlap

);
OverlapType overlaps (

in TIO interval,
out TIO overlap

);

UTO time ();
}

}

Readonly attribute time_interval

This attribute returns an IntervalT structure with the values of its fields filled in wi
the corresponding values from the TIO.
14-10 CORBAservices July 1997

14

l in
e
t is
ot
wise

l in

and
,

ITO

IO
Operation spans

This operation returns a value of type OverlapType depending on how the interva
the object and the time range represented by the parameter UTO overlap. See th
definition of OverlapType in Section 14.2.2, Data Types. The interval in the objec
interval A and the interval in the parameter UTO is interval B. If OverlapType is n
OTNoOverlap, then the out parameter overlap contains the overlap interval, other
the out parameter contains the gap between the two intervals. The exception
CORBA::BAD_PARAM is raised if the UTO passed in is invalid.

Operation overlaps

This operation returns a value of type OverlapType depending on how the interva
the object and interval in the parameter TIO overlap. See the definition of
OverlapType in Section 14.2.2, Data Types. The interval in the object is interval A
the interval in the parameter TIO is interval B. If OverlapType is not OTNoOverlap
then the out parameter overlap contains the overlap interval, otherwise the out
parameter contains the gap between the two intervals. The exception
CORBA::BAD_PARAM is raised if the TIO passed in is invalid.

Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in the
and time value is the midpoint of the interval.

14.2.6 Time Service

The TimeService interface provides operations for obtaining the current time,
constructing a UTO with specified values for each attribute, and constructing a T
with specified upper and lower bounds.

module CosTime {
interface TimeService {

UTO universal_time()
raises(TimeUnavailable

);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
Time Service: v1.0 Basic Time Service July 1997 14-11

14

y in
ime
cure

ust

 can

cyT.
his

.
cy
his

wer
l. If
, then
TIO new_interval(
in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

Operation universal_time

The universal_time operation returns the current time and an estimate of inaccurac
a UTO. It raises TimeUnavailable exceptions to indicate failure of an underlying t
provider. The time returned in the UTO by this operation is not guaranteed to be se
or trusted. If any time is available at all, that time is returned by this operation.

Operation secure_universal_time

The secure_universal_time operation returns the current time in a UTO only if the
time can be guaranteed to have been obtained securely. In order to make such a
guarantee, the underlying Time Service must meet the criteria to be followed for
secure time, presented in Appendix A, Implementation Guidelines. If there is any
uncertainty at all about meeting any aspect of these criteria, then this operation m
return the TimeUnavailable exception. Thus, time obtained through this operation
always be trusted.

Operation new_universal_time

The new_universal_time operation is used for constructing a new UTO. The
parameters passed in are the time of type TimeT and inaccuracy of type Inaccura
This is the only way to create a UTO with an arbitrary time from its components. T
is expected to be used for building UTOs that can be passed as the various time
arguments to the Timer Event Service, for example. CORBA::BAD_PARAM is
raised in the case of an out-of-range parameter value for inaccuracy.

Operation uto_from_utc

The uto_from_utc operation is used to create a UTO given a time in the UtcT form
This has a single in parameter UTC, which contains a time together with inaccura
and tdf. The UTO returned is initialized with the values from the UTC parameter. T
operation is used to convert a UTC received over the wire into a UTO.

Operation new_interval

The new_interval operation is used to construct a new TIO. The parameters are lo
and upper, both of type TimeT, holding the lower and upper bounds of the interva
the value of the lower parameter is greater than the value of the upper parameter
a CORBA::BAD_PARAM exception is raised.
14-12 CORBAservices July 1997

14

mer

e
o
l

er

nel of

 timer
e the
14.3 Timer Event Service

The module CosTimerEvent encapsulates all data type and interface definitions
pertaining to the Timer Event Service.

14.3.1 Object Model

The TimerEventService object manages Timer Event Handlers represented by Ti
Event Handler objects as shown in Figure 14-4. Each Timer Event Handler is
immutably associated with a specific event channel at the time of its creation. Th
Timer Event Handler can be passed around as any other object. It can be used t
program the time and content of the events that will be generated on the channe
associated with it. The user of a Timer Event Handler is expected to notify the Tim
Event Service when it has no further use for the handler.

Figure 14-4 Object Model of Timer Event Service

14.3.2 Usage

In a typical usage scenario of this service, the user must first create an event chan
the “push” type (see CORBA Service: Event Service Specification [Chapter 4]). The
user must then register this event channel as the sink for events generated by the
event handler that is returned by the registration operation. The user can then us

Timer Event Service

Timer Event Service Interface

Timer Event Handler Objects

Timer Event Handler

register
unregister

Interface
set_timer
cancel_timer
set_data
status
time_set

event_time

Timer Events
Time Service: v1.0 Timer Event Service July 1997 14-13

14

se
d the
cted

d

dic

e,
is
een

gered

et
when
 time
 that
timer event handler object to set up timer events as desired. The service will cau
events to be pushed through the event channel within a reasonable interval aroun
requested event time. The implementor of the service will document what the expe
interval is for their implementation. The data associated with the event includes a
timestamp of the actual event time with the error envelope including the requeste
event time.

14.3.3 Data Types

All declarations pertaining to this service is encapsulated in the CosTimerEvent
module.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT{
TimeBase::UtcT utc;
any event_data;

};
};

Enum TimeType

TimeType is used to specify whether a time is TTRelative, TTAbsolute, or TTPerio
in operations for setting timer intervals for the event-triggering mechanism. The
TTRelative value is used to specify that the time provided is relative to current tim
TTAbsolute is used to specify that the time provided is absolute, and TTPeriodic
used to specify that the time provided is a period (and hence a relative time) betw
successive events. If TTPeriodic is used, then the same event continues to be trig
repeatedly at the completion of the time interval specified, until the timer is reset.

Enum EventStatus

EventStatus defines the state of a TimerEventHandler object. The state ESTimeS
means that the event has been set with a time in the future, and will be triggered
that time arrives. ESTimeCleared means that the event is not set to go off, and the
was cleared before the previously set triggering time arrived. ESTriggered means
14-14 CORBAservices July 1997

14

t

sful

nt-
e at
racy
vent

ad

 for

 at a
s
 as

at
tribute
the event has already triggered and the appropriate data has been sent the even
channel. ESFailedTrigger means that the event did trigger, but data could not be
delivered over the event channel.

In case of TTPeriodic events, the status ESTriggered never occurs. Upon succes
triggering of a TTPeriodic event, the status is set to ESTimeSet.

Type TimerEventT

This is the structure that is returned to the event requester by the time-driven eve
triggering mechanism. It has two fields. The first field, utc, contains the actual tim
which the event was triggered. This value is set in the time field of utc. The inaccu
fields inacclo and inacchi of utc are set to the difference between the requested e
time and the actual event time.

The second field, event_data, contains the data that the requester of the event h
asked to be sent when the event was triggered.

14.3.4 Exceptions

Timer Event Service raises standard CORBA exceptions as specified in OMG IDL
the service. It does not have any service-specific exceptions.

14.3.5 Timer Event Handler

Timer Event Handlers are created and managed by the Timer Event Service. A
TimerEventHandler object holds information about an event that is to be triggered
specific time and action that is to be taken when the event is triggered. It provide
operations for setting, resetting, and canceling the timer event associated with it,
well as for changing the event data that is sent back as a part of a TimeEventT
structure on the event channel upon the triggering of the event. The only thing th
cannot be changed is the event channel associated with that event handler. An at
named status holds the current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void set_timer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
boolean cancel_timer();
void set_data(

in any event_data
);
};

};
Time Service: v1.0 Timer Event Service July 1997 14-15

14

ler.

t

hich
r
r, if
 at
i.e.
sed.

e

,

ents.
Attribute status

status is a readonly attribute that reflects the current state of the TimerEventHand
See the definition of EventStatus enumerator in Section 14.3.1, Object Model, for
details.

Operation time_set

Returns TRUE if the time has been set for an event that is yet to be triggered, FALSE
otherwise. In addition, it always returns the current value of the timer in the even
handler as the out uto parameter.

Operation set_timer

Sets the triggering time for the event to the time specified by the uto parameter, w
may contain TTRelative, TTAbsolute or TTPeriodic time. The time_type paramete
specifies what type of time is contained in the uto parameter. The previous trigge
any, is canceled and a new trigger is enabled at the time specified if absolute, or
current time + time specified if relative. If a relative time value of zero is specified (
the time attribute of utc = 0LL), then the last relative time that was specified is reu
If no relative time was previously specified, then a CORBA::BAD_PARAM
exception is raised. If a periodic time is specified (time_type == periodic), then th
time parameter is interpreted as a relative time and the time trigger is set at the
periodicity defined by the time (i.e. at current time + time, current time + 2 * time
etc.).

Operation cancel_timer

Cancels the trigger if one had been set and had not gone off yet. Returns TRUE if an
event is actually canceled, FALSE otherwise.

Operation set_data

The data that will be passed back through the event channel in a TimerEventT
structure for all future triggering of the event handler is set to event_data.

14.3.6 Timer Event Service

The Timer Event Service provides operations for registering and unregistering ev

module CosTimerEvent {
interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventhandler timer_event_handler
14-16 CORBAservices July 1997

14

vered

ce

be
t

to

ime

lid
urity

 the
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};

Operation register

The register operation registers the event handler specified by the data and the
event_interface parameters. When the event handler is triggered, the data is deli
using the push operation (of the PushConsumer interface in Chapter 4, Event Service
Specification, Section 4.3, CosEventComm Module) specified in the event_interfa
parameter. Only the Push Model is supported for timer event delivery. Note that the
event handler needs to be primed with a triggering time using the set_time operation
of the TimerEventHandler interface in order for an actual event to be triggered. At
initialization, the time in the handler is set to current time and its state is set to
ESTimeCleared, and no event is scheduled. Raises CORBA::NO_RESOURCE
exception if lack of resources causes it to fail to register the event handler.

Operation unregister

The unregister operation notifies the service that the timer_event_handler will not
used any more and all resources associated with it can be destroyed. Subsequen
attempts to use that object reference will raise CORBA::INV_OBJREF .

Operation event_time

The event_time operation returns a UTO containing the time at which the event
contained in the timer_event structure was triggered.

14.4 Conformance

It is sufficient to provide just the Time Service (module TimeBase and CosTime)
claim conformance with the Time Service object as described in Section 14.1.5,
Conformance Points. To claim conformance with the Timer Event Service, both T
Service and Timer Event Service (module CosTimerEvent) must be provided.

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must be strictly adhered to. In order to return a va
time from this operation, the vendor must provide a statement about how the sec
assurance criteria specified in Appendix A, Implementation Guidelines, are met in
their product. To conform to the object Time Service, in all other cases, i.e. when
security assurance criteria are not satisfied, the secure_universal_time operation must
raise the TimeUnavailable exception.
Time Service: v1.0 Conformance July 1997 14-17

14

g of
ice

 the

tion

d

tion.

rval

ded

ure.
inst

o
 Appendix A Implementation Guidelines

A.1 Introduction

This appendix contains advice to implementors. Appropriate documented handlin
the criteria presented here is mandatory for conformance to the Basic Time Serv
conformance point.

A.2 Criteria to Be Followed for Secure Time

The following criteria must be followed in order to assure that the time returned by
secure_universal_time operation is in fact secure time. If these criteria are not
satisfactorily addressed in an ORB, then it must return the TimeUnavailable excep
upon invocation of the secure_universal_time operation of the TimeService interface.

Administration of Time

Only administrators authorized by the system security policy may set the time an
specify the source of time for time synchronization purposes.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invoca
They must also be mandatorily audited:

• Operations that set or reset the current time

• Operations that designate a time source as authoritative

• Operations that modify the accuracy of the time service or the uncertainty inte
of generated timestamps

Synchronization of Time

Synchronization of time must be transmitted over the network. This presents an
opportunity for unauthorized tampering with time, which must be adequately guar
against. Time Service implementors must state how time values used for time
synchronization are protected while they are in transit over the network.

Time Service implementors must state whether or not their implementation is sec
Implementors of secure time services must state how their system is secured aga
threats documented in Chapter 15, Security Service Specification. They must als
document how the issues mentioned in this section are addressed adequately.
14-18 CORBAservices July 1997

14

hey
d to

ves

y
er
 the

lls).

A.3 Proxies and Time Uncertainty

The Time Service object returns a timestamp, which contains both a time and an
associated uncertainty interval. These values are considered valid at the instant t
are returned by the Time Service object; however, if these values are not delivere
the caller immediately, they may no longer be reliable by the time the caller recei
them.

In a CORBA system, the use of proxy objects can render time values unreliable b
introducing unpredictable and uncorrected latency between the time the time serv
object generates a timestamp and the time the caller’s time server proxy receives
timestamp and returns it to the caller (see Figure 14-5 below).

Figure 14-5 Time Service and Proxies

Implementors of the Time Service must prevent this problem from occurring. Two
possible ways of preventing proxy latency are:

• Prohibit proxies of the time server object (i.e. require a Time Service
implementation in every address space that will need to make Time Service ca

• Create a special time server proxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval’s uncertainty, and
adjusts the interval value before returning the timestamp to the caller.

Other approaches probably exist; the two above are intended as examples only.

Caller

Time
Service
Proxy

Time
Service

get time Time=x;interval=3sec
(delivered at time x)

Time=x;interval=3sec
(delivered at time x+y -- y may be greater than 3sec)
Time Service: v1.0 Conformance July 1997 14-19

14

ich

ing in
 Appendix B Consolidated OMG IDL

B.1 Introduction

This appendix contains a summary of the OMG IDL defined in this document.

B.2 Time Service

This section contains the OMG IDL definitions pertaining to the Time Service, wh
is encapsulated in the TimeBase and CosTime modules. The TimeBase module
contains the basic data type declarations that can be used by others without pull
the Time Service interfaces. The Time Service interface and associated enums and
exceptions are declared in the CosTime module.

module TimeBase {
typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};
};

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType{
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
14-20 CORBAservices July 1997

14
exception TimeUnavailable {};
interface TIO; // forward declaration

interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;
UTO absolute_time();
TimeComparison compare_time(

in ComparisonType comparison_type,
in UTO uto

);
TIO time_to_interval(

in UTO uto
);
TIO interval();

};

interface TIO {
readonly attribute TimeBase::IntervalT time_interval;
boolean spans (

in UTO time,
out TIO overlap

);
boolean overlaps (

in TIO interval,
out TIO overlap

);
UTO time ();

};

interface TimeService {
UTO universal_time()

raises(TimeUnavailable
);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
TIO new_interval(

in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};
Time Service: v1.0 Conformance July 1997 14-21

14

ends
B.3 Timer Event Service

This section contains all the OMG IDL definitions pertaining to the Timer Event
Service, which are encapsulated in the CosTimerEvent module. This module dep
on TimeBase, CosTime, CosEventComm and CORBA.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT {
TimeBase::UtcT utc;
any event_data;

};

 interface TimerEventHandler {
readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void SetTimer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
 boolean cancel_timer();
 void set_data(

in any event_data
);
};

interface TimerEventService {
TimerEventHandler register(

in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventHandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};
14-22 CORBAservices July 1997

14

e
ch
 be
time.

one
ient it

 by
oes
e

citly
 then

r
 as an
 Appendix C Notes for Users

C.1 Introduction

This appendix contains notes covering the following matters:

• Guarding against proxy-related inaccuracies in time contained in UTO.

• How to transmit time and time intervals across the network and recover the
corresponding UTO and TIO at the other end.

C.2 Proxies and Time

As explained in Appendix B, Consolidated OMG IDL, indiscriminate use of remot
proxies to obtain value of current time can lead to obtaining values of time in whi
the inaccuracy is incorrect due to transmission delays. Consequently, care should
taken to ensure that the local Time Service is used to obtain the value of current

C.3 Sending Time Across the Network

When passing small objects such as UTO and TIO from one location to another,
should be aware that each time the passed object reference is used by the recip
causes an object invocation to take place across the network and is inherently
inefficient. The preferred way of dealing with this problem is to pass small objects
value instead of by reference. Unfortunately, due to various reasons, OMG IDL d
not allow specification of passing of object parameters by value. Consequently, th
user has to explicitly take action to avoid this problem.

The interfaces defined contain features that make it possible for the user to expli
send the value of time, and time interval across from one location to another and
reconstruct the appropriate object at the receiving end. This is done as follows:

• The signature of the operation that passes time or time interval as a paramete
across the network should specify that time is passed as the data type and not
object reference. For example, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);

should be used instead of

void foo(in CosTime::UTO);

• The invoker should use the data attribute of the UTO as the in parameter. In
pseudo-code, something such as the following should be done by the invoker:

CosTime::UTO uto = CosTime::universal_time();
foo(uto.data);
Time Service: v1.0 Conformance July 1997 14-23

14

s:

ever,
 such
• At the server end, the time data received can be converted to a UTO as follow

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime::TimeService::uto_from_utc(utc);

.....

};

It would be nice to say in the definition of the foo operation something such as:

foo(in byvalue UTO uto);

and have the system take care of doing essentially what is described above. How
there are difficult model- and paradigm-related issues that need resolution before
a change can be coherently proposed.
14-24 CORBAservices July 1997

14

te
or
 and
be
ndix
ul

tend
as

.

 Appendix D Extension Examples

D.1 Introduction

The process of constructing the contents of a TimeBase::TimeT value can be qui
tedious, involving many 64-bit multiplications and additions. The CORBA Facility f
Time Representation is going to provide user-friendly ways of creating TimeT data
displaying them. However, if one is planning to use only the Time Service, it will
necessary to construct some rudimentary facility to build TimeT things. This appe
shows one way of doing this as an example of how to extend this service in usef
ways.

D.2 Object Model

Following the design pattern used in the rest of this service definition, the basic
extension is to define a TimeI object corresponding to the TimeT structure, and ex
TimeService to provide an operation for creating such objects. The TimeI object h
attributes corresponding to the user-friendly representation of time such as year,
month, day, hour, minute, second, microsecond, etc.

D.3 Summary of Extensions

The additions are encapsulated in the FriendlyTime module. The changes are as
follows:

• Data type declaration for components of time.

• Definition of the TimeI interface, consisting mostly of attributes.

• Definition of the FriendlyTime::TimeService interface derived from the
CosTime::TimeService interface, for adding the operation to create TimeI objects

D.4 Data Types

The data types are self-explanatory for the purposes of setting up this example. A
complete specification should state more specific properties of each of these data
types.

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 - 12
typedef unsigned short DayT; // 1 - 31
typedef unsigned short HourT; // 0 - 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT; // 0 - 59
typedef unsigned short MicrosecondT;

}

Time Service: v1.0 Conformance July 1997 14-25

14

ed to
ple

ral

an be

ear,

ng
D.5 Exceptions

No exceptions are defined in this module.

D.6 Friendly Time Object

The time object provides a friendly interface to the various components usually us
represent time in normal human discourse. The set of attributes used in this exam
are by no means exhaustive, and is used only for illustrative purposes.

module FriendlyTime {
interface TimeI {

attribute YearT year;
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond;
attribute TimeBase::TimeT time;
void reset(); // set all attributes to zero

};
};

The TimeI object can be viewed as a representation conversion object. The gene
technique for using it is to create one using the operation
CosFriendlyTime::TimeService::time introduced in Section D.7, Extended Time
Service. This creates a TimeI object with time set to zero in it. Then the _set operation
can be used to set the values of the various attributes. Finally, the attribute time c
used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get the y
month, etc. from the appropriate attributes.

The reset operation facilitates reuse of time objects.

D.7 Extended Time Service

CosTime::TimeService is extended by derivation to provide an operation for creati
TimeI objects.

module FriendlyTime {
interface TimeService : CosTime::TimeService {

TimeI time();
};

};
14-26 CORBAservices July 1997

14

 this
 is no
he

e
D.8 Epilogue

The extension provided in this appendix makes the Time Service defined in the
normative part of the document more easily usable. This leads one to wonder why
extension is not part of the main body of this submission. The reason is that there
agreement on what the most useful representative components of time are, and t
feeling that in general this should be dealt with at the Common Facilities level in
general. We still felt that it would be useful to illustrate how easy it is to extend th
basic service to provide this ease-of-use facility, thus this appendix.
Time Service: v1.0 Conformance July 1997 14-27

14

9)

1,

-1,
 Appendix E References
• X/Open DCE Time Service, X/Open CAE Specification C310, November 1994.

• RFC 1119 Network Time Protocol, D. Mills, September 1989.

• Probabilistic Clock Synchronization, Flaviu Cristian, Distributed Computing (198
3: Pg. 146-158.

• OMG IDL type Extensions RFP, Andrew Watson Ed., OMG Doc. No. 95-1-35.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 95-3-3
March 31 1995 revision, Chapter 4, Event Service Specification, Section 4.2
Pg. 4-6.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 96-10
October 1996 revison, Chapter 15, Security Service Specification.
14-28 CORBAservices July 1997

 Security Service Specification 15
was

en

 this
ad co-
This chapter represents the Security Service v1.2 and incorporates material that
adopted in three separate specifications related to security:

• CORBA Security Rev 1.1 (formal/97-12-22)

• Common Secure Interoperability 1.0 (orbos/96-06-20)

• CORBAsecurity/SSL Interoperability (orbos/97-02-04)

All these documents are therefore superseded by this chapter.

Associated with this specification are documents ptc/98-01-02, ptc/98-01-03, and
ptc/98-01-04, which contain associated changes to the CORBA Core that have be
recommended jointly by the Security RTF and the Core RTF. Also associated with
specification are the outputs of the C++ and Java language mapping RTFs that h
terminus delivery dates with the Security 1.2 RTF.

Contents

This chapter contains the following topics.

Topic Page

“Introduction to Security” 15-2

“Introduction to the Specification” 15-9

“Security Reference Model” 15-18

“Security Architecture” 15-45

“Application Developer’s Interfaces” 15-88

“Administrator’s Interfaces” 15-130

“Implementor’s Security Interfaces” 15-156
CORBAservices: Common Object Services Specification December 1998 15-1

15

ion

eir
uracy

acks

tional
security
ture.
Note – See “Introduction to the Specification” on page 15-9 for a detailed descript
of the contents.

15.1 Introduction to Security

15.1.1 Why Security?

Enterprises are increasingly dependent on their information systems to support th
business activities. Compromise of these systems either in terms of loss or inacc
of information or competitors gaining access to it can be extremely costly to the
enterprise.

Security breaches, which compromise information systems, are becoming more
frequent and varied. Security breaches are often due to accidental misuse of the
system, such as users accidentally gaining unauthorized access to information.
Commercial as well as government systems may also be subject to malicious att
(for example, to gain access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more tradi
systems, as there are more places where the system can be attacked. Therefore,
is needed in CORBA systems, which takes account of their inherent distributed na

“Security Interoperability Protocols” 15-172

“Secure Inter-ORB Protocol (SECIOP)” 15-204

“The SECIOP-Hosted CSI Protocols” 15-224

“SPKM Protocol” 15-231

“GSS Kerberos Protocol” 15-234

“CSI-ECMA Protocol” 15-237

“Integrating SSL with CORBA Security” 15-272

“DCE-CIOP with Security” 15-273

Appendix A - “Consolidated OMG IDL” 15-283

Appendix B- “Relationship to Other Services” 15-312

Appendix C - “Guidelines for a Trustworthy System” 15-329

Appendix D - “Conformance Statement” 15-352

Appendix E - “Facilities Not in This Specification” 15-358

Appendix F - “Interoperability Guidelines” 15-368

Appendix G - “Glossary” 15-373

Appendix H - “References” 15-384

Topic Page
15-2 CORBAservices: Common Object Services Specification December 1998

15

d

not

s.

re,

ere
te
of

t are
tion

mount
sets,
gainst
 are in
 a

e

at user
 a

act on
ing a

.

15.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

• Confidentiality. Information is disclosed only to users authorized to access it.

• Integrity. Information is modified only by users who have the right to do so, an
only in authorized ways. It is transferred only between intended users and in
intended ways.

• Accountability. Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action can
be denied.

• Availability. Use of the system cannot be maliciously denied to authorized user

Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefo
this specification does not address all availability requirements.

Security is enforced using security functionality as described below. In addition, th
are constraints on how the system is constructed, for example, to ensure adequa
separation of objects so that they don't interfere with each other, and separation
users’ duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some tha
not directly security-related. Also, specialized components, such as an authentica
service, provide services that are specific to security.

The assets of an enterprise need to be protected against perceived threats. The a
of protection the enterprise is prepared to pay for depends on the value of the as
and the threats that need to be countered. The security policy needed to protect a
these threats may also depend on the environment and how vulnerable the assets
this environment. This specification specifies a security architecture that supports
variety of security policies to meet different needs.

15.1.3 Threats in a Distributed Object System

The CORBA security specification is designed to allow implementations to provid
protection against the following:

• An authorized user of the system gaining access to information that should be
hidden from him.

• A user masquerading as someone else, and so obtaining access to whatever th
is authorized to do, so that actions are being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they can
his behalf. This adds the threat of rights being delegated too widely, again caus
threat of unauthorized access.

• Security controls being bypassed.

• Eavesdropping on a communication line, so gaining access to confidential data
Security Service: v1.2 Introduction to Security Dec. 1998 15-3

15

tion

tee

For
e

x D,

.

al
target
 it.

t is
ould

 and
 of
lity

 of
t

ble
s is
• Tampering with communication between objects - modifying, inserting, and
deleting items.

• Lack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementa
being constructed in the right way according to assurance criteria (as specified in
Appendix D, “Guidelines for a Trustworthy System” on page 15-329) and using
security mechanisms with the right characteristics. Conformance to the CORBA
security interfaces is not enough to ensure that this protection is provided, just as
conformance to the transactional interfaces (for example) is not enough to guaran
transactional semantics.

This specification does not attempt to counter all threats to a distributed system.
example, it does not include facilities to counter breaches caused by analyzing th
traffic between machines.

More information about security threats and countermeasures is given in Appendi
“Guidelines for a Trustworthy System” on page 15-329.

15.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

• Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the princip
(such as role, groups, and security clearance) and the control attributes of the
object (stating which principals, or principals with which attributes) can access

• Security auditing to make users accountable for their security-related actions. I
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.

• Security of communication between objects, which is often over insecure lower-
layer communications. This requires trust to be established between the client
target, which may require authentication of clients to targets and authentication
targets to clients. It also requires integrity protection and (optionally) confidentia
protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect agains
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not visi
outside the Security services. No direct use of cryptography by application object
proposed in this specification, nor are any cryptographic interfaces defined.
15-4 CORBAservices: Common Object Services Specification December 1998

15

ed

have

stem

hat
ms.

d
re.

user

ps

ails

nd

15.1.5 Goals

The security architecture and facilities described in this specification were design
with the following goals in mind. Not all implementations conforming to this
specification will meet all these goals.

15.1.5.1 Simplicity

The model should be simple to understand and administer. This means it should
few concepts and few objects.

15.1.5.2 Consistency

It should be possible to provide consistent security across the distributed object sy
and associated legacy systems. This includes:

• Support of consistent policies for determining who should be able to access w
sort of information within a security domain that includes heterogeneous syste

• Fitting with existing permission mechanisms.

• Fitting with existing environments. For example, the ability to provide end-to-en
security even when using communication services, which are inherently insecu

• Fitting with existing logons (so extra logons are not needed) and with existing
databases (to reduce the user administration burden).

15.1.5.3 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise ones. For larger systems, it should be
possible to:

• Base access controls on the privilege attributes of users such as roles or grou
(rather than individual identities) to reduce administrative costs.

• Have a number of security domains, which enforce different security policy det
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

• Manage the distribution of cryptographic keys across large networks securely a
without undue administrative overheads.

15.1.5.4 Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.
Security Service: v1.2 Introduction to Security Dec. 1998 15-5

15

ingle
 for

s to
rotect

urity
f

ld be
o

f
s,
 and

kes
uired

is

some
r
15.1.5.5 Usability for Administrators

The model should be simple to understand and administer and should provide a s
system image. It should not be necessary for an administrator to specify controls
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

15.1.5.6 Usability for Implementors

Application developers should not have to be aware of security for their application
be protected. However, a developer who understands security should be able to p
application-specific actions.

15.1.5.7 Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of sec
features should be allowed. An enterprise should need to pay only for the level o
protection it requires, reducing the level (and therefore costs) for less sensitive
information or when the system is less vulnerable to threats. The enterprise shou
able to balance the costs of providing security, including the resources required t
implement, administer and run the system, against the perceived potential losses
incurred as the result of security breaches.

Particular types of flexibility required include:

• Choice of access control policy. The interfaces defined here allow for a choice o
mechanisms, ACLs using a range of privilege attributes such as identities, role
groups, or labels. Details are hidden except from some administrative functions
security-aware applications that want to choose their own mechanisms.

• Choice of audit policy. The event types to be audited are configurable. This ma
it possible to control the size of the audit trail, and therefore the resources req
to store and manage it.

• Support for security functionality profiles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open,
required.

15.1.5.8 Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for
security administrative functions). It should be possible to use either symmetric o
asymmetric key technology.
15-6 CORBAservices: Common Object Services Specification December 1998

15

. For
s
 that
ire

 to

ould
ation
ld be
he

ns
utes.

ine;

l
ed to

or
ay
It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems
example, the system should not require introduction of new cryptosystems, acces
control repositories, or user registries. If the system is installed in an environment
also includes a procedural security regime, the composite system should not requ
dual administration of the user or authorization policy information.

15.1.5.9 Application Portability

An application object should not need to be aware of security, so it can be ported
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services sh
hide the particular security mechanisms used (e.g., for authentication). The applic
security policy (for example, to control access to its own functions and state) shou
consistent with the system security policy. For example, use should be made of t
same attributes for access control. Portability of applications enforcing their own
security depends on such attributes being available.

15.1.5.10 Interoperability

The security architecture should allow interoperability between objects to include:

• Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

• Interoperating between secure systems and those without security.

• Interoperating between domains of a distributed system where different domai
may support different security policies, for example, different access control attrib

• Interoperating across systems that support different security technology.

This specification includes an architecture that covers all of these, at least in outl
however, it does not give specific interfaces and protocols for the last two.
Interoperability between domains is expected to have limited functionality in initia
implementations, and interoperability between security mechanisms is not expect
be supported.

15.1.5.11 Performance

Security should not impose an unacceptable performance overhead, particularly f
normal commercial levels of security, although a greater performance overhead m
occur as higher levels of security are implemented.

15.1.5.12 Object Orientation

The specification should be object-oriented:

• The security interfaces should be purely object-oriented.
Security Service: v1.2 Introduction to Security Dec. 1998 15-7

15

he

st take

nt
ere
nd

to

.

t
as

ss of

e,

y.
• The model should use encapsulation to promote system integrity and to hide t
complexity of security mechanisms under simple interfaces.

• The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

15.1.5.13 Specific Security Goals

In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems; therefore, the architecture mu
into account:

• Regulatory requirements. The security model must conform to national governme
regulations on the use of security mechanisms (cryptography, for example). Th
are several types of controls, for example, controls on what can be exported a
controls on deployment and use such as limitations on encryption for
confidentiality. Details vary from country to country; examples of requirements
satisfy a number of these are:

• Allowing use of different cryptographic algorithms.

• Keeping the amount of information encrypted for confidentiality to a minimum

• Using identities for auditing which are anonymous, except to the auditor.

• Evaluation criteria for assurance. The security functionality and architecture mus
allow implementations to conform to standard security evaluation criteria such
TCSEC, ITSEC, or Common Criteria (CC)1for security functionality and assurance
(which gives the required level of confidence in the correctness and effectivene
the security functionality). It should allow assurance and security functionality
classes or profiles up to about the E3/B2 level. However, the specification also
allows systems with lower levels of security, where other requirements such as
performance are more important.

15.1.5.14 Security Architecture Goals

The security architecture should confine key security functionality to a trusted cor
which enforces the essential part of the security policy such as:

• Ensuring that object invocations are protected as required by the security polic

• Requiring access control and auditing to be performed on object invocation.

• Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

1.Version 1 or 2.
15-8 CORBAservices: Common Object Services Specification December 1998

15

ssed,
ted in

 can

m
ay).

f
has
n

ure a

ters

f

d in

y

lect

,
s
It must be possible to implement this trusted computing base so it cannot be bypa
and kept small to reduce the amount of code which needs to be trusted and evalua
more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.

It should also be possible to construct systems where particular Security services
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using the
(unless these objects have chosen to do this in a mechanism or policy-specific w

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

15.2 Introduction to the Specification

This specification specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itsel
provide security in an object environment; security is pervasive, so introducing it
implications on the Object Request Broker and on most Object services, Commo
Facilities, and object implementations.

This specification defines the core security facilities and interfaces required to ens
reasonable level of security of a CORBA-compliant system as a whole. The
specification includes:

• A security model and architecture that describe the security concepts and
framework, the security objects needed to implement them, and how this coun
security threats.

• The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware o
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

• The security facilities and interfaces available for performing essential security
administration.

• The security facilities and interfaces available to ORB implementors, to be use
the production of secure ORBs.

• A description of how Security services affect the CORBA 2 ORB interoperabilit
protocols.

• A description of different levels of secure interoperability that are possible.

• A description of how these levels of interoperability can be provided using a se
set of popular security mechanisms and protocols.

Items not included in this specification are:

• Support for interoperability between ORBs using different security mechanisms
though interoperability of different ORBs using the same security mechanism i
supported.
Security Service: v1.2 Introduction to the Specification Dec. 1998 15-9

15

ions

aces,
rity

nd

two

 and
 of

ther
• Audit analysis tools, though an audit service that both the system and applicat
can use to record events is included.

• Management interfaces other than essential security policy management interf
as management services are beyond the scope of this specification. The secu
policy management interfaces were viewed as a necessary feature of this
specification, as it is not possible to deploy a secure system without defining a
managing its policy.

• Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers;
second, providing a cryptographic interface would require addressing a variety
difficult regulatory and import/export issues.

• Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of fur
security facilities later.

15.2.1 Specification Structure

15.2.1.1 Structure of the Chapter

The structure of the chapter is summarized below in Figure 15-1.

Figure 15-1 Structure of the Specification

Introduction
15.1, 15.2

Interfaces
15.3 - 15.7

Protocols and
Mechanisms
15.8 - 15.15

Reference Model
15.3
Architecture
15.4

Application Developer’s
Interfaces - 15.5

Administrator’s

Mechanisms

15.10 - 15.13
SECIOP
15.9

DCE-CIOP
15.15

SSL
15.14

Common

SPKM

Kerberos

CSI-ECMA

Interfaces - 15.6

Implementor’s
Interfaces - 15.7

for SECIOP

Elements

IIOP-based
Protocols
15.9 - 15.14
15-10 CORBAservices: Common Object Services Specification December 1998

15

nly

y

vides

s this
e of
el
ed.

lable

y-

ces

rvices,

r the
.
15.2.1.2 Normative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. O
15.5 through 15.15 and Appendices A, C, and E are normative.

15.2.1.3 Section Summaries

Section 15.1 and its subsections, which is an introduction to security, explains wh
security is needed in distributed object systems, and enumerates the security
requirements for secure distributed object systems.

Section 15.2 and its subsections provide an introduction to and overview of the
specification.

Section 15.3 and its subsections describe the security reference model, which pro
the overall framework for CORBA security.

Section 15.4 and its subsections describe the security architecture, which underlie
specification. This introduces different users’ views of security and gives an outlin
how secure CORBA-compliant systems are constructed. It also presents high-lev
models of the objects involved for different views, and describes how they are us

Section 15.5 and its subsections specify the security facilities and interfaces avai
to application developers. Most functions can be implemented transparently to
applications, though interfaces and additional functionality are available to securit
aware applications.

Section 15.6 and its subsections specify the administrator’s facilities and interfaces.
Only essential administration functions are defined by this specification; other
administrative capabilities are expected to be developed outside the Object Servi
Program.

Section 15.7 and its subsections specify the implementors interfaces used to build
secure CORBA systems. This section specifies the IDL interfaces of the security
objects available to ORB implementors, and describes the relationship and
dependencies of these objects on the ORB core and also on external Security se
where these are used.

Section 15.8 and its subsections specify the architecture for interoperability in a
secure, distributed object system. Further subsections lay the basic foundations fo
discussion of common secure interoperability mechanisms in the subsequent sections
It also describes how the common secure interoperability mechanisms relate to the
security facilities and interfaces presented in section 15.3 through 15.7.

Section 15.9 specifies how security is layered onto the GIOP/IIOP in the form of the
SECIOP protocol.

Section 15.10 and its subsections introduce the common elements in the secure
interoperability protocol mechanisms and how the common elements map to the
SECIOP protocol.
Security Service: v1.2 Introduction to the Specification Dec. 1998 15-11

15

e

urity
s and

must

he

ages
l as to
Section 15.11 and its subsections describe how the SPKM protocol is used in
conjunction with the SECIOP protocol.

Section 15.12 and its subsections describe how the Kerberos V5 protocol is used in
conjunction with the SECIOP protocol.

Section 15.13 and its subsections describe the CSI-ECMA protocol and how it is used
in conjunction with the SECIOP protocol.

Section 15.14 and its subsections specify how SSL is used as a secure transport
mechanism with IIOP.

Section 15.15 and its subsections specify how security is incorporated into the DCE-
CIOP using its Kerberos mechanism.

Appendix A, Consolidated OMG IDL, contains the complete OMG IDL
specification, including the module structure, of the interfaces defined in this
specification.

Appendix B, Relationship to Other Services, describes the relationship of the
Security services to other object services and to the common facilities.

Appendix C, Conformance Details, describes in more detail what conformance to th
security functionality conformance levels and the security implementation
conformance points require.

Appendix D, Guidelines for a Trustworthy System, provides guidelines for
implementation of a trustworthy system, which provides protection against the sec
threats in a distributed object system with the required assurance of its correctnes
effectiveness.

Appendix E, Conformance Statement, describes the conformance statement, which
must accompany a secure CORBA implementation and what this implementation
contain.

Appendix F, Facilities Not in This Specification, outlines security facilities that have
not been included in this specification, but left for another phase of security
specifications.

Appendix G, Interoperability Guidelines , includes guidelines for defining security
mechanism tags in interoperable object references, and examples of the use of t
secure inter-ORB protocol SECIOP.

Appendix H, Glossary.

Appendix I, References.

15.2.2 CORBA Security and Secure Interoperability Feature Packages

CORBA security and Secure Interoperability is structured into several feature pack
which are enumerated below. These are used to structure the specification as wel
specify the conformance requirements.
15-12 CORBAservices: Common Object Services Specification December 1998

15

y in

y

ecure

worth
of

n of
o

nes.
cified
c

ade

uired
dge.
15.2.2.1 Main Security Functionality Packages

There are two packages:

• Level 1: Provides a first level of security for applications which are unaware of
security and for those having limited requirements to enforce their own securit
terms of access controls and auditing.

• Level 2: Provides more security facilities, and allows applications to control the
security provided at object invocation. It also includes administration of securit
policy, allowing applications administering policy to be portable.

An ORB must provide at least one of these packages before it can claim to be a S
ORB. For a definitive conformance requirement see Appendix C, “Conformance
Details” on page 15-315.

15.2.2.2 Optional Security Functionality Packages

These provide functions that are expected to be required in several ORBs, so are
including in this specification, but are not generally required enough to form part
one of the main security functionality packages specified above.

The following is the only such option in this specification.

Non-repudiation

This provides generation and checking of evidence so that actions cannot be
repudiated.

15.2.2.3 Security Replaceability Packages

These packages specify if the ORB is structured in a way that allows incorporatio
different Security services, and, if so, how they can be incorporated. There are tw
possibilities:

ORB Services replaceability package

The ORB uses interceptor interfaces to call on object services, including security o
It must use the specified interceptor interfaces and call the interceptors in the spe
order. An ORB conforming to this does not include any significant security-specifi
code, as that is in the interceptors.

Security Service replaceability package

The ORB may or may not use interceptors, but all calls on Security services are m
via the replaceability interfaces specified in Section 15.7, “Implementor’s Security
Interfaces,” on page 15-156. These interfaces are positioned so that the Security
services do not have to understand how the ORB works (for example, how the req
policy objects are located), so they can be replaced independently of that knowle
Security Service: v1.2 Introduction to the Specification Dec. 1998 15-13

15

e 1
ity

urity
rd
es is

ard

 a
ails”
t
o

here
can

 and

ed
 1.

jects.
the

jects

f

y
An ORB can provide Security by directly implementing the Security feature packag
or 2 into it without making use of any of the facilities provided by the Replaceabil
feature packages. But in that case, the standard security policies defined in this
specification cannot be replaced by others, nor can the implementation of the Sec
services be replaced. For example, it would not be possible to replace the standa
access policy with a label-based policy if at least one of the replaceability packag
not supported. Note that some replaceability of the security mechanism used for
security associations may still be provided if the implementation uses some stand
generic interface for Security services such as GSS-API[11].

An ORB that supports one or both of these replaceability packages together with
couple of basic ORB operations as discussed in Appendix C, “Conformance Det
on page 15-315 is said to be Security-Ready2. Such an ORB does not in itself suppor
any security functionality but is to host security functionality that is implemented t
use the facilities of the Security Replaceability package to hook Security into it.

15.2.2.4 Common Secure Interoperability (CSI) Feature packages

These feature packages each provide different levels of secure interoperability. T
are three functionality levels for Common Secure Interoperability (CSI). All levels
be used in distributed secure CORBA-compliant object systems where clients and
objects may run on different ORBs and different operating systems. At all levels,
security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages for integrity,
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in the CORBA Security specification. Facilities are more restricted at levels 0 and
The three levels are listed below.

1. Identity-based policies without delegation (CSI level 0)

At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and this cannot be delegated to further ob
If further objects are called, the identity will be that of the intermediate object, not
initiator of the chain of object calls.

2. Identity-based policies with unrestricted delegation (CSI level 1)

At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target. The identity can be delegated to other ob
on further object invocations, and there are no restrictions on its delegation, so
intermediate objects can impersonate the user. (This is the impersonation form o
simple delegation defined in Section 15.3.6, “Delegation,” on page 15-30.)

2.While this may sound strange, it is still true that a Secure ORB need not be a Security-Read
ORB.
15-14 CORBAservices: Common Object Services Specification December 1998

15

:

de
roups.
ions,

re, it

.

s. For

er

(if

 This

cret

l 2).
ions
(CSI
3. Identity- & privilege-based policies with controlled delegation (CSI level 2)

At this level, attributes of initiating principals passed from client to target can inclu
separate access and audit identities and a range of privileges such as roles and g
Delegation of these attributes to other objects is possible, but is subject to restrict
so the initiating principal can control their use. Optionally, composite delegation is
supported, so the attributes of more than one principal can be transmitted. Therefo
provides interoperability for ORBs conforming to all CORBA Security functionality

An ORB that interoperates securely must provide at least one of the CSI package
the definitive statement on conformance requirements see Appendix Section C.2,
“Conformance Requirements,” on page 15-318.

15.2.2.5 SECIOP Interoperability package

An ORB with the SECIOP Interoperability package can generate and use security
information in the IOR and can send and receive secure requests to and from oth
ORBs using the GIOP/IIOP protocol with the security (SECIOP) enhancements
defined in Section 15.9, “Secure Inter-ORB Protocol (SECIOP),” on page 15-204
necessary), if they both use the same underlying security technology.

15.2.2.6 Security Mechanism packages

The choice of mechanisms and protocol to use depends on the mechanism type
required and the facilities required by the range of applications expected to use it.
specification defines how the following four security protocols can be used as the
medium for secure interoperability under CORBA.

1. SPKM Protocol

Supports identity-based policies without delegation (CSI level 0) using public key
technology for keys assigned to both principals and trusted authorities. The SPKM
protocol is based on the definition in [20]. The use of SPKM in CORBA
interoperability is based on the SECIOP extensions to IIOP.

2. GSS Kerberos Protocol

Supports identity-based policies with unrestricted delegation (CSI level 1) using se
key technology for keys assigned to both principals and trusted authorities. It is
possible to use it without delegation (providing CSI level 0). The GSS Kerberos
protocol is based on [12] which itself is a profile of [13]. The use of Kerberos in
CORBA interoperability is based on the SECIOP extensions to IIOP.

3. CSI-ECMA Protocol

Supports identity- and privilege-based policies with controlled delegation (CSI leve
It can be used with identity, but no other privileges and without delegation restrict
if the administrator permits this (CSI level 1) and can be used without delegation
level 0). For keys assigned to principals, it has two options:

• It can use either secret or public key technology.
Security Service: v1.2 Introduction to the Specification Dec. 1998 15-15

15

d in
in
e;
BA

l is
ot

rts
ides

ages.

t
E,
d to
• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as define
ECMA 235, but is a significant subset of this - the SESAME profile as defined
[16]. It is designed to allow the addition of new mechanism options in the futur
some of these are already defined in ECMA 235. The use of CSI-ECMA in COR
interoperability requires the SECIOP extensions to IIOP.

4. SSL protocol

Supports identity-based policies without delegation (CSI level 0). The SSL protoco
based on the definition in [21]. The use of SSL in CORBA interoperability does n
depend on the SECIOP extensions to IIOP.

15.2.2.7 SECIOP Plus DCE-CIOP Interoperability

An ORB with the Standard plus DCE-CIOP secure interoperability package suppo
all functionality required by the standard secure interoperability package, and prov
secure interoperability (using the DCE Security services) using the DCE-CIOP
protocol.

An ORB that interoperates securely must do so using one of these protocol pack
For the definitive statement on conformance requirements see Appendix C,
“Conformance Details” on page 15-315.

The requirements that must be satisfied by a conformant ORB are enumerated in
Appendix C, “Conformance Details” on page 15-315. The conformance statemen
required for a CORBA-conformant security implementation is defined in Appendix
“Conformance Statement” on page 15-352. This includes a table which can be fille
show what the ORB conforms to.
15-16 CORBAservices: Common Object Services Specification December 1998

15

ect
itions
he

 15-2
 the
15.2.3 Feature Packages and Modules

The OMG IDL specified in this chapter is partitioned into modules that closely refl
the feature packaging scheme described above. The Security module holds defin
of common data structures and constants that most other modules depend on. T
relationship is shown in Table 15-1.

The specification is based on a general three-layer architecture as shown in Figure
on page 15-18, with the interfaces defined in each module positioned as shown in
figure.

Table 15-1Feature Packages and Modules

Feature Package Primary Module Also Depends on

Security Functionality Level 1 SecurityLevel1 Security
CORBA, TimeBase

Security Functionality Level 2 SecurityLevel2 Security, CORBA,
TimeBase
SecurityLevel1
SecurityAdmin

Non-Repudiation NRservice Security,
SecurityLevel2
CORBA, TimeBase

Security Service
Replaceability

SecurityReplaceable Security, CORBA,
TimeBase
SecurityLevel2

ORB Service Replaceability Interceptor CORBA

CSI Level 0, 1, and 2 SECIOP CORBA

SECIOP SECIOP Security, CORBA,
TimeBase, IOP

SPKM, Kerberos,
CSI-ECMA

SECIOP Security, CORBA,
TimeBase, IOP

SSL SSL Security, CORBA,
TimeBase, IOP

DCE-CIOP DCE_CIOPSecurity Security, CORBA,
TimeBase, IOP
Security Service: v1.2 Introduction to the Specification Dec. 1998 15-17

15

ther

vice

work
for
ate
ns as

licies.

 may

 are,

.)

.

Figure 15-2 Modules and Their Relation to Layers of the Architecture

The SecurityReplaceability module defines the interfaces that must be used, toge
with certain interfaces defined in the SecurityLevel2 module, to encapsulate the
underlying security infrastructure so as to enable components of the Security Ser
to use them interchangeably.

15.3 Security Reference Model

This section describes a security reference model that provides the overall frame
for CORBA security. The purpose of the reference model is to show the flexibility
defining many different security policies that can be used to achieve the appropri
level of functionality and assurance. As such, the security reference model functio
a guide to the security architecture.

15.3.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security po
Security policies define:

• Under what conditions active entities (such as clients acting on behalf of users)
access objects.

• What authentication of users and other principals is required to prove who they
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system

• The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them

Applications (clients of CORBA Security Service)

CORBA Security Services

Security Infrastructure ORB Infrastructure

CORBASecurityReplaceability

SecurityLevel1, SecurityLevel2, SecurityAdmin, NRservice

Interfaces provided by
the Security Service
and used by Application
Programmers

Interfaces provided by
the Infrastructure
and used by Security
Service Implementors
15-18 CORBAservices: Common Object Services Specification December 1998

15

h as
n

d.
rity is
 will

, but
eir

re
ting

e of a
l is
he

tions
icy
g

rately
• What accountability of which security-relevant activities is needed.

Figure 15-3 depicts the model for CORBA-secure object systems. All object
invocations are mediated by appropriate security functions to enforce policies suc
access controls. These functions should be tamper-proof, always be invoked whe
required by security policy, and function correctly.

Figure 15-3 A Security Model for Object Systems

Many application objects are unaware of the security policy and how it is enforce
The user can be authenticated prior to calling the application client and then secu
subsequently enforced automatically during object invocations. Some applications
need to control or influence what policy is enforced by the system on their behalf
will not do the enforcement themselves. Some applications will need to enforce th
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecu
systems. The ORB is assumed to at least handle requests correctly without viola
security policy, and to call Security Services as required by security policy.

A security model normally defines a specific set of security policies. Because the OMG
Object Management Architecture (OMA) must support a wide variety of different
security policies to meet the needs of many commercial markets, a single instanc
security model is not appropriate for the OMA. Instead, a security reference mode
defined that provides a framework for supporting many different kinds of policies. T
security reference model is a meta-policy because it is intended to encompass all
possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this specification. The model enumerates the security func
that are defined as well as the information available. In this manner, the meta-pol
provides guidance on the permitted flexibility of the policy definition. The remainin
sections describe the elements of the meta-model. The description is kept delibe
general at this point.

Client
Target
Object

request request

ORB

Security Implementation
enforcing security policy

user

..
Security Service: v1.2 Security Reference Model Dec. 1998 15-19

15

ither

 the
al
users
-term

 the
e
 in an

above.

t can
licies
is
e
r an

pal.
nd

ilege

used.
15.3.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must e
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to
system. Initiating principals are the ones that initiate activities. An initiating princip
may be authenticated in a number of ways, the most common of which for human
is a password. For systems entities, the authentication information such as its long
key, needs to be associated with the object.

An initiating principal has at least one, and possibly several identities (represented in
the system by attributes) which may be used as a means of:

• Making the principal accountable for its actions.

• Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

• Identifying the originator of a message.

• Identifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example,
audit identity may need to be anonymous to all but the audit administrator, but th
access identity may need to be understood so that it can be specified as an entry
access control list. The same value of the identity can be used for several of the

The principal may also have privilege attributes which can be used to decide what i
access. A variety of privilege attributes may be available depending on access po
(see “Access Policies” on page 15-26). The privilege attributes, which a principal
permitted to take, are known by the system. At any one time, the principal may b
using only a subset of these permitted attributes, either chosen by the principal (o
application running on its behalf), or by using a default set specified for the princi
There may be limits on the duration for which these privilege attributes are valid a
may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

1. Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, called Public.

2. Some attributes are acquired through authentication; identity attributes and priv
attributes are in this category.

3. Some attributes are acquired through delegation from other principals.

When a user or other principal is authenticated, it normally supplies:

• Its security name.

• The authentication information needed by the particular authentication method

• Requested privilege attributes (though the principal may change these later).
15-20 CORBAservices: Common Object Services Specification December 1998

15

their
get

licy.

 each
ions,
ion.
 use

 on
.4,
A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 15-4.

Figure 15-4 Credential Containing Security Attributes

15.3.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on
behalf). For example, after the user logs onto the system, the client invokes a tar
object via an ORB as shown in Figure 15-5.

Figure 15-5 Invocation of Target Object via ORB

What security functionality is needed on object invocation depends on security po
It may include:

• Establishing a security association between the client and target object so that
has the required trust that the other is who it claims to be. In many implementat
associations will normally persist for many interactions, not just a single invocat
(Within some environments, the trust may be achieved by local means, without
of authentication and cryptography.)

• Deciding whether this client (acting for this principal) can perform this operation
this object according to the access control policy, as described in Section 15.3
“Access Control Model,” on page 15-24.

Credentials - containing security attributes

unauthenticated
attributes
- Public

authenticated attributes

identity
attributes

privilege
attributes

Client

request request

ORB

Target
Object

client-side security on invocation
security association, access control

message protection, audit

target-side security on invocation
security association, access control

message protection, audit
Security Service: v1.2 Security Reference Model Dec. 1998 15-21

15

n

nsit,

bject
aling

t, a
iation
 sees

ill not
strict

he

and

 on
n the

ether
ality

l

sible
• Auditing this invocation if required, as described in Section 15.3.5, “Auditing,” o
page 15-28.

• Protecting the request and response from modification or eavesdropping in tra
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target o
sides of the invocation. For example, protecting a request may require integrity se
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the clien
new association is formed. It is possible for a client to have more than one assoc
with the same target object. The application is unaware of security associations; it
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it w
be possible to establish trust between the systems, and the client system may re
the requests passed to the target.

15.3.3.1 Establishing Security Associations

The client and target object establish a secure association by:

• Establishing trust in one another’s identities, which may involve the target
authenticating the client’s security attributes and/or the client’s authenticating t
target’s security name.

• Making the client’s credentials (including its security attributes) available to the
target object.

• Establishing the security context which will be used when protecting requests
responses in transit between client and target object.

The way of establishing a security association between client and object depends
the security policies governing both the client and target object, whether they are i
same domain, and the underlying security mechanism. For example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as wh
one-way or mutual authentication is wanted between client and target, and the qu
of protection of data in transit between them.

The security policy is enforced using underlying security mechanisms. This mode
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities, and other underlying Security services, which may be used, are not vi
in the model.

15.3.3.2 Message Protection

Requests and responses can be protected for:
15-22 CORBAservices: Common Object Services Specification December 1998

15

 may
s have

uch as
igure

urned

d.
• Integrity. This prevents undetected, unauthorized modification of messages and
detect whether messages are received in the correct order and if any message
been added or removed.

• Confidentiality. This ensures that the messages have not been read in transit.

A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

This security reference model allows a choice of cryptographic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associated services, s
TP, might cause a message to be constructed to send to the target as shown in F
15-6. At the target, this process is reversed, and results in the ORB invoking the
operation on the target passing it the parameters sent by the client. The reply ret
follows a similar path.

Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protecte

Figure 15-6 Message Protection

Client Target
Object

operation

parameters

operation(parameters)
on target object reference

parameters

parametersoperation

parametersoperationtarget id

parametersoperationtarget idservice
info

parametersoperationtarget idservice
info

host
address

always protected
if any message protection is done

always protected, so parameters can
be used only in specified operations

protected, so operation is on the right
object (implies message must be back in
clear before routing to target object)
service info like GIOP service context
added by services such as TP.
service info should be protected
the host address cannot be encrypted
as this would prevent correct routing

ORB/OA

message header and protected message
Security Service: v1.2 Security Reference Model Dec. 1998 15-23

15

 be

e may

in the
RBA
ation

se, an
ge

of
art of
e
-

r
ers:

.

f the
olicy
ther

t
al

RB
iation
ate
Messages are protected according to the quality of protection required which may
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and respons
be protected differently.

The CORBA security model can protect messages even when there is no security
underlying communications software. In this case, the message protected by CO
security includes the target id, operation, and parameters, and any service inform
included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this ca
ORB that knows such security is available will not need to provide its own messa
protection.

Note that as messages will normally be integrity-protected, this will limit the type
interoperability bridge that can be used. Any bridge that changes the protected p
the message after it has been integrity- (or confidentiality-) protected will cause th
security check at the target to fail unless a suitable security gateway is used to re
protect the message.

15.3.4 Access Control Model

The model depicted in Figure 15-7 on page 15-25 provides a simple framework fo
many different access control security policies. This framework consists of two lay
an object invocation access policy, which is enforced automatically on object
invocation, and an application access policy, which the application itself enforces

The object invocation access policy governs whether this client, acting on behalf o
current principal, can invoke the requested operation on this target object. This p
is enforced by the ORB and the Security services it uses, for all applications, whe
they are aware of security or not.

The application object access policy is enforced within the client and/or the objec
implementation. The policy can be concerned with controlling access to its intern
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the O
to enforce the access policy. Even in architectures where the access control med
occurs solely within the client and target objects, the ORB is still required to valid
the request parameters and ensure message delivery as described above.
15-24 CORBAservices: Common Object Services Specification December 1998

15

he
of this.

nly if

 or
, and

s,
ange
trol,”

 is

and
ities.

.

Figure 15-7 Access Control Model

The access control model shows the client invoking an operation as specified in t
request, and also shows application access decisions, which can be independent

15.3.4.1 Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request o
this is allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

Client-side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target-side access decision
functions define the conditions that allow the object to accept the invocation. One
both of these may not exist. Some systems may support target-side controls only
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision function
which just provide a yes/no answer when asked to check if access is allowed. A r
of access policies can be supported as described in Section 15.5.9, “Access Con
on page 15-117.

The access decision function used on object invocation to decide whether access
allowed bases its decision on:

• The current privilege attributes of the principal (see Section 15.3.2, “Principals
Their Security Attributes,” on page 15-20). Note that these can include capabil

• Any controls on these attributes, for example, the time for which they are valid

• The operation to be performed.

• The control attributes of the target object (see Section 15.3.4, “Access Control
Model,” on page 15-24).

Client

request request

ORB

Target
Object

client-side invocation access decision target-side invocation access decision

client application
access decision

target application
access decision
Security Service: v1.2 Security Reference Model Dec. 1998 15-25

15

bject

is

licy
e

e the

 range
nd
r all

ecide
les

d

;
The first three of these functions are available as part of the environment of the o
invocation.

The control attributes for the target object are associated with the object when it
created (though may be changed later, if security policy permits).

15.3.4.2 Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access po
enforced by the ORB, and taking into account other items such as the value of th
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforc
required access control rules.

15.3.4.3 Access Policies

The general access control model described here can be used to support a wide
of access policies including Access Control List schemes, label-based schemes, a
capability schemes. This section describes the overall authorization model used fo
types of access control.

The authorization model is based on the use of access decision functions, which d
whether an operation or function can be performed by applying access control ru
using:

• Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

• Control attributes of the target (sometimes known as the target ACI).

• Other relevant information about the action such as the operation and data, an
about the context, such as the time.

Figure 15-8 Authorization Model

The privilege and control attributes are the main variables used to control access
therefore, the following sections focus on these.

Access Decision Function
enforcing

access control rules

Action and
context info

Initiator
privilege attributes

access allowed?

yes/no

Target
control attributes
15-26 CORBAservices: Common Object Services Specification December 1998

15

as:

he
s, or

s.

ntrol
 joins
based
y.

t any

ct,
 to

ns, so

tem,

r,
15.3.4.4 Privilege Attributes

A principal can have a variety of privilege attributes used for access control such

• The principal’s access identity.

• Roles, which are often related to the user’s job functions.

• Groups, which normally reflect organizational affiliations. A group could reflect t
organizational hierarchy, for example, the department to which the user belong
a cross-organizational group, which has a common interest.

• Security clearance.

• Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

• Other privileges that an enterprise defines as being useful for controlling acces

In an object system, which may be large, using individual identities for access co
may be difficult if many sets of control attributes need to be changed when a user
or leaves the organization or changes his job. Where possible, controls should be
on some grouping construct (such as a role or organizational group) for scalabilit

The security reference model does not dictate the particular privilege attributes tha
compliant secure system must support; however, this specification does define a
standard, extensible set of privilege attribute types.

Note – In this specification, privilege is often used as shorthand for privilege attribute.

15.3.4.5 Control Attributes

Control attributes are associated with the target. Examples are:

• Access control lists, which identify permitted users by name or other privilege
attributes, or

• Information used in label-based schemes, such as the classification of an obje
which identifies (according to rules) the security clearance of principals allowed
perform particular operations on it.

An object system may have many objects, each of which may have many operatio
it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the sys
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. Howeve
they could be associated with an individual object.
Security Service: v1.2 Security Reference Model Dec. 1998 15-27

15

 than

roup
.

ment

ss of
ined
 via a
either
d

.

t
cies

.

 of

r in
ords.

sfers
Rights

Control attributes may be associated with a set of operations on an object, rather
each individual operation. Therefore, a user with specified privileges may have rights
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

15.3.4.6 Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can g
subjects (using privileges), objects (using domains), and operations (using rights)

This specification defines a particular access policy type and associated manage
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 15.6.4, “Access Policies,” on
page 15-133.

Regardless of the access control policy management interface used (i.e., regardle
whether the particular Level 2 access policy interfaces or other interfaces not def
in this specification are used), all access decisions on object invocation are made
standard access decision interface, so the access control policy can be changed
by administrative action on, or substitution of, the objects that define the policy an
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

15.3.5 Auditing

Security auditing assists in the detection of actual or attempted security violations
This is achieved by recording details of security-relevant events in the system.
(Depending on implementation, recording an audit event may involve writing even
information to a log, generating an alert or alarm, or some other action.) Audit poli
specify which events should be audited under what circumstances.

There are two categories of audit policies:

• system audit policies, which control what events are recorded as the result of
relevant system activities, and

• application audit policies, which control which events are audited by applications

System events, which should be auditable, include events such as authentication
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB o
security or other services, and these components generate the required audit rec

Application events may be security-relevant, and therefore may need auditing
depending on the application. For example, an application that handles money tran
might audit who transferred how much money to whom.
15-28 CORBAservices: Common Object Services Specification December 1998

15

ice),

ed to
licies

ject
el
ed on

e, and

ions
type,

g,
e and
Events can be categorized by event family (e.g., system, financial application serv
and event type within that family. For example, there are defined event types for
system events.

Figure 15-9 Auditing Model

Potentially a very large number of events could be recorded; audit policies are us
restrict what types of events to audit under which circumstances. System audit po
are enforced automatically for all applications, even security-unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target ob
and operation for the request are known, and the reply status is known. The mod
supports audit policies where the decision on whether to audit an event can be bas
the following:

• the event type (such as method invocation complete, access control check don
security association made),

• the success or failure of this event (only failures may be audited),

• the object and the operation being invoked,

• the audit id of the principal on whose behalf the invocation is being done,

• and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of security functionality Level 2. This allows decis
on whether to audit an invocation to depend on the object type, operation, event
and success or failure of this.

The specification also defines a particular audit policy type for application auditin
which allows decisions on whether to audit the event to be based on the event typ
its success or failure.

Client

request request

ORB

Target
Object

security association

client application
audit

target application
audit

invocation access control etc.
security association

invocation access control etc.

Audit Audit
Security Service: v1.2 Security Reference Model Dec. 1998 15-29

15

ed to

erated
w
nd

bject
his

in the
 to

ipient

bject

ed
Events can either be recorded on audit trails for later analysis or, if they are deem
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are gen
and then written to audit channels, but not how these records are filtered later, ho
audit trails and channels are kept secure, and how the records can be collected a
analyzed.

15.3.6 Delegation

In an object system, a client calls on an object to perform an operation, but this o
will often not complete the operation itself, so will call on other objects to do so. T
will usually result in a chain of calls on other objects as shown in Figure 15-10.

Figure 15-10 Delegation Model

This complicates the access model described in Section 15.3.4, “Access Control
Model,” on page 15-24, as access decisions may need to be made at each point
chain. Different authorization schemes require different access control information
be made available to check which objects in the chain can invoke which further
operations on other objects.

In privilege delegation, the initiating principal’s access control information (i.e., its
security attributes) may be delegated to further objects in the chain to give the rec
the rights to act on its behalf under specified circumstances.

Another authorization scheme is reference restriction where the rights to use an o
under specified circumstances are passed as part of the object reference to the
recipient. Reference restriction is not included in this specification, though describ
as a potential future security facility in Appendix F, “Facilities Not in This
Specification” on page 15-358.

The following terms are used in describing delegation options:

• Initiator: the first client in a call chain.

Client

Client

Target

Target
Object

Client

Target

Client

Target

Target
Object

Target
Object

..

15-30 CORBAservices: Common Object Services Specification December 1998

15

rget.

bject
ge

eived

btain

gated

The
diate
ible to

cts

 this

erify
y the

 their

red
• Final target: the final recipient in a call chain.

• Intermediate: an object in a call chain that is neither the initiator nor the final ta

• Immediate invoker: an object or client from which an object receives a call.

15.3.6.1 Privilege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of o
invocations. In such cases, the initiator needs to delegate some or all of its privile
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have rec
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can o
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and dele
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator.
target may also want to verify that the request comes from an authorized interme
(or even check the whole chain of intermediates). In these cases, it must be poss
distinguish the privileges of the initiator and those of each intermediate.

Some restrictions may or may not be placed by the initiator about the set of obje
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used,
case is called impersonation.

When restrictions are placed, additional information is used so that objects can v
whether or not their characteristics (e.g., their name or a part of their name) satisf
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g.,
name).

15.3.6.2 Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captu
using the following sentence.

An intermediate invoking a target object may perform:

1. one method on one object

2. several methods on one object

3. any method on: a. one object
b. some object(s)
c. any object

(target restrictions)
(no target restrictions)
Security Service: v1.2 Security Reference Model Dec. 1998 15-31

15

hich
t
rol

ne

t

llow

ich

e
, or

me
em.

for
er
get
arget
dress

s

ess
iate
.

When delegating privileges through a chain of objects, the caller does not know w
objects will be used in completing the request, and therefore cannot easily restric
privileges to particular methods on objects. It generally relies on the target’s cont
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no o
scheme is likely to provide all of them.

15.3.6.3 Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating objec
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to a target object. Interfaces may a
support of the following facilities.

• Control of privileges delegated - An initiator (or an intermediate) can restrict wh
of its own privileges are delegated.

• Control of target restrictions - An initiator (or an intermediate) can restrict wher
individual privileges can be used. This restriction may apply to particular objects
some grouping of objects. It may restrict the target objects, which may use so
privileges for access control, and the intermediates, which can also delegate th

• Control of privileges used - As previously described, there are several options
deciding which privileges an intermediate object may use when invoking anoth
object. Note that delegated privileges are not actually delegated to a single tar
object; they are available to any object running under the same identity as the t
object in the target object’s address space (since any objects in the target’s ad
space may retrieve the inbound Credentials and any object sharing the target’s
identity may successfully become the caller’s delegate). The specified interface
allow the following:

• No delegation - The client permits the intermediate to use its privileges for acc
control decisions, but does not permit them to be delegated, so the intermed
object cannot use these privileges when invoking the next object in the chain

using

(no privileges
(a subset of the initiator’s privileges
(both the initiator’s and its own
privileges
(received privileges and its own
privileges

(simple delegation)
(composite delegation)
(combined or traced delegation,
depending on whether privileges
are combined or concatenated)

during some validity period (part of time constraints)

for a specified number of invocations (part of time constraints)
15-32 CORBAservices: Common Object Services Specification December 1998

15

s,
 The

 and

 and
uish

Figure 15-11No Delegation

• Simple delegation - The client permits the intermediate to assume its privilege
both using them for access control decisions and delegating them to others.
target object receives only the client's privileges, and does not know who the
intermediate is (when used without target restrictions, this is known as
impersonation).

Figure 15-12Simple Delegation

• Composite delegation - The client permits the intermediate object to use its
credentials and delegate them. Both the client privileges and the immediate
invoker’s privileges are passed to the target, so that both the client privileges
the privileges from the immediate source of the invocation can be individually
checked.

Figure 15-13Composite Delegation

• Combined privileges delegation - The client permits the intermediate object to
use its privileges. The intermediate converts these privileges into credentials
combines them with its own credentials. In that case, the target cannot disting
which privileges come from which principal.

Client Intermediate
Object

Target
Object

client credentials intermediate
credentials

Client Intermediate
Object

Target
Object

client credentials client credentials

Client Intermediate
Object

Target
Object

client credentials
client and

intermediate

credentials
Security Service: v1.2 Security Reference Model Dec. 1998 15-33

15

es

e of

s, it
e

n
lso

only
re

tes
 and

Figure 15-14Combined Privileges Delegation

• Traced delegation - The client permits the intermediate object to use its privileg
and delegate them. However, at each intermediate object in the chain, the
intermediate's privileges are added to privileges propagated to provide a trac
the delegates in the chain.

Figure 15-15Traced Delegation

A client application may not see the difference between the last three option
may just see them all as some form of “composite” delegation. However, th
target object can obtain the credentials of intermediates and the initiator
separately if they have been transmitted separately.

• Control of time restrictions - Time periods can be applied to restrict the duratio
of the delegation. In some implementations, the number of invocations may a
be controllable.

Facilities Used on Accepting Object Invocations

An intermediate or a target object should be able to:

• Extract received privileges and use them in local access control decisions.
Often only the privileges of the initiator are relevant. When this is not the case,
the privileges of the immediate invoker may be relevant. In some cases, both a
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain.
In addition, some targets may need to obtain the miscellaneous security attribu
(such as audit identity, charging identity) and the associated target restrictions
time constraints.

• Extract credentials (when permitted) for use when making the next call as a
delegate.

• Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

Client Intermediate
Object

Target
Object

client credentials

client and
intermediate’s

privileges

in a single
credential

Client Target
Object

intermediate
objects

client credentials chain of

credentials
15-34 CORBAservices: Common Object Services Specification December 1998

15

hen
lar

its
deny
d the

tions
when

 it

one

e of

fied,

tial

 is
d in
event

ons

 may
r and
ple,

date
15.3.6.4 Specifying Delegation Options

The administrator may specify which delegation option should be used by default w
an object acts as an intermediate. For example, he may specify whether a particu
intermediate object normally delegates the initiating principal's privileges or uses
own, or both if needed. Also, the access policy used at the target could permit or
access based on more than one of the privileges it received (e.g., the initiator's an
intermediate's). This allows many applications to be unaware of the delegation op
in use, as many of the controls for delegation are done automatically by the ORB
the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

15.3.6.5 Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mod
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, only no delegation and impersonation
(simple delegation without any target restrictions) need to be supported.

In Security Functionality Level 2, applications may use any of the interfaces speci
but may get a CORBA::NO_IMPLEMENT exception returned. Note that these
interfaces do not allow the application to set controls such as target restrictions.
Appendix F, “Facilities Not in This Specification” on page 15-358, includes poten
future advanced delegation facilities, which include such controls.

15.3.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action
generated and can be checked to provide proof of the action. It can also be store
order to resolve later disputes about the occurrence or the nonoccurrence of the
or action.

The non-repudiation services specified here are under the control of the applicati
rather than used automatically on object invocation, so are only available to
applications aware of this service.

Depending on the non-repudiation policy in effect, one or more pieces of evidence
be required to prove that some kind of event or action has taken place. The numbe
the characteristics of each depends upon that non-repudiation policy. As an exam
evidence containing a timestamp from a trusted authority may be required to vali
evidence.
Security Service: v1.2 Security Reference Model Dec. 1998 15-35

15

ics of
d are

ed of

t took
.

here

pes
ence

g
 be
 made

ived
 by
on

 of

e

) and
There are many types of non-repudiation evidence, depending on the characterist
the event or action. In order to distinguish between them, the types are defined an
part of the evidence. Conceptually, evidence may thus be seen as being compos
the following components:

• non-repudiation policy (or policies) applicable to the evidence

• type of action or event

• parameters related to the type of action or event

A date and time are also part of the evidence. This shows when an action or even
place and allows recovery from some situations such as the compromise of a key

The evidence includes some proof of the origin of data, so a recipient can check w
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of ty
of actions or events. Two common types of non-repudiation evidence are the evid
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generatin
evidence of Proof of Creation using non-repudiation services. This evidence may
sent to a recipient to verify who created the message, and can be stored and then
available for subsequent evidence retrieval.

Non-repudiation of Receipt protects against a recipient's false denial of having rece
a message (without necessarily seeing its content). It is achieved at the recipient
constructing and generating evidence of Proof of Receipt using the non-repudiati
services. This is shown in Figure 15-16.

Figure 15-16Proof of Receipt

One or more Trusted Third Parties need to be involved, depending on the choice
mechanism or policy.

Non-repudiation services may include:

• Facilities to generate evidence of an action and verify that evidence later.

• A delivery authority that delivers the evidence (often with the message) from th
originator to the recipient. Such a delivery authority may generate proof of origin
(to protect against a sender's false denial of sending a message or its content

 (plus message)
 evidence of creation

RecipientOriginator

 evidence of receipt
15-36 CORBAservices: Common Object Services Specification December 1998

15

a
ISO

ence.

n-

of
d.

 is
sible
nce
lso,
can be

as
B.
proof of delivery (to protect against a recipient's false denial of having received
message or its content). Non-repudiation of Origin and Delivery are defined in
7498-2.

• An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evid

Figure 15-17Non-repudiation Services

The non-repudiation services illustrated in Figure 15-17 are based on the ISO no
repudiation model. As the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

• Generation of evidence of an action.

• Verification of evidence of an action.

• Generation of a request for evidence related to a message sent to a recipient.

• Receipt of a request for evidence related to a received message.

• Analysis of details of evidence of an action.

• Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types
evidence, not just the non-repudiation of creation and receipt previously describe

No Non-repudiation Evidence Delivery Authority is defined by this specification. It
anticipated that vendors will want to customize these authorities (which are respon
for delivering messages and related non-repudiation evidence securely in accorda
with specific non-repudiation policies) to meet specialized market requirements. A
no evidence storage and retrieval services are specified, as other object services
used for this.

Note – This specification does not provide evidence that a request on an object w
successfully carried out; it does not require use of non-repudiation within the OR

Object
A

Object
B

Service Req/Resp Dispute/Judgement

Non-repudiation service

Evidence
Generation

and
Adjudicator

Service Req/Resp

Evidence
Storage

and
RetrievalVerification

Delivery
Authority
Security Service: v1.2 Security Reference Model Dec. 1998 15-37

15

e,

ere

cy
 to be

d

et
 this

ake
re
 to
t

rity

ty-

ts to
15.3.8 Domains

A domain (as specified in the ORB Interoperability Architecture) is a distinct scop
within which certain common characteristics are exhibited and common rules
observed. There are several types of domains relevant to security:

• Security policy domain. The scope over which a security policy is enforced. Th
may be subdomains for different aspects of this policy.

• Security environment domain. The scope over which the enforcement of a poli
may be achieved by some means local to that environment, so it does not need
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferre
between objects in the same machine.

• Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.

15.3.8.1 Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a s
of security-related activities and is administered by a security authority. (Note that
is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to m
the domain secure. Security policies concern access control, authentication, secu
object invocation, delegation, and accountability. An access control policy applies
the security policies themselves, controlling who may administer security-relevan
policy information.

Figure 15-18 Security Policy Domains

Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granula
rather than at an individual object instance granularity).

Security policy domains permit application of security policy information to securi
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objec
which policy is applied).

security
policy

management

Security Authority
15-38 CORBAservices: Common Object Services Specification December 1998

15

ies.

 be

e

ty
he
ing

y but

ators’

nt

he
Domains provide a mechanism for delimiting the scope of administrators’ authorit

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies ar
applied.

Subdomains may reflect organizational subdivisions or the division of responsibili
for different aspects of security. Typically, organization-related domains will form t
higher-level superstructure, with the separation of different aspects of security form
a lower-level structure.

For example, there could be:

• An enterprise domain, which sets the security policy across the enterprise.

• Subdomains for different departments, each consistent with the enterprise polic
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:

• Authority for auditing could be the preserve of an audit administrator.

• Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administr
duties) while reflecting established organizational structures.

Figure 15-19Policy Domain Hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreeme
records:

• The rights given to both sides, such as the kind of access allowed.

• The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, t
mapping of roles in one domain to roles in the other.

Security Policy
Manager
Security Service: v1.2 Security Reference Model Dec. 1998 15-39

15

RB
ort it.

ir
 own

r, this
ains
Figure 15-20Federated Policy Domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed O
and the Security services it uses and the underlying operating systems that supp
This is the only policy that applies to objects unaware of security.

The application security policy is enforced by application objects, which have the
own security requirements. For example, they may want to control access to their
functions and data at a finer granularity than the system security policy provides.

Figure 15-21System- and Application-enforced Policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

Figure 15-22 Overlapping Policy Domains

In some cases, there may even be overlapping policies of the same type (howeve
specification does not require implementations to support overlapping policy dom
of the same type).

Security Policy
Manager

application security
policy domain

system security policy domain

Security Policy
Manager

audit domain

access control
domain
15-40 CORBAservices: Common Object Services Specification December 1998

15

ay be
ect

re by
es

y at

te in
edure

d,

ns.

 to

, can

jects

are

r
ain,

 the

n that
nied).
15.3.8.2 Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies m
achieved by means local to the environment. The environment supporting the obj
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains a
definition implementation-specific, as different implementations run in different typ
of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce securit
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

• Preventing objects from interfering with each other might require them to execu
separate system processes or virtual machines (assuming the generation proc
could not ensure this protection) but, in most object systems, this would be
considered an unacceptable overhead, if applied to each object.

• Authenticating every object individually could also impose too large an overhea
particularly where:

• There is a large object population.

• There is high connectivity, and therefore a large number of secure associatio

• The object population is volatile, requiring objects to be frequently introduced
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

1. Message protection domains. These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists
exploit it, rather than provide its own message protection.

2. Identity domains. Objects in an identity domain can share the same identity. Ob
in the same identity domain:

• when invoking each other, do not need authentication to establish who they
communicating with.

• are equally trusted by others to handle credentials received from a client. Fo
example, if a client is prepared to delegate its rights to one object in the dom
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust
calling object based on the identity of its identity domain.

Note that neither of these affect what access controls apply to the object (except i
if trust is required and is not established with this domain, then access will be de
Security Service: v1.2 Security Reference Model Dec. 1998 15-41

15

rity

may
 and

tion.
ple,
curity
logy

ey

the
ate

ucts.

 they
15.3.8.3 Security Technology Domains

These are domains that use the same security technology for enforcing the secu
policy. For example:

• The same methods are available for principal authentication and the same
Authentication services are used.

• Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

• The same types of access control are used. For example, a particular domain
provide discretionary access control using ACLs using the same type of identity
privilege attributes.

• The same audit services are used to collect audit records in a consistent way.

A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protec
(Different technologies may be able to use the same privilege attributes, for exam
the same access id and also the same audit id.) An important part of this is the se
technology used for key distribution. There are two main types of security techno
used for key distribution, both of which are available in commercial products:

• Symmetric key technology where a shared key is established using a trusted K
Distribution Service.

• Asymmetric (or “public”) key technology where the client uses the public key of
target (certified by a Certification Authority), while the target uses a related priv
key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail prod

The CORBA security interfaces specified here are security-mechanism neutral, so
can be implemented using a wide variety of security mechanisms and protocols.

15.3.8.4 Domains and Interoperability

Interoperability between objects depends on whether they are in the same:

• Security technology domain

• ORB technology domain

• Security policy domains

• Naming and other domains

The level of security interoperability fully defined in this CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.
15-42 CORBAservices: Common Object Services Specification December 1998

15

gy

curity

pass
s a

he
ol

y
mon

e
 an

y
ere

ain.
y a
by a

ally
The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

Figure 15-23 Framework of Domains

Interoperating between Security Technology Domains

Sending a message across the boundary between two different security technolo
domains is only possible if:

• The communication between the objects does not need to be protected, so se
is not used between them, or

• A security technology gateway has been provided, which allows messages to
between the two security technology domains. A gateway could be as simple a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over t
link. On the other hand, it could be a very complicated affair including a protoc
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technolog
gateways. This is mainly because the technology is immature and appropriate com
technology cannot yet be identified. However, where the security technology in th
domains can support more than one security mechanism, this specification allows
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, the
should be able to interoperate via a CORBA 2 interoperability bridge. However, th
may still be restrictions on interoperability when:

• The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other dom
As previously described, crossing a security policy boundary can be handled b
security policy federation agreement. This can be enforced in either domain or
gateway.

• The ORBs are in different naming or other domains, and messages would norm
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any

ORB
Technology
Domain A

ORB
Technology
Domain B

CORBA 2
interoperability

bridge

Security Technology Domain 1

Security
Technology

Gateway

Security
Technology
Domain 2
Security Service: v1.2 Security Reference Model Dec. 1998 15-43

15

thout
rity

 and

ains.

rity

ging

and

, the

ple,
.

n

 be

to a

s of
done
changes to object references in them). In general, crossing of such domains wi
using a Security Technology gateway is not possible if policy requires even integ
protection of messages.

15.3.9 Security Management and Administration

Security administration is concerned with managing the various types of domains
the objects within them.

15.3.9.1 Managing Security Policy Domains

For security policy domains, the following is required:

• Managing the domains themselves - creating and deleting them including
controlling where they fit in the domain structure.

• Managing the members of the domain, including moving objects between dom

• Managing the policies associated with the domains - setting details of the secu
policies as well as specifying which policies apply to which domains.

This specification focuses on management of the security policies. However, mana
policy domains and their members in general are expected to be part of the
Management Common Facilities, so only an outline specification is given here.

This specification includes a framework for the administering of security policies,
details of how to administer particular types of policy. For example, it includes
operations to specify the default quality of protection for messages in this domain
policy for delegating credentials, and the events to be audited.

General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For exam
different administration is needed for ACL-based policies and label-based policies
However, the administration of the standard DomainAccessPolicy is defined.

Access policies may use rights to group operations for access control. Administratio
of the mapping of rights to operations is included in this specification. Such mapping
of rights to operations is used by the standard DomainAccessPolicy, and can also
used by other access policies.

Interfaces for federation agreements allowing interaction with peer domains is left
later security specification.

15.3.9.2 Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristic
the environment and which objects are members of the domain. This will often be
in an environment-specific way; therefore, no management interfaces for it are
specified here.
15-44 CORBAservices: Common Object Services Specification December 1998

15

ain.

 be

side

ther

y
ded
 both
 to

ure
tation
s
he
 on
this
e or

plete
.2,
 Not
ix C,

urity
15.3.9.3 Managing Security Technology Domains

For security technology domains, administration may include:

• Setting up and maintaining the underlying Security services required in the dom

• Setting up and maintaining trust between domains in line with the agreements
between their management.

• Administering entities in the way required by this security technology. Entities to
administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

Such administration is often security-technology-specific. Also, it may be done out
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as o
applications. This specification does not include such security-technology-specific
administration.

15.3.10 Implementing the Model

This reference model is sufficiently general to cover a very wide variety of securit
policies and application domains to allow conformant implementations to be provi
to meet a wide variety of commercial and government secure systems in terms of
security functionality and assurance. (Any implementation of this model will need
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a sec
object system to address different requirements. There are a number of implemen
choices on how to ensure that the security enforcement cannot be bypassed. Thi
enforcement could be performed by hardware, the underlying operating system, t
ORB core, or ORB services. Appendix D, “Guidelines for a Trustworthy System”
page 15-329 describes some of these options. (It is important when instantiating
architecture for a particular ORB product, or set of Security services supporting on
more ORBs, to identify what portions of the model must be trusted for what. This
should be included in a conformance statement as described in Appendix E,
“Conformance Statement” on page 15-352.)

15.4 Security Architecture

This section explains how the security model is implemented. It describes the com
architecture as needed to support all feature packages described in Section 15.2
“CORBA Security and Secure Interoperability Feature Packages,” on page 15-12.
all of these packages are mandatory for all implementors to support. See Append
“Conformance Details” on page 15-315 for a definitive statement of conformance
requirements.

This section starts by reviewing the different views that different users have of sec
in CORBA-compliant systems, as the security architecture must cater to these.
Security Service: v1.2 Security Architecture Dec. 1998 15-45

15

o

nst
ssets
elines

r and
n A
 also

d the
by

roles

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 t
support interoperability between ORBS.

The security object models for the three major views (application development,
administration, and object system implementors) are then described.

15.4.1 Different Users’ View of the Security Model

The security model can be viewed from the following users’ perspectives:

• Enterprise management

• The end user

• The application developer

• Administration of an operational system

• The object system implementors

15.4.1.1 Enterprise Management View

Enterprise management is responsible for business assets including IT systems;
therefore, they have the ultimate responsibility of protecting the information in the
system. The enterprise view of security is mainly about protecting its assets agai
perceived threats at an affordable cost. This requires assessing the risks to the a
and the cost of countermeasures against them as described in Appendix E, Guid
for a Trustworthy System. It will require setting a security policy for protecting the
system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each othe
what access they will provide to their assets. For example, when a user in domai
accesses objects in domain B, what rights should s/he have? One enterprise may
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization an
security policies needed in different parts of it. Security policy options supported
the model include:

• A choice of access control policies. For example, controls can be based on job
(or other attributes) and use ACL capabilities or label-based access controls.

• Different levels of auditing so that choosing which events to be logged can be
flexibly chosen to meet the enterprise needs.

• Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.
15-46 CORBAservices: Common Object Services Specification December 1998

15

rove

d
elong
 to
ce that
r to

e
.

lege
 make

he

 their
dden

n

e, an
me as

at

tect

n the
15.4.1.2 End User’s View

The human user is an individual who is normally authenticated to the system to p
who he or she is.

The user may take on different job roles which allow use of different functions an
data, thereby allowing access to different objects in the system. A user may also b
to one or more groups (within and across organizations) which again imply rights
access objects. A user may also have other privileges such as a security clearan
permits access to secret documents, or an authorization level that allows the use
authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privileg
attributes such as roles and groups and others privileges valid to this organization

Users invoke objects to perform business functions on their behalf, and their privi
attributes are used to decide what they can access. Their audit identity is used to
them individually accountable throughout the system. They have no idea of what
further objects are required to perform the business function.

The user view is described further in the security model in Section 15.3, “Security
Reference Model,” on page 15-18.

15.4.1.3 Application Developer’s View

The application developer is responsible for the business objects in the system: t
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though
applications are protected by it. Therefore, much of the security in the system is hi
from the applications. ORB security services are called automatically on object
invocation, and both protect the conversation between objects and control who ca
access them.

Some application objects need to enforce some security themselves. For exampl
application might want to control access based on the value of the data and the ti
well as the principal who initiated the operation. Also, an application may want to
audit particular security-relevant activities.

The model includes a range of security facilities available for those applications th
want to use them. For example:

• The quality of protection for object invocations can be specified and used to pro
all communication with a particular target or just selected invocations.

• Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.

• Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations o
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.
Security Service: v1.2 Security Architecture Dec. 1998 15-47

15

at

odel

s,
mber

tem.

users
ts

that

bject
ight
 the

s or

ment
One special type of application developer is also catered for. The “application” th
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the m
also allows authentication to be done before calling the object system.

The application view is described in Section 15.5, “Application Developer’s
Interfaces,” on page 15-88.

15.4.1.4 Administrator’s View

Administrators, like any other users, know about their job roles and other privilege
and expect these to control what they can do. In many systems, there will be a nu
of different administrators, each responsible for administering only part of the sys
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other
or normal application developers. The application developers see individual objec
whereas the administrator knows how these are grouped, for example, in policy
domains.

In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the o
system. This would include administration of privilege attributes about users, but m
also include other controls. For example, they might constrain the extent to which
user’s rights can be delegated.

The model does not include explicit management interfaces for managing domain
security attributes of initiating principals, though it does describe the resultant
information. Note that the security facilities described here are also applicable to
management. For example, management information needs to be protected from
unauthorized access and protected for integrity in transit, and significant manage
actions, particularly those changing security information, need to be audited.

The administrator’s view is further described in Section 15.6, “Administrator’s
Interfaces,” on page 15-130.

15.4.1.5 Object System Implementor’s View

Secure object system developers must put together:

• An ORB.

• Other Object Services and/or Common Facilities.

• The security services these require to provide the security features.
15-48 CORBAservices: Common Object Services Specification December 1998

15

e
pter

nded
in

gfully

eed
ined
pear
ined

 if
ld be
 the

urity

me
s the
ld use
t

 will
d for
 are

 of
r

em.

 to
” on
The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure object system may use ORB Security services
during object invocation, as defined in Section 15.4.2, “Structural Model,” on
page 15-49. In addition, protection boundaries are required to prevent interferenc
between objects and will need controlling by the ORB and associated Object Ada
and ORB services.

Certain interfaces are identified as Locality-Constrained. These interfaces are inte
to be accessible only from within the context (e.g., process or RM-ODP capsule)
which they are instantiated (i.e., from within the protection boundary around that
context). No object reference to these interfaces can therefore be passed meanin
outside of that context. The exact details of how this protection boundary is
implemented is an implementation detail that the implementor of the service will n
to provide in order to establish that the implementation is secure. Locality- constra
objects may not be accessible through the DII/DSI facilities, and they may not ap
in the Interface Repository. Any attempt to pass a reference to a locality- constra
object outside its locality, or any attempt to externalize it using ORB::object_to_string
will result in the raising of the CORBA::NO_MARSHAL exception.

Object Service and Common Facilities developers may need to be security-aware
they have particular security requirements (for example, functions whose use shou
limited or audited). However, like any application objects, most should depend on
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for sec
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares so
application-visible security objects such as a principal’s credentials, and also see
security objects used in making security associations. The Security services shou
the Security Policy and other security objects defined in this model to decide wha
security to provide.

While these security objects may provide all the security required themselves, they
often call on external security services, so that consistent security can be provide
both object and other systems. The Security services defined in this specification
designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use
such external security services may imply use of existing, nonobject databases fo
users, certificates, etc. Such databases may be managed outside the object syst

The Implementor’s view is specified in Section 15.7, “Implementor’s Security
Interfaces,” on page 15-156. The implications of constructing the system securely
meet threats are described in Appendix D, “Guidelines for a Trustworthy System
page 15-329.

15.4.2 Structural Model

The architecture described in this section sets the major concepts on which the
subsequent specifications are based.
Security Service: v1.2 Security Architecture Dec. 1998 15-49

15

g
rity
 are:

f an

l the

e
n
The structural model has four major levels used during object invocation:

1. Application-level components, which may or may not be aware of security;

2. Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolatin
interface between this level and the security technology, allowing different secu
technologies to be accommodated within the architecture.) These components

• The ORB core and the ORB services it uses.

• Security services.

• Policy objects used by these to enforce the Security Policy.

3. Components implementing specific security technology.

4. Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Figure 15-24 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation o
operation on a target object is shown.

Figure 15-24 Structural Model

15.4.2.1 Application Components

Many application components are unaware of security and rely on the ORB to cal
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see Th
Model as Seen by Applications, under Section 15.4.5, “Security Object Models,” o
page 15-58). As in the OMA, the client may, or may not, be an object.

Client

request request

ORB Core

Target
Object

ORB
Services

ORB
Services

Security
and other
Services

security technology

Basic Protection and Communications
15-50 CORBAservices: Common Object Services Specification December 1998

15

t
 The
nt to
d by

way

,

re

of

 for
15.4.2.2 ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB tha
provides the basic representation of objects and the communication of requests.”
ORB Core therefore supports the minimum functionality necessary to enable a clie
invoke an operation on a target object, with the distribution transparencies require
the CORBA architecture.

An object request may be generated within an implicit context, which affects the
in which it is handled by the ORB, though not the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Co
but, from the application view, logically present in the ORB.

Figure 15-25 ORB Services

Selection of ORB Services

The ORB Services used to handle an object request are determined by:

• The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality
protection.

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular thread of activity or invocation;
example, whether a request has integrity or confidentiality requirements, or is
transactional.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

Logical Object Request
Security Service: v1.2 Security Architecture Dec. 1998 15-51

15

o use
ither
ay

bject
ient to
 is

d on

rties,
ent
 with
ction

d the
y

t is

ugh

erver
and

ss of

sible
A client's ORB determines which ORB Services to use at the client when invoking
operations on a target object. The target’s ORB determines which ORB Services t
at the target. If one ORB does not support the full set of services required, then e
the interaction cannot proceed or it can only do so with reduced facilities, which m
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

Before a client can use an object reference to invoke an operation of the target o
in a secure way, a security association needs to be established associating the cl
the target object, through the particular object reference. This security association
sometimes referred to as the binding. The creation and life-style of bindings are
implicitly managed by the ORBs and hence the only invariant that one can depen
is that a binding is established before an invocation takes place.

The ORB determines how to establish the binding using the policies, static prope
and dynamic properties associated with the client and target. At the client, the cli
environment together with an object reference of the target object has associated
it, those policies and static properties of the target object (e.g., the quality of prote
needed) that affect how the client's ORB establishes a binding to the object.

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

• Each object reference of the target object that is held by the client.

• State information that is unique to the association between the target object an
client through the specific object reference (e.g., access policy domain, securit
context).

• An ORB instance in a process or capsule (c.f. RM-ODP[15]) in which the clien
located.

A binding is distinct from the target object, though uniquely associated with it thro
the object reference. The lifetime of a binding is limited to that of the process or
capsule that it is associated with, though it may be shorter (e.g., when the object
reference to the target object is destroyed, the binding associated with the object
reference is also destroyed).

There is state information associated with the binding at both the client and the s
ends. This state information is local to the process or capsule in which the client
the server reside, and its lifetime is the same as that of the binding. The state
associated with a binding is not accessible on the client side, since the implicitne
the binding and the uncertainty about its life-style makes such information of
questionable value anyway. On the server side, some of this information is acces
through operations of the Current object.
15-52 CORBAservices: Common Object Services Specification December 1998

15

ent

ices

sms

ply

ding
s use

Figure 15-26 Object Reference

If a client requires that operations of the same target object be invoked with differ
invocation policies, it can do so by using the Object::set_policy_overrides operation
to create new object references with the desired policies (that differ from those
associated with the client’s environment through the Current object) installed as
overrides, and then use those new object references to carry out the invocations.

15.4.2.3 Security Services

In a secure object system, the ORB Services called will include ORB Security Serv
for secure invocation and access control.

ORB Security Services and applications may call on underlying security mechani
for authentication, access control, audit, non-repudiation, and secure invocations.
These security services form the Security Replaceability packages.

15.4.2.4 Security Policies and Domain Objects

A security policy domain is the set of objects to which common security policies ap
as described in Security Policy Domains, under Section 15.3.8, “Domains,” on
page 15-38. The domain itself is not an object. However, there is a policy domain
manager for each security policy domain. This domain manager is used when fin
and managing the policies that apply to the domain. The ORB and security service
these to enforce the security policies relevant to object invocation.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

 Request

binding binding

target obj ref

Current

Object Reference
Security Service: v1.2 Security Architecture Dec. 1998 15-53

15

ct
e

ince

aid
n by
e

d by

ject
ain.

y
ith

t be

ere is
sing
hat

ins,
ping
ple
port

ay
ller
es
When an object reference is created by the ORB, it implicitly associates the obje
reference with one or more Security Policy domains as described in Administrativ
Model, under Section 15.4.5, “Security Object Models,” on page 15-58. An
implementation may allow object references to be moved between domains later. S
the only way to access objects is through object references, associating object
references with policy domains and associated policies, implicitly associates the s
policies with the object associated with the object reference. Care should be take
the applications that are creating object references using POA operations (See th
Portable Object Adaptor chapter of the Common Object Request Broker: Architecture
and Specification) to ensure that object references to the same object are not create
the server of that object with different domain associations.

There may be several security policies associated with a domain, with a policy ob
for each. There is at most one policy of each type associated with each policy dom
(See “Administrative Model” on page 15-75, for a list of policy types.) These polic
objects are shared between objects in the domain, rather than being associated w
individual objects. (If an object needs to have an individual policy, then there mus
a domain manager for it.)

Figure 15-27Domain Objects

Where an object reference is a member of more than one domain, for example, th
a hierarchy of domains, the object reference is governed by all policies of its enclo
domains. The domain manager can find the enclosing domain’s manager to see w
policies it enforces.

The reference model allows an object reference to be a member of multiple doma
which may overlap for the same type of policy (for example, be subject to overlap
access policies). This would require conflicts among policies defined by the multi
overlapping domains to be resolved. The specification does not include explicit sup
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

1. The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own security policies. The ca
asks for the policy of a particular type (e.g., the delegation policy), and then us

policy
object

domain
manager

enclosing
domain managers
15-54 CORBAservices: Common Object Services Specification December 1998

15

een
licy
in

The
ope of

n it

of
are

hem,
ed to
vices

RBs
ng

t the
 these
I will

ing

lish

not
n of
the policy object returned to enforce the policy (as described in “The Model as S
by the Objects Implementing Security” on page 15-79). The caller finding a po
and then enforcing it does not see the domain manager objects and the doma
structure.

2. The administrative interfaces used to set security policies (e.g., specifying which
events to audit or who can access objects of a specified type in this domain).
administrator sees and navigates the domain structure, so he is aware of the sc
what he is administering. (Administrative interfaces are described in
“Administrative Model” on page 15-75.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and whe
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection
messages to increase protection for particular messages. (Application interfaces
described in “The Model as Seen by Applications” on page 15-58.)

Note – This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them, moving objects between t
changing the domain structure and adding, changing, and removing policies appli
the domains. Such interfaces are expected to be the province of other object ser
and facilities.

15.4.3 Security Technology

The object security services previously described insulate the applications and O
from the security technology used. Security technology may be provided by existi
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components which actually implemen
security services. It is envisaged that various technologies may be used to provide
and, furthermore, that a (set of) generic security interface(s) such as the GSS-AP
be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and correspond
APIs) includes:

• The means of creating and handling the security information required to estab
security associations, including keys.

• Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services
only allows interchangeability of security mechanisms, but also enables exploitatio
existing, proven implementations of such mechanisms.
Security Service: v1.2 Security Architecture Dec. 1998 15-55

15

ks in
n. For

ntity
 each
in

age.

s on

n
s of

by

d and
e
ed by
nce,
e

 or

s
cross
eans
t
15.4.4 Basic Protection and Communications

15.4.4.1 Environment Domains

As described in “Security Environment Domains” on page 15-41, the way security
policies are enforced can depend on the security of the environment in which the
objects run. It may be possible to relax or even dispense with some security chec
the object system on interactions between objects in the same environment domai
example, in a message protection domain where secure transport or lower layer
communications is provided, encryption is not needed at the ORB level. In an ide
domain, objects may share a security identity and so dispense with authenticating
other. Environment domains are implementation concepts; they do not have doma
managers.

Environment domains can be exploited to optimize performance and resource us

15.4.4.2 Component Protection

The maintenance of integrity and confidentiality in a secure object system depend
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protectio
Domains, supported by a combination of hardware and software, provide a mean
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application-level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modele
implemented in terms of additional objects. However, security services can only b
effective if there is some means of ensuring that they are always invoked as requir
security policies: it must be possible to guarantee, to any required level of assura
that applications cannot bypass them. Moreover, security services themselves, lik
other components, must be subject to security policies.

The general approach is to establish protection boundaries around groups of one
more components which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interaction
between them need not be mediated by security services, whereas interactions a
boundaries may be subject to controls. In addition, it is necessary to provide a m
of establishing a trust relationship between components, allowing them to interac
across protection boundaries, in a controlled way, mediated by security services.
15-56 CORBAservices: Common Object Services Specification December 1998

15

in an

 must
ty

rt of

aries,
re-

mple,

le for

red.

).
g to

Figure 15-28 Controlled Relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in “The Model as Seen by the Objects
Implementing Security” on page 15-79. Clearly, objects that encapsulate sensitive
security information must be protected to ensure that they can only be accessed
appropriate way.

Figure 15-29 Object Encapsulation

Protection boundaries and the controlled relationships that cross those boundaries
inevitably be supported by functionality more fundamental than that of the Securi
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes pa
the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess bound
or within process access control mechanisms (e.g., multilevel “onionskin” hardwa
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for exa
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possib
implementations to create protection boundaries between:

• Application components, which do not trust each other.

• Components supporting security services and other components.

• Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be requi
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths
Such communication may take many forms, ranging from explicit message passin
implicit sharing of memory.

Protection
Domain A

Protection
Domain B

Controlled
Relationship

Protection
Domain A

Protection
Domain B

Security Service
Security Service: v1.2 Security Architecture Dec. 1998 15-57

15

A

n
iven.

fore
 to
h

s

arily

bject

d

15.4.5 Security Object Models

This section describes the objects required to provide security in a secure CORB
system from three viewpoints:

1. The model as seen by applications.

2. The model as seen by administrators and administrative applications.

3. The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships betwee
them, and outlines the operations they support. A summary of all objects is also g

15.4.5.1 The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and there
do not call on the security interfaces. This subsection is therefore mainly relevant
those applications that are aware of and utilize security. Facilities available to suc
applications are:

• Finding what security features this implementation supports.

• Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

• Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

• Making a secure invocation.

• Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

• Auditing application activities.

• Non-repudiation facility -- generation and verification of evidence so that action
cannot be repudiated.

• Finding the security policies that apply to this object.

The Security Service interfaces that are available to the application writer are prim
found in the SecurityLevel1, SecurityLevel2, NRservice, and SecurityAdmin
modules.

Finding Security Features

An application can find out what security features are supported by this secure o
implementation. It does this by calling on the ORB to get_service_information.
Information returned includes the security functionality level and options supporte
and the version of the security specification to which it conforms. It also includes
security mechanisms supported (though the ORB Security Services, rather than
applications, need this).
15-58 CORBAservices: Common Object Services Specification December 1998

15

s

im to

ribed

ser

It may
n is
Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained from Current .

If the principal has not been authenticated, but is only going to use public service
which do not require presentation of authenticated privileges, a Credentials object may
be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need h
be, then authentication is needed as shown in Figure 15-30.

Figure 15-30 Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is desc
here so that the process of Credentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the u
sponsor, and this calls on the Principal Authenticator object, which authenticates the
principal (in this case, the user) and obtains Credentials for it containing authenticated
identity and privileges.

The user sponsor represents the entry point for the user into the secure system.
have been activated, and have authenticated the user, before any client applicatio
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of a target object sponsor.

user

..

Principal
Authenticator Credentials Currentcreate

User
Sponsor Client

request

ORB
Security Service: v1.2 Security Architecture Dec. 1998 15-59

15

e
f
okes

nd
 and

t.

r
faces

nt,

used,

icated
e
Principal Authenticator

The Principal Authenticator object is the application-visible object responsible for th
creation of Credentials for a given principal. This is achieved in one of two ways. I
the principal is to be authenticated within the object system, the user sponsor inv
the authenticate operation of the Principal Authenticator object (and
continue_authentication if needed for multiexchange authentication dialogues).

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges a
information for establishing security associations. It provides operations to obtain
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active objec
Credentials are used on invocations and for non-repudiation.

There is an is_valid operation to check if the credentials are valid and a refresh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context at both client (both fo
object or non-object clients) and target objects. In a secure environment, the inter
SecurityLevel1::Current which is derived from CORBA::Current and
SecurityLevel2::Current which is derived from SecurityLevel1::Current , give access
to security information associated with the execution context. Current gives access to
the Credentials associated with the execution environment. Object invocations use
Credentials in Current , unless they have been overridden, by a security-aware clie
in the specific object reference being used for the invocation. If a user sponsor is
it should set the user’s credentials for subsequent invocations in Current . This may
also be done as the result of initializing the ORB when the user has been authent
outside the object system. This allows a security-unaware application to utilize th
credentials without having to perform any explicit operation on them.

At target and intermediate objects, other Credentials are also available via Current .

Handling Multiple Credentials

An application object may use different Credentials with different security
characteristics for different activities.
15-60 CORBAservices: Common Object Services Specification December 1998

15

ry,

ent

e a
lling

e
als. It

Figure 15-31Multiple Credentials

The Credentials::copy operation can be used to make a copy of the Credentials
object. The new Credentials object (i.e., the copy) can then be modified as necessa
using its interface, before it is used in an invocation.

When all required changes have been made, the Current::set_credentials operation
can be used to specify a different Credentials object as the default for subsequent
invocations.

At any stage, a client or target object can find the default credentials for subsequ
invocations by calling Current::get_credentials, asking for the invocation credentials.
These default credentials will be used in all invocations using object references in
which the invocation credentials have not been overridden.

Selecting Security Attributes

A client may require different security for different purposes, for example, to enforc
least privilege policy and so specify that limited privileges should be used when ca
particular objects, or collections of objects, and restrict the scope to which these
privileges are propagated. A client may also want to protect conversations with
different targets differently.

There are two ways to change security attributes for a principal:

1. Setting attributes on the credentials for that principal. If attributes are set on th
credentials, these apply to subsequent object invocations using those credenti
can therefore apply to invocations of many target objects.

2. Overriding attributes on the target object reference. Attributes thus set apply to
subsequent invocations, which this client makes using this reference.

copyCredentials Credentials Current

Object
(client or
target)

set_credentials(invocation credentials)

Copy
Security Service: v1.2 Security Architecture Dec. 1998 15-61

15

iated

t

pt

ay
o set

es
ct).

ded

e
ecified
 on

at
.

f

In both cases, the change applies immediately to further object invocations assoc
with these credentials or this object reference.

Figure 15-32 Changing Security Attributes

A wider range of attributes can be set on the credentials than on a specific objec
reference. Operations available include:

• set_privileges to set privileges in the credentials. The system will reject an attem
to set privileges if the calling principal is not entitled to one or more of the
requested privileges. There may be additional restrictions on which privileges m
be claimed if the caller is an intermediate in a delegated call chain attempting t
privileges on delegated Credentials.

• set_security_features to set such features as the quality of protection of messag
(and the credentials to use for future invocations when at an intermediate obje

Setting any of these attributes may result in a new security association being nee
between this client and target.

Note – This specification does not contain an operation to restrict when and wher
these privileges can be used in target objects or delegated, though this may be sp
in the future (see Appendix Section F.12, “Target Control of Message Protection,”
page 15-362).

A client may want to use different privileges or controls when invoking different
targets. It can do this by obtaining a new object reference using the
set_policy_overrides specifying the invocation credentials policy to be used with th
target, and then use the object reference thus obtained to carry out the invocation

A client may want to specify that a particular quality of protection applies only to
selected invocations of a target object. For example, it may want confidentiality o
selected messages. The client can do this by using set_policy_overrides, specifying a
QOP Policy on the new object reference. It can continue to use the original object
reference for those invocations where confidentiality is no longer required.

Client Credentials

Object

set_privileges

set_security_features

set_policy_override

for QOP Policy and Invocation Credentials Policy
15-62 CORBAservices: Common Object Services Specification December 1998

15

et
olicy
es
effect

 the

the

es
en
ess
ion
The set_policy_overrides operation returns a new object reference to the same targ
object as the one on which this operation is invoked. This new reference has the p
overrides set in it. Any invocations through this new reference will use the overrid
set in the reference. The creation of this newly annotated object reference has no
on the target object.

Equivalent get_ operations are also provided to permit an application to determine
security-specific options currently requested, for example get_attributes (privileges,
and other attributes such as audit id) and get_security_features on credentials objects.

The security features-, invocation credentials-, qop-, and mechanism-related policies
that are in effect on a given object reference can be obtained by using the get_policy
operation asking for the appropriate type of policy object.

Making a Secure Invocation

A secure invocation is made in the same way as any other object invocation, but
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current , and hence the Credentials there.

Figure 15-33Making a Secure Invocation

Note – For any given invocation, it is target and client security policy that determin
which (if any) ORB Security Services mediate that invocation. If the policy for a giv
invocation requires no security, then no services will be used. Similarly, if only acc
control is required, then only the ORB Security Service responsible for the provis
of access control will be invoked.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

target obj ref

Current
Security Service: v1.2 Security Architecture Dec. 1998 15-63

15

e

 the

s

ften
on.
nt, as
Security at the Target

At the target, as at the client, the Current object is the representative of the local
execution context within which the target object’s code is executing. The Current
object can be used by the target object, or by ORB and Object Service code in th
target object’s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

Figure 15-34Target Object Security

A security-aware target application may obtain information about the attributes of
principal responsible for the request by invoking the Current::get_attributes
operation. The target normally uses get_attributes to obtain the privilege attributes it
needs to make its own access decisions.

When Current::get_attributes is invoked from the target object it returns the attribute
from the incoming Credentials from the client. When Current::get_attributes is
invoked by a client the attributes from the Credentials of the user (e.g., the one that
was created by the PrincipalAuthenticator) is returned. Invoking
Credentials::get_attribute always returns the attributes contained in that Credentials
object.

Intermediate Objects in a Chain of Objects

When a client calls a target object to perform some operation, this target object o
calls another object to perform some function, which calls another object and so
Each intermediate object in such a chain acts first as a target, and then as a clie
shown in Figure 15-35 on page 15-65.

Target
Object

request

application
access decision

Current Credentials

get_attributes
15-64 CORBAservices: Common Object Services Specification December 1998

15

s
r the
n.
and
 the
ll be
Figure 15-35Security-unaware Intermediate Object

For a security-unaware intermediate object, Current has a reference to the security
context established with the incoming client. When this intermediate object invoke
another target, either the delegated credentials from the client or the credentials fo
intermediate object’s principal (or both) become the current ones for the invocatio
The security policy for this intermediate object governs which credentials to use,
the ORB Security Services enforce the policy, passing the required credentials to
target, subject to any delegation constraints. The intermediate object’s principal wi
authenticated, if needed, by the ORB Security Services.

A security-aware intermediate object can:

• Use the privileges of any delegated credentials for access control.

• Decide which credentials to use when invoking further targets.

• Restrict the privileges available via these credentials to further clients (where
security technology permits).

incoming request

Current

Credentials
(delegated and/or

object’s own)

Intermediate Object
(acts as target, then client)

to next targetrequest
Security Service: v1.2 Security Architecture Dec. 1998 15-65

15

e
rned,
 the
0),

). If

dify
ion.

 to
Figure 15-36 Security-aware Intermediate Object

After a chain of object calls, the target can call Current::get_attributes as previously
described. Note that this call always obtains the privilege and other attributes
associated with the first of the received credentials.

The target can use the received_credentials attribute of Current to get the incoming
credentials. This may be a list of one or more credential objects depending on th
authentication and delegation technology used. If more than one credential is retu
the first credential is that of the initiator. Other credentials are of intermediates in
chain. After composite delegation (see Section 15.3.6, “Delegation,” on page 15-3
the credentials are of the initiator and immediate invoker. After traced delegation,
credentials for all intermediates in the chain will be present (as well as the initiator
a target object receives a request which includes credentials for more than one
principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, mo
and then delegate them, though not all implementations will support this modificat
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute of Current), and then use Credentials::set_privileges to
modify them. Finally it can call Current::set_credentials to make the received
credentials the default ones for subsequent invocations. When the received_credentials
are passed to set_credentials, whether it is a delegation or not needs to be specified
the set_credentials operation, and it takes appropriate action.

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations to a specific target
object, it can do so by using the Object::set_policy_overrides operation to create a

incoming request

Current

received

Intermediate Object
(acts as target, then client)

to next targetrequest

credentials own
credentials

invocation
credentials

get_credentials set_credentials
15-66 CORBAservices: Common Object Services Specification December 1998

15

n the

ome
. In

other

,
 with

als,

dify

tions.
 target
ticated
They

rent

t as

ss

ke
er.

imilar
from
 as
copy of the object reference to the target with the required QOP set as override i
object reference thus obtained. The overridden QOP will apply to subsequent
invocations through this new reference.

The intermediate object may be a principal and wish to use its own identity and s
specific privileges in further invocations, rather than delegating the ones received
this case, it can call authenticate operation of the PrincipalAuthenticator to obtain the
appropriate credential, and then call Credentials::set_privileges to establish the
appropriate rights. After doing this, it can use Current::set_credentials to establish its
credential as the default for future invocations.

If the intermediate does not have its own individual Credential object (for example, as
it does not have an individual security name) but instead shares credentials with
objects, it can use the own_credentials attribute of Current to get a copy of the
Credentials (which will have been set up automatically). It can then do a
Credentials::copy and then a Credentials::set_privileges, etc. on these as appropriate
and then use it to obtain a new object reference for the object it intends to invoke,
invocation credentials policy overridden using the Credentials constructed above.

If it wants to use composite delegation with a modified version of its own credenti
it should call Current::set_credentials (specifying its own credentials) and the
required delegation mode before making the invocation. Note that this will not mo
the credentials shared with other objects.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invoca
The secure object system is aware of the mechanisms available to both client and
object and can choose an acceptable mechanism. However, some security-sophis
applications may need to know about, or even control the choice of mechanisms.
can get information on the mechanism policy currently in effect by using the
get_policy operation of the object reference. They can do invocations using a diffe
mechanism from the default by using the set_policy_overrides operation of the object
reference to obtain a new object reference with the desired mechanism policy se
override in it and use it for invocations that need the new mechanism.

Application Access Policies

Applications can enforce their own access policies. No standard application acce
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to ta
into account data values such as the amount of money involved in a funds transf

However, it is recommended that the application use an access decision object s
to the one used for the invocation access policy. This is to isolate the application
details of the policy. Therefore, the application should decide if access is needed
shown in Figure 15-37.
Security Service: v1.2 Security Architecture Dec. 1998 15-67

15

f
 it is

ccess
to
 to the

 using

dit

th
dit

ject

type
n

me,
nels.

Figure 15-37access_allowed Application

The application can specify the privileges of the initiating principal and a variety o
authorization data, which could include the function being performed, and the data
being performed on.

An application access policy can be used to supplement the standard invocation a
policy with an application-defined policy. Such a policy might, for example, take in
account the parameters to the request. In this case, the authorization data passed
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed
the domain structure as for other policies (see Section 15.4.5.2, “Administrative
Model,” on page 15-75). In this case, the application obtains the Access Policy object
as shown in Figure 15-38.

Figure 15-38get_policy Application

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Au
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated wi
domains and managed via the domain structure. No standard application-level au
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to ob
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event
and its success or failure, the audit_id and the time. (Management of such policies ca
generally be done using the interfaces for audit policy administration defined in
Section 15.6.5, “Audit Policies,” on page 15-144, by specifying new selectors,
appropriate to the application concerned.)

Whether or not the application uses an audit policy, it uses an Audit Channel object to
write the audit records. One Audit Channel object is created at ORB initialization ti
and this is used for all system auditing. Applications can use different audit chan

Access
Application

access_allowed

Object
Decision

CurrentApplication
get_policy(application access)
15-68 CORBAservices: Common Object Services Specification December 1998

15

aller.

dit

ectors
 the
ity

ice,
The way an Audit Channel object handles the audit records is not visible to the c
It may filter them, route them to appropriate audit trails, or cause event alarms.
Different Audit Channel objects may be used to send audit records to different au
trails.

Applications and system components both invoke the audit_write operation to send
audit records to the audit trail.

Figure 15-39audit_write Application

If an application is using an audit policy administered via domains, it uses an Audit
Decision object (see Section 15.5.7, “Security Audit,” on page 15-113) to decide
whether to audit an event. It can find the appropriate Audit Decision object using the
audit_decision attribute of Current as follows.

Figure 15-40Audit Decision Object

The application invokes the audit_needed operation of the Audit Decision object,
passing the values required to decide whether auditing is needed. (This set of sel
could include, for example, the type of event, its success or failure, the identity of
caller, the time, etc. See administration of audit policies in Section 15.5.7, “Secur
Audit,” on page 15-113.)

The audit channel to be used in conjunction with an audit policy object can be
identified to the audit policy object with an audit channel id. The Audit Decision
object uses this Audit Channel Id to gain access to the corresponding Audit Channel
and return it to the user. Thus the application can use an Audit Channel associated
with the application (and these can link into the system audit services). If so, the
application uses the audit_channel attribute of the Audit Decision object to find the
Audit Channel object to use. However, applications can create their own Audit
Channels with the help of the underlying audit service, and register their Audit
Channel Ids with the appropriate Audit Policy object. The association between the
Audit Channel Id and the audit channel is maintained by the underlying audit serv
which is not specified in this chapter.

Audit ChannelApplication
audit_write

Audit DecisionApplication
audit_needed

audit_channel Object

Current

audit_decision
Security Service: v1.2 Security Architecture Dec. 1998 15-69

15

sed

 on

of
d.
dence

s
e

luded

n

y (or

ntials

nd
Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be u
by default for messages or for non-repudiation evidence.

To do this, it can call Current::get_policy, and then the appropriate get_ operation of
the policy object obtained as defined in Section 15.6, “Administrator’s Interfaces,”
page 15-130 (if permitted).

Non-repudiation

The non-repudiation services in this specification provide generation of evidence
actions and later verification of this evidence, to prove that the action has occurre
There is often data associated with the action, so the service needs to provide evi
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It i
envisioned that delivery services will be implemented to deliver this evidence to wher
it is needed and evidence stores will be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not inc
in this specification.

Non-repudiation Credentials and Policies

Non-repudiation operations are performed on NRCredentials. As for any other
Credentials object, these hold the identity and attributes of a principal. However, i
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s ke
provide access to it) as needed to sign the evidence.

NRCredentials are available via the Current object as for other Credentials objects,
and support the operations defined for credentials previously described. The crede
to be used for non-repudiation can be specified using the set_credentials operation on
Current with a type of NRCredentials.

An application can set security attributes related to non-repudiation using the
NRCredentials::set_NR_features operation (this is similar to the typical usage of
Credentials::set_security_features).

Figure 15-41set_NR_features Operation

The set_NR_features can be used to specify, for example, the quality of protection a
the mechanism to be used when generating evidence using these credentials.

NRCredentialsApplication
set_NR_features
15-70 CORBAservices: Common Object Services Specification December 1998

15

ined

 be

be

lls the

able.

rated

ring
.

h is

e

n
es of

 the
the
nce,
By default, the features are those associated with the non-repudiation policy obta
by invoking Current::get_policy specifying Security::SecNonRepudiation. However,
non-repudiation policies may come from other sources. For example, the policy to
used when generating evidence for a particular recipient may be supplied by that
recipient.

There is an NRCredentials::get_NR_features operation equivalent to
set_NR_features.

Evidence generation and verification operations are also performed on NRCredentials
objects. These are described next.

Using Non-Repudiation Services

An application can generate evidence associated with an action so that it cannot
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism-specific.)

The application decides that it wishes to generate some proof of an action and ca
generate_token operation of an NRCredentials object.

Figure 15-42generate_token Operation

This evidence is created in the form of a non-repudiation token rendered unforge
Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.

Depending on the underlying cryptographic techniques used, the evidence is gene
as:

• A secure envelope of data based on symmetric cryptographic algorithms requi
what is termed to be a trusted third party as the evidence-generating authority

• A digital signature of data based on asymmetric cryptographic algorithms whic
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and th
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) may be required to complete the non-
repudiation information. A time reference is always provided with a non-repudiatio
token. A Notary service may be required to provide assurance about the properti
the data.

Complete Evidence

Non-repudiation evidence may have to be verified long after it is generated. While
information necessary to verify the evidence (e.g., the public key of the signer of
evidence, the public key of the trusted time service used to countersign the evide

NRCredentialsApplication generate_token
(e.g. proof of creation)
Security Service: v1.2 Security Architecture Dec. 1998 15-71

15

rily
be

side
l
ce.

e
n of

ure.

e
 two

t time

aring

tion
ing
the details of the policy under which the evidence was generated, etc.) will ordina
be easily accessible at the time the evidence is generated, that information may
difficult or impossible to assemble a long time afterward.

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence in
the evidence token itself. A token including both non-repudiation evidence and al
information necessary to verify that evidence is said to contain “complete” eviden

There may be policy-related limitations on the time periods during which complet
evidence may be formed. For example, Non-repudiation policy may permit additio
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signat

To facilitate the generation of complete evidence, the information returned from th
calls which verify evidence and request formation of complete evidence, includes
indicators (complete_evidence_before and complete_evidence_after) indicating the
earliest time at which complete evidence may usefully be requested and the lates
at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result in a
response declaring the evidence to be “conditionally valid.” This means that the
evidence is not invalid at the current time, but a future event (e.g., the signer decl
his key compromised) might cause the evidence to be invalid when complete.

Figure 15-43 on page 15-73 illustrates the policy considerations relating to genera
of complete evidence, and the sequence of actions involved in generating and us
complete evidence.
15-72 CORBAservices: Common Object Services Specification December 1998

15

is is

e, the
d to

s a
ence
Figure 15-43Non-repudiation Service

An application may receive a token and need to know what sort of token it is. Th
done using get_token_details. When the token contains evidence, get_token_details
can be used to extract details such as the non-repudiation policy, the evidence typ
originator’s name, and the date and time of generation. These details can be use
select the appropriate non-repudiation policy and other features (using
set_NR_features), as necessary for verifying the evidence. When the token contain
request to send back evidence to one or more recipients, then if appropriate, evid
can be generated.

(< >)

trusted time service
countersignature
window

user key repudiation window

Time

Non-Repudiation Service

event
data

evidence
token

evidence
token
with
trusted
timestamp

OK

complete_evidence_before complete_evidence_after

form_complete_evidence

form_
complete_
evidence

verify_
evidence

generate_
token

evidence
token

complete
Security Service: v1.2 Security Architecture Dec. 1998 15-73

15

n

n

hat

oes

t)
An application verifies the evidence using the verify_evidence operation.

Figure 15-44verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security informatio
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using Non-Repudiation for Receipt of Messages

An application receiving a message with proof of origin may handle it as shown i
Figure 15-45.

Figure 15-45Proof of Origin Message

• The application receives the incoming message with a non-repudiation token t
has been generated by the originator.

• The application now wishes to know the type of token that it has received. It d
this by calling the NRCredentials::get_token_details operation. The token may be:

• A request that evidence be sent back (such as an acknowledgment of receip

• Evidence of an action (such as a proof of creation)

• Both evidence and a request for further evidence.

• The application’s next action depends on which of the three cases applies.

• In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using
NRCredentials::generate_token.

Application NRCredentials
verify_evidence

NRCredentials NRCredentials

Application
Object

incoming request
with message plus
evidence, e.g., proof
of origin

deliver message
and evidence to
originator, e.g.,
proof of receipt

get_token_details
& verify_evidence,
e.g., proof of origin

generate_evidence,
e.g., proof of receipt
15-74 CORBAservices: Common Object Services Specification December 1998

15

dence

n

s

store
. It

he
s as

ins

ibed
• In the second case, the application retrieves the data associated with the evi
if it is outside the token, and verifies the evidence using
NRCredentials::verify_evidence, presenting the token alone or the concatenatio
of the token and the data.

• In the last case, the application verifies the received evidence by first calling
NRCredentials::verify_evidence, and then generating evidence if appropriate, a
in the first case.

• If the application receives a token that contains valid evidence, and wishes to
it for later use, it needs to make sure that it holds all the necessary information
may need to call NRCredentials::form_complete_evidence in order to get the
complete evidence needed when this could not be provided using the verify
operation.

• When the application has generated evidence as the result of a request from t
originator of the message, the application must send it to the various recipient
indicated in the NR token received.

Using Non-repudiation Services for Adjudication

Adjudication applications use the NRCredentials::verify_evidence operation, which
must return complete evidence to settle disputes.

15.4.5.2 Administrative Model

The administrative model described here is concerned with administering security
policies.

• Administration of security environment domains and security technology doma
may be implementation-specific, so it is not covered here. This means
administrating security-technology-specific objects is out of the scope of this
specification.

• Explicit management of nonsecurity aspects of domains is not covered.

Administrative activities covered here are:

• Creating objects in a secure environment subject to the security policies

• Finding the domain managers that apply to this object.

• Finding the policies for which these domain managers are responsible.

• Setting security policy details for these policy objects.

• Specifying which rights give access to which operations in support of access
policies.

The model used here is not specific to security, though the specific policies descr
are security policies.

Security Policies

Security policies may affect the security enforced:
Security Service: v1.2 Security Architecture Dec. 1998 15-75

15

n
ion

)

or

ty

ose

ts in

in

ol
not

l
.

• By applications. In general, enforcing policy within applications is an applicatio
concern, so it is not covered by this specification. However, where the applicat
uses underlying security services, it will be subject to their policies.

• By the ORB Security Services during object invocation (the main focus of this
specification).

• In other security object services, particularly authentication and audit.

• In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security-technology-specific.

This specification defines the following security policy types:

• Invocation access policy - The object that implements the access control policy f
invocations of objects in this domain.

• Invocation audit policy - This controls which types of events during object
invocation are audited, and the criteria controlling auditing of these events.

• Secure invocation policy - This specifies security policies associated with securi
associations and message protection. For example, it specifies:

• Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

• Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and th
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objec
the domain.

• Invocation delegation policy - This controls whether objects of the specified type
this domain, when acting as an intermediate in a chain, by default delegate the
received credentials, use their own credentials, or pass both.

• Application access policy - This policy type can be used by applications to contr
whether application functions are permitted. Unlike invocation policies, it does
have to be managed via the domain structure, but may be managed by the
application itself.

• Application audit policy - This policy type can be used by applications to contro
which types of application events should be audited under what circumstances

• Non-repudiation policy - Where non-repudiation is supported, a non-repudiation
policy has the rules for generation and verification of evidence.

• Construction policy - This controls whether a new domain is created when an
object of a specific type is created.
15-76 CORBAservices: Common Object Services Specification December 1998

15

ed for
y

B
he

y

not

ence
atory

nced

as

eded.
which
h is
rship,

type

 (i.e.,

ay be

Domains at Object Creation

Any object that is accessible through an ORB must have an object reference creat
it. This is often done as a part of the procedure for creating the object by a factor
object. When a new object reference is created in a secure environment, the OR
implicitly associates the object reference, and hence the associated object, with t
following elements forming its environment.

• One or more Security Policy Domains, defining all the policies to which the object
is subject.

• The Security Technology Domains, characterizing the particular variants of securit
mechanisms available in the ORB.

• Particular Security Environment Domains where relevant.

The application code involved in the creation of an object, and its reference may
need to be aware of security to protect the objects it creates, if the details are
encapsulated in a Factory object. Automatically making an object reference and h
the associated object a member of policy domains on creation ensures that mand
controls of enclosing domains are not bypassed.

The ORB will establish these associations when the creator of the object calls
PortableServer::POA::create reference or
PortableServer::POA::create_reference_with_id (see the Portable Object Adaptor
chapter of the Common Object Request Broker: Architecture and Specification) or an
equivalent. Some or all of these associations may subsequently be explicitly refere
and modified by administrative or application activity, which might be specifically
security-related but could also occur as a side-effect of some other activity, such
moving an object to another host machine.

In some cases, when a new object reference is created, a new domain is also ne
For example, in a banking system, there may be a domain for each bank branch,
provides policies for bank accounts at that branch. Therefore when a bank branc
created, a new domain is needed. As for a newly created object’s domain membe
if the application code creating the object and the object reference to it is to be
unaware of security, the domain manager must be created transparently to the
application. A construction policy specifies whether new objects reference of this
in this domain require a new domain.

This construction policy is enforced at the same time as the domain membership
by POA::create_reference* or equivalent). For details, see the Portable Object
Adaptor chapter of the Common Object Request Broker: Architecture and
Specification.

Other Domain and Policy Administration

Once an object reference has been created as a member of a policy domain, it m
moved to other domains using the appropriate domain management facilities (not
specified in this chapter).
Security Service: v1.2 Security Architecture Dec. 1998 15-77

15

urity

on to

, the
y

ion

ult

than

 to
Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These sec
policy objects are administered as defined in this specification.

The following diagram shows the operations needed by an administrative applicati
manage security policies.

Figure 15-46Managing Security Policies

Finding Domain Managers

An application can invoke the get_domain_managers operation on an object reference
to obtain a list of the immediately enclosing domain managers for that object (i.e.
object associated with the object reference). If these do not have the type of polic
required, a call can be made to get_domain_managers on one of these domain
managers to find its immediately enclosing domains.

Finding the Policies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by calling get_domain_policy on the
domain manager specifying the type of policy it wants (e.g., client-secure invocat
policy, application audit policy). This returns the Policy object needed to administer
the policy associated with this domain. Each Policy object supports the operations
required to administer that policy.

In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include defa
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See Appendix F, “Facilities Not in This Specification” on page
15-358.)

If the policy that applies to the domain manager’s own interface is required (rather
the one for the objects in the domain), then get_policy (rather than
get_domain_policy) is used.

Setting Security Policy Details

Having found the required security Policy object, the application uses its interface
set the policy.

Application
Object

Object
Reference

Domain
Manager

Policy
Object

get_domain_managers

get_domain_managers
get_domain_policy(policy type)

set_policy_option
15-78 CORBAservices: Common Object Services Specification December 1998

15

ify
ct
 it

on

ent

ns

jects
and

re of

ain,

 to
The operations available through the interface depend on the type of policy. For
example, the delegation policy only requires a delegation mode to be set to spec
delegation mode used when the object acts as an intermediate in a chain of obje
invocations, whereas an access policy will need to have an operation that makes
possible to specify who can access the objects.

Administrative interfaces are defined in Section 15.6, “Administrator’s Interfaces,”
page 15-130, for the standard policy types, which all ORBs supporting security
functionality Level 2 support.

Different administration may be needed if standard policies are replaced by differ
policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rights for Operation Access

The access policy is used to decide whether a user with specified privileges has
specified rights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operatio
of an interface. The administrator can set_required_rights on this object.

15.4.5.3 The Model as Seen by the Objects Implementing Security

Security is provided for security-unaware applications by implementation-level
security objects, which are not directly accessible to applications. These same
implementation objects are also used to support the application-visible security ob
and interfaces described in “The Model as Seen by Applications” on page 15-58
“Administrative Model” on page 15-75.

There are two places where security is provided for applications, which are unawa
security. These are:

1. On object invocation when invocation time policies are automatically enforced.

2. On object creation, when an object automatically becomes a member of a dom
and therefore subject to the domain’s policies.

Implementor’s View of Secure Invocations

Figure 15-47 on page 15-80 shows the implementation objects and services used
support secure invocations.
Security Service: v1.2 Security Architecture Dec. 1998 15-79

15

bject
er
B

nt
h the

l on

urity

Figure 15-47Securing Invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target o
to handle the security of the object invocation. They may be interspersed with oth
ORB services, though where message protection is used, this will be the last OR
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the clie
and target object, and hence the invocation. The ORB and ORB Services establis
binding between client and target object as defined in ORB Services, under
Section 15.4.2, “Structural Model,” on page 15-49. The ORB Security Services cal
the security services to provide the required security.

Security Policy

At the client, the security policies associated with it are accessed by the ORB Sec
Services using the Current::get_policy operation specifying the type of policy
required. At the client, the invocation policies that will be used for a specific

Client

request
request

ORB Core

Target
Object

target obj ref

Current

ORB Security
(and other)
Services

ORB Security
(and other)
Services

Current

Target
Policies

Client
Policies

Security
Services

Security
Services

Binding Binding
15-80 CORBAservices: Common Object Services Specification December 1998

15

licy.
ases,

e,
 the

rce
olicy

invocation through a specific object reference can be inspected using the get_policy
operation on that object reference. At the target, Current::get_policy is used in a
similar way to obtain the policy associated with the target object.

Figure 15-48get_policy Operation

Once the policy object has been obtained, the ORB Service uses it to enforce po
The operations used to enforce the policy depend on the type of policy. In some c
such as secure invocation or delegation, the ORB Service invokes a get_ operation of
the appropriate Policy object (e.g., SecureInvocationPolicy::get_association
_options, DelegationPolicy::get_delegation_mode) specifying the particular policy
options required (e.g., whether confidentiality is required, and the delegation mod
respectively). It then uses this information to enforce the policy, for example, pass
required policy options to the Vault to enforce.

Decision objects corresponding to certain policy objects include rules, which enfo
the policy. For example, an access decision object corresponding to the access p
object has the access_allowed operation which responds with a yes or no.

Specific ORB Security Services and Replaceable Security Services

The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 15-49 on page 15-82.

ORB
Security
Service

Current
Policy
Object

get_policy(type of policy)

manipulate policy
Security Service: v1.2 Security Architecture Dec. 1998 15-81

15

is

eed
tects

get

 if
y,

etc.
Figure 15-49ORB Security Services

Two ORB Security Services are shown:

1. The access control service, which is responsible for checking if this operation
permitted and enforcing the invocation audit policy for some event types.

2. The secure invocation service. On the client’s initial use of this object, it may n
to establish a security association between client and target object. It also pro
the application requests and replies between client and target object.

The security services they use are discussed next.

Access Policy

An Access Decision object is used to determine if a given operation on a specific tar
object is permitted. It is obtained by the ORB service using the access_decision
attribute of the Current object. Since the Access Decision objects are locality-
constrained, of necessity the access decision objects at the client and target are
distinct.

The ORB service invokes the access_allowed operation on the Access Decision object
specifying the operation required, the principal credentials to be used for deciding
this access is allowed, etc. This is independent of the type of access control polic
which may be discretionary using ACLs or capabilities, mandatory labels usage,

Client

reply request

ORB Core

Target
Object

Access
Control

Secure
Invocation

Access
Control

Secure
Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message
to protect
message

create create

replyrequest

ORB Security Services

Security Services
15-82 CORBAservices: Common Object Services Specification December 1998

15

al

s

future
ties

lient
t the

 this

on

.

The Access Decision object uses the access policy to decide what rights the princip
has by invoking the get_effective_rights operations on the appropriate Access Policy
object.

If the access policies use rights (rather than directly identifying that this operation is
permitted), the Access Decision object now invokes get_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compare
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the
to handle overlapping access policy domains as described in Appendix F, “Facili
Not in This Specification” on page 15-358.

Figure 15-50Access Decision Object

Vault

The Vault object is responsible for establishing the security association between c
and target. It is invoked by the Secure Invocation ORB Service at the client and a
target (using init_security_context and accept_security_context). The Vault creates
the security context objects, which are used for any further security operations for
association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in Section 15.5.3, “Authentication of Principals,”
page 15-90. Authentication of an intermediate object in a chain (or the principal
representing the object) may be done automatically by the Vault when an intermediate
object invokes another object.

The Vault , like the security context objects it creates, is invisible to all applications

Security Context

For each security association, a pair of Security Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Access
Policy

Required
Rights

Access
Decision

get_required_rightsget_effective_rights

access_allowed
Security Service: v1.2 Security Architecture Dec. 1998 15-83

15

tials

ible.

nd

lient
r the
 for

nd

urity
. This

a
e of
Security Context objects maintain the state of the association, such as the creden
used, the target’s security name, and the session key. The is_valid and refresh
operations are supported to check the validity of the context and refresh it if poss

Security Context objects provide operations for protecting messages for integrity a
confidentiality such as protect_message and reclaim_message.

They also have received_credentials and (received) security_features attributes, which
are made available via the Current object.

A security context can persist for many interactions and may be shared when a c
invokes several target objects in the same trusted identity domain. Although neithe
client nor target is aware of an “association,” it is an important optimizing concept
the efficient provision of security services.

Relationship between Implementation Objects for Associations

There is not always a one-for-one relationship between client-target object pairs a
security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a sec
context may be shared between this client’s calls on more than one target object
is normally the case if the target objects share a security name, as shown in
Figure 15-51 on page 15-85. Note that the Vault decides whether to use the same or
different security context based on the target security name (which may be the nam
an object or trusted identity domain).
15-84 CORBAservices: Common Object Services Specification December 1998

15

el”

he
Figure 15-51Target Objects Sharing Security Names

Implementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security
Policy, Environment, and Technology domains as described in “Administrative Mod
on page 15-75.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

For policy domains, the construction policy of the application or factory creating t
object is used as shown in Figure 15-52 on page 15-86.

Current

Client Target
Object

T3

Target
Object

T2

Target
Object

T1

obj ref
for T1

obj ref
for T2

obj ref
for T3

Current Current

Security
context for

C-S1

Security
context for

C-T3

Security
context for

C-T3

Security
context for

C-S1

Object sharing
security name S1

T3 messages

T2 messages

T1 messages
Security Service: v1.2 Security Architecture Dec. 1998 15-85

15

on

 to
lt

eded,
ect.

e has

ted

the
bject
 an
 with

ains
ote:
Figure 15-52Object Created by Application or Factory

The application (which may be a generic factory) object calls POA::create_reference
or equivalent to create the new object reference. The ORB obtains the constructi
policy associated with the object reference to be created. If the application that is
attempting to create the object reference is itself a CORBA object, then the ORB
attempts to obtain the construction policy associated with it. If the ORB is unable
obtain a construction policy for the object reference to be created, it uses a defau
construction policy, which does not create a new domain.

The construction policy controls whether, in addition to creating the specified new
object reference, the ORB must also create a new domain. If a new domain is ne
the ORB creates both the requested object reference and a domain manager obj

If a new domain is not needed and the application is itself not an object and henc
no domain associated with it, the ORB uses a default domain to place the newly
created object reference. In all cases a reference to the domain manager associa
with the newly created object reference can be obtained by calling
get_domain_managers on the newly created object’s reference (See the ORB
Interface chapter of the Common Object Request Broker: Architecture and
Specification).

If a new domain is created, the policies initially applicable to it are the policies of
enclosing domain, or an ORB-specific default set of policies in the case that the o
reference was created in a situation where there is no enclosing domain (e.g., by
application that is itself not a CORBA object and hence has no domain associated
it).

The calling application, or an administrative application later, can change the dom
to which this object belongs, using the domain management operations. Please n
these operations do not form a part of this specification.

Application

ORB

application’s
own object
reference

construction
policy
object

BOA::create or equivalent

get_policy(construction policy)

use policy
15-86 CORBAservices: Common Object Services Specification December 1998

15

are

iews

to

ing

ese
ry
ver,
ess is
15.4.5.4 Summary of Objects in the Model

The previous sections have described the various security-related objects, which
available to applications, administrators, and implementors.

Figure 15-53 shows the relationship between the main objects visible in different v
for three types of security functionality.

1. Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

2. Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

3. Accountability -- auditing of security-related events and using non-repudiation
generate and check evidence of actions.

Figure 15-53Relationship Between Main Objects

Credentials are visible to the application after authentication, for setting or obtain
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Policy objects have management operations to allow policies to be maintained. Th
operations depend on the type of policy. For example, management of a mandato
access control policy using labels is different from management of an ACL. Howe
at run-time, an access decision object is used, which has a standard “check if acc

Domain Manager

administration
objects

implementation
ORB services

implementation
security objects

application-
visible objects

authentication and
security association

authorization and
access control

accountability

Principal
Authenticator Current

Credentials

Secure Invocation

Vault Security
Context

Secure Invocation Policies

Delegation Policy

Access Policies

Access Decision

Access Control

Application
Access Decision

Invocation
Audit
Policy

Appl’n
Audit
Policy

Audit
Decision

Audit
Channel

Non-repudiation
Credentials

Audit
Decision

Audit
Channel
Security Service: v1.2 Security Architecture Dec. 1998 15-87

15

bject
time

re not
els of

een
be

ts,

ation
dard
he
allowed” operation, whatever the access control policy used. The access policy o
has the management operations, whereas the access decision object has the run
decision operations.

The diagram does not show:

• Application objects (client, target object, target object reference at the client).

• The ORB core (though the security ORB services it calls are shown).

• The construction policy object.

15.5 Application Developer’s Interfaces

15.5.1 Introduction

This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these
interfaces are used, see “Application Developer’s View” on page 15-47.

Please note that applications may be completely unaware of security, and therefo
need to use any of these interfaces. In general, applications may have different lev
security awareness. For example:

• Applications unaware of security, so that an application object, which has not b
designed with security in mind, can participate in a secure object system and
subject to its controls such as:

• Protection default quality of protection on object invocations.

• Control of who can perform which operations on which objects.

• Auditing of object invocations.

• Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

• Applications wanting some control of the security of its requests on other objec
for example, the level of integrity protection of the request in transit.

• Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

• Applications using more specialist security facilities such as non-repudiation.

Security operations use the standard CORBA exceptions. For example, any invoc
that fails because the security infrastructure does not permit it, will raise the stan
CORBA::NO_PERMISSION exception. A security operation that fails because t
feature requested is not supported in this implementation will raise a
CORBA::NO_IMPLEMENT exception. Any parameter that has inappropriate
values should be flagged by raising the CORBA::BAD_PARAM exception. No
security-specific exceptions are specified.
15-88 CORBAservices: Common Object Services Specification December 1998

15

e
ges

at
y or
ge

ies

ws:

s

e

ent
s

ll

hile
pable

s

 of
al

15.5.1.1 Security Functionality Packages

Two security functionality packages and one optional security functionality packag
are defined in this specification. In addition, the Security-Ready functionality packa
are also described in this and the two following sections.

Security Functionality Level 1 Package

Security functionality Package 1 provides an entry level of security functionality th
applies to all applications running under a secure ORB, whether aware of securit
not. This includes security of invocations between client and target object, messa
protection, some delegation, access control, and audit.

Generally, the security functionality is specified by administering the security polic
for the objects, and is mainly transparent to applications.

Security Functionality Level 1 Package includes operations for applications as follo
Current::get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 15.5.4, “The Credential
Object,” on page 15-94, and Section 15.5.9, “Access Control,” on page 15-117).

Security Functionality Level 2 Package

This security functionality level provides further security functionality such as mor
delegation options.

It also allows an application aware of security to have more control of the enforcem
of this security. Most of the interfaces specified in this section are only available a
part of this functionality level. Note that although implementations must support a
Level 2 interfaces in order to conform to Security Functionality Level 2, different
implementations of these interfaces may support different semantic extensions, w
maintaining the same core semantics; some implementations will therefore be ca
of enforcing a wider variety of policies than others.

Optional Functionality Package

The only specified optional facility specified here is non-repudiation. The interface
for this are specified in Section 15.5.11, “Non-repudiation,” on page 15-121.

It is possible to add other security policies to this specification, for example, extra
access or delegation policies, but these are not part of this specification.

15.5.1.2 Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice
security policies and mechanisms. Where possible, they are based on internation
standard interfaces. Several of the operations in the Credentials interface are based on
those of GSS-API.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-89

15

ation

 set of
ies. In
y.
ard
endix

dule

or
out

e

For
ay be

ess
Data Types

Many of the security data types used by applications are also used for implement
interfaces; therefore, these are defined in a separate module called Security. See
Appendix Section A.10, “General Security Data Module,” on page 15-283 for the
details of the data types used by the interfaces.

Some data types, such as security attributes and audit events, have an extensible
values, so the user can add values as required to meet user-specific security polic
these cases, a family is identified, and then a set of types or values for this famil
Family identifiers 0-7 are reserved for OMG-defined families, and therefore stand
values. More details of these families and associated data types are given in App
Section A.19, “Values for Standard Data Types” on page 15-307.

In the interface specifications in the rest of this section, data types defined in mo
Security are included without the qualifying Security:: for ease of readability. The full
definitions are included in Appendices A and B.

15.5.2 Finding Security Features

15.5.2.1 Description of Facilities

An application can find out what security facilities this implementation supports, f
example, which security functionality level and options it supports. It can also find
what security technology is used to provide this implementation.

The CORBA::ORB::get_service_information operation is used to determine what
security features are supported by this ORB (see the ORB Interface chapter of th
Common Object Request Broker: Architecture and Specification). To request
information about Security service the CORBA::ServiceType constant value,
CORBA::Security should be used. Refer to the constant definitions of type
CORBA::SecurityOptions in the IDL Security module in Appendix Section A.10,
“General Security Data Module” on page 15-283 to see the definition of various
service options relevant to security.

15.5.3 Authentication of Principals

15.5.3.1 Description of Facilities

A principal must establish its credentials before it can invoke an object securely.
many clients, there are default credentials, created when the user logs on. This m
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific
action. Even if user authentication is executed within the object system, it should
normally be done by a user sponsor/login client, which is separate from the busin
application client, so that business applications can remain unaware of security.
15-90 CORBAservices: Common Object Services Specification December 1998

15

ever,
ncipal
re

ated

pal

 be

as

, the

re

ject

with
In most cases, principals must be authenticated to establish their credentials. How
some services accept requests from unauthenticated users. In this case, if the pri
has no credentials at the time the request is made, unauthenticated credentials a
created automatically for it.

If the user (or other principal) requires authentication and has not been authentic
prior to calling the object system, the (login) client must invoke the Principal
Authenticator object to authenticate, and optionally select attributes for, the princi
for this session. This creates the required Credentials object and makes it available as
the default credentials for this client. Its object reference is also returned so it can
used for other operations on the Credentials. If the object system supports non-
repudiation, the credentials returned can be used for non-repudiation operations
specified in “Non-repudiation” on page 15-121.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multistep authentication method is used. In this case
authentication service will return information to the caller, which may be used in
further interactions with the user before continuing the authentication. So there a
both authenticate and continue_authentication operations of the Principal
Authenticator object.

There is no need for an application to explicitly authenticate itself to act as an
initiating principal prior to invoking other objects, as this will be performed
automatically if needed. However, it does need to be performed explicitly if the ob
wants to specify particular attributes.

The Principal Authenticator object is a locality-constrained object.

15.5.3.2 The SecurityLevel2::PrincipalAuthenticator Interface

This section describes the PrincipalAuthenticator interface that has the following
operations.

authenticate

This is called, for example, by a user sponsor to authenticate the principal and
optionally request privilege attributes that the principal requires during its session
the system. It creates a Credentials object including the required attributes.

AuthenticationStatus authenticate(
in AuthenticationMethod method,
in SecurityName security_name,
in Opaque auth_data,
in AttributeList privileges,
out Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-91

15

ot
 type

 or

s

Parameters

Return Value

The return parameter is used to specify the result of the operation.

continue_authentication

This continues the authentication process for authentication procedures that cann
complete in a single operation. An example of this might be a challenge/response
of authentication procedure.

AuthenticationStatus continue_authentication(
in Opaque response_data,

method The identifier of the authentication method used

security_name The principal’s identification information (e.g., login name).

auth_data The principal’s authentication information such as password
long term key.

privileges The privilege attributes requested.

creds Object reference of the newly created Credentials object. Not
fully initialized, therefore, unusable unless return parameter i
‘SecAuthSuccess.’

auth_specific_data Information specific to the particular authentication service
used

continuation_data If the return parameter from the authenticate operation is
‘SecAuthContinue,’ then this parameter contains challenge
information for authentication continuation.

‘SecAuthSuccess’ Indicates that the object reference of the newly created
initialized credentials object is available in the creds
parameter.

‘SecAuthFailure’ Indicates that authentication was in some way inconsistent
or erroneous, and therefore credentials have not been
created.

‘SecAuthContinue’ Indicates that the authentication procedure uses a
challenge/response mechanism. The creds contains the
object reference of a partially initialized Credentials
object. The continuation_data indicates details of the
challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information, the validity of which had expired (e.g.,
expired password). Credentials have therefore not been
created.
15-92 CORBAservices: Common Object Services Specification December 1998

15

n

nisms,
lso

in Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

Parameters

Return Value

The return parameter is used to specify the result of the operation.

15.5.3.3 Portability Implications

The authenticate and continue_authentication operations allow different
authentication methods to be used. However, methods available are dependent o
availability of underlying authentication mechanisms. This specification does not
dictate that particular mechanisms should be used. However, use of some mecha
(e.g., those involving hardware such as smart cards or finger print readers) may a
require use of device-specific objects so the client using such objects will not be

response_data The response data to the challenge.

creds Reference of the partially initialized Credentials object.
The Credentials object is fully initialized only when
return parameter is ‘SecAuthSuccess.’

continuation_data If the return parameter from the continue_authentication
operation is ‘SecAuthContinue,’ then this parameter
contains challenge information for authentication
continuation.

auth_specific_data Information specific to the particular authentication
service used.

‘SecAuthSuccess’ Indicates that the Credentials object whose reference was
identified by the creds parameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a
further challenge/response. The Credentials object whose
reference was identified in the creds parameter is still only
partially initialized. The continuation_data indicates
details of the next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). The Credentials object referred to by the creds
parameter is not valid.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-93

15

ded

done
used

and
ities
 this
e to

ntials

 a

h

 in

.5.6,

portable to systems which do not support such devices. It is therefore recommen
that use of both the authenticate operations described here and any device-specific
ones be confined to a user sponsor or login client, or that such authentication is
prior to calling the object system, where the credentials resulting from this can be
in portable applications.

15.5.4 The Credentials Object

15.5.4.1 Description of Facilities

A Credentials object represents a principal’s credential information for the session
therefore includes information such as that principal’s privilege attributes and ident
such as the audit id. (It also includes some security-sensitive data required when
principal is involved in peer entity authentication. However, such data is not visibl
applications.)

Credentials object is a locality-constrained object.

An application may want to:

• Specify security invocation options to be used by default whenever these crede
are used for object invocations.

• Modify the privilege and other attributes in the credentials, for example, specify
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of the Credentials object first, and then modify the
new copy.

• Inquire about the security attributes currently in the credentials, particularly the
privilege attributes.

• Check if the credentials are still valid or if they have timed out, and if so, refres
them.

Credentials objects are created as the result of:

• Authentication (see “Authentication of Principals” on page 15-90).

• Copying an existing Credentials object.

• Asking for a Credentials object via Current (see Section 15.5.6, “Security
Operations on Current,” on page 15-105).

The way these credentials are made available for use in invocations is described
Section 15.4, “Security Architecture,” on page 15-45, and defined in detail in
Section 15.5.5, “Operations on Object Reference,” on page 15-99, and Section 15
“Security Operations on Current,” on page 15-105.

Credentials used for non-repudiation also support further facilities as described in
Section 15.5.11, “Non-repudiation,” on page 15-121.
15-94 CORBAservices: Common Object Services Specification December 1998

15

e

e

 a
e of
e

r is

the

 set
nd
15.5.4.2 The SecurityLevel2::Credentials Interface

The following operations are in the Credential interface.

copy

This operation creates a new Credentials object, which is an exact duplicate (a “deep
copy”) of the Credentials object which is the target of the invocation. The return valu
is a reference to the newly created copy of the original Credentials object.

Credentials copy();

Parameters

None.

Return Value

An object reference to a copy of the Credentials object, which was the target of th
call.

destroy

This operation destroys the Credentials object that it is invoked on. In general, the
caller is always responsible for destroying its copy of the Credentials object after it is
done with it. When Credentials are used as “in” parameters the callee always makes
copy if needed. Then onwards the callee is responsible for managing the life-styl
the copy that it makes. In case of Credentials objects that are returned as a result, th
caller is responsible for destroying it. In case of “out” parameters, the callee is
responsible for creating it and the caller is responsible for destroying it. The calle
responsible for providing thread safety for Credentials parameters that are passed as
“in” parameters. They must ensure that no other thread modifies the object until
invoked operation is completed.

void destroy();

Parameters

None

Results

None. The Credentials object is destroyed.

set_security_features

This associates a set of security features with a Credentials object and sets each
feature to be “on” or “off.” The security features affect how a secure association is
up, such as what delegation mode to use, whether trust in the target is needed, a
what message protection is required.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-95

15

n in
ter,
nd

 this

 the

Some implementations may allow the security features to be set for communicatio
one direction only (i.e., for requests only, or replies only) via the direction parame
but this support is not required for compliant implementations. The request-only a
reply-only feature sets are treated as overrides to the “both” feature set. If an
unsupported direction is passed to set_security_features, the
CORBA::BAD_PARAM exception should be raised.

The value of a security feature set by this operation is used for invocations using
Credentials object (if this does not contravene the SecClientSecureInvocation policy
for that feature or the target’s invocation policy). Once associated with the Credentials
object, a feature may be turned “on” or “off” again with an additional call to
set_security_feature.

void set_security_features(
in CommunicationDirection direction,
in SecurityFeatureValueList security_features

);

Parameters

get_security_features

Returns the security features associated with the Credentials.

The direction parameter indicates which set of security features (i.e., those set for
request direction, the reply direction, or both) should be returned. Conforming
implementations are not required to support the “request” and “reply” directions. If an
unsupported direction is passed to get_security_features, the
CORBA::BAD_PARAM exception should be raised.

SecurityFeatureValueList get_security_features(
in CommunicationDirection direction

);

direction The communication direction (i.e., both, request, or reply)
to which the security feature should be applied. Normally
set to both.

security_features A sequence of required feature-value pairs. They may
indicate the delegation mode or a secure association
option such as a message protection requirement, or
whether trust in the target is needed. To set the feature on,
set the boolean value to TRUE; a value of FALSE is used
to turn off the feature.
15-96 CORBAservices: Common Object Services Specification December 1998

15

e

ate of
 set

such

Parameters

Return Value

A sequence of required feature-value pairs. A boolean value of TRUE indicates th
feature is on; a value of FALSE indicates the feature is off.

set_privileges

Used to request a set of privilege attributes (such as role, groups), updating the st
the supplied Credentials object. One of the attributes requested may be an attribute
reference, which causes a set of attributes to be requested.

Note – This operation can only be used to set privilege attributes. Other attributes,
as the audit identity, are generated by the system and cannot be changed by the
application.

boolean set_privileges(
in boolean force_commit,
in AttributeList requested_privileges,
out AttributeList actual_privileges

);

Parameters

direction The communication direction (i.e., both, request, or reply) to
which the security feature should be applied. Normally set to
both.

force_commit If true, the attributes should be applied immediately;
otherwise, attribute acquisition may be deferred to
when required by the system.

requested_privileges A set of (typed) privilege attribute values. One of
these may be a role name, which is an attribute set
reference used to select a set of attributes. (A null
attribute set requests default attributes.) Attributes can
include capabilities.

actual_privileges The set of (typed) privileges actually obtained.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-97

15

s. If
 has

ipal

he

Return Value

get_attributes

Used to get privilege and other attributes from the Credentials. It can be used to:

• Get privilege attributes, including capabilities, for use in access control decision
the principal was not authenticated, only one privilege attribute is returned. This
type Public and no meaningful value.

• Get other attributes such as audit or charging identities if available. (If the princ
is not authenticated, none of these are returned.)

AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

Return Value

The requested set of attributes reflecting the state of the Credentials.

is_valid

Credentials objects may have limited lifetimes. This operation is used to check if t
Credentials are still valid.

boolean is_valid(
out UtcT expiry_time

);

Parameters

TRUE Indicates that attributes can be set, and that the
actual_privileges parameter contains the complete set or
subset of those attributes requested. It is the responsibility
of the application programmer to interrogate the returned
attributes to determine their suitability.

FALSE Operation failed, Credentials were not modified.

attributes The set of security attributes (privilege attributes and
identities) whose values are desired. If this list is empty, all
attributes are returned.

expiry_time The time that the Credentials expire.
15-98 CORBAservices: Common Object Services Specification December 1998

15

nded
posed
ble

RB

cified

s is

n
Return Value

refresh

Allows the application to update expired Credentials.

boolean refresh ();

Parameters

None

Return Value

15.5.4.3 Portability Implications

The PrincipalAuthenticator::authenticate and Credentials::set_privileges operations
allow particular privilege attributes to be specified. The attributes supported by
different systems may vary according to security policies supported. It is recomme
that use of these interfaces be limited, so business application objects are not ex
to particular policy details (unless they need to be, as they are enforcing compati
security policies directly).

15.5.5 Operations on Object Reference

15.5.5.1 Description of Facilities

If the client application is unaware of security (for example, was written to use an O
without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is spe
by:

• The security policy set at the client by administrative action.

• The credentials used by the client.

• The security policy for the target object. Relevant security information about thi
made available to the client in the target’s object reference.

These policies include association options, any controls on whether this client ca
perform this operation on this target, and the quality of protection of messages.

TRUE The Credentials is still valid.

FALSE The Credentials is not valid anymore.

TRUE The Credentials were refreshed successfully.

FALSE The Credentials could not be refreshed.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-99

15

 one

s it
ns

wing

nt

n

ct

 the
ents.
ide
stion

g
r’s
art

n

at

sful

st be

.
The only visibility of security to most applications is that some operations will now
fail because they would breach security controls.

An application client unaware of security can communicate with a security-aware
and vice versa.

A client application aware of security can also specify what security policy option
wants to apply when communicating with this target object by performing operatio
on the target object’s reference and the binding object associated with it. The follo
operations are available on the target object reference.

• get_policy is used to find the policy of the specified type (including those releva
to security) for this object.

• get_domain_managers is used to obtain a list of domain managers that the give
object is associated with.

• set_policy_override is used to set overrides of default policies on individual obje
references.

Note – Although these operations are on the target object reference, the scope of
operation’s effect is the use of that reference itself, and not the object that it repres
That is, the act of obtaining a copy of an object reference with a new set of overr
policies set on it in no way affects the target object that the object reference in que
is associated with.

A target object can influence the security policy for incoming invocations by settin
security policies using the administrative operations in Section 15.6, “Administrato
Interfaces,” on page 15-130. This will affect the security information exported as p
of its object reference.

The default policies that can be overridden using the set_policy_overrides operation
are:

• QOP - the quality of protection that will be provided to any successful invocatio
using that object reference. The QOPPolicy object is the bearer of this policy.

• Invocation Credentials - the Credentials that will be used in invocations using th
object reference. The InvocationCredentialsPolicy object is the bearer of this
policy.

• Security Mechanisms - the mechanisms (one of) which must be used for succes
invocation using the object reference. The MechanismsPolicy object is the bearer of
this policy.

In order to set overrides, policy objects representing the new policies to be set mu
created using the factory operations provided for doing so in the
SecurityLevel2::Current interface. The set new policies to be used in
set_policy_overrides must be put in a PolicyList to pass to the operation, which will
return a new object reference with the new policy overrides set in it, if successful
15-100 CORBAservices: Common Object Services Specification December 1998

15

nes
t
 the
s

his

f

e
The policies currently associated with the object reference, including overridden o
can be accessed using the get_policy operation. This operation returns a Policy objec
of the appropriate type containing the current policy, which can be extracted from
readonly attribute in the Policy object interface. In addition to the standard policie
there is an additional policy object (SecurityFeaturesPolicy) provided to enable access
to the Security Features that are currently associated with the object reference. T
object is used in conjunction with the get_policy operation, and is not a legal policy
object to give as input to the set_policy_overrides operation.

Note – The application states its minimum security requirements. A higher level o
security may still be enforced as this may be required by security policy. Thus,
operationally, the default policies will actually be overridden only if the requested
overrides are consistent with the overall security policy.

15.5.5.2 Client-Side Invocation Policy Objects

There are four Policy objects that are bearers of the client-side invocation-related
policies. They are as follows:

QOP Policy

The QOP Policy object has the QOPPolicy interface shown below.

interface QOPPolicy : CORBA::Policy { // Locality-Constrained
readonly attribute Security::QOP qop;

};

This interface has a single readonly attribute qop which represents the policy in the
form of an enum value of type Security::QOP.

This object can be passed to set_policy_overrides to specify that a particular quality of
protection is required for messages sent using the object reference returned by th
set_policy_overrides operation. When this object is returned by the get_policy
operation it contains the quality of protection policy associated with this object
reference.

Mechanism Policy

The Mechanism Policy object has the MechanismPolicy interface shown below:

interface MechanismPolicy : CORBA::Policy {// Locality-Constrained
readonly attribute Security::MechanismTypeList mechanisms;

};

This interface has a single readonly attribute mechanisms which represents the policy
in the form of a Security::MechanismTypeList.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-101

15

 the

ject

ed by

h

res
of
This object can be passed to set_policy_overrides to request the use of one of a
specific set of mechanisms in invocation through the object reference returned by
set_policy_overrides operation. When this object is returned by get_policy it contains
the security association mechanisms available through this object reference.

Invocation Credentials Policy

The Invocation Credentials Policy object has the InvocationCredentialsPolicy
interface shown below:

interface InvocationCredentialsPolicy : CORBA::Policy {
// Locality- Constrained

readonly attribute CredentialsList creds;
};

This interface has a single readonly attribute creds which returns a list of Credentials
objects which will be used as invocation credentials for invocations through this ob
reference.

This object can be passed to set_policy_overrides to specify one or more Credentials
objects to be used when calling this target object using the object reference return
set_policy_overrides. For example, the client may want to make different privileges
available to different targets by choosing Credentials with the required privileges.
When this object is returned by get_policy it contains the active credentials that will be
used for invocations via this target object reference.

Security Features Policy

The Security Features Policy object has the SecurityFeaturesPolicy interface as shown
below:

interface SecurityFeaturesPolicy : CORBA::Policy {// Locality-Constrained
readonly attribute Security::SecurityFeatureValueList features;

};

This interface has a single readonly attribute features which returns a sequence of type
Security::SecurityFeatureValueList containing the features currently associated wit
this object reference.

This object cannot be passed to set_policy_overrides. When this object is returned by
the get_policy operation it contains the quality of protection and other security featu
which will apply to invocations via this object reference. It is a more efficient way
obtaining all the policy information related to security that is associated with this
object reference.

15.5.5.3 Security-Relevant Operations in the CORBA::Object Interface

These operations are defined in detail in the ORB Interface chapter of the Common
Object Request Broker: Architecture and Specification. A brief description is included
here to help users of the Security Services.
15-102 CORBAservices: Common Object Services Specification December 1998

15

ect.

, and
bers

 one
ciated
get_policy

This gets the security policy object of the specified type, which applies to this obj
This operation is also available on Current and is generally used there to get the
policies for the current object.

The get_policy operation is used on object references during administration. For
example, it may be used to get the policy for a domain.

CORBA::Policy get_policy(
in CORBA::PolicyType policy_type

);

Parameters

Return Value

Exceptions

get_domain_managers

Allows administration services (and applications) to retrieve the domain managers
hence the security and other policies applicable to individual objects that are mem
of the domain.

DomainManagersList get_domain_managers ();

Parameters

None.

Return Value

A list of immediately enclosing domain managers of this domain manager. At least
domain manager is always returned in the list since by default each object is asso
with at least one domain manager at creation.

policy_type The type of policy to be obtained.

policy A policy object of the type specified by the policy_type
parameter.

CORBA::BAD_PARAM Raised when the value of policy type is not valid
either because the specified type is not supported by
this ORB or because a policy object of that type is
not associated with this Object.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-103

15

ct

any

irst

local

rence

cates
bject
 with
ence

f
 any
ecurity
ay

he
set_policy_overrides

Makes it possible to override a subset of the policies that apply to a specific obje
reference. It takes two input parameters. The first parameter policies is a sequence of
references to Policy objects. The second parameter set_add of type
CORBA::SetOverrideType indicates whether these policies should be added onto
other overrides that already exist (CORBA::ADD_OVERRIDE) in the object
reference, or they should be added to a clean override-free object reference
(CORBA::SET_OVERRIDE). This operation associates the policies passed in the f
parameter with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. The associations last until the object refe
is destroyed or the process/capsule/ORB instance in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent dupli
of this new object reference apply to all invocations that are done through these o
references. The overridden policies apply even when the default policy associated
current is changed. It is always possible that the effective policy on an object refer
at any given time will fail to be successfully applied, in which case the invocation
attempt will fail and return a CORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);

Parameters

Return Value

A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add.

15.5.5.4 Portability Implications

The security features that can be set are generally ones supported by a variety o
security mechanisms. Applications using them will therefore be portable between
systems where the security mechanisms support these features. However, some s
mechanisms will not support all features. For example, they may not provide repl

policies A sequence of Policy objects that are to be associated with t
new copy of the object reference returned by this operation.

set_add Whether the association is in addition to (ADD_OVERRIDE)
or as replacement of (SET_OVERRIDE) any existing
overrides already associated with the object reference.
15-104 CORBAservices: Common Object Services Specification December 1998

15

ory

he

e
cific
e
t is

hich
te

ns in

ior.

t

about

ient
ions,
When
the
RB

 that
protection, or may not support confidentiality of application data (owing to regulat
controls). Applications should check the response when attempting to set security
features, and if a requested feature is not available, take suitable action.

15.5.6 Security Operations on Current

15.5.6.1 Description

The Current object represents service-specific state information associated with t
current execution context (see the ORB Interface chapter of the Common Object
Request Broker: Architecture and Specification); both clients and targets have Current
objects representing state associated with the thread of execution and the
process/capsule in which the thread is executing (their execution contexts).

The operations of the Current object is intended to return information pertaining to th
state associated with the current execution context. This includes information spe
to both the thread of execution that is used to invoke the operation, as well as th
process or capsule to which the thread belongs. State changes affecting state tha
associated purely with the thread and not with any broader execution context like
capsule (i.e., thread-specific) is lost, once the operation within the execution of w
this was done completes its execution, thus returning the thread to the ORB. Sta
changes to state associated with a broader execution context like a capsule (i.e.,
capsule-specific) on the other hand persists across multiple invocation of operatio
the target object, until it is further modified through operations of the Current object
or by other means.

The SecurityLevel1::Current and the SecurityLevel2::Current interfaces described in
this section contain operations of both types. In this section, each operation is
identified to be either thread-specific or process-specific to distinguish their behav

Note that a reference to the Current object representing the active execution contex
can be retrieved using the ORB::resolve_initial_references(“SecurityCurrent”)
operation (see the ORB Interface chapter of the Common Object Request Broker:
Architecture and Specification). In a secure ORB, the Current object includes
operations relevant to Security. The CORBA::Current object returned by the
resolve_initial_references operation can be narrowed to SecurityLevel1::Current or
SecurityLevel2::Current as desired.

These operations are described in this section and provide access to information
one or more of the following credentials:

• invocation credentials: These are the credentials at the client, used when this cl
invokes another object. There must always be credentials available for invocat
but setting these is generally done transparently to the business applications.
a user logs on, the user sponsor or other logon program normally sets this to
user’s credentials. If this is done outside the object system, it is picked up at O
initialization. At an intermediate object, its default value is either the received
credentials or the object’s own credentials, depending on the delegation policy
applies to that object.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-105

15

. An

s
le
d

of
On

ith
ion).

es
r for

 to

the

• own credentials: the credentials associated with the active object. A particular
object may have its own credentials or may share credentials with other objects
object’s own credentials are normally set up as the result of the object (or the
environment domain to which it belongs) being initialized.

• received credentials: the credentials received from the client of the invocation a
seen at the target object. Depending on delegation options, this may be a sing
Credentials object, or a list of credentials including those of both the initiator an
other principals in the chain.

• non-repudiation credentials: when non-repudiation is supported, the credentials
the initiating principal in whose name evidence is being generated or verified.
logon, or ORB initialization, these are normally set to the user’s credentials. At
other objects, they are set by default to their own credentials.

The operations provided are the following:

• get_attributes (thread-specific) obtain privilege and other attributes associated w
received credentials (which should be the user’s privileges when at the workstat

• received_credentials (thread-specific) attribute contains the credentials received
from the client.

• received_security_features (thread-specific), an attribute at the target application
that contains the security features of the message sent by the client.

• set_credentials (thread-specific) can specify the type of credentials. This chang
the credentials to be used in the future for invocation, as its own credentials, o
non-repudiation. These Credentials apply only to those object references in which
the invocations credentials have not been overridden.

• get_credentials (thread-specific) can obtain the credentials currently associated
with the Current object for invocation, non-repudiation. These credentials apply
those object references in which the invocation credentials have not been
overridden.

The application can also use the following:

• get_policy (capsule-specific) operation to find what security policies apply to it.

• own_credentials (capsule-specific) attribute containing the credentials owned by
application.

• required_rights_object (capsule-specific) attribute to discover which operations
require which rights.

• principal_authenticator (capsule-specific) attribute to get a reference to the
PrincipalAuthenticator object (which can be used to authenticate principals and
thus obtain Credentials objects for them).

• access_decision (capsule-specific) attribute to get a reference to the Access Decision
object.

• audit_decision (capsule-specific) attribute to get a reference to the Audit Decision
object.

• get_security_names returns the security name(s) for the target.
15-106 CORBAservices: Common Object Services Specification December 1998

15

 to an

e
d by

hen
ence.

al

es

It should be noted that when an application starts its execution and gains access
ORB using the ORB_init operation, it immediately gets a set of default policies and
credentials associated with it. Each thread executing in that capsule inherits thes
defaults and continues to be guided by them until any of the defaults are replace
the use of a set_* operation in the thread. Subsequently the new credentials and
features set using the set_* operation remain active until they are modified again by
further use of set_* operations or the thread terminates or leaves the capsule. The
corresponding get_* operations return the currently active credentials, policies,
features, and attributes associated with the thread.

It should further be noted that if the policies associated with any individual object
reference has been overridden using the Object::set_policy_overrides operation, then
the overridden policies take precedence over the corresponding thread policies, w
the said thread is used to carry out an object invocation using the said object refer

In addition to the operations enumerated above factory operations for creating loc
invocation policy objects that are also provided in Current .

• create_qop_policy

• create_mechanism_policy

• create_invoc_creds_policy

15.5.6.2 The SecurityLevel1::Current Interface

The following operations are available in the SecurityLevel1::Current interface.

get_attributes

This is a thread-specific operation that is used to get privilege (and other) attribut
from the client’s credentials. It is available in the security functionality Level 1 to
allow applications to enforce their own security policies without these applications
having to perform operations on credentials.

This operation can be used to get:

• Privilege attributes for use in access control decisions. If the principal was not
authenticated, only one privilege attribute is returned. This has type Public and no
meaningful value.

• Other attributes, such as audit or charging identities, if available.

At the client, this generally gets the user’s (or other principal’s) privileges. At the
target, it gets the received privileges.

AttributeList get_attributes(
in AttributeTypeList attributes

);
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-107

15

fy

sk

tion
ious
does
Parameters

Return Value

The set of attributes or identities reflecting the state of the Credentials.

15.5.6.3 The SecurityLevel2::Current Interface

The following operations are found in the SecurityLevel2::Current interface.

set_credentials

This operation pertains to the thread-specific state associated with the Current object.
Credentials are associated with Current for different types of use. Credentials are
automatically associated with Current by the object system at initialization,
authentication, and object invocation. However, the application may want to speci
particular credentials to use. The set_credentials operation sets the specified
credentials as the default ones for the following:

• Subsequent invocations made by that client. (SecInvocationCredentials)
This may be done to reduce the privileges available to that client by setting
credentials having fewer privileges. Also, an intermediate object can explicitly a
for the received credentials to be delegated by using the
Current::received_credentials as the specified credentials on set_credentials.

• Non-repudiation. (SecNRCredentials)
As for the invocation credentials, non-repudiation credentials may be set
transparently to the business application. The credentials used for non-repudia
may be the same as the credentials used for invocations. Note that in the prev
sentence the word “credentials” is used in the English sense of the word and it
not refer to a Credentials object.

void set_credentials(
in CredentialType cred_type,
in CredentialsList creds,
in DelegationMode del

);

attributes The set of security attributes (privilege attributes and
identities) whose values are desired. if this list is empty, all
attributes are returned.
15-108 CORBAservices: Common Object Services Specification December 1998

15

ciated

 the
ts of

if
e

an
e
 and
the

es
Parameter

Return Value

None

get_credentials

This thread-specific operation allows an application access to the credentials asso
with its execution environment. As for set_credentials, the application can ask for the
default credentials for future invocations or the ones used for non-repudiation.

An application will normally get invocation or other credentials when it wants to
modify them (for example, reduce the privileges available).

CredentialsList get_credentials(
in CredentialType cred_type

);

Parameters

Return Value

A CredentialsList.

received_credentials

At a target object, this thread-specific operation gets the credentials received from
client. If credentials representing more than one principal are received, the conten
these credentials depend on the delegation model in use. They may be:

• The credentials of the only principal identified, if simple delegation is used (or
the security technology used has merged the credentials of all the callers in th
chain).

• A list of credentials, if the credentials for different principals in a chain of calls c
be distinguished. Note that the number of credentials in this list depends on th
delegation option in use. There may be credentials for the initiator of the chain
the immediate invoker only, or credentials providing a trace of all principals in

cred_type The type of credential to be set (i.e.,
SecInvocationCredentials or SecNRCredentials).

creds The object reference of the CredentialsList, which is to
become the default

del The delegation mode for the credentials being set takes valu
of Delegate or NoDelegate.

cred_type The type of credential to be obtained.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-109

15

lly

her
is

s of

ature

pe
t
chain. The first entry in the chain is the “primary” principal’s credentials, norma
the credentials of the initiator of the chain. A Current::get_attributes returns the
privileges from these credentials.

At the user agent client, the received_credentials attribute is the user’s credentials.

readonly attribute CredentialsList received_credentials;

Return Value

A sequence of Credential object references received from the requester.

own_credentials

Any application owns a set of credentials which it obtains through the process of
authentication of the principal that initiates the execution of the program, and furt
from other credentials that such a principal might bestow upon the application. Th
attribute returns this set of credentials.

readonly attribute CredentialsList own_credentials;

Return Value

A sequence of Credentials object references owned by the application.

received_security_features

This thread-specific attribute at the target application provides the security feature
the message sent by the client.

readonly attribute SecurityFeatureValueList received_security_features;

Return Value

A sequence of feature-value pairs. A boolean value of TRUE indicates that the fe
is on; otherwise FALSE.

get_policy

This capsule-specific operation returns the policy object of the specified policy_ty
for the non CORBA object client from which it is invoked, or for the CORBA objec
from which it is invoked.

Policy get_policy(
in CORBA::PolicyType policy_type

);

Parameters

policy_type The type of policy to be obtained.
15-110 CORBAservices: Common Object Services Specification December 1998

15

re
the
his

d by

d

ty
Return Value

A policy object which can be used to interrogate the policy in force as defined in
Section 15.6, “Administrator’s Interfaces,” on page 15-130. For example, the secu
invocation policy would give the secure associations defaults for this object, and
delegation policy would say which credentials were delegated on invocations by t
object.

required_rights_object

This capsule-specific read-only attribute is the RequiredRights object available in the
environment. This object is rarely used directly by applications. It is generally use
Access Decision objects to find the rights required to use a particular interface;
however, it could be used directly by the application if it wishes to do all its own
access control, and base this on Rights.

readonly attribute RequiredRights required_rights_object;

Return Value

An object references to a RequiredRights object. The operations in the interface of
this object are defined in Section 15.6.4, “Access Policies,” on page 15-133.

principal_authenticator

This capsule-specific read-only attribute is the PrincipalAuthenticator object available
in the environment. It can be used by the application to authenticate principals an
obtain Credentials containing their privilege attributes.

readonly attribute PrincipalAuthenticator principal_authenticator;

Return Value

An object references to a PrincipalAuthenticator object. The operations in the
interface of this object are defined in Section 15.3.2, “Principals and Their Securi
Attributes,” on page 15-20.

access_decision

This capsule-specific read-only attribute is the AccessDecision object available in the
environment. It can be used by the application to obtain decisions regarding
accessibility of specific objects from this environment.

readonly attribute AccessDecision access_decision;

Return Value

An object references to an AccessDecision object. The operations in the interface of
this object are defined in Section 15.5.9, “Access Control,” on page 15-117.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-111

15

eeds

s

ts

curity

ty
audit_decision

This capsule-specific read-only attribute is the AuditDecision object available in the
environment. It can be used by the application to obtain information about what n
to be audited for the specified object/interface in this environment.

readonly attribute AuditDecision audit_decision;

Return Value

An object references to an AuditDecision object. The operations in the interface of thi
object are defined in Section 15.5.7, “Security Audit,” on page 15-113.

get_security_names

This operation is for use by security sophisticated applications. It is used by clien
who wish to determine which security names are associated with the target. It is
possible for different security names to be used for the target, depending on the
mechanism used for the target. The name may be shared by several objects.

SecurityMechandNameList get_security_names(
in Object)obj_ref

),

Parameters

Return Value

A list of pairs of values, each containing a security mechanism and associated se
name.

create_qop_policy

This operation is used to create a local QOP Policy object.

QOPPolicy create_qop_policy(
in Security::QOP qop

);

Parameters

Return Value

An object reference to a new QOP Policy object containing the protection value
specified in qop.

obj_ref The Object reference of the target object of which the securi
names are being sought.

qop A quality of protection specification.
15-112 CORBAservices: Common Object Services Specification December 1998

15

t

udit

g

y. It
create_mechanism_policy

This operation is used to create a local Mechanism Policy object

MechanismsPolicy create_mechanism_policy(
in Security::MechanismTypeList mechanisms

);

Parameters

Return Value

An object reference to a new Mechanism Policy object containing the mechanisms lis
given in the mechanism parameter.

create_invoc_creds_policy

This operation is used to create a local Invocation Credentials Policy object.

InvocationCredentialsPolicy create_invoc_creds_policy(
in CredentialsList creds

);

Parameters

Return Value

An object reference to a new Invocation Credentials Policy object containing the
Credentials passed through the creds parameter.

15.5.7 Security Audit

15.5.7.1 Description of Facilities

Auditing of object invocations is done automatically by the ORB according to the a
invocation policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit) for this application.

Applications can also audit their own security-relevant activities, where the auditin
performed by the ORB does not audit the required activities and/or data.

In this case, the application is responsible for enforcing the application audit polic
uses an audit_needed operation on the Audit Decision object for the policy to decide
which activities to audit.

mechanisms A list of mechanisms that are acceptable.

creds A list of Credentials.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-113

15

 the

 the

d in

rd
 be
 the
Audit information is passed to an Audit Channel object in the form of an audit record.
The audit record must contain, or be sufficient to identify:

• The type of event.

• The principal responsible for the action, identified by its credentials.

• Event-specific data associated with the event type. This will vary, depending on
event type.

• The time. This may or may not be secure.

It may also want to record some of the values used for selecting whether to audit
event, for example, its success or failure.

An application audit policy will specify the event families and event types as define
Section 15.6.5, “Audit Policies,” on page 15-144.

15.5.7.2 The SecurityLevel2::AuditDecision Interface

The Audit Decision object has the SecurityLevel2::AuditDecision interface. Its
operations described below, help specify what to audit. It is a locality-constrained
object.

The Audit Decision object is a locality-constrained object.

audit_needed

This operation on the Audit Decision object is used to decide whether an audit reco
should be written to the audit channel. The application specifies the event type to
checked and the values for the selectors, which the audit policy requires to make
decision.

boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

Return Value

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

TRUE If an audit record should be created and sent to the audit
channel.

FALSE If an audit record is not needed.
15-114 CORBAservices: Common Object Services Specification December 1998

15

h

n

fore,
ys be
he

er to

r. It
.

audit_channel

This attribute of the Audit Decision object provides the audit channel associated wit
this audit decision object.

readonly attribute AuditChannel audit_channel;

Return Value

The Audit Channel object associated with the Audit Decision object.

A standard audit policy is specified in Section 15.6, “Administrator’s Interfaces,” o
page 15-130, but if this is to be replaceable without ORB/interceptor changes, a
standard interface needs to be available for the ORB or interceptor to call. There
for replaceability, the selectors used on audit needed during invocation must alwa
the same (see value_list above), though not all of these need to be used in taking t
decision to audit, depending on policy. Note that the time is not passed over this
interface. If the selectors specified in the audit policy use time to decide on wheth
audit the event, the Audit Decision object should obtain the current time itself.

15.5.7.3 The SecurityLevel2::AuditChannel Interface

The single operation in the SecurityLevel2::AuditChannel interface is used to write
the audit records. The Audit Channel object is a locality-constrained object.

audit_write

This operation writes an audit record to the Audit Channel object, and hence the audit
trail. The audit trail is implementation-specific and outside the scope of this chapte
is expected to be an event service of some sort, such as a CORBA Event Service

void audit_write(
in AuditEventType event_type,
in CredentialsList creds,
in UtcT time,
in SelectorValueList descriptors,
in Opaque event_specific_data

);

Parameters

event_type The type of event being audited.

creds The credentials of the principal responsible for the event.
If no credentials are specified, the own_credentials
attribute associated with Current are used.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-115

15

ntify
annel

ed

dit
. For

r’s

Return Value

None.

audit_channel_id

A readonly attribute that contains the id of this audit channel, which is used to ide
it in the corresponding audit policy object. This is necessary because the audit ch
object itself has to be a locality-constrained object by virtue of the fact that the
audit_write operation passes a list of Credentials, a locality-constrained object, as a
parameter, while the audit policy object needs to be not thus constrained.

The audit channel identified by the audit_channel_id in the Audit Policy object is
actually associated with the Audit Channel interface by the Audit Decision object
when its audit_channel attribute is accessed.

readonly attribute AuditChannelId audit_channel_id;

Return Value

15.5.7.4 Portability Implications

An application relying on the system audit policies enforced at invocation time is
portable to different environments, although the audit policies themselves may ne
changing.

Applications with their own application audit policies are portable, providing the au
policy itself is portable and the selectors used are available in these environments
example, if selectors use privileges, the same ones must be available.

15.5.8 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

Security-aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 15.6, “Administrato
Interfaces,” on page 15-130.

time The time the event occurred.

descriptors A set of values to be recorded associated with the event in
the audit trail. These are often the same values as those
used to select whether to audit the event.

event_specific_data Data specific to a particular type of event, to be recorded
in the audit trail.

audit_channel_id The channel id of the audit channel.
15-116 CORBAservices: Common Object Services Specification December 1998

15

the

ify
rally
s, so
give
-

sion

an

e

ver
eck.

hes
t in
s, and
15.5.9 Access Control

15.5.9.1 Description of Facilities

Access policies for applications may be enforced in the following ways:

• Automatically by the ORB services on object invocation, to determine whether
caller has the right to invoke an operation on an object.

• By the application itself, to enforce further controls on who can invoke it to do
what.

• By the application to control access to its own internal functions and state.

This section is concerned with applications that wish to enforce their own access
controls, either supplementing the automatic controls on invocation or controlling
internal functions.

As explained in Access Policies under Section 15.3.4, “Access Control Model,” on
page 15-24, the decision on whether to allow such access may use the following:

• The principal’s credentials (which either contain its privilege attributes, or ident
the principal so these can be obtained). Using only the principal’s identity gene
requires that identity to be known at all targets, and leads to scalability problem
its use is depreciated. Use of the principal’s role or group(s) are more likely to
easier administration in large systems, as would security clearance. Enterprise
defined attributes can also be used when supported.

• The target’s control attributes such as an ACL or security classification.

• Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in
Section 15.6.3, “Security Policies Introduction,” on page 15-132) rather than
specify controls for individual operations.

• The security policy rules using this information as enforced by the access deci
function.

The access policies enforced automatically by the ORB during object invocation c
take into account the principal’s credentials, the target’s control attributes, the
operation and the time (though the time is not used in the standard access policy
defined in Section 15.6, “Administrator’s Interfaces,” on page 15-130). However, th
ORB does not use the parameters to the operation for controlling access. So, for
example, if there is a rule that only senior managers can authorize expenditure o
$5000, the application is likely to need its own function to perform the required ch

Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wis
to protect. It can do this in a way specific to its own particular functions or data, bu
some cases, it is possible to have a more generic way of handling access decision
in these cases, it may be possible to use a common access decision object with
common administration of the ACLs or other control attributes.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-117

15

 be

ally

on

tual
er an
15.5.9.2 The Access Decision Object

The access decision functionality is encapsulated in Access Decision objects. These
may require different information depending on, for example, the action or data to
controlled and the security policy rules as previously described. The Access Decision
object is a locality-constrained object.

The Access Decision object has the access_allowed operation as is used for enforcing
access policies in the ORB (see below). The input parameters to this should norm
specify:

• The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:

• The privileges of the initiator as supplied by a get_attributes operation on
Current (see “The SecurityLevel1::Current Interface” on page 15-107).

• A credentials object, which represents principal.

• A credentials list (the received_credentials), where access controls distinguish
initiator and delegate principals.

• Other information required by the access decision function, including:

• Application-level decisions on whether an invocation is permitted, the operati
and parameters passed in the request, and the object reference.

• Control of access to internal functions and data, the action, and relevant
parameters.

The return value from the access_allowed operation is either TRUE signifying access
is permitted, or FALSE signifying that it is not

It is recommended that where possible, access decisions are made by such Access
Decision objects (or at least separate internal functions) that hide details of the ac
security policy used, so the application does not need to know, for example, wheth
ACL or label-based policy is used.

15.5.9.3 The SecurityLevel2::AccessDecision Interface

The Access Decision object is a locality-constrained object. The AccessDecision
interfaces have the following single operation:

access_allowed

boolean access_allowed(
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
15-118 CORBAservices: Common Object Services Specification December 1998

15

of
d to

s are

e
those

Parameters

Return Value

15.5.9.4 Portability Implications

Portability of applications enforcing their own access controls is improved by use
Access Decision objects as previously described. The application then does not nee
know the particular rules used, and even which principal and object attribute type
used to decide whether access should be permitted. It can also hide whether the
principal’s credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.

Different systems may need to support different access control policies. By hiding
details of the access control rules used to enforce the policy behind a standard
interface, the application will generally be portable to environments with different
policies.

Applications that use their own specific code to make access decisions will only b
portable to systems that support the identity and privilege attribute types used in
decisions with the same syntax.

cred_list The list of Credentials associated with the request. The
list may be empty (in the case of unauthenticated
requests), it may contain only a single credential, or it
may contain several credentials (in the case of delegated
or otherwise cascaded requests). The Access Decision
object is presumed to have rules for dealing with all these
cases.

target The reference used to invoke the target object. The method
invoked.

operation_name The name of the operation being invoked on the target.

target_interface_
name

The name of the interface to which the operation being
invoked belongs. This may not be required in some
implementations and will only be required in cases in
which the operation being invoked does not belong to the
interface of which the target object is a direct instance.

boolean A return value of TRUE indicates that the request should
be allowed, otherwise FALSE.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-119

15

ribed
n of

y be

 in

into

r
obtain
ple,

ation
n
des

ibes

ng a

 can

 are

 the
15.5.10 Delegation Facilities

15.5.10.1 Description of Facilities

An operation on a target object may result in calls on many other objects as desc
in Section 15.3.6, “Delegation,” on page 15-30. An intermediate object in this chai
objects may:

• Delegate the credentials received (often containing the initiating principal’s
privileges) to the next object in the chain, so access decisions at the target ma
based on that principal’s privileges.

• Act on its own behalf, so use its own credentials when invoking another object
the chain.

• Supply privileges from both, so access decisions at the target object can take
account both the initiating principal’s privileges and where these came from.

Which of these delegation modes should be used depends on the application. Fo
example, a user might call a database object asking for some data, and this may
the data from a file that also contains data belonging to other users. In this exam
the database object would control access to the data using the user’s privileges,
whereas the filestore object would use the database’s privileges.

In general, the delegation mode used is specified by the administrator in the deleg
policy for objects of this type in this domain. However, a security-aware applicatio
can also specify the delegation mode it wants to use, as it may want different mo
when invoking different objects.

15.5.10.2 Operations

All the operations used for delegation are specified elsewhere. This section descr
how they are used during delegation.

An intermediate object can set the delegation mode for an invocation by performi
Credentials::set_security_features operation of the credentials object to be used for
the invocation (see Section 15.5.4, “The Credentials Object,” on page 15-94). This
be used to set the delegation mode to:

• SecNoDelegation, meaning use the intermediate’s object’s own credentials.

• SecSimpleDelegation, meaning use the credentials received from the client.

• SecCompositeDelegation, meaning use both.

The way the received and intermediate’s own credentials are combined in
SecCompositeDelegation is not defined. Depending on the implementation:

• The initiating principal’s and the intermediate’s own credentials are passed, and
available separately at the target.

• The received credentials and intermediate’s own credentials are combined, so
target sees only a single credentials object with privileges from each of these.
15-120 CORBAservices: Common Object Services Specification December 1998

15

le

ally

ite
try is
This

faces
ny

),
om

tes
kely
ble.

at
ple,

a)
• Credentials from all objects in the delegation chain are passed and are availab
separately to the target.

None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
Current::received_credentials (see “The SecurityLevel2::Current Interface” on
page 15-108), which a target object uses to find out who called it. The target norm
uses this to get privileges for use in access control decisions.

The Current::received_credentials attribute provides a CredentialsList, not just a
single Credentials object. This list will only have more than one entry after compos
delegation as defined above. If there is more than one entry in the list, the first en
that of the initiator in the chain, normally the main one used for access controls.
is also the one whose privileges are obtained via Credentials::get_attributes.

15.5.10.3 Portability Implications

Where possible, the delegation mode should be set using the administrative inter
to the delegation policy, so applications may delegate privileges (or not) without a
application-level code, and so be portable.

If an application sets its own delegation mode, it should be able to handle a
CORBA::NO_IMPLEMENT exception if SecCompositeDelegation is specified, as
this may not be supported.

If the application wants to enforce its own access policy, it should use an Access
Decision object (as described in Section 15.5.9, “Access Control,” on page 15-117
which hides whether access decisions utilize the initiator’s privileges separately fr
the delegate’s privileges.

However, where an application wants to provide specific checks which intermedia
have been involved in performing the original user’s operation, such checks are li
to depend on the delegation scheme and its implementation, and so not be porta

15.5.11 Non-repudiation

Non-repudiation is an optional facility.

15.5.11.1 Description of Facilities

The Non-repudiation Service provides evidence of application actions in a form th
cannot be repudiated later. This evidence is associated with some data (for exam
the amount field of a funds transfer document).

Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

• Token including the associated data

• Token without included data (but with a unique reference to the associated dat
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-121

15

tion
iation

.

will

ing a

ng

s

nd

tion

on-

.

 all
 not
ation

s
re

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudia
token (and the associated data, if not included in the token) can use the non-repud
Service to verify the evidence. Any holder of a non-repudiation token may store it
(along with the associated data, if not included in the token) for later adjudication

The non-repudiation interfaces support generation and verification of tokens
embodying several different types of evidence. It is anticipated that the following
be the most commonly used non-repudiation evidence token types:

• Non-repudiation of Creation prevents a message creator's false denial of creat
message.

• Non-repudiation of Receipt prevents a message recipient's false denial of havi
received a message.

Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information
(particularly keys) needed to generate and/or verify the evidence. Most operation
provided by the Non-repudiation Service are performed on NRCredentials objects.

Non-repudiation Service operations supported by the NRCredentials interface are as
follows.

• set_NR_features specifies the features to apply to future evidence generation a
verification operations.

• get_NR_features returns the features which will be applied to future evidence
generation and verification operations.

• generate_token generates a non-repudiation token using the current non-repudia
features. The generated token may contain:

• Non-repudiation evidence.

• A request, containing information describing how a partner should use the N
repudiation Service to generate an evidence token.

• Both evidence and a request.

• verify_evidence verifies the evidence token using the current non-repudiation
features.

• get_token_details returns information about an input non-repudiation token. The
information returned depends upon the type of the token (evidence or request)

• form_complete_evidence is used when the evidence token itself does not contain
the data required for its verification, and it is anticipated that some of the data
stored in the token may become unavailable during the interval between gener
of the evidence token and verification unless it is stored in the token. The
form_complete_evidence operation gathers the “missing” information and include
it in the token so that verification can be guaranteed to be possible at any futu
time.

The verify_evidence operation returns an indicator (evid_complete), which can be
used to determine whether the evidence contained in a token is complete. If a
token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.
15-122 CORBAservices: Common Object Services Specification December 1998

15
If complete evidence is always required, the call to form_complete_evidence can,
in some cases, be avoided by setting the form_complete request flag on the call to
verify_evidence; this will result in a complete token being returned via the evid_out
parameter.

15.5.11.2 Non-repudiation Service Data Types

The following data types are used in the Non-repudiation Service interfaces:

module NRservice {
typedef MechanismType NRMech;
typedef ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

typedef unsigned long DurationInMinutes;

const DurationInMinutes DURATION_HOUR = 60;
const DurationInMinutes DURATION_DAY = 1440;
const DurationInMinutes DURATION_WEEK = 10080;
const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
NRPolicyId policy_id;
unsigned long policy_version;
NRMech mechanism;

};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {
NRPolicyFeatures requested_policy;
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-123

15

y the

nce

 NR
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};
};

15.5.11.3 The NRservice::NRCredentials Interface

This section describes the Non-repudiation Service operations that are provided b
NRCredentials interface.

set_NR_features

When an NRCredentials object is created, it is given a default set of NR features,
which determine what NR policy will be applied to evidence generation and
verification requests.

Security-aware applications may set NR features to specify policy affecting evide
generation and verification. The interface for setting NR features is:

boolean set_NR_features(
in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features
);

Parameters

Return Value

get_NR_features

This operation is provided to allow security-aware applications to determine what
policy is currently in effect:

NRPolicyFeaturesList get_NR_features ();

Parameters

None

requested_features The non-repudiation features required.

actual_features The NR features that were set (may differ from those
requested depending on implementation).

TRUE The requested features were equivalent.

FALSE The actual features differ from the requested features.
15-124 CORBAservices: Common Object Services Specification December 1998

15

 in an
 is

Return Value

The current set of NR features in use in this NRCredentials object.

generate_token

This operation generates a non-repudiation token associated with the data passed
input buffer. Environmental information (for example, the calling principal’s name)
drawn from the NRCredentials object.

If the data for which non-repudiation evidence is required is larger than can
conveniently fit into a single buffer, it is possible to issue multiple calls, passing a
portion of the data on each call. Only the last call (i.e., the one on which
input_buffer_complete = true) will return an output token and (optionally) an
evidence check.

void generate_token(
in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check

);

Parameters

input_buffer Data for which evidence should be generated.

generate_evidence_type Type of evidence token to generate (may be
SecNoEvidence).

include_data_in_token If set TRUE, data provided in input_buffer will be
included in generated token; otherwise FALSE.

generate_request The output token should include a request, as
described in the request_features parameter.

request_features A structure describing the request. Its fields are
listed below:
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-125

15

lling
est as

r fail;

d
Return Value

None.

verify_evidence

Verifies the validity of evidence contained in an input NR token.

If the token containing the evidence to be verified was provided to the calling
application by a partner responding to the calling application’s request, then the ca
application should pass the evidence check it received when it generated the requ
a parameter to verify_evidence along with the token it received from the partner.

It is possible to request the generation of complete evidence. This may succeed o
if it fails, a subsequent call to form_complete_evidence can be made. Output
indicators are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by

requested_policy Non-repudiation policy to use when
generating evidence tokens in response
to this request

requested_evidence Type of evidence to be generated in
response to this request.

requested_evidence_
generators

Names of partners who should
generate evidence in response to this
request.

requested_evidence_
recipients

Names of partners to whom evidence
generated in response to this request
should be sent.

include_this_token_
in_evidence

If set true, the evidence token
incorporating the request will be
included in the data for which partners
will generate evidence. If set false,
evidence will be generated using only
the associated data (and not the token
incorporating the request).

input_buffer_complete True if the contents of the input buffer
complete the data for which evidence
is to be generated; false if more data
will be passed on a subsequent call.

nr_token The returned NR token.

evidence_check Data to be used to verify the requeste
token(s) (if any) when they are
received.
15-126 CORBAservices: Common Object Services Specification December 1998

15

n

 his
y be

 not
complete_evidence_before may be earlier than that specified by
complete_evidence_after; in this case it will be necessary to call
form_complete_evidence twice.

Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitive “SecNRValid” or “SecNRInvalid”;
sometimes “SecNRConditionallyValid” may be returned, depending upon the policy i
use. “SecNRConditionallyValid” will be returned if:

• The interval during which the generator of the evidence may permissibly declare
key invalid has not yet expired (and therefore it is possible that the evidence ma
declared invalid in the future), or

• Trusted time is required for verification, and the time obtained from the token is
trusted.

NRVerificationResult verify_evidence(
in Opaque input_token_buffer,
in Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Opaque output_token,
out Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

input_token_buffer Buffer containing (possibly a portion, possibly all of)
evidence token to be verified; buffer may also contain
data associated with evidence token (parsing of buffer in
this case is understood only by NR mechanism, see
get_token_details).

evidence_check The evidence check.

form_complete_
evidence

Set TRUE if complete evidence is required; otherwise
FALSE.

token_buffer_
complete

Set TRUE if the input_token_buffer completes the
input token; FALSE if more input token data remains to
be passed on a subsequent call.

output_token If form_complete_evidence was set to TRUE, this
parameter will contain complete evidence (and the
Return Value will be SecNRValid) or an “augmented”
but still incomplete evidence token, in which case
SecNRConditionallyValid is returned
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-127

15

st).

tion
te and
nce,

iated

Return Value

get_token_details

The information returned depends upon the type of the token (evidence or reque
The mechanism that created the token is always returned.

• If the input token contains evidence, the following is returned: the non-repudia
policy under which the evidence has been generated, the evidence type, the da
time when the evidence was generated, the name of the generator of the evide
the size of the associated data, and an indicator specifying whether the assoc
data is included in the token.

data_included_in_
token

Data associated with the evidence, extracted from input
token (may be null).

evidence_is_
complete

TRUE if evidence in input token is complete, otherwise
FALSE.

trusted_time_used TRUE if the evidence token contains a time considered
to be trusted according to the rules of the non-
repudiation policy. FALSE indicates that the security
policy mandates trusted time and that the time in the
token is not considered to be trusted.

complete_evidence_
before

If evidence_is_complete is FALSE and the return value
from verify_evidence is SecNRConditionallyValid, the
caller should call form_complete_evidence with the
returned output token before this time. This may be
required, for example, in order to ensure that the time
skew between the evidence generation time and the
trusted time service’s countersignature on the evidence
falls within the interval allowed by the current NR
policy.

complete_evidence_
after

If evidence_is_complete is FALSE and the return value
from verify_evidence is SecNRConditionallyValid, the
caller should call form_complete_evidence with the
returned output token after this time. This may be
required, for example, to ensure that all authorities
involved in generating the evidence have passed the last
time at which the current NR policy allows them to
repudiate their keys.

SecNRInvalid Evidence is invalid.

SecNRValid Evidence is valid.

SecNRConditionallyValid Evidence cannot yet be determined to be invalid
15-128 CORBAservices: Common Object Services Specification December 1998

15

 to

f the
names
een

g
input

d.

.

e

it

e
• If the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence
send back should be generated, the evidence type to send back, the names o
recipients who should generate and distribute the requested evidence, and the
of the recipients to whom the requested evidence should be sent after it has b
generated.

• If the input token contains both evidence and a request, an indicator describin
whether the partner’s evidence should be generated using only the data in the
token, or using both the data and the evidence in the input token.

void get_token_details(
 in Opaque token_buffer,
 in boolean token_buffer_complete,
 out string token_generator_name,
 out NRPolicyFeatures policy_features,
 out EvidenceType evidence_type,
 out UtcT evidence_generation_time,

out UtcT evidence_valid_start_time,
 out DurationInMinutes evidence_validity_duration,
 out boolean data_included_in_token,

out boolean request_included_in_token,
out RequestFeatures request_features

);

Parameters

Return Value

None.

token_buffer Evidence token to parse.

token_buffer_complete Indicator when the token has been fully provide

token_generator_name Principal name of token generator.

policy_features Describes the policy used to generate the token

evidence_type Type of evidence contained in the token (may b
SecNoEvidence).

evidence_generation_time Time when evidence was generated.

evid_validity_start_time Beginning of evidence validity interval.

evidence_validity_duration Length of evidence validity interval.

data_included_in_token TRUE if the token includes the data for which
contains evidence, otherwise FALSE.

request_included_in_token TRUE if the token includes a request, otherwis
FALSE.

evidence_generation_time Time when evidence was generated.
Security Service: v1.2 Application Developer’s Interfaces Dec. 1998 15-129

15

d

tion
se

nal

urity
form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be verifie
successfully with no additional data at any time during its validity period.

boolean form_complete_evidence(
in Opaque input_token,
out Opaque output_token,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

Return Value

15.6 Administrator’s Interfaces

This section describes the administrative features of the specification. Administra
specifies the policies that control the security-related behavior of the system. The
features form an ‘Administrator’s View,’ encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by conventio
applications that wish to be involved in administrative actions. ‘Administrator’ may
therefore refer to a human or system agent.

Most interfaces defined here are in Security Functionality Level 2, as Level 1 sec
does not include administration interfaces.

token_buffer Evidence token to be completed..

output_token The “augmented” evidence token may be complete.

trusted_time_used TRUE if the token’s generation time can be trusted,
otherwise FALSE. If trusted time is required by the policy
under which the evidence will be verified, and if this
indicator is not set, the evidence will not be considered
complete.

complete_evidence_
before

If the return value is FALSE, form_complete_evidence
should be called before this time.

complete_evidence_
after

If the return value is FALSE, form_complete_evidence
should be called after this time.

TRUE Evidence is now complete.

FALSE Evidence is not yet complete.
15-130 CORBAservices: Common Object Services Specification December 1998

15

ng
 that
tate
cess

em. It

 and
the

ment
ation

ins

ith it
cts,

jects

ans to

y.
bers
licy
tiple

y a
15.6.1 Concepts

15.6.1.1 Administrators

This specification imposes no constraints on how responsibilities are divided amo
security administrators, but in many cases an enterprise will have a security policy
restricts the responsibilities of any one individual. Also, legal requirements may dic
a separation of roles so that, for example, there are different administrators for ac
control and auditing functions.

Administrators are subject to the same security controls as other users of the syst
is expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls
auditing in the same way as other object invocations, so only administrators with
required administrative privileges will be able to invoke administrative operations.

This specification does not define administrative functions concerning the manage
of underlying mechanisms supporting the security services, such as an Authentic
Service, Key Distribution Service, or Certification Authority.

15.6.1.2 Policy Domains

Security administrators specify security policies for particular security policy doma
(for brevity, only the words in bold are used for the remainder of this section).

A domain includes an object, called the domain manager, which has associated w
the policy objects for this domain, and notionally contains zero or more other obje
which are domain members and subject to the policies specified by the policy ob
associated with the domain manager.

The domain manager records the membership of the domain and provides the me
add and remove members. The domain manager is itself a member of a domain,
possibly the domain it manages.

There are different types of policy objects for administering different types of polic
As described in “Security Policy Domains” on page 15-38, domains may be mem
of other domains, forming containment hierarchies. Because different kinds of po
affect different groups of objects, objects (and domains) may be members of mul
domains.

The policies that apply to an object are those of all its enclosing domains.

15.6.1.3 Security Policies

This specification covers administration of security policies, which are enforced b
secure object system in either of the following ways:
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-131

15

ies,

ject,

ject

he

ce
• Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principal’s credentials can be delegated.

• By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security polic
or the application can choose to manage its own policies in its own way.

Invocation time policies for an object can be applicable only when it is a target ob
or whenever it is acting as either a target object or a client.

Security policies may be administered by any application with the right to use the
security administrative interfaces. This is subject to the invocation access control
policy for the administrative interface.

15.6.2 Domain Management

The Domain Management facilities (defined in the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification) are used by the
Security Service as described in the following sections.

15.6.3 Security Policies Introduction

Invocation security policies are enforced automatically by ORB services during ob
invocation. These are:

• Invocation access policies (Security::SecClientInvocationAccess and
Security::SecTargetInvocationAccess, interface SecurityAdmin::AccessPolicy) for
controlling access to objects.

• Invocation audit policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit, interface SecurityAdmin::AuditPolicy)
control which operations on which objects are to be audited.

• Invocation delegation policies (Security::SecDelegation, interface
SecurityAdmin::DelegationPolicy) for controlling the delegation of privileges.

• Secure invocation policies (Security::SecClientSecureInvocation and
Security::SecTargetSecureInvocation, interface
SecurityAdmin::SecureInvocationPolicy) for security associations, including
controlling the delegation of client’s credentials, and message protection.

Different policies generally apply when an object acts as a client from when it is t
target of an invocation.

In addition to these invocation policies, there are a number of policy types, which
apply independently of object invocation. These are:

• Application access policy (Security::SecApplicationAccess, interface
SecurityAdmin::AccessPolicy), which applications may use to manage and enfor
their access policies.
15-132 CORBAservices: Common Object Services Specification December 1998

15

e

is

rface

or

ted.
licy
ible
d in

ent

tive

,

ext

d

ion.
• Application audit policy (Security::SecApplicationAudit, interface
SecurityAdmin::AuditPolicy), which applications can use to manage and enforc
their audit policies.

• Non-repudiation policies (Security::SecNonRepudiation, interface
SecurityAdmin::NRPolicy) determine the rules for the generation and use of
evidence.

There is also a policy concerned with the creation of object references, which is
enforced by POA::create_reference and variants thereof or equivalent operations. Th
is the construction policy (CORBA::SecConstruction) which controls whether a new
domain is created when an object of a specified type is created. (See the ORB Inte
chapter of the Common Object Request Broker: Architecture and Specification.)

Note – Policies associated with underlying security technology are not included. F
example, there are no policies for principal authentication as this is often done by
specific security services.

Operations are provided for setting all the types of security policies previously lis
In each case, these management operations permit administration of standard po
semantics supported by the interfaces defined in this specification. It is also poss
for implementors to replace the policy objects, the operations of which are define
this specification, with different policy objects supporting different semantics. In
general, such policy objects will also have management operations that are differ
from those defined in this specification.

15.6.4 Access Policies

There are two types of invocation access policies: 1) the Client Invocation Access
policy (Security::SecClientInvocationAccess) which is used at the client side of an
invocation, and 2) the Target Invocation Access policy
(Security::SecTargetInvocationAccess) which is used at the target side.

There is one policy type for application access. However, no standard administra
interface to this is specified, as different applications have different requirements.

Access Policies control access by subjects (possessing Privilege Attributes), to objects
using rights. Privilege Attributes have already been discussed (in Section 15.5,
“Application Developer’s Interfaces,” on page 15-88); rights are described in the n
section.

15.6.4.1 Rights

The standard Access Policy objects in a secure CORBA system implement access
policy using rights (though implementations may define alternative, non-rights-base
Access Policy objects).

In rights-based systems, Access Policy objects grant rights to PrivilegeAttributes. For
each operation in the interface of a secure object, some set of rights is required. Callers
must be granted these required rights in order to be allowed to invoke the operat
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-133

15

tions
ut
ons.

ce’s

es

any

er

re

ts

s, all

red

e

ed),
Secure CORBA systems provide a RequiredRights interface, which allows:

• Object interface developers to express the “access control types” of their opera
using standard rights, which are likely to be understood by administrators, witho
requiring administrators to be aware of the detailed semantics of those operati

• Access-control checking code to retrieve the rights required to invoke an interfa
operations.

A Required Rights object is available as an attribute of Current in every execution
context. Every Required Rights object will get and set the same information, so it do
not matter which instance of the RequiredRights interface is used. The required rights
for all operations of all secured interfaces are assumed to be accessible through
instance of RequiredRights.

Note that required rights are characteristics of interfaces, not of instances. All instances
of an interface, therefore, will always have the same required rights.

Note also that because required rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in ord
to assign required rights to their operations.

Rights Families

This specification provides a standard set of rights for use with the
DomainAccessPolicy interface defined later in this section. These rights may not
satisfy all access control requirements. However; to allow for extensibility, rights a
grouped into Rights Families. The RightsFamily containing the standard rights is
called “corba,” and contains four rights: “g” (interpreted to mean “get”), “ s”
(interpreted to mean “set”), “ m” (interpreted to mean “manage”) and “u” (interpreted
to mean “use”). Implementations may define additional Rights Families. Rights are
always qualified by the RightsFamily to which they belong.

15.6.4.2 The SecurityLevel2::RequiredRights Interface

A Required Rights object can be thought of as a table (an example Required Righ
table appears later in this section). Note that implementations need not manage
required rights on an interface-by-interface basis. Required Rights objects should be
thought of as databases of policy information, in the same way as Interface
Repositories are databases of interface information. Thus in many implementation
calls to the RequiredRights interface will be handled by a single Required Rights
object instance, or by one of a number of replicated instances of a master Requi
Rights object instance.

An operation’s entry in the Required Rights table lists a set of rights, qualified (or
“tagged”) as usual with the RightsFamily. It also specifies a Rights Combinator; the
rights combinator defines how entries with more than one required right should b
interpreted. This specification defines two Rights Combinators: AllRights (which
means that all rights in the entry must be granted in order for access to be allow
and AnyRight (which means that if any right in the entry is granted, access will be
allowed).
15-134 CORBAservices: Common Object Services Specification December 1998

15

rights
ins

ted
tion

to

ed
Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

• Assignment of initial required rights to newly created interfaces.

• Inheritance of required rights by newly created derived interfaces.

get_required_rights

This operation retrieves the rights required to execute the operation specified by
operation_name of the interface specified by obj. Additionally, obj’s interface will be
determined and used to retrieve required rights. The returned values are a list of
and a combinator describing how the list of rights should be interpreted if it conta
more than one entry.

void get_required_rights(
in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out RightsList rights,
out RightsCombinator rights_combinator

);

Parameters

Return Value

None.

set_required_rights

This operation updates the rights required to execute the operation specified by
operation_name of the interface specified by interface_name. The caller must provide
a list of rights and a combinator describing how the list of rights should be interpre
if it contains more than one entry. Note that consistency issues arising from replica
of Required Rights objects or distribution of the RequiredRights interface must be

obj The object for which required rights are to be returned.

operation_name The name of the operation for which required rights are
be returned.

interface_name The name of the interface in which the operation describ
by operation_name is defined, if this is different from the
interface of which obj is a direct instance. Not all
implementations will require this parameter; consult your
implementation documentation.

rights The returned list of required rights.

rights_combinator The returned rights combinator.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-135

15

his
y an

 of

to

e
handled correctly by implementations. After a call to set_required_rights changes an
interface’s required rights, all subsequent calls to get_required_rights, from any client,
must return the updated rights set.

void set_required_rights(
in string operation_name,
in CORBA::RepositoryId interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

);

Parameters

Return Value

None.

15.6.4.3 The SecurityAdmin::AccessPolicy Interface

This is the root interface for the various kinds of invocation access control policy. T
interface supports querying of the effective access granted by a set of attributes b
invocation access policy. It inherits the CORBA::Policy interface and has a single
operation, get_effective_rights.

get_effective_rights

This operation returns the current effective rights (of family RightsFamily) granted by
this Access Policy object to the subject possessing all privilege attributes in the list
attributes attrib_list .

RightsList get_effective_rights(
in AttributeList attrib_list,
in ExtensibleFamily rights_family

);

Parameters

operation_name The name of the operation for which required rights are
be updated.

interface_name The name of the interface whose required rights are to b
updated.

rights The desired new list of required rights.

rights_combinator The desired new RightsCombinator.

attrib_list A list of attributes obtained from one or more Credentials
using the get_attributes operation.

rights_family The family of rights that is desired as a return value.
15-136 CORBAservices: Common Object Services Specification December 1998

15

ore
is

gh

its
cess
This

in
cts in
r of at

ed

nted
Return Value

A list of effective rights that are consistent with the attrib_list and the access policy, of
the family specified by rights_family.

Note that this specification does not define how an Access Policy object combines
rights granted through different Privilege Attribute entries, in case a subject has m
than one Privilege Attribute to which the Access Policy grants rights. However, th
call will cause the Access Policy object to combine rights granted to all privilege
attributes in the input AttributeList (using whatever operation it has implemented),
and return the result of the combination.

Access Decision objects, and applications that check whether access is permitted
without using an Access Decision object, should use this operation to retrieve rights
granted to subjects.

15.6.4.4 Specific Invocation Access Policies

This specification allows different Invocation Access policies to be provided throu
specialization of the AccessPolicy interface.

The provider of each specific Invocation Access policy is responsible for defining
own administrative operations. This specification defines a standard Invocation Ac
policy interface, including administrative operations, presented in the next section.
standard policy may of course be replaced by, or augmented with, other policies.

15.6.4.5 The Domain AccessPolicy Object

The Domain Access Policy object with the SecurityAdmin::DomainAccessPolicy
interface provides discretionary access policy management semantics. CORBA
implementations with policy requirements, which cannot be met by the Domain Access
Policy abstraction, may choose to implement different Access Policy objects. For
example, they may choose to implement access control policy management using
capabilities.

Domains

This specification defines interfaces for administration of access policy on a doma
basis. Each domain may be assigned an access policy, which is applied to all obje
the domain. Each access-controlled object in a CORBA system must be a membe
least one domain.

A Domain Access Policy object defines the access policy, which grants a set of nam
“subjects” (e.g., users), a specified set of “rights” (e.g., g, s, m, u) to perform
operations on the “objects” in the domain. A Domain Access Policy can be represe
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-137

15

 with
 that

9.

ts in
cy’s

a

ve
hat
e

tes;

ntor
by a table whose row labels are the names of subjects, and whose cells are filled
the rights granted to the subject named in that row’s label, as in Table 15-2. Note
the use of the Delegation State is discussed in “Delegation State” on page 15-13

This Domain Access Policy grants the rights “g” and “s” to Alice and Zeke, and the
right “g” to Bob and Cathy. The annotation “corba” prefixing the granted rights
indicates which Rights Family, as defined in the previous section, each of the righ
the table is drawn from. In this case, all rights are drawn from Domain Access Poli
standard “corba” Rights Family. The delegation state column is described under
“Delegation State” on page 15-139.

Domain Access Policy Use of Privilege Attributes

Administration of principals by individual identity is costly, so the Domain Access
Policy aggregates principals for access control. A common aggregation is called
“user group.” This specification generalizes the way users are aggregated, using
“Privilege Attributes” (as defined in “Access Policies” on page 15-26). Users may ha
many kinds of privilege attributes, including groups, roles, and clearances (note t
user access identities, often referred to simply as “user identities” or “userids,” ar
considered to be a special case of privilege attributes). The Domain Access Policy
object uses Privilege Attributes as its subject entries.

This specification does not provide an interface for managing user privilege attribu
an implementation of this specification might provide a “User Privilege Attribute
Table” enumerating the set of users granted each Privilege attribute. An impleme
might provide a user privilege attribute table, shown next in Table 15-3.

Table 15-2DomainAccessPolicy

Subject Delegation State Granted Rights

alice initiator corba:gs--

bob initiator corba:g---

cathy initiator corba:g---

...

zeke initiator corba:gs--

Table 15-3User Privilege Attributes (not defined by this specification)

Users Privilege Attributes

bob, cathy group:programmers

zeke group:administrators
15-138 CORBAservices: Common Object Services Specification December 1998

15

ivilege
 the
ot

Given the definitions in Table 15-3, we can simplify our Domain Access Policy in
Table 15-4 (note that, for convenience, each PrivilegeAttribute entry is annotated in
Table 15-4 with its PrivilegeAttribute type).

Delegation State

The Domain Access Policy abstraction allows administrators to grant different rights
when a Privilege attribute is used by a delegate than those granted to the same Pr
attribute when used by an initiator (note that “initiator” means the principal issuing
first call in a delegated call chain; that is, the only client in the call chain that is n
also a target object). The Domain Access Policy shown next illustrates the use of this
feature.

In Table 15-5, this Domain Access Policy grants Alice the “g” and “s” rights when she
accesses an object as an initiator, but only the “g” right when a delegate using her
identity accesses the same object.

Domain Access Policy Use of Rights and Rights Families

The rights granted to a Privilege Attribute by a Domain Access Policy entry must each
be “tagged” with the RightsFamily to which they belong. Each Domain Access Policy
entry can grant its row’s PrivilegeAttribute rights from any number of different Rights
Families.

Implementations may define new Rights Families in addition to the standard “corba”
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administrator’s model of the system.

Table 15-4Domain Access Policy (with Privilege Attributes)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 15-5Domain Access Policy (with Delegate Entry)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--

access_id:alice delegate corba:g---

group:programmers initiator corba:g---

group:administrators initiator corba:gs--
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-139

15

n in

de

g the
et
Access Decision Use of AccessPolicy and RequiredRights

The Access Decision object is described in “The Access Decision Object” on
page 15-118. It is used at run-time to perform access control checks. Access Decision
objects rely upon Access Policy objects to provide the policy information upon which
their decisions are based.

To complete the example, imagine that we have the set of object instances show
Table 15-6..

The Domain Access Policy object illustrated in Table 15-7 has been updated to inclu
a list of rights of type “other” granted to each of the Privilege attributes..

Table 15-8 shows Required Rights for three object interfaces (c1, c2, and c3), usin
standard Rights Family “corba” and a second Rights Family, “other,” whose rights s
is assumed to be {g, u, o, m, t, s}.

Table 15-6Interface Instances

Objects Interface

obj_1, obj_8, obj_n c1

obj_2, obj_5 c2

obj_12 c3

Table 15-7Domain Access Policy (with Required Rights Mapping)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba: gs--
other: -u-m-s

access_id:alice delegate corba: g---
other: ------

group:programmers initiator corba: g---
other: -u----

group:administrators initiator corba: gs--
other: ------

Table 15-8Required Rights for Interfaces c1, c2, and c3

Required Rights
Rights
Combinator Operation Interface

corba:s all m1 c1

corba:gs any m2

other:u all m3 c2
15-140 CORBAservices: Common Object Services Specification December 1998

15

olicy.

 an

iator,

ay

s an

ator,

d

ator,

e

ingle
Using this, we can calculate the effective access granted by this Domain Access P

• alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as
initiator, but may execute only m2 as a delegate.

• alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an init
but may execute no operations of obj_2 and obj_5 as a delegate.

• alice can execute operations m5 and m6 of object obj_12 as an initiator, but m
execute no operations as a delegate.

• “programmers” can execute operation m2 of objects obj_1, obj_8, and obj_n a
initiator, but no operations as a delegate.

• “programmers” can execute operation m3 of objects obj_2 and obj_5 as an initi
but no operations as a delegate.

• “administrators” can execute operations m1 and m2 of objects obj_1, obj_8, an
obj_n as an initiator, but no operations as a delegate.

• “administrators” can execute operations m5 and m6 of object obj_12 as an initi
but no operations as a delegate.

15.6.4.6 The SecurityAdmin::DomainAccessPolicy Interface

The Domain Access Policy object provides operations for managing access policy
through the DomainAccessPolicy interface.

Each domain manager may have at most one Access Policy object, and therefore at
most one Domain Access Policy (though an object instance may have more than on
domain manager, and therefore, more than one Domain Access Policy). The
DomainAccessPolicy interface inherits the AccessPolicy interface and defines
operations to specify which subjects can have which rights as follows.

grant_rights

This operation grants the specified rights to the privilege attribute priv_attr in
delegation state del_state.

Utilities that manage access policy should use this operation to grant rights to a s
privilege attribute.

void grant_rights(
in Attribute priv_attr,

other:ms all m4

other: s all m5 c3

corba:gs all m6

Table 15-8Required Rights for Interfaces c1, c2, and c3

Required Rights
Rights
Combinator Operation Interface
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-141

15

ed to
in DelegationState del_state,
in ExtensibleFamily rights_family,
in RightsList rights

);

Parameters

Return Value

None.

revoke_rights

Revokes the specified rights of the privilege attribute priv_attr in delegation state
del_state.

Utilities that manage access policy should use this operation to revoke rights grant
a single privilege attribute.

void revoke_rights(
in Attribute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family,
in RightsList rights

);

Parameters

Return Value

None.

replace_rights

Replaces the current rights of the privilege attribute priv_attr in delegation state
del_state with the rights provided as input.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights_family The family of rights to be affected.

rights The list of rights to be granted.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights_family The family of rights to be affected.

rights The list of rights to be revoked.
15-142 CORBAservices: Common Object Services Specification December 1998

15

nted

ation

nted
Utilities that manage access policy should use this operation to replace rights gra
to a single privilege attribute in cases where using grant_rights and revoke_rights is
inappropriate. For example, replace_rights might be used to change an access_id’s
authorizations to reflect a change in job description (since the change in authoriz
in this case is related to the duties of the new job rather than to the current
authorizations granted to the user owning the access_id).

void replace_rights(
in Attribute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family,
in RightsList rights

);

Parameters

Return Value

None.

get_rights

Returns the current rights (of type RightsList) of the privilege attribute priv_attr in
delegation state del_state.

Utilities that manage access policy should use this operation to retrieve rights gra
to an individual privilege attribute.

RightsList get_rights(
in Attribute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family

);

Parameters

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights_family The family of rights to be affected.

rights The list of rights to be replaced.

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.

rights_family The family of rights to be affected.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-143

15

ily

r
for
ich

s of
useful

 in a

r

n

ion

ypes,
Return Value

A list of rights granted to the specified privilege attribute of the specified rights fam
in the specified delegation state.

15.6.5 Audit Policies

There are two invocation audit policies: 1) the SecClientInvocationAudit policy, which
is used at the client side of an invocation, and 2) the SecTargetInvocationAudit policy,
which is used at the target side. There is also an application audit policy type.

Audit policy administration interfaces are used to specify the circumstances unde
which object invocations and application activities in this domain are audited. As
access policies, this specification allows different audit policies to be specified, wh
may have different administrative interfaces.

Different audit policies are potentially possible, which allow a great range of option
what to audit. Some of these are needed to respond to the problem of getting the
information, without generating huge quantities of audit information.

Examples of what events could be audited during invocation include:

• Specified operations on objects.

• Failed operations (i.e., those that raise an exception) on specified object types
domain.

• Use of certain operations during certain time intervals (e.g., overnight).

• Access control failures on specified operations.

• Operations done by a specified principal.

• Combinations of these.

Note that many of these events may be related to the business application. For
example, an operation of update_bank_account is a business, rather than system,
operation. However, some events are mainly of interest to a Privilege administrato
(e.g., access failures to systems objects).

Application audit policies may audit similar types of events, though these are ofte
related to application functions, not object invocations.

15.6.5.1 The SecurityAdmin::AuditPolicy Interface

The AuditPolicy interface can be used to administer both client and target invocat
audit policies.

This standard audit policy is used to specify, for a set of event families and event t
the selectors to be used to define which events are to be audited.
15-144 CORBAservices: Common Object Services Specification December 1998

15

f

cified
These are related to the selectors used in audit_needed (of Audit Decision object,
interface AuditDecision) and audit_write (of Audit Channel object, interface
AuditChannel) as follows in Table 15-9.

Note that audit policy is managed on an audit policy domain basis. Assignment o
initial audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

The following operations are available on the Audit Policy object.

set_audit_selectors

This operation defines the selectors to be used to decide whether to audit the spe
event families and types.

void set_audit_selectors(
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

Parameters

Table 15-9Standard Audit Policy

Selector Type Value on audit_needed and
audit_write

Value Administered

InterfaceRef from object reference object type

ObjectRef object reference none - the policy applies to all
objects in the domain

Operation op_name operation

Initiator credential list security attributes (audit_id
and privileges)

Success
Failure

boolean boolean

Time utc when event occurred time interval during which
auditing is needed

object_type The type of objects for which an audit policy is being
set. If this is nil, all object types are implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.

selectors The values of the selectors to be used.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-145

15

Return Value

None.

clear_audit_selectors

Clears all audit selectors for the specified event families and types.

void clear_audit_selectors(
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,

);

Parameters

Return Value

None.

replace_audit_selectors

Replaces the specified selectors.

void replace_audit_selectors(
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

Parameters

Return Value

None.

object_type The type of objects for which an audit policy is being
cleared. If this is nil, all object types are implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.

object_type The type of objects for which an audit policy is being
replaced. If this is nil, all object types are implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.

selectors The values of the selectors to be used.
15-146 CORBAservices: Common Object Services Specification December 1998

15

.

tual

re set
get_audit_selectors

Obtains the current values of the selectors for the specified event family or event

SelectorValueList get_audit_selectors(
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,

);

Parameters

Return Value

A list of selector values.

set_audit_channel

Specifies the identity of the audit channel to be used with this audit policy. The ac
audit channel object corresponding to this id is provided to the user by the
corresponding Audit Decision object.

void set_audit_channel(
in AuditChannelId audit_channel_id

);

Parameters

Return Value

None.

15.6.6 Secure Invocation and Delegation Policies

These policies affect the way secure communications between client and target a
up, and then used. There are three policies here:

1. Security::SecClientSecureInvocation policy, which specifies the client policy in
terms of trust in the target’s identity and protection requirements of the
communications between them.

object_type The type of objects for which an audit policy is being
obtained. If this is nil, all object types are implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.

audit_channel_id A unique identifier associated with an audit channel.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-147

15

d
 and

olicy

et of
ow:

d
the

rity

ot
the
at is

tion
ing

, the

d
ct
ns
2. Security::SecTargetSecureInvocation policy, which specifies the target policy in
terms of trust in the client’s identity and protection requirements of the
communications between them.

3. Security::SecDelegation policy, which specifies whether credentials are delegate
for use by the target when a security association is established between client
target. This is a client-side policy.

In all these cases, there is a standard policy interface for administering the policy
options. Unlike access and audit policies, this is not replaceable. The standard p
administration operations allow support of a range of policies.

15.6.6.1 Secure Invocation Policies

These are used to set client and target invocation policies which specify both a s
required secure association options and a set of supported options that control h

• The security association is made, for example, whether trust between client an
target is established (implying authentication if the client and target are not in
same identity domain).

• Messages using that association are protected, for example, the levels of integ
and confidentiality.

The administrator should specify the required association options, but will often n
need to specify the supported options as these default to the ones supported by
security mechanism used. However, the administrator could choose to restrict wh
supported, and in this case, should specify supported options.

Some implementations may support separate sets of association options for
communications in the request direction and the reply direction (e.g., for an applica
that requires no protection on the request, but confidentiality on the reply). Conform
implementations are not required to support this unidirectional feature. Some
selectable policy options may not be meaningful to set for a certain direction (e.g.
EstablishTrustInTarget option is not meaningful for a reply).

Both SecClientSecureInvocation and SecTargetSecureInvocation type policy objects
support the same interface, though not all of the selectable policy options are
meaningful to both client and target.

Required and Supported Secure Invocation Policy

For both the SecClientSecureInvocation and SecTargetSecureInvocation policies, a
separate set of secure association options may be established to indicate require
policy and supported policy. The required policy indicates the options that an obje
requires for communications with a peer. The supported policy specifies the optio
that an object can support if requested by a communicating peer.

The required options indicate the minimum requirements of the object, stronger
protection is not precluded.
15-148 CORBAservices: Common Object Services Specification December 1998

15

.

.

es.

ages.

s of

nts of

te its

15.6.6.2 Secure Association Options

The selectable secure association options (Security::AssociationOptions) are listed
next with a description of their semantics for required policy and supported policy

NoProtection
• Required semantics: the object’s minimal protection requirement is unprotected

invocations.

• Supported semantics: the object supports unprotected invocations.

Integrity
• Required semantics: the object requires at least integrity-protected invocations

• Supported semantics: the object supports integrity-protected invocations.

Confidentiality
• Required semantics: the object requires at least confidentiality-protected

invocations.

• Supported semantics: the object supports confidentiality-protected invocations.

DetectReplay
• Required semantics: the object requires replay detection on invocation messag

• Supported semantics: the object supports replay detection on invocation mess

DetectMisordering
• Required semantics: the object requires sequence error detection on fragment

invocation messages.

• Supported semantics: the object supports sequence error detection on fragme
invocation messages.

EstablishTrustInTarget
• Required semantics: On client policy, the client requires the target to authentica

identity to the client. On target policy, this option is not meaningful.

• Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient
• Required semantics: On client policy, this option is not meaningful. On target

policy, the target requires the client to authenticate its privileges to the target.

• Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-149

15

t is

ns by

e

n in
ions

ple,

ingle

Note – On an invocation, if both the client and target policies specify that peer trus
needed, mutual authentication of client and target is generally required.

If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustInClient option may be set for supported policy, but not for required
policy. This allows unauthenticated clients to use this target (subject to access
controls); the target can still insist on only authenticated users for certain operatio
using access controls.

15.6.6.3 The SecurityAdmin::SecureInvocationPolicy Interface

The SecureInvocationPolicy interface provides the following operations:

set_association_options

This operation of the SecurityAdmin::SecureInvocationPolicy interface (PolicyType
SecClientSecureInvocation and SecTargetSecureInvocation) is used to set the secure
association options for objects in the domain to which the policy applies. Separat
options may be set for particular object types by using the object_type parameter.

This call allows requesting a different set of association options for communicatio
the request direction versus the reply direction, although conforming implementat
are not required to support this feature. The “request” and “reply” options sets are
treated as overrides to the “both” options set when evaluating policy for a single
communication direction. Implementations should raise the CORBA::BAD_PARAM
exception if an unsupported direction is requested on this call.

Not all selectable association options are meaningful for every policy set. For exam
EstablishTrustInClient , which is meaningful for the SecTargetSecureInvocation
policy, is not meaningful as a requirement for the SecClientSecureInvocation policy.
Likewise, certain association options do not make sense when applied to only a s
direction (e.g., EstablishTrustInTarget is not meaningful for communication in the
reply direction). An implementation may choose whether to raise an exception or
silently ignore requests for invalid association options.

void set_association_options(in CORBA::InterfaceDefobject_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options

);
15-150 CORBAservices: Common Object Services Specification December 1998

15

ct

d

d
Parameters

Return Value

None.

get_association_options

This is used to find what secure association options apply on
SecClientSecureInvocation and SecTargetSecureInvocation policy objects for the
required or supported policy, for the indicated direction, and for the specified obje
type.

Implementations should raise the CORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

AssociationOptions get_association_options(
in CORBA::InterfaceDef object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction

);

Parameters

Return Values

The association options flags set for this policy.

object_type The type of objects that the association options apply
to. If this is nil, all object types are implied

requires_supports Indicates whether the operation applies to the require
options or the supported options

direction Indicates whether the options apply to only the
request, only the reply, or to both directions of the
invocation.

options Indicates requested secure association options by
setting the corresponding options flags.

object_type The type of objects that the association options apply
to. If this is nil, all object types are implied

requires_supports Indicates whether the operation applies to the require
options or the supported options

direction Indicates whether the options apply to only the
request, only the reply, or to both directions of the
invocation.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-151

15

hain

his
15.6.6.4 The SecurityAdmin::DelegationPolicy Interface

The Delegation Policy object, which has the SecurityAdmin::DelegationPolicy
interface, controls which credentials are used when an intermediate object in a c
invokes another object.

set_delegation_mode

The set_delegation_mode operation specifies which credentials are delegated by
default at an intermediate object in a chain where objects invoke other objects. T
default can be overridden by the object at run time.

void set_delegation_mode(
in CORBA::InterfaceDef object_type,
in DelegationMode mode

);

Parameters

Return Value

None.

get_delegation_mode

Returns the delegation mode associated with the object.

DelegationMode get_delegation_mode(
in CORBA::InterfaceDef object_type

);

object_type The type of objects to which this delegation policy applies.

mode The delegation mode. Options are:

SecDelModeNo
Delegation

The intermediate’s own credentials
are used for future invocations.

SecDelModeSimple
Delegation

The initiating principal credentials
are delegated.

SecDelModeComposite
Delegation

Both the received credentials and
the intermediate object’s own
credentials are passed (if the
underlying security mechanism
supports this). The requester’s
credentials and the intermediate’s
own credentials may be combined
into a single credential, or kept
separate, depending on the
underlying security mechanism.
15-152 CORBAservices: Common Object Services Specification December 1998

15

y be
he

or

te

a

 time

ties
ach

l
ered

 time
ime
 or

the

the
Parameters

Return Value

The delegation mode of the object type specified by the object_type parameter.

15.6.7 Non-repudiation Policy Management

This section defines interfaces for management of non-repudiation policy.

Non-repudiation policies define the following:

• Rules for the generation of evidence, such as the trusted third parties which ma
involved in evidence generation, the roles in which they may be involved and t
duration for which the generated evidence is valid.

• Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised
revoked.

• Rules for adjudication, for example, which authorities may be used to adjudica
disputes.

The non-repudiation policy itself may be used by the adjudicator when resolving
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

For each type of evidence, a policy defines a validity duration and whether trusted
must be used to generate the evidence.

For each non-repudiation mechanism, a policy defines the set of trusted third par
(“authorities”), which may be used by the mechanism. A policy also defines, for e
mechanism, the maximum allowable “skew” between the time of generation of
evidence and the time of countersignature by a trusted time service; if the interva
between these two times is larger than the maximum skew, the time is not consid
to be trusted.

For each authority, a policy defines which roles the authority may assume, and a
offset, relative to evidence generation time, which allows computation of the last t
at which the authority can legitimately declare its key to have been compromised
revoked. For example, if an authority has a defined last_revocation_check_offset of
negative one hour, then all revocations taking effect earlier than one hour before
generation of a piece of evidence will render that evidence invalid; no revocation
taking place later than one hour before the generation of the evidence will affect
evidence’s validity. Note that the last_revocation_check_offset is inclusive, in the
sense that all revocations occurring up to and including the time defined by
generation_time + offset are considered effective.

object_type The type of object for which delegation mode is requested.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-153

15
15.6.7.1 Data Types for Non-repudiation Policy Management Interfaces

The following data types are used by the NR policy management operations.

module NRservice {

struct EvidenceDescriptor {
EvidenceType evidence_type,
DurationInMinutes evidence_validity_duration,
boolean must_use_trusted_time,

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name,
string authority_role,
TimeOffsetInMinutes last_revocation_check_offset
// may be >0 or <0; add this to evid. gen. time to
// get latest time at which mech. will check to see
// if this authority’s key has been revoked.

};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
NRMech mech_type,
AuthorityDescriptorList authority_list,
TimeOffsetInMinutes max_time_skew
// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;
};

15.6.7.2 The NRservice::NRPolicy Interface

The NRPolicy interface has the get_NR_policy_info and set_NR_policy_info
operations, and like all other Policy interfaces it derives from the CORBA::Policy
interface.

get_NR_policy_info

Returns information from a non-repudiation policy object.

void get_NR_policy_info(
 out ExtensibleFamily NR_policy_id,

out unsigned long policy_version,
15-154 CORBAservices: Common Object Services Specification December 1998

15

.

r

 out TimeT policy_effective_time,
 out TimeT policy_expiry_time,

out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

Parameters

Return Value

None.

set_NR_policy_info

Updates non-repudiation policy information.

boolean set_NR_policy_info(
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);

Parameters

Return Value

NR_policy_id The identifier of this non-repudiation policy.

policy_version The version number of this non-repudiation policy

policy_effective_time The time at which this policy came into effect.

policy_expiry_time The time at which this policy expires.

supported_evidence_
types

The types of evidence that can be generated unde
this policy.

supported_mechanisms The non-repudiation mechanisms which can be
used to generate and verify evidence under this
policy.

requested_mechanisms The non-repudiation mechanisms to be supported
under this policy.

actual_mechanisms The non-repudiation mechanisms now supported
under this policy.

TRUE The requested mechanisms were all set.

FALSE If the actual mechanisms returned differ from those
requested.
Security Service: v1.2 Administrator’s Interfaces Dec. 1998 15-155

15

curity

e
1,

nal
tion

on
nd
 to
rms

e

tor's
88,

urity

,
hen

g of
enial

ptors’
ces
15.7 Implementor’s Security Interfaces

This section addresses Security Service replaceability. This section defines the se
service interfaces that allow different security service implementations to be
substituted, whether or not the generic ORB service interfaces are supported (se
Section 15.7.2, “Implementation-Level Security Object Interfaces,” on page 15-16
for details).

Appendix D, “Guidelines for a Trustworthy System” on page 15-329, offers additio
guidance to implementors of secure ORBs, including a discussion of using protec
boundaries to separate components, depending on the level of security required.

The description of security interceptors in Section 15.7.1, “Security Interceptors,”
page 15-156 (particularly that in Invocation Time Policies), specifies how client- a
target-side policies and client preferences are used to decide what policy options
enforce. This definition of how the options are used applies whether the ORB confo
to the replaceability options or not. The interceptor facility that this is based on is
defined in the Interceptors chapter of the Common Object Request Broker: Architectur
and Specification.

None of the interfaces defined in this section affect the application and administra
views described in Section 15.5, “Application Developer’s Interfaces,” on page 15-
and Section 15.6, “Administrator’s Interfaces,” on page 15-130.

15.7.1 Security Interceptors

This section describes the interceptors that can be used for implementing the sec
services.

The ORB Services replaceability package requires implementation of two security
interceptors (see the Interceptors chapter of the Common Object Request Broker:
Architecture and Specification):

• Secure Invocation Interceptor. This is a message-level interceptor. At bind time
this establishes the security context required to support message protection. W
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

• Access Control Interceptor. This is a request-level interceptor, which determines
whether an invocation should be permitted. This interceptor also handles auditin
general invocation failures, but not related to denial of access (access-control d
failures are audited within the Access Decision object, which is called by this
interceptor to check access control).

This specification does not define a separate audit interceptor, as the other interce
implementations or the security service implementations call Audit Service interfa
directly if the events for which they are responsible are to be audited.
15-156 CORBAservices: Common Object Services Specification December 1998

15

le

 of

ssary
e

fore
sage-

ed
enting

ote
ssage-
The security interceptors implement security functionality by calling the replaceab
security service objects (defined later in this section) as shown in Figure 15-54.

Figure 15-54Security Functionality Implemented by Security Service Objects

The diagram shows the order in which security interceptors are called. Other
interceptors may also be used during the invocation. The order in which other
interceptors are called in relationship to security interceptors depends on the type
interceptor.

At the client:

• In general, the access control interceptor should be called first (to avoid unnece
processing of the request by other interceptors when permission to perform th
request is denied).

• All request-level interceptors (e.g., transaction or replication ones) are called be
the secure invocation interceptor, as the secure invocation interceptor is a mes
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invok
(because message protection may encrypt the request so that the code implem
a further interceptor will not understand it). Even if only integrity protection is
used, the integrity check will fail if the message has been altered in any way. N
that data compression and data fragmentation should be applied before the me
protection interceptor is called.

At the target, analogous rules apply to the interceptors in the reverse order.

reply request

ORB Core

Client

Control

Client

Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message

create create

replyrequest

Secure

Interceptors

 Access

Interceptors

Target

Control

Target

Invocation
Secure

Interceptors

 Access

Interceptors
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-157

15

ind
ocols

ent

:

d by

to

 at

ints

e

are
the

tor

h the
d by
e

get

 are

rity
ly
15.7.1.1 Invocation Time Policies

Interceptors decide what security policies to enforce on an invocation as follows:

• They call the SecurityLevel2::Current::get_policy operation defined in
Section 15.5, “Application Developer’s Interfaces,” on page 15-88, to find what
policies apply to this client (at the client side) or this target (at the target side).

• At the client side, the security hints in the target object reference are used to f
what policies apply to the target object and what security mechanisms and prot
are supported. This uses operations on the object reference.

• At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the client’s environm
are taken into account. The Secure Invocation interceptor uses
SecurityLevel2::Current::get_credentials and Object::get_policy.

The Current::get_policy operation may be used to get any of the following policies

• The invocation access policies of the current execution context. These are use
the access control interceptor to check whether access is permitted.

• The invocation audit policy. This is used by interceptors and security services
check whether to audit events during an invocation.

• The secure invocation policy. This is used by the secure invocation interceptor
bind time. It uses SecureInvocationPolicy::get_association_options as defined in
Section 15.6, “Administrator’s Interfaces. The secure invocation policies (and h
in the object reference) specify required and supported values. The interceptor
checks that the required values can be supported, and will not continue with th
invocation if the client’s requirements are not met. If the target’s requirements
not met, the invocation may optionally proceed, allowing policy enforcement at
target.

• The invocation delegation policy. This is used by the secure invocation intercep
at bind time. The interceptor calls SecureInvocationPolicy::get_delegation_mode
to retrieve this information.

15.7.1.2 Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, whic
client initiating the binding can use to securely invoke the target object designate
the object reference used in establishing the binding. At object invocation time, th
secure invocation interceptor is called to use the (previously established) security
context to protect the message data transmitted from the client to the invoked tar
object.

Please note that the remainder of this section assumes that security interceptors
implemented using the security services replaceability interfaces defined in this
specification; interceptors built for implementations which do not provide the secu
services replaceability interfaces will have similar responsibilities, but will obvious
make different calls.
15-158 CORBAservices: Common Object Services Specification December 1998

15

hich
 a
ty

ct of
e

t
t

n

s
ble
t and

and
t
also

ity
 of

e

he

e
It should also be noted that binding takes place implicitly and the exact point at w
it occurs can vary from one ORB to another. All that one can be certain of is that
binding exists when an invocation of an operation takes place. There is no certain
that the same binding will be used in subsequent invocations. Consequently, the
discussion that follows is about binding states and what must happen when the a
implicit binding is executed by the ORB. All reference to the term “Bind” should b
interpreted as such.

Bind Time - Client Side

The Secure Invocation interceptor’s client bind time functions are used to:

• Find what security policies apply.

• Establish a security association between client and target. This is done on firs
invoking the object, but may be repeated when changes to the security contex
occur.

Security policies relevant to this interceptor are the client-secure invocation and
delegation policies. To retrieve the invocation policy objects, the Secure Invocatio
interceptor calls the get_policy operation.

The interceptor checks if there is already a suitable security context object for thi
client’s use of this target. If a suitable context already exists, it is used. If no suita
context exists, the interceptor establishes a security association between the clien
target object (see “Establishing Security Associations” on page 15-22).

The client interceptor calls Vault::init_security_context to request the security
features (such as QOP, delegation) required by the client policy, client overrides,
target (as defined in its object reference). The Vault returns a security token to be sen
to the target, and indicates whether a continuation of the exchange is needed. It
returns a reference to the newly-created Security Context object for this client-target
security association. (The way trust is established depends on policy, the security
technology used, and whether both client and target object are in the same ident
domain. It may involve mutual authentication between the objects and negotiation
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the
security token, which must be transferred to the target to permit it to establish the
target-side Security Context object). The association establishment message may b
constructed in one of two ways:

1. When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in t
buffer (i.e., the request) supplied to the interceptor when it was invoked by
send_message. After constructing the association establishment message, the
interceptor invokes send, which results in the ORB sending the message to the
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind tim
calls Vault::accept_security_context to create the target Security Context object (if
needed).
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-159

15

 not

ther
calls

here
ity
uest)

ssage
72.

curity

e and

sult

otect

n in
2. When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does
include the object invocation in the buffer (i.e., the request), again using send. This
message is intercepted in the target and the Vault called to create the Security
Context object. However, in this case, the target interceptor must generate ano
security token and send it back to the client interceptor. The client interceptor
the Security Context object with a continue_security_context operation passing
the token returned from the target to check if trust has now been established. T
may be several exchanges of security tokens to complete this. Once the secur
association has been established, the original client object invocation (i.e., req
is sent in a separate association establishment message.

Details of the transformation to the request and the association establishment me
formats appear in Section 15.8, “Security Interoperability Protocols,” on page 15-1

Bind Time - Target Side

The secure invocation interceptor’s target bind functions:

• Find the target secure invocation policies.

• Respond to association establishment messages from the client to establish se
associations.

On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request messag
uses the Vault (if there is no security context object yet) or the appropriate Security
Context object to process the security token. As previously described, this may re
in exchanges with the client. Once the association is established, the message
protection function described next is used to reclaim the request message and pr
the reply.

Message Protection (Client and Target Sides)

The Secure Invocation Interceptor is used after bind time for message protection,
providing integrity and/or confidentiality protection of requests and responses,
according to quality of protection requirements specified for this security associatio
the active Security Context object.

The Secure Invocation Interceptor’s send_message method calls
SecurityContext::protect_message, and its receive_message method calls
SecurityContext::reclaim_message, in each case using the appropriate Security
Context object.
15-160 CORBAservices: Common Object Services Specification December 1998

15

e

ccess
icy.
 to

stem
l

does
kes
ded

e

anged

y
e the
e

ces
15.7.1.3 Access Control Interceptor

Bind Time

At bind time, the client access control interceptor uses Current::get_policy to get the
SecClientInvocationAccess policy and SecClientInvocationAudit policy. The target
access control interceptor uses the get_policy interface on the Current object to get th
SecTargetInvocationAccessPolicy and SecTargetInvocationAudit policy.

Access Decision Time

The Access Control Interceptor decides whether a request should be allowed or
disallowed.

Access control decisions may be made at the client side, depending on the client a
control policy, and at the target-side depending on the target’s access control pol
Target-side access controls are the norm; client-side access controls can be used
reduce needless network traffic in distributed ORBs. Note that in some ORBs, sy
integrity considerations may make exclusive reliance on client-side access contro
enforcement undesirable.

The Access Control Interceptor client_invoke and target_invoke methods invoke the
access_allowed method of the Access Decision object, specifying the appropriate
authorization data. The access decision returns a boolean specifying whether the
request should be allowed or disallowed.

The Access Control Interceptor does not know what sort of policy this Access Decision
object supports. It may be ACL-based, capability-based, label-based, etc. It also
not know if the Access Decision object uses the credentials exactly as passed, or ta
the identity from the credentials and uses these to find further valid privileges if nee
for this principal from a trusted source.

The Access Control Interceptor may also check if this invocation attempt should b
audited, by calling the audit_needed operation on the Audit Decision object; if this
call indicates that the invocation attempt should be audited, the Access Control
Interceptor uses the AuditChannel interface to write the appropriate audit record.

This interceptor does not transform the request. It either passes the request unch
to continue processing the request, or it aborts the request by returning with an
appropriate exception (e.g., CORBA::NO_PERMISSION if AccessDecision::
access_allowed returns False).

15.7.2 Implementation-Level Security Object Interfaces

The interfaces described in this section are all provided by the underlying securit
infrastructure and the Object Security Service is a client of these interfaces. Sinc
interfaces are internal to the ORB Security implementation, all these interfaces ar
locality-constrained.

This specification defines the following implementation-level security object interfa
to support security service replaceability:
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-161

15

ty

ide

ns.

r
y the

of

ains,

e not
ith
ent
• Vault is used to create a security context for a client/target-object association.

• Security Context objects hold security information about the client-target securi
association and are used to protect messages.

• Credentials object is used for passing Credentials information between the security
infrastructure and the ORB Security Services.

• Access Decision objects are used (usually by Access Control Interceptors) to dec
if requests should be allowed or disallowed.

• Audit Decision. objects are used to decide if events are to be audited.

• Audit Channel objects are used to write audit records to the audit trail.

• Principal Authenticator object is used for authenticating a principal.

• NRCredentials object is used for passing non-repudiation credentials informatio

While many of these objects have interfaces that are defined in the context of use
interfaces, the Security Replaceability versions of these objects are implemented b
underlying security infrastructure, and the ORB Security Services are the clients
these interfaces.

15.7.2.1 The Vault Object

The Vault object with the SecurityReplaceable::Vault interface facilitates establishing
security contexts between clients and targets when these are in different trust dom
so that authentication is required to establish trust. It is a locality-constrained object.
Implementations of the Vault are responsible for calling AuditDecision::audit_needed
to determine whether the audit policy requires auditing of successful and/or failed
access control checks, and for calling AuditChannel::audit_write whenever audit is
needed.

15.7.2.2 The SecurityReplaceable::Vault Interface

The Vault operations are described below. Note that if an invocation of a Vault
operation results in an incomplete Security Context (i.e., one which requires continued
dialogue to complete), the continuation of the dialogue is accomplished using the
interface of the incomplete Security Context object rather than the Vault interface.

init_security_context

This is used by the association interceptor (or the ORB if separate interceptors ar
implemented) at the client to initiate the establishment of a security association w
the target. As part of this, it creates the Security Context object, which will repres
the client’s view of the shared security context.

AssociationStatus init_security_context(
in CredentialsList creds_list,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
15-162 CORBAservices: Common Object Services Specification December 1998

15

s

ion

ly,

y

 in
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque mech_data,
in Opaque chan_bindings,
out Opaque security_token,
out SecurityContext security_context

);

Parameters

creds_list The credentials to be used to establish the security
association. There is normally only one credential
object: either the default ones from Current, or the one
specified in an override operation on the target object
reference. However, for composite, combined or traced
delegation, more than one credential object is needed.

target_security_name The security name of the target as set in its object
reference.

target The target object reference.

delegation_mode The mode of delegation to employ. The value is
obtained by combining client policy and application
preferences as described in Invocation Time Policies
under Section 15.7.1, “Security Interceptors,” on
page 15-156.

association_options A sequence of one or more pairs of secure associat
options and direction. The options include such things
as required peer trust and message protection. Normal
one pair will be specified, for the “both” direction.
Implementations that support separate association
options for requests and replies may supply an
additional options set for each direction supported.
These values are obtained from a combination of the
client’s security policy, the hints in the target object
reference, and any requests made by the application.

mechanism Normally NULL, meaning use default mechanism for
security associations. Otherwise, it contains the securit
mechanism(s) requested. (These may have been
obtained from the target object reference.)

mech_data Any data specific to the chosen mechanism, as found
the target object reference
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-163

15

uest

ity

he

e

 in

lly
d

e
Return Value

The return value is used to specify the result of the operation.

accept_security_context

This is used by the association interceptor (or ORB) at the target to accept a req
from the client to establish a security association. As part of this, it creates the
Security Context object, which will represent the target’s view of the shared secur
context.

AssociationStatus accept_security_context(
in CredentialsList creds_list,
in Opaque chan_bindings,
in Opaque in_token,
out Opaque out_token,
out SecurityContext security_context

);

Parameters

chan_binding Normally NULL (zero length). If present, they are
channel bindings as in GSS-API.

security_token The token to be transmitted to the target to establish t
security association. Note that this may take several
exchanges, but operations required at the client to
continue the establishment of the association are on th
Security Context object.

mech_data Any data specific to the chosen mechanism, as found
the target object reference

SecAssocSuccess Indicates that the security context has been successfu
created and that no further interactions with it are neede
to establish the security association.

SecAssocFailure Indicates that there was some error, which prevents
establishment of the association.

SecAssocContinue Indicates that the association procedure needs more
exchanges.

creds_list The credentials of the target. Note that this may be th
credentials of the trust domain, not the individual
object.

chan_bindings If present, the channel bindings are as in GSS-API.
15-164 CORBAservices: Common Object Services Specification December 1998

15

ptions

tions

urity

o

n

Return Value

get_supported_mechs

Returns the mechanism types supported by this Vault object and the association o
these support.

MechandOptionsList get_supported_mechs ();

Parameters

None.

Return Value

The list of mechanism types supported by this Vault object and the association op
they support.

15.7.2.3 The Security Context Object

A Security Context object with the SecurityReplaceable::SecurityContext interface
represents the shared security context between a client and a target. It is a locality-
constrained object. It is used as follows:

• By the security association interceptors to complete the establishment of a sec
association between client and target after the Vault has initiated this.

in_token The security token transmitted from the client.

out_token If establishment of the security association is not yet
complete, this contains the security token to be
transmitted to the client to continue the security
dialogue. Note that any further operations needed to
complete the security association are on the security
context object.

security_context The Security Context object at the target which
represents the shared security context between client
and target.

SecAssocSuccess Indicates that the security context has been successfully
created and no further interactions with it are needed t
establish the security association.

SecAssocFailure Indicates that there was some error that prevents
establishment of the association.

SecAssocContinue The first stage of establishing the security associatio
has been successful, but it is not complete. The
out_token contains the token to be returned to continue
it.
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-165

15

d/or

t of
n the
• By the message protection interceptors in protecting messages for integrity an
confidentiality.

• In response to a target object’s request to Current for privileges and other
information (sent from the client) about the initiating principal.

• In response to a target object’s request to Current to supply one (or more)
credentials object(s) from incoming information about principal(s).

• To check if the security context is valid, and if not, try and refresh it.

15.7.2.4 The SecurityReplaceable::SecurityContext Interface

The SecurityReplaceable::SecurityContext interface has the following attributes and
operations:

received_credentials

The received_credentials readonly attribute returns a list of Credentials that were
received from the invoker.

readonly attribute CredentialsList received_credentials;

Return Value

List of object references to receive credentials objects.

security_features

The security_features readonly attribute returns a list of security features that are
available in the SecurityContext.

readonly attribute SecurityFeatureValueList security_features;

Return Value

List security feature values.

continue_security_context

This operation is invoked by the association interceptor to continue establishmen
the security association. It can be called by either the client or target interceptor o
local security context object.

AssociationStatus continue_security_context(
in Opaque in_token
out Opaque out_token

);
15-166 CORBAservices: Common Object Services Specification December 1998

15

ge, or

t
Parameters

Return Value

protect_message

The protect_message operation of the Security Context object provides the means
whereby the client message protection interceptor may protect the request messa
the target interceptor may protect the response message for integrity and/or
confidentiality according to the Quality of Protection required.

void protect_message(
in Opaque message,
in QOP qop,
out Opaque text_buffer,
out Opaque token

);

Parameters

Return Value

None.

in_token The security token generated by the other one of the client-targe
pair and sent to this Security Context object to be used to
continue the dialogue between client and target to establish the
security association.

out_token If required, a further security token to be returned to the other
Security Context object to continue the dialogue.

SecAssocSuccess The security association has been successfully
established.

SecAssocFailure The attempt to establish a security association has
failed.

SecAssocContinue The context is only partially initialized and further
operations are required to complete authentication.

message The message for which protection is required.

qop Required message protection options.

text_buffer The protected message, optionally encrypted.

token The integrity checksum, if any.
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-167

15

onally

s
reclaim_message

The reclaim_message operation on the SecurityContext object provides the means
whereby a protected message may be checked for integrity and the message opti
decrypted if needed.

boolean reclaim_message(
in Opaque text_buffer,
in Opaque token,
out QOP qop,
out Opaque message

);

Parameters

Return Value

If the reclaim_message operation returns a value of FALSE, then the message has
failed its integrity check. If it returns a value of TRUE, the message has passed it
integrity check.

is_valid

The is_valid operation of the Security Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid(
out UtcT expiry_time

);

Parameters

Return Value

text_buffer The message for which the check is required and
optionally the message to be decrypted.

token The integrity checksum, if any. Will typically be zero
length if QOP indicates that confidentiality was applied.

qop The quality of protection that was applied to the protected
message.

message The unprotected message, decrypted if required.

expiry_time The time at which this context is no longer valid.

FALSE The context is no longer valid.

TRUE The context is still valid.
15-168 CORBAservices: Common Object Services Specification December 1998

15

ss
es,

n
refresh

May extend the useful lifetime of the SecurityContext. The precise behavior is
implementation-specific. The refresh operation may be called on both valid and
expired contexts.

boolean refresh ();

Parameters

None.

Return Value

If the refresh operation returns a value of FALSE, then the context could not be
refreshed. In this case, the caller should acquire a new context using the
Vault::init_security_context interface. If TRUE, the context was successfully
refreshed.

15.7.2.5 The Credentials Object

The Credentials object with the SecurityLevel2::Credentials interface, as defined in
Section 15.5.4, “The Credentials Object,” on page 15-94, is used to pass Credentials
information between the underlying security mechanisms and the ORB Security
Services.

15.7.2.6 The Access Decision Object

The Access Decision object is responsible for determining whether the specified
credentials allow this operation to be performed on this target object. It uses acce
control attributes for the target object to determine whether the principal’s privileg
obtained from the Security Context are sufficient to meet the access criteria for the
requested operation. Access Decision objects have the SecurityLevel2::AccessDecision
Interface as described in “The Access Decision Object” on page 15-118.

15.7.2.7 Audit Objects

There are two types of audit objects:

1. The Audit Decision object, which has the SecurityLevel2::AuditDecision interface,
is used to find out whether an action needs to be audited. Similar audit decisio
objects are used for all audit policies.

2. The Audit Channel object, which has the SecurityLevel2::AuditChannel interface,
is used by many of the implementation components (such as interceptors and
security objects) and also used by applications to write audit records.

The interfaces are described in Section 15.5.7, “Security Audit,” on page 15-113.
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-169

15

n
d by

d by

minor
ough
tion

ss
be

n
olicy
.

15.7.2.8 Principal Authentication

The Principal Authenticator object with the SecurityLevel2::Principal
Authenticator interface, defined in Section 15.5.3, “Authentication of Principals,” o
page 15-90, provides the facility for authenticating a principal. It may also be use
implementation security objects, specifically the Vault .

15.7.2.9 Non-repudiation

The Non-repudiation services are accessible through the NRservice::NRCredentials
interface. Its functionality and operations are defined in Section 15.5.11, “Non-
repudiation,” on page 15-121.

15.7.3 Replaceable Security Services

It is possible to replace some security services independently of others.

15.7.3.1 Replacing Authentication and Security Association Services

Replacement of the authentication, security context management, and message
protection services underlying a secure ORB implementation can be accomplishe
replacing the Principal Authenticator , Vault , Credentials, and Security Context
objects with implementations using the new underlying technology.

Note that if the Vault uses GSS-API to link to external security services, it may be
substantially security-technology-independent, and so may require no changes or
changes in order to accommodate a new underlying authentication technology (th
it may also have to use technology-independent interfaces for principal authentica
in some circumstances, as this is not always hidden under GSS-API).

The Vault is replaced by changing the version in the environment.

15.7.3.2 Replacing Access Control Policies

Access control policies can be changed by replacing the Access Policy and Access
Decision objects, which define and enforce access control policies (for example,
substituting another Access Policy object for DomainAccessPolicy).

Applications may also change their access control policies. If the application acce
policy object(s) is similar to the invocation access policy object(s), then they can
replaced in a similar way.

15.7.3.3 Replacing Audit Services

Audit policies may be replaced, for example, to support certain types of invocatio
audit policy not supported by the standard audit policy objects. In this case, the p
objects are replaced in a way that is similar to how the access policy objects are
15-170 CORBAservices: Common Object Services Specification December 1998

15

ted

the

y.

ated

using
tric

n and
other

s on

s Key

 in
Also, Audit Channel objects may be replaced to change how audit records are rou
to a collection point or filtered.

The Audit Channel object used for object system auditing is replaced by replacing
Audit Channel object in the environment. Other Audit Channel objects may be
replaced by associating a different channel object with the appropriate audit polic

Application auditing objects can be replaced by the application.

15.7.3.4 Replacing Non-repudiation Services

The Non-repudiation Service is a stand-alone replaceable security service associ
with NRCredentials and NRPolicy objects. Different NR services may use different
mechanisms and support different policies. For example, it may be that a service
symmetric encipherment techniques may be replaced by a service using asymme
encipherment techniques.

The same credentials and authentication method may be used for non-repudiatio
for other secure invocations, so when replacing either of these, the effect on the
should be considered.

15.7.3.5 Other Replaceability

No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

15.7.3.6 Linking to External Security Services

The security service interfaces specified in this section may encapsulate calls to
external security services via APIs.

The external services used may include:

• Authentication Services, to authenticate principals.

• Privilege (Attribute) Services, for selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well a
individual identity).

• Security Association Services, for establishing secure associations between
applications. These services may themselves use other security services such a
Distribution Services (if secret keys are used), a Certification Authority for
certifying public keys, and Interdomain Services for handling communications
between security policy domains.

• Audit (and Event) Services.

• Cryptographic Support Facilities, to perform cryptographic operations (perhaps
an algorithm-independent way).
Security Service: v1.2 Implementor’s Security Interfaces Dec. 1998 15-171

15

l

als
ent.

e

 to

Open

rity

.

this
urity

neral

his

dent
ols
ver,
This specification does not mandate which interfaces are used to access externa
security services, but notes the following possibilities:

• The GSS-API is used for security associations and for the majority of Credenti
and Security Context operations, as this allows easy security service replacem
With this in mind, several interfaces in this specification have been designed to
allow easy mapping to GSS-API functions, and the Credentials and Security
Context objects are consistent with GSS-API credentials and contexts.

• IDUP GSS-API may be used for independent data unit protection and evidenc
generation and verification.

• Cryptographic operations performed by a Cryptographic Support Facility (CSF)
ease replacement of cryptographic algorithms. No specific interface is
recommended for this yet, as such interfaces are being actively discussed in X/
and other international bodies, and standards are not yet stable.

15.8 Security Interoperability Protocols

15.8.1 Introduction

This section specifies a model for secure interoperability between ORBs which
conform to the CORBA 2 interoperability specification and employ a common secu
technology.

The interoperability model also describes other interoperability cases, such as the
effect on interoperability of crossing security policy domains. However, detailed
definitions of these are not given in this specification.

 It then defines the extensions required to the interoperability protocol for security
This includes:

• specification of tags in the CORBA 2 Interoperable Object Reference (IOR) so
can carry information about the security policy for the target object and the sec
technology which can be used to communicate securely with it.

• a security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2 Ge
Inter-ORB Protocol (GIOP) messages between them for integrity and/or
confidentiality. This is independent of the security technology used to provide t
protection.

• security when using the DCE-CIOP protocol.

As the security information needed by a security mechanism is generally indepen
of which ORB interoperability protocol is used, other Environment-Specific Protoc
(ESIOPs) may support security in a similar way to that described for GIOP. Howe
the specification only addresses DCE-CIOP, which supports only DCE security.
15-172 CORBAservices: Common Object Services Specification December 1998

15

rity
age
e
ecify

 is
e
The security protocol specified does not define details of the contents of the secu
tokens exchanged to establish a security association, the integrity seals for mess
integrity, or the details of encryption used for confidentiality of messages, as thes
depend on the particular security mechanism used. This specification does not sp
mechanisms.

15.8.2 Interoperability Model

This section describes secure interoperability when:

• the ORBs share a common interoperability protocol,

• consistent security policies are in force at the client and target objects, and

• the same security mechanism is used.

All other options build from this.

The model for secure interoperability is shown in the following diagram.

Figure 15-55 Model for Secure Interoperability

When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and target object on object invocations is as follows:

• If there is not already a security association between the client and target, one
established by transmitting security token(s) between them (transparently to th
application).

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

security token at association setup

protected message

reply reply
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-173

15

ween
nd

ciated
urity
cate

:

tity.

 it.
d

n
t to

e

 used.

ens

een
sages

le,
• Requests and responses between client and target are protected in transit bet
them. Protection includes not only ensuring individual messages are inviolate a
private, but that message streams are as well.

15.8.2.1 Security Information in the Object Reference

When an object is created in a secure object system, the security attributes asso
with it depend on the security policies for its domain and object type and the sec
technology available. A client needs to know some of this information to communi
securely with this object in a way the object will accept. The object reference
transferred between two interoperating systems includes the following information

• A security name or names for the target so the client can authenticate its iden

• Any security policy attributes of the target relevant to a client wishing to invoke
This covers policies such as the required quality of protection for messages an
whether the target requires authentication of the clients identity and supports
authentication of its identity.

• Identification of the security technology used for secure communication betwee
objects this target supports and any associated attributes. This allows the clien
use the right security mechanism and cryptographic algorithms to communicat
with the target.

15.8.2.2 Establishing a Security Association

The contents of the security tokens exchanged depend on the security mechanism

A particular security mechanism may itself have options on how many security tok
are used. The minimum is an initial context token (a term used in GSS-API), sent from
the client to the target object to establish the security association. This typically
contains:

• an identification of the security mechanism used,

• security information used by this mechanism to establish the required trust betw
client and target and to set up the security context necessary for protecting mes
later,

• the principal’s credentials, and

• information for protecting this security data in transit.

In addition to this token, subsequent security tokens may be needed if:

• mutual authentication of client and target object is required, or

• some negotiation of security options for this mechanism is required (for examp
the choice of cryptographic algorithms).
15-174 CORBAservices: Common Object Services Specification December 1998

15

 the

arget

 read

wever,
t be

re

data
frame.
),
ocol
 not

 by all
ats

curity

and a
key

duct.

e
logy
15.8.2.3 Protecting Messages

The invocation may be protected for integrity and/or confidentiality. In either case,
messages forming the request and reply are first wrapped in a sequencing layer
envelope and then cryptographically protected by the ORB security services. For
integrity, extra information (e.g., an integrity seal) is added to the message so the t
ORB security services can check that the message has not been changed.

For confidentiality, the message itself is encrypted so it cannot be intercepted and
in transit.

Details of how messages are protected are again mechanism-dependent. Note, ho
that messages cannot be changed once they have been protected, as they canno
understood once confidentiality protected and the integrity check will fail if they a
altered in any way.

In SECIOP message stream protection is provided by encapsulating all SECIOP
payloads (e.g., IIOP messages or message fragments) in a sequencing protocol
The sequencing protocol ensures that data payloads are not duplicated (replayed
dropped (deleted), or received out-of-sequence (reordered). The sequencing prot
frame is protected by the ORB security services to ensure the state it contains is
modified by an intruder.

15.8.2.4 Security Mechanisms for Secure Object Invocations

The interoperability model above can be supported using different security
mechanisms.

This specification does not define a standard security mechanism to be supported
secure ORBs. It therefore does not specify a particular set of security token form
and message protection details for a particular security mechanism.

15.8.2.5 Security Mechanism Types

There are two major types of security mechanisms used in existing systems for se
associations. They are those using:

• Symmetric (secret) key technology where a shared key is used by both sides,
trusted third party (a Key Distribution Service) is used by the client to obtain a
to talk to the target.

• Asymmetric (public) key technology where the keys used by the two sides are
different, though linked. In this case, long term, public keys are normally freely
available in certificates which have been certified by a Certification Authority.

Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MIT’s Kerberos pro
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and inter-enterprise working. Th
number of public key-based systems are growing and the use of public key techno
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-175

15

on,
n

y is

ism,
lient

g the
ct

tra

s for

 may

 this

e
e

,

pal’s
is standard for non-repudiation, which is an optional component in this specificati
and increasingly needed in commercial systems so any OMG security specificatio
must not preclude its use. Also, the use of smart cards with public key technolog
increasing. However, non-repudiation is not a service required for secure
interoperability.

Interoperating with Multiple Security Mechanisms

The current specification allows a client to identify the security mechanism(s)
supported by the target. Where a client or target supports more than one mechan
and there is at least one mechanism in common between client and target, the c
can choose one which they both support.

Some security mechanisms may support a number of options, for example:

• a choice of cryptographic algorithms for protecting messages,

• a choice of using public or secret key technology for key distribution.

The appropriate options can be chosen by the client in the same way as choosin
basic mechanism, via the client security policy and information in the target’s obje
reference. However, some mechanisms will be able to negotiate options using ex
exchanges at association establishment which are specific to the particular
mechanisms.

Interoperating between Underlying Security Services

Security mechanisms for secure object invocations use underlying security service
authentication, privilege acquisition, key distribution, certificate management, and
audit. Under some circumstances, these need to inter-operate. For example, key
distribution services may need to communicate with each other, and audit services
need to transmit audit records between systems.

Interoperability of such underlying security services is considered out of scope of
specification, as they are mechanism-dependent.

15.8.2.6 Interoperating between Security Policy Domains

The sections above consider interoperability within a security policy domain wher
consistent security policies apply to access control, audit and other aspects of th
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

Where a large distributed system is split into a number of security policy domains
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the princi
credentials so it can decide how much to trust them.
15-176 CORBAservices: Common Object Services Specification December 1998

15

ed on
e:

oes

n
 this

s in

ns
fect

n the
is
y can

may
oked

e.

ture,

o be
rity
Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly bas
the principal’s certified identity and privilege attributes. The policy for this could b

1. The target domain trusts the client domain to identify principals correctly, but d
not trust their privilege attributes, so treats all principals from other domains as
guest users.

2. The administrators of the two domains have agreed some privilege attributes i
common, and trust each other to give these only to suitably authorized users. In
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

3. The administrators of the two domains agree what particular privilege attribute
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enforce restrictio
about which privilege attributes may be used there. This would not necessarily af
the interoperability protocols - the get_attributes operation will simply not return all
of the privileges. But even in this case, some security mechanisms will choose to
modify the principal’s credentials to exclude unwanted attributes.

In the third case, the privilege attributes need to be translated to the ones used i
target domain. If this translation is to be done only once, an interdomain service
likely to be used which both translates the credentials and reprotects them so the
be delegated between nodes in the target domain.

Such an interdomain service may be invoked by the ORB Security Services, but
be invoked by a separate interoperability bridge between the ORB domains. If inv
by an ORB service, it extends the implementation of the Vault object described
previously and this will probably call on a mechanism-specific Interdomain Servic

15.8.2.7 Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domains are relevant to this architec
as in the future, they may be specified as part of some secure CORBA-compliant
systems. However, this section does not describe how to build such bridges.

Secure interoperability bridges may be needed for:

• ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

• Translating between security mechanisms (technology domains).

• Mapping between security policy domains.

In all these cases, both the system and application data being passed will need t
altered, affecting its protected status. This needs to be re-established using secu
services trusted by both client and target domains.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-177

15

rence

 with

gged
 to
tag

ay

his

ix

verall

rity
mple,

s
ty of
 an
 of
15.8.3 Protocol Enhancements

The following sections detail the enhancements required to the CORBA 2
interoperability specification for security.

Section 15.8.4, “CORBA Interoperable Object Reference with Security,” on
page 15-178 defines the enhancements needed to the Interoperable Object Refe
(IOR).

Section 15.9, “Secure Inter-ORB Protocol (SECIOP),” on page 15-204 defines the
enhancements needed to secure GIOP messages and Section 15.15, “DCE-CIOP
Security,” on page 15-273 defines the DCE-CIOP with security.

15.8.4 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Reference (IOR) comprises a sequence of ‘ta
profiles’. A profile identifies the characteristics of the object necessary for a client
invoke an operation on it correctly, including naming/addressing information. The
is a standard, OMG-allocated identifier for the profile which allows the client to
interpret the profile data, but although the tag is OMG-allocated, the profile itself m
not be OMG-specified.

A multi-component profile is a profile that itself consists of tagged components. T
specification defines TAGS for use in such multi-component profiles as follows:

The following TAGs are defined:

• IIOP components, which can be used in a multi-component profile (see Append
Section A.16, “Secure Inter-ORB Protocol (SECIOP),” on page 15-301).

• Security components that identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism-specific data.

• Aspects of the target object policy that cover the dependencies between and o
use of components (for example, the quality of protection required) may be
specified in separate policy components. This avoids establishing unnecessary
dependencies between other (technology) components.

Use of tagged components within the multi-component profile to carry IIOP, secu
and other data may cause performance degradations in certain situations. For exa
if an IOR carries many tagged components that are unrecognized by a client
implementation, it must process these when they appear before those that it doe
recognize. Some, such as the components describing IIOP, have a high probabili
being recognized and used by many clients. Consequently, implementations with
objective to optimize IOR processing will place such components at the beginning
the tagged component sequence.
15-178 CORBAservices: Common Object Services Specification December 1998

15

more
ent

 for
lity
o the
 for

s can

rity

n is:

d
r

y

s can
15.8.4.1 Security Components of the IOR

The following new tags are used to define the security information required by the
client to establish a security association with the target. Note that a tag may occur
than once, denoting that the target allows the client some choice. All tag compon
data must be encapsulated using CDR encoding

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG-registered security association
mechanisms. The mechanism is identified by the TAG value. The component data
TAGs of this kind is defined by the person who registers the TAG. The confidentia
and integrity algorithms to be used with the mechanism may either be encoded int
TAG value or in mechanism-specific data (see Appendix Section G.2, “Guidelines
Mechanism TAG Definition in IORs,” on page 15-368).

If this definition includes:

sequence <TaggedComponent> components;

The components field can contain any of the other component TAGs, whose value
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi-component level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the secu
mechanisms available at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but common to both
client and target to be used with the standard interoperability protocol. Its definitio

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <TaggedComponent> components;

};

The first part of this TAG is the security_mechanism_type which identifies the type of
underlying security mechanism supported by the target including confidentiality an
integrity algorithm definition. It is an ASN.1 Object Identifier (OID) as described fo
use with the GSS-API in IETF RFC 1508.

The mech_specific_data field allows mechanism-specific information to be passed b
the target to the client.

The components field can contain any of the other component TAGs, whose value
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi-component level.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-179

15

he

the
Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate t
security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS

This TAG is used to define the association properties supported and required by
target. Its definition is:

struct TargetAssociationOptions{
AssociationOptions target_supports;
AssociationOptions target_requires;

};

target_supports - gives the functionality supported by the target.

target_requires - defines the minimum that the client must use when invoking the
target, although it may use additional functionality supported by the target.

The following table gives the definition of the options.

Table 15-10 Definition of Association Options

Association Options target_supports target_requires

NoProtection the target supports
unprotected messages

the target’s minimal
protection requirement is
unprotected invocations

Integrity the target supports
integrity- protected
messages

the target requires
 messages to be integrity-
protected

Confidentiality the target supports
confidentiality-protected
invocation

the target requires
 invocations to be protected
for confidentiality

DetectReplay the target can detect replay
of requests (and request
fragments)

the target requires security
associations to detect
 message replay

DetectMisordering target can detect sequence
errors of requests and
request fragments

the target requires security
associations to detect
 message mis-sequencing

EstablishTrustInTarget the target is prepared to
authenticate its identity to
the client

(this option is not defined)

EstablishTrustInClient the target is capable of
authenticating the client

the target requires
establishment of trust in
the client’s identity
15-180 CORBAservices: Common Object Services Specification December 1998

15

and
s
n the

1”
nism
o

 IOR

s
TAG_SEC_NAME

The target security name component contains the security name used to identify
authenticate the target. It is an octet sequence, the content and syntax of which i
defined by the authentication service in use at the target. The security name is ofte
name of the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

15.8.4.2 IOR Example

In this example, if mechanism “mech 1” is used, the target security name is “MBn
while the association must use integrity replay and misordering options. If mecha
“mech 2” is used, no mechanism-specific security name has been specified and s
“Manchester branch” is used as the security name. The association options are
EstablishTrustInClient and Integrity.

15.8.4.3 Operational Semantics

This section describes how an ORB and associated ORB services should use the
security components to provide security for invocations and how the target object
information should be provided.

Table 15-11 IOR Example

tag value mech specific tag value
tag_sec_name “Manchester

branch”

tag_association_options supports and
requires integrity
and to establish trust
in the client’s
privileges

tag_generic_sec_mech mech 1 oid

tag_sec_name “MBn1”

tag_association_options supports and requires
integrity, replay detection,
misordering detection, and to
establish trust in the client’s
security attributes

tag_generic_sec_mech mech 2 oid

tag_association_options target requires and support
confidentiality and to
establish trust in the client’s
security attributes
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-181

15

i-

,

o
and
tected

se the

, and

IOR

uires

et
ng
Client Side

During a request invocation, the non-security tagged components in the IOR mult
component profile indicate whether the target supports IIOP and/or some other
environment-specific protocol such as DCE-CIOP. Security mechanism tag
components specify the security mechanisms (and associated integrity and
confidentiality algorithms) this target can use. The ORB selects a combination of
interoperability protocol and security mechanism which it can support.

If there is a common interoperability protocol, but no common security mechanism
then a secure request on this IOR cannot be assured.

If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies no protection is needed or n
SEC_MECH is specified, then unprotected requests are supported by the target,
the request can be made without using security services. If the target requires pro
requests, then the ORB must choose an alternative transport and/or security
mechanism.

The IOR tags and the client’s policies and preferences are used together to choo
security for this client’s conversation with the target.

The specific security service used may not understand the CORBA security values
so may require them to be mapped into values it can understand.

Determining Association Options

The Association Options in Table 15-10 on page 15-180, lists possible association
options such as NoProtection, Integrity , DetectReplay.

The actual association options used when a client invokes a target object via an
depend on:

• The client-side secure invocation policy and environment.

• Client preferences as specified by set_association_options on the Credentials or
set_policy_overrides of the object reference invoked with a QOPPolicy object as
one of the Policies to be overridden.

• The target-side secure invocation policy and environment (as indicated by
information in the TAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by the security services if the client req
it and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client’s requirements, then a
CORBA::NO_PERMISSION exception should be raised. If the client cannot me
the requirements of the target, then the invocation may optionally proceed, allowi
policy enforcement on the target side.
15-182 CORBAservices: Common Object Services Specification December 1998

15

 the
lar
e is

lude

or

lues

rget

ion

nd
in

ion.

6.
Target Side

The security information required in the IOR for this target must be supplied from
target (or its environment). This specification does not define exactly when particu
information is added, as some of it may only be needed when the object referenc
exported from its own environment.

The security information may come from a combination of:

• The object’s own credentials (see “Security Operations on Current” on
page 15-105). This includes for example, the target’s security name. It could inc
mechanism-specific information such as the target’s public key if it has one.

• Policy associated with the object. This includes, for example, the QOP.

• The environment. This includes, for example, the mechanism types supported.

The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information f
the target’s own credentials are set up on object creation.

As at the client, the specific security service used may require CORBA security va
to be mapped into those it understands.

If when the client invokes the target identified by the IOR an Invoke Response
message is returned for the request with the status
INVOKE_LOCATION_FORWARD , then the returned multiple component profile
must contain security information as well as the new binding information for the ta
specified in the original Invoke Request message.

Any security information in the returned profile applies to the new binding informat
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of
updated security information (even if the address information hasn’t changed).

15.8.5 Common Secure Interoperability Levels

Three Common Secure Interoperability Levels are defined to help in classifying a
positioning the various interoperability facilities that are defined, and also to help
concisely stating the conformance requirements. The three CSI levels are:

CSI Level 0 - supports only identity-based policies without delegation.

CSI Level 1 - supports identity-based policies with or without unrestricted delegat

CSI Level 2 - supports identity- and privilege-based policies with controlled
delegation.

A complete description of the these CSI levels of interoperability can be found in
Appendix Section C.7.2, “Common Secure Interoperability Levels,” on page 15-32
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-183

15

ion

 of
of key

d

 for

ilities

ified:

cret

l 2).
ions
(CSI
15.8.6 Key Distribution Types

Security mechanisms use cryptography in the establishment of a secure associat
between a client and target and in protecting the data between them. Security
mechanisms differ in the type of cryptography they use, particularly for distribution
keys. (Keys are assigned to clients, targets, and trusted authorities). Three types
distribution are defined in this specification:

• Secret keys - use secret key technology for distribution of keys for principals.

• Public keys - use public key technology for distribution of keys for principals,
though may use secret key technology for message protection.

• Hybrid - use secret key technology for key distribution for principals within an
administration domain, and public key technology for key distribution for truste
authorities, and hence between domains.

All types of key distribution can be used to support all the facilities in CORBA
Security for secure object invocations (though public key is almost universally used
non-repudiation). The choice of mechanism to use depends on a customer’s
requirements. For example, to fit with other systems and for scalability to inter-
enterprise working.

15.8.7 Security Mechanisms Hosted on SECIOP

Choosing the protocol to use depends on the mechanism type required and the fac
required by the range of applications expected to use it. How the mechanisms
underlying the following three security protocols are hosted on SECIOP are spec

15.8.7.1 SPKM Protocol

Supports identity-based policies without delegation (CSI level 0) using public key
technology for keys assigned to both principals and trusted authorities. The SPKM
protocol is based on the definition in [20].

15.8.7.2 GSS Kerberos Protocol

Supports identity-based policies with unrestricted delegation (CSI level 1) using se
key technology for keys assigned to both principals and trusted authorities. It is
possible to use it without delegation (providing CSI level 0).

The GSS Kerberos protocol is based on [12] which itself is a profile of [13].

15.8.7.3 CSI-ECMA protocol

Supports identity- and privilege-based policies with controlled delegation (CSI leve
It can be used with identity, but no other privileges and without delegation restrict
if the administrator permits this (CSI level 1) and can be used without delegation
level 0).
15-184 CORBAservices: Common Object Services Specification December 1998

15

in
6].
 of

osted
ith

es

e
hat

A

ere

e
For keys assigned to principals, it has two options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined
ECMA 235, but is a significant subset of this - the SESAME profile as defined in [1
It is designed to allow the addition of new mechanism options in the future; some
these are already defined in ECMA 235.

Table 15-12 shows which CSI functionality is supported with which protocols.

15.8.8 Security Mechanisms Hosted Directly on IIOP

The SSL [21] protocol which provides for confidentiality and integrity within the IP
sockets paradigm can be used to provide interoperability based on this protocol h
directly on IIOP. How this is done is specified in Section 15.14, “Integrating SSL w
CORBA Security,” on page 15-272. It supports identity-based policies without
delegation.

15.8.9 Choices of Protocols, Cryptographic Profiles, and Key Technologi

What combination of Security Protocols, Key Technologies, and Cryptographic
Profiles are the most desirable has been subject of debate both inside and outsid
OMG. In this specification, certain choices have been made based on the belief t
these choices best meet OMG’s current needs given the other constraints.

15.8.9.1 Choice of Protocol and Key Technology

GSS Kerberos is specified as the mandatory protocol for common secure
interoperability, as Kerberos is widely available and most vendors can support it.
However, it does not provide all facilities required and is secret key only.

Several other protocols are specified as non-mandatory options as follows:

• CSI-ECMA is specified as a protocol to provide support for the full set of CORB
security facilities using public key or secret key technology.

• SPKM is specified as a simpler public key protocol suitable for applications wh

• access and audit policies are static, and

• at each stage in a chain of object invocations, the policies depend only on th
identity of the immediate invoker, not the initiator of the chain.

Table 15-12 CSI Functionality and Protocols

Protocol
CSI Level SPKM GSSKerberos CSI-ECMA
0 Supported Supported Supported

1 Not supported Supported (Mandatory) Supported

2 Not supported Not supported Supported
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-185

15

ion

ing
The

ired
es
e
gly

c

to
n

ant.

e
 be

t to
e

tors

to

to
n of

ard
on
n the
ents.
• SSL is specified for use in the web market.

15.8.9.2 Cryptographic Profiles

Security mechanisms use cryptography in the establishment of a secure associat
between a client and target and in protecting the data between them. Different
cryptographic algorithms are used to support particular security functions depend
on the type of mechanism used and also the regulations on use of cryptography.
combination of algorithms used to provide particular security using a particular
mechanism is called a cryptographic profile.

Currently, different cryptographic algorithms, and/or different key lengths are requ
to meet export controls and regulations on use of cryptography in various countri
(see “International Deployment” on page 15-187). Although some vendors produc
more than one version of secure products for different markets, they are increasin
reluctant to do this. For common secure interoperability, a particular cryptographi
profile is needed. Some options are to standardize:

• Integrity only for user data, not confidentiality. If done using MD5, this is likely
be exportable and generally deployable, but doesn’t provide confidentiality whe
interoperating. This does not provide the functionality which some users will w

• Integrity and confidentiality using weak keys only. This provides the required
functionality, in a way which can generally be exported, but does not provide th
strength of protection needed by some customers. Also, products using it may
subject to import controls or other regulations in some countries.

• On strong confidentiality and integrity, which customers want, but will be subjec
export controls in most countries and to deployment regulations in some. Leav
vendors and customers to sort out the problems.

This chapter makes only the first of these options mandatory; however, implemen
of all profiles may choose to support other profiles also.

15.8.9.3 Conformance to External Security Mechanisms

This specification uses protocols defined in other standards documents. It refers
particular versions of these standards, which is needed for interoperability. If the
versions of these external documents change in the future, there may be a need
update this specification so that it is in line with the most accepted external versio
these standards.

15.8.10 Common Secure Interoperability Requirements

This section describes the requirements that Common Secure Interoperability is
expected to meet.

The Common Secure Interoperability specification is required to provide for stand
security mechanisms, simple delegation, and international deployment. This secti
discusses the key requirements for common secure interoperability that have drive
design of this specification and how this specification responds to these requirem
15-186 CORBAservices: Common Object Services Specification December 1998

15

te

bove,
 in

ity

 of

ays

Bs,
one
and
,

osen
ory

t

t

o a
data
 CSI
kens
es

itor.
erent.

s
.
he

y
15.8.10.1 CORBA Standard Security Mechanisms

Standard CORBA security mechanisms are required so that ORBs can interopera
securely.

Four popular security mechanisms to meet different circumstances, as described a
can be used to host CORBAsecurity in a standard way. One of the four described
this chapter is mandatory and all conformant ORBs must support it. Interoperabil
between conformant ORBs is always possible using this; however, the facilities
supported when using it are limited.

Interoperability also requires common use of cryptographic algorithms. A number
cryptographic profiles are specified to meet the needs of different markets and
countries. One is mandatory and interoperability between conformant ORBs is alw
possible using this; however, it provides data integrity but not confidentiality.

Where multiple mechanisms and cryptographic profiles are supported by both OR
the client and target object must agree which to use. In this specification, this is d
by the client looking at the security mechanism tag in the target object reference
choosing an appropriate mechanism and profile which both support. (In the future
negotiation of mechanisms may be supported.)

15.8.10.2 International Deployment

International deployment requires that the security mechanisms and algorithms ch
can be used worldwide in countries which are subject to different national regulat
controls on the use of cryptography. It also requires that they can be used across
international boundaries. International deployment may also be affected by expor
control regulations and other issues.

Requirements distilled from the key regulations affecting international deploymen
include:

• Keeping the amount of information which must be encrypted for confidentiality t
minimum. In general, encryption of keys is acceptable, but encryption of other
may not be. For this reason, encryption of security attributes is undesirable. At
level 2, where more attributes are generally needed, the part of the security to
concerned with key distribution is separated from the part used to carry privileg
(e.g., in CSI-ECMA); therefore, the latter part does not have to be encrypted.

• Being able to use identities for auditing which are anonymous, except to the aud
For this reason, identities used for access control and audit may need to be diff
A separate AuditId can be transmitted at level 2.

• Allowing use of different cryptographic algorithms, with different lengths of key
for specified functions to meet export and use regulations in different countries
The specification defines cryptographic profiles which allow for different cases. T
mandatory one provides data integrity only, as this is generally easier to deplo
internationally.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-187

15

are

ed in

ries.
ject

stem

 sort

ant
f
ystem-

r

 Also,

blic

BA
ate

urity
uch
ate

a

 be
There may be further requirements on secure ORB products to ensure that they
exportable. For example, they must not allow easy/uncontrolled replacement of
cryptographic algorithms. This affects the construction of the system, but not this
interoperability standard, so this is not considered further in this specification.

Other restrictions on the use of algorithms and security mechanisms are highlight
“Identifying Encumbered Technology” on page 15-190. For example, the DES
algorithm is subject to export controls, while RSA requires licensing in some count
The MIT version of the Kerberos technology, widely used in the USA, is also sub
to export controls.

15.8.10.3 Consistency

It should be possible to provide consistent security across the distributed object sy
and with associated legacy and other non-object systems. This includes:

• Support of consistent policies for which principals should be able to access the
of information, within a security domain, that includes heterogeneous systems.

For this specification, it requires the ability to transmit consistent privilege and
other attributes between ORBs to support these policies. Level 0 and 1conform
ORBs can transmit identities, level 2 conformant ORBs can transmit a range o
privilege attributes. These can be the ones used in existing systems, though s
specific ones will not be usable in other systems.

• Fit with existing logons (so extra logons are not needed) and with existing use
databases (to reduce the user administration burden).

Log on needs to result in credentials which include the information required to
support the specified security mechanisms. Note that single logon with secure
messaging, web, etc. generally requires use of public key-based mechanisms.
if non-repudiation is supported, they will also need to include the security
information required to support the non-repudiation mechanism (normally, a pu
key mechanism).

Also, interoperating with non-object systems may require, for example, a COR
object implementation which calls a non-CORBA application to be able to deleg
incoming credentials (assuming compatible security mechanisms.)

• Fit with all non-object systems is clearly not possible if such a system uses sec
mechanisms which are incompatible with the one used in the object system. S
systems may be able to use CORBA Security, but will not be able to interoper
using the common secure interoperability standard.

This specification includes an interoperability level which supports privileges and
public key (as well as a secret key) mechanism to support these requirements.

15.8.10.4 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise systems. For larger systems, it should
possible to:
15-188 CORBAservices: Common Object Services Specification December 1998

15

ps
ion

ils,

n
-

nd

ld be

uch
d

s. If

get.

other

n
• Base access controls on the privilege attributes of users such as roles or grou
(rather than individual identities) to reduce administrative costs. This specificat
includes the transmission of such privilege attributes in CSI level 2.

• Have a number of security domains which enforce different security policy deta
but support interworking between them subject to policy. (This specification
includes the architecture for such inter-domain working, though this specificatio
does not define an interface for this.) Use of public key technology helps large
scale, particularly inter-enterprise interoperability.

• Manage the distribution of cryptographic keys across large networks securely a
without undue administrative overhead.

15.8.10.5 Flexibility of Security Policy

The security policies required vary from enterprise to enterprise, so choices shou
allowed, though standard policies should be supported for common secure
interoperability.

Access Policies

At CSI levels 0 and 1, the AccessId is the only privilege attribute supported. The
standard DomainAccessPolicy defined in Section 15.6.4, “Access Policies,” on
page 15-133 (or other access policies) can be used with only this privilege.

At CSI level 2, conformant ORBs are able to transmit further privilege attributes (s
as role and group), so the DomainAccessPolicy (and other access policies) can be use
with these privileges also.

CSI level 2 is designed to allow transmission of further privileges, including user-
defined privileges and security clearances as needed for multi-level secure system
received by a conformant ORB, they will be available for access control at the tar
However, conformant ORBs need not transmit them, so use of such privileges is
subject to the agreement between the systems.

The mechanisms defined here also allow a wider range of privileges, etc., to be
supported and other access policies to be used. However, interoperability with all
conformant ORBs is not guaranteed in this case.

Audit Policies

All CSI levels provide an AuditId which can be used in audit policies. CSI level 2 ca
transmit an AuditId which is anonymous to all but audit administrators.

15.8.10.6 Application Portability

Application portability is an important OMG requirement. The many applications
which are unaware of security will continue to be portable.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-189

15

ss
they

.

sed.

sing
local

or
ay

ns

eros

, the
Applications which enforce their own security policies should still be portable acro
ORBs supporting common secure interoperability if the access and audit policies
use rely only on security attributes which are mandatory in the chosen CSI level.

Applications should be unaware of the security mechanism used to enforce the
security, unless they specifically ask what it is (e.g., using get_service_information,
see Section 15.5.2, “Finding Security Features,” on page 15-90).

15.8.10.7 Security Services Portability/Replaceability

The CORBA Security specification includes replaceability conformance options.

The objects supporting the security mechanism (PrincipalAuthenticator , Vault , and
Security Context) can be replaced to support the mechanisms in this specification
However, if logon outside the object system is supported, this will need to provide
credentials including the security information needed by the CSI mechanism(s) u

If the invocation access policy is replaced, this can utilize privileges transmitted u
CSI protocols. However, if an ORB wishes to control access on invocations using
(e.g., operating system) attributes, then mapping of attributes prior to calling the
Access Decision object is needed.

15.8.10.8 Performance

Security should not impose an unacceptable performance overhead, particularly f
normal commercial levels of security, although a greater performance overhead m
occur as higher levels of security are implemented.

Details of the performance overhead depend on the mechanism used and its
implementation; however, in this specification:

• Sufficient information can be carried in the IOR so that the client knows what
security the target supports and does not have to negotiate protocols and optio
with it.

• The mechanisms used allow the initial_context_token to be transmitted with first
message, if mutual authentication is not required.

15.8.10.9 Identifying Encumbered Technology

This specification includes technology which is encumbered to some extent.

• The Kerberos V5 technology is licensable from the Massachusetts Institute of
Technology without cost and is widely deployed within the USA. However, it is
subject to export control from the USA; therefore, [12] is the definition of the
protocol used here, as this can be implemented independently of the MIT Kerb
code.

• SPKM implementations are available, though not free. As for other mechanisms
(draft) standard is the basis of this specification.
15-190 CORBAservices: Common Object Services Specification December 1998

15

as
lude

ble

is
re it
ely

s, as

s 5.5
 at:

o

utes

 in

nses
r

of
• SESAME implementation is available, but is not free for commercial use, and h
restrictions on cryptography for export reasons (the public version does not inc
commercial cryptographic profiles - it has the secret key algorithm replaced by
XOR for export control reasons).

• There are two patents associated with the CSI-ECMA protocol. These are usa
free of charge for implementations conformant with this specification under fair
conditions (formal definition of these are available from Bull and ICL).

• The DES algorithm is widely deployed internationally, but is subject to export
controls. Export with key lengths which provide strong confidentiality is not
generally permitted.

• Increasingly, the RSA algorithm is widely deployed internationally; however, it
subject to licensing in the USA. It is also subject to export controls, though whe
can be shown that it is not used for confidentiality, products using it are more lik
to be exportable.

• Any other cryptographic algorithms used are generally subject to export control
is any interface which makes it easy to replace algorithms.

15.8.11 Relation to CORBA Security Facilities and Interfaces

This section describes how the security facilities and interfaces defined in Section
through 5.7 map to various elements of security protocol mechanisms. It is aimed

• Object implementors developing applications using a secure object system wh
need to know what security is available.

• Implementors of security policies who may be constrained by the security attrib
available when interoperating according to this standard.

• ORB implementors supporting replaceable security policies.

15.8.11.1 Functionality

The security information that is transmitted between ORBs, and which security
facilities and policies are supported in an interoperable environment, is described
these sections. Three levels of secure interoperability are defined specifying the
particular security attributes that conformant ORBs must support.

Note that the interoperability defined here is for interoperability of requests/respo
between ORBs. It does not include interoperability of the evidence tokens used fo
non-repudiation.

15.8.11.2 Replaceability

In replaceability, options which allow ORB implementors to support a wide range
security policies and mechanisms is defined. For example, the standard
DomainAccessPolices can be replaced by other policies where ORBs support the
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-191

15

teed

 the
an
gle

tely

to

use
r a

ages.

the
d

ject
y to

s
t
l 0
n

e
ty

 the
appropriate replaceability option. This specification still allows this replaceability,
though the policy being added may be restricted by the security information guaran
to be available.

This specification allows replaceability of security mechanisms by replacement of
Vault and Security Context objects. It specifies mechanisms and protocols which c
be implemented via a GSS-API interface. This adds the potential for having a sin
implementation of the Vault and Security Context objects, which by using GSS-API,
would be able to use different security mechanisms.

15.8.11.3 Levels of Interoperability

This specification includes three interoperability levels, as described more comple
in Appendix C, Section C.7.2, “Common Secure Interoperability Levels,” on
page 15-326. This section gives information about these levels and an example
showing the difference how they handle a particular problem.

Common Secure Interoperability Level 0

CSI level 0 supports identity-based policies without delegation. It requires ORBs
support the following:

• Authentication of principals using security functions under one ORB, and then
of the resultant credentials when making a secure invocation to an object unde
different ORB.

• Secure associations to establish trust between client, target, and protect mess

• As part of the secure association, the security name of the client is passed to
target and used to set both AccessId and AuditId so that identity-based access an
audit policies can be supported.

The identity is always that of the immediate invoker of an object in a chain of ob
invocations, this is only the same as the initiator of the chain at the point of entr
the chain.

Common Secure Interoperability Level 1

CSI level 1 supports identity-based policies with unrestricted delegation. It require
ORBs to support the mandatory part of the CORBA Security when two conforman
ORBs interoperate (using the same security mechanism). It provides the CSI leve
facilities plus security information (in particular, the security name) of a principal i
the call chain can be delegated to objects (subject to security policy).

Once this security information has been delegated, the intermediate object has th
choice of acting under its own identity or delegating the initiating principal’s identi
when invoking another object. When delegating another principal’s identity, the
delegated identity (rather than the immediate invoker’s identity) is used to set both
AccessId and AuditId at the target.
15-192 CORBAservices: Common Object Services Specification December 1998

15

on.
5.5
 and

 of

ned
lude
ype
r
 This
st
ls,”

em,

 at

e,
ey to

and

f
e
’s

;
d
not
cted
Common Secure Interoperability Level 2

CSI level 2 supports identity- and privilege-based policies with controlled delegati
ORBs supporting this level must support interoperability of all facilities in Sections
through 5.7 concerned with object invocation. CSI level 2 provides the CSI level 0
level 1 facilities plus:

• The security information of the immediate invoker or the delegated information
the initiating principal can include more security attributes, as follows:

• an extensible range of privilege attributes (e.g., roles, groups, enterprise-defi
attributes) to support a wider range of policies. Generally, these attributes inc
an AccessId which is independent of the security name (and the mechanism t
used) and is used to set the AccessId at the target. Interoperability using particula
types of privileges depends on these privileges being common to both ORBs.
CSI specification defines which privileges a CSI level 2 conformant ORB mu
support (see Appendix Section C.7.2, “Common Secure Interoperability Leve
on page 15-326).

• a separate AuditId can be transmitted. This may be anonymous (except to the
audit administrator). It will always represent the actual principal using the syst
even when the AccessId represents someone who has allowed another user to
access the system on his behalf.

• The delegation of a principal’s attributes can be controlled (for example, usable
only identified (groups of) targets). Intermediates receiving delegated security
attributes of a principal will not always be able to delegate them.

• Composite delegation is allowed for, but support for this is not mandatory.

Example

This section looks at an example of a secure object system which highlights the
difference between the delegation facilities of the three CSI levels. In this exampl
Bob wants to close his bank account and is prepared to give Dan power of attorn
do this.

• At CSI level 0, no delegation is possible; therefore, Bob has to go to the bank
close the account himself.

• At CSI level 1, Bob gives Dan unlimited power of attorney to act for him (as
delegation is unrestricted). Dan can close Bob’s bank account. As the power o
attorney is unlimited, Dan can also read Bob’s medical records and pass on th
power of attorney to Mark - who can also close Bob’s bank account, read Bob
medical records, etc.

• At CSI level 2, Bob gives Dan the power of attorney to close his bank account
therefore, Dan can close the account. But this does not include the right to rea
Bob’s medical records (as only limited privileges were given to Dan) and does
include the right to give the power of attorney to Mark (as delegation was restri
to Dan).
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-193

15

lt of
ain

tion

ore,

e

d”
ies

as a
r,
 all

 all
I

ons
15.8.12 Security Functionality

This section reviews the security functionality in Section 15.5 through 15.7 and
specifies which functionality is supported interoperably at which CSI level. Some
security functionality is supported at all CSI levels, some only at CSI level 1 or 2.

15.8.12.1 Authentication

The CSI mechanisms do not specify authentication of principals, but use the resu
such authentication. Principal authentication must result in credentials which cont
the security information needed by the security mechanisms supported by this
conformant ORB.

CSI mechanisms require authenticated principals (see Section 15.5.3, “Authentica
of Principals,” on page 15-90).

15.8.12.2 Access Control

Access controls depend upon the privileges of the principal.

At CSI levels 0 and 1, only the principal’s identity is available at the target; theref
Access Policies using this level must either:

• use only the principal’s identity for access control, or

• retrieve other attributes for that principal prior to taking the access decision (th
“pull” model).

The standard DomainAccessPolicy assumes all privileges required have been “pushe
from the client; therefore, they will be restricted to using identity only. Access polic
using the pull model will not be portable, if the source of such attributes is system
dependent.

At CSI level 2, the AccessPolicies can use any of the privileges supported by both
ORBs. All CSI level 2 conformant ORBs support AccessId, GroupId , and Role. They
may also transmit user-defined privileges, where the user enterprise concerned h
CORBA attribute family definer, and defines its own families of attributes. Howeve
some attribute types defined outside the object system may not be understood at
targets; therefore, portability of these may not be possible to all environments.

15.8.12.3 Audit

Auditing is defined in Section 15.3.5, “Auditing,” on page 15-28, and is possible at
CSI levels. A separate AuditId (which may be anonymous) can be transmitted at CS
level 2.

15.8.12.4 Secure Invocation

Conformant implementations (all CSI levels) must support all the association opti
defined in Table 15-10 on page 15-180.
15-194 CORBAservices: Common Object Services Specification December 1998

15

art of

ths

t is

ts to

ame
 be

it is
both
isms
ms.

 and
. For

Channel bindings, as defined in GSS-API and all protocols defined here, are not p
the mandatory specification.

Conformant implementations at level 2 allow use of algorithms with different streng
for integrity and confidentiality.

15.8.12.5 Delegation Facilities

• At CSI level 0, no delegation is supported.

• At CSI level 1, the initiating principal’s identity can be delegated to the target. I
either delegated or not - there are no other restrictions on delegation.

• At CSI level 2, the initiating principal’s privileges, as well as identity, can be
delegated to the target. Delegation can be controlled further, restricting the targe
which the attributes can be delegated. These restrictions must be specified by
administrative action, as there are no interfaces specified in to do this in this
specification.

Level 2 protocols are also defined which allow support of composite delegation;
however, support of this is not required by conformant ORBs.

15.8.12.6 Non-repudiation

Non-repudiation relies on NR credentials for handling NR evidence tokens. The s
credentials can be used for secure invocations and non-repudiation. This will only
possible if compatible security technology is used for non-repudiation and secure
invocation. While no specific security technology is mandated for non-repudiation,
expected that this will use public key technology. Common credentials usable for
purposes are expected to use public key technology, to fit with public key mechan
(SPKM or the CSI-ECMA public key option), rather than with secret key mechanis

15.8.12.7 Security Policies

Security policies are potentially sharable between ORBs if they use only identities
privileges which are available at both ORBs and can be transmitted between them
example, a DomainAccessPolicy that uses roles must receive requests from an ORB
which can generate them via a CSI level 2 protocol which can transmit roles.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-195

15

ng.

ust
e
 have
e

ice
 at
s

cess

 the
15.8.13 Model for Use and Contents of Credentials

The CORBA Security model includes security functionality enforced during object
invocations and by applications, as shown in Figure 15-56 on page 196.

Figure 15-56Security Functionality Enforced During Object Invocations and Applications

Most of the security services utilize the principal’s credentials either at the client
(before invoking the target object) or at the target. For example, the ORB security
services use these credentials for secure associations, access control, and auditi

To fit with the standard CSI security mechanisms, user/principal authentication m
produce credentials suitable for both client-side security controls and to fit with th
security mechanisms used for secure invocations. A single credential’s object may
security context information for more than one mechanism. Security services at th
client application use these credentials to enforce security there.

Access control policies at the target generally depend on the initiating principal’s
privilege attributes (which generally includes an identity). Normally they rely on
information from the credentials being passed from the client to the target. Other
access policies may use the pull model for obtaining privileges at the target. For
example, an access policy at the target could obtain the access identity using the
get_attributes function. It could then call, in a non-standard way, on whatever serv
provides privileges in this case. Alternatively, an attribute Mapper (see “Attributes
the Target” on page 15-198) could be used before calling the access policy (if thi
optional facility is supported).

Audit policies generally require an audit id, though this may be derived like the ac
id from a single identifier.

This specification allows unauthenticated and authenticated users; however,
unauthenticated principals do not have identity attributes or privilege attributes. In
protocols defined here, principals must be authenticated.

Client

request request

Target
Object

ORB

Services
Security

ORB

Services
Security

Credentials
Credentials

application
security
controls

application
security
controls

logon
authentication

user

..

credentials info in token
15-196 CORBAservices: Common Object Services Specification December 1998

15

ave

er (or

d

e

sed

re

A
g
The privilege and other attributes, as seen by the AccessDecision object at the target,
may not be those passed from the client because the security mechanism may h
moderated what is available to the object system.

15.8.13.1 Credential Content at the Client

Credentials are made available to the client as the result of authenticating the us
other principal), though they may be modified later. Authenticated users have two
types of attributes visible to applications and relevant to secure interoperability:

1. Privilege attributes used for access control. These include the AccessId (the
principal’s identity as used for access control); other standard CORBA security
attributes such as GroupId , Role, Clearance and enterprise-defined attributes.

2. Identity attributes used for purposes other than access control. Only the audit
identity is relevant here.

At CSI levels 0 and 1, the only attributes which must be visible to the client an
target are the AccessId and AuditId . These will normally be the user’s security
name.

At CSI level 2, a wider range of privilege attributes is supported.

• All conformant ORBs can generate (via security services) credentials with th
following privilege attributes:

• AccessId

• AuditId

• Role

• GroupIds - a primary group and other groups

• There may be a single identity (e.g., the access identity) which can also be u
for auditing, or separate AccessId and AuditId may be generated. AuditId may be
anonymous.

• Optionally, there may also be other privilege attributes including user-defined
attributes.

15.8.13.2 Attributes During Transmission

At levels 0 and 1, only the principal’s identity is transmitted. No other attributes a
transmitted.

At level 2, a wide range of privileges can be transmitted including standard CORB
attributes and optionally user-defined ones. Attributes may have individual definin
authorities, as at the IDL interface, or share a defining authority.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-197

15

tes

e

se
rget

238.

t the
,
15.8.13.3 Attributes at the Target

At CSI levels 0 and 1, when only a single identity (e.g., the security name) is
transmitted, that single identity is used to generate the AccessId and the AuditId at the
target. When using the CSI-ECMA protocol at level 0 or 1, principal identity attribu
are transmitted separately from the security name; therefore, the AccessId and AuditId
do not have to be generated from the security name.

At CSI level 2, all conformant ORBs can accept:

• Separate access and audit ids or a single identity used for both purposes.

• Transmission of any privileges defined in Appendix Section A.11.1, “Attribute
Types,” on page 15-307, and any privileges with Object Identifiers which can b
mapped to SecurityAttributes .

This range of privileges can be used in access decisions at the target. Even if the
privileges are not used by the invocation access policy to control access to the ta
object, they may be obtained by the application using Current::get_attributes or
Credentials::get_attribute and used in application access decisions.

The attributes at the target appear as defined in “Privilege Attributes” on page 15-
For example, they have:

• an Attribute type (family definer, family, and the type within this family),

• a defining authority, and

• the attribute value.

The attributes may need to be mapped from their form in transit to the form used a
IDL interface in response to get_attribute calls. An attribute mapper may be needed
as shown in Figure 15-57.

Figure 15-57Attribute Mapper Diagram

ORB Security Services

Access
Decision
Object

Credentials
as seen at the

target

Target
Object

Optional
Attribute Mapper

Client

Credentials
as

generated request request

application
security
controls
15-198 CORBAservices: Common Object Services Specification December 1998

15

e

 are

uch as
lly
that

t is

RBs

 a

 slash

e.
 and
e

nt on
.

SI-

 and
 IDL

m
This mapping depends on:

• Which functionality level is supported. At levels 0 and 1, a single name must b
mapped to provide both AccessId and AuditId . This will be the security name if the
protocol does not carry a separate AccessId or AuditId ; both the SPKM and GSS-
Kerberos protocols use the security name.

• Whether the access control decisions at the target uses attribute values which
valid externally from the ORB/operating system (for example, in a domain of
heterogeneous systems), or whether the Access policies use local attributes (s
operating system ids). In line with the OMG requirement for portability, externa
valid attributes are the norm, and must be supported in conformant ORBs (so
an application which includes administration of its access policy is portable
between unlike systems). Mapping to local attributes may also be provided, bu
not standardized in this specification.

15.8.13.4 Mapping Security Names to Externally Valid Identities

Where the only client attribute transmitted is the security name, CSI-conformant O
map this onto both the AccessId and AuditId in the received credentials. These both
have the same value.

When using the GSS-Kerberos, the security name protocol has two components:
realm name and a principal name. The security name is of the form principal@realm.
The principal name may be a multi-component name with components separated by
(/) - see [12] section 2.1.1.

When using a public key-based mechanism, the security name is a directory nam
This is a multi-part name (e.g., country, organization, organization unit, surname,
common name). The security name is returned from the security mechanism in th
form of a string complying with [4] for the string representation of distinguished
names. The separators between components of the name may be commas or
semicolons.

In both cases, the full Security name is used as the value for the AccessId and AuditId
in the IDL SecurityAttributes. This means the form of these attributes are depende
the security mechanism used, as Kerberos and X.500 names have different forms

15.8.13.5 Mapping Other Attributes to Externally Valid IDL Attributes

Other security attributes may also be transmitted from the client when using the C
ECMA protocol. For example, at level 2, there could be a Role, GroupId , and
enterprise-specific attributes as well as AccessId and/or AuditId . Also, separate
AccessId and AuditIds may be transmitted.

In general, these will already have values which are valid outside a particular ORB
operating system; therefore, the mapping is mainly to put these in the form of an
SecurityAttribute. However, if a separate AuditId has not been transmitted, the AuditId
value will be copied from the AccessId. Also, if a separate defining authority is not
transmitted for an attribute, the defining authority for the attribute in IDL is set fro
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-199

15

e
h of

d

ded,

hen

ot be
y an

e

f

dard
o it,

 of

bute

s”
the issuer Domain of the authority who generated the Privilege Attribute Certificat
containing the privileges. Note also that the target security policy may restrict whic
the attributes are available to the application.

Attribute types in transmission are identified by Object Identifiers. For the standar
attribute types such as Role or GroupId (as defined in Appendix Section A.11.1,
“Attribute Types,” on page 15-307), the type is automatically translated to the
appropriate CORBA family and attribute type. The value is also re-encoded, if nee
from ASN.1 to the equivalent IDL type.

We propose that OMG should register itself in the ISO Object Identifier space. A
SecurityAttribute type where there is a family definer registered with OMG (see
Appendix Section A.19, “Values for Standard Data Types,” on page 15-307) can t
be transmitted with an Object Identifier of:

<iso>..<omg>.<security>.<family_definer>.<family>.<attribute type>

which then can be mapped automatically onto the CORBA SecurityAttribute
structure.

Attributes other than the standard attributes and those with CORBA family Object
Identifiers are not guaranteed to be understood at the target; therefore, they may n
automatically mapped to CORBA families and types. Such mapping can be done b
optional attribute mapper which understands these attribute types.

15.8.13.6 Mapping to Local Attribute Values

An ORB can support mapping of the security name and other attributes to local
operating system values such as UNIX uids and gids. This mapper could generat
different AccessIds and AuditIds . Note that when using local values, the application
(particularly the access policy administration) will not be portable to other types o
systems.

Mapping of these values is specific to the ORB and/or operating system. This stan
does not specify how this mapping is done, whether it calls on other software to d
or what types of values it generates. However, the defining authority in the IDL
SecurityAttribute must identify the local environment responsible for the meanings
these values, so the application can determine where these values are valid.

Mapping to local attributes may be done by an optional attribute mapper (see “Attri
Mapping” on page 15-203).

15.8.14 CORBA Interfaces

In this section:

• Profiles of interfaces defined in sections 15.5 “Application Developer’s Interface
through 15.7 “Implementor’s Security Interfaces”,

• Values of certain parameters relevant to these profiles are defined, and
15-200 CORBAservices: Common Object Services Specification December 1998

15

er to

es
ata

s.

ger

s.

:

iles
• Restrictions applications that use the Security interfaces must adhere to in ord
conform to the CSI standard are defined.

15.8.14.1 Service Options for Common Secure Interoperability

The following Service Options are returned by ORB::get_service_information
representing the level of CSI that is supported by the ORB:

module Security {
const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

};

The common interoperability protocols supported are identified using a ServiceDetail
structure with a ServiceDetailType of Security::SecurityMechanismType, as
described in Section 15.5.2, “Finding Security Features,” on page 15-90. The valu
for the CSI mechanisms are defined in Appendix Section A.10, “General Security D
Module,” on page 15-283.

15.8.14.2 Mechanism Types

The mechanism at the application interface is defined as Security::MechanismType (a
string). CSI mechanisms are encoded in the MechanismType string by concatenating a
mechanism id and zero, one, or more cryptographic profiles separated by comma

The mechanisms supported by an object are identified by tags in its IOR. In the
MechanismType, the mechanism is identified by a “stringified” form (e.g., the inte
value 123 represented as the string “123”) of the TAG_x_SEC_MECH id value for
that mechanism. Mechanisms supported by SECIOP-based protocols are:

• SPKM_1 or SPKM_2: the level 0 public key mechanisms using the SPKM
protocol.

• KerberosV5: the level 1 secret key mechanism using GSS Kerberos protocol.

• CSI_ECMA_Secret: the CSI-ECMA secret key mechanism, using Kerberos V5.

• CSI_ECMA_Hybrid : the CSI-ECMA mechanisms which uses secret key
technology for key distribution within a domain, but public key between domain

• CSI_ECMA_Public: the CSI-ECMA public key mechanism.

Cryptographic profiles are identified by a “stringified” form of the
CryptographicProfile value as used in the IOR.

MechanismType is used in a number of operations. These include operations that

• Deal with the mechanisms and cryptographic profiles in MechanismsPolicy object
for use with get_policy and set_policy_overrides on an object reference. In this
case, the mechanisms attribute of the MechanismPolicy object (see “Client-Side
Invocation Policy Objects” on page 15-101), contains all the Cryptographic prof
available with that mechanism to communicate with that target.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-201

15

ed)

,

I) in

ence
.10,

y
 by

hes
red

” on

ity

,
used

ss

ple,

el 2

sponse
• Specify a security mechanism to use when talking to a target (e.g., using the
MechanismPolicy object with the set_policy_overrides on an object reference and
Vault::Init_security_context on the Vault). In this case, either just the mechanism
name may be specified (in which case, a default cryptographic profile will be us
or a mechanism name and cryptographic profile may be specified.

The get_service_information operation on the ORB can also return the mechanism
though in this case, it is in the form of a sequence<octet>.

Mechanism tags in the IOR and mechanism type Object Identifiers (as in GSS-AP
SECIOP messages are also used as appropriate.

15.8.14.3 Delegation-Related Interfaces

Interfaces to handle no delegation, simple delegation, and composite delegation (h
delegation interfaces for CSI levels 0, 1, and part of 2) are defined in Section 15.5
“Delegation Facilities,” on page 15-120).

CSI level 2 also supports controls on the delegation of credentials. How to specif
these controls is not included in this specification. It is assumed that it is handled
administrative action. For example, it may be done by associating the delegation
controls with a user or an attribute set selected when the user logs on or selects
attributes at other times. Management of attributes associated with a principal is
considered out of this specification’s scope.

No facilities are currently defined for an application object to specify controls it wis
to apply on delegating its credentials. In the future, such facilities may be conside
for CORBA Security - see Appendix Section F.13, “Advanced Delegation Features,
page 15-362.

15.8.15 Support for CORBA Security Facilities and Extensibility

This CSI specification assumes that the ORB conforms to at least CORBA Secur
mandatory facilities (except for delegation at CSI level 0), and requires that this
functionality can be supported across different ORBs using any of the CSI levels
specified here.

The CORBA Security specification allows use of a wide range of security policies
facilities, and mechanisms. Conformant ORBs can restrict which of these can be
during interoperability, as follows:

• The protocol may not carry the privileges the target needs for some of its acce
policies. For example, at CSI levels 0 and 1 only an identity is supported.

• It may not carry the type of audit identity needed for the audit policy. For exam
it may not be able to carry an anonymous AuditId .

• It may not support composite delegation. (CSI levels 0 and 1 do not; in CSI lev
it is not mandatory).

• There are restrictions on the SECIOP exchanges (e.g., separate request and re
protection is not supported).
15-202 CORBAservices: Common Object Services Specification December 1998

15

s as

ents

ay

le to
n

ined
f

n for
• Unauthenticated users may not be supported (All CSI levels).

15.8.16 Security Replaceability for ORB Security Implementors

Security policy implementations could be replaced to provide new security policie
discussed in Section 15.7.3, “Replaceable Security Services,” on page 15-170.

This common Interoperability specification affects replaceability in two areas:

1. Mapping of attributes as described in Section 15.8.13, “Model for Use and Cont
of Credentials,” on page 15-196 affects replaceable security policies which use
these attributes.

2. Use of the Generic Security Services API (GSS-API) within the Vault and Security
Context implementation objects described in Section 15.7.2, “Implementation-
Level Security Object Interfaces,” on page 15-161, should make these objects
independent of the particular security mechanisms used.

15.8.16.1 Attribute Mapping

As described in “Attributes at the Target” on page 15-198, the form of attributes m
need to be mapped before being made available to a target security policy
(AccessPolicy or AuditPolicy) or to the target object.

No interface for an attribute mapper is currently defined; therefore, it is not possib
replace attribute mapping independently of the ORB/security mechanism. Such a
interface may be defined in the future.

15.8.16.2 Use of GSS-API

The choice of security mechanism is not visible outside the Vault and Security
Context objects, except for the identification of the Mechanism (and associated
cryptographic profiles) in the IOR and in the MechanismPolicy object (see “Client-
Side Invocation Policy Objects” on page 15-101).

The Vault and Security Context can use GSS-API to implement their security
functions, and so remain independent of security mechanisms.

If only CSI level 0 or 1 facilities are used, the standard GSS-API interface (as def
in RFC 1508) can be used. If CSI level 2 facilities are needed, this requires use o
attributes other than the security name, and may also use delegation controls.
Therefore, it requires use of an extended GSS-API, such as [12].

Use of GSS-API is a recommendation, but is not proposed as a conformance optio
this CSI specification or for the CORBA Security specification.
Security Service: v1.2 Security Interoperability Protocols Dec. 1998 15-203

15

ocol
w
sage

tected
ed
 pair

.

tation

 to
the
nts to
on.
15.9 Secure Inter-ORB Protocol (SECIOP)

To provide a flexible means of securing interoperability between ORBs, a new prot
is introduced into the CORBA Interoperability Architecture. This protocol sits belo
the GIOP protocol and provides a means of transmitting GIOP messages (or mes
fragments) securely.

Figure 15-58 Position of SECIOP Protocol

SECIOP messages support the establishment of Security Context objects and pro
message passing. Independence from GIOP allows the GIOP protocol to be revis
independently of SECIOP (e.g., to support request fragmentation). A synchronized
of Security Context objects and their corresponding sequencing state is called a
security association.

SECIOP is sub-layered into a Sequencing Layer and Context Management Layer

Figure 15-59 Sublayers of SECIOP

This specification assumes that SECIOP provides services to the GIOP Fragmen
Layer. Providing the interface to GIOP fragmentation is the SECIOP Sequencing
Layer. It has the responsibility of securely and reliably delivering GIOP fragments
the correspondent. It encapsulates GIOP fragments into frames for protection by
SECIOP Context Management Layer. It also uses frames that do not carry fragme
coordinate the distributed sequence number state bound to the security associati
SECIOP frames are encoded in CDR and delivered to the SECIOP Context
Management Layer.

GIOP
fragmentation

SECIOP

IIOP

GIOP
fragmentation

SECIOP

IIOP

transport

GIOP

GIOP Fragmentation

SECIOP Sequencing Layer

SECIOP Context Management
Layer

Transport Data Protection
15-204 CORBAservices: Common Object Services Specification December 1998

15

yer
e
n

ons

ent.

sumes

his
alies.
sport

ction.

is
layer
ber
The SECIOP Context Management Layer accepts frames from the Sequencing la
and encapsulates them in a Context Management message. These messages ar
cryptographically protected by tokens, which are the product of the Data Protectio
layer, normally GSSAPI. The Context Management Layer carries Data Protection
tokens in SECIOP messages for the purpose of both managing security associati
and for securing frames moving between it and the correspondent. The Context
Management layer uses the Transport layer to communicate with the correspond
The Context Management layer is driven by the finite state machine defined in
Table 15-13 on page 15-218 and Table 15-14 on page 15-221.

15.9.1 Architectural Assumptions

SECIOP is designed to support a rich variety of different software implementation
architectures. In order to operate in the most sophisticated of these, the design as
both clients and targets are multi-threaded and that a single TCP connection can
support multiple security associations.

Figure 15-60Architectural Assumptions

This specification assumes the following environmental and implementation
characteristics:

• Each SECIOP-secure association is bound to a single transport connection. T
ensures that GIOP fragments are not reordered due to thread scheduling anom
It also guarantees that a response to a GIOP request returns on the same tran
connection as the request, which is required by the GIOP specification.

• SECIOP may use multiple security associations over the same transport conne
This allows implementations to multiplex SECIOP traffic, which can improve
performance.

• SECIOP ensures that fragments are sent over transport connections in their
sequence number order. This means that once an SECIOP sequence number
assigned to a fragment, the fragment will be processed by the Data Protection
and sent over transport before any other fragment with a larger sequence num
protected by the same security association.

IIOP

SECIOP

...

IIOP

SECIOP

Multiple Security
Associations

TCP Connection

Thread Thread Thread Thread Thread Thread

...
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-205

15

it are
r
, since
 as
des

cess
ation

. This

 the

alid

ould

/2 the
scard
 the

s in
before
space
rded

hin
vide
yers,

encing,
e
• When a transport connection is closed, all SECIOP-secure associations using
closed as well. This may require discarding fragments on the Sequencing laye
retransmission queue that have not yet been acknowledged. This is acceptable
closing a transport connection forces GIOP to mark any outstanding Requests
MAYBE. Furthermore, closing a transport connection must be visible to both si
of the connection, so both sides of the security association will follow this rule.

• There is always a listener at the client and server prepared to receive and pro
SECIOP messages. This is necessary, since the loss of security context inform
by one side or the other requires a re-establishment of the security association
in turn requires both client and server to be listening for security context
management messages.

• Both the client and server may initiate security context establishment (i.e., send
EstablishContext message). This is necessary when a server needs to return a
response to the client but discovers that the security association is no longer v
(e.g., it has timed out).

• SECIOP sequence numbers should never wrap around to zero. If they did, it w
introduce a replay threat. Consequently, when the SECIOP Sequencing Layer
receives an acknowledgment to a fragment with a sequence number equal to 1
precision of an unsigned long (the type used for sequence numbers), it must di
the existing security association and establish a new one. This rule derives from
sequencing algorithm property that up to 1/2 of the possible sequence number
the higher 1/2 of the sequence number space may be used for new fragments
the fragment associated with the last sequence number in the lower 1/2 of the
is acknowledged. Note that the SECIOP sequencing state should not be disca
when a new security context is established.

• There is Data Protection protocol information (e.g., GSSAPI tokens) carried wit
SECIOP messages. This protocol should be configured so it does not itself pro
sequencing services. Otherwise, there could be interference between the two la
causing unnecessary lost service.

15.9.2 SECIOP Sequencing Layer

SECIOP sequencing uses a modified data link layer protocol based on one in
production at Lawrence Livermore National Laboratory for over 10 years. This
protocol, called modified ALP, is described below.

SECIOP Sequencing layer frames are carried in MessageInContext messages (see
“Message Definitions” on page 15-214). The message_protection_token in this
message is defined to be an opaque sequence of octets. In order to support sequ
however, the Sequencing layer defines the structure of these octets as follows (th
definition of MessageInContext is repeated here for completeness):

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence<octet> message_protection_token;
15-206 CORBAservices: Common Object Services Specification December 1998

15

yer
ategy
d

iliar

el,

 the
};

message_protection_token is obtained by processing the frame header encoded in
CDR as a SequencingHeader followed by the octets of the frame data. The
combination of frame header and frame data is called a SequencedDataFrame.

The frame_header field is always present in a SequencedDataFrame; however, the
frame_data field may or may not be present. If not present, the length of the
MessageInContext message includes only the octets up to and including the frame
header.

The SequencingHeader has the following definition:

struct SequencingHeader {
octet control_state;
unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

};

The control_state field contains information necessary for the reliable delivery of
frame data between the correspondents. It is encoded as follows (control_state[x] is bit
x in the octet, where bit 0 is the least significant bit):

control_state[0] : direct_phase
control_state[1] : direct_fragment
control_state[2] : direct_reply
control_state[3] : reverse_phase

15.9.2.1 Protocol State

The new version of SECIOP uses a variant of ALP (A Link Protocol) a data link la
protocol. Its design relies on the principal of state-exchange, a coherent design str
that produces protocols that are easy to understand, clearly documented, and len
themselves to rigorous analysis.

It is assumed that the reader is familiar with this link-layer protocol. Those unfam
with it are referred to the paper [18].

The main body of this paper establishes the rationale for the state-exchange mod
while Appendix A documents the ALP protocol itself.

To embed ALP within SECIOP, each participant in a security association maintain
state used for sequencing. This state is embodied in several variables that the
participant manages as well as a queue of data fragments.
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-207

15

ent.

These are:

In addition to these variables, the SECIOP Sequencing layer has the following
functions and procedures available:

output_queue A queue of fragments. SECIOP is responsible for
securely and reliably moving them to the
correspondent.

output_phase A boolean indicating a stream of transmissions.

output_sequence_number The sequence number associated with the oldest
fragment on output_queue.

output_count The number of fragments in output_queue that have
been transmitted but not yet accepted or rejected.

output_window The window size for output fragments.

output_length The length of the output_queue.

input_phase The phase expected with the next input fragment.

input_sequence_number The sequence number expected for the next fragm

input_window The window size for input fragments.

input_reply A boolean, which if set indicates at least one frame
should be sent.

receive() Returns a received frame.

newframe() Returns an empty frame buffer (i.e., a SequencedDataFrame
struct).

send(f) Sends the frame f.

discard(f Discards the frame f.

pop(q) Removes and discards the leading element q[0] of the queue
q. The index of the remaining elements is decremented by
one.

forward(d) Forwards the fragment d to the GIOP fragmentation layer.

mod(n,m) Returns the remainder from the division of the integer n by
the positive integer m.

min(n1,n2,..., nx) Returns the smallest of the integers n1 through nx.

resync() Signals the SECIOP Context Management layer to discard the
old security association bound to the sequencing state and
establish a new one. [NB: this is not included in the original
ALP definition, since the notion of a security context is not
germane to its original purpose].

frame_data(f) The frame_data field of a SequencedDataFrame message f.
15-208 CORBAservices: Common Object Services Specification December 1998

15

n

ithms

cing
 and

o
e in
ch a
 first

he
 so
t
ction,
 not

 the
xt
Finally, the value M is defined to be the number of values that can be carried by a
unsigned long.

15.9.2.2 Protocol Initialization

The next three sections describe the operation of the Sequencing layer. The algor
are expressed in a pseudo-ALGOL syntax (with slight modifications from the C
programming language to facilitate writing conditional expressions).

When the GIOP fragmentation layer requests the transport of a fragment to a
destination for which no SECIOP-secure association exists, the SECIOP Sequen
layer creates a state record consisting of the variables defined in the last section
initializes them as follows:

output_queue := empty;

output_phase := 0;

output_sequence_number := 0;

output_count := 0;

output_window := 0;

output_length := 0;

input_phase := 0;

input_sequence_number := 0;

input_window := [an implementation defined value < M/2];

input_reply := 1;

In the original definition of ALP, the initial values of some of these variables was
unspecified. This specification defines these initial values so that there need be n
handshaking activity between the correspondent's SECIOP Sequencing layer cod
order to move the first fragment. This facilitates transaction style operations in whi
security association is established without mutual authentication, thus allowing the
fragment to be sent without waiting for an SECIOP reply.

Another slight change from the original definition of ALP is the requirement that t
window size must never be set greater than (M/2)-1. This restriction is necessary
that two acknowledgments carrying equal sequence numbers referring to differen
fragments are never protected using the same security context. Without this restri
there is a hazard that an intruder could replay an acknowledgment to a fragment
received, thereby causing the fragment to be dropped.

Once a security context is established, the SECIOP Sequencing layer processes
information in a SequencedDataFrame according to the algorithms given in the ne
two sections.
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-209

15

t it
lid

CIOP

s;

count

 M);

ts

ith

ity

 the

nts
15.9.2.3 Upon Receipt of a SequencedDataFrame

Note – This text is taken directly from the cited paper and slightly modified to adap
to using security contexts. The code that has been modified is called out by a so
black line on the left side.

The receiver code below is called on both the target and client sides when the SE
Finite State Machine (FSM) is in state S3 and a MessageInContext arrives.

begin comment This algorithm should be executed after receipt of each non-

erroneous frame;

f := receive();

if direct_sequence_number(f) == input_sequence_number

and

 direct_phase(f) == input_phase

then

 if direct_fragment(f) == 1 and input_window > 0

then comment An input fragment has arrived in sequence. Accept it;

input_sequence_number := mod(input_sequence_number + 1, M);

forward(frame_data(f));

fi ;

else comment An input fragment has been lost. Prepare to accept retransmission

input_phase := 1 - direct_phase(f);

fi ;

if mod(reverse_sequence_number(f)-output_sequence_number, M) <= output_

then comment The received reverse sequence number is not anomalous;

while reverse_sequence_number(f) != output_sequence_number

do comment Discard accepted output fragments;

 pop(output_queue);

output_sequence_number := mod(output_sequence_number + 1,

if mod(output_sequence_number, M/2) == 0

then comment all fragments up to and including (M/2)-1 have been

acknowledged. Use a new security context for future fragmen

to avoid replays. Resynchronizing the security context when

exactly half of the sequence number space has been “used”

achieves two objectives : 1) it ensures that no two fragments w

the same sequence number are protected by the same secur

context, and 2) it ensures that two acknowledgments carrying

same sequence number, but acknowledging different fragme

are not protected using the same security context. The latter
15-210 CORBAservices: Common Object Services Specification December 1998

15

yer
use
 the
objective requires the further limitation that the window size is

never set greater than (M/2)-1;

resync();

fi ;

output_count := output_count - 1;

output_length := output_length - 1;

od;

output_window := reverse_window(f);

fi ;

if reverse_phase(f) != output_phase

then comment Prepare to retransmit rejected output packets;

output_phase := reverse_phase(f);

output_sequence_number := reverse_sequence_number;

output_count := 0;

fi ;

if direct_reply(f) == 1 or output_length > 0

then comment State is unsatisfactory;

input_reply := 1;

fi ;

discard(f)

end;

15.9.2.4 Sending a SequencedDataFrame

This sending code is called on the target and client side when the Sequencing La
caller has a fragment to send. Certain events within the Sequencing layer also ca
this algorithm to be executed. Specifically, the sending algorithm is executed when
receiving code in the previous section is executed and a non-erroneous frame is
received. Also, input_reply should be set to 1 and the sending code executed:

1. when an erroneous frame is received;

2. when a new security context is established;

3. when an EstablishContext message is sent with messages allowed;

4. when input_window is changed by the implementation; and

5. upon initialization of the Sequencing state.

begin
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-211

15

ciation
ected

IOP

is

is 1
while output_count < min(output_window, output_length) or input_reply == 1

 do comment A frame should be sent;

f := newframe();

input_reply := 0;

direct_phase(f) := output_phase;

direct_sequence_number(f) := mod(output_sequence_number +

output_count, M);

if output_count < min(output_window, output_length)

then comment A fragment could be included in the frame.

direct_fragment(f) := 1;

frame_data(f) := output_queue[output_count];

output_count := output_count + 1;

fi ;

if output_length > 0)

then comment Not all packets have as yet been accepted;

direct_reply(f) := 1

fi ;

reverse_phase(f) := input_phase;
reverse_sequence_number(f) := output_sequence_number;

 reverse_window(f) := output_window;
send(f);

od

end

15.9.3 SECIOP Context Management Layer

The SECIOP Context Management Layer establishes and controls a secure asso
between a client and target. It also provides a means for the transmission of prot
messages between clients and targets.

15.9.3.1 SECIOP Context Management Layer Message Header

SECIOP Context Management messages share a common header format with G
messages defined in the Common Object Request Broker: Architecture and
Specification. The fields of this header have the following definition:

• magic - identifies the protocol of the message. Each protocol (GIOP, SECIOP)
allocated a unique identifier by the OMG. The value for SECIOP is “SECP.”

• protocol_version - this contains the major and minor protocol versions of the
protocol identified by magic. The value for the version of SECIOP defined here
major version, 1 minor version. This field is called GIOP_version in
GIOP::MessageHeader_1_1.
15-212 CORBAservices: Common Object Services Specification December 1998

15

ssages
en the
sage).

age.
ed
(i.e.,
t for
• byte_order - as in the GIOP header definition.

• message_type - this is the protocol-specific identifier for the message.

• message_size - as in the GIOP header definition.

15.9.3.2 SECIOP Context Management Layer Protocol

Where possible, SECIOP Context Management messages are sent with GIOP me
rather than as separate exchanges. However, this is not always possible (e.g., wh
client wishes to authenticate the target before it is prepared to send a GIOP mes

The SECIOP Context Management Layer has the following message types:

module SECIOP
enum MsgType {

MTEstablishContext, MTCompleteEstablishContext,
MTContinueEstablishContext, MTDiscardContext,
MTMessageError, MTMessageInContext

};

typedef unsigned long long ContextId;

enum ContextIdDefn {
CIDClient,
CIDPeer,
CIDSender

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};
};

15.9.3.3 ContextId

This type is used to define the identifiers allocated by the client and target for the
association.

15.9.3.4 ContextIdDefn

This enum is used to define the kind of context identifier held in an SECIOP mess
The context identifier will either be the one specified by the client which establish
the context or it will be the identifier associated with the receiver of the message
the request target for request or request fragment messages, or the request clien
reply or reply fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false or the message
has not yet been exchanged. It must equal Peer if the value of target_context_id_valid
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-213

15

re

sed

e

tion. It

tifier
text.
h to

ext. It
in the CompleteEstablishContext was true. The use of peer identifiers allows the
recipient of the message to more efficiently find its security context. The values a
defined as:

• CIDClient - the context id is that of the association’s client.

• CIDPeer - the context id is that of the recipient of the message.

• CIDSender - the context id is that of the sender of the message. This is only u
with the DiscardContext message when the sender of the DiscardContext message
has no context and has received a message which it cannot process.

15.9.3.5 TokenType

This type is used to indicate the type of message_protection_token carried by a
MessageInContext message. The value SecTokenTypeWrap indicates the token was
returned by a GSS_Wrap() call, while the value SecTokenTypeMIC indicates the
token was returned by a GSS_GetMIC() call.

15.9.3.6 Message Definitions

EstablishContext

This message is passed by the client to the target when a new association is to b
established. Its definition is:

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

• client_context_id - this is the client’s identifier for the security association. It is
passed by the target to the client with subsequent messages within the associa
enables the client to link the message with the appropriate security context.

• initial_context_token - this is the token required by the target to establish the
security association. It contains a mechanism version number, mech type iden
and mechanism-specific information required by the target to establish the con
It may be sent with a protected message (for example if the client does not wis
authenticate the target).

CompleteEstablishContext

This message is returned by the target to indicate that the association has been
established. It is sent as a reply to an establish context or continue establish cont
may be sent with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;
15-214 CORBAservices: Common Object Services Specification December 1998

15

 the

te a
tly.

urther
to an

nt

has
ll not
le

ver
};

• client_context_id - this is the client’s identifier for the security association. It is
returned by the target to the client to enable the client to link the message with
appropriate security context.

• target_context_id_valid - this indicates whether the target has supplied a
target_context_id for use by the client. True indicates that the following field is
valid.

• target_context_id - the targets identifier for the association. It is passed by the
client to the target with subsequent messages. It enables the target to associa
local identifier with the context to allow the target to identify the context efficien

• final_context_token - this is the token required by the client to complete the
establishment of the security association. It may be zero length.

ContinueEstablishContext

This message is used by the client or target during context establishment to pass f
messages to its peer as part of establishing the context. It may be the response
establish context or to another continue establish context. It is defined as:

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

• client_context_id - the client’s identifier for the association. It is used by both clie
and target to identify the association during the establishment sequence.

• continuation_context_token - this is the security information required to continue
establishment of the security association.

DiscardContext

This message is used to indicate to the receiver that the sender of the message
discarded the identified context. Once the message has been sent the sender wi
send further messages within the context. The message is used as a hint to enab
contexts to be closed neatly. Its definition is:

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

• message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

• message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies.

• discard_context_token - optional token provided by the sender to assist the recei
in cleaning up its security context state.
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-215

15

e

ient’s
ype

lf-
s not
MessageError

This message is used to indicate an error detected in attempting to establish an
association either due to a message protocol error or a context creation error. Th
message is also used to indicate errors in use of the context.

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

• message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

• message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies. It is either the cl
identifier for the context (type client) or the receiver of the messages identifier (t
peer).

• major_status - the reason for rejecting the context. The values used are those
defined by the GSS API (RFC 1508) for fatal error codes.

• minor_status - this field allows mechanism-specific error status to further define
the reason for rejecting the context. It is not defined further here.

MessageInContext

Once established, messages are sent within the context using the MessageInContext
message. Its definition is:

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence <octet> message_protection_token;

};

• message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

• message_protection_token_type - indicates whether the message_protection_token
is a SecTokenTypeWrap or SecTokenTypeMIC token.

• message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies.

• message_protection_token - the sign or seal token for the message. This is a se
defining token which indicates how the message is protected. If the message i
protected the token will be zero length.
15-216 CORBAservices: Common Object Services Specification December 1998

15

,
ssage
e

ns
wing

sage

with
hout

y be
For signed and unprotected messages, the MessageInContext message is followed by
the higher-level protocol message being transmitted within a security context (i.e.
GIOP message or message fragment). The length of the higher-level protocol me
is included in the length of the MessageInContext message. For sealed messages th
length of the higher-level protocol message is zero.

15.9.4 SECIOP Context Management Finite State Machine Tables

Table 15-13 on page 15-218 and Table 15-14 on page 15-221 present the state
transition rules for the Context Management Layer of SECIOP. The state transitio
given in these tables are intended to operate in an environment satisfying the follo
assumptions:

• Each FSM is associated with a unique pair of principals. When an SECIOP mes
arrives it is delivered to the FSM associated with the principal from which the
message was sent and to which the message is delivered.

• There always exists a sequencing state machine (SSM) in the initialized state
an FSM in state 0 at each end of a TCP connection for those principal pairs wit
an active SSM/FSM.

• Each SSM is associated with exactly one FSM at a time, although an SSM ma
associated with multiple FSMs during its lifetime.

• Each TCP connection can be associated with multiple SSMs.

• Each FSM is associated with exactly one ContextId during its lifetime.

15.9.4.1 SECIOP Context Management Protocol State Tables

Note that some mechanisms may start in state S3.
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-217

15
Table 15-13 SECIOP Context Management Finite State Machine -Table 1

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK
& context complete,
Send CompleteEstab-
lishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else if create context =
OK & context incom-
plete.
Send ContinueEstab-
lishContext.
S2.
Else
Send MessageError.
Terminate SSM.
Terminate.

[Target sent Estab-
lishContext at
same time Client
did. Client’s has
precedence]
S1.

[Target sent Estab-
lishContext at
same time Client
did. Client’s has
precedence]
S2.

[Target discarded context
without telling client]
Create a new FSM in state
S0.
Deliver EstablishContext
message to it.
Terminate.

CompleteEstab-
lishContext arrives

[A CompleteEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate SSM.
Terminate

Complete context
with target’s con-
text id.
If OK,
S3.
Else,
send MessageEr-
ror.
Terminate SSM.
Terminate

Complete context
with target’s con-
text id.
If OK,
input_reply := 1.
Execute send algo-
rithm.
S3.
Else,
send MessageEr-
ror.
Terminate SSM.
Terminate

[A CompleteEstablish-
Context arriving in S3 is
illegal]
Send MessageError.
Terminate SSM.
Terminate
15-218 CORBAservices: Common Object Services Specification December 1998

15
ContinueEstablish-
Context arrives

[A ContinueEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate SSM.
Terminate

[A ContinueEstab-
lishContext arriv-
ing in S1 is illegal]
Send MessageEr-
ror.
Terminate SSM.
Terminate

update context
state.
If OK & context
complete,
Send CompleteEs-
tablishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else If OK & con-
text incomplete,
Send ContinueEs-
tablishContext.
S2.
Else,
Send MessageEr-
ror.
Terminate SSM.
Terminate

[A ContinueEstablish-
Context arriving in S3 is
illegal]
Send MessageError.
Terminate SSM.
Terminate

MessageError
arrives

[A MessageError arriv-
ing in S0 is illegal]
Terminate SSM.
Terminate

Terminate SSM.
Terminate

Terminate SSM.
Terminate

[target had trouble using
its security context and
couldn’t reestablish it]
Terminate SSM.
Terminate.

Send Frame

[Normal send
case.]

If create context = OK,
 Send EstablishCon-
text
 message.
 If Message allowed,
 Send the frame.
 S1.
 Else
 S2.
Else
Terminate SSM.
Terminate

Send the frame.
S1.

S2. If context valid,
Send the frame.
S3.
Else
Create a new FSM in state
S0.
Attach it to SSM.
Deliver SendFrame to
FSM
Terminate

Table 15-13 SECIOP Context Management Finite State Machine -Table 1 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-219

15
MessageInContext
arrives

[Normal receive
case.]

[Client has discarded
context, but target
doesn’t know it.]
Send DiscardContext.
S0

[MessageInCon-
text arriving in
state S1 is illegal]]
Send MessageEr-
ror.
Terminate SSM.
Terminate

[MessageInCon-
text arriving in
state S2 is illegal]]
Send MessageEr-
ror.
Terminate SSM.
Terminate

If message OK,
Execute receive algo-
rithm.
Else If context timed out,
Send DiscardContext.
Create a new FSM in state
S0.
Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate.
Else If message bad, but
context OK, drop mes-
sage.
input_reply := 1.
Execute send algorithm.
Else
Send MessageError.
Terminate SSM.
Terminate.

DiscardContext
arrives

[ignore]
S0

[Target doesn’t
want to create a
security associa-
tion]
Terminate SSM.
Terminate

[Target doesn’t
want to create a
security associa-
tion]
Terminate SSM.
Terminate

[target’s context is no
longer valid]
Create a new FSM in state
S0.
Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate.

Resync Requested [ignore. Resync will
occur on next Send-
Frame request]
S0

Terminate SSM.
Terminate

Terminate SSM.
Terminate

Send DiscardContext.
Create a new FSM in state
S0.
Attach it to SSM.
Execute send algorithm.
Terminate.

Table 15-13 SECIOP Context Management Finite State Machine -Table 1 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
15-220 CORBAservices: Common Object Services Specification December 1998

15
Table 15-14 SECIOP Context Management Finite State Machine - Table 2

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK
& context complete,
Send CompleteEstab-
lishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else if create context =
OK & context incom-
plete,
Send ContinueEstab-
lishContext.
S2.
Else
Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

[Client wants to
start over. Always
allow this.]
discard partial con-
text.
Create a new FSM
in state S0.
Deliver Establish-
Context frame to it.
Terminate.

[Client discarded con-
text without telling tar-
get.]
Create a new FSM in
state S0.
Deliver EstablishCon-
text frame to it.
Terminate.

CompleteEstab-
lishContext arrives

[A CompleteEstablish-
Context arriving in S0
is illegal]
 Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

Complete context
with context id.
If OK,
input_reply := 1.
Execute send algo-
rithm.
S3.
Else,
send MessageEr-
ror.
Terminate SSM.
Terminate

[A CompleteEstablish-
Context arriving in S3
is illegal]
Send MessageError.
Terminate SSM.
Terminate
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-221

15
ContinueEstablish-
Context arrives

A ContinueEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

update context
state.
If OK & context
complete,
Send CompleteEs-
tablishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else If OK & con-
text incomplete,
Send ContinueEs-
tablishContext.
S2.
Else,
Send MessageEr-
ror.
Terminate SSM.
Terminate

[A ContinueEstablish-
Context arriving in S3
is illegal]
Send MessageError.
Terminate SSM.
Terminate

MessageError
arrives

[A MessageErrort arriv-
ing in S0 is illegal]
Terminate SSM.
Terminate

[illegal state at Target
Side]

Terminate SSM.
Terminate

[target had trouble
using its security con-
text and couldn’t rees-
tablish it]
Terminate SSM.
Terminate.

Send Frame

[Normal send
case.]

If create context = OK,
Send EstablishContext
message.
S2.
Else
Terminate SSM.
Terminate

[illegal state at Target
Side]

S2. If context valid
Send the frame (if not
already sent).
S3.
Else Create a new FSM
in state S0.
Attach it to SSM.
Deliver SendFrame to
FSM
Terminate.

Table 15-14 SECIOP Context Management Finite State Machine - Table 2 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
15-222 CORBAservices: Common Object Services Specification December 1998

15
MessageInContext
arrives

[Normal receive
case.]

[Target has discarded
context, but client
doesn’t know it.]
Send DiscardContext.
S0

[illegal state at Target
Side]

[MessageInCon-
text arriving in
state S2 is illegal]]
Send MessageEr-
ror.
Terminate SSM.
Terminate

If message OK,
Execute receive algo-
rithm.
Else If context timed
out,
Send DiscardContext.
Create a new FSM in
state S0
Attach it to SSM.
input_reply := 1.
Execute send algo-
rithm.
Terminate
Else If message bad,
but context OK, drop
message.
input_reply := 1.
Execute send algo-
rithm.
Else
Send MessageError.
Terminate SSM.
Terminate

DiscardContext
arrives

[ignore]
S0

[illegal state at Target
Side]

[Client doesn’t
want to create a
security associa-
tion]
Terminate SSM.
Terminate

[client’s context is no
longer valid.]
Create a new FSM in
state S0.
Attach it to SSM.
input_reply := 1.
Execute send algo-
rithm.
Terminate.

Resync Requested [ignore. Resync will
occur on next Send-
Frame request]
S0

[illegal state at Target
Side]

Terminate SSM.
Terminate

Send DiscardContext.
Create a new FSM in
state S0.
Attach it to SSM.
Execute send algo-
rithm.
Terminate.

Table 15-14 SECIOP Context Management Finite State Machine - Table 2 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
Security Service: v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-223

15

ocols

 of

s and

ublic

s) are

l 2
ues
 such

n
other

y
.

e

 of

ust
15.10 The SECIOP-Hosted CSI Protocols

All the SECIOP hosted Common Secure Interoperable (CSI) protocols and
mechanisms use common elements as far as possible.

• All mechanisms use IOR tags of the form TAG_x_SEC_MECH as defined in
“Security Components of the IOR” on page 15-179.

• The component data structure associated with these tags is common for all prot
and mechanisms in this specification.

• Cryptographic profiles are defined in all cases which allow use of relevant
algorithms for confidentiality, integrity, etc. Different mechanisms support some
the same algorithms and one way functions.

• The MechanismType as seen at the IDL interface also reflect the mechanism id
cryptographic profile values in the IOR tags.

• Privilege attributes when CSI level 2 is used are the same whether a secret or p
key mechanism is used.

• The basic SECIOP token format and some details (such as token types and id
common for all protocols.

• All tag components must be encapsulated using CDR encoding.

These protocols are designed to allow use of GSS-API mechanisms. Use of leve
facilities such as handling of privileges, as defined in Appendix Section A.19, “Val
for Standard Data Types,” on page 15-307, imply the use of an extended GSS-API
as [23].

15.10.1 IOR

The IOR TAG_INTERNET_IOP profile contains the security tags needed for commo
secure interoperability using GIOP/IIOP. These security tags may be shared with
(non-IIOP) protocols, including DCE-CIOP.

The security tags describe what the security target supports and requires, and an
mechanism-specific data required for secure interoperability using this mechanism

For common secure interoperability and for all CSI mechanisms and protocols, th
IOR must contain at least one appropriate TAG_x_SEC_MECH tag.

The IOR may also contain the following tags, as defined in “Security Components
the IOR” on page 15-179:

• TAG_SEC_NAME provides the security name and may be shared between
mechanisms which use the same form of name. Conformant implementation m
be able to accept security names shared between such mechanisms.

• TAG_ASSOCIATION_OPTIONS may be shared between mechanisms.

• TAG_GENERIC_SEC_MECH whose component definition includes a sequence
<TaggedComponents> includes a security_mechanism_type and can include a
security name and association options.
15-224 CORBAservices: Common Object Services Specification December 1998

15

ciation
vel. If
 these

on

227.

must
BA
If a mechanism is selected for use, and has a defined security name and/or asso
option, these values are used in preference to any values defined at the higher le
no name or association options are defined for the mechanism, then the values of
tags in the IIOP profile are used.

15.10.2 Mechanism Tags

The TAG_x_SEC_MECH tags for all the CSI mechanisms defined in this specificati
have an associated component data structure of the same form:

struct <mechanism name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence <octet> security_name

};

Names for the CSI mechanisms are:

SPKM_1
SPKM_2
KerberosV5
CSI_ECMA_Secret
CSI_ECMA_Hybrid
CSI_ECMA_Public

Tag ids for the mechanisms are:

TAG_SPKM_1_SEC_MECH
TAG_SPKM_2_SEC_MECH
TAG_KerberosV5_SEC_MECH
TAG_CSI_ECMA_Secret_SEC_MECH
TAG_CSI_ECMA_Hybrid_SEC_MECH
TAG_CSI_ECMA_Public_SEC_MECH

• The association options required/supported by the target are defined in
Section 15.10.3, “Association Options,” on page 15-225.

• The sequence of crypto_profiles defines one or more cryptographic profiles
supported by this target using this mechanism as defined in Section 15.10.4,
“Cryptographic Profiles,” on page 15-226.

• The security name is defined in Section 15.10.5, “Security Name,” on page 15-

15.10.3 Association Options

With all CSI protocols and mechanisms, a secure ORB supporting a target object
be able to put in the IOR any or all of the association options defined in the COR
Security specification, as required by the target.
Security Service: v1.2 The SECIOP-Hosted CSI Protocols Dec. 1998 15-225

15

as

 a

t
are
will
he
nd

ed.

y),

.

used

hy is

se
key
the

oes
 for
All compliant secure ORBs supporting clients must be able to accept all the
target_supports and target_requires association options, and act on these correctly,
defined in “TAG_ASSOCIATION_OPTIONS” on page 15-180.

Two of the association options are replay and misordering detection. While all the
protocols in this specification include facilities to detect replay and misordering, in
multi-threading CORBA environment, the calls on the security mechanism are no
guaranteed to be made in the same order that the messages they are protecting
transmitted. The facilities in the security mechanisms cannot guarantee that they
correctly detect replay and misordering. An extension to SECIOP is expected in t
future to provide these checks. Until this change to SECIOP has been specified a
adopted (although these association options may be set) replay and misordering
detection is not a mandatory part of this specification.

If no association options are specified in the IOR, a CSI-defined default is assum

15.10.4 Cryptographic Profiles

Cryptographic algorithms are used for

• integrity and confidentiality protection of messages,

• establishing the security association between client and target (including peer
authentication and establishing session keys),

• deriving dialogue keys for message protection (both confidentiality and integrit
and

• protecting systems security data such as PACs (Privilege Attribute Certificates)

The security mechanisms defined here allow a choice of algorithms which can be
for the different functions, depending on

• the needs of the functions, and

• the requirements for international deployment in countries which constrain how
cryptography can be used and exported from countries where use of cryptograp
controlled.

In some cases, export controls may require international versions of products to u
shorter key lengths; therefore, a large number of combinations of algorithms and
lengths may be possible. For interoperability, both client and target must support
same algorithms and key lengths for these functions.

This specification defines a number of cryptographic profiles, where each profile
identifies a set of algorithms with specified key lengths used by a mechanism for
specified functions.

For example, the CSI-ECMA protocol defines a NoDataConfidentiality cryptographic
profile which can use DES and RSA for protecting the security mechanism, but d
not encrypt the ORB request/reply. (The profile for full security would use DES/64
data confidentiality.)
15-226 CORBAservices: Common Object Services Specification December 1998

15

ed

l,

same

the
d.

, but

sier

ts its

mple,
 the

ion.
Cryptographic profiles are identified by a value, represented in IORs as an unsign
short:

 typedef unsigned short CryptographicProfile;

15.10.4.1 Key Establishment Algorithms

The algorithms used to establish the cryptographic session keys during security
associations depend on the type of mechanism.

• Where the secret key (Kerberos-based) mechanism is used, either via the GSS
Kerberos or CSI-ECMA protocol, the DES algorithm is used.

• When a public key mechanism is used, either via SPKM or CSI-ECMA protoco
the RSA algorithm is used.

15.10.4.2 Common Message Protection Algorithms

Even if different mechanisms and algorithms are used for key establishment, the
algorithms can be used for message protection.

• All CSI mechanisms have cryptographic profiles which include an MD5 hash of
data for integrity, though the hash, in some profiles may be signed or encrypte

• All CSI mechanisms can use DES in CBC mode for message confidentiality.

15.10.4.3 Cryptographic Profiles Supported by CSI Protocols

A number of cryptographic profiles are defined for each CSI protocol. Further
cryptographic profiles using different algorithms can be used with these protocols
these are not part of this interoperability standard. A target may support several
cryptographic profiles for a particular mechanism.

In all cases, support of a CSI protocol requires support for a cryptographic profile
which provides integrity of user data, but not confidentiality, as such a profile is ea
to deploy internationally. For example, the GSS Kerberos protocol always suppor
MD5 cryptographic profile. Other profiles may also be supported.

15.10.5 Security Name

The form of the security name depends on the security mechanism used. For exa
it can be a Kerberos name or a Directory style name. Directory names conform to
string representation defined in [4].

The security name may be at the component level of the IOR or higher if shared
between mechanisms. If there is a security mechanism tag, but no security name is
present in the IOR, the IOR is improperly formatted and a CORBA::INV_OBJREF
exception shall be raised when the IOR is used to specify the target of an operat
Security Service: v1.2 The SECIOP-Hosted CSI Protocols Dec. 1998 15-227

15

s to

other
d

ty

main
. (The
may

eros

ment

vel
)

orm

ion.

with
nd
set of
.

15.10.6 Security Administration Domains

As defined in “Domains” on page 15-38, a security policy domain is a set of object
which a security policy applies for a set of security-related activities and is
administered by a security authority.

Security mechanisms are concerned with the security domains where users and
principals are administered, often by on-line authorities such as Authentication an
Privilege Attribute Services. Often, this domain will be the enclosing domain
encompassing secure invocation, access control, and other policy domains.

Note that some authorities may be off-line. For example, the Certification Authori
used to issue certificates is often off-line.

The security mechanisms specified in this specification allow requests to cross do
boundaries. At the boundary, trust between the domains needs to be established
way this is done depends on the mechanism used.) Also, the scope of privileges
not always cross the domain boundary. This specification does not define how
privileges are mapped on crossing domain boundaries, as this does not affect the
protocol.

While all security mechanisms here include the concept of such domains, in Kerb
(used here as the secret key mechanism) these are known as realms. In this
specification, the term realm is used in tokens using this mechanism.

15.10.7 Mapping of Common Elements to the SECIOP Protocol

The SECIOP protocol includes the tokens for context establishment and manage
and per-message tokens.

The context establishment tokens contain:

• Information associated with a principal, including at least an identity. (At CSI Le
2, there may be a range of privileges and a separate audit identity, if required.

• Associated delegation information. Only simple delegation is mandatory to conf
to this specification.

• Security information used to establish the client-target object security associat

• Security information used to establish the keys for message protection.

15.10.7.1 Basic Token Format

SECIOP messages include context and message protection tokens.

All CSI mechanisms are usable inside and outside the object environment. In line
standard practice outside the object environment, tokens are defined in ASN.1. a
encoded for transmission using BER (in some cases, constrained to the DER sub
these). The token appears as a sequence<octet> in CDR-encoded SECIOP messages

These tokens are enclosed within framing as follows:
15-228 CORBAservices: Common Object Services Specification December 1998

15

text
,
ticket

cols
ip

tion

in an

n an

an
[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech MechType

-- MechType is OBJECT IDENTIFIER
innerContextToken ANY DEFINED BY thisMech

-- contents mechanism-specific;
}

Note – For conformance to GSS-API, only the initial context token has to use this
token framing; however, in the CSI protocols, it applies to all tokens.The initial con
token should include a mechanism version, as well as type. For CSI mechanisms
version numbers are in the mechanism-specific information such as the Kerberos
or CSI-ECMA PAC.

15.10.7.2 Inner Context Tokens

The same token types are used in the different CSI protocols, though not all proto
support all token types. The token types are defined below showing the relationsh
with GSS-API calls, as all CSI protocols can be implemented using GSS-API.

The inner context tokens used for security association establishment are:

InitialContextToken

This is sent by the initiator to a target, to start establishment of a security associa
in an SECIOP EstablishContext message. The token id is 01 00 (hex).
If GSS-API is being used, it is the value returned by the GSS_Init_sec_context call.

TargetResultToken

This is sent to the initiator by the target to complete establishment of the context
SECIOP CompleteEstablishContext message. The token id is 02 00 (hex). It is
returned by GSS_Accept_sec_context.

ContinueEstablishToken

This is sent either by the initiator or the target to continue context establishment i
SECIOP ContinueEstablishContext message. The token id is 03 00 (hex) (in SPKM).
It is returned by either the GSS_Init_sec_context call or the GSS_Accept_sec_context
call.

ErrorToken

This is sent on detection of an error during security association establishment in
SECIOP CompleteEstablishContext or ContinueEstablishContext message. The
token id is 03 00 (hex) (except in SPKM where it is 04 00 (hex)). It is returned by
either the GSS_Init_sec_context call or the GSS_Accept_sec_context call.

The inner context token for message protection is the message_protection_token in the
SECIOP MessageInContext message. This can take one of the following forms:
Security Service: v1.2 The SECIOP-Hosted CSI Protocols Dec. 1998 15-229

15

ta

d in

, and

d in
in

s are
of

SI-

e

MICToken

This is sent either by the initiator or the target to verify the integrity of the user da
sent in the following GIOP message (or message fragment). The token id is 01 01 (hex)
It is returned by GSS_GetMIC.

WrapToken

This is sent either by the initiator or the target. Encapsulates the input user data
(optionally encrypted) along with integrity check values.The token id is 02 01 (hex). It
is returned by GSS_Wrap.

This specification always uses MIC tokens for integrity and Wrap tokens for
confidentiality. This may ease national use and export problems where only MIC
tokens are supported.

The inner context token in the DiscardContext SECIOP message may optionally
contain a ContextDeleteToken.

ContextDeleteToken

This is sent either by the initiator, or the target in an SECIOP DiscardContext message
to release a Security Association. It is returned by GSS_Delete_sec_context.

15.10.8 CSI Protocols

This specification includes three protocols for different circumstances, as describe
Section 15.8.6, “Key Distribution Types,” on page 15-184.

In all cases, the appropriate section specifies the cryptographic profiles supported
the contents of the SECIOP security tokens.

In all cases, the protocol as supported by OMG is a subset of the protocol define
the source document. For example, in all protocols, channel bindings as defined
GSS-API (and specified in the underlying protocols) are not supported. This is
because IP addresses cannot be trusted in current implementations; IP addresse
spoofable. Including the channel binding information would lead to a false sense
security about the source of the transmission.

The protocols described in this specification include SPKM, GSS Kerberos, and C
ECMA.

15.10.8.1 SPKM Protocol

The SPKM protocol supports CSI level 0. This is a public key-based protocol. Th
only client information transmitted is its security name. See Section 15.11, “SPKM
Protocol,” on page 15-231.
15-230 CORBAservices: Common Object Services Specification December 1998

15

ocol.
SS

ree
A

nd

te
her

urity
s

nging

. It

he

ile

lity
15.10.8.2 GSS Kerberos Protocol

The GSS Kerberos protocol supports CSI level 1. This is a secret key-based prot
The only client information transmitted is its security name. See Section 15.12, “G
Kerberos Protocol,” on page 15-234.

15.10.8.3 CSI-ECMA Protocol

The CSI-ECMA protocol also supports the privilege handling, separate Auditid , and
delegation controls of CSI level 2. Subschemes within this protocol support the th
key distribution options: secret, public, and hybrid. See Section 15.13, “CSI-ECM
Protocol,” on page 15-237 for additional information.

To support this flexibility, the initial_context_token is split into three parts; therefore,
the attributes for access control are independent of the key distribution method, a
this is independent of the cryptography used for message protection. The token
contains:

• Authorization information - attributes of a principal are held in a Privilege Attribu
Certificate (PAC) with any associated information needed for delegation and ot
controls. This is independent of the way the communications are protected;
therefore, it is usable with different key distribution methods.

• Security information needed to establish the association. The form that the sec
information takes depends on the key distribution method used. It is a Kerbero
ticket if this is secret key-based; it is a profile of the SPKM_REQ token for public
key mechanisms. In both cases, there is a link between this and the PAC. Cha
the security mechanism mainly just requires replacing this part of the token.

• Dialogue key packages to establish confidentiality and integrity keys.

15.11 SPKM Protocol

This section specifies the SPKM protocol, a simple public-key GSS-API mechanism
is based on SPKM as defined in [20]. SPKM protocol provides CSI level 0
functionality only and the purpose is to allow the adoption of a simple security
infrastructure without undue complexity or overhead.

SPKM has two separate GSS-API mechanisms, SPKM_1 and SPKM_2, whose
primary difference is that SPKM_2 requires the presence of secure timestamps for t
purpose of replay detection during context establishment and SPKM_1 does not.
SPKM_1 is the mandatory mechanism for conformance to the SPKM protocol wh
SPKM_2 is the optional mechanism.

Specifically, it defines the required information for encoding a secure interoperabi
IOR and defines the token formats used by the SECIOP protocol.

15.11.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism:
Security Service: v1.2 SPKM Protocol Dec. 1998 15-231

15

y
y

t

ing
ent

S in

ing

e

n
ation

d with
15.11.1.1 MD5_RSA

Specifies use of the SPKM mechanism to provide data integrity and authenticity b
computing an RSA signature on the MD5 hash of that data. The default SPKM ke
establishment algorithm is used (i.e., the context key is generated by the initiator,
encrypted with the RSA public key of the target, and sent to the target). Note tha
MD5_RSA is a mandatory integrity and authenticity algorithm for SPKM.

15.11.1.2 MD5_DES_CBC

Specifies use of the SPKM mechanism to provide data integrity by encrypting, us
DES in CBC mode, the MD5 hash of that data. The default SPKM key establishm
algorithm is used.

15.11.1.3 DES_CBC

Specifies use of the SPKM mechanism to provide data confidentiality by using DE
CBC mode. The default key establishment algorithm is used.

15.11.1.4 MD5_DES_CBC_SOURCE

Specifies use of the SPKM mechanism to provide data integrity by encrypting, us
DES in CBC mode, the MD5 hash of that data. The default key establishment
algorithm is used plus source authentication information is also encrypted with th
target's public key.

15.11.1.5 DES_CBC_SOURCE

Specifies use of SPKM mechanism to provide data confidentiality by using DES i
CBC mode. The default key establishment algorithm is used plus source authentic
information is also encrypted with the target's public key.

Values for these cryptographic profiles are assigned in Appendix Section A.10,
“General Security Data Module,” on page 15-283.

15.11.2 IOR Encoding

The security tags in the IOR are encoded. The component data member associate
the SPKM_1 and SPKM_2 mechanism tags is a struct, defined as follows:

struct <mechanism_name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};
15-232 CORBAservices: Common Object Services Specification December 1998

15

For

ject,
ol is

of

ence

lf

mechanism_name can be either SPKM_1 or SPKM_2 and security_name must
contain a valid X.500 distinguished name represented as a string conforming to [4].
example, it could be “cn=Andrew Rust, ou=Home Office, o=Acme Widgets Inc.,
c=CA" .

All tag components must be encapsulated using CDR encoding.

15.11.3 Using SPKM for SECIOP

When the SPKM protocol is chosen as the security mechanism for invoking an ob
the SECIOP protocol carries the information described in this section. This protoc
a profile of the SPKM GSS-API mechanism as defined in [20].

All SPKM tokens are encoded according to the general format described in
Section 15.10.7, “Mapping of Common Elements to the SECIOP Protocol,” on
page 15-228.

The innerContextTokens are described in the following sections. All
innerContextTokens are encoded using ASN.1 BER (constrained, in the interests
parsing simplicity, to the DER subset defined in [22]).

The SPKM GSS-API mechanism is identified by an OBJECT IDENTIFIER
representing "SPKM_1" or “SPKM_2.” SPKM_1 uses random numbers for replay
detection during context establishment and SPKM_2 uses timestamps (note that for
both mechanisms, sequence numbers are used to provide replay and out-of-sequ
detection during the context, if this has been requested by the application). SPKM_1
OBJECT IDENTIFIER is 1.3.6.1.5.5.1.1 and SPKM_2 OBJECT IDENTIFIER is
1.3.6.1.5.5.1.2.

15.11.3.1 The Initial Context Token

The initial_context_token carried within an EstablishContext SECIOP message is
encoded according to the general framework and confirms to the SPKM-REQ token as
described in [20] Section 3.1.1.

In the initial_context_token, channel bindings are required to be ZERO
(GSS_C_NO_BINDINGS).

The GSS_C_DELEG_FLAG is required to be FALSE (no delegation is supported).

The GSS_C_MUTUAL_FLAG is TRUE if it requires both parties to authenticate itse
and FALSE (the default) if only one party is required to authenticate itself.

15.11.3.2 The Final Context Token

The final_context_token carried within a CompleteEstablishContext SECIOP
message is encoded according to the SPKM-REP-TI token as defined in [20] Section
3.1.2 or the SPKM-ERROR token as defined in [20] Section 3.1.4.
Security Service: v1.2 SPKM Protocol Dec. 1998 15-233

15

os

c

ity
15.11.3.3 The Continuation Context Token

The continuation_context_token carried within a ContinueEstablishContext SECIOP
message is encoded according to the SPKM-REP-TI token or the SPKM-REP-IT
token as defined in [20] Section 3.1.3 or the SPKM-ERROR token.

15.11.3.4 The Message Protection Token

The message_protection_token carried within an SECIOP MessageInContext
message is encoded according to the SPKM-MIC token (for integrity) or SPKM-
WRAP token (for confidentiality) as defined in [20] Section 3.2.

15.11.3.5 The Context Delete Token

The context_delete_token carried within an SECIOP DiscardContext message is
encoded according to the SPKM-DEL token as defined in [20] Section 3.2.3.

15.12 GSS Kerberos Protocol

This section specifies the GSS Kerberos protocol. It is based on the GSS Kerber
specification [12] which itself is based on Kerberos V5 as defined in [13]. This
specification refers to, rather than repeats, information in [12] and [13].

This section defines the required information for encoding the mechanism-specifi
information in the IOR and the token formats used by the SECIOP protocol.

15.12.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism:

15.12.1.1 DES_CBC_DES_MAC

Specifies use of the Kerberos V5 mechanism with DES MAC message digest for
integrity and DES in CBC mode for confidentiality.

15.12.1.2 DES_CBC_MD5

Specifies use of the Kerberos V5 mechanism with MD5 message digest for integr
and DES in CBC mode for confidentiality.

15.12.1.3 DES_MAC

Specifies use of the Kerberos V5 mechanism with DES MAC message digest for
integrity.
15-234 CORBAservices: Common Object Services Specification December 1998

15

to,

tions

g an
15.12.1.4 MD5

Specifies use of the Kerberos V5 mechanism with a DES-encrypted MD5 message
digest for integrity.

Values for these cryptographic profiles are assigned in Appendix Section A.10,
“General Security Data Module,” on page 15-283.

15.12.2 Mandatory and Optional Cryptographic Profiles

ORB implementations claiming conformance to the GSS Kerberos protocol must
implement at least the MD5 profile. Conformant ORBs may, but are not required
implement the remaining cryptographic profiles defined in this specification.

15.12.3 IOR Encoding

The security tags in the IOR are encoded. Both security name and association op
tags may appear in the IOR and be shared between mechanisms.

The component data member associated with the KerberosV5 mechanism tag is a
struct defined as follows:

struct KerberosV5 {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence<CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};

security_name shall contain a valid Kerberos Principal Name of type
GSS_KRBV5_NT_PRINCIPAL_NAME , which is defined in [12].

All tag components must be encapsulated using CDR encoding.

15.12.4 SECIOP Tokens

When the GSS-Kerberos protocol is chosen as the security mechanism for invokin
object, the SECIOP protocol carries the information described in this section. All
Kerberos tokens are encoded according to the general format.

The OBJECT IDENTIFIER for Kerberos V5 is 1.3.5.1.2 until [12] is advanced to a
Proposed Standard RFC when it will be changed to 1.2.840.113554.1.2.2.

Each individual token is distinguished by the data carried in the ANY field of this
general framework.
Security Service: v1.2 GSS Kerberos Protocol Dec. 1998 15-235

15

T)

15.12.4.1 The Initial Context Token

The initial_context_token carried within an EstablishContext SECIOP message is
encoded according to the general framework and conforms to the unencrypted
authenticator message as described in [12] Section 1.1.1.

Note – Channel bindings are required to be ZERO (GSS_C_NO_BINDINGS) in this
specification (see Section 15.10.8, “CSI Protocols,” on page 15-230).

The GSS_C_DELEG_FLAG is set when either the client has called
set_security_features specifying SecDelModeSimpleDelegation or when an
administrator has called set_delegation_mode with a value of
SecDelModeSimpleDelegation on a domain to which the target object belongs. The
optional “Deleg” field, if present, includes a forwardable Ticket Granting Ticket (TG
representing the delegated credentials of the client sending the EstablishContext
message.

The GSS_C_MUTUAL_FLAG is set when either the client has called
set_association_options specifying a value of EstablishTrustInTarget or an
administrator has called set_association_options with a value of
EstablishTrustInTarget on the domain to which the target belongs.

The GSS_C_REPLAY_FLAG and GSS_C_SEQUENCE_FLAG are generally clear as
they can cause incorrect replay and misordering detection in a multi-threaded
environment (see Section 15.10.3, “Association Options,” on page 15-225).

Note – The current GSS Kerberos implementation available without cost from MIT
does not support replay detection.

15.12.4.2 The Final Context Token

The final_context_token carried within a CompleteEstablishContext SECIOP
message is encoded according to the formats defined in [12] Section 1.1.2.

15.12.4.3 The Continuation Context Token

Kerberos V5 does not use the ContinueEstablishContext message and therefore does
not define the continuation_context_token format. If the Kerberos V5 mechanism is
amended in the future to support mechanism negotiation, support of the
ContinueEstablishContext message would be necessary and thus definition of the
continuation_context_token would be required.

15.12.4.4 The Message Protection Token

The message_protection_token carried within an SECIOP MessageInContext
message is encoded according to the formats defined in [12] section 1.2.
15-236 CORBAservices: Common Object Services Specification December 1998

15

n:

ut

e
A

 are
 to

ge

the

on.

een

. The

ns
.
rned
 key
 to
be
15.13 CSI-ECMA Protocol

This section defines the CSI-ECMA protocol. It is based on the ECMA GSS-API
mechanism as defined in ECMA-235, though it is a significant subset of that. It
supports all CSI levels (0, 1, and 2), and provides three options for key distributio

1. A secret key option using Kerberos data structures.

2. A hybrid option where secret keys are used within an administrative domain, b
public keys are used between domains.

3. A public key option which uses public key technology for key distribution both
within and between domains.

This section includes the full definition of the CSI-ECMA protocol so that it can b
read without reference to ECMA 235. The CSI-ECMA protocol is a subset of ECM
5. It is very similar to the SESAME profile as described in [16].

The CSI-ECMA protocol supports the CORBA Security Level 2 facilities. It is
designed to be extensible as new facilities (for example, new delegation options)
agreed upon in the future, and further key distribution options. It is also designed
respond to the requirements of international deployment such as minimal
confidentiality (only keying information needs to be encrypted), use of anonymous
audit (a separate audit_id can be transmitted), and choice of cryptography for messa
protection (including strong integrity, weak confidentiality).

The structure of the initial context token is key to providing this flexibility. It is
separated into three parts:

1. Authorization information.

2. Information concerned with establishing the security association using one of
supported key distribution options.

3. Information concerned with generating the dialogue keys for message protecti

15.13.1 Concepts

15.13.1.1 Separation of Concerns

The initial context token transmitted in the SECIOP EstablishContext message on
setting up a security association contains a number of parts with limited links betw
them. This is so that the different parts can be varied independently of each other
three main parts are:

1. Authorization information - the Privilege Attribute Certificate (PAC) which contai
the privileges used for access control and other attributes such as the audit id
Associated with this are delegation and other controls. Therefore, this is conce
with the access control and delegation policies, but is mainly independent of the
establishment and message protection mechanisms. The PAC can be updated
affect these policies independently of mechanisms. (The size of the PAC may
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-237

15

urity
ome

is
 can
on

are

keys

te
s

ndix
 the

ing
e
the
ge.

oes
PAC

e of
significant; therefore, it is not confidentiality-protected, as this may cause
regulatory problems.) Privilege and other attributes in PACs are described in
Section 15.13.2, “Security Attributes,” on page 15-238.

2. Target key block - used to provide the information needed to establish the sec
association between client and target. Secret key or public key technology (or s
hybrid of these) may be used. The result is always a “basic” key from which
dialogue keys to protect application messages can be derived. Therefore, this
concerned with the mechanism for establishing trust and distributing keys. This
be varied independently of the authorization policies and the message protecti
methods. Key establishment methods are described in Section 15.13.5, “Key
Distribution Schemes,” on page 15-239.

3. Dialogue key packages which control how dialogue keys to protect messages
derived from the basic key. Note that this is largely independent of the key
distribution method (i.e., public key technology may be used to establish secret
for dialogue protection).

15.13.2 Security Attributes

15.13.2.1 Privilege Attributes

The CSI-ECMA protocol allows a range of privilege attributes in a Privilege Attribu
Certificate (PAC) transmitted between the client and target object. These privilege
then can be used for access control.

Privilege attributes which can be carried in the PAC at level 2 are defined in Appe
Section A.11.1, “Attribute Types,” on page 15-307 and include all those defined in
CORBA Security specification.

A vendor or user enterprise may also define its own privilege attributes (if the
particular implementation allows this) and use them for access control.

In line with the CORBA Security specification, each privilege attribute has a defin
authority which identifies the authority responsible for defining the semantics of th
value of the security attribute. This can be included for each privilege attribute in
PAC and in this case, there could be a different defining authority for each privile

It is often the case that most attributes in the PAC come under the same defining
authority which is the authority that issued the PAC. If the PAC, as transmitted, d
not have defining authorities for some attributes, then the issuing authority of the
is considered to be the defining authority.

15.13.2.2 Miscellaneous Attributes

This specification allows other types of security attributes to be carried in the PAC
under the general heading of miscellaneous attributes. In CSI-ECMA, the only typ
miscellaneous attribute supported is the audit identity.
15-238 CORBAservices: Common Object Services Specification December 1998

15

ation

hen

me in

ly, the
ed

 used
d for
to
 in
key

g a

keys.
hen

 and

ult of
15.13.3 Target Access Enforcement Function

The security processing functionality at the target is split between the target
application and the target access-enforcement function (targetAEF). ISO (ISO/IEC
10181-3) defines an access enforcement function collocated with the target applic
which controls access to a target application. This has a number of advantages
including:

• The security critical code is isolated which makes security evaluation simpler.

• Long term keys can be shared between applications/objects. This can simplify
administration (as there are less keys) and allow re-use of keying information w
accessing another application/object sharing this targetAEF.

The targetAEF is responsible for setting up the security association, including
validating the PAC and releasing the keys for message protection.

15.13.4 Basic and Dialogue Keys

The exchanges between client and target are secured using a two-level key sche
which a distinction is made between basic and dialogue keys.

A basic key is a temporary key established between a client and the target (actual
targetAEF). The basic key is used for integrity protection of the PAC and associat
information, its own key establishment information, and the information used to
establish the dialogue keys. The basic key is established by the client sending
information to the target in the targetKeyBlock. This can take different forms,
depending on the key distribution method used.

A dialogue key is a temporary key established between the client and target and is
to protect the requests and responses. Separate dialogue keys can be establishe
integrity and confidentiality protection, enabling different strengths of mechanism
be configured. The information required to derive the dialogue keys is transmitted
the Dialogue key package. Typically, dialogue keys are constructed from the basic
using a one way algorithm.

15.13.5 Key Distribution Schemes

The CSI-ECMA protocol allows a choice of key distribution methods for establishin
client-target security association including the basic key. The content of the
targetKeyBlock depends on the scheme used.

The key distribution schemes depend on the existence of long term cryptographic
Both secret (symmetric) and public (asymmetric) key technology can be used. W
secret keys are used, a key is shared between the target and its Key Distribution
Service (KDS). When public keys are used, the private key is kept by the principal
the public key held in a certificate, in a directory or elsewhere.

Initiators may also possess symmetric or asymmetric keys established as the res
an earlier authentication.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-239

15

.

e Key

ng
m it.

s a

KDS

e

KDS.

ck is

n
rmine
.

ated
This CSI-ECMA specification defines three key distribution schemes. These are
described below and are identified by a name and an architectural option number
Other schemes are possible as extensions to this as described in ECMA-235.

15.13.5.1 Basic Symmetric Key Distribution Scheme

In this scheme, the client and target each share different secret keys with the sam
Distribution Server. The scheme name for this is: symmIntradomain. The architectural
option number is 2.

To establish the association between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s lo
term key. On receipt of the targetKeyBlock, the target can extract the basic key fro

In this case, the targetKeyBlock is a Kerberos ticket.

15.13.5.2 Symmetric Key Distribution with Asymmetric KDS

In this scheme, the initiator shares a secret key with its KDS and the target share
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair. The scheme name for this is: hybridInterdomain . The
architectural option number is 3.

To establish the client-target association, the client gets a targetKeyBlock from its
containing the basic key encrypted under a temporary key and the temporary key
encrypted under the target’s KDS public key. The targetKeyBlock is also signed using
the initiator’s KDS private key.

On receipt of the targetKeyBlock, the target transmits it to its KDS and gets back th
basic key encrypted under the long term secret key it shares with its KDS.

15.13.5.3 Full Public Key Scheme

In this scheme, both client and target possess private/public keys. Neither use a
The scheme name for this is: asymmetric. The architectural option number is 6.

To establish the client-target association, the client constructs a targetKeyBlock
containing a basic key encrypted under the target’s public key. The target key blo
signed with the client’s private key. On receipt of the targetKeyBlock, the target
directly establishes a basic key from it.

15.13.6 Cryptographic Algorithms and Profiles

Cryptographic and hashing algorithms are used for various purposes. This sectio
categorizes the algorithms according to usage so that client and targets can dete
more easily if they have the cryptographic support required to allow interoperation
The categorization then is refined into cryptographic profiles that can be incorpor
15-240 CORBAservices: Common Object Services Specification December 1998

15

s to

 the
into specific mechanism identifiers. The mechanism identifiers with cryptographic
profiles then can be carried in the IOR. Table 15-15 summarizes the different use
which algorithms are put.

The algorithms can now be further categorized into broader classes, as shown in
following table.

Use 10 is a fixed value and does not contribute to mechanism use options.

Table 15-15 Summary of Algorithm Usage

Use
Reference

Description of Use Type of Algorithm

2 PAC protection using signature OWF + asymmetric signature

3 basic key usage confidentiality and integrity

4 integrity dialogue key derivation OWF

5 integrity dialogue key usage symmetric integrity

6 CA public keys OWF + asymmetric signature

7 encryption using shared long term
symmetric key

symmetric confidentiality

8 name hash to prevent ciphertext
stealing

OWF

9 asymmetric basic key distribution asymmetric encryption

10 key establishment within
SPKM_REQ

(fixed value)

11 confidentiality dialogue key
derivation

OWF

12 confidentiality dialogue key use symmetric confidentiality

Table 15-16 Summary of Algorithm Classes

Class 1: symmetric for security of mechanism: uses 3, 5, 7

Class 2: all OWFs: uses 2, 4, 6, 8, 11

Class 3: internal mechanism asymmetric, encrypting: use 9

Class 4: internal mechanism asymmetric, non encrypting: use 2

Class 5: CA’s asymmetric non-encrypting: use 6

Class 6: data confidentiality, symmetric: use 12
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-241

15

this

ded

, as
tem
 on
d

her it
ges

is

t

Based on these classes, the following cryptographic algorithm usage profiles are
defined. Other profiles are possible and can be defined as required. Note that
symmetric algorithm key sizes are included in this profiling, thus DES/64 indicates
DES with a 64-bit key.

Table key:

• Profile 1 provides full security, using standard cryptographic algorithms with
common accepted key sizes.

• Profile 2 is the same, but without supporting any confidentiality of user data.

• Profile 3 provides low-grade confidentiality. In some countries, products using
are exportable without restriction; in others, they are more easily
exportable/importable.

• Profile 5 uses algorithms identified by a separately specified default. It is inten
for use by organizations who wish to use their own proprietary or government
algorithms by separate agreement or negotiation.

15.13.7 PAC Protection and Delegation - Outline

The ECMA protocol provides a number of ways to protect a principal’s credentials
held in a PAC. In CSI-ECMA, a digital signature is used, as this allows a target sys
to check what Security Authority authorized use of these privileges, without relying
the transitive trust needed for sealed PACs crossing domain boundaries. Encrypte
PACs are not included in this profile.

There may also be controls on where the PAC may be delegated and used.

Protection method fields in the PAC specify where this PAC can be used and whet
can be used by the specified targets only (for example, allowing use of the privile
for access control) or whether that target can also delegate it.

Protection method fields are grouped together into method groups. The protection
method check is passed if all the method fields in any one of the method groups
passed.

Table 15-17 Cryptographic Algorithm Usage Profiles

Class Profile 1
Full

Profile 2
no data
confidentiality

Profile 3
low-grade
confidentiality

Profile 5
defaulted

Class 1 DES/64 DES/64 RC4/128 separately agreed defaul

Class 2 MD5 MD5 MD5 separately agreed default

Class 3 RSA RSA RSA separately agreed default

Classes 4
and 5

RSA RSA RSA separately agreed default

Class 6 DES/64 None RC4/40 separately agreed default
15-242 CORBAservices: Common Object Services Specification December 1998

15

r, a

PAC.

ne

 the

er

 by

 to
15.13.8 PPID Method

This method protects the PAC from being stolen, by restricting the initiators who can
use the PAC.

When no other method group is present, it permits the PAC to be used only by the
client entity to which it was originally issued (i.e., it prevents delegation). Howeve
PAC with a PPID will be delegatable if delegation is permitted by a PV/CV method.

A PPID identifying the initiating principal is put in the PAC by the Privilege Attribute
(or other security) Service, according to policy or client request. The same/related
information is also supplied as part of the targetKeyBlock so that the target can check
that the entity which sent this token is the same entity which is entitled to use the

The PPID is a security attribute whose value in the CSI-ECMA protocol can take o
of two forms, depending on the key distribution scheme used by the initiator.

• When the initiator has a secret key, the PPID is a random bit string which is also
sent in the authorization field of the Kerberos ticket. This ticket is sent as part of
targetKeyBlock and can be checked to come from this client.

• For the public key scheme, the PPID contains the certificate serial number and CA
name for the initiator’s X.509 public key certificate. The targetKeyBlock sent to the
target is signed using this initiator’s private key.

15.13.9 PV/CV Delegation Method

This method prevents the PAC from being stolen and at the same time controls wheth
(and where) it can be delegated. The method field in the PAC contains a protection
value (PV) which is a one-way function of a Control Value (CV).

A PAC will be accepted by the target (subject to other controls in the PV’s method
group) if the client proves knowledge of the CV by passing it (encrypted) as part of the
initial context token. A method group contains at most one PV value.

In the simplest case, the method group contains just the PV and the target can delegate
the PAC if it receives the CV.

The PV/CV method can be used for more selective targeting of the PAC also. A
method group can include qualifier attributes which specify where the PAC can be
used. Qualifier attributes can specify which principals can receive the PAC as a target
and which can act as both delegate and target. These principals can be specified
their identities (though the protocol is extensible for other options such as a
group/domain to which they belong).

For the simpler case, delegation can be prevented by setting the delegation mode
Security::SecDelModeNoDelegation. This will cause the client to send the PAC
without the CV.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-243

15

trict

h

s:

e

 If

re,

heme
.

s the

orm of
Note – The protocol allows more than one method group in the PAC, each with its own
PV/CV. This can be used by a client or intermediate object in a chain to further res
who can use the PAC, by failing to send some of the CVs. However, this specification
does not include any operations for restricting delegation in this way, so it is not
possible to exploit this capability.

15.13.9.1 Restrictions

Other restrictions may be included in the PAC. An ORB conforming to this
specification does not have to generate these restrictions, but will reject PACs wit
mandatory restrictions which it does not understand or cannot process.

15.13.10 Mechanism Identifiers and IOR Encoding

All tag component data in the IOR must be encapsulated using CDR encoding.

Mechanism identifiers for the CSI-ECMA protocol have up to three parts, as follow

1. Protocol identifier - this is CSI-ECMA.

2. Architectural option - this identifies the architectural option (i.e., the key
distribution method used when establishing security associations). If absent, th
default option is used.

3. Cryptographic profile - this identifies the cryptographic profile as defined above.
absent, a default is used.

In the IOR, the mechanism name in the struct of the TAG_x_SEC_MECH is:

CSI-ECMA_<architectural option>

where the architectural options supported are Secret, Hybrid, and Public; therefo
mechanism names are CSI_ECMA_Secret, CSI_ECMA_Hybrid , and
CSI_ECMA_Public.

These values could also be negotiated using a generic mechanism negotiation sc
such as that in [19] in the future, but are in the IOR for the current CSI specification

15.13.11 Security Names

This protocol uses two forms of security names:

1. Directory names (DNs) are used where public key technology is used, as this i
form of name used in X509 certificates.

2. Kerberos names are used where secret key technology is used, as this is the f
name used by Kerberos.
15-244 CORBAservices: Common Object Services Specification December 1998

15

 that
r. If
ce an

are
s,
ed

eros
te
 to

ism.

ken

file
15.13.11.1 Kerberos Naming

An entity that uses the normal Kerberos V5 authentication is given a printable
Kerberos principal name of the form:

<principal_name>@realm_name>

Note – Components of a name can be separated by “/”. The separator @ signifies
the remainder of the string following the @ is to be interpreted as a realm identifie
no @ is encountered, the name is interpreted in the context of the local realm. On
@ is encountered, a non-null realm name, with no embedded “/” separators must
follow. The “/” character is used to quote the character that follows immediately.

15.13.11.2 Directory Naming

Where public key technology supported by Directory Certificates is used, entities
given DNs. Such names are normally transmitted as directoryNames. At interface
they are strings built from components separated by a semicolon. The standardiz
keywords supported are:

CN (common-name)
S (surname)
OU (organization unit)
O (organization)
C (country)

An example of a supported DN is:

CN=Martin;OU=Sesame;O=Bull;C=fr

There is no general rule for mapping the Directory name of an entity onto its Kerb
principal name. An explicit mapping is provided in a principal’s Directory Certifica
using the extensions field of the extended Directory Certificate syntax (version 3)
carry the principal’s Kerberos name.

The syntax of the login name is imported from the Kerberos V5 GSS-API mechan
The form of name is referred to using the symbolic name:
GSS_KRB5_NT_PRINCIPAL. Syntax details are given in [12].

15.13.12 SECIOP Tokens When Using CSI-ECMA

All SECIOP security tokens conform to the basic token format defined in “Basic To
Format” on page 15-228. The object identifier for the MechType is of the form:

{generic_CSI_ECMA_mech (y) (z)}

where the value for generic_CSI_ECMA_mech is 1.3.12.0.235.4 and the values of y
and z, if present, represent the architectural option number and cryptographic pro
numbers. Both y and z can be defaulted.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-245

15

 in

of

on

er

data

ase

 a

age.
The innerContextToken of the SECIOP message may be any of the tokens defined
“Inner Context Tokens” on page 15-229.

For context establishment, tokens are:

InitialContextToken - Sent by the initiator to a target, to start the process of
establishing a Security Association.

TargetResultToken - Sent to the initiator by the target, if needed, following receipt
an Initial Context Token.

ErrorToken - Sent by the target on detection of an error during Security Associati
establishment.

The per-message tokens are:

MICToken - Sent either by the initiator or the target to verify the integrity of the us
data sent separately.

WrapToken - Sent either by the initiator or the target. Encapsulates the input user
(optionally encrypted) along with integrity check values.

A ContextDeleteToken may also be used either by the initiator or the target to rele
a Security Association.

This definition uses ASN.1 types from other standards (e.g., the ISO definition of
Certificate). These types are detailed in Annex E of ECMA-235.

15.13.13 Initial Context Token

The initial context token contains:

• General information such as the token id, contextFlags (delegation, replay-detect
etc.), utcTime, seq-number, etc.

• A targetAEF part to be passed to the target access enforcement function. This
includes the PAC and associated CVs, target key block, and dialogue key pack

• A seal.

Figure 15-61 Initial Context Token

target AEF part

token id. pac & CVs target Key Block dialogue Key Block seal

(used by target to enforce policy)

etc. (initiating and/or
delegate principal’s

authorization
and delegation
information)

(information
needed to

establish the
association)

(information used
to establish

message protection
key - integrity and

confidentiality)
15-246 CORBAservices: Common Object Services Specification December 1998

15

at

is
ed by

r
rget,

nd
ed

 key

s
InitialContextToken ::= SEQUENCE{
ictContents [0] ICTContents,
ictSeal [1] Seal

}

ictContents - Body of the initial context token.

ictSeal - Seal of ictContents computed with the integrity dialogue key. Only the
sealValue field of the Seal data structure is present. The cryptographic algorithms th
apply are specified by integDKUseInfo in the dialogueKeyBlock field of the initial
context token.

ICTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0100'
SAId [1] OCTET STRING,
targetAEFPart [2] TargetAEFPart,
targetAEFPartSeal [3] Seal,
contextFlags [4] BIT STRING {

delegation (0),
mutual-auth (1),
replay-detect (2),
sequence (3),
conf-avail (4),
integ-avail (5)

}
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,
initiatorAddress [8] HostAddress OPTIONAL,
targetAddress [9] HostAddress OPTIONAL

}

tokenId - Identifies the initial-context token. Its value is 01 00 (hex)

SAId - A random number for identifying the Security Association being formed; it
one which probably has not been used previously. This random number is generat
the initiator and processed by the target as follows:

• If no targetResultToken is expected, the SAId value is taken to be the identifie
of the Security Association being established (if this is unacceptable to the ta
then an error token with etContents value of
gss_ses_s_sg_sa_already_established must be generated).

• If a targetResultToken is expected, the target generates its random number a
concatenates it to the end on the initiator's random number. The concatenat
value is then taken to be the identifier of the Security Association being
established.

targetAEFPart - Part of the initial-context token to be passed to the target access
enforcement function. This is defined below and includes PAC, basic, and dialogue
packages.

targetAEFPartSeal - Seal of the targetAEFPart computed with the basic key. Only
the sealValue field of the Seal data structure is present. The cryptographic algorithm
that apply are specified by algorithm profile in the mechanism option.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-247

15

 by

re

 is
m

s

es
contextFlags - Combination of flags that indicates context-level functions requested
the initiator.

utcTime - The initiator's UTC time.

usec - Microsecond part of the initiator's time stamp. This field along with utcTime a
used together to specify a reasonably accurate time stamp.

seq-number - When present, this specifies the initiator's initial sequence number;
otherwise, the default value of 0 is to be used as an initial sequence number.

initiatorAddress - Initiator's network address part of the channel bindings. This field
present only when channel bindings are transmitted by the caller to the mechanis
implementation. Conformant ORBs do not need to generate this field.

targetAddress - Target's network address part of the channel bindings. This field is
present only when channel bindings are transmitted by the caller to the
implementation.

15.13.13.1 TargetAEF Part

TargetAEFPart ::= SEQUENCE {
pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,
targetKeyBlock [1] TargetKeyBlock,
dialogueKeyBlock [2] DialogueKeyBlock,
targetIdentity [3] Identifier,
flags [4] BIT STRING {

 delegation (0)
 }

}

pacAndCVs - The initiator ACI to be used for this Security Association. This field i
not present when the association does not require any ACI . This field contains the PAC
together with associated PAC protection information. When only simple delegation is
supported, one of these should be present.

Flag Indicates that ...

delegation when set to 0, the initiator explicitly forbids delegation of the PAC
in the targetAEFPart .

mutual-auth mutual authentication is requested.

replay-detect replay detection features are requested to be applied to messag
transferred on the established Security Association.

sequence sequencing features are requested to be enforced to messages
transferred on the established Security Association.

conf-avail a confidentiality service is available on the initiator side for the
established Security Association.

integ-avail an integrity service is available on the initiator side for the
established Security Association.
15-248 CORBAservices: Common Object Services Specification December 1998

15

e

r-

d

xt
arget

uch
nism

e
If composite delegation options are supported, this field will contain more than on
PAC. For example, for the initiator plus immediate invoker case, the initiator’s PAC
would be present (with CVs) and the immediate invoker’s (with a PPID).

targetKeyBlock - The targetKeyBlock carrying the basic key to be used for the
Security Association being established.

dialogueKeyBlock - A dialogue key block used by the targetAEF along with the basic
key to establish an integrity dialogue key and a confidentiality dialogue key for pe
message protection over the Security Association being established.

targetIdentity - The identity of the intended target of the Security Association. Use
by the targetAEF to validate the PAC. It can also be used by the targetAEF to help
protect the delivery of dialogue keys.

flags - Flags required by the targetAEF for its validation process. flags contains only a
delegation flag, the value of which is the same as the value of delegation flag in
contextFlag field of ictContents. When the flag is set, all ECVs sent in pacAndCVs
are made available to the target. Other bits are reserved for future use.

15.13.14 TargetResultToken

This token is returned by the target if the mutual-req flag is set in the Initial Conte
Token. It serves to authenticate the target to the initiator since only the genuine t
could derive the integrity dialogue key needed to seal the TargetResultToken.

TargetResultToken ::= SEQUENCE{
trtContents [0] TRTContents,
trtSeal [1] Seal

}

TRTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0200'
SAId [1] OCTET STRING,
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,

}

Note – There is no field for returning certification data here. This is because any s
data that may be required is assumed to be returned at the conclusion of mecha
negotiation.

trtContents - This contains only administrative fields, identifying the token type, th
context, and providing exchange integrity.

seq-number - When present this specifies the target's initial sequence number;
otherwise, the default value of 0 is to be used as an initial sequence number.

The other administrative fields are as described previously.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-249

15

at

trtSeal - Seal of trtContents computed with the integrity dialogue key. Only the
sealValue field of the Seal data structure is present. The cryptographic algorithms th
apply are specified by integDKUseInfo in the dialogueKeyBlock field of the initial
context token.

15.13.15 ErrorToken

An error token may be returned, as follows:

ErrorToken ::= {
tokenType [0] OCTET STRING VALUE X'0400',
etContents [1] ErrorArgument,

}

etContents - Contains the reason for the creation of the error token. The different
reasons are given as minor status return values.

ErrorArgument ::= ENUMERATED {
gss_ses_s_sg_server_sec_assoc_open (1),
gss_ses_s_sg_incomp_cert_syntax (2),
gss_ses_s_sg_bad_cert_attributes (3),
gss_ses_s_sg_inval_time_for_attrib (4),
gss_ses_s_sg_pac_restrictions_prob (5),
gss_ses_s_sg_issuer_problem (6),
gss_ses_s_sg_cert_time_too_early (7),
gss_ses_s_sg_cert_time_expired (8),
gss_ses_s_sg_invalid_cert_prot (9),
gss_ses_s_sg_revoked_cer (10),
gss_ses_s_sg_key_constr_not_supp (11),
gss_ses_s_sg_init_kd_server_ unknown (12).
gss_ses_s_sg_init_unknown (13),
gss_ses_s_sg_alg_problem_in_dialogue_key_block (14),
gss_ses_s_sg_no_basic_key_for_dialogue_key_block (15),
gss_ses_s_sg_key_distrib_prob (16),
gss_ses_s_sg_invalid_user_cert_in_key_block (17),
gss_ses_s_sg_unspecified (18),
gss_ses_s_g_unavail_qop (19),
gss_ses_s_sg_invalid_token_format (20)

}

15.13.16 Per-Message Tokens

The syntax of the message_protection_token in SECIOP messages has the same
general structure for both MIC and Wrap tokens:

PMToken ::= SEQUENCE{
pmtContents [0] PMTContents,
pmtSeal [1] Seal

-- seal over the pmtContents being protected
}

PMTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0101'
SAId [1] OCTET STRING,
15-250 CORBAservices: Common Object Services Specification December 1998

15

ne
y the

rget,

nd
ed

g
field
ch

r with
n the

er is
seq-number [2] INTEGER OPTIONAL
userData [3] CHOICE {

plaintext BIT STRING,
ciphertext OCTET STRING OPTIONAL

}
directionIndicator [4] BOOLEAN OPTIONAL

}

pmtContents

tokenId
SAId - A random number for identifying the Security Association being formed; it is o
which probability has not been used previously. This random number is generated b
initiator and processed by the target as follows:

• If no targetResultToken is expected, the SAId value is taken to be the identifier
of the Security Association being established (if this is unacceptable to the ta
then an error token with etContents value of
gss_ses_s_sg_sa_already_established must be generated).

• If a targetResultToken is expected, the target generates its random number a
concatenates it to the end on the initiator's random number. The concatenat
value is then taken to be the identifier of the Security Association being
established.

seq-number - This field must be present if replay detection or message sequencin
have been specified as being required at Security Association initiation time. The
contains a message sequence number whose value is incremented by one for ea
message in a given direction, as specified by directionIndicator . The first message sent
by the initiator following the InitialContextToken shall have the message sequence
number specified in that token, or if this is missing, the value 0. The first message
returned by the target shall have the message sequence number specified in the
TargetReplyToken if present, or failing this, the value 0.

The receiver of the token will verify the sequence number field by comparing the
sequence number with the expected sequence number and the direction indicato
the expected direction indicator. If the sequence number in the token is higher tha
expected number, then the expected sequence number is adjusted and
GSS_S_GAP_TOKEN is returned. If the token sequence number is lower than the
expected number, then the expected sequence number is not adjusted and
GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is returned, whichever is
appropriate. If the direction indicator is wrong, then the expected sequence numb
not adjusted and GSS_S_UNSEQ_TOKEN is returned.

userData - See specific token type narratives below.

directionIndicator - FALSE indicates that the sender is the context initiator, TRUE
indicates that the sender is the target.

pmtSeal - See specific token type narratives below.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-251

15

ed,
ssed
ws

ody
 is:

it is
m

 to
15.13.16.1 MICToken

An MICToken is a per-message token, separate from the user data being protect
which can be used to verify the integrity of that data as received. The token is pa
in the message_protection_token in SECIOP messages, and the protected data follo
as a GIOP message or message fragment. The syntax of the token is:

MICToken ::= PMToken

The overall structure and field contents of the token are described above.

Fields specific to the MICToken are:

userData - Not present for MICTokens.

pmtSeal - The Checksum is calculated over the DER encoding of the pmtContents
field with the user data temporarily placed in the userData field. The userData field
is not transmitted.

15.13.16.2 WrapToken

A WrapToken encapsulates the input user data (optionally encrypted) along with
associated integrity check values. It consists of an integrity header followed by a b
portion that contains either the plaintext or encrypted data. The syntax of the token

WrapToken ::= PMToken

The overall structure and field contents of the token are described above.

Fields specific to the WrapToken are:

userData - Present either in plain text form or encrypted. If the data is encrypted,
performed using the Confidentiality Dialogue Key, and as in [13], an 8-byte rando
confounder is first prepended to the data to compensate for the fact that an IV of zero
is used for encryption.

wtSeal - The Checksum is calculated over the pmtContents field, including the
userData. If the userData field is to be encrypted, the seal value is computed prior
the encryption.

15.13.17 ContextDeleteToken

The ContextDeleteToken is issued by either the context initiator or the target to
indicate to the other party that the context is to be deleted.

ContextDeleteToken ::= SEQUENCE {
cdtContents [0] CDTContents,
cdtSeal [1] Seal

-- seal over cdtContents, encrypted under the Integrity
-- Dialogue Key. Contains only the sealValue field

}

CDTContents ::= SEQUENCE {
tokenType [0] OCTET STRING VALUE X'0301',
15-252 CORBAservices: Common Object Services Specification December 1998

15

e

lds

s.
SAId [1] OCTET STRING,
utcTime [2] UTCTime OPTIONAL,
usec [3] INTEGER OPTIONAL,
seq-number [4] INTEGER OPTIONAL,

}

cdtContents - This contains only administrative fields, identifying the token type, th
context, and providing exchange integrity.

seq-number - When present, this field contains a value one greater than that of theseq-
number field of the last token issued from this issuer. The other administrative fie
are as described above.

trtSeal - See above for a general description of the use of this construct.

15.13.18 Security Attributes

15.13.18.1 Data Structures

The security attribute is a basic construct for privilege and other attributes in PAC

SecurityAttribute ::= SEQUENCE{
attributeType Identifier,
attributeValue SET OF SEQUENCE {

definingAuthority [0] Identifier OPTIONAL,
securityValue [1] SecurityValue

}
}

Identifier ::= CHOICE{
objectId [0] OBJECT IDENTIFIER,
directoryName [1] Name,

-- imported from the Directory Standard
printableName [2] PrintableString,
octets [3] OCTET STRING,
intVal [4] INTEGER,
bits [5] BIT STRING,
pairedName [6] SEQUENCE{

printableName [0] PrintableString,
uniqueName [1] OCTET STRING

}
}

SecurityValue ::= CHOICE{
directoryName [0] Name,
printableName [1] PrintableString,
octets [2] OCTET STRING,
intVal [3] INTEGER,
bits [4] BIT STRING,
any [5] ANY -- defined by attributeType

}

Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-253

15

ted

al in

the

he

f

the
ype.

s a

it,

d in
Only one set member is permitted in AttributeValue. Multivalue attributes are effec
in the securityValue field, where the “SEQUENCE OF” construct can be used.
(Including “SET OF” in the syntax enables security attributes to be stored as norm
a Directory whenever the choice made within Identifier is OBJECT IDENTIFIER.)

A directory name is translated into a string format as defined in Section 15.13.11,
“Security Names,” on page 15-244. The sequence<octet> attribute value returned at
the IDL interface is a representation of this string, not the more complex ASN.1
definition of this.

attributeType - Defines the type of the attribute. Attributes of the same type have
same semantics when used in Access Decision Functions, though they may have
different defining authorities.

definingAuthority - The authority responsible for the definition of the semantics of t
value of the security attribute. This optional field of the attributeValue can be used to
resolve potential value clashes. It is defined as an Identifier which has a choice o
syntax. For CSI-ECMA, it is always a directoryName.

securityValue - The value of the security attribute. Its syntax can be either one of
basic syntaxes for attributes or a more complex one determined by the attribute t

15.13.18.2 Attribute Types

An attribute type in this standard is formally defined as an Identifier which provide
choice of syntax; however, all standard attribute types are defined as OBJECT
IDENTIFIERs. Three types of attributes are defined:

1. Privilege attributes (e.g., AccessId, GroupId , Role)

2. Miscellaneous attributes, mainly the AuditId

3. Qualifier attributes used within the PV/CV delegation scheme to say where
credentials can be used/delegated.

For standard attributes, the OBJECT IDENTIFIER includes:

• first, a standard part with the value 1.3.12.1.46,

• then the “family” for privilege, miscellaneous, or qualifier attributes (4, 3, or 5), and

• then the value for that particular attribute type.

All standard attributes, which conformant ORBs must be able to generate/transm
have this form.

In addition, conformant ORBs must be able to handle other attribute types define
this chapter. They must also be able to handle attribute types with “OMG” object
identifiers, as described in “Mapping Other Attributes to Externally Valid IDL
Attributes” on page 15-199. In this case, the Object Identifier is:

<iso>..<omg>.<security><family definer>.<family>.<attribute type>
15-254 CORBAservices: Common Object Services Specification December 1998

15

are

fiers

tory

er

et

al's

up

where the values of the CORBA family definer, CORBA family and attribute type
as defined in Appendix Section A.11.1, “Attribute Types,” on page 15-307. For
standard attributes, the family definer is 0 and the family is 0 for privileges and 1 for
miscellaneous attributes.

OMG Object Identifiers can also be used for privilege attributes defined by other
organizations, who have registered a family definer with OMG.

15.13.19 Privilege and Miscellaneous Attribute Definitions

Privilege and miscellaneous attribute types are normally identified by Object Identi
which have a standard part, then family and attribute type parts.

The following privilege and miscellaneous attributes are defined in the CORBA
Security specification and have defined attribute types. Some of these are manda
for a CSI level 2 conformant ORB to generate (see Section 15.8.15, “Support for
CORBA Security Facilities and Extensibility,” on page 15-202). The Object Identifi
in the privilege attribute set for that type is listed in Table 15-18 on page 15-255.

15.13.20 Qualifier Attributes

When a targetQualification or delegateTargetQualification method is present in the
PAC, the syntax used for the method parameters is securityAttribute . Object
Identifiers for qualifier attributes have the value 1.3.12.1.46.5.<qualifier attribute type>.

Currently, only one form of qualifier attribute is defined, and this identifies the targ
by security name. This is usually the name of an identity domain as defined in
“Domains” on page 15-38, not an individual object.

Table 15-18 Privilege and Miscellaneous Attributes

Type of
Attribute

oid family
& type

Syntax Meaning

access-identity 4.2 printableString The access identity represents the princip
identity to be used for access control
purposes.

primary-group 4.3 printableString The primary group represents a unique gro
to which a principal belongs. A security
context must not contain more than one
primary group for a given principal.

group 4.4 SEQUENCE OF
printableString

A group represents a characteristic common
to several principals. A PAC may contain
more than one group for this principal.

role 4.1 printableString A role attribute represents one of the
principal's organizational responsibilities.

audit_id 3.2 printableString The identity of the principal as used for
auditing.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-255

15

ed

 is

s a
n

alized
In the future, other forms of qualifier attributes may be added. For example, the
attribute could identify an invocation delegation domain, rather than particular nam
target.

15.13.21 Target Names

Within a PAC protection method, a target name is indicated using the OID:

target-name-qualifier OBJECT IDENTIFIER ::= {qualifier-attribute 1 }
Its syntax in the PAC is:
TargetNameValueSyntax ::= Identifier

15.13.22 PAC Format

The PAC is in the form of a generalized certificate. A Generalized Certificate is
composed of three main structural components:

1. The “commonContents” fields collectively serve to provide generally required
management and control over the use of the PAC.

2. The “specificContents” fields are different for different types of certificate, and
contain a type identifier to indicate the type. In this specification, only one type
defined - the Privilege Attribute Certificate (PAC).

3. The “checkValue” fields are used to guarantee the origin of the certificate. This i
signature in the CSI-ECMA specification (though a seal would be possible as i
ECMA 235).

Figure 15-62 Generalized Certificate’s Structural Components

GeneralizedCertificate ::= SEQUENCE{
certificateBody [0] CertificateBody,
checkValue [1] CheckValue

}

CertificateBody ::= CHOICE{
encryptedBody [0] BIT STRING,
normalBody [1] SEQUENCE{

commonContents [0] CommonContents,
specificContents [1] SpecificContents

}
}

The next sections describe these three main structural components of the Gener
Certificate.

PAC-specific contents
Common
Certificate
Contents protection/

delegation
methods

privilege
and other
attributes

restrictions

Check
Value
15-256 CORBAservices: Common Object Services Specification December 1998

15

 the

n

m
 are

eal
hm

.

15.13.23 Common Contents Fields
CommonContents ::= SEQUENCE{

comConSyntaxVersion [0] INTEGER { version1 (1) }DEFAULT 1,
issuerDomain [1] Identifier OPTIONAL,
issuerIdentity [2] Identifier,
serialNumber [3] INTEGER,
creationTime [4] UTCTime OPTIONAL,
validity [5] Validity,
algId [6] AlgorithmIdentifier,
hashAlgId [7] AlgorithmIdentifier OPTIONAL

}

In the imported definition of AlgorithmIdentifier , ISO currently permits both a hash
and a cryptographic algorithm to be specified. If this is done, they must appear in
algId field. The hashAlgId field is present for those cases where a separate hash
algorithm specification is required.

Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime

} -- as in [ISO/IEC 9594-8]
 -- Note: Validity is not tagged, for compatibility with the
-- Directory Standard.

comConFieldsSyntaxVersion - Identifies the version of the syntax of the combinatio
of the commonContents and the checkValue fields parts of the certificate.

issuerDomain - The security domain of the issuing authority. Not required if the for
of issuerIdentity is a full distinguished name, but required if other forms of naming
in use. In CSI-ECMA, this is always a directoryName.

issuerIdentity - Identity of the issuing authority for the certificate.

serialNumber - Serial number of the certificate (PAC) as allocated by the issuing
authority.

creationTime - The UTCtime that the certificate was created, according to the
authority that created it.

validity - A pair of start and end times within which the certificate is deemed to be
valid.

algId - The identifier of the secret or of the public cryptographic algorithm used to s
or to sign the certificate. If there is a single identifier for both the encryption algorit
and the hash function, it appears in this field.

hashAlgId - The identifier of the hash algorithm used in the seal or in the signature

The certificate can be uniquely identified by a combination of the issuerDomain,
issuerIdentity, and serialNumber.

15.13.24 Specific Certificate Contents for PACs
SpecificContents ::= CHOICE{
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-257

15

of

bit

and

ons
pac [1] PACSpecificContents
-- only the PAC is used here

}

PACSpecificContents ::= SEQUENCE{
pacSyntaxVersion [0] INTEGER{ version1 (1)} DEFAULT 1,
protectionMethods [2] SEQUENCE OF MethodGroup OPTIONAL,
pacType [4] ENUMERATED{

primaryPrincipal (1),
temperedSecPrincipal (2),
untemperedSecPrincipal(3)

 } DEFAULT 3,
privileges [5] SEQUENCE OF PrivilegeAttribute,
restrictions [6] SEQUENCE OF Restriction OPTIONAL,
miscellaneousAtts [7] SEQUENCE OF SecurityAttribute OPTIONAL,
timePeriods [8] TimePeriods OPTIONAL

}

PrivilegeAttribute ::= SecurityAttribute

Restriction ::= SEQUENCE {
howDefined [0] CHOICE {

included [3] BIT STRING
},

-- the actual restriction in a form undefined here
type [2] ENUMERATED {

mandatory (1),
optional (2)

} DEFAULT mandatory,
targets [3] SEQUENCE OF SecurityAttribute OPTIONAL

} -- applies to all targets if this is omitted

pacSyntaxVersion - The syntax version of the PAC.

protectionMethods - A sequence of optional groups of Method fields used to protect
the certificate from being stolen or misused. For a full description see below.

pacType - Indicates whether the privileges contained in the PAC are those of a Primary
Principal (e.g., the client) or of a Secondary Principal (e.g., the user). In this
specification, it is always a PAC of a secondary principal untempered by the privileges
a Primary Principal.

privileges - Privilege Attributes of the principal.

restrictions - This field enables the original owner of the PAC to impose constraints on
the operations for which it is valid. There are two types of restriction:

• Mandatory: If a target to which the restriction applies cannot understand the
string defining the restriction, access should not be granted.

• Optional: If a target application to which the restriction applies cannot underst
the bit string, it is expected to ignore it.

For CSI-ECMA, it is not mandatory to generate restrictions, but mandatory restricti
cannot be ignored. If not understood, the PAC cannot be accepted.
15-258 CORBAservices: Common Object Services Specification December 1998

15

on,

miscellaneousAtts - Security attributes which are neither privileges attributes nor
restrictions attributes. In a PAC, this may include identity attributes such as Audit
Identity. For the CSI-ECMA specification, this is the only miscellaneous attribute
expected.

timePeriods - This field adds further time restrictions to the validity field of the
commonContents. Either startTime or endTime can be optional. The TimePeriods
control is passed if:

• the time now is within any of the sequence periods, or

• if there is a period with a start before now and no endTime, or

• there is a period with an end after now and no startTime.

15.13.24.1 Protection Methods

A method consists of a method id and parameters (methodParams). The method id
determines the syntax for the type of methodParams.

Method ::= SEQUENCE{
methodId [0] MethodId,
methodParams [1] SEQUENCE OF Mparm OPTIONAL

}
MethodId ::= CHOICE{

predefinedMethod [0] ENUMERATED {
controlProtectionValues (1),
ppQualification (2),
targetQualification (3),
delegateTargetQualification (4)

}
}

Mparm ::= CHOICE{
pValue [0] PValue,
securityAttribute [1] SecurityAttribute

}

PValue ::= SEQUENCE{
pv [0] BIT STRING
algorithmIdentifier [1] AlgorithmIdentifier OPTIONAL

}

CertandECV ::= SEQUENCE {
certificate [0] GeneralizedCertificate,
ecv [1] ECV OPTIONAL

}
- ECV is defined in later

methodId - Identifies a protection method. Methods can be used in any combinati
and except where stated otherwise, multiple occurrences of the same method are
permitted. The choice of methodId determines the permitted choices of method
parameters in the methodParams construct as described below.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-259

15

tion

lifier

the

e

methodParams - Parameters for a protection method. The semantics of each protec
method is described in section Section 15.8.9.2, “Cryptographic Profiles,” on
page 15-186.

For the Primary Principal Qualification Method, the MethodId is ppQualification and
the syntax of Mparm is securityAttribute . Its value is defined in Section 15.13.8,
“PPID Method,” on page 15-243.

For the PV/CV method, the MethodId is: controlProtectionValues and the syntax of
Mparm is: pValue.

For the Target Qualification protection method, the MethodId is targetQualification
and the syntax for Mparms is securityAttribute .

For the Delegate/Target Qualification protection method, the MethodId is
delegatetargetQualification and the syntax for Mparms is securityAttribute .

The security attribute in the target and delegate/target protection method is a qua
attribute as defined in Section 15.13.20, “Qualifier Attributes,” on page 15-255.

15.13.24.2 External Control Values Construct

When using the controlProtectionValues method a PAC-protected under that method
may be accompanied by one or more control values and indices to the method
occurrences in the certificate to which they apply. Also, when such a certificate is
being issued to a requesting client, the CV values it will need in order to use that
certificate may need to be returned with it.

ECV ::= SEQUENCE {
crypAlgIdentifier [0] AlgorithmIdentifier OPTIONAL,
cValues [1] CHOICE {

encryptedCvalueList [0] BIT STRING,
individualCvalues [1] CValues

}
}

CValues ::= SEQUENCE OF SEQUENCE {
index [0] INTEGER,
value [1] BIT STRING

}

crypAlgIdentifier - Specifies the encryption algorithm of the control values.

cValues - An ECV construct can contain either an encrypted list of control values in
encryptedCvalueList field, or a list of individual control values in individualCvalues.

If the encryptedCvalueList choice is made, the whole list is encrypted in bulk, but th
in-clear contents of this field are expected to have the syntax CValues. If the
individualCvalues choice is made, values are individually encrypted in the value
fields of the list. Encryption is always done under the basic key protecting the
operation.

In the case of the controlProtectionValues method, value is a CV, and index is then the
index of the method occurrence in the certificate, starting at 1.
15-260 CORBAservices: Common Object Services Specification December 1998

15

t

f a

on

 of

r

r

th

alue
15.13.25 Check Value

In this specification, a PAC is protected by being digitally signed by the issuer.

A signature may be accompanied by information identifying the Certification
Authority under which the signature can be verified, and by an optional convenien
reference to, or the actual value of, the user certificate for the private key that the
signing authority used to sign the certificate.

CheckValue ::= CHOICE{
signature [0] Signature
-- only signature supported here

}

Signature ::= SEQUENCE{
signatureValue [0] BIT STRING,
publicAlgId [1] AlgorithmIdentifier OPTIONAL,
hashAlgId [2] AlgorithmIdentifier OPTIONAL,
issuerCAName [3] Identifier OPTIONAL,
caCertInformation [4] CHOICE {

caCertSerialNumber [0] INTEGER,
certificationPath [1] CertificationPath

} OPTIONAL
}
--CertificationPath is imported from [22]

signatureValue - The value of the signature. It is the result of a public encryption o
hash value of the certificateBody.

publicAlgId - Only present if the certificate body is encrypted, then it is a duplicati
of the algId value in "commonContents." This is not required in CSI-ECMA.

hashAlgId - Only present if the certificate body is encrypted, then it is a duplication
the hashAlgId value in “commonContents.” This is not required in CSI-ECMA.

issuerCAName - The identity of the Certification Authority that has signed the use
certificate corresponding to the private key used to sign this certificate.

caCertInformation - Contains either just a certificate serial number (which togethe
with the issuerCAName uniquely identifies the user certificate corresponding to the
private key used to sign this certificate), or a full specification of a certification pa
via which the validity of the signature can be verified. The latter option follows the
approach used in [22].

The Seal structure is used in the Tokens defined above.

Seal ::= SEQUENCE{
sealValue [0] BIT STRING,
secretAlgId [1] AlgorithmIdentifierOPTIONAL,
hashAlgId [2] AlgorithmIdentifierOPTIONAL,
targetName [3] Identifier OPTIONAL,
keyId [4] INTEGEROPTIONAL

}

sealValue - The value of the seal. It is the result of a secret encryption of a hash v
of a set of octets (which are the DER encoding of some ASN.1 type)
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-261

15

e

m

so

ws
e

.
secretAlgId - An optional indicator of the sealing algorithm.

hashAlgId - Only present if the secretAlgId does not specify which hashing algorithm
is used.

targetName - Identifies the targetAEF or target with which the secret key used for th
seal is shared.

keyId - This serial number together with the targetName uniquely identifies the secret
key used in the seal.

15.13.26 Basic Key Distribution

The TargetKeyBlock is structured as follows:

• An identifier (kdSchemeOID) for the key distribution scheme being used, which
takes the form of an OBJECT IDENTIFIER.

• A part which, if present, the target AEF needs to pass on to its KDS
(targetKDSPart - will be present only when the target AEF's KDS is different fro
the initiator's).

• A part which, if present, can be used directly by the targetAEF (targetPart).

When a targetAEF using a separate KDS receives the targetKeyBlock, it first checks
whether it supports the key distribution scheme indicated in kdsSchemeOID. Two
different cases need to be considered:

1. Only the targetPart is present. The target AEF computes the basic key directly,
using the information present in the targetPart. The syntax of targetPart is
scheme-dependent. Expiry information optionally can be present in targetPart. If
supported by the scheme, the Primary Principal attributes of the initiator will al
be present for PAC protection under the Primary Principal Qualification method
(see above).

2. Only the targetKDSPart is present. The targetAEF forwards the TargetKeyBlock
to its KDS. In return, it receives a scheme-dependent data structure which allo
the target AEF to determine the basic key and, if supported by the scheme, th
Primary Principal attributes of the initiator for PAC protection purposes. Expiry
information can optionally be present in the targetKDSPart.

The form of this information depends on the key distribution configuration in place

15.13.27 Keying Information Syntax
TargetKeyBlock ::= SEQUENCE {

kdSchemeOID [2] OBJECT IDENTIFIER,
targetKDSpart [3] ANY OPTIONAL,

-- depending on kdSchemeOID
targetPart [4] ANY OPTIONAL

-- depending on kdSchemeOID
}

15-262 CORBAservices: Common Object Services Specification December 1998

15

asy

 the

d in

y

the
kdSchemeOID - Identifies the key distribution scheme used. Allows the targetAEF to
determine rapidly whether or not the scheme is supported. It also allows for the e
addition of future schemes.

targetKDSpart - Part of the Target Key Block which is processable only by the KDS
of the target AEF. This part is sent by the target AEF to its local KDS, in order to get
the basic key which is in it. It must always contain the name of a target “served” by
targetAEF in question. The mapping between the name of the application and the
name of the target AEF is known to the target AEF 's KDS which is able to authenticate
which targetAEF is issuing the request for translating the targetKDSpart . It can then
verify that the AEF is one which is responsible for the application name containe
the targetKDSpart . If it is, the key is released and is sent protected back to the
requesting AEF. TargetKDSpart should include data that enables the KDS of the
target AEF to authenticate the KDS of the initiator. When the “Primary Principal
Qualification” protection method needs to be used for the PAC, unless there is an
accompanying targetPart, targetKDSpart must contain the appropriate primary
principal security attributes (which is always true in this specification).

targetPart - A part of the Target Key Block which is processed only by the target
AEF. When there is no targetKDSpart it is processable directly; otherwise, it can onl
be processed after the target KDSpart has been processed by the KDS of the target
AEF, and the appropriate Keying Information has been returned to the AEF. The
targetPart construct should include data that enables the target AEF to authenticate the
KDS of the initiator. When the “Primary Principal Qualification” protection method
needs to be used for the PAC, targetPart must contain the primary principal security
attributes.

15.13.28 Summary of Key Distribution Schemes

This specification defines three key distribution schemes. These are:

1. symmIntradomain: using a secret key technology within a domain. In this case,
targetKDSpart of the TargetKeyBlock is not supplied and the targetPart contains
a Kerberos ticket.

2. hybridInterdomain : In this case, the targetPart field is not supplied. The
PublicTicket contains a Kerberos ticket.

3. asymmetric: the targetKDSpart is not supplied and the targetPart contains an
SPKM_REQ.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-263

15

s not

 235

e Key

ng
m it.

 for
 be
Table 15-19 shows the different syntaxes used for targetKDSpart and targetPart for
the defined KD-schemes. “Missing” in the table means that the relevant construct i
supplied.

Further options are possible by defining further kd-schemes. For example, ECMA
also defines options for:

• initiators with public keys and targets with secret keys

• initiators with secret keys and targets with public keys

15.13.29 CSI-ECMA Secret Key Mechanism

In this scheme, the client and target each share different secret keys with the sam
Distribution Server.

To establish the association between the client and target the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s lo
term key. On receipt of the targetKeyBlock, the target can extract the basic key fro

The symmIntradomain key distribution scheme:

• has a mechanism id of CSI_ECMA_Secret, and

• uses a Kerberos ticket in the targetKeyBlock of the initial_context_token.
An unmodified Kerberos TGS can be used as the KDS in this case.

15.13.29.1 Profile of Ticket as Used in SymmIntradomain Scheme

Table 15-20 indicates which optional fields must be present in the Kerberos ticket
the CSI_ECMA_Secret mechanism and indicates the values which are required to
present in all fields.

Table 15-19 Syntaxes Used for targetKDSpart and targetPart

KD-Scheme name kdSchemeOID targetKDSpart targetPart

symmIntradomain {kd-schemes 1} Missing Ticket

hybridInterdomain {kd-schemes 3} PublicTicket Missing

asymmetric {kd-schemes 6} Missing SPKM_REQ

Table 15-20 Kerberos Ticket’s Mechanism Fields

Field Value/Constraint

tkt-vno 5

realm ticket issuer's domain name in Kerberos realm name form

sname target application name including the realm of the target

- EncTicketPart encrypted with long term key of target AEF
15-264 CORBAservices: Common Object Services Specification December 1998

15

 key

e
The Kerberos Ticket's authorization_data field contains the PPID of the context
initiator, as formally defined below.

ECMA-AUTHORIZATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }
ECMA-AUTHORIZATION-DATA ::= SEQUENCE {

ecma-ad-type [0] ENUMERATED {ppidType (0)},
ecma-ad-value [1] CHOICE {ppidValue [0] SecurityAttribute

}

ppidType - Indicates the type of the authorization data which is included in the Ticket.

ppidValue - This value is used in the ppQualification PAC protection method, as
described above.

15.13.30 CSI-ECMA Hybrid Mechanism

In this scheme, the initiator shares a secret key with its KDS and the target shares a
secret key with another KDS. In addition, each KDS possesses a private/public key
pair.

To establish the client-target association, the client gets a targetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary
encrypted under the target’s KDS public key. The targetKeyBlock is also signed using
the initiator’s KDS private key.

On receipt of the targetKeyBlock, the target transmits it to its KDS and gets back the
basic key encrypted under the long term secret key it shares with its KDS.

-- flags only bits 6, 10 and 11 can be meaningful in the context of th
CSI-ECMA protocol, the rest are ignored

-- key the basic key

-- crealm initiator domain name in Kerberos realm name form

-- cname principal name of the initiator (in the case of delegation the
cname will be that of the delegate)

-- transited not used

-- authtime the time at which the initiator was authenticated

-- starttime not used

-- endtime the time at which the ticket becomes invalid

-- renew-till not used

-- caddr not used

-- authorization-
data

contains the PPID corresponding to cname

Table 15-20 Kerberos Ticket’s Mechanism Fields (Continued)

Field Value/Constraint
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-265

15

t of

KD-

)
The hybridInterdomain key distribution scheme

• has a mechanism id of CSI_ECMA_Hybrid in the IOR, and

• uses a Public ticket in the targetKeyBlock of the initial_context_token, as
described below. A modified Kerberos TGS can be used as the KDS in this case.

15.13.30.1 Hybrid Inter-domain Key Distribution Scheme Data Elements

PublicTicket ::= SEQUENCE{
krb5Ticke [0] Ticket,
publicKeyBlock [1] PublicKeyBlock

}

PublicKeyBlock ::= SEQUENCE{
signedPKBPart [0] SignedPKBPart,
signature [1] Signature OPTIONAL,
certificate [2] Certificate OPTIONAL

}

SignedPKBPart ::= SEQUENCE{
keyEstablishmentData [0] KeyEstablishmentData,
encryptionMethod [1] AlgorithmIdentifier OPTIONAL,
issuingKDS [2] Identifier,
uniqueNumber [3] UniqueNumber,
validityTime [4] TimePeriods,
creationTime [5] UTCTime

}

UniqueNumber ::= SEQUENCE{
timeStamp [0] UTCTime,
random [1] BIT STRING

}

krb5Ticket - The Kerberos Ticket which contains the basic key. The encrypted par
this ticket is encrypted using the key found within the encryptedPlainKey field of the
KeyEstablishmentData in the PublicKeyBlock.

publicKeyBlock - Contains the key used to protect the krb5Ticket encrypted using the
public key of the recipient and signed by the encryptor (i.e., the context initiator's
Server).

signedPKBPart - The part of the publicKeyBlock which is signed. The
keyEstablishmentData field contains the KeyEstablishmentData (i.e., the actual
encrypted temporary key).

• The encryptionMethod indicates the algorithm used to encrypt the
encryptedKey.

• The issuingKDS is the name of the KD-Server which produced the PublicTicket.

• The uniqueNumber is a value (containing a timestamp and a random number
which prevents replay of the PublicTicket.

• validityTime specifies the times for which the PublicTicket is valid.

• creationTime contains the time at which the PublicTicket was created.
15-266 CORBAservices: Common Object Services Specification December 1998

15

ult

sary

ent
signature - Contains the signature calculated by the issuingKDS on the
signedPKBPart field.

certificate - If present, this contains the public key certificate of the issuing KDS.

15.13.30.2 Key Establishment Data Elements

These are used in public key establishment mechanisms.

KeyEstablishmentData ::= SEQUENCE {
encryptedPlainKey [0] BIT STRING,-- encrypted PlainKey
targetName [1] Identifier OPTIONAL,
nameHashingAlg [2] AlgorithmIdentifier OPTIONAL

}

HashedNameInput ::= SEQUENCE {
hniPlainKey [0] BIT STRING,-- same as plainKey
hniIssuingKDS [1] Identifier

PlainKey ::= SEQUENCE {
plainKey [0] BIT STRING, -- The cleartext key
hashedName [1] BIT STRING

}

encryptedPlainKey - Contains the encrypted key. The BIT STRING contains the res
of encrypting a PlainKey structure.

targetName - If present, contains the name of the target application. This is neces
for some of the KD-schemes.

nameHashingAlg - Specifies the algorithm which is used to calculate the hashedName
field of the PlainKey.

hniPlainKey
hniIssuingKDS - Used as input to a hashing algorithm as a general means to prev
ciphertext stealing attacks.

plainKey - Contains the actual bits of the plaintext key which is to be established.

hashedName - A hash of the name of the encrypting KDS calculated using the
plainkey and KDS name as input (within the HashedNameInput structure). The
algorithm identified in nameHashingAlg is used to calculate this value.

targetName - If present, contains the name of the target for which the PublicTicket
was originally produced. This may be different from the targetIdentity field of the
initialContextToken if caching of PublicTickets has been implemented.
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-267

15

 be

the

 the
15.13.30.3 Key Establishment Algorithm

The PublicKeyBlock in this mechanism and the SPKM_REQ construct used in
scheme 6 requires a sequence of key establishment algorithm identifier values to
inserted into the key_estb_set field. The OBJECT IDENTIFIER below is defined as
the (single) key establishment “algorithm” for ECMA mechanisms:

gss-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }

gss-key-estb-alg - Identifies the key establishment algorithm value to be used within
key_estb_set field of an SPKM_REQ data element as the one defined by ECMA.

This algorithm is used to establish a symmetric key for use by both the initiator and
target AEF as part of the context establishment. The corresponding key_estb_req field
of the SPKM_REQ will be a BIT STRING the content of which is a DER encoding of
the KeyEstablishmentData element.

15.13.30.4 Profile of Ticket as Used in Hybrid Interdomain Scheme

Note that the krb5Ticket part of this is identical to that used in the
CSI_ECMA_Secret key mechanism except that the EncTicketPart is encrypted with
the temporary key used between KDS rather than the target’s key.

Table 15-21 Ticket as Used in Hybrid Interdomain Scheme

Field Value/Constraint

krb5Ticket

- tkt-vno 5

- realm initiator domain name in Kerberos realm name form

- sname target application name including the realm of the
target

-- EncTicketPart encrypted with temporary key (which is in turn
encrypted within the keyEstablishmentData field)

--- flags only bits 6, 10, and 11 can be meaningful in the
context of the CSI-ECMA protocol, the rest are
ignored

--- key the basic key

--- crealm initiator domain name in Kerberos realm name form

--- cname principal name of the initiator (in the case of
delegation the cname will be that of the delegate)

--- transited not used

--- authtime the time at which the initiator was authenticated

--- starttime not used

--- endtime the time at which the ticket becomes invalid
15-268 CORBAservices: Common Object Services Specification December 1998

15

r use

ck is
15.13.31 CSI-ECMA Public Mechanism

In this scheme, both client and target possess a private/public key pair and neithe
a KDS.

To establish the client-target association, the client constructs a targetKeyBlock
containing a basic key encrypted under the target’s public key. The target key blo
signed with the client’s private key. On receipt of the targetKeyBlock, the target
directly establishes a basic key from it.

The asymmetric key distribution scheme:

• has a mechanism id of CSI_ECMA_Public, and

• uses an SPKM_REQ in the targetKeyBlock of the initial_context_token.

This mechanism has only a profile of the SPKM_REQ as defined below.

--- renew-till not used

--- caddr not used

--- authorization-data contains the PPID corresponding to cname

publicKeyBlock

- signedPKBPart

-- encryptedKey KeyEstablishmentData structure

-- encryptionMethod gss-key-estb-alg

-- issuingKDS X.500 name of initiator's KDS (the signer)

-- uniqueNumber creation time of publicKeyBlock plus a random bit
string

-- validityTime only one period allowed

 -- creationTime creation time of publicKeyBlock

- signature contains all the signing information as well as the
actual signature bits

- certificate optional

Table 15-21 Ticket as Used in Hybrid Interdomain Scheme (Continued)

Field Value/Constraint
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-269

15
15.13.31.1 Profile of SPKM_REQ Used in Public Key Mechanism

Table 15-22 indicates which optional fields must be present in the SPKM_REQ in the
targetKeyBlock for the CSI_ECMA_Public mechanism and indicates the values
which are required to be present in all fields.

Definitions of KeyEstablishmentData and gss-key-estb-alg are given in
Section 15.13.30, “CSI-ECMA Hybrid Mechanism,” on page 15-265.

Table 15-22 SPKM-REQ Used in Public Key Mechanism

Field Value/Constraint

 requestToken

- tok_id not used - fixed value of ‘0'

- context_id not used - fixed value of bit string containing one zero bit

- pvno not used - fixed value of bit string containing one zero bit

- timestamp creation time of SPKM_REQ - required

- randSrc random bit string

- targ_name X.500 Name of target AEF

- src_name X.500 Name of initiator

- req_data

-- channelId not used - octet string of length one value ‘00'H

-- seq_number missing

-- options not used - all bits set to zero

-- conf_alg not used - use NULL CHOICE

-- intg_alg not used - use a SEQUENCE OF with zero elements

- validity mandatory

- key_estb_set only one element supplied containing gss-key-estb-alg

- key_estb_req contains KeyEstablishmentData with targetApplication field
missing

- key_src_bind missing

req_integrity sig_integ mandatory

certif_data only userCertificate field supported

 auth_data missing
15-270 CORBAservices: Common Object Services Specification December 1998

15

and

ure

ure

s

put,

es
t

e

d,
15.13.32 Dialogue Key Block

Dialogue Key Block constructs are used to specify how the integrity dialogue key
confidentiality dialogue key should be derived from the basic key, and specify the
cryptographic algorithms with which the keys should be used. Dialogue keys are
explained above. The syntax is as follows:

DialogueKeyBlock ::= SEQUENCE {
integKeySeed [0] SeedValue,
confKeySeed [1] SeedValue,
integKeyDerivationInfo [2] KeyDerivationInfo OPTIONAL,
confKeyDerivationInfo [3] KeyDerivationInfo OPTIONAL,
integDKuseInfo [4] DKuseInfo OPTIONAL,
confDKuseInfo [5] DKuseInfo OPTIONAL

}

SeedValue ::= SEQUENCE {
timeStamp [0] UTCTime OPTIONAL,
random [1] BIT STRING

}

KeyDerivationInfo::= SEQUENCE {
owfId [0] AlgorithmIdentifier,
keySize [1] INTEGER

}

DKuseInfo ::= SEQUENCE {
useAlgId [0] AlgorithmIdentifier,
useHashAlgId [1] AlgorithmIdentifier OPTIONAL

}

integKeySeed - A random number, optionally concatenated with a time value to ens
uniqueness, used as input to the one way function specified in
integKeyDerivationInfo .

confKeySeed - A random number, optionally concatenated with a time value to ens
uniqueness, used as input to the one way function specified in confKeyDerivationInfo .

integKeyDerivationInfo - Key derivation information for the integrity dialogue key, a
follows:

• owfId - The one way algorithm which takes the basic key XOR the seed as in
resulting in the integrity dialogue key.

• keySize - The size of the key in bits. If the algorithm identified by owfId produc
a larger key, it is reduced by masking to this length, losing its most significan
end.

confKeyDerivationInfo - Key derivation information for the confidentiality dialogue
key. The fields in this construct have the same meanings as defined above for th
integrity dialogue key.

integDKuseInfo - Information describing how the integrity dialogue key is to be use
as follows:
Security Service: v1.2 CSI-ECMA Protocol Dec. 1998 15-271

15

o
d

he

es
” on

 for

he
rity.

. The

ly
es of

 For
• useAlgId - The secret or public reversible encryption algorithm with which the
integrity dialogue key is to be used.

• useHashAlgId - The one way function with which the integrity dialogue key is t
be used. It is the hash produced by this algorithm on the data to be protecte
which is encrypted using useAlgId.

confDKuseInfo - Information describing how the confidentiality key is to be used. T
useHashAlgId construct is not used here.

15.14 Integrating SSL with CORBA Security

15.14.1 Introduction

This section defines how SSL [21] is integrated with CORBA Security. SSL provid
CSI level 0(see Appendix Section C.7.2, “Common Secure Interoperability Levels,
page 15-326) functionality only. This level of functionality is achieved only if the
optional authentication features of SSL are used.

15.14.2 Cryptographic Profiles

All of the cryptographic profiles defined by SSL may be used by ORBs using SSL
Security.

15.14.3 IOR Encoding

A new kind of security tag is defined, for use in the component tag sequence in t
IIOP IOR profile body, to describe the use of Secure Transports with CORBA Secu
This enables the future use of combinations of security mechanisms and secure
transports.

The IIOP TAG identifying the SSL-secure transport is TAG_SSL_SEC_TRANS. The
tag component data described below must be encapsulated using CDR encoding
data structure associated with this tag is as follows:

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};

The definition of association options is the same as for the CSI protocols. SSL on
supports client and target authentication if the optional certificate exchanger featur
SSL are supported.

Unlike the CSI mechanism TAGs, the SSL TAG does not include cryptographic
profiles, as cryptography is negotiated, as part of the SSL session establishment.
the same reason the TAG does not include a security name for the target.
15-272 CORBAservices: Common Object Services Specification December 1998

15

he

ections

y
e

ol is
eral

 use
OP
urity
t and

:

curity
-
tion

e
e
The port field contains the port number to be used instead of the port defined in t
accompanying IIOP profile body, if SSL is selected by the client. It contains the
TCP/IP port number (at the specified host) where the target agent is listening for
connection requests. The agent must be ready to process IIOP messages on conn
accepted at this port.

As with the other secure interoperability options, if the client invokes the target
without the appropriate level of security (e.g., if the client is not secure and simpl
invokes the target ignoring all security TAGs in the profile) the target shall raise th
CORBA::NO_PERMISSION exception.

15.14.4 Relation to SECIOP

As SSL provides a secure transport layer over TCP/IP, the CORBA SECIOP protoc
not required when using SSL. Instead, the connection rules of IIOP (see the Gen
Inter-ORB Protocol chapter of the Common Object Request Broker: Architecture and
Specification) are applied to SSL (which itself uses TCP).

15.15 DCE-CIOP with Security

This section describes how to provide secure interoperability between ORBs which
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CI
transport layer should handle security (for example, how it should interpret the sec
components of the IOR profile when selecting DCE Security Services for a reques
secure invocation).

15.15.1 Goals of Secure DCE-CIOP

The original goals of DCE-CIOP, documented in the Common Object Request Broker:
Architecture and Specification, are maintained and enhanced by Secure DCE-CIOP

• Support multi-vendor, mission critical, enterprise-wide, secure ORB-based
applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Secure DCE-CIOP achieves these goals by taking advantage of the integrated se
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE
CIOP specification to support the use of arbitrary security mechanisms for protec
of DCE-CIOP messages.

15.15.2 Secure DCE-CIOP Overview

Secure interoperability between ORBs using the DCE-CIOP transport relies on th
DCE Security Services and the DCE Authenticated RPC runtime that utilizes thos
services.
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-273

15

ted

of a

reats

t-
 flow

 to
e

nts,
CE-

P is

he

port

rt
ity
and

RB

s
The DCE Security Services (specified in [6]), as employed by the DCE Authentica
RPC runtime (specified in [7] and [8]), provide the following security features:

• cryptographically-secured mutual authentication of a client and target,

• ability to pass client identity and authorization credentials to the target as part
request,

• protection against undetected, unauthorized modification of request data,

• cryptographic privacy of data, and

• protection against replay of requests and data.

The RPC runtime provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from th
such as message replay, message modification, and eavesdropping.

The DCE-CIOP uses DCE RPC APIs to request security features for a given clien
target communication binding. Subsequent DCE-CIOP messages on that binding
over RPC and thus are protected at the requested levels.

This Secure DCE-CIOP specification defines the IOR Profile components required
support Secure DCE-CIOP. Each component is identified by a unique tag, and th
encoding and semantics of the associated component_data are specified. Client-secure
association requirements, as indicated by client-side policy, and target-secure
association requirements, as specified in the target IOR Profile security compone
are mapped to DCE Security Services. Finally, the use of DCE APIs to protect D
CIOP messages is described.

15.15.2.1 IOR Security Components for DCE-CIOP

The information necessary to invoke secure operations on objects using DCE-CIO
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS . The
profile_data for this profile is a CDR encapsulation (see “CDR Transfer Syntax” in t
General Inter-ORB Protocol chapter of the Common Object Request Broker:
Architecture and Specification) of the MultipleComponentProfile type, which is a
sequence of TaggedComponent structures. These types are described in the ORB
Interoperability Architecture chapter of the Common Object Request Broker:
Architecture and Specification.

The Multiple Component Profile contains the tagged components required to sup
DCE-CIOP, described in the DCE ESIOP chapter of the Common Object Request
Broker: Architecture and Specification, as well as the components required to suppo
security for DCE-CIOP. The general security components are described in “Secur
Components of the IOR” on page 15-179. The DCE-specific security component
semantics for the common security components are described here.

Although a conforming implementation of Secure DCE-CIOP is only required to
generate and recognize the components defined here and in the General Inter-O
Protocol chapter of the Common Object Request Broker: Architecture and
Specification, the profile may also contain components used by other kinds of ORB
transports and services. Implementations should be prepared to encounter profile
15-274 CORBAservices: Common Object Services Specification December 1998

15

ay,
st be

rt
e.
al

ture
identified by TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.
Unrecognized components should be preserved but ignored. Although an
implementation may choose to order the components in a profile in a particular w
other implementations are not required to preserve that order. Implementations mu
prepared to handle profiles whose components appear in any order.

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicates suppo
for the (non-GSSAPI) “DCE Security with Kerberos V5 with DES” mechanism typ
The component_data field contains an authorization service identifier and an option
sequence of tagged components.

Future versions of DCE Security that require different information than what is
provided by the component_data structure described below are expected to be
supported with a new component tag, rather than with revisions to the data struc
associated with the TAG_DCE_SEC_MECH tag.

The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103

// CORBA IDL doesn't (yet) support const octet
//
// const octet DCEAuthorizationNone = 0;
// const octet DCEAuthorizationName = 1;
// const octet DCEAuthorizationDCE = 2;

typedef unsigned short DCEAuthorization;

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.

struct DCESecurityMechanismInfo {
octet authorization_service;
sequence <TaggedComponent> components;

};
};
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-275

15

t

one
OR

hared
nents

at the

R”
ices
CE-

PC

et

et

ret
A TaggedComponent structure is built for the DCE Security Mechanism componen
by setting the tag member to TAG_DCE_SEC_MECH, and setting the
component_data member to a CDR encapsulation of a DCESecurityMechanismInfo
structure.

The authorization_service Field

The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC
runtime for invocations on this IOR. Two authorization models are supported:
DCEAuthorizationName and DCEAuthorizationDCE with a third identifier,
DCEAuthorizationNone, to indicate that no authorization is required.

The components Field

The components field contains a sequence of zero or more tagged components, n
of which may appear more than once, from the following list of common security I
components: TAG_ASSOCIATION_OPTIONS and TAG_SEC_NAME.

Each of these components, defined in “Security Components of the IOR” on
page 15-179, may be present either in the components field of the
DCESecurityMechanismInfo structure, or at the top level of the IOR profile. When
one of these components appears at the top level of the profile, its data may be s
by other security mechanisms in the profile. When it appears in the nested compo
field of DCESecurityMechanismInfo, its data is available only to the DCE Security
mechanism and overrides the data of an identically-tagged component, if present,
top level of the profile.

15.15.2.2 TAG_ASSOCIATION_OPTIONS

The association options component, described in “Security Components of the IO
on page 15-179, contains flags indicating which protection and authentication serv
the target supports and which it requires. This component is optional for Secure D
CIOP; defaults are used when the component is not present.

The way in which association options are interpreted for use with DCE security is
reflected in Table 15-23 shows how an association option is mapped to a DCE R
protection level and authentication service.

Table 15-23 Association Option Mapping to DCE Security

Association Option DCE RPC
Protection Level

DCE RPC
Authentication
Service

NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level_pkt_integrity rpc_c_authn_dce_secr

Confidentiality rpc_c_protect_level_pkt_privacy rpc_c_authn_dce_secr

DetectReplay rpc_c_protect_level_pkt rpc_c_authn_dce_sec
15-276 CORBAservices: Common Object Services Specification December 1998

15

5-23.

port

CE
n of

need

isms

ret

cret

ret

ret
If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to require rpc_c_protect_level_default and
rpc_c_authn_dce_secret. (The value of rpc_c_protect_level_default is defined by the
DCE implementation or by a site administrator.)

The target_supports Field

When an association option is set in the target_supports field of the
TAG_ASSOCIATION_OPTIONS component_data, it indicates that the target
supports invocations which use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 1
Any or all of the association options may be set in the target_supports field. The
options set in the target_supports field will be compared with client-side policy
required options to determine if the target can support the client’s requirements.

Although, for the DCE security mechanism, a single selected option may imply
support for several other options (e.g., selection of the Integrity option implies sup
for DetectReplay, DetectMisordering, and EstablishTrustInClient) it is recommended
that every supported option be explicitly set in the target_supports field to facilitate
comparison with client requirements.

The target_requires Field

When an association option is set in the target_requires field of the
TAG_ASSOCIATION_OPTIONS component_data, it indicates that the target
requires invocations secured with at least the protection level and authentication
service that correspond to the selected option, as shown in Table 15-23. Since D
RPC supports a range of protection levels, each of which provides all the protectio
the level below it and also some additional protection, selecting multiple
target_requires options does not make sense. For DCE, no more than one option
be selected in the target_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanismInfo structure, the target_requires field may conform to the
DCE semantics (i.e., no more than one option selected). If other security mechan
are sharing the TAG_ASSOCIATION_OPTIONS component, and perhaps using
different rules for interpreting the target_requires field, then the target_requires field
may have several options selected. The “DCE Association Options Reduction”

DetectMisordering rpc_c_protect_level_pkt rpc_c_authn_dce_sec

EstablishTrustInTarget rpc_c_protect_level_connect rpc_c_authn_dce_se

EstablishTrustInClient rpc_c_protect_level_connect rpc_c_authn_dce_sec

tag not present rpc_c_protect_level_default rpc_c_authn_dce_sec

Table 15-23 Association Option Mapping to DCE Security

Association Option DCE RPC
Protection Level

DCE RPC
Authentication
Service
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-277

15

80,
ervices

ich
l
al
ame
ame

al

 of
ame

ce of

ieve
g

RPC

e
algorithm, described in “Secure DCE-CIOP Operational Semantics” on page 15-2
handles both cases and is used to select the appropriate DCE-secure invocation s
given a set of required association options.

The EstablishTrustInTarget option in the target_requires field is meaningless, and is
therefore ignored.

15.15.2.3 TAG_SEC_NAME

The security name component contains the DCE principal name of the target.
Generally, this is a global principal name that includes the name of the cell in wh
the target principal’s account resides. If a cell-relative principal name (i.e., the cel
prefix does not appear) is specified, the local cell is assumed. Cell-relative princip
names are only appropriate for use in IORs that are consumed by clients in the s
cell in which the target resides. When an IOR containing a cell-relative principal n
in the TAG_SEC_NAME component crosses a cell boundary, the cell-relative princip
name should be replaced with a global name.

The format of a “human-friendly” DCE principal name is described in section 1.13
[6]. It is a string containing a concatenated cell name and cell-relative principal n
that looks like:

/.../cell-name/cell-relative-principal-name

For example, the principal with the cell-relative name “printserver ” in the
“mis.prettybank.com” cell has the global principal name:

/.../mis.prettybank.com/printserver

The component_data member of the TAG_SEC_NAME component is set to the string
value of the DCE principal name. The string is represented directly in the sequen
octets, including the terminating NULL .

If the TAG_SEC_NAME component is not present, then a value of NULL is assumed,
indicating that the client will depend on the DCE authenticated RPC runtime to retr
the DCE principal name of the target, identified in the IOR by the DCE-CIOP strin
binding and binding name components. This case indicates that the client is not
interested in authentication of the target identity.

15.15.3 DCE RPC Security Services

This section provides details about the protection provided by DCE Authenticated
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in [9] for more information about using thes
protection parameters to secure an association between a client and target.

DCE RPC Authorization Services

This section describes the DCE authorization service indicated by the
authorization_service member of the DCESecurityMechanismInfo structure in the
component_data field of the TAG_DCE_SEC_MECH component.
15-278 CORBAservices: Common Object Services Specification December 1998

15

the

ion

the

n
ion

d to
s.

ribed

dy of

 to
et

n
DCEAuthorizationName indicates that the target performs authorization based on
client security name. The DCE RPC authorization service DCEAuthorizationName
asserts the principal name (without cryptographic protection if the association opt
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationDCE indicates that the target performs authorization using the
client’s Privilege Attribute Certificate (for OSF DCE 1.0.3 or previous versions), or
client’s Extended Privilege Attribute Certificate (for DCE 1.1). The authorization
service DCEAuthorizationDCE asserts the principal name and appropriate
authorization data (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationNone indicates that the target performs no authorization based o
privilege information carried by the RPC runtime. This is valid only if the associat
option NoProtection is chosen.

The authorization_service identifiers defined here for Secure DCE-CIOP correspon
DCE RPC authorization service identifiers and are defined to have identical value
The relationship between these identifiers is shown in Table 15-24.

DCE RPC Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 8-4 are desc
below. For the purposes of evaluating the protection levels, it is interesting to
remember that a single DCE-CIOP message is transferred over the wire in the bo
one or more DCE RPC PDUs.

rpc_c_protect_level_none indicates that no authentication or message protection is
be performed, regardless of the authentication service chosen. Depending on targ
policy, the client may be granted access as an unauthenticated principal.

rpc_c_protect_level_connect indicates that the client and server identities are
exchanged and cryptographically verified at the time the binding is set up betwee
them. Strong mutual authentication and replay detection for the binding set-up only is
provided. There are no protection services per DCE RPC PDU.

rpc_c_protect_level_pkt indicates that the rpc_c_protect_level_connect services are
provided plus detection of misordering or replay of DCE RPC PDUs. There is no
protection against PDU modification.

rpc_c_protect_level_pkt_integrity offers the rpc_c_protect_level_pkt services plus
detection of DCE RPC PDU modification.

Table 15-24 Relation between DCE-CIOP and DCE RPC Authorization Service Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service Shared Value

DCEAuthorizationNone rpc_c_authz_none 0

DCEAuthorizationName rpc_c_authz_name 1

DCEAuthorizationDCE rpc_c_authz_dce 2
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-279

15

n its

ed

 are

e.

 for

e

e

.

d
level

n

he
rpc_c_protect_level_pkt_privacy offers the rpc_c_protect_level_pkt_integrity
services plus privacy of RPC arguments, which means the DCE-CIOP message i
entirety is privacy-protected.

rpc_c_protect_level_default indicates the default protection level, as defined by the
DCE implementation or by a site administrator (should be one of the above defin
values).

DCE RPC Authentication Services

The meanings of the DCE RPC authentication services referenced in Table 15-24
described below.

rpc_c_authn_none indicates no authentication. If this is selected, then no
authorization, DCEAuthorizationNone, must be chosen as well.

rpc_c_authn_dce_secret indicates the DCE shared-secret key authentication servic

15.15.3.1 Secure DCE-CIOP Operational Semantics

This section describes how the DCE-CIOP transport layer should provide security
invocation and locate requests.

During a request invocation, if the IOR components indicate support for the DCE-
CIOP transport and the TAG_DCE_SEC_MECH component is present, then a Secur
DCE-CIOP request can be made.

Deriving DCE Security Parameters from Association Options

The client-side secure invocation policy and the target-side policy expressed in th
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options
using the method described in “Determining Association Options” on page 15-182
These options are then reduced to a single required_option using the algorithm
described in “The DCE Association Options Reduction Algorithm” on page 15-280
below. The resultant required_option is used to select a DCE RPC protection level an
authentication service using Table 15-23 on page 15-276. The derived protection
and authentication service are used to secure the association via the
rpc_binding_set_auth_info() call (see “Securing the Binding Handle to the Target” o
page 15-281).

The DCE Association Options Reduction Algorithm

The “DCE Association Options Reduction” algorithm is used to select a single
association option, required_option, given the value required by client and target
derived as described in “Determining Association Options” on page 15-182. The
resultant required_option indicates, via Table 15-23 on page 15-276, the DCE
protection level and authentication service to use for invocations.

The association option names used in the following algorithm refer to options in t
negotiated-required options set.

The “DCE Association Options Reduction” algorithm is expressed as:
15-280 CORBAservices: Common Object Services Specification December 1998

15

 as

d to

on

d

 if

n
gest
port

us

If Confidentiality is set, then required_option = Confidentiality;
else if Integrity is set, then required_option = Integrity;
else if DetectReplay is set, OR

 if DetectMisordering is set,
 then required_option = DetectReplay;
 (alternatively, the same results are obtained with:
 then required_option = DetectMisordering;)

else if EstablishTrustInClient is set,
 then required_option = EstablishTrustInClient;

else required_option = NoProtection.

Behavior When TAG_ASSOCIATION_OPTIONS Not Present

As described earlier, if the TAG_ASSOCIATION_OPTIONS component is not
present, then the target is assumed to support and require rpc_c_protect_level_default
and rpc_c_authn_dce_secret. Since these protection parameters are not expressed
association options, the usual method of deriving a single required_option by
combining client and target policy (see “Determining Association Options” on
page 15-182 and “The DCE Association Options Reduction Algorithm” on
page 15-280“above) cannot be used. Instead, use the following alternative metho
derive the required DCE RPC protection level and authentication service:

• Translate the client-side secure invocation policy from a set of client-supported
association options to a single client_supported_option and from a set of client-
required association options to a single client_required_option, using in each case
the algorithm described in “The DCE Association Options Reduction Algorithm”
page 15-280.

• Using Table 15-23 “Association Option Mapping to DCE Security” translate the
client_supported_option and client_required_option to corresponding “supported”
and “required” DCE RPC protection level/authentication service pairs.

• If the target principal is a member of the local cell, determine the target-require
protection level implied by rpc_c_protect_level_default by calling
rpc_mgmt_inq_dflt_protect_level() passing rpc_c_authn_dce_secret as the
authn_svc parameter. If the target principal is not a member of the local cell or
it’s difficult to determine, then assume a target-required protection level of
rpc_c_protect_level_pkt_integrity.

• If the client supports rpc_c_authn_dce_secret, then choose the strongest protectio
level that both the client and target support and that does not exceed the stron
protection level required by either the client or target. If the client does not sup
rpc_c_authn_dce_secret, then choose rpc_c_authn_none and
rpc_c_protect_level_none. Use the protection level and authentication service th
derived to secure the association between this client and target.

Securing the Binding Handle to the Target

The DCE-CIOP protocol engine acquires an rpc_binding_handle to the target using its
normal procedure. The DCE_CIOP sets authentication and authorization information
on that binding handle with the rpc_binding_set_auth_info() call using data from the
IOR profile security components in the following way:
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-281

15

e

• The target security name string from the TAG_SEC_NAME component (or NUL, if
the component is not present) is passed to rpc_binding_set_auth_info() via the
server_princ_name parameter.

• If the TAG_ASSOCIATION_OPTIONS component is present in the IOR, see
“Deriving DCE Security Parameters from Association Options” on page 15-280
above to select a DCE RPC protection level and authentication service for this
invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, se
“Behavior When TAG_ASSOCIATION_OPTIONS Not Present” on page 15-281
above to select a DCE RPC protection level and authentication service for this
invocation.

The selected protection level is passed to rpc_binding_set_auth_info() via the
protect_level parameter. The selected authentication service is passed via the
authn_svc parameter to rpc_binding_set_auth_info().

• The auth_identity parameter is set to NULL to use the DCE default login context.

• The authorization service identifier from the authorization_service field of the
DCESecurityMechanismInfo component_data is mapped to the corresponding
DCE RPC authorization service identifier (using Table 15-24 on page 15-279)
which is then passed via the authz_svc parameter.

After a successful call to rpc_binding_set_auth_info(), the authenticated binding
handle will be used by the DCE-CIOP protocol engine to make secure requests.
15-282 CORBAservices: Common Object Services Specification December 1998

15

 2.

on

urity

r

Appendix A Consolidated OMG IDL

A.9 Introduction

The OMG IDL for CORBA security is split into modules as follows:

• A module containing the common data types used by all security modules.

• A module for application interfaces for each Security Functionality Levels 1 and

• A module for Security Level 2 security policy administration.

• A module for non-repudiation, including the non-repudiation policy administrati
interface.

• A module for the Replaceable Security Service, as described in Section 15.7,
“Implementor’s Security Interfaces,” on page 15-156.

• A module for elements of the SECure Inter Orb Protocol (SECIOP)l.

• A module for elements of the SSL Protocol.

• A module for elements related to Security that are added to the DCE_CIOPSec
module.

A.10 General Security Data Module

This subsection defines the OMG IDL for security data types common to the othe
security modules, which is the module Security. The Security module depends on the
TimeBase module and the CORBA module.

Note – If your IDL compiler does not yet support the “Escaped Identifiers” (which
provides for the addition of new keywords to IDL, compile this module with the
preprocessor definition “NO_ESCPAED_IDENTIFIERS”. With many compilers this
would be done with a qualifier on the command line, something like -
-DNO_ESCAPED_IDENTIFIERS.

#ifndef_SECURITY_IDL
#define _SECURITY_IDL

#include <orb.idl>
#include <TimeBase.idl>

#pragma prefix "omg.org"

module Security {

typedef string SecurityName;
typedef sequence <octet> Opaque;

// Constant declarations for Security Service Options
 Security Service v1.2 Introduction Dec. 1998 15-283

15
const CORBA::ServiceOption SecurityLevel1 = 1;
const CORBA::ServiceOption SecurityLevel2 = 2;
const CORBA::ServiceOption NonRepudiation = 3;
const CORBA::ServiceOption SecurityORBServiceReady = 4;
const CORBA::ServiceOption SecurityServiceReady = 5;
const CORBA::ServiceOption ReplaceORBServices = 6;
const CORBA::ServiceOption ReplaceSecurityServices = 7;
const CORBA::ServiceOption StandardSecureInteroperability = 8;
const CORBA::ServiceOption DCESecureInteroperability = 9;

// Service options for Common Secure Interoperability

const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

// Security mech types supported for secure association
const CORBA::ServiceDetailType SecurityMechanismType = 1;

// privilege types supported in standard access policy
const CORBA::ServiceDetailType SecurityAttribute = 2;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};

// security association mechanism type

typedef string MechanismType;
struct SecurityMechandName {

MechanismType mech_type;
SecurityName security_name;

};

typedef sequence<MechanismType> MechanismTypeList;
typedef sequence<SecurityMechandName> SecurityMechandNameList;

// security attributes

typedef unsigned long SecurityAttributeType;

// other attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;
15-284 CORBAservices: Common Object Services Specification December 1998

15
// privilege attributes; family = 1
#ifdef NO_ESCAPED_IDENTIFIERS

const SecurityAttributeType Public = 1;
#else

const SecurityAttributeType _Public = 1;
#endif

const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};

typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;
Opaque value;
// the value of this attribute can be
// interpreted only with knowledge of type

};

typedef sequence <SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status
enum AssociationStatus {

SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;
 Security Service v1.2 General Security Data Module Dec. 1998 15-285

15
// Credential types which can be set as Current default
enum CredentialType {

SecInvocationCredentials,
SecNRCredentials

};

// Declarations related to Rights
struct Right {

ExtensibleFamily rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related
enum DelegationState {

SecInitiator,
SecDelegate

};

// pick up from TimeBase
typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.
enum SecurityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget

};

// Security feature-value
struct SecurityFeatureValue {

SecurityFeature feature;
boolean value;

};

typedef sequence <SecurityFeatureValue> SecurityFeatureValueList;
15-286 CORBAservices: Common Object Services Specification December 1998

15
// Quality of protection which can be specified
// for an object reference and used to protect messages
enum QOP {

SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
// secure invocation policy applies

enum CommunicationDirection {
SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// AssociationOptions-Direction pair

struct OptionsDirectionPair {
AssociationOptions options;
CommunicationDirectiondirection;

};

typedef sequence <OptionsDirectionPair> OptionsDirectionPairList;
 Security Service v1.2 General Security Data Module Dec. 1998 15-287

15
// Delegation mode which can be administered

enum DelegationMode {
SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;
};

// Association options supported by a given mech type
struct MechandOptions {

MechanismType mechanism_type;
AssociationOptions options_supported;

};

typedef sequence <MechandOptions> MechandOptionsList;

// Audit
typedef unsigned long AuditChannelId;
typedef unsigned short EventType;

const EventType AuditAll = 0;
const EventType AuditPrincipalAuth = 1;
const EventType AuditSessionAuth = 2;
const EventType AuditAuthorization = 3;
const EventType AuditInvocation = 4;
const EventType AuditSecEnvChange = 5;
const EventType AuditPolicyChange = 6;
const EventType AuditObjectjCreation = 7;
const EventType AuditObjectDestruction = 8;
const EventType AuditNonRepudiation = 9;

struct AuditEventType {
ExtensibleFamily event_family;
EventType event_type;

};

typedef sequence <AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceRef = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

// values defined for audit_needed and audit_write are:
// InterfaceRef: object reference
// ObjectRef: object reference
15-288 CORBAservices: Common Object Services Specification December 1998

15

ly
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required

struct SelectorValue {
SelectorType selector;
any value;

};
typedef sequence <SelectorValue> SelectorValueList;

// Constant declaration for valid Security Policy Types
// General administrative policies
const CORBA::PolicyType SecClientInvocationAccess = 1;
const CORBA::PolicyType SecTargetInvocationAccess = 2;
const CORBA::PolicyType SecApplicationAccess = 3;
const CORBA::PolicyType SecClientInvocationAudit = 4;
const CORBA::PolicyType SecTargetInvocationAudit = 5;
const CORBA::PolicyType SecApplicationAudit = 6;
const CORBA::PolicyType SecDelegation = 7;
const CORBA::PolicyType SecClientSecureInvocation = 8;
const CORBA::PolicyType SecTargetSecureInvocation = 9;
const CORBA::PolicyType SecNonRepudiation = 10;

// Policies used to control attributes of a binding to a target
const CORBA::PolicyType SecMechanismsPolicy = 12;
const CORBA::PolicyType SecCredentialsPolicy = 13;
const CORBA::PolicyType SecFeaturesPolicy = 14;
const CORBA::PolicyType SecQOPPolicy = 15;

};
#endif /* _SECURITY_IDL */

A.11 Application Interfaces - Level 1

This subsection defines those interfaces available to application objects using on
Security Functionality Level 1, and consists of a single module, SecurityLevel1. This
module depends on the CORBA module, and on the Security module.

#ifndef _SECURITY_LEVEL_1_IDL
#define _SECURITY_LEVEL_1_IDL

#include <Security.idl>

#pragma prefix "omg.org"

module SecurityLevel1 {
interface Current : CORBA::Current {// Locality-Constrained
 Security Service v1.2 Application Interfaces - Level 1 Dec. 1998 15-289

15
// thread-specific operations

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
};

};
#endif /* _SECURITY_LEVEL_1_IDL */

A.12 Application Interfaces - Level 2

This subsection defines the interfaces available to applications using Security
Functionality Level 2, all of which are declared in the SecurityLevel2 module. This
module depends on the CORBA, SecurityLevel1, and Security modules. The
interfaces are described in Section 15.5, “Application Developer’s Interfaces,” on
page 15-88.

#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix "omg.org"

module SecurityLevel2 {

// Forward declaration of interfaces
interface PrincipalAuthenticator;
interface Credentials;
interface Current

// Interface PrincipalAuthenticator
interface PrincipalAuthenticator { // Locality-Constrained

Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in Security::SecurityName security_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);

Security::AuthenticationStatus continue_authentication (
in Security::Opaque response_data,
in Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);
15-290 CORBAservices: Common Object Services Specification December 1998

15
};

// Interface Credentials
interface Credentials { // Locality-Constrained

Credentials copy ();

void destroy();

void set_security_features (
in Security::CommunicationDirection direction,
in Security::SecurityFeatureValueList security_features

);

Security::SecurityFeatureValueList get_security_features(
in Security::CommunicationDirection direction

);

boolean set_privileges (
in boolean force_commit,
in Security::AttributeList requested_privileges,
out Security::AttributeList actual_privileges

);

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh();
};

typedef sequence <Credentials> CredentialsList;

// RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
in string operation_name,
 Security Service v1.2 Application Interfaces - Level 2 Dec. 1998 15-291

15
in CORBA::RepositoryId interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
};

// interface audit channel
interface AuditChannel { // Locality-Constrained

void audit_write (
in Security::AuditEventType event_type,
in CredentialsList creds,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);

readonly attribute Security::AuditChannelI audit_channel_id;
};

// interface for Audit Decision
interface AuditDecision { // Locality-Constrained

boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

interface AccessDecision { // Locality-Constrained

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

// Policy interfaces to control bindings

interface QOPPolicy : CORBA::Policy { // Locality-Constrained
readonly attribute Security::QOP qop;

};

interface MechanismPolicy : CORBA::Policy {// Locality-Constrained
readonly attribute Security::MechanismTypeList mechanisms;

};
15-292 CORBAservices: Common Object Services Specification December 1998

15
interface SecurityFeaturesPolicy : CORBA::Policy {
// Locality-Constrained

readonly attribute Security::SecurityFeatureValueList
features;

};

interface InvocationCredentialsPolicy : CORBA::Policy {
// Locality-Constrained

readonly attribute CredentialsList creds;
};

enum DelegationMode {Delegate, NoDelegate};

// Interface Current derived from SecurityLevel1::Current
// providing additional operations on Current at this
// security level. This is implemented by the ORB

interface Current : SecurityLevel1::Current { // Locality-Constrained

// Thread-specific operations

readonly attribute CredentialsList received_credentials;
readonly attribute CredentialsList own_credentials;
readonly attribute Security::SecurityFeatureValueList

received_security_features;

void set_credentials (
in Security::CredentialType cred_type,
in CredentialsList creds,
in DelegationMode del

);

CredentialsList get_credentials (
in Security::CredentialType cred_type

);

CORBA::Policy get_policy (
in CORBA::PolicyType policy_type

);

// Process/Capsule/ORB Instance-specific operations

readonly attribute RequiredRights required_rights_object;
readonly attribute PrincipalAuthenticator

principal_authenticator;
readonly attribute AccessDecision access_decision;
readonly attribute AuditDecision audit_decision;

// security names for given target
Security::SecurityMechandNameList get_security_names (

in Object obj_ref
 Security Service v1.2 Application Interfaces - Level 2 Dec. 1998 15-293

15

ces
face
);

// Factory operations for local policies controlling bindings
QOPPolicy create_qop_policy(

in Security::QOP qop
);

MechanismPolicy create_mechanism_policy(
in Security::MechanismTypeList mechanisms

);

InvocationCredentialsPolicy create_invoc_creds_policy(
in CredentialsList creds

);
}

};

#endif /* _SECURITY_LEVEL_2_IDL */

A.13 Security Administration Interfaces

This section covers interfaces concerned with querying and modifying security
policies, and comprises the module SecurityAdmin. The SecurityAdmin module
depends on CORBA, Security, and SecurityLevel2 modules. The interfaces are
described in “Administrator’s Interfaces” on page 15-130. There are related interfa
for finding domain managers and policies. They are to be found in the ORB Inter
chapter of the Common Object Request Broker: Architecture and Specification.

#ifndef _SECURITY_ADMIN_IDL
#define _SECURITY_ADMIN_IDL

#include <SecurityLevel2.idl>

#pragma prefix "omg.org"

module SecurityAdmin {

// interface AccessPolicy
interface AccessPolicy : CORBA::Policy {

Security::RightsList get_effective_rights (
in Security::AttributeList attrib_list,
in Security::ExtensibleFamily rights_family

);
};

// interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {
15-294 CORBAservices: Common Object Services Specification December 1998

15
void grant_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);

void replace_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);

Security::RightsList get_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);
};

// interface AuditPolicy
interface AuditPolicy : CORBA::Policy {

void set_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

void clear_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events

);

void replace_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

Security::SelectorValueList get_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events
 Security Service v1.2 Security Administration Interfaces Dec. 1998 15-295

15

s
d
);

void set_audit_channel (
in Security::AuditChannelId audit_channel_id

);
};

// interface SecureInvocationPolicy
interface SecureInvocationPolicy : CORBA::Policy {

void set_association_options(
in CORBA::InterfaceDef object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirectiondirection,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(
in CORBA::InterfaceDef object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirectiondirection

);
};

// interface DelegationPolicy
interface DelegationPolicy : CORBA::Policy {

void set_delegation_mode(
in CORBA::InterfaceDef object_type,
in Security::DelegationMode mode

);

Security::DelegationMode get_delegation_mode(
in CORBA::InterfaceDef object_type

);
};

};

#endif /* _SECURITY_ADMIN_IDL */

A.14 Interfaces for Non-repudiation

This subsection defines the optional application interface for non-repudiation. Thi
module depends on SecurityLevel2 and CORBA modules. The interfaces are describe
in “Non-repudiation” on page 15-121.

#ifndef _NR_SERVICE_IDL
#define _NR_SERVICE_IDL

#include <SecurityLevel2.idl>
15-296 CORBAservices: Common Object Services Specification December 1998

15
#pragma prefix "omg.org"

module NRService {
typedef Security::MechanismType NRMech;
typedef Security::ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

// the following are used for evidence validity duration
typedef unsigned long DurationInMinutes;

const DurationInMinutes DurationHour = 60;
const DurationInMinutes DurationDay = 1440;
const DurationInMinutes DurationWeek = 10080;
const DurationInMinutes DurationMonth = 43200;// 30 days;
const DurationInMinutes DurationYear = 525600;//365 days;

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRMech mechanism;
};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};
 Security Service v1.2 Interfaces for Non-repudiation Dec. 1998 15-297

15
struct EvidenceDescriptor {
EvidenceType evidence_type;
DurationInMinutes evidence_validity_duration;
boolean must_use_trusted_time;

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetInMinutes last_revocation_check_offset;

// may be >0 or <0; add this to evid. gen. time to
// get latest time at which mech. will check to see
// if this authority’s key has been revoked.

};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
NRMech mech_type;
AuthorityDescriptorList authority_list;
TimeOffsetInMinutes max_time_skew;

// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials : SecurityLevel2::Credentials{

boolean set_NR_features (
in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features
);

NRPolicyFeaturesList get_NR_features ();

void generate_token (
in Security::Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Security::Opaque nr_token,
out Security::Opaque evidence_check

);

NRVerificationResult verify_evidence (
15-298 CORBAservices: Common Object Services Specification December 1998

15
in Security::Opaque input_token_buffer,
in Security::Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Security::Opaque output_token,
out Security::Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);

void get_token_details (
in Security::Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out Security::UtcT evidence_generation_time,
out Security::UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
out RequestFeatures request_features

);

boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
};

interface NRPolicy : CORBA::Policy{

void get_NR_policy_info (
out Security::ExtensibleFamilyNR_policy_id,
out unsigned long policy_version,
out Security::TimeT policy_effective_time,
out Security::TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

boolean set_NR_policy_info (
in MechanismDescriptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);
};
 Security Service v1.2 Interfaces for Non-repudiation Dec. 1998 15-299

15

ty

};
#endif /* _NR_SERVICE_IDL */

A.15 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the Security objects, which should be
replaced if there is a requirement to replace the Security services used for securi
associations (i.e., the Vault and Security Context). The IDL provided here is for those
interfaces that have not already been covered by the SecurityLevel2 module. This
section comprises the module SecurityReplaceable. This module depends on the
CORBA, Security, and SecurityLevel2 modules. The interfaces are described in
Section 15.7, “Implementor’s Security Interfaces,” on page 15-156.

#ifndef _SECURITY_REPLACEABLE_IDL
#define _SECURITY_REPLACEABLE_IDL

#include <SecurityLevel2.idl>

#pragma prefix "omg.org"

module SecurityReplaceable {

interface SecurityContext;

interface Vault { // Locality-Constrained

Security::AssociationStatus init_security_context (
in SecurityLevel2::CredentialsList creds_list,
in Security::SecurityName target_security_name,
in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairListassociation_options,
in Security::MechanismType mechanism,
in Security::Opaque mech_data, //from IOR
in Security::Opaque chan_binding,
out Security::Opaque security_token,

);

Security::AssociationStatus accept_security_context (
in SecurityLevel2::CredentialsList creds_list,
in Security::Opaque chan_bindings,
in Security::Opaque in_token,
out Security::Opaque out_token,
out SecurityContext security_context

);

Security::MechandOptionsList get_supported_mechs ();
};
15-300 CORBAservices: Common Object Services Specification December 1998

15

le
rs
interface SecurityContext { // Locality-Constrained

readonly attribute SecurityLevel2::CredentialsList
 received_credentials;

readonly attribute Security::SecurityFeatureValueList
security_features;

Security::AssociationStatus continue_security_context (
in Security::Opaque in_token,
out Security::Opaque out_token

);

void protect_message (
in Security::Opaque message,
in Security::QOP qop,
out Security::Opaque text_buffer,
out Security::Opaque token

);

boolean reclaim_message (
in Security::Opaque text_buffer,
in Security::Opaque token,
out Security::QOP qop,
out Security::Opaque message

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh ();
};

};

#endif /* _SECURITY_REPLACEABLE_IDL */

A.16 Secure Inter-ORB Protocol (SECIOP)

The SECIOP module holds structure declarations related to the layout of message
fields in the Secure Inter-ORB protocol. This module depends on the IOP and Security
modules.

Note – If your IDL compiler does not yet support the “long long” data type, compi
this module with the preprocessor definition “NOLONGLONG”. With many compile
this would be done with a qualifier on the command line, something like -
-DNOLONGLONG.
 Security Service v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-301

15
#ifndef _SECIOP_IDL
#define _SECIOP_IDL

#include <IOP.idl>
#include <Security.idl>

#pragma prefix "omg.org"

module SECIOP {

const IOP::ComponentId TAG_GENERIC_SEC_MECH = 22;

const IOP::ComponentId TAG_ASSOCIATION_OPTIONS = 13;

const IOP::ComponentId TAG_SEC_NAME = 14;

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

};

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

};

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,
MTContinueEstablishContext,
MTDiscardContext,
MTMessageError,
MTMessageInContext

};

#ifdef NOLONGLONG
struct ulonglong {

unsigned long low;
unsigned long high;

};
typedef ulonglong ContextId;

#else
typedef unsigned long long ContextId;

#endif
enum ContextIdDefn {

CIDClient,
CIDPeer,
CIDSender

};
15-302 CORBAservices: Common Object Services Specification December 1998

15
struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};

struct MessageInContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;

};

// message_protection_token is obtained by CDR encoding
// the following SequencingHeader followed by the octets of the
// frame data. SequencingHeader + Frame Data is called a
// SequencedDataFrame

struct SequencingHeader {
octet control_state;
unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
 Security Service v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-303

15
unsigned long reverse_window;
};

typedef sequence <octet> SecurityName;
typedef unsigned short CryptographicProfile;
typedef sequence <CryptographicProfile> CryptographicProfileList;

// Cryptographic profiles for SPKM

const CryptographicProfile MD5_RSA = 20;
const CryptographicProfile MD5_DES_CBC = 21;
const CryptographicProfile DES_CBC = 22;
const CryptographicProfile MD5_DES_CBC_SOURCE = 23;
const CryptographicProfile DES_CBC_SOURCE = 24;

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_1_SEC_MECH = 15;

struct SPKM_1 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism SPKM_2

const IOP::ComponentId TAG_SPKM_2_SEC_MECH = 16;

struct SPKM_2 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for GSS Kerberos Protocol

const CryptographicProfile DES_CBC_DES_MAC = 10;
const CryptographicProfile DES_CBC_MD5 = 11;
const CryptographicProfile DES_MAC = 12;
const CryptographicProfile MD5 = 13;

// Security Mechanism KerberosV5

const IOP::ComponentId TAG_KerberosV5_SEC_MECH = 17;

struct KerberosV5 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
15-304 CORBAservices: Common Object Services Specification December 1998

15
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for CSI-ECMA Protocol

const CryptographicProfile FullSecurity = 1;
const CryptographicProfile NoDataConfidentiality = 2;
const CryptographicProfile LowGradeConfidentiality = 3;
const CryptographicProfile AgreedDefault = 5;

// Security Mechanism CSI_ECMA_Secret

const IOP::ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;

struct CSI_ECMA_Secret {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Hybrid

const IOP::ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;

struct CSI_ECMA_Hybrid {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Public

const IOP::ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;

struct CSI_ECMA_Public {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};
};
#endif /* _SECIOP_IDL */
 Security Service v1.2 Secure Inter-ORB Protocol (SECIOP) Dec. 1998 15-305

15

 as
A.17 SSL

The SSLIOP module holds the structure and TAG definitions needed for using SSL
the secure transport under CORBA Security. This module depends on the Security and
the IOP modules.

#ifndef _SSLIOP_IDL
#define _SSLIOP_IDL

#include <IOP.idl>
#include<Security.idl>

#pragma prefix "omg.org"

module SSLIOP {

// Security mechanism SSL
const IOP::ComponentId TAG_SSL_SEC_TRANS = 20;

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};
};
#endif /* _SSLIOP_IDL */

A.18 Secure DCE CIOP

The DCE_CIOP_Security module extension holds structures and TAG definitions
needed for using DCE-CIOP Security. This module depends on Security and IOP
modules.

#ifndef _DCE_CIOP_SECURITY_IDL
#define _DCE_CIOP_SECURITY_IDL

#include <IOP.idl>

#pragma prefix "omg.org"

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103;

typedef unsigned short DCEAuthorization;

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;
15-306 CORBAservices: Common Object Services Specification December 1998

15

the
users
ed.

e the

ily
lues

or

lies

ing
 of

f

hen
struct DCESecurityMechanismInfo {
DCEAuthorization authorization_service;
sequence<IOP::TaggedComponent> components;

};
};
#endif /* _DCE_CIOP_SECURITY_IDL */

A.19 Values for Standard Data Types

A number of data types in this specification allow an extensible set of values, so
user can add values as required to meet his own security policies. However, if all
defined their own values, portability and interoperability would be seriously restrict

Therefore, some standard values for certain data types are defined. These includ
values that identify:

• Security attributes (privilege and other attribute types)

• Rights families

• Audit event families and types

• Security mechanism types as used in the IOR (and Vault , etc.)

Rights families and audit event families are defined as an ExtensibleFamily type. This
has a family definer value registered with OMG and a family id defined by the fam
definer. Security attribute types also have family definers. Family definers with va
0 - 7 are reserved for OMG. The family value 0 is used for defining standard types
(e.g., of security attributes).

A.11.1 Attribute Types

“Application Developer’s Interfaces” on page 15-88 defines an attribute structure f
privilege and other attributes. This includes:

• A family, as previously described.

• An attribute type. Users may add new attribute types. Two standard OMG fami
are defined: the family of privilege attributes (family = 1), and the family of other
attributes (family = 0). Types in these families are listed in the following table.

• An optional defining authority. This indicates the authority responsible for defin
the value within the attribute type. Some policies demand that multiple sources
values for a given attribute type be supported (e.g., a policy accepting attribute
values defined outside the security domain). These policies give rise to a risk o
value clashes. The defining authority field is used to separate these values. W
not present (i.e., length = 0), the value defaults to the name of the authority that
issued the attribute.

• An attribute value. The attribute value is defined as a sequence<octet>, which
someone who understands that attribute type can decipher.
 Security Service v1.2 Values for Standard Data Types Dec. 1998 15-307

15

er

on.
A.11.2 Rights Families and Values

Administration is simplified by defining rights that provide access to a set of
operations, so the administrator only needs to know what rights are required, rath
than the semantics of particular operations.

Rights are grouped into families. Only one rights family is defined in this specificati
The family definer is OMG (value 0) and the family id is CORBA (value 1). Other
families may be added by vendors or users.

The following values are specified for the standard CORBA rights family.

Table 15-25Attribute Values

Attribute Type Value Meaning

Privilege Attributes (family 1) All privilege attributes are used for access control

Public 1 The principal has no authenticated identity

AccessId 2 The identity of the principal used for access control

PrimaryGroupId 3 The primary group to which the principal belongs

GroupId 4 A group to which the principal belongs

Role 5 A role the principal takes

AttributeSet 6 An identifier for a set of related attributes, which a
user or application can obtain

Clearance 7 The principal’s security clearance

Capability 8 A capability

Other Attributes (family = 0)

AuditId 1 The identity of the principal used for auditing

AccountingId 2 The id of the account to be charged for resource use

NonRepudiationId 3 The id of the principal used for non-repudiation

Table 15-26CORBA Rights Family Values

Right Meaning

“get” Used for any operation on the object that does not change its
state

“set” For operations on an object that changes its state

“manage” For operations on the attributes of the object, not its state

“use” For operations on an object that may change the overall state of
the system, but not the state of the object itself
15-308 CORBAservices: Common Object Services Specification December 1998

15

s

ecure
s,

from
d in

ions.
o the

A.11.3 Audit Event Families and Types

Events, like rights, are grouped into families as defined in “Application Developer’
Interfaces” on page 15-88.

Only one event family is defined in this specification. This has a family definer of
OMG (value 0) and family of SYSTEM (value 1) and is used for auditing system
events. All events of this type are audited by the object security services, or the
underlying security services they use. Some of these events must be audited by s
object systems conforming to Security Functionality Level 1 (though in some case
the event may be audited by underlying security services). Other event types are
identified so that, if produced, a standard record is generated, so that audit trails
different systems can more easily be combined. System audit events are specifie
Table 15-27.

Application audit policies are expected to use application audit families.

A.11.4 Security Mechanisms

The security specification allows use of different mechanisms for security associat
These are used in the Interoperable Object Reference and also on the interface t
Vault.

Table 15-27System Audit Events

Event Name Value Whether
Mandatory

Meaning- and Event-Specific Data

AuditPrincipalAuth 1 Yes Authentication of principals, either via the
principal authentication interface or underlying
security services

AuditSessionAuth 2 Yes Security association/peer authentication

AuditAuthorization 3 Yes Authorization of an object invocation (normally
using an Access Decision object)

AuditInvocation 4 No Object invocation (i.e., the request/reply)

AuditSecEnvChange 5 No Change to the security environment for this
client or object (e.g., set_security_features,
override_default_credentials)

AuditPolicyChange 6 Yes Change to a security policy (using the
administrative interfaces in Section 15.6,
Administrator’s Interfaces)

AuditObectjCreation 7 No Creation of an object

AuditObject
Destruction

8 No Destruction of an object

AuditNonRepudiation 9 No Generation or verification of evidence
 Security Service v1.2 Values for Standard Data Types Dec. 1998 15-309

15

_1 is
ined

Mechanism ids are formed by stringifying the integer value of the corresponding
mechanism tag value. For example, the mechanism id of mechanism type SPKM
the string “15”, which is the string representation of the mechanism tag value def
in the SECIOP module above as TAG_SPKM_1_SEC_MECH.

Following this rule, the currently defined mechanism ids are:

Cryptographic profile ids are the stringified form of the value of the cryptographic
profile constant. For example, the id of the cryptographic profile MD5_RSA is the
string “20”. The cryptographic profile ids currently defined are:

Table 15-28Mechanism Ids

Mechanism Name Mechanism Tag Mech
Id

Base Mech

SPKM_1 TAG_SPKM_1_SEC_MECH “15” SPKM

SPKM_2 TAG_SPKM_2_SEC_MECH “16” SPKM

KerberosV5 TAG_KerberosV5_SEC_MECH “17” KerberosV5

CSI_ECMA_Secret TAG_CSI_ECMA_Secret_SEC_MECH “18” CSI_ECMA

CSI_ECMA_Hybrid TAG_CSI_ECMA_Hybrid_SEC_MECH “19” CSI_ECMA

CSI_ECMA_Public TAG_CSI_ECMA_Public_SEC_MECH “21” CSI_ECMA

Table 15-29Cryptographic Profile Ids

Profile Name Profile Id Base Mech

MD5_RSA “20” SPKM

MD5_DES_CBC “21” SPKM

DES_CBC “22” SPKM

MD5_DES_CBC_SOURCE “23” SPKM

DES_CBC_SOURCE “24” SPKM

DES_CBC_DES_MAC “10” KerberosV5

DES_CBC_MD5 “11” KerberosV5

DES_MAC “12” KerberosV5

MD5 “13” KerberosV5

FullSecurity “1” CSI_ECMAS

NoDataConfidentiality “2” CSI_ECMA

LowGradeConfidentaility “3” CSI_ECMA

AgreedDefault “5” CSI_ECMA
15-310 CORBAservices: Common Object Services Specification December 1998

15
A complete mechanism type (used for MechanismType parameters) consists of a
mechanism id with zero, one or more comma-separated cryptographic profiles
appended to it. For example, the mechanism type “15,20” represents SPKM_1
mechanism with MD5_RSA cryptographic profile.
 Security Service v1.2 Values for Standard Data Types Dec. 1998 15-311

15

ay

d by

 data
 way

 even
r a

 in a
n the
e the
ked

en

ted
here
d.
s
Appendix B Relationship to Other Services

B.1 Introduction

This appendix describes the relationship between Object Services and Common
Facilities and the security architecture components, if they are to participate in a
consistent, secure object system.

B.2 General Relationship to Object Services and Common Facilities

In general, Object Services and Common Facilities, like any application objects, m
be unaware of security, and rely on the security enforced automatically on object
invocations. As for application objects, access to their operations can be controlle
access policies as described in “Security Reference Model” on page 15-18,
“Application Developer’s Interfaces” on page 15-88, and elsewhere.

An Object Service or Common Facility needs to be aware of security if it needs to
enforce security itself. For example, it may need to control access to functions and
at a finer granularity than at object invocation, or need to audit such activities. The
it can do this is described in “Security Reference Model” on page 15-18. Existing
Object Services should be reviewed to see if such access control and auditing is
required.

If an Object Service or Common Facility is required to be part of a more secure
system, some assurance of its correct functioning, if security-relevant, is needed,
if it is not responsible for enforcing security itself. See Appendix D, “Guidelines fo
Trustworthy System” on page 15-329, for guidelines on this matter.

Where an Object Service is called by an ORB service as part of object invocation
secure system, there is a need to ensure security of all the information involved i
invocation. This requires ORB Services to be called in the order required to provid
specified quality of protection. For example, the Transaction Service must be invo
first to obtain the transaction context information before the whole message is
protected for integrity and/or confidentiality.

In the following sections, we provide an initial estimation of the relationship betwe
Security Service and other existing services and facilities.

B.3 Relationship with Specific Object Services

B.3.1 Naming Service

For security, the object must be correctly identified wherever it is within the distribu
object system. The Naming Service must do this successfully in an environment w
an object name is unique within a naming context, and name spaces are federate
(However, to provide the required proof of identity, objects, and/or the gatekeeper
15-312 CORBAservices: Common Object Services Specification December 1998

15

onal

vice

 the

e, in
 data
is
t
ge

 as
e-

ime

that
thy

nd
l
which give access to them will be authenticated using a separate Authentication
Service.) See Appendix Section D.6.3, “Basis of Trust,” on page 15-347, for additi
information about the relationship between security and names.

B.3.2 Event Service

The implementation of a Security Audit Service may involve the use of Event Ser
objects for the routing of both audits and alarms.

However, this is only possible if the Event Service itself is secure in that it protects
audit trail from modification and deletion. It must also be able to guard against
recursion if it audits its own activities.

B.3.3 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using this servic
which case the implementation of the Persistent Object Service must ensure that
stored and retrieved through it is not tampered with by unauthorized entities. If it
used in the implementation of Security Service or by a secure application, it mus
follow the guidelines in Appendix D, “Guidelines for a Trustworthy System” on pa
15-329.

B.3.4 Time Service

The Security Service uses the data types for time, timestamps, and time intervals
defined by the Time Service, so that applications can readily use the Time Servic
defined interfaces to manipulate the time data that the Security Service uses. The
interfaces of Security Service do not explicitly pass any interfaces defined in the T
Service.

B.3.5 Other Services

The other services are not used explicitly. If any of them are used in the
implementation of Security Service or by a secure application, it must be verified
the service used follows the guidelines in Appendix D, “Guidelines for a Trustwor
System” on page 15-329.

B.4 Relationship with Common Facilities

Because Management Services have been identified as Common Facilities in the
Object Management Architecture, only minimal, security-specific administration
interfaces are specified here. When Common Facilities Management services are
specified, they will need to take into account the need for security management a
administration identified in this specification. Also, such management services wil
themselves need to be secure.
 Security Service v1.2 Relationship with Common Facilities Dec. 1998 15-313

15

or
n
.

This specification adds certain basic interfaces to CORBA, which form the basis f
the minimal policy administration-related interfaces and functionality that has bee
provided. Future management facilities are expected to build upon this foundation
15-314 CORBAservices: Common Object Services Specification December 1998

15

rol

of
e

onal

g to

d in

tand
ge.

urity-
Appendix C Conformance Details

C.1 CORBA Security Feature Packages

C.1.1 Main Security Functionality

There are two possible levels.

• Level 1: This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to cont
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

C.1.2 Security Functionality Options

These are functions expected to be required in several ORBs, so they are worth
including in this specification, but are not generally required enough to form part
one of the main security functionality levels previously specified. There is only on
such option in this specification.

• Non-Repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

C.1.3 Security Replaceability

This specification is designed to allow security policies to be replaced. The additi
policies must also conform to this specification. This includes, for example, new
Access Polices. Security Replaceability specifies if and how the ORB fits with
different security services. There are two possibilities.

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conformin
this does not include any significant security-specific code, as that is in the
interceptors.

• Security Service replaceability: The ORB may or may not use interceptors, but
all calls on security services are made via the replaceability interfaces specifie
Section 15.7, “Implementor’s Security Interfaces,” on page 15-156. These
interfaces are positioned so that the security services do not need to unders
how the ORB works, so they can be replaced independently of that knowled

An ORB that supports one or both of these replaceability options is said to be Sec
Ready (i.e., supports no security functionality itself, but is ready to have security
added).
 Security Service v1.2 CORBA Security Feature Packages Dec. 1998 15-315

15

s
 for

ith

lying

ty

ere
t all

, and

ed
 1.

nt
 are

m
r

ate

de
d

ct to
ite
Note – Some replaceability of the security mechanism used for secure association
may still be provided if the implementation uses some standard generic interface
security services such as GSS-API.

C.1.4 Secure Interoperability using SECIOP

An ORB supporting this can generate/use security information in the IOR and can
send/receive secure requests to/from other ORBs using the GIOP/IIOP protocol w
the security (SECIOP) enhancements defined in Section 15.9, “Secure Inter-ORB
Protocol (SECIOP),” on page 15-204, providing they can both use the same under
security mechanism and algorithms for security associations.

Common Secure Interoperability (CSI) Feature packages: These feature packages
each provide different levels of secure interoperability. There are three functionali
levels for Common Secure Interoperability (CSI).

All levels can be used in distributed secure CORBA-compliant object systems wh
clients and objects may run on different ORBs and different operating systems. A
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in the CORBA Security specification. Facilities are more restricted at levels 0 and
The three levels are:

1. Identity-based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the clie
to the target, and this cannot be delegated to further objects. If further objects
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.

2. Identity-based policies with unrestricted delegation (CSI level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted fro
the client to the target. The identity can be delegated to other objects on furthe
object invocations, and there are no restrictions on its delegation, so intermedi
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in “Overview of Delegation Schemes” on page 15-31.)

3. Identity- & privilege-based policies with controlled delegation (CSI level 2): At
this level, attributes of initiating principals passed from client to target can inclu
separate access and audit identities and a range of privileges such as roles an
groups. Delegation of these attributes to other objects is possible, but is subje
restrictions, so the initiating principal can control their use. Optionally, compos
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.
15-316 CORBAservices: Common Object Services Specification December 1998

15

s. For
ance

ity

n
nd
se
P.

ned
tion

d

s
er
SI

d in
in
e;
BA

ng

SL
.

ages.
An ORB that interoperates securely must provide at least one of the CSI package
the definitive statement on conformance requirements see Appendix C, “Conform
Details” on page 15-315.

C.1.5 Common Security Protocol packages

The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. Common Secur
Protocols define the details of the tokens in the IIOP and SECIOP messages as
applicable. Four protocols are defined:

1. SPKM Protocol: This protocol supports identity-based policies without delegatio
(CSI level 0) using public key technology for keys assigned to both principals a
trusted authorities. The SPKM protocol is based on the definition in [20]. The u
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIO

2. GSS Kerberos Protocol: This protocol supports identity-based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys assig
to both principals and trusted authorities. It is possible to use it without delega
(providing CSI level 0). The GSS Kerberos protocol is based on the [12] which
itself is a profile of [13]. The use of Kerberos in CORBA interoperability is base
on the SECIOP extensions to IIOP.

3. CSI-ECMA protocol: This protocol supports identity- and privilege-based policie
with controlled delegation (CSI level 2). It can be used with identity, but no oth
privileges and without delegation restrictions if the administrator permits this (C
level 1) and can be used without delegation (CSI level 0). For keys assigned to
principals, it has the following options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as define
ECMA 235, but is a significant subset of this - the SESAME profile as defined
[16]. It is designed to allow the addition of new mechanism options in the futur
some of these are already defined in ECMA 235. The use of CSI-ECMA in COR
interoperability use the SECIOP extensions to IIOP.

DCE-CIOP: An ORB supporting this option provides secure interoperability usi
DCE Security together with the Security extensions to DCE-CIOP.

4. SSL protocol: This protocol supports identity-based policies without delegation
(CSI level 0). The SSL protocol is based on the definition in [21]. The use of S
in CORBA interoperability does not depend on the SECIOP extensions to IIOP

An ORB that interoperates securely must do so using one of these protocol pack
For the definitive statement on conformance requirements see Appendix E,
“Conformance Statement” on page 15-352.
 Security Service v1.2 CORBA Security Feature Packages Dec. 1998 15-317

15

BA

o the
ces,
er in

n.

 are

RB.
C.2 Conformance Requirements

An ORB must meet the following requirements to claim conformance to the COR
Security specification:

• To claim conformance to the CORBA Security interfaces it must support the
following feature packages:

• Security Functionality Level 1.

• To claim conformance to CORBA Secure Interoperability it must support the
following feature packages:

• Secure Interoperability using SECIOP.

• CSI Level 1.

• GSS Kerberos Protocol using MD5 Cryptographic profile.

• Conformance to any of the other feature packages may be claimed in addition t
base conformance specified in the previous bullet item, by providing the interfa
facilities and support for protocols specified in that package, as described furth
the following sections.

The conformance statement required for a CORBA Security-conformant
implementation is defined in Section Appendix F, “Facilities Not in This Specificatio
Appendix F includes two checklists, one for functionality and the other for
interoperability, which can be completed to show what the ORB conforms to; they
reproduced next. A main security functionality level must always be specified.
Functional Options, Security Replaceability, and Secure Interoperability should be
indicated by checking the boxes corresponding to the function supported by the O

Table 15-30CORBA Security Functionality Checklist

Main
Functionality

Functionality
Options

Security Replaceability

Level 1 Level 2
Non-
Repudiation

ORB
Services

Security
Services

Security-
Ready

Table 15-31CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Private Public Hybrid

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
15-318 CORBAservices: Common Object Services Specification December 1998

15

l

ity

cure

trols
ss

gate

may
urity

r
s
e
vent

trol
C.3 Security Functionality Level 1

Security Functionality Level 1 provides:

• A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

• An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g., to contro
access to its own attributes and operations).

C.3.6 Security Functionality Required

An ORB supporting Level 1 security functionality must provide the following secur
features for all applications, whether they are security-aware or not.

• Allow users and other principals to be authenticated, though this may be done
outside the object system.

• Provide security of the invocation between client and target object including:

• Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB-level security services or can be achieved in any other se
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

• Integrity and/or confidentiality of requests and responses between them.

• Control of whether this client can access this object. At this level, access con
can be based on “sets” of subjects and “sets” of objects. Details of the Acce
Policy and how this is administered are not specified.

• At an intermediate object in a chain of calls, the ability to be able to either dele
the incoming credentials or use those of the intermediate object itself.

• Auditing of the mandatory set of system’s security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited
occur, and be audited, outside the object system (for example, in underlying sec
services). In this case, the conformance statement must identify the product
responsible for generating the record of such an event (or choice of product, fo
example, when the ORB is portable to different authentication services). At thi
level, auditing of object invocations need not be selectable. However, it must b
possible to ensure that certain events are audited (see Section A.11.3, “Audit E
Families and Types,” on page 15-309, for the list of mandatory events).

Note – For security-aware applications, it must also make the privileges of
authenticated principals available to applications for use in application access con
decisions.
 Security Service v1.2 Security Functionality Level 1 Dec. 1998 15-319

15

or

.2,

t”

ity

ty
l

d in
es

vel

l, so

n of
These facilities require the ORB and security services to be initialized correctly. F
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

C.3.7 Security Interfaces Supported

Security interfaces available to applications may be limited to:

• get_service_information providing security options and details (see Section 15.5
“Finding Security Features,” on page 15-90).

• get_attributes on Current (see Interfaces under “Security Operations on Curren
on page 15-105).

No administrative interfaces are mandatory at this level.

C.3.8 Other Security Conformance

An ORB providing Security Functionality Level 1 may also conform to other secur
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section C.5,
“Security Functionality Optional Packages,” on page 15-322.

• Provide security replaceability using either of the replaceability options.

• Provide secure interoperability, though in this case, will need to provide securi
associations at the ORB level (not lower-layer communications) as the protoco
assumes security tokens are at this level.

C.4 Security Functionality Level 2

This is the functionality level that supports most of the application interfaces define
“Application Developer’s Interfaces” on page 15-88, and the administrative interfac
defined in “Administrator’s Interfaces” on page 15-130. It provides a competitive le
of security functionality for most situations.

C.4.1 Security Functionality Required

An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:

• Principals can be authenticated outside or inside the object system.

• Security of the invocation between client and target objects is enhanced.

• Establishment of trust and message protection can be done at the ORB leve
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

• Further integrity options can be requested (e.g., replay protection and detectio
messages out of sequence) but need not be supported.
15-320 CORBAservices: Common Object Services Specification December 1998

15

rols).

l) or

tems

y

ard

licies

y to
curity
e
g on

ed

 on

le
• The standard DomainAccessPolicy is supported for control of access to
operations on objects.

• Selective auditing of methods on objects is supported.

• Applications can control the options used on secure invocations. It can:

• Choose the quality of protection of messages required (subject to policy cont

• Change the privileges in credentials.

• Choose which credentials are to be used for object invocation.

• Specify whether these can just be used at the target (e.g., for access contro
whether they can also be delegated to further objects.

• No further delegation facilities are mandatory, but the application can request
“composite” delegation, and the target can obtain all credentials passed, in sys
that support this. Note that “composite” here just specifies that both received
credentials and the intermediate’s own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.

• Administrators can specify security policies using domain managers and policy
objects as specified in “Administrator’s Interfaces” on page 15-130. The securit
policy types supported at Level 2 are all those defined in Section 15.6,
“Administrator’s Interfaces,” on page 15-130 except non-repudiation. The stand
policy management interfaces for each of the Level 2 policies is supported.

• Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g., which event types to audit) and some po
the ORB enforces for them (e.g., default qop, delegation mode).

• ORBs (and ORB Services, if supported) can find out what security policies appl
them. They can then use these policy objects to make decisions about what se
is needed (check if access is permitted, check if auditing is required) or get th
information needed to enforce policy (get QOP, delegation mode, etc.) dependin
policy type.

As at Level 1, these facilities require the ORB and security services to be initializ
correctly.

C.4.2 Security Interfaces Supported

Interfaces supported at this level are:

• All application interfaces defined in Section 15.5, “Application Developer’s
Interfaces,” on page 15-88, except those in Section 15.5.11, “Non-repudiation,”
page 15-121.

• All security policy administration interfaces defined in Section 15.6,
Administrator’s Interfaces (except those for the non-repudiation policy).

Note that some of these interfaces may raise a CORBA::NO-IMPLEMENT
exception, as not ORBs conforming to Level 2 Security need implement all possib
values of all parameters. This will happen when:
 Security Service v1.2 Security Functionality Level 2 Dec. 1998 15-321

15

le,”

ity

ion

ing
ting

n-
ted

y
• A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Appendix Section A.10, “General Security Data Modu
on page 15-283).

• A delegation mode is requested, which is not supported.

• A communication direction for association options is requested, which is not
supported.

C.4.3 Other Security Conformance

An ORB providing Security Functionality Level 2 may also conform to other secur
options. For example, it may also:

• Support some of the Security Functionality Options specified in Appendix Sect
C.6, “Security Replaceability,” on page 15-323.

• Provide security replaceability, using either of the replaceability options.

• Provide secure interoperability.

C.5 Security Functionality Optional Packages

An ORB may also conform to optional security functionality defined in this
specification. Only one optional facility is specified: non-repudiation.

Also, some requirements on conformance of additional facilities are specified.

C.5.1 Non-repudiation

Security Functionality

An ORB conforming to this must support the non-repudiation facilities for generat
and verifying evidence described in “The Model as Seen by the Objects Implemen
Security” on page 15-79. Note that these use NRCredentials, the attributes in which
may be the same as in the credentials used for other security facilities. Where no
repudiation is supported, the credentials acquired from the environment or genera
by the authenticate operation must be able to support non-repudiation.

Security Operations Supported

The following operations must be supported. All are available to applications. The
are:

• set_/get_NR_features as defined in Section 15.5.11, “Non-repudiation,” on
page 15-121.

• generate_token, verify_evidence, form_complete_evidence and get_token_details
of NRCredentials object as defined in “Non-repudiation” on page 15-121.
15-322 CORBAservices: Common Object Services Specification December 1998

15

d

on

hich

ity,”
 on an

on-

onal
re
.

 used

aced
 one

m
is can

e
ires
., and
• Use of set/get_credentials on Current specifying the type of credentials to be use
is NRCredentials.

• NRPolicy object with associated interfaces as in Section 15.6.7, “Non-repudiati
Policy Management,” on page 15-153.

Fit with Other Security Conformance

Non-repudiation requires use of credentials; thus it can only be used with ORBs, w
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for
conformance to the non-repudiation security functionality option.

Secure interoperability as defined in Appendix Section C.7, “Secure Interoperabil
on page 15-325, is not affected by non-repudiation. The evidence may be passed
invocation as a parameter to a request, but the ORB need not be aware of this.

The current specification does not specify interoperability of evidence (i.e., one n
repudiation service handling evidence generated by another).

C.5.2 Conformance of Additional Policies

This specification is designed to allow security policies to be replaced. The additi
policies must also conform to some of the interfaces in this specification if they a
used to replace the standard policies automatically enforced on object invocation

The case described next is for the addition of a new Access Policy which can be
for controlling access to objects automatically, replacing the standard
DomainAccessPolicy.

Clearly, other policies can be replaced. For example, the audit policy could be repl
by one that used different selectors, or the delegation policy could be replaced by
that supported more advanced features.

C.6 Security Replaceability

This specifies how an ORB can fit with security services, which may not come fro
the same vendor as the ORB. As explained above, there are two levels where th
be done (apart from any underlying APIs used by an implementation).

C.6.1 Security Features Replaceability

Conformance to this allows security features to be replaced.

If it is provided without conformance to the ORB Service replaceability option (se
Appendix Section C.6.2, “ORB Services Replaceability,” on page 15-324), it requ
the ORB to have a reasonable understanding of security, handling credentials, etc
knowing when and how to call on the right security services.
 Security Service v1.2 Security Replaceability Dec. 1998 15-323

15

s) to

y

n be

rent

s. It
trol

 as

l

or

y,
Support for this replaceability option requires an ORB (or the ORB Services it use
use the implementation-level security interfaces as defined in Section 15.7,
“Implementor’s Security Interfaces,” on page 15-156. This includes:

• The Vault , Security Context, Access Decision, Audit , and Principal
Authentication objects defined in Section 15.7.2, “Implementation-Level Securit
Object Interfaces,” on page 15-161.

• Certain features of the CORBA Core needed for ORB Service Replaceability ca
found in the Common Object Request Broker: Architecture and Specification.

C.6.2 ORB Services Replaceability

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use diffe
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security one
also assumes that any of these services may have associated policies, which con
some of their actions.

Support for this replaceability option requires an ORB to:

• Use the Interceptor interfaces defined in the Interceptor chapter of the Common
Object Request Broker: Architecture and Specification to call security interceptors
defined in Section 15.7.1, “Security Interceptors,” on page 15-156, in the order
defined there.

• Use the get_policy operation (and the associated security policy operations such
access_allowed, audit_needed defined in “Access Control” on page 15-117 and
Section 15.5.7, “Security Audit,” on page 15-113 respectively, for access contro
and audit and also get_association_options and get_delegation_mode defined in
Section 15.6.6, “Secure Invocation and Delegation Policies,” on page 15-147, f
association options, quality of protection of messages, and delegation).

C.6.3 Security-Ready for Replaceability

An ORB is Security-Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

Security Functionality Required

An ORB that is Security-Ready does not have to provide any security functionalit
though must correctly respond to a request for the security features supported.

Security Interfaces Supported

• get_service_information operation providing security options and details (see
Section 15.5.2, “Finding Security Features,” on page 15-90).
15-324 CORBAservices: Common Object Services Specification December 1998

15

 the

y
ity,
lls on

Rs),
ble

ions,
nce the
15.9,

,
urity

fined

er,
 may
sed.
• get_current operation to obtain the Current object for the execution context (see
ORB Interface chapter of the Common Object Request Broker: Architecture and
Specification).

Other Security Conformance

An ORB that is Security-Ready for replaceability supports one of the replaceabilit
options. This should be done in such a way that the ORB can work without secur
but can take advantage of security services when they become available. So it ca
the replaceability interfaces correctly (using dummy routines to replace security
services when these are needed, but not available).

C.7 Secure Interoperability

The definition of secure interoperability in this specification specifies that a
conformant ORB can:

• Generate, and take appropriate action on, Interoperable Object References (IO
which include security tags as specified in Section 15.8.4, “CORBA Interopera
Object Reference with Security,” on page 15-178.

• Transmit and receive the security tokens needed to establish security associat
and also the protected messages used for protected requests and responses o
association has been established according to the protocol defined in Section
“Secure Inter-ORB Protocol (SECIOP),” on page 15-204

Note – A Security-Ready ORB (i.e., with no built-in security functionality) may, by
additions of appropriate security services, conform to secure interoperability.

For ORBs to interoperate securely, they must choose to use the same mechanism
algorithms, etc., (or use a bridge between them, if available). A set of standard sec
mechanisms and algorithms are described in subsections.

C.7.1 Standard Secure Interoperability

An ORB that conforms to this must support the security-enhanced IOR defined in
Section 15.8.4, “CORBA Interoperable Object Reference with Security,” on
page 15-178, and also GIOP/IIOP protocol with the SECIOP enhancements as de
in Section 15.9, “Secure Inter-ORB Protocol (SECIOP),” on page 15-204.

As for CORBA 2, this may be done by immediate bridges or half bridges. (Howev
use of half bridges implies more complex trust relationships, which some systems
not be able to support.) This allows a large range of security mechanisms to be u
 Security Service v1.2 Secure Interoperability Dec. 1998 15-325

15

ion

ere
t all

, and

ed
icted.

jects.
the

e
ot in

ed to

funds

jects

f

g

trust
ice,

C.7.2 Common Secure Interoperability Levels

There are three functionality levels for Common Secure Interoperability (CSI). An
example of the difference in use of the three levels is explained in Appendix Sect
C.7.2, “Common Secure Interoperability Levels,” on page 15-326.

All levels can be used in distributed secure CORBA-compliant object systems wh
clients and objects may run on different ORBs and different operating systems. A
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in this specification. Facilities that are supportable at levels 0 and 1 are more restr
The three levels are:

1. Identity-based policies without delegation (CSI level 0)

At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and this cannot be delegated to further ob
If further objects are called, the identity will be that of the intermediate object, not
initiator of the chain of object calls.

Access and audit policies at this level are based on the identity of the immediate
invoker. So access and audit policies in encapsulated objects which depend on th
initiator of the chain, can only be used at the point of entry to the object system, n
further objects encapsulated by it.

As the attributes of principals are not delegated, environments should not be trust
pass on principal information which should be controlled.

Examples of applications which can use level 0 facilities are wrapped legacy
applications and telephone switches. If a CSI level 0 ORB also supports non-
repudiation, it can also be used for other types of applications such as electronic
transfer.

2. Identity-based policies with unrestricted delegation (CSI level 1)

At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target. The identity can be delegated to other ob
on further object invocations, and there are no restrictions on its delegation, so
intermediate objects can impersonate the user. (This is the impersonation form o
simple delegation defined in Section 15.3.6, “Delegation,” on page 15-30.)

Access and audit policies at this level can be based on the identity of the initiatin
principal or immediate invoker, depending on the delegation policy.

As delegation is not restricted, once an initiator has delegated his identity, it must
the objects it calls not to abuse its delegated rights to act as the initiator. In pract
this will limit the type of environment in which level 1 should be used to relatively
closed environments.
15-326 CORBAservices: Common Object Services Specification December 1998

15

ck

de
roups.
ions,

re, it

.

is
s and

ts
te the
d to

ter-

os

m

ing

he

rts.

I
ed
An example of an application environment which can use level 1 facilities is a ba
office system protected by firewalls where identity-based policies are acceptable.

3. Identity- & privilege-based policies with controlled delegation (CSI level 2)

At this level, attributes of initiating principals passed from client to target can inclu
separate access and audit identities and a range of privileges such as roles and g
Delegation of these attributes to other objects is possible, but is subject to restrict
so the initiating principal can control their use. Optionally, composite delegation is
supported, so the attributes of more than one principal can be transmitted. Therefo
provides interoperability for ORBs conforming to all CORBA Security functionality

Access and audit policies are based on the attributes of initiating principals. At th
level, a wider range of policies can be supported (e.g., role-based access control
mandatory access controls using the initiating principal’s security clearance).

At this level, an initiator needs to trust those targets which it has allowed to use i
attributes not to abuse these. It does not have to trust these targets not to delega
attributes outside the trusted set of targets, as the delegation controls can be use
prevent this.

This level can be used for a wide range of applications in large enterprise and in
enterprise networks.

C.7.3 SECIOP-Hosted Interoperability Mechanisms

The following conformance can be claimed:

• SPKM at level 0 by providing the specified CSI level using the SPKM protocol
(mechanism SPKM_1 and optionally also SPKM_2).

• KerberosV5 at level 0 or 1 by providing the specified CSI level using the Kerber
protocol.

• CSI-ECMA Public Key at level 0, 1, or 2 by providing the specified level of CSI
functionality using the CSI-ECMA protocol with the public key option (mechanis
CSI_ECMA_Public).

• CSI-ECMA Secret Key at level 0, 1, or 2 by providing the specified CSI level us
the CSI-ECMA protocol with the secret key option (mechanism
CSI_ECMA_Secret).

• CSI-ECMA Hybrid at level 0, 1, or 2 by providing the specified CSI level using t
CSI-ECMA protocol with the hybrid key option (mechanism CSI_ECMA_Hybrid).

In addition, a conformant ORB must specify all the cryptographic profiles it suppo

C.7.4 Secure Interoperability with SSL

Conformance can be claimed for CORBA Security based on SSL by providing CS
level 0 functionality using SSL on IIOP using any of the cryptographic profiles defin
in [21]. A conformant ORB must specify which of the cryptographic profiles are
supported by it.
 Security Service v1.2 Secure Interoperability Dec. 1998 15-327

15

sing

CE-

rted

C.7.5 Secure Interoperability with DCE-CIOP

An ORB that conforms to this must conform to Standard Secure Interoperability u
GIOP/IIOP as described in Appendix Section C.7.1, “Standard Secure
Interoperability,” on page 15-325, and also support secure interoperability using D
CIOP as defined in Section 15.15, “DCE-CIOP with Security,” on page 15-273.

Both the Kerberos V5-based SECIOP Security and DCE Security must be suppo
for this option. Any version of DCE up to and including DCE 1.1 is supported; the
DCE interfaces and protocols are specified in [5].
15-328 CORBAservices: Common Object Services Specification December 1998

15

as
ant

s and

.4,

en to
an

ons
curity

lier in
the

e
rms

rise

is
Appendix D Guidelines for a Trustworthy System

D.1 Introduction

This appendix provides some general guidelines for helping ORB implementors
produce a trustworthy system. The intention is to have all information related to
trustworthiness and assurance in this appendix, to explain how the specification h
taken into account the requirements for assurance, and also to show how conform
implementations can have different levels of assurance.

The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthines
assurance. Appendix Section D.2, “Protecting Against Threats,” on page 15-331,
describes the threats and countermeasures relevant to a CORBA security
implementation. Appendix Section D.3 through D.6 provide the architecture and
implementation guidelines for each security object model described in Section 15
“Security Architecture,” on page 15-45.

D.1.1 Purpose of Guidelines

The security standards proposed in this specification have been deliberately chos
allow flexibility in the security features, which can be provided. This specification c
support significantly different security policies and mechanisms for security functi
such as access control, audit, and authentication. However, there is an overall se
model which applies, whatever the security policy. This is described in the earlier
sections of this specification.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the
trustworthiness issues underlying the security model and interfaces described ear
this specification, and provides implementation guidance on what components of
architecture need to be trusted and why. Note that trust requirements assume
conformance to all of the security models, including the implementor’s view, as th
implementation affects trustworthiness. If a CORBA security implementation confo
to the security features replaceability level, but not the ORB services one, any
requirements on ORB services will apply to the ORB. Trustworthiness will also
depend on several other implementation choices, such as the particular security
technology used.

D.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterp
management must decide whether the assets will be adequately protected by the
system. Management must be convinced that the particular system configuration
sufficiently trustworthy to meet the security needs of the enterprise environment.
Security trustworthiness is thus the ability of a system to protect resources from
exposure to misuse through malicious or inadvertent means.
 Security Service v1.2 Introduction Dec. 1998 15-329

15

tems
t
ents

y
utual

 that
eans
f
,

e
ds.

losed

m a set
d
ce

s

asis
r

 may

verall
he use
m

stem.
ter
The basis for trust in distributed systems differs from host-centric stand-alone sys
largely for two reasons. First, the assignment of trust in a distributed system is no
isolated to a single global system mechanism. Second, the degree of trust in elem
of distributed systems (particularly distributed object systems) may change
dynamically over time, whereas in host-centric systems trustworthiness is typicall
static. In many cases, trust in distributed systems must be seen in the context of m
suspicion.

D.1.3 Assurance

Assurance is a qualitative measure of trustworthiness; assurance is the confidence
a system meets enterprise security needs. The qualitative nature of assurance m
that enterprises may have different assurance guidelines for an equivalent level o
confidence in security. Some organizations may need extensive evaluation criteria
while other organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of th
CORBA Security specification may evaluate the level of security to meet their nee
A single overall trust model that underlies the security reference model and
architecture (as described elsewhere in this specification) can set this context for c
systems, but it is unlikely that a single trust model exists for the diversity of open
distributed systems likely to populate the distributed object technology world.

To support a balanced approach, assurance arguments should be assembled fro
of system building blocks. Concepts of system composition and integration shoul
allow the assurance analysis to be tailored to specific user requirements. Assuran
evidence should be carefully packaged to best support enterprise decision-maker
during the security trade-off process.

The security object models defined by the CORBA Security specification are the b
for the necessary building blocks. The trust guidelines described in “Guidelines fo
Structural Model” on page 15-335, provide constraints on how these components
relate.

The relationship between assurance and security provides the foundation for the o
security model. The key characteristic is balance. Balanced assurance promotes t
of assurance arguments and evidence appropriate to the level of risk in the syste
components.

Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record sy
The former relies on assurance in the underlying operating system, where the lat
focuses security in application software.
15-330 CORBAservices: Common Object Services Specification December 1998

15

iate
ems,

the
est

is

ific
The
ut

re.

tion

5-2
 some
oals
y not

y

D.2 Protecting Against Threats

An enterprise needs to protect its assets against perceived threats using appropr
security measures. This specification addresses security in distributed object syst
so it focuses on the threats to assets, software, and data in such systems.

An enterprise may want to assess the risk of a security breach occurring against
damage which will be done if it does occur. The enterprise can then decide the b
trade-off between the cost of providing protection from such threats and any
performance degradation this causes, against the probability of loss of assets. Th
specification allows options in how security is provided to counter the threats.
However, it is expected that many enterprises will not undertake a formal risk
assessment, but rely on a standard level of protection for most of their assets, as
identified by industry or government criteria. This section describes CORBA-spec
security goals, the main distributed system threats, and protection against them.
discussion does not emphasize generic issues of threats and countermeasures, b
instead concentrates on issues that are unique to the CORBA security architectu

D.2.1 Goals of CORBA Security

The overall goals of the CORBA security architecture were described in “Introduc
to Security” on page 15-2. CORBA security is based on the four fundamental
objectives of any secure system:

• Maintain confidentiality of data and/or system resources.

• Preserve data and/or system integrity.

• Maintain accountability.

• Assure data/system availability.

Many of the goals described in Section 15.1, “Introduction to Security,” on page 1
are relevant to any IT system that is targeted at large-scale applications. However,
security goals described are specific to the CORBA security architecture. These g
deserve special attention because they bring attention to potential threats that ma
be encountered in typical architectures. CORBA-specific security goals include:

• Providing security across a heterogeneous system where different vendors ma
supply different ORBs.

• Providing purely object-oriented security interfaces.

• Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

• Allowing polymorphic implementations of objects based on different underlying
mechanisms.

• Ensuring object invocations are protected as required by the security policy.

• Ensuring that the required access control and auditing is performed on object
invocation.
 Security Service v1.2 Protecting Against Threats Dec. 1998 15-331

15

tion
s

ric

l

ing

ject

l

ed

er

the

n in
ty
er new

 is
tion
 be

is

tion.
The discussion of the architecture and implementation guidelines in Appendix Sec
D.3, “Guidelines for Structural Model,” on page 15-335, addresses the mechanism
used to ensure these CORBA-specific security goals, as well as many other gene
security issues.

D.2.2 Threats

The CORBA security model needs to take into account all potential threats to a
distributed object system. It must be possible to set a security policy and choose
security services and mechanisms that can protect against the threats to the leve
required by a particular enterprise.

A security threat is a potential system misuse that could lead to a failure in achiev
the system security goals previously described. Section 15.1, “Introduction to
Security,” on page 15-2, provided an overview of security threats in a distributed ob
system. These threats and related attacks include:

• Information compromise - the deliberate or accidental disclosure of confidentia
data (e.g., masquerading, spoofing, eavesdropping).

• Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

• Denial of service - the curtailment or removal of system resources from authoriz
users (e.g., network flooding).

• Repudiation of some action - failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

• Malicious or inadvertent misuse - active or passive bypassing of controls by eith
authorized or unauthorized users (e.g., browsing, inference, harassment).

The threats described above give rise to a wide variety of attacks. Most if not all
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediatio
truly distributed systems will not only exacerbate the strain on host-centric securi
services and mechanisms in use today on client/server systems, but also engend
forms of threat.

Threats may be of different strengths. For example, accidental misuse of a system
easier to protect against than malicious attacks by a skilled hacker. This specifica
does not attempt to counter all threats to a distributed system. Those that should
countered by measures outside the scope of this specification include:

• Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with th
threat.

• Traffic analysis.

• Inclusion of rogue code in the system, which gives access to sensitive informa
(This affects the build and change control process.)
15-332 CORBAservices: Common Object Services Specification December 1998

15

of the

em
s

ould
ntrols
n

at user
 a

act on
sing

ting

hey

rget
 and it
lse

istics

es
e
in a

y.
D.2.3 Vulnerabilities of Distributed Object-Oriented Systems

Vulnerabilities are system weaknesses that leave the system open to one or more
threats described above. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
vulnerabilities often result from deliberate or unintentional trade-offs made in syst
design and implementation, usually to achieve other more desirable goals such a
increased performance or additional functionality.

Classes of vulnerabilities include:

• An authorized user of the system gaining access to some information which sh
be hidden from that user, but has not been properly protected (e.g., access co
have not been properly set up or the store occupied by one object has not bee
cleared out when another reuses the space).

• A user masquerading as someone else, and so obtaining access to whatever th
is authorized to do, resulting in actions being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they can
his behalf. This adds the threat of rights being delegated too widely, again, cau
a threat of unauthorized access.

• Controls that enforce security being bypassed.

• Eavesdropping on a communication line giving access to confidential data.

• Tampering with communication between objects: modifying, inserting, and dele
items.

• Lack of accountability due, for example, to inadequate identification of users.

System data as well as business data must be protected. For example:

• If a principal’s credentials are successfully obtained by an unauthorized user, t
could be used to masquerade as that principal.

• If the security-sensitive information in the security context between client and ta
object is available to an unauthorized user, confidential messages can be read,
may be possible to modify and resend integrity-protected messages or send fa
messages without this being detected.

As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent character
of distributed object systems that make them particularly vulnerable include:

• Dynamic Systems -- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security polici
also may be dynamically modified as enterprises change. Dynamic systems ar
inherently complex, and thus security may be difficult to ensure. For example,
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the polic
These potential inconsistencies in policy enforcement could lead to a security
failure.
 Security Service v1.2 Protecting Against Threats Dec. 1998 15-333

15

ill

ntial
ng a

rity
ys

ne
rity

ain
e a

ll.
s is
use

he

ll of
nt

ld be

on is
el of
e and

odels

t
et
• Mutual Suspicion -- In a large distributed system, some system components w
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the pote
to inadvertently place unjustified trust in some system component, thus exposi
vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system secu
architecture must be carefully structured to ensure that these checks are alwa
performed.

• Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each o
enforcing the security requirements of its organization. There is no single secu
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy dom
boundaries. Defining the appropriate policies to enforce across domains may b
difficult job. Mismatched policies could lead to vulnerabilities.

• Layering of Security Mechanisms -- Distributed object systems are highly
layered, and the security mechanisms for those systems will be layered as we
Complex, potentially nondeterministic interactions at the boundary of the layer
another area for vulnerabilities to occur. A hardware error, for example, could ca
security checking code in the ORB to be bypassed, thus violating the policy. T
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

• Complex Administration -- Finally, large geographically distributed object
systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. A
the issues listed above lead to complex, error-prone administration. An innoce
change to a principal’s access rights, for example, could expose a serious
vulnerability.

D.2.4 Countermeasures

Some threats are common across most distributed secure systems, so they shou
countered by standard security features of any OMA-compliant secure systems.
However, the level of protection against these threats may vary. Complete protecti
almost impossible to achieve. Most enterprises will want a balance between a lev
protection against threats which are important to them, and the cost in performanc
use of other resources of providing that level of protection.

A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object m
described in this specification. Relevant features of the object models include the
following:

• Authentication of principals proves who they are, so it is possible to check wha
they should be able to do. This check can be performed at both client and targ
object, as the client principal’s credentials can be passed to the server.
15-334 CORBAservices: Common Object Services Specification December 1998

15

y are

nsit
play,

d

m

CB,
rity

ple

 on
es.
cess

 to
nic
n

B is

ding
itive

s.

l

e
• Authentication between clients and target objects allows them to check that the
communicating with the right entities.

• Security associations can protect the integrity of the security information in tra
between client and target object (e.g., credentials, keys) to prevent theft and re
and keep the keys used for protecting business data confidential.

• Business data can be integrity-protected in transit so any tampering is detecte
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

• Unauthorized access to objects is protected using access controls.

• Misuse of the system can be detected using auditing.

• Segregating (groups of) applications from each other and security services fro
applications can prevent unauthorized access between them.

• Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

Assurance arguments and evidence are frequently founded on the concept of a T
which mediates security by segregating the security-relevant functions into a secu
kernel or reference monitor.

A traditional monolithic TCB approach is not suitable for the open, multiuser, multi
environment situations in which most CORBA users reside. In many cases, for
example, secure interoperability of CORBA applications and ORBs may be based
mutual suspicion. TCB scalability issues also argue against typical TCB approach
Given the complexity of distributed systems, it is not clear whether centralized ac
mediation is possible in the presence of distributed data and program logic.

Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common
the CORBA world such as general purpose DBMSs, financial accounting, electro
commerce, or horizontal common facilities will have many security requirements i
addition to those that can be enforced by a central underlying TCB.

Despite the limitations of the traditional TCB, we use the concept of a distributed TCB
in the assurance discussions of the next section. The concept of a distributed TC
the collection of objects and mechanisms that must be trusted so that end-to-end
security between client and target object is maintained. However, note that depen
on the assurance requirements of a particular CORBA security architecture, sens
data may still be handled by “entrusted” ORB code. Thus, our informal use of the
distributed TCB concept may not correspond to other existing models for network
TCBs, particularly for minimal assurance commercial CORBA security application

D.3 Guidelines for Structural Model

This section provides architecture and implementation guidelines for the structura
model of the CORBA security architecture described in Section 15.4, “Security
Architecture,” on page 15-45. The security functions provided in the model and th
basis for trust are described in this section.
 Security Service v1.2 Guidelines for Structural Model Dec. 1998 15-335

15

mple
rvice
 and

rts the

and to

d
.

D.3.1 Security Functions

Figure 15-63 outlines interactions during a normal use of the system. It gives a si
case, where the application is unaware of security except for calling a security se
such as audit. The security interactions include those seen by application objects
secure object system implementors.

Figure 15-63Normal System Interactions

This diagram is the basis for the discussions of security functions in each of the
security object models described next.

D.3.2 Basis of Trust

Enterprise management is responsible for setting the overall security policies and
ensuring system enforcement of the policies.

The system developer and systems integrators must provide a system that suppo
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all potential threats to the system,
put the right countermeasures in place.

Higher levels of security may require the code enforcing it to be formally evaluate
according to security criteria such as those of the US TCSEC or European ITSEC

Client

ORB

Target
Object

Security

Services
ORB

Services

Clientnon-repud

Credentials

audit etc.

ORB
Security

user

.. object reference

CurrentObj RefCredentials

Application View

System
Implementor’s

View

security tokens

transformed request
15-336 CORBAservices: Common Object Services Specification December 1998

15

tion
are.

ecurity

d on
lity
n of

the

her.

ted.

rs.

e

tions

Distributed Trusted Computing Base

The key security functionality in the system is enforced transparently to the applica
objects so that it can be provided for application objects which are security-unaw
This key functionality is contained in the distributed TCB of the system. It is therefore
responsible for ensuring that:

• Users cannot invoke objects unless they have been authenticated (unless the s
policy supports unauthenticated, guest access for some services).

• Security policies on access control, audit, and security association are enforce
object invocation. This includes policies for message protection, both confidentia
(ensuring confidential data cannot be read) and integrity (ensuring any corruptio
data in transit is detected).

• A principal’s credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at
server object.

• Application objects which do not trust each other cannot interfere with each ot

• The security policy between different security policy domains is suitably media

• The security mechanisms themselves cannot be tampered with.

• The security policy data cannot be changed except by authorized administrato

• The system cannot be put into an undefined or insecure state as a result of th
operation of nonprivileged code.

The distributed TCB also needs to provide the required information so that applica
can enforce their own security policies in a way that is consistent with the domain
security policy.
 Security Service v1.2 Guidelines for Structural Model Dec. 1998 15-337

15

s

usted
er,
tilize

o find

 as
ors
d to
.

Figure 15-64Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed and include
components as follows.

• The distributed core ORBs and associated Object Adapters - Core ORBs are tr
to function correctly and call the ORB Security Services correctly in the right ord
but do not need to understand what these do. Object Adapters are trusted to u
the operating system facilities to provide the required protection boundaries
between components in line with the security policy.

• The associated ORB Services - ORB Services other than security are trusted
similarly to the ORB. ORB Security Services are used to provide the required
security on object invocation.

• Related objects - ORB Services use objects such as the binding and Current t
which security is required.

• Security objects - Security objects include those available to applications such
Principal Authentication and Credentials and those called by security intercept
(Vault, Security Context, Access Decision, and Security Audit). These are truste
function correctly to enforce security in line with the security policy and other
requirements.

Core ORBS and OAs

Binding

Application

Current

lower layer
communications

External Security Services

Operating System, Hardware

Security Objects
(Principal Authentication, Credentials, Security policies,

Vault, Security Context, Access Decision)

(Distributes) Trusted Computing Base

ORB
Services
15-338 CORBAservices: Common Object Services Specification December 1998

15

g the

ins).
he

ally

n

ies.
t.
en

ese

 of

se
ese
cts

nd
ctions
s are

ction
• Any external security services used by the security services, as part of enforcin
security policy.

• The supporting operating systems. These are trusted to ensure that objects (in
different trust domains) cannot interfere with each other (using protection doma
The security services should also ensure that the security information driving t
security policy (such as the credentials and security contexts) is adequately
protected from the application objects using such features.

• Optionally, lower-layer communications software. However, this does not gener
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communicatio
software.

A distributed system may be split into domains, which have different security polic
These domains may include ORBs and ORB Services with different levels of trus
Trust between domains needs to be established, and an interdomain policy betwe
them enforced. The ORB security services (and external security services that th
call) to provide this interdomain working are part of the distributed TCB. Note,
therefore, that the parts of this TCB in different domains may have different levels
trust.

Note – Note that application objects may enforce their own security polices, if the
are consistent with the policy of the security domain. However, failure to enforce th
securely will affect only the applications concerned and any other application obje
that trusted them to perform this function.

Protection Boundaries

The general approach is to establish protection boundaries around groups of one or
more components, which are said to belong to a corresponding protection domain.
Components belonging to a protection domain are assumed to trust each other, a
interactions between them need not be protected from each other, whereas intera
across boundaries may be subject to controls. Protection Boundaries and Domain
a lower-level concept than Environment Domains; they are the fundamental prote
mechanism on which higher levels are built.

At a minimum, it must be possible to create protection boundaries between:

• Application components that do not trust each other.

• Components that support security services and other components.

• Components that support security services and each other.
 Security Service v1.2 Guidelines for Structural Model Dec. 1998 15-339

15

 (for

ing

ts

vices
f

e
,
ce as)

level

the
ample,

onents
Controlled Communications

As well as providing protection boundaries, it is necessary to provide a controlled
means of allowing particular components to interact across protection boundaries
example, an application invoking a Security Object (explicitly), or an interceptor
(implicitly).

It must not be possible for applications to bypass security services which enforce
security policies. It is therefore necessary to ensure that the components support
those services are always invoked when required. This is achieved by using both
protection boundaries and controlled communications to ensure that client reques
(and server responses) are routed via the components (interceptors and Security
Objects), which implement the security services.

Figure 15-65 illustrates the segregation of components implementing security ser
into separate protection domains from application components; the only means o
communication between components is via controlled communication paths.

Figure 15-65Base Protection and Communications

In implementation terms, components could, for example, be executed in separat
processes, with process boundaries acting as protection boundaries. Alternatively
security services could be executed in-process with (i.e., in the same address spa
corresponding client and server application components, provided that they are
adequately protected from each other -- for example, by hardware-supported multi
access control mechanisms).

Figure 15-66 shows two examples of protection boundaries. In the first example,
boundaries between components might be process boundaries. In the second ex
ORB and security components might be protected from applications by memory
protection mechanisms (e.g., kernel and user spaces) and client and server comp
might be protected from each other by physical separation.

Client Server
Logical Object Request

Security Services

Base Protection and Communications
15-340 CORBAservices: Common Object Services Specification December 1998

15

eet
 and

nce.

rity
ied

ot to
ed to
Figure 15-66Protection Boundaries

D.3.3 Construction Options

For some systems, the TCB in domains of the distributed system may need to m
security evaluation criteria for both functionality and assurance (in the correctness
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other
security evaluation criteria.

The split into components previously described allows a choice over the way the
system is constructed to meet different requirements for assurance and performa

This section describes three options for how the system may be constructed, as
follows:

• A commercial system where all applications are generated using trusted tools.

• A commercial system with limited security requirements.

• A higher security system.

Note – These are just examples to show the type of flexibility provided by the secu
model. It is not expected that any implementation will provide all the options impl
by these.

Example Using Trusted Generation Tools and ORBs

If all applications are generated using trusted tools, applications can be trusted n
interfere with other components in the same environment. Therefore there is no ne
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

Hardware and Operating SystemHardware and Operating System

Client ClientServer ServerApplications

Security etc.

ORB
 Security Service v1.2 Guidelines for Structural Model Dec. 1998 15-341

15

a

 the

e
ess to
cts.

s may

hat
t to

tion

en
.

t of
n the

y can

 as
tions

e

rity
 of

ss

cts,

sed.
ory (set
If the ORB and ORB Services are also trusted, there may be no need to provide
protection boundary between the ORB and the underlying security services and
objects. It may well be acceptable to run them all in the same process, relying on
trust between the components, rather than more rigidly enforced boundaries.

However, if the application generation tools and the ORB are less trusted than th
security services, then there may need to be a protection boundary to prevent acc
security-sensitive information in the Credentials, Security Context, and Vault obje

Commercial System with Limited Security Requirements

Some systems may not contain very sensitive business information, so enterprise
not be prepared to pay for a high-level of security. They may also know that the
probability of serious malicious attempts to break the system is low, and decide t
protecting against such attempts is not worth the cost. They may also choose no
sacrifice performance for better levels of security.

In many systems, applications are generated using tools that are not particularly
trusted. For example, using a C compiler, it would be possible to write an applica
that can read, or even alter, any information within the same protection domain.
Theoretically, providing good security implies putting protection boundaries betwe
application objects, and between applications and the ORB and Security Services

The security model allows environment domains to be defined, where enforcemen
policy can be achieved by means local to the environment. For example, objects i
same identity domain can share a security identity. Applications belonging to
environment domains may trust each other not to interfere with each other, so the
be put in the same protection domain.

It may also be acceptable to run (part of) the ORB in the same protection domain
the application objects. This assumes that an interface boundary between applica
and the ORB is sufficient protection from accidental damage (the probability of an
application corrupting an ORB being low in a commercial system). Even if the
application does corrupt the ORB, damage is limited, as the ORB does not handl
security-sensitive data.

In some commercial systems, it may also be acceptable to run some of the secu
services in the same protection domain as the application and ORB. The chance
these being accidentally (or maliciously) corrupted may be low, so it may be
acceptable to risk a failure to enforce the access control policy because the Acce
Decision object is corrupt.

However, it will often be desirable to protect the state information of security obje
which contain very sensitive security information from the applications.

Higher Security System

In a security system requiring high assurance, different security policies may be u
For example, label-based access controls may be used and these may be mandat
under administrator’s controls) and not changeable by application objects.
15-342 CORBAservices: Common Object Services Specification December 1998

15

keys

m
o

tion
side a
n

ntors
e

event
tity,

ir
n

fore
.

e
Stronger protection boundaries are also likely to be needed, allowing:

• Individual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

• The ORB and ORB Services to be protected from the application.

• The core security objects, which contain security-sensitive information such as
to be protected from applications and ORBs, etc.

• Particular secure objects (e.g., the Access Decision objects) to be separate fro
others, as they may have been written by someone less trusted than those wh
wrote, for example, the Security Context objects.

D.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modifica
by operating system access control mechanisms. When invoked, programs run in
process whose address space is protected by operating system memory protectio
mechanisms. Programs load code in fairly predictable ways.

Since this specification does not mandate which entities have identities, impleme
have a wide variety of choices; identities may be associated, for example, with th
following:

• Object instances

• Servers

• Object adaptors

• Address spaces

If identities are associated with object instances, precautions are necessary to pr
object instance code from being modified by other code (which may have no iden
or a different identity) in the instance’s address space.

Servers may permit dynamic instantiations of previously unknown classes into the
address spaces. This makes it difficult to determine what code is running under a
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be “trusted.” Identified servers must there
be provided with some way of controlling what code can run under their identities

Observing the following guidelines will help to ensure integrity of identities.

• Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

• It must be possible for an identified “entity” to control which code runs within th
scope of its identity.
 Security Service v1.2 Guidelines for Structural Model Dec. 1998 15-343

15

on

del

tes

cipal
rity

ject.

ices
ation
ities

e

of.
 that
they

et
r

ntrol

object,
it. This
lso
d
t
D.4 Guidelines for Application Interface Model

This section provides architecture and implementation guidelines for the applicati
interface model of the CORBA security architecture described in Section 15.4,
“Security Architecture,” on page 15-45. The security functions provided in the mo
and the basis for trust are described in this section.

D.4.1 Security Functions

Logging onto the System

When a user or other principal wants to use a secure object system, it authentica
itself and obtains credentials. These contain its certified identity and (optionally)
privilege attributes, and also controls where and when they can be used. This prin
information is integrity-protected and it should be possible to ascertain what secu
service certified them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target ob

• The client invokes the object using its object reference. The ORB Security Serv
are transparent to the client and application object and use the security inform
with the object reference and the security policy to decide on the security facil
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can b
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of pro
For example, they may or may not require mutual authentication. It is expected
most security mechanisms will provide options here, though the details of how
do this, and the form of tokens used, is mechanism-dependent.

The principal’s credentials are normally passed transparently from client to targ
object. These should be protected in transit from theft and replay as well as fo
integrity of the information itself (though some security mechanisms may not
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access co
is normally called at the server, rather than the client.

• Once the security association has been established between client and target
the request can be passed using the message protection interceptor to protect
should be able to provide integrity and/or confidentiality protection. It should a
be able to provide continuous authentication, as the messages will be protecte
using keys only known to this client and server (or the trust group for the targe
object).
15-344 CORBAservices: Common Object Services Specification December 1998

15

udit.
ify

y be

 a
ects.

ust in

o
s.

l.

alf,

curity

tion

e

ciated
,
ntrol
ol is

f
• The application object may also call security services for access control and a
These will use the security information available from the environment to ident
the initiating principal and its privileges.

• This application object may now act as a client, and call further objects. It may
delegate the client’s credentials or use its own (or use both). However, there ma
constraints on whether the client’s credentials can be delegated. For example,
particular principal’s credentials may be constrained to particular groups of obj

D.4.2 Basis of Trust

Users have some trust in application objects, and application objects have some tr
other objects. Both may:

• Trust application objects to perform the business functions.

• Have limited trust in some applications, or domains of the distributed system, s
they may restrict which of their privilege attributes are available to these object

• Want to restrict the extent to which their credentials can be propagated if at al

• Have to prove their identity to the system so it can enforce access on their beh
unless they are only going to access publicly available services.

Both users and applications trust the underlying system to enforce the system se
policy, and therefore protect their information from unauthorized access and
corruption.

D.5 Guidelines for Administration Model

This section provides architecture and implementation guidelines for the administra
model of the CORBA security architecture described in Section 15.4, “Security
Architecture,” on page 15-45. The security functions provided in the model and th
basis for trust are described.

D.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attributes asso
with it depend on the security policies associated with its domain and object type
though the object may be permitted to change some of these. These attributes co
what security is enforced on object invocation (for example, whether access contr
needed and, if so, the Access Decision object to be used; the minimum quality o
protection required).

The object reference for a such an object is extended to include some security
information. For example, it may contain:
 Security Service v1.2 Guidelines for Administration Model Dec. 1998 15-345

15

ject
to be
 be a

as

cific

e

elves,
re
d, it

te

n.
• An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the ob
belongs to one. Small objects, which are dynamically created and do not need
protected from each other, will normally share a trust domain. There could also
node identity.

• Security policy attributes required by the object when invoked by a client such
the minimum quality of protection of data in transit.

• The security technology it supports. It may also contain some mechanism-spe
information such as its public key, if public key technology is being used, and
particular algorithms used.

Much of the information is just “hints” about which security is required, and will b
verified by the ORB services supporting the target object, so it does not need
protecting.

D.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects thems
or it could be stored in a procedural Access Control Manager whose interfaces a
accessible to Domain objects). Wherever authorization policy information is store
must be protected against modification by unauthorized users.

Authorization policy information must be modifiable only by authorized
administrators.

Audit Policy Information and Audit Logs

Audit policy information is security-sensitive and must be protected against
unauthorized modification. Audit logs are security-sensitive and may contain priva
information; they should be viewed and changed only by authorized auditors.

• Audit policy information must be modifiable only by authorized audit
administrators.

• Audit logs must be protected against unauthorized examination and modificatio
15-346 CORBAservices: Common Object Services Specification December 1998

15

ded

are
stem,

hat it
ed to

ame

ation
an
on.

d

ith

igns
D.6 Security Object Implementation Model

D.6.1 Guidelines

This section provides architecture and implementation guidelines for the security
object implementation model of the CORBA security architecture described in
Section 15.4, “Security Architecture,” on page 15-45. The security functions provi
in the model and the basis for trust are described.

D.6.2 Security Functions

The distributed core ORBs, object adapters, ORB security services, and security
objects provide the underlying implementation to support the application and
administration interfaces.

D.6.3 Basis of Trust

Target Object Identities

CORBA objects do not have unique identities; for this reason, when objects that
not associated with a human user authenticate themselves in a secure CORBA sy
they use “security names.” Successful authentication to a target object indicates t
possesses the authentication data (perhaps a cryptographic key), which is presum
be known only to the legitimate owner of the security name. An object’s security n
may be included in references to that object as a “hint.” The question “how do
applications know that the security-name hint is reliable?” naturally arises.

The answer is as follows:

• If the EstablishTrustinTarget security feature is specified, then the security
services defined in this specification will authenticate the target security name
found in the target object reference. The semantics of this authentication oper
include an assumption that the security name in the reference corresponds to
identity that the user is willing to trust to provide the target object’s implementati
There is no way for the security services to test this assumption.

• If your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provides a get_security_names operation on the object
reference through which applications can retrieve the target’s security name an
perform any tests, which may help satisfy them of its validity.

CORBA object references can circulate very widely; for example, they can be
“stringified” and then (potentially) copied onto a piece of paper. Implementations w
very high integrity requirements could ensure that references are trustworthy by
providing a trustworthy service that generates references and cryptographically s
the contents, including the target security name.
 Security Service v1.2 Security Object Implementation Model Dec. 1998 15-347

15

 to
r

ions
ever,
y

in, the

dge
t a

y
x
vided

is

these

t will

tion
aries

ying
s
ce

any
 a
Assumptions about Security Association Mechanisms

Implementation of a secure CORBA system requires use of security mechanisms
enforce the security with the required degree of protection against the threats. Fo
example, cryptographic keys are normally used in implementing security, for funct
such as authenticating users and protecting data in transit between objects. How
different security mechanisms may use different types of cryptographic technolog
(e.g., secret or public key) and may use it in different ways when, for example,
protecting data in transit. These cryptographic keys have to be managed, and aga
way this is done is mechanism-specific.

A full analysis of how well an implementation counters the threats requires knowle
of the security mechanisms used. However, this specification does not dictate tha
particular mechanism is used.

It does assume that the security mechanisms used for authentication and securit
associations can provide the relevant security countermeasures listed in Appendi
Section D.2.4, “Countermeasures,” on page 15-334. These are expected to be pro
by a number of security mechanisms, which will be available for protecting secure
object systems. Therefore, the analysis of threats and the trust model assume th
facility level.

It would be possible to use a security mechanism that does not provide some of
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, i
be vulnerable to more threats.

Invoking Special Objects

Some of the objects described in this specification are locality-constrained objects,
which bypass the normal invocation process and therefore are not subject to the
security enforced by the ORB services. The Current object (used, for example, by the
target object to obtain security information about the client) is of this type. Protec
of these objects is provided by other means, for example, using protection bound
previously described.

D.6.4 Basis For ORB Assurance

The ORB must function correctly (e.g., when enforcing security policy on object
invocation and object creation as defined in this specification). Likewise the underl
host platforms must function correctly in their provision of the security mechanism
employed, and relied upon, by the ORB. Both must do this to the level of assuran
specified in its Conformance Statement (which is described in Appendix Section
Appendix E, “Conformance Statement,” on page 15-352). This section identifies m
of the most critical design considerations related to providing these assurances in
DOC system.
15-348 CORBAservices: Common Object Services Specification December 1998

15

 the

unt of

ords,

e

 the

 is
rget
 the

ts are
e the
but

e
ol
ntrol
Isolating Security Mechanisms

Figure 15-67 depicts how security functionality and trust is distributed throughout
architecture.

Figure 15-67Distribution of Security Functionality and Trust

The split of security objects is designed to reduce (as much as possible) the amo
security-sensitive information, which must be visible to applications and ORBs.

• Only log-in applications (where provided) need to handle secrets such as passw
and then only briefly during authentication.

• Cryptographic keys and other security-sensitive information about principals ar
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on
Credentials provide visibility of security information such as keys.

• Security information used to protect application data in transit between objects
held in Security Context objects, which are not visible to applications at all. (Ta
applications can ask for attributes associated with an incoming invocation using
Current object.)

Security objects such as Credentials, Security Context, and Access Decision objec
also not used directly by the core ORB, only by the security interceptors. Therefor
core ORB needs to be trusted to call the interceptors correctly in the right order,
does not need to understand security or have access to the security-sensitive
information in them.

The split also is intended to isolate components which may be replaced to chang
security policy or security mechanisms. For example, to replace the access contr
policy, the Access Decision objects need to be changed. However, the access co

Application
may be security-unaware

may enforce application security policy

core ORB and OA

must function correctly, e.g.,
invoke required interceptors

in the right order

ORB security interceptors

must function correctly
ensure security enforced

core security objects - must enforce security
Principal

Authentication

Credentials Vault Security
Context

Access
Decision

Audit
Non-

repudiation
 Security Service v1.2 Security Object Implementation Model Dec. 1998 15-349

15

ion

and
ng

nt’s

 ORB

n

s

n

g a
e

ted
ants
d to
interceptor will remain responsible for finding and invoking the right Access Decis
object. To replace the security mechanisms for security association, only the Vault and
associated Security Context objects need to be replaced.

Integrity of the ORB and Security Service Objects

Security in a CORBA environment depends on the correct operation of the ORB
Security Services. In order for these mechanisms to operate correctly, the followi
rules must be followed:

• The ORB and Vault code must not be modifiable by unauthorized users or
processes.

• The ORB must protect all messages, according to policy, using the message
protection interfaces.

• The ORB must always check the client’s authorization before dispatching a clie
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the
and Security Service objects from untrusted applications and user code.

Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corruptio
of the client-side Vault (or ORB) by user-written code may not compromise system
security. (This is because the client-side ORB and Vault in a third-party-based system
may, depending upon the implementation, contain only information that the user i
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authenticatio
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatchin
client’s message to a protected object, ORB implementors should follow one of th
following rules:

• Eliminate “direct dispatching” mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

• Permit “direct dispatching” only after checking authorization and issuing “restric
object references” to client objects. A “restricted object reference” is one that gr
access only to those methods of the target object, which the client is authorize
invoke.
15-350 CORBAservices: Common Object Services Specification December 1998

15

ned

be

ts,
’s

hat
Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (for
example, cryptographic keys associated with Security Context objects). If code ow
by one principal can penetrate a Vault object and examine or modify another
principal’s information, security can be compromised.

In an implementation that does not permit sharing of Vault objects by multiple
identities, this problem does not arise. However, if Vault objects are accessible to and
encapsulate information about multiple identities, the following guidelines should
observed:

• Do not permit a Vault object, which encapsulates one principal’s Security Contex
to exist in the same address space as code running under a different principal
identity.

• If a Vault object contains Security Contexts for two different principals, ensure t
no principal is able to obtain or use another principal’s Security Contexts.
 Security Service v1.2 Security Object Implementation Model Dec. 1998 15-351

15

ct

can

-
a
inds
e

ile
r a

ed by

nes
not
ation,
al
with

nce
Appendix E Conformance Statement

E.1 Introduction

A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and
effectiveness of that functionality.

Each OMG-compliant security-ready implementation must therefore include in its
documentation a conformance statement describing:

• The product’s supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix C,
“Conformance Details” on page 15-315.

• The vendor’s assurance argument that demonstrates how effectively the produ
provides its specified security functionality and security policies.

• Constraints on the use of the product to ensure security conformance.

The vendor provides the conformance statement so that a potential product user
make an informed decision on whether a product is appropriate for a particular
application. Ordinary descriptive documentation is not required as part of an OMG
compliant product. However, because the CORBA security specification provides
general security framework rather than a single model, there are many different k
of secure ORB implementations that conform to the framework. For example, som
systems may have greater flexibility and support customized security policies, wh
other systems may come with a single built-in policy. Some systems may strive fo
high level of security assurance, while others provide minimal assurance. The
conformance statement will help the user understand the security features provid
the product.

Some products will undergo an independent formal security evaluation (such as o
meeting the ITSEC or TCSEC). The OMG security conformance statement does
take the place of a formal evaluation, but may refer to formal assurance document
if it exists. When formal evaluations are not required (often the case in commerci
systems), it is expected that the product’s security conformance statement along
supporting product documentation will provide an adequate description of security
functionality and assurance.

E.2 Conformance Template Overview

The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conforma
Guidelines.
15-352 CORBAservices: Common Object Services Specification December 1998

15
CORBA Security Conformance Statement

<date>

<product identification>

<vendor identification>

1. Introduction

1.1 Summary of Security Conformance

1.2 Scope of Product

1.3 Security Overview

2. Security Conformance

2.1 Main Security Functionality Level

2.2 Security Functionality Options

2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms

3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information
 Security Service v1.2 Conformance Template Overview Dec. 1998 15-353

15

ne

f the

 the

r
s not

s are:

tting
E.3 Conformance Guidelines

The guidelines in this section are intended to help the ORB implementor determi
which information belongs in each section of the conformance statement. The
statement will often be accompanied by product documentation to provide some o
information needed.

1. Introduction

1.1 Summary of Security Conformance

This section should give a summary of the security conformance provided by the
product. The summary is in the form of a table with boxes that are ticked to show
relevant conformance.

For the main security functionality level, one of the boxes must be selected (eithe
Level 1 or Level 2), though note that an ORB can be just Security-Ready, so doe
support either of the main security functionality levels. For security functionality
options, security replaceability, and secure interoperability, the appropriate boxes
should be selected.

1.2 Scope of Product

This section should define what security components this product offers. Example

• ORB plus all security services needed to support it plus other object services fi
with it and meeting the assurance criteria.

• Security-ready ORB.

Table 15-32CORBA Security Functionality Checklist

Main
Functionality

Functionality
Options Security Replaceability

Level 1 Level 2
Non-
Repudiation

ORB
Services

Security
Services

Security-
Ready

Table 15-33CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Private Public Hybrid

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
15-354 CORBAservices: Common Object Services Specification December 1998

15

lls
his

he

 be

rity

ort

f the
• Security Services, which can be used with a security-ready ORB.

1.3 Security Overview

This section should give an overview of the product’s security features.

2. Security Conformance

2.1 Main Security Functionality Level

This section should define which main security functionality level this product
supports, Level 1 or Level 2.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any be
and whistles around the published interfaces, and any limitations on support for t
level.

As in the conformance-level descriptions, the description should be divided into:

• The security functionality provided by the product

• The application developer’s interfaces

• The administrative interfaces

2.2 Security Functionality Options

This section should define which functionality options are provided, in particular t
support for non-repudiation.

For non-repudiation, as this is a published interface in this specification, it should
accompanied by a qualification statement if needed, as for the main security
functionality level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of secu
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any
bells and whistles around the published interfaces, and any limitations on supp
for this conformance option.

2.4 Secure Interoperability

This section should define whether the product supports SECIOP-based secure
interoperability, DCE-CIOP-based interoperability, SSL-based interoperability, or
none. As with the previous sections, qualifications of the support, interpretations o
CORBA specification, and limitations should be included as needed.
 Security Service v1.2 Conformance Guidelines Dec. 1998 15-355

15

 As
BA

use it
to

 trust

olicy,

jects
2.5 Level of Interoperability

This section should specify what level of interoperability is supported by the ORB.
with the previous sections, qualifications of the support, interpretations of the COR
specification, and limitations should be included as needed.

2.6 Mechanism Profiles

This section should specify what mechanism and cryptographic profiles for
interoperability are supported by the ORB. As with the previous sections,
qualifications of the support, interpretations of the CORBA specification, and
limitations should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (for example, beca
is being formally evaluated), much of this section may be satisfied by references
such documentation. Appendix E, Guidelines for a Trustworthy System, provides
general discussions of many of the topics described here, particularly the basis of
needed for each of the architecture object models.

3.1 Philosophy of Protection

Overview of supported security policies, security mechanisms and supporting
mechanisms.

3.2 Threats

Description of specific threats intended to be addressed by the system security p
as well as those not addressed.

3.3 Security Policies

Description of any predefined policies, including:

• Classes of entities (such as clients, objects) controlled by security policy

• Modes of access (conditions that allow active entities to access objects)

• Use of domains (policy, trust, technology)

• Requirements for authentication of principal, client, and target objects

• Requirements for trusted path between principals, clients, ORBs, and target ob

• Delegation model

• Security of communications

• Accountability requirements (audit, non-repudiation)

• Environmental assumptions of the policy (e.g., classes of users, LAN/WAN,
physical protection)
15-356 CORBAservices: Common Object Services Specification December 1998

15

 to

mper-

are

sions

used
3.4 Security Protection Mechanisms

• Rationale for approach

• Identification of components, which must function properly for security policies
be enforced

• Description of mechanisms used to enforce security policy

• How protection mechanisms are distributed in the architecture

• Why security mechanisms (such as access control) are always invoked and ta
proof

3.5 Environmental Support

• How the underlying environment (such as operating systems, generation tools,
hardware, network services, time services, security technology) are used in
providing assurance

• How installation tools ensure secure configuration

• How security management and administration maintain secure configuration

3.6 Configuration Constraints

Constraints to ensure that system security assurance is preserved, for example:

• Requirements on use and development of: clients, target objects, legacy softw

• Limitations on interoperability

• Required software and hardware configuration

3.7 Security Policy Extensions

• Supported security policy extensions, if applicable

• Limitations of extensions

• Requirements imposed on developers to ensure trustworthiness of policy exten

• Supported interactions and compositions of security policies

4. Supplemental Product Information

Supplemental product information is included at the vendor’s discretion. It can be
to describe, for example:

• Additional security features not covered by the CORBA Security specification

• The impact of security mechanisms on existing applications
 Security Service v1.2 Conformance Guidelines Dec. 1998 15-357

15

ct
line
rity

e
he
ly or

ome

ion,
ct

.,) for
rity

tions

types

 a
ific

s
how
utes.

.

Appendix F Facilities Not in This Specification

F.1 Introduction

Security in CORBA systems is a big subject which affects many parts of the Obje
Management Architecture. It was therefore decided to phase the specification in
with the priorities agreed to as part of the security evaluation criteria by the Secu
Working Group prior to the production of this specification.

This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to thos
requirements most needed by commercial systems. Even with these limitations, t
size of the specification is larger than desirable for OMG members to review easi
for vendors to implement.

Some of the facilities omitted from this specification are agreed to be required in s
secure CORBA systems, and so they are expected to be added later, using the usual
OMG process of RFPs to request their specification.

This appendix lists those security facilities which are not included in the specificat
but left to later specifications, which may be in response to further RFPs for Obje
Services or Common Facilities.

F.2 Interoperability Limitations between Unlike Domains

Secure interoperability is included in this specification. This allows applications
running under different ORBs in different domains to interoperate providing that:

• Both support and can use the same security mechanisms (and algorithms, etc
authentication and secure associations (an ORB may support a choice of secu
mechanisms).

• Use of these between the domains will not contravene any government regula
on the use of cryptography.

• The security policies they support are consistent -- for example, use the same
for privileges which can be understood in both places.

Limitations in the specification which affect this type of interoperability are:

• The standard policies defined do not include specifying different policies when
client communicates with different domains (though it is possible to define spec
policies to do this).

• There is no specification of the mapping policies required to translate attribute
when crossing a domain boundary where these policies are inconsistent, and
these must be positioned, for example, to allow delegation of the mapped attrib
Again, such mapping policies are not prevented.

• In general, there is no specification of how federated policies are implemented
15-358 CORBAservices: Common Object Services Specification December 1998

15

ty

bject

e
,

ation
nisms

ted

ich
as

his

imed
s, for
t for

ty

f

ting
g the
• There is no specification of gateways to handle interoperability between securi
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the su
of an RFP in the foreseeable future.

F.3 Non-Session-Oriented SECIOP Protocol

The SECIOP protocol defined in Section 15.9, “Secure Inter-ORB Protocol
(SECIOP),” on page 15-204, assumes that all underlying security mechanisms ar
session-oriented. The current specification does not support security mechanisms
which encapsulate key distribution and other security context management inform
in a single message along with the data being protected (examples of such mecha
include those accessed through the proposed internet IDUP-GSS-API interface).
Changes to the SECIOP protocol would be required to support non-session-orien
protocols.

F.4 Mandatory Security Mechanisms

The current specification does not mandate any particular security mechanism wh
all secure ORBs must implement. This is because the submitters did not think it w
possible to specify out-of-the-box interoperability adequately in the timescale of t
submission.

F.5 Specific Security Policies

This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are a
at general commercial users. Some enterprises may require other types of policie
example, support of mandatory access controls. Where there is a sufficient marke
such policies, new policies may be defined, providing they fit with the replaceabili
interfaces defined in this specification.

F.6 Other Audit Services

This specification only contains limited audit facilities, which allow audit records o
security-relevant events to be collected. It does not include:

• Filtering of records after generation to further reduce the size of the audit trail.

• Routing audit records to a collection point for consolidation and analysis or rou
some as alarms to security administrators. (However, routing may be done usin
OMG Event Service, if that is secure enough.)

• Audit reporting or analysis tools to use the audit trails to track down problems.
 Security Service v1.2 Non-Session-Oriented SECIOP Protocol Dec. 1998 15-359

15

o
et.

 the
efine

ublic
rt of
ology

.

 can
re a

 It
 the

he
s,

tes
ese

ire a
F.7 Possible Enhancements

F.7.1 SECIOP Mechanism and Option Negotiation

This specification assumes the mechanism identifiers in the IOR allow the client t
choose which mechanisms and options to use when communicating with this targ
Therefore, it does not define protocol exchanges to allow the client and target to
negotiate either mechanisms or options.

However, if the target supports a number of mechanisms and options, the size of
IOR could become larger than desirable. So in the future, it may be desirable to d
protocol exchanges for mechanism negotiation, for example, using [19].

F.7.2 Further Key Distribution Options

The current CSI-ECMA protocol defines secret and public key options for key
distribution and a hybrid option where secret keys are used within a domain, but p
keys are used between domains. It does not define the protocol for use in the so
hybrid system where the initiator uses secret key and target uses public key techn
and vice versa.

This may be needed for interoperation between unlike domains. If so, further
architectural options from ECMA 235 may need to be included in the specification

F.7.3 Further Delegation Options at/above Level 2

The current level 2 specification supports restricting where an initiator’s attributes
be used to targets identified by security name. Further options for restricting whe
PAC may be delegated could be added (e.g., to restrict delegation to a particular
delegation policy domain). This would require definition of further “qualifier
attributes” in the CSI-ECMA protocol (see application trust groups in ECMA 235).
would also require administration of this, which would best be done by extending
security policy administration in “Administrator’s Interfaces” on page 15-130.

Composite delegation of the initiator plus immediate invoker kind is described in t
CSI protocol, but is not mandatory at level 2. Further composite delegation option
including traced delegation, could be added.

F.8 Interoperability when using Non-Repudiation

The optional Non-repudiation service in the CORBA Security specification genera
NR tokens. This specification does not specify the technology used to generate th
tokens or a standard form for them. Interoperability of evidence tokens would requ
standard specification for such tokens.
15-360 CORBAservices: Common Object Services Specification December 1998

15

OR
 they
ed
s not

d, at
with
 3

ws
ice

t

rom

r
ects.

is

 from
se of
nce
tion

alf of
th a

al.

ence.
This CSI specification is focused on inter-ORB interoperability, and therefore the I
and SECIOP protocol as well. It does not specify the format of evidence tokens as
do not affect the SECIOP protocol. However, these evidence tokens may be pass
between ORBs as parameters, and will not be understood by an ORB which doe
use the same security technology.

In the future, a mandatory interoperability evidence token format should be define
least for a limited number of types of evidence. This is expected to be compatible
the public key mechanism specified in this specification and to use X.509 version
certificates.

F.9 Audit Trail Interoperability

The CORBA Security specification includes an Audit Channel interface which allo
applications and ORBs to write records to the audit trail. The way this Audit Serv
routes the audit records is not defined. This could be done using the OMG Event
Service or other means. Also, the stored/on-the-wire format of audit records is no
defined.

So there is no standard OMG-defined method of bringing together audit records f
different Audit Services.

F.10 Management

This specification contains only the management interfaces which are essential fo
security policy management. It specifies how to obtain and use security policy obj
However, it does not contain:

• Specification of facilities for handling domains, or policies other than those
required for security policy administration.

• Specification of facilities for the management of some aspects of security. For
example, it does not specify how to create and install permanent keys, as this
implementation-specific.

F.11 Reference Restriction

This specification requires the movement of credentials to delegate access rights
one object to another. Another technique of access rights delegation restricts the u
an object reference according to a set of criteria. This approach, known as refere
restriction, is under study by a number of vendors, but is not ready for standardiza
at this time. The criteria used to restrict references could include:

• Whether an object has the right to assert certain privileges, such as act on beh
a principal, act on behalf of a group of principals, act in a particular role, act wi
particular clearance, etc.

• Whether the object reference has been limited to use within a given time interv

• Whether a particular method can be used by an object holding the object refer
 Security Service v1.2 Audit Trail Interoperability Dec. 1998 15-361

15

use

 a

ked.
ct
e

ation

ion

ked.
ct
e

ation

ials

eriod.
Various techniques for restricting object references have been developed. Some
cryptographic methods, while others store state in the object associated with the
restricted reference, allowing the object to decide if a method request meets the
restricted reference use criteria.

It is anticipated that vendors will explore this type of access rights delegation and
move towards the standardization of an interface supporting it in a submission to
future RFP.

F.12 Target Control of Message Protection

In the current specification, message protection can be specified by policy
administration at both the client and the target object.

Requesting an operation on an object may result in many other objects being invo
The CORBA security specification in this specification allows an intermediate obje
in such a chain of objects to delegate received credentials to the next object in th
chain (subject to policy). However, the current specification does not allow the
application to control when and where these credentials are used. A later specific
may provide such controls to ride the default quality of protection selectively.
Therefore, it could cause some messages to have different qualities of protection
during a security association.

The target has no equivalent interface to request the quality of protection for a
particular response. There are cases where this could be useful.

A future security specification should consider adding control of quality of protect
by the target for individual responses.

F.13 Advanced Delegation Features

Requesting an operation on an object may result in many other objects being invo
The CORBA security specification in this specification allows an intermediate obje
in such a chain of objects to delegate received credentials to the next object in th
chain (subject to policy). However, the current specification does not allow the
application to control when and where these credentials are used. A later specific
may provide such controls.

If so, it is expected that a set_controls operation on the Credentials object will be
added to enable the application to set the controls, and a matching get_controls
operation to enable it to see what controls apply (see the set_privileges and
get_attributes operations defined in Interfaces under Section 15.5.4, “The Credent
Object,” on page 15-94).

The set_controls operation would allow the application to specify a set of required
control values such as delegation mode (allowing for richer forms of delegation),
restrictions on where the credentials may be used and/or delegated, and validity p
15-362 CORBAservices: Common Object Services Specification December 1998

15

ns
se a

he

be
 of

nly

Note – These operations were not included in the specification because of concer
about portability of applications using them. Current delegation implementations u
wide variety of delegation controls, and some use similar controls in semantically
different ways. Further implementation experience and investigation may make it
possible to define a portable, standard set.

F.14 Overlapping and Hierarchical Domains

This specification does not require support for overlapping or hierarchical security
policy domains. However, it is possible to implement both using the interfaces
provided.

Recall from Section 15.6, “Administrator’s Interfaces,” on page 15-130, that the
DomainAccessPolicy for each domain defines which rights are granted to subjects
when they attempt to access objects in the domain. In order to make an access
decision, the AccessDecision logic also needs to know which rights are required to
execute the operations of an object, which is a member of the relevant domain. T
RequiredRights interface provides this information; the AccessDecision object will
probably use this interface in most implementations.

A RequiredRights instance can be queried to determine which rights a user must
granted in order to be allowed to invoke an object’s operations. The intended use
DomainAccessPolicy and RequiredRights objects by the AccessDecision object is
illustrated next, in Figure 15-68.

Figure 15-68Intended Use by AccessDecision

AccessDecision retrieves the relevant policy object by calling get_domain_managers
on the target object reference, and then calling get_domain_policy(access) on the
returned domain manager (assuming for purposes of this example that there is o
one). It then calls get_effective_rights on the returned policy object. AccessDecision
then calls get_required_rights on RequiredRights and compares the returned list of
required rights with the effective rights. If all required rights have been granted, it
grants the access.

AccessDecision

RequiredRights

access_allowed

DomainAccessPolicy

get_effective_rights get_required_rights
 Security Service v1.2 Overlapping and Hierarchical Domains Dec. 1998 15-363

15

re
ccess

olve
Note
sed

0 on
Figure 15-69 illustrates how the specification could be implemented to support
overlapping access policy domains (i.e., to allow an object to be a member of mo
than one domain, such that each domain has an access policy and all domains’ a
policies are applied). In the diagram, the AccessDecision object must have logic to
combine the policies asserted by the various AccessPolicy objects (which may inv
evaluating which AccessPolicy object’s policy takes precedence over the others).
that the AccessDecision object knows the target object reference, because it is pas
as an input parameter to the access_allowed operation.

Figure 15-69Supporting Overlapping Access Policy Domains

Hierarchical domains can be handled in a similar way as illustrated in Figure 15-7
page 15-365 (note that once again the AccessDecision object’s implementation is
responsible for reconciling the various retrieved policies).

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers
15-364 CORBAservices: Common Object Services Specification December 1998

15

ssed
ith

.

Figure 15-70Hierarchical domains

F.15 Capability-Based Access Control

Capability-based systems store access policy information in tokens, which are pa
from sender to receiver along with a message, rather than in tables associated w
target objects or domains. In such systems, the DomainAccessPolicy object will
generally not be used in resolving target-side access control checks. Instead, a
CapabilityAccessPolicy object might be returned from a call to Object::get_policy in a
capability-based system. This object could retrieve the granted rights from the
capability (which will be associated with the requester’s credentials), illustrated in
Figure 15-71 on page 15-366.

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

DomainManager AccessPolicy

get_superior_domain_managers
 Security Service v1.2 Capability-Based Access Control Dec. 1998 15-365

15

are

and
sing
e

hing
,

 and
rse
Figure 15-71Retrieving Granted Rights

Note – Neither the CapabilityAccessPolicy interfaces nor the Capability interfaces
defined in this specification (the get_granted_rights call to the capability in Figure
15-71 is printed in italics, to indicate that no IDL is provided for it in this
specification). The diagram assumes that CapabilityAccessPolicy inherits the
get_effective_rights operation from AccessPolicy.

F.16 Non-repudiation Services

This specification contains Non-repudiation Services for evidence handling. It is
anticipated that future service offerings could include data protection processing
the specification of a delivery service. In addition, it is expected that policy proces
interfaces will emerge to cover the broad range of non-repudiation policy coverag
within the service.

It is anticipated that the data protection and delivery service functions will be reac
a level of maturity within other standards domains (such as IETF and ISO SC27)
which should allow a richer definition of these services to be enabled in future
revisions of this specification.

The absence of these services in this specification means that application writers
manipulators will need to consult local implementation practice for the correct cou
of action to be taken when writing or porting their software.

AccessDecision

RequiredRights

access_allowed

get_required_rights

CapabilityAccessPolicy

get_effective_rights

Capability

get_granted_rights
15-366 CORBAservices: Common Object Services Specification December 1998

15

 be

This specification also does not include a standard format of evidence token for
interoperability. In the future, a token format based on public key certificates may
specified.
 Security Service v1.2 Non-repudiation Services Dec. 1998 15-367

15

ides

t
rd. Its

e

for
), or

n

ing of

fined

fined
Appendix G Interoperability Guidelines

G.1 Introduction

This appendix includes:

• Guidelines for defining Security Mechanism TAGs in Interoperable Object
References (IORs).

• Examples of the secure inter-ORB protocol, SECIOP.

G.2 Guidelines for Mechanism TAG Definition in IORs

Section 15.8, “Security Interoperability Protocols,” on page 15-172, defined a
prototype TAG definition for security association mechanisms. This appendix prov
guidelines that specifiers of mechanism TAGs (called authors here) should follow.

In addition to registering TAGs with the OMG, authors must lodge a document tha
explains how the mechanism (and its associated options) is mapped to this standa
document should:

• Identify the “security mechanism tagged component” being described. It may b
either:

• A new component TAG for the mechanism with a set of options it can have (
example, a separate TAG for each combination of mechanism and algorithm

• Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for use i
the security_mechanism_type field) being described by this specification.

It may not be both.

• Specify the scope implied by the above mechanism identifier. This should not
exceed:

• Security association mechanism

• Negotiation protocols

• Cryptographic algorithms

• Authentication method (e.g., public key)

• For the first example under the first bullet, describe the format, contents, and
encoding of the component_data field for the TAG-specific components. For the
second example under the first bullet, describe the format, contents, and encod
the data in the mech_specific_data and components fields of the TAG-specific
components. In each case, this may include:

• Allocating new component TAGs and describing the format, contents, and
encoding of their data.

• Specifying the use of these new tagged components, as well as other prede
tagged components within TAG-specific components.

• Specifying the use of these new tagged components, as well as other prede
tagged components that may or should appear at the top level of the
multicomponent profile.
15-368 CORBAservices: Common Object Services Specification December 1998

15

the

ition
 a

it and

rget.
d its

d

s part
d the
s the
sses
rned

text
• Describe a model that should be followed when defining future extensions or
variations using the same mechanism.

• The author must define either by reference to another document, or explicitly,
format of the context tokens used by the mechanism in the SECIOP protocol.

G.3 SECIOP Examples

G.3.1 Mutual Authentication

In this example, the client wishes to authenticate the identity of the target (in add
to the targets requirement to authenticate the client) before it is prepared to send
request to the target.

The client sends an EstablishContext message to the target containing the client’s
context id for the association, and the token required by the target to authenticate
define the options chosen by the client for the association. The target verifies the
client’s token and generates the token required by the client to authenticate the ta
The target sends this token (along with the client’s context id for the association an
own) to the client in a CompleteEstablishContext message. When the client receives
this message, it authenticates the target using the token supplied by the target an
establishes the peer id as part of the context.

Having completed the establishment of the context, the client sends the request a
of a MessageInContext message, which includes the target’s context identifier an
integrity token for the message. When the target receives the message, it identifie
context by its identifier, checks the integrity of the message with the token, and pa
the message to GIOP. When the reply is returned, it is sealed for integrity and retu
to the client in an SECIOP MessageInContext with the client identifier for the con
and the generated integrity token.
 Security Service v1.2 SECIOP Examples Dec. 1998 15-369

15

sion
te the

t
tifier

n

turn

t). It
col
Figure 15-72 Mutual Authentication

G.3.2 Confidential Message with Context Establishment

This example describes how context establishment is combined with the transmis
of a confidentiality-protected message when the client does not wish to authentica
target before passing it a message.

The client establishes its context object with identifier c_id_1. This identifier is
included with the token (token_1) in an EstablishContext message. The GIOP reques
is transformed into the message seal (ms_1) and sent with the client’s context iden
in a MessageInContext.

When the target receives the message, it first processes the EstablishContext message,
authenticating the client and allowing the target to create its context object. It the
unseals the message in ms_1 and passes it to GIOP.

When GIOP sends the reply, SECIOP adds a CompleteEstablishContext message to
the MessageInContext message, which protects the reply, to enable the target to re
its context identifier to the client. When the client receives the message, it first
completes its view of the context (adding the target’s id to the state for the contex
can then unseal the reply from ms_2 and passes the reply message up the proto
stack.

Client establishes
context object id = c_od_1
token = token_1 EstablishContext(c_id_1, token_1)

Target establishes
context objectid = c_id_69
token = token_2

CompleteEstablishContext(c_id_1, c_id_69, token_2)

Client completes context
and transmits signed GIOP
request with sign = ms_1

MessageInContext(peer, c_id_69, ms_1)(GIOP request)

Target checks sign and
processes request, signs
reply and transmits reply
with sign = ms_2

MessageInContext(peer, c_id_1, ms_2)(GIOP reply)

Client checks sign
and processes reply.
15-370 CORBAservices: Common Object Services Specification December 1998

15

he

with

eld of

It then

age, it

 its

he
o

Figure 15-73 Confidential Message with Context Establishment

G.3.3 Fragmented GIOP Request with Context Establishment

In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current GIOP protocol does not support
fragmentation, but this example indicates the independence of SECIOP from the
current GIOP protocol and explains how the SECIOP protocol would handle a
fragmented GIOP request). The sequence described reflects the requirement of t
target to authenticate the client’s privileges.

The client establishes its context object (with id c_id_1) and passes this identifier
the authentication token in an EstablishContext message. As the client does not
require authenticating the target, this message is sent with a MessageInContext
message with the integrity sign (ms_1) and the GIOP fragment (as the message fi
the MessageInContext).

When the target receives the messages, it authenticates the client using token_1.
creates a context object with c_id_69, and then processes the MessageInContext,
checking the integrity of the message using sign ms_1. Having checked the mess
passes the fragment up the protocol stack.

The client sends the final fragment as a MessageInContext with sign ms_2, but as the
target has not yet passed its identifier for the context to the client, the client uses
own identifier for the context.

The target finds its context object from the client’s identifier (c_id_1) and checks t
integrity of the message. It then passes the final fragment up the protocol stack t
GIOP.

Client establishes context
object id = c_id_1
token id = token_1
Seals GIOP request into
seal = ms_1 Establish Context(c_id_1, token_1)

MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
Target unseals and
processes request, seals
reply and transmits
reply in
seal = ms_2

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply
 Security Service v1.2 SECIOP Examples Dec. 1998 15-371

15

ss

l

et’s
GIOP now has a complete request and can invoke the object (subject to the acce
decision function).

GIOP generates a single fragment reply, which is passed to the SECIOP protoco
machine. The reply is sent within a MessageInContext with sign ms_3. In addition, a
CompleteEstablishContext message is generated to allow the target to pass its
identifier for the context (c_id_69) to the client for use in future messages.

The client receives the message and updates its context object to record the targ
context identifier. It then checks the integrity of the MessageInContext and passes the
reply up the protocol stack (to GIOP).

Figure 15-74 Fragmented GIOP Request with Context Establishment

Client establishes context
object id = c_id_1
token id = token_1
Client signs GIOP

sign = ms_1
Establish Context(c_id_1, token_1)
MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
and checks the fragment

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply

fragment with

(GIOP fragment)

sign.

Client signs final
fragment with
sign = ms_2 MessageInContext(client, c_id_1, ms_2)

(GIOP fragment)

Target checks sign and
processes request, signs
reply and transmits
reply with
sign = ms_2

(GIOP reply)
15-372 CORBAservices: Common Object Services Specification December 1998

15

Appendix H Glossary

H.1 Definitions

absolute time Time relative to the time base of 0 hours 0 minutes 0
seconds of 15 October 1582 (c.f. CORBA Time
Service [3]), accurate within a known margin of error.

access control The restriction of access to resources to prevent its
unauthorized use.

access control
information (ACI)

Information about the initiator of a resource access
request, used to make an access control enforcement
decision.

access conrol list A list of entities, together with their access rights,
which are authorized to have access to a resource.

access decision
function

The function which is evaluated in order to make an
access control enforcement decision. The inputs to an
access decision function include the requester’s access
control information (q.v.), the resource’s control
information, and context data.

access decision object
(ADO)

The CORBA security object which implements access
decision functions.

accountability The property that ensures that the action of an entity
may be traced uniquely to the entity.

active threat The threat of a deliberate unauthorized change to the
state of a system.

adjudicator An authority that resolves disputes among parties in
accordance with a policy. In CORBA security, an
adjudicator evaluates non-repudiation evidence in
order to resolve disputes.

anonymous user A user of the system operating under a distinguished
“public” identity corresponding to no specific user.

assurance 1. Justified confidence in the security of a system. 2.
Development, documentation, testing, procedural, and
operational activities carried out to ensure that a
system’s security services do in fact provide the
claimed level of protection.
 Security Service v1.2 Definitions Dec. 1998 15-373

15
asymmetric key One half of a key pair used in an asymmetric
(“public-key”) encryption system. Asymmetric
encryption systems have two important properties: (i)
the key used for encryption is different from the one
used for decryption (ii) neither key can feasibly be
derived from the other.

audit See security audit.

audit event The data collected about a system event for inclusion
in the system audit log.

audit trail See security audit trail.

authentication The verification of a claimant’s entitlement to use a
claimed identity and/or privilege set.

authentication
information

Information used to establish a claimant’s entitlement
to a claimed identity (a common example of
authentication information is a password).

authorization The granting of authority, which includes the granting
of access based on access rights.

availability The property of being accessible and usable upon
demand by an authorized user.

call chain The series of client to target object calls required to
complete an operation. Used in this specification in
conjunction with delegation.

certification authority A party trusted to vouch for the binding between
names or identities and public keys. In some systems,
certification authorities generate public keys.

ciphertext The result of applying encryption to input data;
encrypted text.

cleartext Intelligible data; text which has not been encrypted or
which has been decrypted using the correct key. Also
known as “plaintext.”

confidentiality The property that information is not made available or
disclosed to unauthorized individuals, entities, or
processes.

conformance level A graduated sequence of defined sets of functionality
defined by the CORBA Security specification. An
implementation must implement at least one of these
defined sets of functionality in order to claim
conformance to CORBA Security.
15-374 CORBAservices: Common Object Services Specification December 1998

15

conformance option A defined set of functionality which implementations
may optionally provide in order to claim CORBA
Security-conformant functionality over and above the
minimum required by the defined conformance levels.

cofnormance statement A written document describing the conformance
levels and conformance options to which an
implementation of the OMG CORBA Security
specification conforms.

control attributes The set of characteristics which restrict when and
where privileges can be invoked or delegated.

counter-measures Action taken in response to perceived threats.

credentials Information describing the security attributes (identity
and/or privileges) of a user or other principal.
Credentials are claimed through authentication or
delegation (q.v.) and used by access control (q.v.).

current object An object representing the current execution context;
CORBA Security associates security state
information, including the credentials of the active
principal, with the current object.

Discretionary Access
Control (DAC)

An access control policy regime wherein the creator
of a resource is permitted to manage its access control
policy information.

data integrity The property that data has not been undetectably
altered or destroyed in an unauthorized manner or by
unauthorized users.

DCE Distributed Computing Environment (of OSF).

DCE CIOP DCE Common Inter-ORB Protocol - the protocol
specified in the OMG CORBA 2.0/ Interoperability
specification which uses the DCE RPC for
interoperability.

decipherment Generation of cleartext from ciphertext by application
of a cryptographic algorithm with the correct key.

decryption See decipherment.

delegation The act whereby one user or principal authorizes
another to use his (or her or its) identity or privileges,
perhaps with restrictions.

denial of service The prevention of authorized access to resources or
the delaying of time-critical operations.
 Security Service v1.2 Definitions Dec. 1998 15-375

15

digital signature Data appended to, or a cryptographic transformation
of, a data unit that allows a recipient of the data unit
to prove the source and integrity of the data against
forgery, e.g., by the recipient.

domain A set of objects sharing a common characteristic or
abiding by a common set of rules. CORBA Security
defines several types of domains, including security
policy domains, security environment domains, and
security technology domains.

domain manager A CORBA Security object through whose interfaces
the characteristics of a security policy domain are
administered.

encipherment Generation of ciphertext from corresponding cleartext
by application of a cryptographic algorithm and a key.

encryption See encipherment.

ESIOP See encipherment.evidence: Data generated by the
CORBA Security Non-Repudiation service to prove
that a specific principal initiated a specific action.

evidence token A data structure containing CORBA Security Non-
Repudiation evidence.

federated domains Separate domains whose policy authorities have
agreed to a set of shared policies governing access by
users from one domain to resources in another.

GSS-API Generic Security Services- Application Programming
Interface - specified by RFC 1508 issued by the
Internet IETF. An update to this interface is near
completion as this is written, and it is anticipated that
RFC 1508 will be superseded by a revised
specification soon.

GIOP General Inter-ORB Protocol (specified in the OMG
CORBA 2.0/ Interoperability specification).

group A CORBA Security privilege attribute. Many users
(and other principals) may be assigned the same
group attribute; this allows administrators to simplify
security administration by granting rights to groups
rather than to individual principals.

granularity The relative fineness or coarseness by which a
mechanism may be adjusted.

hierarchical domains A set of domains together with a precedence
hierarchy defining the relationships among their
policies.
15-376 CORBAservices: Common Object Services Specification December 1998

15
identity A security attribute with the property of uniqueness;
no two principals’ identities may be identical.
Principals may have several different kinds of
identities, each unique (for example, a principal may
have both a unique audit identity and a unique access
identity). Other security attributes (e.g., groups, roles,
etc.) need not be unique.

immediate invoker In a delegated call chain, the client from which an
object directly receives a call.

impersonation The act whereby one principal assumes the identity
and privileges of another principal without restrictions
and without any visible indication to recipients of the
impersonator’s calls that delegation has taken place.

initiator The first principal in a delegation “call chain;” the
only participant in the call chain which is not the
recipient of a call.

integrity In security terms, the property that a system always
faithfully and effectively enforces all of its stated
security policies.

interceptor An object which provides one or more specialized
services at the ORB invocation boundary, based upon
the context of the object request. The OMG
CORBAsecurity specification defines the security
interceptors.

intermediate An object in a delegation “call chain” which is neither
the initiator nor the ultimate (final) target.

IETF Internet Engineering Task Force. Reviews and issues
Internet standards.

IIOP Internet Interoperable Object Protocol (specified in
the OMG CORBA 2.0/ Interoperability specification).

IOR Interoperable Object Reference - a data structure
specified in the OMG CORBA 2.0/ Interoperability
specification.

ITSEC Information Technology Security Evaluation Criteria
(of ECSC-EEC-EAEC). Harmonized Criteria.

Mandatory Access
Control (MAC)

An access control regime wherein resource access
control policy information is always managed by a
designated authority, regardless of who creates the
resources.
 Security Service v1.2 Definitions Dec. 1998 15-377

15
locality-constrained An object is locality-constrained if it cannot be
accessed from outside a specific locality. references to
the object cannot be meaningfully passed outside the
boundaries of the locality of concern.

mechanism A specific implementation of security services, using
particular algorithms, data structures, and protocols.

message protection Security protection applied to a message to protect it
against unauthorized access or modification in transit
between a client and a target.

mutual authentication The process whereby each of two communicating
principals authenticates the other’s identity.
Frequently this is a prerequisite for the establishment
of a secure association between a client and a target.

Non-repudiation The provision of evidence which will prevent a
participant in an action from convincingly denying his
responsibility for the action.

ORB Core The functionality provided by the CORBA Object
Request Broker which provides the basic
representations of objects and the communication of
requests.

ORB Services Elements of functionality provided transparently to
applications by the CORBA Object Request Broker in
response to the implicit context of an object request.

ORB technology domain A set of objects or entities that share a common ORB
implementation technology.

originator The entity in an object request which creates the
request.

passive threat The threat of unauthorized disclosure of information
without changing the state of the system.

physical security The measures used to provide physical protection of
resources against deliberate and accidental threats.

POSIX Portable Open System Interfaces (for) UNIX - A set
of standardized interfaces to UNIX systems specified
by IEEE Standard 1003.

principal A user or programmatic entity with the ability to use
the resources of a system.

privacy 1. See confidentiality. 2. The right of individuals to
control or influence what information related to them
may be collected and stored and by whom that
information may be disclosed.
15-378 CORBAservices: Common Object Services Specification December 1998

15

private key In a public-key (asymmetric) cryptosystem, the
component of a key pair which is not divulged by its
owner.

privilege A security attribute (q.v.) which need not have the
property of uniqueness, and which thus may be shared
by many users and other principals. Examples of
privileges include groups, roles, and clearances.

proof of delivery Non-repudiation evidence demonstrating that a
message or data has been delivered.

proof of origin Non-repudiation evidence identifying the originator of
a message or data.

proof of receipt Non-repudiation evidence demonstrating that a
message or data has been received by a particular
party.

protection boundary The domain boundary within which security services
provide a known level of protection against threats.

Protocol Data Unit
(PDU)

The data fields of a protocol message, as
distinguished from the protocol header and trailer
fields.

POA Portable Object Adaptor

proof of submission Non-repudiation evidence demonstrating that a
message or data has been submitted to a particular
principal or service.

public key In a public-key (asymmetric) cryptosystem, the
component of a key pair which is revealed.

public-key
cryptosystem

An encryption system which uses an asymmetric-key
(q.v.) cryptographic algorithm.

Quality of Protection
(QOP)

The type and strength of protection provided by a
message-protection service.

RPC Remote Procedure Call

replaceability The quality of an implementation which permits
substitution of one security service for another
semantically similar service.

repudiation Denial by one of the entities involved in an action of
having participated in all or part of the action.

RFP Request for Proposal. An OMG procedure for
soliciting technology from OMG members.
 Security Service v1.2 Definitions Dec. 1998 15-379

15
right A named value conferring the ability to perform
actions in a system. Access control policies grant
rights to principals (on the basis of their security
attributes); in order to make an access control
decision, access decision functions compare the rights
granted to a principal against the rights required to
perform an operation.

rights type A defined set of rights.

role A privilege attribute representing the position or
function a user represents in seeking security
authentication. A given human being may play
multiple roles and therefore require multiple role
privilege attributes.

RSA An asymmetric encryption algorithm invented by Ron
Rivest, Adi Shamir, and Len Adelman.

seal To encrypt data for the purpose of providing
confidentiality protection.

secret-key
cryptosystem

A cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

secure time A reliable Time service that has not been
compromised, and whose messages can be
authenticated by their recipients.

security association The shared security state information which permits
secure communication between two entities.

security attributes Characteristics of a subject (user or principal) which
form the basis of the system’s policies governing that
subject.

security audit The facility of a secure system which records
information about security-relevant events in a
tamper-resistant log. Often used to facilitate an
independent review and examination of system
records and activities in order to test for adequacy of
system controls, to ensure compliance with
established policy and operational procedures, to
detect breaches in security, and to recommend
changes in control, policy, and procedures.

security features Operational information which controls the security
protection applied to requests and responses in a
CORBA Security-conformant system.

security context The CORBA Security object which encapsulates the
shared state information representing a security
association.
15-380 CORBAservices: Common Object Services Specification December 1998

15
security policy The data which defines what protection a system’s
security services must provide. There are many kinds
of security policy, including access control policy,
audit policy, message protection policy, non-
repudiation policy, etc.

security policy domain A domain whose objects are all governed by the same
security policy. There are several types of security
policy domain, including access control policy
domains and audit policy domains.

security service Code that implements a defined set of security
functionality. Security services include Access
Control, Audit, Non-repudiation, and others.

security technology
domain

A set of objects or entities whose security services are
all implemented using the same technology.

subject An active entity in the system; either a human user
principal or a programmatic principal.

symmetric key The key used in a symmetric (“secret-key”)
encryption system. In such systems, the same key is
used for encryption and decryption.

tagged profile The data element in an IOR which provides the
profile information for each protocol supported.

target The final recipient in a delegation “call chain.” The
only participant in such a call chain which is not the
originator of a call.

target ACI The Access Control Information for the target object.

target object The recipient of a CORBA request message.

threat A potential violation of security.

traced delegation Delegation wherein information about the initiator
and all intervening intermediates is available to each
recipient in the call chain, or to the authorization
subsystem controlling access to each recipient.

trust model A description of which components of the system and
which entities outside the system must be trusted, and
what they must be trusted for, if the system is to
remain secure.

trusted code Code assumed to always perform some specified set
of operations correctly.
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-381

15

H.2 References

The following sources were used in the preparation of this glossary:

Applied Cryptography, 2nd edition by Bruce Schneier, John Wiley and Sons, New
York, 1996.

ISO Standard 7498-2, “Information Processing Systems -- Open Systems
Interconnection -- Basic Reference Model -- Part 2:Security Architecture”,
International Standards Organization,1989.

ECMA TR/46 “Security in Open Systems: A Security Framework”, European
Computer Manufacturers Association, 1988.

ITSEC “Information Technology Security Evaluation Criteria ” European
Commission, 1991.

trusted computing base
(TCB)

The portion of a system which must function correctly
in order for the system to remain secure. A TCB
should be tamper-proof and its enforcement of policy
should be noncircumventable. Ideally, a system’s TCB
should also be as small as possible, to facilitate
analysis of its integrity.

TCSEC Trusted Computer System Evaluation Criteria (a U.S.
Department of Defense Standard specifying
requirements for secure systems).

unauthorized principal A user or other principal who has not authenticated
any identity or privilege.

UNO Universal Networked Objects (an OMG Specification,
now obsolete).

UTC Coordinated Universal Time

unsecure time Time obtained from an unsecure time service.

UTO Universal Time Object (c.f., CORBA Time Service
[3])

user A human being using the system to issue requests to
objects in order to get them to perform functions in
the system on his behalf.

user sponsor The interactive user interface to the system which acts
as the authenticating authority (e.g., validating
passwords) which validate the identity of a user.

vault The CORBA Security object which creates security
context objects.

X/Open X/Open Company Ltd., U.K.
15-382 CORBAservices: Common Object Services Specification December 1998

15
DoD Standard 5200.28-STD “Department of Defense Trusted Computer System
Evaluation Criteria”, US Department of Defense, 1985.

X/Open Snapshot: “Distributed Security Framework: Company Review Draft”,
X/Open Company Ltd.,U.K. 1994.

Computer Related Risks: Peter G. Neuman, The ACM Press, 1995
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-383

15

ents.

95.

uced

rry

93).

oc

-

Appendix I References

Note that these references are to definitions which are sometimes a set of docum

[1] CORBA/IIOP 2.2.

[2] Common Secure IIOP Request for Proposals (orb/96-01-03)

[3] CORBA Time Service, Chapter 16 of CORBAservices specification, also
available at the URL http://www.omg.org/docs/formal/97-02-22.pdf

[4] IETF RFC 1779 A String Representation of Distinguished Names. March 19

[5] X/Open Application Environment Specification for Distributed Computing.

[6] X/Open Preliminary Specification X/Open DCE: Authentication and Security
Services.

[7] X/OPEN CAE Specification C309

[8] OSF AES/Distributed Computing RPC Volume.

[9] OSF DCE 1.1 Application Development Reference

[10] The ECMA GSS-API mechanism specified in ECMA-235. See also related
standard ECMA-219 (Authentication and Privilege Attribute Security
Application with related key distribution functions)

[11] GSS-APIThe Generic Security Services API as defined in IETF RFC 1508
(September 1993) and X/Open P308.An update to RFC 1508 has been prod
by the IETF cat group.

[12] The IETF GSS Kerberos V5 definition which specifies details of the use of
Kerberos V5 with GSS-API. It includes updates to RFC 1510 e.g. how to ca
delegation information. It is specified in RFC 1964.

[13] The Kerberos V5 mechanism as defined in IETF RFC 1510 (September 19

[14] The ORB Portability Specification - CORBA V2.3 Chapter 9..

[15] Open Distributed Processing - Reference Model Parts 1 through 3, OMG d
#om/96-10-02, 03, 04.

[16] The SESAME gss-api mechanism. This is a subset of the ECMA GSS
Mechanism and is specified in draft-ietf-cat-sesamemech-00.txt.

[17] The SESAME V4 Overview. This can be found via the web at
www.esat.kuleuven.ac.be/cosic/sesame.html

[18] John G. Fletcher, “Serial Link Protocol Design: A Critique of the X.25
Standard, Level 2,” Proceedings of SIGCOMM '84, ACM SIGCOMM, pp.26
33, June 6-8, 1984.

[19] Simple negotiation GSS-API mechanism as defined in draft-ietf-cat-snego-
02.txt.
15-384 CORBAservices: Common Object Services Specification December 1998

15

tf-

l-

-

 in
[20] The Simple Public-Key GSS-API Mechanism (SPKM). Internet Draft draft-ie
cat-spkmgss-06.txt Jan. 1996.

[21] Secure Socket Layer [ftp://ierf.cnsi.reston.va.us/internet-drafts/draft-freier-ss
version3-01.txt]

[22] ISO/IEC 9594-8, “Information Technology - Open Systems Interconnection
The Directory: Authentication Framework”, CCITT/ITU Recommendation
X.509, 1993.

[23] The extended gss-api supporting access control and delegation extensions
defined in draft-ietf-cat-xgssapi-acc-cntrl-00.txt. This interface is also defined
the ECMA GSS-API Mechanism standard - ECMA-235
Security Service: v1.2 DCE-CIOP with Security Dec. 1998 15-385

15
15-386 CORBAservices: Common Object Services Specification December 1998

Trading Object Service Specification 16
This chapter provides complete documentation for the Trading Object Service
specification.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 16-2

“Concepts and Data Types” 16-4

“Exceptions” 16-23

“Abstract Interfaces” 16-28

“Functional Interfaces” 16-30

“Service Type Repository” 16-59

“Dynamic Property Evaluation interface” 16-67

“Conformance Criteria” 16-68

Appendix A, “CORBA OMG IDL based Specification of
the Trading Function”

16-74

Appendix B, “OMG Constraint Language BNF” 16-93

Appendix C, “OMG Constraint Recipe Language” 16-99
CORBAservices March 1997 16-1

16

ces
ct
ther

ng
te

f an
a

d

g
g

f
vities
er

ling
 this
ility

iteria
16.1 Overview

The OMG trading object service facilitates the offering and the discovery of instan
of services of particular types. A trader is an object that supports the trading obje
service in a distributed environment. It can be viewed as an object through which o
objects can advertise their capabilities and match their needs against advertised
capabilities. Advertising a capability or offering a service is called “export.” Matchi
against needs or discovering services is called “import.” Export and import facilita
dynamic discovery of, and late binding to, services.

To export, an object gives the trader a description of a service and the location o
interface where that service is available. To import, an object asks the trader for
service having certain characteristics. The trader checks against the service
descriptions it holds and responds to the importer with the location of the selecte
service’s interface. The importer is then able to interact with the service. These
interactions are shown in Figure 16-1.

Figure 16-1 Interactions between a trader and its clients

Due to the number of service offers that will be offered worldwide, and the differin
requirements that users of a trading service will have, it is inevitable that a tradin
service will be split up and the service offers will be partitioned.

Each partition will, in the first instance, meet the trading needs of a community o
clients (exporters and importers). Where a client needs a scope for its trading acti
that is wider than that provided by one partition, it will access other partitions eith
directly or indirectly. Directly means that the client interacts with the traders hand
those partitions. Indirectly means that the client interacts with one trader only and
trader interacts with other traders responsible for other partitions. The latter possib
is referred to as interworking (or federation) of traders.

The trading object service in an OMG environment allows interworking between
traders and objects to:

• export (advertise) services

• import information about one or more exported services, according to some cr

T

E I

Sequence of interactions:

1. Export
2. Import
3. Service interaction1 2

3

16-2 CORBAservices March 1997

16

ios. A
sed
e as a
d

 and

 it.
, in

s.

tion
nd

ject
rs, it

ed.
chable
the
d the

ome
To
licy
ject

16.1.1 Diversity and Scalability

The concept of trading to discover new services applies to a wide range of scenar
trader may contain numerous offers of service and its implementation may be ba
upon a database. Or, a trader may contain only a few offers and be implementabl
memory resident trader. These two cases exhibit different qualities: availability an
integrity in the first case and performance in the second. The variation in these
scenarios illustrates the need for scalability, both upwards for very large systems
downwards for small, fast systems.

To discover any arbitrary offer of service, a trader needs all offers to be visible to
One partition cannot hold every offer, many are held at other partitions; therefore
addition to a number of offers, a trader must possess information about other
partitions. However, there is no need for a trader to know about all other partition
Some of this knowledge can be utilized indirectly via other traders.

The partitioning of the offer space and the limited knowledge held within one parti
about other partitions is the basis for meeting requirements for both distribution a
contextualisation of the trading object service.

16.1.2 Linking Traders

The requirements to contextualise the offer space and to distribute the trading ob
service are both met by linking traders together. When a trader links to other trade
makes the offer spaces of those traders implicitly available to its own clients.

Each trader has a horizon limited to those other traders to which it is explicitly link
As those traders are linked to yet more traders, a large number of traders are rea
from a given starting trader. The traders are linked to form a directed graph with
information describing the graph distributed among the traders. This graph is calle
trading graph.

Links may cross domain boundaries (e.g., administrative, technological, etc.);
therefore, trading is a federated system (i.e., one that spans many domains).

16.1.3 Policy

To meet the diverse requirements likely to be placed upon the trading function, s
degree of freedom is necessary when specifying the behavior of a trader object.
accomplish this, and yet still meet the goals of this specification, the concept of po
is used to provide a framework for describing the behavior of any OMG trading ob
service implementation.

This specification identifies a number of policies and gives them semantics. Each
policy partly determines the behavior of a trader.

Policies may be communicated during interaction, in which case they relate to an
expectation on subsequent behavior.
Trading Object Service: v1.0 Overview March 1997 16-3

16

n; as

n,

t
ch

ation
to an

vider

rter

face,
16.1.4 Additional ObjectID

A trading object service may be used by an object to bootstrap itself into operatio
such, this specification mandates an additional ObjectId for use in the
resolve_initial_references() operation defined in the ORB Initialization Specificatio
OMG Document 94-10-24.

The following ObjectId is reserved for finding an initial trading object service:

TradingService

As described in 94-10-24, a client object wishing to obtain an initial trading objec
service object reference will invoke the resolve_initial_references() operation, whi
has the following OMG IDL signature:

typedef string ObjectId;

exception InvalidName {};

Object resolve_initial_references (in ObjectId identifier) raises (InvalidName);

The object reference returned as the result of a successful invocation of this oper
when “TradingService” is specified as the ObjectId parameter must be narrowed
object reference of the appropriate type; for the trading object service this type is
CosTrading::Lookup.

No other extensions are proposed to OMG IDL, CORBA, and/or the OMG object
model.

16.2 Concepts and Data Types

16.2.1 Exporter

An exporter advertises a service with a trader. An exporter can be the service pro
or it can advertise a service on behalf of another.

16.2.2 Importer

An importer uses a trader to search for services matching some criteria. An impo
can be the potential service client or it can import a service on behalf of another.

16.2.3 Service Types

A service type, which represents the information needed to describe a service, is
associated with each traded service. It comprises:

• an interface type which defines the computational signature of the service inter
and
16-4 CORBAservices March 1997

16

ry,
triple

 and
e of

are

r to
e is

ce
titute

• zero or more named property types. Typically these represent behavioral, non-
functional, and non-computational aspects that are not captured by the
computational signature.

The property type defines the property value type, whether a property is mandato
and whether a property is readonly. That is, associated with a property type is the
of <name, type, mode>, where the modes are:

enum PropertyMode {

PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY

};

A service type repository is used to hold the type information.

typedef Object TypeRepository;

Each service type in a repository is identified by a unique ServiceTypeName.

typedef Istring ServiceTypeName; // similar to IR::Identifier

An exporter specifies the service type of the service it is advertising; an importer
specifies the service type it is seeking.

Service types can be related in a hierarchy that reflects interface type inheritance
property type aggregation. This hierarchy provides the basis for deciding if a servic
one type may be substituted for a service of another type. These considerations
described more fully in the following service type model.

Service Type Model

The service type model is illustrated by the following BNF:

service <ServiceTypeName>[:<BaseServiceTypeName>
[,<BaseServiceTypeName>]*]{

interface <InterfaceTypeName>;

[[mandatory] [readonly] property <IDLType> <PropertyName>;]*

};

The keyword “service” introduces a new ServiceTypeName. Its structure is simila
that of interface repository identifiers (::First::Second::Third ...). As the service typ
visible to end users and not just to programmers, it is internationalizable.

The list of BaseServiceTypeNames lists those service types from which this servi
type is derived, which in turn defines where services of this service type can subs
for other service.

The “interface” keyword introduces the InterfaceTypeName for this service. It is
related by equivalence or by derivation to the InterfaceTypeNames in each of the
BaseServiceTypeNames.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-5

16

 is

e
ose

this
e

, but
lue
ust

 may
 and

; a
The properties clause is a list of property declarations. Each property declaration
marked by the keyword “property” and may be preceded by mode attributes
“mandatory” and/or “readonly.” A property declaration is completed by an IDLType
and a PropertyName. A service must support all the properties of each of its bas
service types, they must have identical property value types, and they must not l
any property mode attributes.

The property mode attributes have the following connotations:

• mandatory - an instance of this service type must provide an appropriate value for
this property when exporting its service offer.

• readonly - if an instance of this service type provides an appropriate value for
property when exporting its service offer, the value for this property may not b
changed by a subsequent invocation of the Register::modify() operation.

The property strength graph is shown in Figure 16-2.

Figure 16-2 Property Strength

Summarizing, if a property is defined without any modifiers, it is optional (i.e., an
offer of that service type is not required to provide a value for that property name
if it does, it must be of the type specified in the service type), and the property va
subsequently may be modified. The “mandatory” modifier indicates that a value m
be provided, but that subsequently it may be modified. The “readonly” modifier
indicates that the property is optional, but that once given a value, subsequently it
not be modified. Specifying both modifiers indicates that a value must be provided
that subsequently it may not be modified.

From the above discussion, one can state the rules for service type conformance
service type β is a subtype of service type α, if and only if:

• the interface type associated with β is either the same as, or derived from, the
interface type associated with α

• all the properties defined in α are also defined in β

• for all properties defined in both α and β, the mode of the property in β must be the
same as, or stronger than, the mode of the property in α

• all properties defined in β that are also defined in α shall have the same property
value type in β as their corresponding definitions had in α

(default)

mandatory readonly

mandatory, readonly

Increasing
Strength
16-6 CORBAservices March 1997

16

the

d with

t
16.2.4 Properties

Properties are <name, value> pairs. An exporter asserts values for properties of
service it is advertising. An importer can obtain these values about a service and
constrain its search for appropriate offers based on the property values associate
such offers.

typedef Istring PropertyName;

typedef sequence<PropertyName> PropertyNameSeq;

typedef any PropertyValue;

struct Property {

PropertyName name;

PropertyValue value;

};

typedef sequence<Property> PropertySeq;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

};

16.2.5 Service Offers

A service offer is the information asserted by an exporter about the service it is
advertising. It contains:

• the service type name,

• a reference to the interface that provides the service, and

• zero or more property values for the service.

An exporter must specify a value for all mandatory properties specified in the
associated service type. In addition, an exporter can nominate values for named
properties that are not specified in the service type. In such case, the trader is no
obliged to do property type checking.

struct Offer {

Object reference;

PropertySeq properties;

};

typedef sequence<Offer> OfferSeq;

struct OfferInfo {
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-7

16

An
th

r

 is

f a
Object reference;

ServiceTypeName type;

PropertySeq properties;

};

Modifiable Properties

The value of a property in a service offer can be modified, if

• the property mode is not readonly, whether optional or mandatory, and

• the trader supports the modify property functionality.

Such property values can be updated by explicit modify operations to the trader.
exporter can control a service offer to be non-modifiable by exporting services wi
service types that have readonly properties. The modify operation will return a
NotImplemented exception if a trader does not support the modify property
functionality. An importer can also specify whether or not a trader should conside
offers with modifiable properties during matching.

Dynamic Properties

A service offer can contain dynamic properties. The value for a dynamic property
not held within a trader, it is obtained on-demand from the interface of a dynamic
property evaluator nominated by the exporter of the service. That is, a level of
indirection is required to obtain the value for a dynamic property. The structure o
dynamic property value is:

exception DPEvalFailure {

CosTrading::PropertyName name;

CORBA::TypeCode returned_type;

any extra_info;

};

interface DynamicPropEval {

any evalDP (

in CosTrading::PropertyName name,

in CORBA::TypeCode returned_type,

in any extra_info

) raises (

DPEvalFailure

);

};
16-8 CORBAservices March 1997

16

 The
okes

mic
 this
sed
namic

a

e

ffers

duce
g

hich

struct DynamicProp {

 DynamicPropEval eval_if;

 CORBA::TypeCode returned_type;

 any extra_info;

};

It contains the interface to the dynamic property evaluator, the data type of the
returned dynamic property, and any extra implementation dependent information.
trader recognizes this structure and, when the value of the property is required, inv
the evalDP operation from the appropriate DynamicPropEval interface. The dyna
property evaluator interface has only one operation, whose signature is defined in
standard for portability but its behavior is not specified. The only restrictions impo
are that the property must not be readonly and that the trader must support the dy
property functionality.

The use of such Properties has implications on the performance of a trader. An
importer can specify whether or not a trader should consider offers with dynamic
properties during matching.

16.2.6 Offer Identifier

An offer identifier is returned to an exporter when a service offer is advertised in
trader. It identifies the exported service offer and is quoted by the exporter when
withdrawing and modifying the offer (where supported). It only has meaning to th
trader with which the service offer is registered.

typedef string OfferId;

typedef sequence<OfferId> OfferIdSeq;

16.2.7 Offer Selection

The total service offer space for an offer selection may be very large, including o
from all linked traders. Logically, the trader uses policies to identify the set S1 of
service offers to examine. The service type and constraint is applied to S1 to pro
the set S2 that satisfies the service type and constraint. Then this is ordered usin
preferences before returning the offers to the importer.

Standard Constraint Language

Importers use service type and a constraint to select the set of service offers in w
they have an interest. The constraint is a well formed expression conforming to a
constraint language.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-9

16

ower
traint

) is
< >>
eted

e
nces

rds:

y be
This document defines the standard, mandatory language which is necessary for
interworking between traders. Appendix B defines the syntax and the expressive p
of the constraint language. This constraint language is used to write standard cons
expressions.

typedef Istring Constraint;

Its main features are:

Note – If a proprietary constraint language (outside the scope of this specification
used, then the name and version of the constraint language is placed between <
at the start of the constraint expression, The remainder of the string is not interpr
by a trader that does not support the quoted proprietary constraint language.

Preferences

Preferences are applied logically to the set of offers matched by application of th
service type, constraint expression, and various policies. Application of the prefere
can determine the order used to return matched offers to the importer.

typedef Istring Preference;

Consider the preference string as being composed of two portions.

• The first portion can be comprised of any of the following case-sensitive keywo

max min with random first

• The interpretation for the second portion is dependent on the first portion; it ma
empty. Table 16-1 describes the preferences.

Property Value Types These manipulations are restricted to int, float,
boolean, Istring/string, Ichar/char types, and
sequences thereof. The character based types are
ordered using the collating sequence in effect for
the given character set. Types outside of this
range can only be the subject of the “exist” oper-
ator.

Literals In the constraint, literals are dynamically coerced
as required for the properties they are working
with. Literals can contain Istring.

Operators The operators are comparison, boolean connec-
tive, set inclusion, substring, arithmetic opera-
tors, property existence.
16-10 CORBAservices March 1997

16

iated
ers
into a

me

ce

n) is
< >>
rader

rader.
ders.
t it
 the

 a

 an

 are

g
s,
d

Table 16-1Preferences

If no preference is specified, then the default preference of first applies. No
combinations of the preferences are permitted.

The expression associated with max, min, and with can refer to properties assoc
with the matching offers. When applying a preference expression to the set of off
that match the service type and constraint expression, the offer set is partitioned
group of offers for which the preference expression

• could be evaluated (ordered according to min, max, with), and

• could not be evaluated (e.g., the preference expression refers to a property na
that is optional for that service type).

The offers are returned to the importer in the order of first group in their preferen
order, followed by those in the second group.

Note – If a proprietary preference language (outside the scope of this specificatio
used, the name and version of the preference language used is placed between <
at the start of the preference. The remainder of the string is not interpreted by a t
that does not support the quoted proprietary language.

Links

Links represent paths for propagation of queries from a source trader to a target t
Each link corresponds to an edge in a trading graph, in which the vertices are tra
A link describes the knowledge that one trader has of another trading service tha
uses. It also includes information of when to propagate or forward an operation to
target trader. A link has the following information associated with it:

Preference Description

max expression The expression is numeric. The matched offers are returned in
descending order of the expression.

min expression The expression is numeric. The matched offers are returned in
ascending order of the expression.

with expression The expression is a constraint expression. The matched offers
ordered such that those that are TRUE precede those that are
FALSE.

random The order of returned matched offers is according to the followin
algorithm: select an offer at random from the set of matched offer
select another offer at random from the remaining set of matche
offers, ..., select the single remaining offer.

first The order of returned matched offers is in the order as the offers
are discovered.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-11

16

an

 to

rget
• A Lookup interface provided by the target trader, which supports the query
operation.

• A Register interface provided by the target trader, which supports the resolve
operation.

• The link’s default follow behavior, which may be used and is passed on when
importer does not specify a link_follow_rule policy.

• The link’s limiting follow behavior, which overrides an importer’s link_follow_rule
if the importer’s request exceeds the limit set by the link.

enum FollowOption {

local_only,

if_no_local,

always

};

struct LinkInfo {

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

The above information is set for each link when it is created. A link name is given
the link when it is created. The name uniquely identifies a link in a trader.

typedef Istring LinkName;

typedef sequence<LinkName> LinkNameSeq;

A link is unidirectional. Only the source trader is directly aware of a link; it is the
source trader that supports the Link interface.

Additional information may be kept with a link to describe characteristics of the ta
trading service as perceived by the source trader.

Policies

Policies provide information to affect trader behavior at run time. Policies are
represented as name value pairs.

typedef string PolicyName; // policy names restricted to Latin1

typedef sequence<PolicyName> PolicyNameSeq;

typedef any PolicyValue;

struct Policy {

PolicyName name;

PolicyValue value;

};
16-12 CORBAservices March 1997

16

ories:

ing

to
i-

rs

 be

 to

s
typedef sequence<Policy> PolicySeq;

Some policies cannot be overridden, while other policies apply in the absence of
further information and can be overridden. Policies can be grouped into two categ

1. Policies that scope the extent of a search.

2. Policies that determine the functionality applied to an operation.

Different policies are associated with different roles in the performance of the trad
function. These roles are:

T = Trader

L = Link

I = Import

Standardized Scoping Policies:

The following table lists the standardized scoping policies.

Table 16-2 Scoping Policies

Name Where IDL Type Description

def_search_card T unsigned long Default upper bound of offers to be
searched; used if no search_card is speci-
fied.

max_search_card T unsigned long Maximum upper bound of offers to be
searched.

search_card I unsigned long Nominated upper bound of offers to be
searched; will be overridden by
max_search_card.

def_match_card T unsigned long Default upper bound of matched offers
be ordered; used if no match_card is spec
fied.

max_match_card T unsigned long Maximum upper bound of matched offe
to be ordered.

match_card I unsigned long Nominated upper bound of offers to be
ordered; will be overridden by
max_match_card.

def_return_card T unsigned long Default upper bound of ordered offers to
returned; used if no return_card is speci-
fied.

max_return_card T unsigned long Maximum upper bound of ordered offers
be returned.

return_card I unsigned long Nominated upper bound of ordered offer
to be returned; will be overridden by
max_return_card.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-13

16

be

 to

 to

at-

d

e
The IDL types for TraderName and OctetSeq are:

typedef LinkNameSeq TraderName;

typedef sequence<octet> OctetSeq;

def_hop_count T unsigned long Default upper bound of depth of links to
traversed if hop_count is not specified.

max_hop_count T unsigned long Maximum upper bound of depth of links
be traversed.

hop_count I unsigned long Nominated upper bound of depth of links
be traversed; will be overridden by the
trader’s max_hop_count.

def_pass_on_follow_rule L FollowOption Default link-follow behavior to be passed
on for a particular link if an importer does
not specify its link_follow_rule; it must not
exceed limiting_follow_rule.

limiting_follow_rule L FollowOption Limiting link follow behavior for a particu-
lar link.

def_follow_policy T FollowOption Default link follow behavior for a particu-
lar trader.

max_follow_policy T FollowOption Limiting link follow policy for all links of
the trader - overrides both link and importer
policies.

max_link_follow_policy T FollowOption Upper bound on the value of a link’s limit-
ing follow rule at the time of creation or
modification of a link.

link_follow_rule I FollowOption Nominated link follow behavior; it will be
overridden by the trader’s
max_follow_policy and the link’s
limiting_follow_rule.

starting_trader I TraderName An importer scopes its search by nomin
ing that the query operation starts at a
remote trader; a trader is obliged to forward
the request down a link even if the link
behavior is local_only.

request_id I OctetSeq An identifier for a query operation initiate
by a source trader acting as an importer on
a link; a trader is not obliged to generate an
id, but is obliged to pass one received down
a link.

exact_type_match I boolean If TRUE, only offers of exactly the servic
type specified by the importer are consid-
ered; if FALSE (or if unspecified), offers of
any serviced type that conforms to the
importer’s service type are considered.

Name Where IDL Type Description
16-14 CORBAservices March 1997

16

otal
e are
arch

hich
the
e the
d by

|N5

a
if a

ty.
The results received by an importer are affected by the scoping policies. The
hop_count and link follow policies set the scope of the traders to visit. N1 is the t
service offer space of those traders. Those offers that have conformant service typ
gathered into the set N2; the actual size of N2 may be further restricted by the se
cardinality policies. Constraints are applied to N2 to produce a set N3 of offers w
satisfy both the service type and the constraints; N3 may be further restricted by
match cardinality policies. The set N3 is then ordered using preferences to produc
set N4. The final set of offers returned to the importer, N5, may be further reduce
the returned cardinality policies.

This is illustrated by the following diagram, where |N1| >= |N2| >= |N3| = |N4| >=

Figure 16-3 Pipeline View of Trader Query Steps and Cardinality Constraint Application

Standardized Capability Supported Policies

There are three optional capabilities (proxy offer, dynamic properties, and modify
offers) that a trader may or may not wish to support. If a trader does not support
capability, then an importer cannot override it with its policy parameter. However,
trader supports a capability and an importer does not wish to consider offers that
require such functionality, then the trader must respect the importer’s wish.

The following table lists the standardized policies related to supported functionali

Potential
Offers

Consid-
ered

offers

Matched
Offers

Ordered
Offers

Returned
Offers

gather match

order

return

search
cardinality

match
cardinality

return
cardinalityN5 N4

N3N2N1
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-15

16

tes of
be
ader
ity

 by
n.

er’s

er to
to

ic

rs.
Table 16-3 Capability Supported Policies

Trader Policies

Policies can be set for a trader as a whole. Trader policies are defined as attribu
the trader object. They are specified initially when the trader is created, and can
modified/interrogated via the Admin interface. An importer can interrogate these tr
policies via its Lookup interface. An exporter can interrogate a trader’s functional
supported policies via its Register interface.

Link Follow Behavior

Each link in a trader has its own follow behavior policies. A trader has a limiting
follow policy, max_follow_policy, that overrides all the links of that trader for any
given query. Follow behavior policies are specified for each link when a link is
created. These policies, def_pass_on_follow_rule and limiting_follow_rule, can be
interrogated/modified via the Link interface. The values they can have are limited
another trader policy, max_link_follow_policy, at the time of creation or modificatio
An importer can specify a link_follow_rule in a query. In the absence of an import
link_follow_rule, the trader’s def_follow_policy is used.

After searching its local offers in response to a query, a trader must decide wheth
propagate the query along its links and, if so, what value for the link_follow_rule
pass on in the policies argument.

Name Where
IDL
Type Description

supports_modifiable_properties T boolean Whether the trader supports property
modification.

use_modifiable_properties I boolean Whether to consider offers with modifi-
able properties in the search.

supports_dynamic_properties T boolean Whether the trader supports dynamic
properties.

use_dynamic_properties I boolean Whether to consider offers with dynam
properties in the search.

supports_proxy_offers T boolean Whether the trader supports proxy offe

use_proxy_offers I boolean Whether to consider proxy offers in the
search.
16-16 CORBAservices March 1997

16

e
.

he
d.

ines

n
ter
s the

his

Recall that the OMG IDL for FollowOption is:

enum FollowOption {

local_only,

if_no_local,

always

};

where “local_only” indicates that the link is followed only by explicit navigation
(“starting_trader” policy), “if_no_local” indicates that the link is followed only if ther
are no local offers that satisfy the query, and “always” has the obvious semantics
These values are ordered as follows:

local_only < if_no_local < always

The follow policy for a particular link is:

if the importer specified a link_follow_rule policy

min(trader.max_follow_policy, link.limiting_follow_rule,
query.link_follow_rule)

else

min(trader.max_follow_policy, link.limiting_follow_rule,
trader.def_follow_policy)

If this value is “if_no_local” and there were no local offers that match the query, t
nested query is performed; if this value is “always,” the nested query is performe

If the nested query is permitted by the above rule, then the following logic determ
the value for the “link_follow_rule” policy to pass on to the linked trader.

If the importer specified a link_follow_rule policy

pass on min(query.link_follow_rule, link.limiting_follow_rule,

 trader.max_follow_policy)

else

pass on min(link.def_pass_on_follow_rule,
 trader.max_follow_policy)

Importer Policies

An importer can specify zero or more importer policies in its policy parameter. If a
importer policy is not specified, then the trader uses its default policy. If an impor
policy exceeds the limiting policy values set by the trader, then the trader override
importer expectations with its limiting policy value.

If a starting_trader policy parameter is used, trader implementations shall place t
policy parameter as the first element of the sequence when forwarding the query
request to linked traders.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-17

16

ith
licy

iting
 the

 be

ng on
r.

int
der
 the

 limit
before
ader

y, a
itiates
 to

t it
e
t

e
Exporter Policies

There are no exporter policies specified in this standard.

Link Creation Policies

At the time that a link is created, the default and limiting follow rules associated w
the link are specified. These rules can be constrained by the max_link_follow_po
of the trader.

The trader first checks to see that the default rule is less than or equal to the lim
rule. If not, then an exception is raised. It then compares the limiting rule against
trader’s max_link_follow_policy, again raising an exception if the limiting rule is
greater than the trader’s max_link_follow_policy.

16.2.8 Interworking Mechanisms

Link Traversal Control

The flexible nature of trader linkage allows arbitrary directed graphs of traders to
produced. This can introduce two types of problem:

• A single trader can be visited more than once during a search due to it appeari
more than one path (i.e., distinct set of connected edges) leading from a trade

• Loops can occur. The most trivial example of this is where two previously disjo
trader spaces decide to join by exchanging links. This can result in the first tra
propagating a query to the second and then having it returned immediately via
reverse link.

To ensure that a search does not enter into an infinite loop, a hop_count is used to
the depth of links to propagate a search. The hop_count is decremented by one
propagating a query to other traders. The search propagation terminates at the tr
when the hop_count reaches zero.

To avoid the unproductive revisiting of a particular trader while performing a quer
RequestId can be generated by a source trader for each query operation that it in
for propagation to a target trader. The trader attribute of request_id_stem is used
form RequestId.

typedef sequence<octet> OctetSeq;

attribute OctetSeq request_id_stem;

A trader remembers the RequestId of all recent interworking query operations tha
has been asked to perform. When an interworking query operation is received, th
trader checks this history and only processes the query if it is the operation’s firs
appearance.

In order for this to work, the administrator for a set of federated traders must hav
initialized the respective request_id_stems to non-overlapping values.
16-18 CORBAservices March 1997

16

n to
olicy,
nto the

ient to
 its

ery
t the

unt

itra-
 4.

That
ount
d the
rs.

e

T4,
d back

e

ding
The RequestId is passed in an importer’s policy parameter on the query operatio
the target trader. If the target trader does not support the use of the RequestId p
the target trader need not process the RequestId, but must pass the RequestId o
next linked trader if the search propagates further.

Federated Query Example

To propagate a query request in a trading graph, each source trader acts as a cl
the Lookup interface of the target trader and passes its client’s query operation to
target trader.

The following example illustrates the modification of hop count parameter as a qu
request passes through a set of linked traders in a trading graph. We assume tha
link follow policies in the traders will result in “always” follow behavior.

1. A query request is invoked at the trading interface of T1 with an importer’s hop co
policy expressed as hop_count = 4. The trader scoping policy for T1 includes
max_hop_count = 5. The resultant hop_count applied for the search (after the arb
tion action that combines the trader policy and the importer policy) is hop_count =

2. We assume that no match is found in T1 and the resulting follow policy is always.
is, T1 is to pass the request to T3. A modified importer hop_count policy of hop_c
= 3 is used. The local trader scoping policy for T3 includes max_hop_count = 1 an
generation of T3_Request_id to avoid repeat or cyclic searches of the same trade
The resultant scoping policy applied for the search at T3 is hop_count = 1 and the
T3_Request_id is stored.

3. Assuming that no match is found in T3 and the resulting follow policy is always, th
modified scoping parameter for the query request at T4 is: hop_count = 0 and
request_id = T3_Request_id.

4. Assuming that no match is found in T4. Even though the max_hop_count = 4 for
the search is not propagated further. An unsuccessful search result will be passe
to T3, to T1, and finally to the user at T1.

Of course, if a query request is completed successfully at any of the traders on th
linked search path, then the list of matched service offers will be returned to the
original user. Whether the query request is propagated through the remaining tra
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-19

16

be
t

ed in
ther

graph depends upon the link follow policies; in this case, where it is assumed to
always, the query will still visit all of the traders commensurate with the hop coun
policy.

Figure 16-4 Flow of a query through a trader graph

Proxy Offers

A proxy offer is a cross between a service offer and a form of restricted link. It
includes the service type and properties of a service offer and, as such, is match
the same way. However, if the proxy offer matches the importer’s requirements, ra
than returning details of the offer, the query request (modified) is forwarded to the
Lookup interface associated with the proxy offer.

typedef Istring ConstraintRecipe;

struct ProxyInfo {

ServiceTypeName type;

Lookup target;

PropertySeq properties;

Legend

Service Offer

Link

Trader Attribute

query.hop_count = 4

query.hop_count = 3

query.hop_count = 0

max_hop_count = 5

max_hop_count = 1

max_hop_count = 4

request_id_stem

query.request_id = T3_request_id

T1

T2
T3

T4

def_follow_policy = always

def_follow_policy = always

def_follow_policy = always
16-20 CORBAservices March 1997

16

oxy

n

em of

al

ctory
nce of

 of
 the

rt

fined
boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

};

If an importer’s query results in a match to a proxy offer, the trader holding the pr
offer performs a nested query on the trader hiding behind the proxy offer with the
following parameters:

• The original type parameter is passed on unchanged.

• A new constraint parameter is constructed following the ConstraintRecipe
associated with the proxy offer.

• The original preference parameter is passed on unchanged.

• A new policies parameter is constructed by appending the policies_to_pass_o
associated with the proxy offer to the original policies parameter.

• The original desired_props parameter is passed on unchanged.

• The calling trader supplies a value of how_many that makes sense given its
resource constraints.

Proxy offers are a convenient way to package the encapsulation of a legacy syst
“objects” into the trading system. It permits clients to lookup these “objects” by
matching the proxy offer. The nested call to the proxy trader, together with the
rewritten constraint expression and the additional policies appended to the origin
policy parameter, permits the dynamic creation of a service instance which
encapsulates the legacy object. Another possible use of proxies is for a service fa
to be advertised as a proxy offer; the nested call to the factory causes a new insta
the particular service to be manufactured.

A query may have matched a proxy offer due to a particular value of a property
associated with the proxy offer. Any offer returned by the proxy trader as a result
the nested query must have the same value for that property so as not to violate
client’s expectations regarding the constraint.

A trader does not have to support the proxy offer functionality. Traders that suppo
such functionality must provide the Proxy interface for the export, withdraw, and
describe of proxy offers. An importer can specify whether or not a trader should
consider proxy offers during matching.

16.2.9 Trader Attributes

Each trader has its own characteristics, policies for supported functionalities, and
policies for scoping the extent of search. These characteristics and policies are de
as attributes to the trader. These attributes are described in Table 16-4.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-21

16

to

rs
-

 be

 to

be

 to

odi-

rop-

s

ory

s
Table 16-4 Trader Attributes

These attributes are initially specified when a trader is created and can be
modified/interrogated via the Admin interface.

Name IDL Type Description

def_search_card unsigned long Default upper bound of offers to be
searched for a query operation

max_search_card unsigned long Maximum upper bound of offers to be
searched for a query operation

def_match_card unsigned long Default upper bound of matched offers
be ordered in applying a preference criteria

max_match_card unsigned long Maximum upper bound of matched offe
to be ordered in applying a preference crite
ria

def_return_card unsigned long Default upper bound of ordered offers to
returned to an importer

max_return_card unsigned long Maximum upper bound of ordered offers
be returned to an importer

def_hop_count unsigned long Default upper bound of depth of links to
traversed

max_hop_count unsigned long Maximum upper bound of depth of links
be traversed

max_list unsigned long The upper bound on the size of any list
returned by the trader, namely the returned
offers parameter in query, and the next_n
operations in OfferIterator and OfferIdIter-
ator.

def_follow_policy FollowOption Default link follow behavior for a particu-
lar trader

max_follow_policy FollowOption Limiting link follow policy for all links of
the trader - overrides both link and importer
policies

max_link_follow_policy FollowOption Most permissive follow policy allowed
when creating new links

supports_modifiable_properties boolean Whether the trader supports property m
fication

supports_dynamic_properties boolean Whether the trader supports dynamic p
erties

supports_proxy_offers boolean Whether the trader supports proxy offer

type_repos TypeRepository Interface to trader’s service type reposit

request_id_stem OctetSeq Identification of the trader, to be used a
the stem for the production of an id for a
query request from one trader to another
16-22 CORBAservices March 1997

16

refer

e of
16.3 Exceptions

This specification defines the exceptions raised by operations. Exceptions are
parameterized to indicate the source of the error. The OMG IDL segments below
to some of the typedef’s defined in Section 16.2 Concepts and Data Types.

When multiple exception conditions arise, only one exception is raised. The choic
exception to raise is implementation-dependent.

16.3.1 For CosTrading module

Exceptions used in more than one interface

exception UnknownMaxLeft {};

exception NotImplemented {};

exception IllegalServiceType {

ServiceTypeName type;

};

exception UnknownServiceType {

ServiceTypeName type;

};

exception IllegalPropertyName {

PropertyName name;

};

exception DuplicatePropertyName {

PropertyName name;

};

exception PropertyTypeMismatch {

ServiceTypeName type;

Property prop;

};

exception MissingMandatoryProperty {

ServiceTypeName type;

PropertyName name;
Trading Object Service: v1.0 Exceptions March 1997 16-23

16
};

exception IllegalConstraint {

Constraint constr;

};

exception InvalidLookupRef {

Lookup target;

};

exception IllegalOfferId {

OfferId id;

};

exception UnknownOfferId {

OfferId id;

};

exception ReadonlyDynamicProperty {

ServiceTypeName type;

PropertyName name;

};

exception DuplicatePolicyName {

PolicyName name;

};

Additional Exceptions for Lookup Interface

exception IllegalPreference {

Preference pref;

};

exception IllegalPolicyName {

PolicyName name;

};

exception PolicyTypeMismatch {

Policy the_policy;
16-24 CORBAservices March 1997

16
};

exception InvalidPolicyValue {

Policy the_policy;

};

exception IllegalPreference {
Preference pref;

};

exception IllegalPolicyName {
PolicyName name;

};

exception PolicyTypeMismatch {
Policy policy;

};

Additional Exceptions For Register Interface

exception InvalidObjectRef {

Object ref;

};

exception UnknownPropertyName {

PropertyName name;

};

exception InterfaceTypeMismatch {

ServiceTypeName type;

Object reference;

};

exception ProxyOfferId {

OfferId id;

};

exception MandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyProperty {

ServiceTypeName type;
Trading Object Service: v1.0 Exceptions March 1997 16-25

16
PropertyName name;

};

exception NoMatchingOffers {

Constraint constr;

};

exception IllegalTraderName {

TraderName name;

};

exception UnknownTraderName {

TraderName name;

};

exception RegisterNotSupported {

TraderName name;

};

Additional Exceptions for Link Interface

exception IllegalLinkName {

LinkName name;

};

exception UnknownLinkName {

LinkName name;

};

exception DuplicateLinkName {

LinkName name;

};

exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {
16-26 CORBAservices March 1997

16

 one
FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

};

Additional Exceptions for Proxy Offer Interface

exception IllegalRecipe {

ConstraintRecipe recipe;

};

exception NotProxyOfferId {

OfferId id;

};

16.3.2 For CosTradingDynamic module

There is only a DynamicPropEval interface in this module. The interface has only
operation which raises the exception:

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

16.3.3 For CosTradingRepos module

There is only the ServiceTypeRepository interface in this module. The following
interface-specific exceptions can be raised:

exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

};

exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;

Identifier base_if;

CosTrading::ServiceTypeName derived_service;

Identifier derived_if;

};

exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

CosTrading::ServiceTypeName sub_type;

};

exception AlreadyMasked {
Trading Object Service: v1.0 Exceptions March 1997 16-27

16

f the

one

 this,

way

t
ce.
CosTrading::ServiceTypeName name;

};

exception NotMasked {

CosTrading::ServiceTypeName name;

};

exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;

PropStruct definition_1;

CosTrading::ServiceTypeName type_2;

PropStruct definition_2;

};

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

};

16.4 Abstract Interfaces

To enable the construction of traders with varying support for the different trader
interfaces, this specification defines several abstract interfaces from which each o
trading object service functional interfaces (Lookup, Register, Link, Proxy, and
Admin) are derived. Each of these abstract interfaces are documented below.

16.4.1 TraderComponents
interface TraderComponents {

readonly attribute Lookup lookup_if;

readonly attribute Register register_if;

readonly attribute Link link_if;

readonly attribute Proxy proxy_if;

readonly attribute Admin admin_if;

};

A trader’s functionality can be configured by composing the defined interfaces in
of several prescribed combinations. The composition is not modeled through
inheritance, but rather by multiple interfaces to an object. Given one of these
interfaces, a way of finding the other associated interfaces is needed. To facilitate
each trader functional interface is derived from the TraderComponents interface.

The TraderComponents interface contains five readonly attributes that provide a
to get a specific object reference.

The implementation of the _get_<interface>_if() operation must return a nil objec
reference if the trading service in question does not support that particular interfa
16-28 CORBAservices March 1997

16

 the

 this

and
be
16.4.2 SupportAttributes
interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;

readonly attribute boolean supports_dynamic_properties;

readonly attribute boolean supports_proxy_offers;

readonly attribute TypeRepository type_repos;

};

In addition to the ability of a trader implementation to selectively choose which
functional interfaces to support, a trader implementation may also choose not to
support modifiable properties, dynamic properties, and/or proxy offers. The
functionality supported by a trader implementation can be determined by querying
readonly attributes in this interface.

The type repository used by the trader implementation can also be obtained from
interface.

16.4.3 ImportAttributes
interface ImportAttributes {

readonly attribute unsigned long def_search_card;

readonly attribute unsigned long max_search_card;

readonly attribute unsigned long def_match_card;

readonly attribute unsigned long max_match_card;

readonly attribute unsigned long def_return_card;

readonly attribute unsigned long max_return_card;

readonly attribute unsigned long max_list;

readonly attribute unsigned long def_hop_count;

readonly attribute unsigned long max_hop_count;

readonly attribute FollowOption def_follow_policy;

readonly attribute FollowOption max_follow_policy;

};

Each trader is configured with default and maximum values of certain cardinality
link follow constraints that apply to queries. The values for these constraints can
obtained by querying the attributes in this interface.
Trading Object Service: v1.0 Abstract Interfaces March 1997 16-29

16

the

16.4.4 LinkAttributes
interface LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;

};

When a trader creates a new link or modifies an existing link the
max_link_follow_policy attribute will determine the most permissive behavior that
link will be allowed. The value for this constraint on link creation and modification
can be obtained from this interface.

16.5 Functional Interfaces

This section describes the five functional interfaces to a trading object service:
Lookup, Register, Link, Admin, and Proxy. The two iterator interfaces needed for
these functional interfaces are also described.

16.5.1 Lookup
interface Lookup:TraderComponents,SupportAttributes, ImportAttributes {

typedef Istring Preference;

enum HowManyProps {none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

};

exception IllegalPreference {

Preference pref;

};

exception IllegalPolicyName {

PolicyName name;

};

exception PolicyTypeMismatch {

Policy the_policy;

};

exception InvalidPolicyValue {
16-30 CORBAservices March 1997

16
Policy the_policy;

};

void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,

out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

};

Query Operation

Signature
void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,
Trading Object Service: v1.0 Functional Interfaces March 1997 16-31

16

her

pose

e.

e

in

ping
 can
query
 if
ith

ents
ents

ts,

isfies
tax
d.
out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

Function

The query operation is the means by which an object can obtain references to ot
objects that provide services meeting its requirements.

The “type” parameter conveys the required service type. It is key to the central pur
of trading: to perform an introduction for future type safe interactions between
importer and exporter. By stating a service type, the importer implies the desired
interface type and a domain of discourse for talking about properties of the servic

• If the string representation of the “type” does not obey the rules for service typ
identifiers, then an IllegalServiceType exception is raised.

• If the “type” is correct syntactically but is not recognized as a service type with
the trading scope, then an UnknownServiceType exception is raised.

The trader may return a service offer of a subtype of the “type” requested. Sub-ty
of service types is discussed in “Service Types” on page 16-4. A service subtype
be described by the properties of its supertypes. This ensures that a well-formed
for the “type” is also a well-formed query with respect to any subtypes. However,
the importer specifies the policy of exact_type_match = TRUE, then only offers w
the exact (no subtype) service type requested are returned.

The constraint “constr” is the means by which the importer states those requirem
of a service that are not captured in the signature of the interface. These requirem
deal with the computational behavior of the desired service, non-functional aspec
and non-computational aspects (such as the organization owning the objects that
provide the service). An importer is always guaranteed that any returned offer sat
the matching constraint at the time of import. If the “constr” does not obey the syn
rules for a legal constraint expression, then an IllegalConstraint exception is raise
16-32 CORBAservices March 1997

16

 that
er. If

he

me
or

is

ader

the

ffers

ame

an

y

rned.
me”

h).

ce

e
ill
The “pref” parameter is also used to order those offers that match the “constr” so
the offers returned by the trader are in the order of greatest interest to the import
“pref” does not obey the syntax rules for a legal preference expression, then an
IllegalPreference exception is raised.

The “policies” parameter allows the importer to specify how the search should be
performed as opposed to what sort of services should be found in the course of t
search. This can be viewed as parameterizing the algorithms within the trader
implementation. The “policies” are a sequence of name-value pairs. The names
available to an importer depend on the implementation of the trader. However, so
names are standardized where they effect the interpretation of other parameters
where they may impact linking and federation of traders.

• If a policy name in this parameter does not obey the syntactic rules for legal
PolicyName’s, then an IllegalPolicyName exception is raised.

• If the type of the value associated with a policy differs from that specified in th
specification, then a PolicyTypeMismatch exception is raised.

• If subsequent processing of a PolicyValue yields any errors (e.g., the starting_tr
policy value is malformed), then an InvalidPolicyValue exception is raised.

• If the same policy name is included two or more times in this parameter, then
DuplicatePolicyName exception is raised.

The “desired_props” parameter defines the set of properties describing returned o
that are to be returned with the object reference. There are three possibilities, the
importer wants one of the properties, all of the properties (but without having to n
them), or some properties (the names of which are provided).

• If any of the “desired_props” names do not obey the rules for identifiers, then
IllegalPropertyName exception is raised.

• If the same property name is included two or more times in this parameter, the
DuplicatePropertyName exception is raised. The desired_props parameter ma
name properties which are not mandatory for the requested service type.

• If the named property is present in the matched service offer, then it shall be
returned.

The desired_props parameter does not affect whether or not a service offer is retu
To avoid “missing” desired properties, the importer should specify “exists prop_na
in the constraint.

The returned offers are passed back in one of two ways (or a combination of bot

• The “offers” return result conveys a list of offers and the “offer_itr” is a referen
to an interface at which offers can be obtained.

• The “how_many” parameter states how many offers are to be returned via the
“offers” result, any remaining offers are available via the iterator interface. If th
“how_many” exceeds the number of offers to be returned, then the “offer_itr” w
be nil.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-33

16

g to
e

ed”
its

tch.

e
d

alue
ot

 the

er
ich
s
If any cardinality or other limits were applied by one or more traders in respondin
a particular query, then the “limits_applied” parameter will contain the names of th
policies which limited the query. The sequence of names returned in “limits_appli
from any federated or proxy queries must be concatenated onto the names of lim
applied locally and returned.

Importer Policy Specifications

struct LookupPolicies {

unsigned long search_card;

unsigned long match_card;

unsigned long return_card;

boolean use_modifiable_properties;

boolean use_dynamic_properties;

boolean use_proxy_offers;

TraderName starting_trader;

FollowOption link_follow_rule;

unsigned long hop_count;

boolean exact_type_match;

};

The “search_card” policy indicates to the trader the maximum number of offers it
should consider when looking for type conformance and constraint expression ma
The lesser of this value and the trader’s max_search_card attribute is used by th
trader. If this policy is not specified, then the value of the trader’s def_search_car
attribute is used.

The “match_card” policy indicates to the trader the maximum number of matching
offers to which the preference specification should be applied. The lesser of this v
and the trader’s max_match_card attribute is used by the trader. If this policy is n
specified, then the value of the trader’s def_match_card attribute is used.

The “return_card” policy indicates to the trader the maximum number of matching
offers to return as a result of this query. The lesser of this value and the trader’s
max_return_card attribute is used by the trader. If this policy is not specified, then
value of the trader’s def_return_card attribute is used.

The “use_modifiable_properties” policy indicates whether the trader should consid
offers which have modifiable properties when constructing the set of offers to wh
type conformance and constraint processing should be applied. If the value of thi
policy is TRUE, then such offers will be included; if FALSE, they will not. If this
policy is not specified, such offers will be included.
16-34 CORBAservices March 1997

16

r
type
cy is
t

int
 will
e

It
f the
t be
on.
ere
ld in

ise,
sing

n

ss
ount

ented

ice
ffer
The “use_dynamic_properties” policy indicates whether the trader should conside
offers which have dynamic properties when constructing the set of offers to which
conformance and constraint processing should be applied. If the value of this poli
TRUE, then such offers will be included; if FALSE, they will not. If this policy is no
specified, such offers will be included.

The “use_proxy_offers” policy indicates whether the trader should consider proxy
offers when constructing the set of offers to which type conformance and constra
processing should be applied. If the value of this policy is TRUE, then such offers
be included; if FALSE, they will not. If this policy is not specified, such offers will b
included.

The “starting_trader” policy facilitates the distribution of the trading service itself.
allows an importer to scope a search by choosing to explicitly navigate the links o
trading graph. If the policy is used in a query invocation it is recommended that i
the first policy-value pair; this facilitates an optimal forwarding of the query operati
A “policies” parameter need not include a value for the “starting_trader” policy. Wh
this policy is present, the first name component is compared against the name he
each link. If no match is found, the InvalidPolicyValue exception is raised. Otherw
the trader invokes query() on the Lookup interface held by the named link, but pas
the “starting_trader” policy with the first component removed.

The “link_follow_rule” policy indicates how the client wishes links to be followed i
the resolution of its query. See the discussion in “Link Follow Behavior” on
page 16-16 for details.

The “hop_count” policy indicates to the trader the maximum number of hops acro
federation links that should be tolerated in the resolution of this query. The hop_c
at the current trader is determined by taking the minimum of the trader’s
max_hop_count attribute and the importer’s hop_count policy, if provided, or the
trader’s def_hop_count attribute if it is not. If the resulting value is zero, then no
federated queries are permitted. If it is greater than zero, then it must be decrem
before passing on to a federated trader.

The “exact_type_match” policy indicates to the trader whether the importer’s serv
type must exactly match an offer’s service type; if not (and by default), then any o
of a type conformant to the importer’s service type is considered.

16.5.2 Offer Iterator

Signature

interface OfferIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);

boolean next_n (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-35

16

on the

rs.”
ng in
ing

s

tor.

e

on an
in unsigned long n,

out OfferSeq offers

);

void destroy ();

};

Function

The OfferIterator interface is used to return a set of service offers from the query
operation by enabling the service offers to be extracted by successive operations
OfferIterator interface.

The next_n operation returns a set of service offers in the output parameter “offe
The operation returns n service offers if there are at least n service offers remaini
the iterator. If there are fewer than n service offers in the iterator, then all remain
service offers are returned. The actual number of service offers returned can be
determined from the length of the “offers” sequence. The next_n operation return
TRUE if there are further service offers to be extracted from the iterator. It returns
FALSE if there are no further service offers to be extracted.

The max_left operation returns the number of service offers remaining in the itera
The exception UnknownMaxLeft is raised if the iterator cannot determine the
remaining number of service offers (e.g., if the iterator determines its set of servic
offers through lazy evaluation).

The destroy operation destroys the iterator. No further operations can be invoked
iterator after it has been destroyed.

16.5.3 Register
interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {

Object reference;

ServiceTypeName type;

PropertySeq properties;

};

exception InvalidObjectRef {

Object ref;

};

exception UnknownPropertyName {

PropertyName name;
16-36 CORBAservices March 1997

16
};

exception InterfaceTypeMismatch {

ServiceTypeName type;

Object reference;

};

exception ProxyOfferId {

OfferId id;

};

exception MandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyProperty {

ServiceTypeName type;

PropertyName name;

};

exception NoMatchingOffers {

Constraint constr;

};

exception IllegalTraderName {

TraderName name;

};

exception UnknownTraderName {

TraderName name;

};

exception RegisterNotSupported {

TraderName name;

};

OfferId export (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-37

16
in Object reference,

in ServiceTypeName type,

in PropertySeq properties

) raises (

InvalidObjectRef,

IllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

IllegalPropertyName, // e.g. prop_name = “<foo-bar”

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

DuplicatePropertyName

);

void withdraw (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

OfferInfo describe (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

void modify (

in OfferId id,

in PropertyNameSeq del_list,

in PropertySeq modify_list

) raises (

NotImplemented,

IllegalOfferId,
16-38 CORBAservices March 1997

16
UnknownOfferId,

ProxyOfferId,

IllegalPropertyName,

UnknownPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName

);

void withdraw_using_constraint (

in ServiceTypeName type,

in Constraint constr

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

);

Register resolve (

in TraderName name

) raises (

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported

);

};

Export Operation

Signature
OfferId export (

in Object reference,

in ServiceTypeName type,

in PropertySeq properties

) raises (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-39

16

to a
e

ted

 a
ject

 of

r).

hen

ine
n is

s not
tch

alue

ects

then

d.
InvalidObjectRef,

IllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

IllegalPropertyName, // e.g. prop_name = “<foo-bar”

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

DuplicatePropertyName

);

Function

The export operation is the means by which a service is advertised, via a trader,
community of potential importers. The OfferId returned is the handle with which th
exporter can identify the exported offer when attempting to access it via other
operations. The OfferId is only meaningful in the context of the trader that genera
it.

The “reference” parameter is the information that enables a client to interact with
remote server. If a trader implementation chooses to consider certain types of ob
references (e.g., a nil object reference) to be unexportable, then it may return the
InvalidObjectRef exception in such cases.

The “type” parameter identifies the service type, which contains the interface type
the “reference” and a set of named property types that may be used in further
describing this offer (i.e., it restricts what is acceptable in the properties paramete

• If the string representation of the “type” does not obey the rules for identifiers, t
an IllegalServiceType exception is raised.

• If the “type” is correct syntactically but a trader is able to unambiguously determ
that it is not a recognized service type, then an UnknownServiceType exceptio
raised.

• If the trader can determine that the interface type of the “reference” parameter i
a subtype of the interface type specified in “type,” then an InterfaceTypeMisma
exception is raised.

The “properties” parameter is a list of named values that conform to the property v
types defined for those names. They describe the service being offered. This
description typically covers behavioral, non-functional, and non-computational asp
of the service.

• If any of the property names do not obey the syntax rules for PropertyNames,
an IllegalPropertyName exception is raised.

• If the type of any of the property values is not the same as the declared type
(declared in the service type), then a PropertyTypeMismatch exception is raise
16-40 CORBAservices March 1997

16

ty,

th a

raw
d by

en

Id
• If an attempt is made to assign a dynamic property value to a readonly proper
then the ReadonlyDynamicProperty exception is raised.

• If the “properties” parameter omits any property declared in the service type wi
mode of mandatory, then a MissingMandatoryProperty exception is raised.

• If two or more properties with the same property name are included in this
parameter, the DuplicatePropertyName exception is raised.

Withdraw Operation

Signature
void withdraw (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

Function

The withdraw operation removes the service offer from the trader (i.e., after withd
the offer can no longer be returned as the result of a query). The offer is identifie
the “id” parameter which was originally returned by export.

• If the string representation of “id” does not obey the rules for offer identifiers, th
an IllegalOfferId exception is raised.

• If the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferId exception is raised.

• If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOffer
exception is raised.

Describe Operation

Signature
OfferInfo describe (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);
Trading Object Service: v1.0 Functional Interfaces March 1997 16-41

16

ld by
vice
 by

Id

n a
annot
Function

The describe operation returns the information about an offered service that is he
the trader. It comprises the “reference” of the offered service, the “type” of the ser
offer, and the “properties” that describe this offer of service. The offer is identified
the “id” parameter which was originally returned by export.

• If the string representation of “id” does not obey the rules for object identifiers,
then an IllegalOfferId exception is raised.

• If the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferId exception is raised.

• If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOffer
exception is raised.

Modify Operation

Signature
void modify (

in OfferId id,

in PropertyNameSeq del_list,

in PropertySeq modify_list

) raises (

NotImplemented,

IllegalOfferId,

UnknownOfferId,

ProxyOfferId,

IllegalPropertyName,

UnknownPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName

);

Function

The modify operation is used to change the description of a service as held withi
service offer. The object reference and the service type associated with the offer c
be changed. This operation may:

• add new (non-mandatory) properties to describe an offer,

• change the values of some existing (not readonly) properties, or
16-42 CORBAservices March 1997

16

is

en

Id

e

’s,

an

ged.
(or
ce of

perty
he
 to

pe
• delete existing (neither mandatory nor readonly) properties.

The modify operation either succeeds completely or it fails completely. The offer
identified by the “id” parameter which was originally returned by export.

• If the string representation of “id” does not obey the rules for offer identifiers, th
an IllegalOfferId exception is raised.

• If the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferId exception is raised.

• If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOffer
exception is raised.

The “del_list” parameter gives the names of the properties that are no longer to b
recorded for the identified offer. Future query and describe operations will not see
these properties.

• If any of the names within the “del_list” do not obey the rules for PropertyName
then an IllegalPropertyName exception is raised.

• If a “name” is legal but there is no property for the offer with that “name,” then
UnknownPropertyName exception is raised.

• If the list includes a property that has a mandatory mode, then the
MandatoryProperty exception is raised.

• If the same property name is included two or more times in this parameter, the
DuplicatePropertyName exception is raised.

The “modify_list” parameter gives the names and values of properties to be chan
If the property is not in the offer, then the modify operation adds it. The modified
added) property values are returned in future query and describe operations in pla
the original values.

• If any of the names within the “modify_list” do not obey the rules for
PropertyName’s, then an IllegalPropertyName exception is raised.

• If the list includes a property that has a readonly mode, then the ReadonlyPro
exception is raised unless that readonly property is not currently recorded for t
offer. The ReadonlyDynamicProperty exception is raised if an attempt is made
assign a dynamic property value to a readonly property.

• If the value of any modified property is of a type that is not the same as the ty
expected, then the PropertyTypeMismatch exception is raised.

• If two or more properties with the same property name are included in this
argument, the DuplicatePropertyName exception is raised.

The NotImplemented exception shall be raised if and only if the
supports_modifiable_properties attribute yields FALSE.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-43

16

nce
e
ving
nd a

es a

ed

he

to

aint

 a
Note – It is not possible to change the service type of an offer or the object refere
of the service. This has to be achieved by withdrawing and then re-exporting. Th
purpose of modify is to change the description of the offered service while preser
the OfferId. This might be important where the OfferId has been propagated arou
community of objects.

Withdraw Using Constraint Operation

Signature
void withdraw_using_constraint (

in ServiceTypeName type,

in Constraint constr

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

);

Function

The withdraw_using_constraint operation withdraws a set of offers from within a
single trader. This set is identified in the same way that a query operation identifi
set of offers to be returned to an importer.

The “type” parameter conveys the required service type. Each offer of the specifi
type will have the constraint expression applied to it. If it matches the constraint
expression, then the offer will be withdrawn.

• If “type” does not obey the rules for service types, then an IllegalServiceType
exception is raised.

• If the “type” is correct syntactically but is not recognized as a service type by t
trader, then an UnknownServiceType exception is raised.

The constraint “constr” is the means by which the client restricts the set of offers
those that are intended for withdrawal.

• If “constr” does not obey the syntax rules for a constraint then an IllegalConstr
exception is raised.

• If the constraint fails to match with any offer of the specified service type, then
NoMatchingOffers exception is raised.
16-44 CORBAservices March 1997

16

n by
ame

t,

ame
f the

 and
; if it

, that

ce to
Resolve Operation

Signature
Register resolve (

in TraderName name

) raises (

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported

);

Function

This operation is used to resolve a context relative name for another trader. In
particular, it is used when exporting to a trader that is known by a name rather tha
an object reference. The client provides the name, which will be a sequence of n
components.

• If the content of the parameter cannot yield legal syntax for the first componen
then the IllegalTraderName exception is raised. Otherwise, the first name
component is compared against the name held in each link.

• If no match is found, or the trader does not support links, the UnknownTraderN
exception is raised. Otherwise, the trader obtains the register_if held as part o
matched link.

• If the Register interface is not nil, then the trader binds to the Register interface
invokes resolve but passes the TraderName with the first component removed
is nil, then the RegisterNotSupported exception is raised.

When a trader is able to match the first name component leaving no residual name
trader returns the reference for the Register interface for that linked trader. In
unwinding the recursion, intermediate traders return the Register interface referen
their client (another trader).

16.5.4 Offer Id Iterator

Signature

interface OfferIdIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);
Trading Object Service: v1.0 Functional Interfaces March 1997 16-45

16

ling
r

.”

hen

e

tor.

r

on an
boolean next_n (

in unsigned long n,

out OfferIdSeq ids

);

void destroy ();

};

Function

The OfferIdIterator interface is used to return a set of offer identifiers from the
list_offers operation and the list_proxies operation in the Admin interface by enab
the offer identifiers to be extracted by successive operations on the OfferIdIterato
interface.

The next_n operation returns a set of offer identifiers in the output parameter “ids
The operation returns n offer identifiers if there are at least n offer identifiers
remaining in the iterator. If there are fewer than n offer identifiers in the iterator, t
all remaining offer identifiers are returned. The actual number of offer identifiers
returned can be determined from the length of the “ids” sequence. The next_n
operation returns TRUE if there are further offer identifiers to be extracted from th
iterator. It returns FALSE if there are no further offer identifiers to be extracted.

The max_left operation returns the number of offer identifiers remaining in the itera
The exception UnknownMaxLeft is raised if the iterator cannot determine the
remaining number of offer identifiers (e.g., if the iterator determines its set of offe
identifiers through lazy evaluation).

The destroy operation destroys the iterator. No further operations can be invoked
iterator after it has been destroyed.

16.5.5 Admin
interface Admin : TraderComponents, SupportAttributes,

 ImportAttributes,LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);

unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);

unsigned long set_max_match_card (in unsigned long value);
16-46 CORBAservices March 1997

16
unsigned long set_def_return_card (in unsigned long value);

unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean value);

boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);

unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_max_follow_policy (in FollowOption policy);

FollowOption set_def_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOption
 policy);

TypeRepository set_type_repos (in TypeRepository repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

void list_proxies (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

};
Trading Object Service: v1.0 Functional Interfaces March 1997 16-47

16

itten.
,

ons

 set
ffer

 this

face.

ping
ction
are
, the

oth).

 the

 nil.
Attributes and Set Operations

The admin interface enables the values of the trader attributes to be read and wr
All attributes are defined as readonly in either SupportAttributes, ImportAttributes
LinkAttributes, or Admin. To set the trader “attribute” to a new value,
set_<attribute_name> operations are defined in Admin. Each of these set operati
returns the previous value of the attribute as its function value.

If the admin interface operation set_support_proxy_offers is invoked with a value
to FALSE in a trader which supports the proxy interface, the set_support_proxy_o
value does not affect the function of operations in the proxy interface. However, in
case, it does have the effect of making any proxy offers exported via the proxy
interface for that trader unavailable to satisfy queries on that trader’s lookup inter

List Offers Operation

Signature
void list_offers (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

Function

The list_offers operation allows the administrator of a trader to perform housekee
by obtaining a handle on each of the offers within a trader (e.g., for garbage colle
etc.). Only the identifiers of ordinary offers are returned, identifiers of proxy offers
not returned via this operation. If the trader does not support the Register interface
NotImplemented exception is raised.

The returned identifiers are passed back in one of two ways (or a combination of b

• The “ids” return result conveys a list of offer identifiers and the “id_itr” is a
reference to an interface at which additional offer identities can be obtained.

• The “how_many” parameter states how many identifiers are to be returned via
“ids” result; any remaining are available via the iterator interface. If the
“how_many” exceeds the number of offers held in the trader, then the “id_itr” is

List Proxies Operation

Signature
void list_proxies (

in unsigned long how_many,
16-48 CORBAservices March 1997

16

y a

via

n is
out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

Function

The list_proxies operation returns the set of offer identifiers for proxy offers held b
trader. Most “how_many” offer identifiers are returned via “ids” if:

• There are more than “how_many” offer identifiers, the remainder are returned
the “id_itr” iterator.

• There are only “how_many” or fewer offer identifiers, the id_itr is nil.

• The trader does not support the Proxy interface, the NotImplemented exceptio
raised.

16.5.6 Link
interface Link : TraderComponents, SupportAttributes,

LinkAttributes {

struct LinkInfo {

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception IllegalLinkName {

LinkName name;

};

exception UnknownLinkName {

LinkName name;

};

exception DuplicateLinkName {

LinkName name;

};
Trading Object Service: v1.0 Functional Interfaces March 1997 16-49

16
exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {

FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

};

void add_link (

in LinkName name,

in Lookup target,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

DuplicateLinkName,

InvalidLookupRef, // e.g. nil

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

void remove_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

LinkInfo describe_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

LinkNameSeq list_links ();
16-50 CORBAservices March 1997

16

r

tify

e
nce
void modify_link (

in LinkName name,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

UnknownLinkName,

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

};

Add_Link Operation

Signature
void add_link (

in LinkName name,

in Lookup target,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

DuplicateLinkName,

InvalidLookupRef, // e.g. nil

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

Function

The add_link operation allows a trader subsequently to use the service of anothe
trader in the performance of its own trading service operations.

The “name” parameter is used in subsequent link management operations to iden
the intended link. If the parameter is not legally formed, then the IllegalLinkName
exception is raised. An exception of DuplicateLinkName is raised if the link name
already exists. The link name is also used as a component in a sequence of nam
components in naming a trader for resolving or forwarding operations. The seque
of context relative link names provides a path to a trader.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-51

16

meter
d to
art of

he

ute
 a

y”

t
ations
The “target” parameter identifies the Lookup interface at which the trading service
provided by the target trader can be accessed. Should the Lookup interface para
be nil, then an exception of InvalidLookupRef is raised. The target interface is use
obtain the associated Register interface, which will be subsequently returned as p
a describe_link operation and invoked as part of a resolve operation.

The “def_pass_on_follow_rule” parameter specifies the default link behavior for t
link if no link behavior is specified on an importer’s query request. If the
“def_pass_on_follow_rule” exceeds the “limiting_follow_rule” specified in the next
parameter, then a DefaultFollowTooPermissive exception is raised.

The “limiting_follow_rule” parameter specifies the most permissive link follow
behavior that the link is willing to tolerate. The exception
LimitingFollowTooPermissive is raised if this parameter exceeds the trader’s attrib
of “max_link_follow_policy” at the time of the link’s creation. Note it is possible for
link’s “limiting_follow_rule” to exceed the trader’s “max_link_follow_policy” later in
the life of a link, as it is possible that the trader could set its “max_link_follow_polic
to a more restrictive value after the creation of the link.

Remove Link Operation

Signature
void remove_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

Function

The remove_link operation removes all knowledge of the target trader. The targe
trader cannot be used subsequently to resolve, forward, or propagate trading oper
from this trader.

The “name” parameter identifies the link to be removed. The exception
IllegalLinkName is raised if the link is formed poorly and the UnknownLinkName
exception is raised if the named link is not in the trader.

Describe Link Operation

Signature
LinkInfo describe_link (

in LinkName name

) raises (

IllegalLinkName,
16-52 CORBAservices March 1997

16

r.

 in
 the
ith

der.

UnknownLinkName

);

Function

The describe_link operation returns information on a link held in the trader.

The “name” parameter identifies the link whose description is required. For a
malformed link name, the exception IllegalLinkName is raised. An
UnknownLinkName exception is raised if the named link is not found in the trade

The operation returns a LinkInfo structure comprising:

• the Lookup interface of the target trading service,

• the Register interface of the target trading service, and

• the default, as well as the limiting follow behavior of the named link.

If the target service does not support the Register interface, then that field of the
LinkInfo structure is nil. Given the description of the Register::resolve() operation
“Resolve Operation” on page 16-45, most implementations will opt for determining
Register interface when add_link is called and storing that information statically w
the rest of the link state.

List Links Operation

Signature
LinkNameSeq list_links ();

Function

The list_links operation returns a list of the names of all trading links within the tra
The names can be used subsequently for other management operations, such as
describe_link or remove_link.

Modify Link Operation

Signature
void modify_link (

in LinkName name,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

UnknownLinkName,
Trading Object Service: v1.0 Functional Interfaces March 1997 16-53

16

an
f the

d. A
e

 for

r
ds
DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

Function

The modify_link operation is used to change the existing link follow behaviors of
identified link. The Lookup interface reference of the target trader and the name o
link cannot be changed.

The “name” parameter identifies the link whose follow behaviors are to be change
poorly formed “name” raises the IllegalLinkName exception. An UnknownLinkNam
exception is raised if the link name is not known to the trader.

The “def_pass_on_follow_rule” parameter specifies the new default link behavior
this link. If the “def_pass_on_follow_rule” exceeds the “limiting_follow_rule”
specified in the next parameter, then a DefaultFollowTooPermissive exception is
raised.

The “limiting_follow_rule” parameter specifies the new limit for the follow behavio
of this link. The exception LimitingFollowTooPermissive is raised if the value excee
the current “max_link_follow_policy” of the trader.

16.5.7 Proxy
interface Proxy: TraderComponents, SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxyInfo {

ServiceTypeName type;

Lookup target;

PropertySeq properties;

boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

};

exception IllegalRecipe {

ConstraintRecipe recipe;

};

exception NotProxyOfferId {

OfferId id;

};

OfferId export_proxy (

in Lookup target,

in ServiceTypeName type,
16-54 CORBAservices March 1997

16
in PropertySeq properties,

in boolean if_match_all,

in ConstraintRecipe recipe,

in PolicySeq policies_to_pass_on

) raises (

IllegalServiceType,

UnknownServiceType,

InvalidLookupRef, // e.g. nil

IllegalPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

IllegalRecipe,

DuplicatePropertyName,

DuplicatePolicyName

);

void withdraw_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

ProxyInfo describe_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

};

Export Proxy Operation

Signature
OfferId export_proxy (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-55

16

ers.

vice

erty
at
en it
n

his
 (i.e.,
ciated

.

 for

als,
in Lookup target,

in ServiceTypeName type,

in PropertySeq properties,

in boolean if_match_all,

in ConstraintRecipe recipe,

in PolicySeq policies_to_pass_on

) raises (

IllegalServiceType,

UnknownServiceType,

InvalidLookupRef, // e.g. nil

IllegalPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

IllegalRecipe,

DuplicatePropertyName,

DuplicatePolicyName

);

Function

The Proxy interface enables the export and subsequent manipulation of proxy off
Proxy offers enable run-time determination of the interface at which a service is
provided. The export_proxy operation adds a proxy offer to the trader’s set of ser
offers.

Like normal service offers, proxy offers have a service type “type” and named prop
values “properties.” However, a proxy offer does not include an object reference
which the offered service is provided. Instead this object reference is obtained wh
is needed for a query operation; it is obtained by invoking another query operatio
upon the “target” Lookup interface held in the proxy offer.

The “if_match_all” parameter, if TRUE, indicates that the trader should consider t
proxy offer as a match to an importers query based upon type conformance alone
it does not match the importer’s constraint expression against the properties asso
with the proxy offer). This is most often useful when the constraint expression
supplied by the importer is simply passed along in the secondary query operation

The “recipe” parameter tells the trader how to construct the constraint expression
the secondary query operation to “target.” The recipe language is described in
Appendix C; it permits the secondary constraint expression to be made up of liter
values of properties of the proxy offer, and the primary constraint expression.
16-56 CORBAservices March 1997

16

s for

ing

roxy

he

t

 not

ce

 is

str

he

y
tor

xy
The “policies_to_pass_on” parameter provides a static set of <name, value> pair
relaying on to the “target” trader. Table 16-5 describes how the secondary policy
parameter is generated from the primary policy parameter and the
“policies_to_pass_on.”

If a query operation matches the proxy offer (using the normal service type match
and property matching and preference algorithms), this primary query operation
invokes a secondary query operation on the Lookup interface nominated in the p
offer. Although the proxy offer nominates a Lookup interface, this interface is only
required to conform syntactically to the Lookup interface; it need not conform to t
Lookup interface behavior specified above.

The secondary query operation is detailed in Table 16-5.

Table 16-5 Primary/Secondary Policy Parameters

• The IllegalServiceType exception is raised if the service type name (type) is no
well-formed.

• The UnknownServiceType exception is raised if the service type name (type) is
known to the trader.

• The InvalidLookupRef exception is raised if target is not a valid Lookup interfa
reference (e.g. if target is a nil object reference).

• The IllegalPropertyName exception is raised if a property name in “properties”
not well-formed.

in ServiceTypeName type The type is copied from primary query.

in Constraint constr The recipe in the proxy offer is evaluated to provide the con
parameter.

in Preference pref The preference is copied from the primary query.

in PolicySeq policies The “policies” (names and values) contained in the
policies_to_pass_on field of the proxy offer are appended to t
policies of the primary query.

in SpecifiedProps desired_props The desired_props are copied from the primary query.

in unsigned long how_many The how_many parameter is set by the trader to reflect the
trader implementation’s preference for receiving the resultant
offer as a list or through an iterator.

out OfferSeq offers At most how_many offers are returned from the secondary
query operation via offers.

out OfferIterator offer_itr If the secondary query needs to return more than how_man
offers, then the remaining offers can be accessed via the itera
offer_itr. If there are only how_many or fewer offers, then
offer_itr is nil.

out PolicyNameSeq limits_applied The names of any policy limits that were applied by the pro
trader.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-57

16

was

tain

the

me

d

an
• The PropertyTypeMismatch exception is raised if a property value is not of an
appropriate type as determined by the service type.

• The ReadonlyDynamicProperty exception is raised if a dynamic property value
supplied for a property that was flagged as readonly.

• The MissingMandatoryProperty exception is raised if “properties” does not con
one of the mandatory properties defined by the service type.

• The IllegalRecipe exception is raised if the recipe is not well-formed.

• The DuplicatePropertyName exception is raised if two or more properties with
same property name are included in the “properties” parameter.

• The DuplicatePolicyName exception is raised if two or more policies with the sa
policy name are included in the “policies_to_pass_on” parameter.

Note – Proxy offers cannot be modified; they must be withdrawn and re-exported.

Withdraw Proxy Operation

Signature
void withdraw_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

Function

The withdraw_proxy operation removes the proxy offer identified by “id” from the
trader.

The IllegalOfferId exception is raised if “id” is not well-formed. The UnknownOfferI
exception is raised if “id” does not identify any offer held by the trader. The
NotProxyOfferId exception is raised if “id” identifies a normal service offer rather th
a proxy offer.

Describe Proxy Operation

Signature
ProxyInfo describe_proxy (

in OfferId id

) raises (

IllegalOfferId,
16-58 CORBAservices March 1997

16

d

an
UnknownOfferId,

NotProxyOfferId

);

Function

The describe_proxy operation returns the information contained in the proxy offer
identified by “id” in the trader.

The IllegalOfferId exception is raised if “id” is not well-formed. The UnknownOfferI
exception is raised if “id” does not identify any offer held by the trader. The
NotProxyOfferId exception is raised if “id” identifies a normal service offer rather th
a proxy offer.

16.6 Service Type Repository
module CosTradingRepos {

interface ServiceTypeRepository {

// local types

typedef sequence<CosTrading::ServiceTypeName>
 ServiceTypeNameSeq;

enum PropertyMode {

PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY

};

struct PropStruct {

CosTrading::PropertyName name;

CORBA::TypeCode value_type;

PropertyMode mode;

};

typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::Identifier

struct IncarnationNumber {

unsigned long high;

unsigned long low;

};

struct TypeStruct {

Identifier if_name;

PropStructSeq props;
Trading Object Service: v1.0 Service Type Repository March 1997 16-59

16
ServiceTypeNameSeq super_types;

boolean masked;

IncarnationNumber incarnation;

};

enum ListOption { all, since };

union SpecifiedServiceTypes switch (ListOption) {

case since: IncarnationNumber incarnation;

};

// local exceptions

exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

};

exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;

Identifier base_if;

CosTrading::ServiceTypeName derived_service;

Identifier derived_if;

};

exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

CosTrading::ServiceTypeName sub_type;

};

exception AlreadyMasked {

CosTrading::ServiceTypeName name;

};

exception NotMasked {

CosTrading::ServiceTypeName name;

};

exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;

PropStruct definition_1;

CosTrading::ServiceTypeName type_2;

PropStruct definition_2;

};

exception DuplicateServiceTypeName {
16-60 CORBAservices March 1997

16
CosTrading::ServiceTypeName name;

};

// attributes

readonly attribute IncarnationNumber incarnation;

// operation signatures

IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types

) raises (

CosTrading::IllegalServiceType,

ServiceTypeExists,

InterfaceTypeMismatch,

CosTrading::IllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

);

void remove_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

);

ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

);

TypeStruct describe_type (

in CosTrading::ServiceTypeName name

) raises (
Trading Object Service: v1.0 Service Type Repository March 1997 16-61

16
CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

void mask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

AlreadyMasked

);

void unmask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

NotMasked

);

};

}; /* end module CosTradingRepos */

Add Type Operation

Signature
IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types
16-62 CORBAservices March 1997

16

type

for
s

of the

ince
ct
 [64-

uld

r, the

lue
e
s
) raises (

CosTrading::IllegalServiceType,

ServiceTypeExists,

InterfaceTypeMismatch,

CosTrading::IllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

);

Function

The add_type operation enables the creation of new service types in the service
repository. The caller supplies the “name” for the new type, the identifier for the
interface associated with instances of this service type, the properties definitions
this service type, and the service type names of the immediate super-types to thi
service type.

If the type creation is successful, an incarnation number is returned as the value
operation. Incarnation numbers are opaque values that are assigned to each
modification to the repository’s state. An incarnation number can be quoted when
invoking the list_types operation to retrieve all changes to the service repository s
a particular logical time. (Note: IncarnationNumber is currently declared as a stru
consisting of two unsigned longs; what we really want here is an unsigned hyper
bit integer]. A future revision task force should modify this when CORBA systems
support IDL 64-bit integers.)

• If the “name” parameter is malformed, then the CosTrading::IllegalServiceType
exception is raised.

• If the type already exists, then the ServiceTypeExists exception is raised.

• If the “if_name” parameter is not a sub-type of the interface associated with a
service type from which this service type is derived, such that substitutability wo
be violated, then the InterfaceTypeMismatch exception is raised.

• If a property name supplied in the “props” parameter is malformed, the
CosTrading::IllegalPropertyName exception is raised.

• If the same property name appears two or more times in the “props” paramete
CosTrading::DuplicatePropertyName exception is raised.

• If a property value type associated with this service type illegally modifies the va
type of a super-type’s property, or if two super-types incompatibly declare valu
types for the same property name, then the ValueTypeRedefinition exception i
raised.

• If one of the ServiceTypeNames in “super_types” is malformed, then the
CosTrading::IllegalServiceType exception is raised.
Trading Object Service: v1.0 Service Type Repository March 1997 16-63

16

, the

itory.

ypes

h are
two
• If one of the ServiceTypeNames in “super_types” does not exist, then the
CosTrading::UnknownServiceType exception is raised.

• If the same service type name is included two or more times in this parameter
DuplicateServiceTypeName exception is raised.

Remove Type Operation

Signature
void remove_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

);

Function

The remove_type operation removes the named type from the service type repos

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If “name” has a service type which has been derived from it, then the HasSubT
exception is raised.

List Types Operation

Signature
ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

);

Function

The list_types operation permits a client to obtain the names of service types whic
in the repository. The “which_types” parameter permits the client to specify one of
possible values:

• all types known to the repository

• all types added/modified since a particular incarnation number

The names of the requested types are returned by the operation for subsequent
querying via the describe_type or the fully_describe_type operation.
16-64 CORBAservices March 1997

16

ular
rties

es in
per
Describe Type Operation

Signature
TypeStruct describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

Function

The describe_type operation permits a client to obtain the details for a particular
service type.

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

Fully Describe Type Operation

Signature
TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

Function

The fully_describe_type operation permits a client to obtain the details for a partic
service type. The property sequence returned in the TypeStruct includes all prope
inherited from the transitive closure of its super types; the sequence of super typ
the TypeStruct contains the names of the types in the transitive closure of the su
type relation.

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.
Trading Object Service: v1.0 Service Type Repository March 1997 16-65

16

eing
).
ing

 is

 be
Mask Type Operation

Signature
void mask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

AlreadyMasked

);

Function

The mask_type operation permits the deprecation of a particular type (i.e., after b
masked, exporters will no longer be able to advertise offers of that particular type
The type continues to exist in the service repository due to other service types be
derived from it.

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If the type is currently in the masked state, then the AlreadyMasked exception
raised.

Unmask Type Operation

Signature
void unmask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

NotMasked

);

Function

The unmask_type undeprecates a type (i.e., after being unmasked, exporters will
able to resume advertisement of offers of that particular type).

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.
16-66 CORBAservices March 1997

16

 is

 a

ue
al
Prop
e to
tion

tions
aise
nly

d on
s the
_info
• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If the type is not currently in the masked state, then the NotMasked exception
raised.

16.7 Dynamic Property Evaluation interface
module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in TypeCode returned_type,
in any extra_info)

raises (DPEvalFailure);
};

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode returned_type;
any extra_info;

};
};

The DynamicPropEval interface is provided by an exporter who wishes to provide
dynamic property value in a service offer held by the trader.

When exporting a service offer (or proxy offer), the property with the dynamic val
has an “any” value which contains a DynamicProp structure rather than the norm
property value. A trader which supports dynamic properties accepts this Dynamic
value as containing the information which enables a correctly-typed property valu
be obtained during the evaluation of a query. The export (or export_proxy) opera
raises the PropertyTypeMismatch if the returned_type is not appropriate for the
property name as defined by the service type.

Readonly properties may not have dynamic values. The export and modify opera
on the Register interface and the export_proxy operation on the Proxy interface r
the ReadonlyDynamicProperty exception if dynamic values are assigned to reado
properties.

When a query requires a dynamic property value, the evalDP operation is invoke
the eval_if interface in the DynamicProp structure. The property name parameter i
name of the property whose value is being obtained. The returned_type and extra
Trading Object Service: v1.0 Dynamic Property Evaluation interface March 1997 16-67

16

turns
 of a

e,
).

ed by

t be

hat
n),
erty

n of

 to

rties

ic
,

versa.

ce:

test

 test

st

st

tion
parameters are copied from the DynamicProp structure. The evalDP operation re
an any value which should contain a value for that property. The value should be
type indicated by returned_type.

The DPEvalFailure exception is raised if the value for the property cannot be
determined. If the value is required for the evaluation of a constraint or preferenc
then that evaluation is deemed to have failed on that service offer (or proxy offer

Other than the preceding rules, the behavior of the evalDP operation is not specifi
this standard. In particular, the purpose of the extra_info data in determining the
dynamic property value is implementation-specific.

If the trader does not support dynamic properties (indicated by the trader attribute
supports_dynamic_properties), the export and export_proxy operations should no
parameterized by dynamic properties. The behavior of such traders in such
circumstances is not specified by this standard.

If the trader does not support dynamic properties or the importer has requested t
dynamic properties are not used (via the policies parameter of the query operatio
then dynamic property evaluation is not performed. If the value of a dynamic prop
is required by the evaluation of a constraint or preference, then that evaluation is
deemed to have failed on that service offer (or proxy offer).

The describe operation of the Register interface and the describe_proxy operatio
the Proxy interface do not perform dynamic property evaluation, but return the
DynamicProp structure as the value of the property. As these interfaces are used
create dynamic properties via the export and export_proxy operations, the other
operations on these interfaces must ensure that the dynamic nature of the prope
remains visible to the exporters.

The modify operation on the Register interface of a trader which supports dynam
properties must accept the establishment and modification of dynamic properties
consistent with the export operation. There is no restriction on a property value
changing from a static value stored by the trader into a dynamic value, and vice

Note – Readonly static properties may not be modified to be dynamic.

16.8 Conformance Criteria

The following interfaces are programmatic reference points for testing conforman

• the Lookup interface (as server) provided by the trader implementation under

• the Register interface (as server) provided by the trader implementation under

• the Admin interface (as server) provided by the trader implementation under te

• the Link interface (as server) provided by the trader implementation under test

• the Proxy interface (as server) provided by the trader implementation under te

• a Lookup interface (as client) of a linked trader, used by the trader implementa
under test
16-68 CORBAservices March 1997

16

ation

ll be

s of

o a

so a

se
ction

up”

also

l

• a Register interface (as client) of a linked trader, used by the trader implement
under test

• a DynamicPropEval interface (as client) of an object, used by the trader
implementation under test during the evaluation of a dynamic property

The behavior defined for each of the operations in the interface specifications sha
exhibited at the conformance points associated with that behavior.

The following taxonomy is defined for specific implementation conformance classe
trading object service implementations:

• query trader - supports the Lookup interface

• simple trader - supports the Lookup and Register interfaces

• stand-alone trader - supports the Lookup, Register, and Admin interfaces

• linked trader - supports the Lookup, Register, Admin, and Link interfaces; is als
client for Lookup and Register interfaces

• proxy trader - supports the Lookup, Register, Admin, and Proxy interfaces; is al
client for Lookup interfaces

• full-service trader - supports the Lookup, Register, Admin, Link, and Proxy
interfaces; is also a client for Lookup and Register interfaces

Any of these specific trading object service classes may also be a client for the
DynamicPropEval interface if it supports dynamic properties.

16.8.1 Conformance Requirements for Trading Interfaces as Server

Since the interfaces to a trading object service are separable, and support for tho
interfaces is selectable subject to the conformance classes defined above, this se
specifies the conformance requirements on a per-interface basis.

Lookup Interface

An implementation claiming conformance to the Lookup interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Lookup interface as documented in “Look
on page 16-30.

An implementation claiming conformance to the Lookup interface as server shall
support the OfferIterator interface as server as documented in “Offer Iterator” on
page 16-35.

Register Interface

An implementation claiming conformance to the Register interface as server shal
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Register interface as documented in
“Register” on page 16-36, with the following permitted exceptions:
Trading Object Service: v1.0 Conformance Criteria March 1997 16-69

16

ject
tion,

ct a
.

ith
sume

ith
so

in”

lso
” on

n

” on
• An implementation which only allows the value of FALSE for the
supports_modifiable_properties attribute is conformant, in which case it may re
a service offer which includes modifiable properties passed in an export opera
and may always respond to modify operation requests with an exception.

• An implementation which only allows the value of FALSE for the
supports_dynamic_properties attribute is conformant, in which case it may reje
service offer which includes dynamic properties passed in an export operation

• An implementation claiming conformance to the Register interface as server, w
the value of the supports_dynamic_properties set to TRUE, shall be able to as
the client role for the DynamicPropEval interface.

• An implementation claiming conformance to the Register interface as server, w
the value of the readonly attribute supports_proxy_offers set to TRUE, shall al
support the Proxy interface.

Admin Interface

An implementation claiming conformance to the Admin interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Admin interface as documented in “Adm
on page 16-46.

An implementation claiming conformance to the Admin interface as server shall a
support the OfferIdIterator interface as server as documented in “Offer Id Iterator
page 16-45.

Link Interface

An implementation claiming conformance to the Link interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Link interface as documented in “Link” o
page 16-49.

Proxy Interface

An implementation claiming conformance to the Proxy interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Proxy interface as documented in “Proxy
page 16-54.
16-70 CORBAservices March 1997

16

sses

 by

lients

r
ce as
16.8.2 Conformance Requirements for Implementation Conformance Cla

In the sections below, the following graphical notation is used:

The meaning of this notation is as follows:

• The rectangle represents an implementation of “Conformance Class Name.”

• The ellipses on the surface of the rectangle represent the interfaces supported
this implementation.

• The arrows to the right indicate that traders of this conformance class act as c
to other traders via the named interface.

Query Trader

A trading object service implementation claiming conformance to the query trade
conformance class shall meet the conformance requirements of the Lookup interfa
server.

Interface1 Interface2

Conformance Class Name
Interface3

Lookup

query trader
Trading Object Service: v1.0 Conformance Criteria March 1997 16-71

16

r

p,

r
ister,
Simple Trader

A trading object service implementation claiming conformance to the simple trade
conformance class shall meet the conformance requirements of the Lookup and
Register interfaces as server.

Stand-alone Trader

A trading object service implementation claiming conformance to the stand-alone
trader conformance class shall meet the conformance requirements of the Looku
Register, and Admin interfaces as server.

Linked Trader

A trading object service implementation claiming conformance to the linked trade
conformance class shall meet the conformance requirements of the Lookup, Reg
Admin, and Link interfaces as server.

Lookup Register

simple trader

Lookup Register

stand-alone trader

Admin

Lookup Register

linked trader
Lookup

Admin Link

Register
16-72 CORBAservices March 1997

16

ister,

p,
Proxy Trader

A trading object service implementation claiming conformance to the proxy trader
conformance class shall meet the conformance requirements of the Lookup, Reg
Admin, and Proxy interfaces as server.

Full-service Trader

A trading object service implementation claiming conformance to the full-service
trader conformance class shall meet the conformance requirements of the Looku
Register, Admin, Link, and Proxy interfaces as server.

Lookup Register

proxy trader
Lookup

Admin Proxy

Lookup Register

full-service trader
Lookup

Admin Link Proxy

Register
Trading Object Service: v1.0 Conformance Criteria March 1997 16-73

16

ure

Appendix A CORBA OMG IDL based Specification of the Trading Function

This appendix provides the CORBA OMG IDL specification of the interface signat
for the trading function’s computational specification. It specifies the signature for
each computational operation in OMG IDL, according to the functional description
(signature and semantics) provided in the body of this chapter.

 A.1 OMG Trading Function Module
module CosTrading {

// forward references to our interfaces

interface Lookup;

interface Register;

interface Link;

interface Proxy;

interface Admin;

interface OfferIterator;

interface OfferIdIterator;

// type definitions used in more than one interface

typedef string Istring;

typedef Object TypeRepository;

typedef Istring PropertyName;

typedef sequence<PropertyName> PropertyNameSeq;

typedef any PropertyValue;

struct Property {

PropertyName name;

PropertyValue value;

};

typedef sequence<Property> PropertySeq;

struct Offer {

Object reference;

PropertySeq properties;

};

typedef sequence<Offer> OfferSeq;
 16-74 CORBAservices March 1997

16
typedef string OfferId;

typedef sequence<OfferId> OfferIdSeq;

typedef Istring ServiceTypeName; // similar structure to IR::Identifier

typedef Istring Constraint;

enum FollowOption {

local_only,

if_no_local,

always

};

typedef Istring LinkName;

typedef sequence<LinkName> LinkNameSeq;

typedef LinkNameSeq TraderName;

typedef string PolicyName; // policy names restricted to Latin1

typedef sequence<PolicyName> PolicyNameSeq;

typedef any PolicyValue;

struct Policy {

PolicyName name;

PolicyValue value;

};

typedef sequence<Policy> PolicySeq;

// exceptions used in more than one interface

exception UnknownMaxLeft {};

exception NotImplemented {};

exception IllegalServiceType {

ServiceTypeName type;

};

exception UnknownServiceType {
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-75

16
ServiceTypeName type;

};

exception IllegalPropertyName {

PropertyName name;

};

exception DuplicatePropertyName {

PropertyName name;

};

exception PropertyTypeMismatch {

ServiceTypeName type;

Property prop;

};

exception MissingMandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyDynamicProperty {

ServiceTypeName type;

PropertyName name;

};

exception IllegalConstraint {

Constraint constr;

};

exception InvalidLookupRef {

Lookup target;

};

exception IllegalOfferId {

OfferId id;

};

exception UnknownOfferId {
 16-76 CORBAservices March 1997

16
OfferId id;

};

exception DuplicatePolicyName {

PolicyName name;

};

// the interfaces

interface TraderComponents {

readonly attribute Lookup lookup_if;

readonly attribute Register register_if;

readonly attribute Link link_if;

readonly attribute Proxy proxy_if;

readonly attribute Admin admin_if;

};

interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;

readonly attribute boolean supports_dynamic_properties;

readonly attribute boolean supports_proxy_offers;

readonly attribute TypeRepository type_repos;

};

interface ImportAttributes {

readonly attribute unsigned long def_search_card;

readonly attribute unsigned long max_search_card;

readonly attribute unsigned long def_match_card;

readonly attribute unsigned long max_match_card;

readonly attribute unsigned long def_return_card;

readonly attribute unsigned long max_return_card;

readonly attribute unsigned long max_list;

readonly attribute unsigned long def_hop_count;

readonly attribute unsigned long max_hop_count;

readonly attribute FollowOption def_follow_policy;
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-77

16
readonly attribute FollowOption max_follow_policy;

};

interface LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;

};

interface Lookup:TraderComponents,SupportAttributes,ImportAttributes {

typedef Istring Preference;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

};

exception IllegalPreference {

Preference pref;

};

exception IllegalPolicyName {

PolicyName name;

};

exception PolicyTypeMismatch {

Policy the_policy;

};

exception InvalidPolicyValue {

Policy the_policy;

};

void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,
 16-78 CORBAservices March 1997

16
in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,

out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

};

interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {

Object reference;

ServiceTypeName type;

PropertySeq properties;

};

exception InvalidObjectRef {

Object ref;

};

exception UnknownPropertyName {

PropertyName name;

};

exception InterfaceTypeMismatch {

ServiceTypeName type;
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-79

16
Object reference;

};

exception ProxyOfferId {

OfferId id;

};

exception MandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyProperty {

ServiceTypeName type;

PropertyName name;

};

exception NoMatchingOffers {

Constraint constr;

};

exception IllegalTraderName {

TraderName name;

};

exception UnknownTraderName {

TraderName name;

};

exception RegisterNotSupported {

TraderName name;

};

OfferId export (

in Object reference,

in ServiceTypeName type,

in PropertySeq properties

) raises (
 16-80 CORBAservices March 1997

16
InvalidObjectRef,

IllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

IllegalPropertyName, // e.g. prop_name = “<foo-bar”

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

DuplicatePropertyName

);

void withdraw (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

OfferInfo describe (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

void modify (

in OfferId id,

in PropertyNameSeq del_list,

in PropertySeq modify_list

) raises (

NotImplemented,

IllegalOfferId,

UnknownOfferId,

ProxyOfferId,

IllegalPropertyName,

UnknownPropertyName,
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-81

16
PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName

);

void withdraw_using_constraint (

in ServiceTypeName type,

in Constraint constr

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

);

Register resolve (

in TraderName name

) raises (

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported

);

};

interface Link : TraderComponents, SupportAttributes, LinkAttributes {

struct LinkInfo {

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception IllegalLinkName {

LinkName name;

};
 16-82 CORBAservices March 1997

16
exception UnknownLinkName {

LinkName name;

};

exception DuplicateLinkName {

LinkName name;

};

exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {

FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

};

void add_link (

in LinkName name,

in Lookup target,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

DuplicateLinkName,

InvalidLookupRef, // e.g. nil

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

void remove_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-83

16
LinkInfo describe_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

LinkNameSeq list_links ();

void modify_link (

in LinkName name,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

UnknownLinkName,

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

};

interface Proxy : TraderComponents, SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxyInfo {

ServiceTypeName type;

Lookup target;

PropertySeq properties;

boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

};

exception IllegalRecipe {

ConstraintRecipe recipe;

};
 16-84 CORBAservices March 1997

16
exception NotProxyOfferId {

OfferId id;

};

OfferId export_proxy (

in Lookup target,

in ServiceTypeName type,

in PropertySeq properties,

in boolean if_match_all,

in ConstraintRecipe recipe,

in PolicySeq policies_to_pass_on

) raises (

IllegalServiceType,

UnknownServiceType,

InvalidLookupRef, // e.g. nil

IllegalPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

IllegalRecipe,

DuplicatePropertyName,

DuplicatePolicyName

);

void withdraw_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

ProxyInfo describe_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-85

16
);

};

interface Admin : TraderComponents, SupportAttributes, ImportAttributes,
LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);

unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);

unsigned long set_max_match_card (in unsigned long value);

unsigned long set_def_return_card (in unsigned long value);

unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean value);

boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);

unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_def_follow_policy (in FollowOption policy);

FollowOption set_max_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOption policy);

TypeRepository set_type_repos (in TypeRepository repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (
 16-86 CORBAservices March 1997

16
in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

void list_proxies (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

};

interface OfferIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);

boolean next_n (

in unsigned long n,

out OfferSeq offers

);

void destroy ();

};

interface OfferIdIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);

boolean next_n (
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-87

16
in unsigned long n,

out OfferIdSeq ids

);

void destroy ();

};

}; /* end module CosTrading */

 A.2 Dynamic Property Module
module CosTradingDynamic {

exception DPEvalFailure {

CosTrading::PropertyName name;

CORBA::TypeCode returned_type;

any extra_info;

};

interface DynamicPropEval {

any evalDP (

in CosTrading::PropertyName name,

in CORBA::TypeCode returned_type,

in any extra_info

) raises (

DPEvalFailure

);

};

struct DynamicProp {

 DynamicPropEval eval_if;

 CORBA::TypeCode returned_type;

 any extra_info;

};

}; /* end module CosTradingDynamic */

 A.3 Service Type Repository Module
module CosTradingRepos {
 16-88 CORBAservices March 1997

16
interface ServiceTypeRepository {

// local types

typedef sequence<CosTrading::ServiceTypeName> ServiceTypeNameSeq;

enum PropertyMode {

PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY

};

struct PropStruct {

CosTrading::PropertyName name;

CORBA::TypeCode value_type;

PropertyMode mode;

};

typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::Identifier

struct IncarnationNumber {

unsigned long high;

unsigned long low;

};

struct TypeStruct {

Identifier if_name;

PropStructSeq props;

ServiceTypeNameSeq super_types;

boolean masked;

IncarnationNumber incarnation;

};

enum ListOption { all, since };

union SpecifiedServiceTypes switch (ListOption) {

case since: IncarnationNumber incarnation;

};

// local exceptions

exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

};
 Trading Object Service: v1.0 Service Type Repository Module March 1997 16-89

16
exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;

Identifier base_if;

CosTrading::ServiceTypeName derived_service;

Identifier derived_if;

};

exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

CosTrading::ServiceTypeName sub_type;

};

exception AlreadyMasked {

CosTrading::ServiceTypeName name;

};

exception NotMasked {

CosTrading::ServiceTypeName name;

};

exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;

PropStruct definition_1;

CosTrading::ServiceTypeName type_2;

PropStruct definition_2;

};

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

};

// attributes

readonly attribute IncarnationNumber incarnation;

// operation signatures

IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types

) raises (

CosTrading::IllegalServiceType,

ServiceTypeExists,
 16-90 CORBAservices March 1997

16
InterfaceTypeMismatch,

CosTrading::IllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

);

void remove_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

);

ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

);

TypeStruct describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

void mask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,
 Trading Object Service: v1.0 Service Type Repository Module March 1997 16-91

16
CosTrading::UnknownServiceType,

AlreadyMasked

);

void unmask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

NotMasked

);

};

}; /* end module CosTradingRepos */
 16-92 CORBAservices March 1997

16

orted
 the
the
” at

m
h

 is a

e
s

er of
Appendix B OMG Constraint Language BNF

This appendix provides the BNF specification of the CORBA standard constraint
language; it is used for specifying both the constraint and preference expression
parameters to various operations in the trader interfaces.

A statement in this language is an Istring. Other constraint languages may be supp
by a particular trader implementation; the constraint language used by a client of
trader is indicated by embedding “<<Identifier major.minor>>” at the beginning of
string. If such an escape is not used, it is equivalent to embedding “<<OMG 1.0>>
the beginning of the string.

B.1 Language Basics

 B.1.1 Basic Elements

Both the constraint and preference expressions in a query can be constructed fro
property names of conformant offers and literals. The constraint language in whic
these expressions are written consists of the following items (examples of these
expressions are shown in square brackets below each bulleted item):

• comparative functions: == (equality), != (inequality), >, >=, <, <=, ~ (substring
match), in (element in sequence); the result of applying a comparative function
boolean value
[“Cost < 5” implies only consider offers with a Cost property value less than 5;
“’Visa’ in CreditCards” implies only consider offers in which the CreditCards
property, consisting of a set of strings, contains the string ’Visa’]

• boolean connectives: and, or, not
[“Cost >= 2 and Cost <= 5” implies only consider offers where the value of the
Cost property is in the range 2 <= Cost <= 5]

• property existence: exist

• property names

• numeric and string constants

• mathematical operators: +, -, *, /
[“10 < 12.3 * MemSize + 4.6 * FileSize” implies only consider offers for which th
arithmetic function in terms of the value of the MemSize and FileSize propertie
exceeds 10]

• grouping operators: (,)

Note that the keywords in the language are case sensitive.

 B.1.2 Precedence Relations

The following precedence relations hold in the absence of parentheses, in the ord
highest to lowest:
 Trading Object Service: v1.0 Language Basics March 1997 16-93

16

L

rty’s

oth

d

type

type

type

type

type

type
() exist unary-minus

not

* /

+ -

~

in

== != < <= > >=

and

or

 B.1.3 Legal Property Value Types

While one can define properties of service types with arbitrarily complex OMG ID
value types, only the following property value types can be manipulated using the
constraint language:

• boolean, short, unsigned short, long, unsigned long, float, double, char, Ichar,
string, Istring

• sequences of the above types

The “exist” operator can be applied to any property name, regardless of the prope
value type.

 B.1.4 Operator Restrictions

exist can be applied to any property

~ can only be applied if left operand and right operand are both strings or b
Istrings

in can only be applied if the left operand is one of the simple types describe
above and the right operand is a sequence of the same simple type

== can only be applied if the left and right operands are of the same simple

!= can only be applied if the left and right operands are of the same simple

< can only be applied if the left and right operands are of the same simple

<= can only be applied if the left and right operands are of the same simple

> can only be applied if the left and right operands are of the same simple

>= can only be applied if the left and right operands are of the same simple

+ can only be applied to simple numeric operands

- can only be applied to simple numeric operands

* can only be applied to simple numeric operands
 16-94 CORBAservices March 1997

16

 the
a
\.
/ can only be applied to simple numeric operands

<, <=, >, >= comparisons imply use of the appropriate collating sequence for
characters and strings; TRUE is greater than FALSE for booleans.

 B.1.5 Representation of Literals

boolean TRUE or FALSE

integers sequences of digits, with a possible leading + or -

floats digits with decimal point, with optional exponential notation

characters char and Ichar are of the form ‘<char>’, string and Istring are of
form ‘<char><char>+’; to embed an apostrophe in a string, place
backslash (\) in front of it; to embed a backslash in a string, use \

 B.2 The Constraint Language BNF

 B.2.1 The Constraint Language Proper in Terms of Lexical Tokens
<constraint>:=/* empty */

| <bool>

<preference>:=/* <empty> */

| min <bool>

| max <bool>

| with <bool>

| random

| first

<bool>:= <bool_or>

<bool_or>:=<bool_or> or <bool_and>

| <bool_and>

<bool_and>:=<bool_and> and <bool_compare>

| <bool_compare>

<bool_compare>:=<expr_in> == <expr_in>

| <expr_in> != <expr_in>

| <expr_in> < <expr_in>

| <expr_in> <= <expr_in>
 Trading Object Service: v1.0 The Constraint Language BNF March 1997 16-95

16
| <expr_in> > <expr_in>

| <expr_in> >= <expr_in>

| <expr_in>

<expr_in>:=<expr_twiddle> in <Ident>

| <expr_twiddle>

<expr_twiddle>:=<expr> ~ <expr>

| <expr>

<expr>:= <expr> + <term>

| <expr> - <term>

| <term>

<term>:= <term> * <factor_not>

| <term> / <factor_not>

| <factor_not>

<factor_not>:=not <factor>

| <factor>

<factor>:= (<bool_or>)

| exist <Ident>

| <Ident>

| <Number>

| - <Number>

| <String>

| TRUE

| FALSE

 B.2.2 “BNF” for Lexical Tokens up to Character Set Issues
<Ident>:= <Leader> <FollowSeq>

<FollowSeq>:=/* <empty> */

| <FollowSeq> <Follow>

<Number>:=<Mantissa>

| <Mantissa> <Exponent>
 16-96 CORBAservices March 1997

16

>,
e

racter
et.
<Mantissa>:=<Digits>

| <Digits> .

| . <Digits>

| <Digits> . <Digits>

<Exponent>:=<Exp> <Sign> <Digits>

<Sign>:= +

| -

<Exp>:= E

| e

<Digits>:=<Digits> <Digit>

| <Digit>

<String>:=’ <TextChars> ’

<TextChars>:=/* <empty> */

| <TextChars> <TextChar>

<TextChar>:=<Alpha>

| <Digit>

| <Other>

| <Special>

<Special>:=\\

| \’

 B.2.3 Character Set Issues

The previous BNF has been complete up to the non-terminals <Leader>, <Follow
<Alpha>, <Digit>, and <Other>. For a particular character set, one must define th
characters which make up these character classes.

Each character set which the trading service is to support must define these cha
classes. This appendix defines these character classes for the ASCII character s

<Leader>:=<Alpha>
 Trading Object Service: v1.0 The Constraint Language BNF March 1997 16-97

16
<Follow>:=<Alpha>

| <Digit>

| _

<Alpha> is the set of alphabetic characters [A-Za-z]

<Digit> is the set of digits [0-9]

<Other> is the set of ASCII characters that are not <Alpha>, <Digit>, or <Special>
 16-98 CORBAservices March 1997

16

straint

 with

ed by
er is

. If

the
 to

 the
Appendix C OMG Constraint Recipe Language

This appendix describes the recipe language used to construct the secondary con
expression when resolving proxy offers; the secondary constraint expression is
constructed from the primary constraint expression and the properties associated
the proxy offer.

A statement in this language is an Istring. Other recipe languages may be support
a particular trader implementation; the recipe language used by a client of the trad
indicated by embedding “<<Identifier major.minor>>” at the beginning of the string
such an escape is not used, it is equivalent to embedding “<<OMG 1.0>>” at the
beginning of the string.

While the nested invocation of the Trader behind the proxy assumes support for
Lookup interface, the secondary constraint expression does not necessarily need
conform to the language described in Appendix B.

C.1 The Recipe Syntax

The rewriting from primary to secondary works similarly to formatted output in a
variety of programming languages and systems. It is patterned after the variable
replacement syntax of the Bourne and Korn shells on most UNIX systems.

When it is time to construct the secondary constraint expression from the recipe,
algorithm is as follows:

while not end of recipe

fetch the next character from the recipe

if not a ‘$’ character

append the character to the secondary constraint

else

fetch next character from the recipe

if a ‘*’ character

append the entire primary constraint to the secondary constraint

else if not a ‘(’ character

append the character to the secondary constraint

else

collect characters up to a ‘)’ character, discarding ‘)’

lookup property with that name

append formatted value of that property to secondary constraint
 Trading Object Service: v1.0 The Recipe Syntax March 1997 16-99

16

:

ed
 C.2 Example

Assume a proxy offer has been exported to a trader with the following properties

<Name, ‘MyName’>, <Cost, 42>, <Host, ‘x.y.co.uk’>

and with the following recipe:

“Name == $(Name) and Cost == $$$(Cost)”

The above algorithm will generate the following secondary constraint for the nest
call to the trader behind the proxy:

“Name == ‘MyName’ and Cost == $42”
 16-100 CORBAservices March 1997

Object Collection Specification 17
S 96-
The adopted specification used to create this chapter was OMG document ORBO
07-09, July 1996. This chapter provides complete documentation for the Object
Collection Service specification.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 17-2

“Service Structure” 17-2

“Combined Collections” 17-10

“Restricted Access Collections” 17-14

“The CosCollection Module” 17-15

Appendix A, “OMG Object Query Service” 17-122

Appendix B, “Relationship to Other Relevant Standards” 17-131

Appendix C, “References” 17-136
CORBAservices July 1997 17-1

17

ts,
user.
 of
s

ess of

, they
ype.
e
le

only

 is
ction
ments
ting

on

s the
to
 a

ice

t

ion

hen
17.1 Overview

Collections support the grouping of objects and support operations for the
manipulation of the objects as a group. Common collection types are queues, se
bags, maps, etc. Collection types differ in the “nature of grouping” exposed to the
“Nature of grouping” is reflected in the operations supported for the manipulation
objects as members of a group. Collections, for example, can be ordered and thu
support access to an element at position ”i” while other collections may support
associative access to elements via a key. Collections may guarantee the uniquen
elements while others allow multiple occurrences of elements. A user chooses a
collection type that matches the application requirements based on manipulation
capabilities.

Collections are foundation classes used in a broad range of applications; therefore
have to meet the general requirement to be able to collect elements of arbitrary t
On the other hand, a collection instance usually is a homogenous collection in th
sense that all elements collected are of the same type, or support the same sing
interface.

Sometimes you may not want to do something to all elements in a collection, but
treat an individual object or traverse a collection explicitly (not implicitly via a
collection operation). To enable this, a pointer abstraction often called an iterator
supported with collections. For example, an iterator points to an element in a colle
and processes the element pointed to. Iterators can be moved and used to visit ele
of a collection in an application defined manner. There can be many iterators poin
to elements of the same collection instance.

Normally, when operating on all elements of a collection, you want to pass user-
defined information to the collection implementation about what to do with the
individual elements or which elements are to be processed. To enable this, functi
interfaces are used. A collection implementation can rely on and use the defined
function interface. A user has to specialize and implement these interfaces to pas
user-defined information to the implementation. A function interface can be used
pass element type specific information such as how to compare elements or pass
“program” to be applied to all elements.

17.2 Service Structure

The purpose of an Object Collection Service is to provide a uniform way to
create and manipulate the most common collections generically. The Object Serv
defines three categories of interfaces to serve this purpose.

1. Collection interfaces and collection factories. A client chooses a collection
interface which offers grouping properties that match the client’s needs. A clien
creates a collection instance of the chosen interface using a collection factory.
When creating a collection, a client has to pass element type specific informat
such as how to compare elements, how to test element equality, or the type
checking desired. A client uses collections to manipulate elements as a group. W
17-2 CORBAservices July 1997

17

he

s

hen a

n)

tion

wing

 that
ey

 sort

key

d
efined
a collection is no longer used it may be destroyed - this includes removing the
elements collected, destroying element type specific information passed, and t
iterators pointing to this collection.

2. Iterator interfaces. A client creates an iterator using the collection for which it i
created as factory. A client uses an iterator to traverse the collection in an
application defined manner, process elements pointed to, mark ranges, etc. W
client no longer uses an iterator, it destroys the iterator.

3. Function interfaces. A client creates user-defined specializations of these
interfaces using user-defined factories. Instances are passed to a collection
implementation when the collection is created (element type specific informatio
or as a parameter of an operation (for example, code to be executed for each
element of the collection). Instances of function interfaces are used by a collec
implementation rather than by a client.

17.2.1 Combined Property Collections

The Object Collection Service (or simply Collection Service) defined in this
specification aims at being a complete and differentiated offering of interfaces
supporting the grouping of objects. It enables a user to make a choice when follo
the rule “pay only for what you use.” With this goal in mind, a very systematic
approach was chosen.

Groups, or collections of objects, support operations and exhibit specific behaviors
are mainly related to the nature of the collection rather than the type of objects th
collect.

“Nature of the collection” can be expressed in terms of well defined properties.

Ordering of elements

A previous or next relationship exists between the elements of an ordered collection
which is exposed in the interface.

Ordering can be sequential or sorted. A sequential ordering can be explicitly
manipulated; however, a sorted ordering is to be maintained implicitly based on a
criteria to be defined and passed to the implementation by the user.

Access by key

A key collection allows associative access to elements via a key. A key can be
computed from an element value via a user-defined key operation. Furthermore,
collections require key equality to be defined.

Element equality

An equality collection exploits the property that a test for element equality is define
(i.e., it can be tested whether an element is equal to another in terms of a user-d
element equality operation). This enables a test on containment, for example.
Object Collection Service: v1.0 Service Structure July 1997 17-3

17

.

xploit
 an

e
is
tiated

s.

ch as
ariants

ies
ted
veral
stem
 are
ons
Uniqueness of entries

A collection with unique entries allows exactly one occurrence of an element key
value, not multiple occurrences.

Meaningful combinations of these basic properties define “collections of differing
nature of grouping.” Table 17-1 provides an overview of meaningful combinations
The listed combinations are described in more detail in the following section.

Properties are mapped to interfaces - each interface assembling operations that e
these properties. These interfaces are combined via multiple inheritance and form
abstract interface hierarchy. Abstract means that no instance of such a class can b
instantiated, an attempt to do so may raise an exception at run-time. Leaves of th
hierarchy represent concrete interfaces listed in the table above and can be instan
by a user. They form a complete and differentiated offering of collection interface

Restricted Access Collections

Common data structures based on these properties sometimes restrict access su
queues, stacks, or priority queues. They can be considered as restricted access v
of Sequence or KeySortedBag. These interfaces form their own hierarchy of restricted
access interfaces. They are not incorporated into the hierarchy of combined propert
because a user of restricted access interfaces should not be bothered with inheri
operations which cannot be used in these interfaces. Nevertheless, to support se
“views” on an interface, a restricted users view of a queue and an unrestricted sy
administrators view to the same queue instance, the restricted access collections
defined in a way that allows combining them with the combined properties collecti
via multiple inheritance.

Table 17-1 Interfaces derived from combinations of collection properties

Unordered

Ordered

Sorted
Sequen-

tial

Unique Multi ple Unique Multi ple Multi ple

Key (Key
equality
must be

specified)

Element
Equality

Map Relation Sorted Map
Sorted

Relation

No Element
Equality

KeySet KeyBag
Key Sorted

Set
Key

SortedBag

No Key

Element
Equality

Set Bag SortedSet Sorted Bag
Equality
Sequence

No Element
Equality

Heap Sequence
17-4 CORBAservices July 1997

17

e
 are

ion

ype
 the

type

ces.”

y.

ons,
 The

 the
ion

d

tly
ich

n.

All collections are unbounded (there is no explicit bound set) and controlled by th
collections; however, it depends on the quality of service delivered whether there
“natural” limits such as the size of the paging space.

Collection Factories

For each concrete collection interface specified in this specification there is one
corresponding collection factory defined. Each such factory offers a typed create
operation for the creation of collection instances supporting the respective collect
interface.

Additionally, a generic extensible factory is specified to enable the usage of many
implementation variants for the same collection interface. This extensible generic
factory allows the registration of implementation variants and their user-controlled
selection at collection creation time.

Information to be passed to a collection at creation time is the element and key t
specific information that a collection implementation relies on. That is, one passes
information how to compare element keys, how to test equality of element keys,
checking relevant information, etc. Which type of information needs to be passed
depends on the respective collection interface.

17.2.2 Iterators

Iterators, as defined in this specification, are more than just simple “pointing devi

Iterator hierarchy

The service defines a hierarchy of iterators which parallels the collection hierarch

The top level iterator is generic in the sense that it allows iteration over all collecti
independent of the collection type because it is supported by all collection types.
ordered iterator adds some capabilities useful for all kinds of ordered collections.
Iterators further down in the hierarchy add operations exploiting the capabilities of
corresponding collection type Not. Each iterator type is supported by each collect
type. For example, a KeyIterator is supported only by collection interfaces derive
from KeyCollection.

Iterators are tightly intertwined with collections. An iterator cannot exit independen
of a collection (i.e., the iterator life time cannot exceed that of the collection for wh
it is created). A collection is the factory for its iterators. An iterator is created for a
given collection and can be used for this, and only this, collection.

Generic and iterator centric programming

Iterators on the one hand are pointer abstractions in the sense of simple pointing
devices. They offer the basic capabilities you can expect from a pointer abstractio
One can reset an iterator to a start position for iteration and move or position it in
different ways depending on the iterator type.

There are essentially two reasons to embellish an iterator with more capabilities.
Object Collection Service: v1.0 Service Structure July 1997 17-5

17

s.
 main

t
, and
when

port
h the
rk in

d in

 one

efore,
ries

 For

ent
ne
ted

tors
 of

be

s in
or

1. To support the processing of very large collections to allow for delayed
instantiation or incremental query evaluation in case of very large query result
These are scenarios where the collection itself may never exist as instantiated
memory collection but is processed in “fine grains” via an iterator passed to a
client.

2. To enrich the iterator with more capabilities is to strengthen the support for the
generic programming model as introduced with ANSI STL to the C++ world.

One can retrieve, replace, remove, and add elements via an iterator. One can tes
iterators for equality, compare ordered iterators, clone an iterator, assign iterators
destroy them. Furthermore, an iterator can have a const designation which is set
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to sup
this but a reverse designation is set at creation time. An ordered iterator for whic
reverse designation is set reinterprets the operations of a given iterator type to wo
reverse.

Iterators and performance

To reduce network traffic, combined operations and bulk operations are offered.

• Combined operations are combinations of simple iterator operations often use
loops.

• Bulk operations support retrieving, replacing, and adding many elements within
operation.

Managed Iterators

All iterators are managed in the sense that iterators never become undefined; ther
they do not lead to undefined behavior. Common behavior of iterators in class libra
today is that iterators become undefined when the collection content is changed.
example, if an element is added the side effect on iterators of the collection is
unknown. Iterators do not “know” whether they are still pointing to the same elem
as before, still pointing to an element at all, or pointing “outside” the collection. O
cannot even test the state. This is considered unacceptable behavior in a distribu
environment.

The iterator model used in this specification is a managed iterator. Managed itera
are “robust” to modifications of the collection. A managed iterator is always in one
the following defined testable states:

• valid (pointing to an element of the collection)

• invalid (pointing to nothing; comparable to a NULL pointer)

• in-between (not pointing to an element, but still "remembering" enough state to
valid for most operations on it).

A valid managed iterator remains valid as long as the element it points to remain
the collection. As soon as the element is removed, the according managed iterat
enters a so-called in-between state. The in-between state can be viewed as a vacuum
17-6 CORBAservices July 1997

17

less,
us)
 a
see

ned
ters
detail

ve to

key
ey

s

all,”

face

tion
 to
ySet.
within the collection. There is nothing the managed iterator can point to. Neverthe
managed iterators remember the next (and for ordered collection, also the previo
element in iteration order. It is possible to continue using the managed iterator (in
set_to_next_element() for example) without resetting it first. For more information,
“The Managed Iterator Model” on page 17-84.

17.2.3 Function Interfaces

The Object Collection service specifies function interfaces used to pass user-defi
information to the collection implementation (either at creation time or as parame
of operations). The most important is the Operations interface discussed in more
below.

Collectible Elements and Type Safety

Collections are foundation classes used in a broad range of applications. They ha
be able to collect elements of arbitrary type and support keys of arbitrary type.
Instances of collections are usually homogenous collections in the sense that all
elements have the same element type.

Because there is no template support in CORBA IDL today, the requirement
“collecting elements of arbitrary type” is met by defining the element type and the
type as a CORBA any. In doing so, compile time type checking for element and k
type is impossible.

As collections are often used as homogenous collections, dynamic type
checking is enabled by passing relevant information to the collection at
creation time. This is done by specialization of the function interface
Operations. This interface defines attributes element_type and key_type as well a
defines operations check_element_type() and check_key_type() which have to be
implemented by the user. Implementations may range from “no type checking at
“type code match,” “checking an interface to be supported,” up to “checking
constraints in addition to a simple type code checking.” Using the Operations inter
allows user-defined customization of the dynamic type checking.

Collectible Elements and the Operations Interface

The function interface Operations is used to pass a number of other user-defined
element type specific information to the collection implementation.

The type checking of relevant information is one sample.

Depending on the properties represented by a collection interface, a respective
implementation relies on some element type specific or key type specific informa
passed to it. For example, one has to pass the information “element comparison”
implement a SortedSet or “key equality” to guarantee uniqueness of keys in a Ke
The Operations interface is used to pass this information.
Object Collection Service: v1.0 Service Structure July 1997 17-7

17

that

ing

ion

ation
ich

y()
.
ata
The third use of this interface is to pass element or key type specific information
the different categories of implementations rely on. For example, tree-like
implementations for a KeySet rely on the “key comparison” information and hash
based implementations rely on the information how to hash key values. This
information is passed via the Operations interface.

A user has to customize the Operations interface and to implement the appropriate
operations dependent on the collection interface to be used. An instance of the
specialized Operations interface is passed at collection creation time to the collect
implementation.

Collectible Elements of Key Collections

Key collections offer associative access to collection elements via a key. A key is
computed from the element value and is user-defined element type specific inform
to be passed to a collection. The Operations interface has an operation key() wh
returns the user-defined key of a given element.

For a specific element type, a user has to implement the element type specific ke
operation in an interface derived from Operations. The key type is a CORBA any
Again this is designed to accommodate generality. Computable keys reflect the d
base view on elements of key collections as “keyed elements” where a key is a
component of a tuple or is “composed” from several components of a tuple.

17.2.4 List of Interfaces Defined

The Object Collection service offers the following interfaces:

Abstract interfaces representing collection properties and their combinations

• Collection

• OrderedCollection

• KeyCollection

• EqualityCollection

• SortedCollection

• SequentialCollection

• EqualitySequentialCollection

• EqualityKeyCollection

• KeySortedCollection

• EqualitySortedCollection

• EqualityKeySortedCollection
17-8 CORBAservices July 1997

17
Concrete collections and their factories

• CollectionFactory, CollectionFactories

• KeySet, KeySetFactory

• KeyBag, KeyBagFactory

• Map, MapFactory

• Relation, RelationFactory

• Set, SetFactory

• Bag, BagFactory

• KeySortedSet, KeySortedSetFactory

• KeySortedBag, KeySortedBagFactory

• SortedMap, SortedMapFactory

• SortedRelation, SortedRelationFactory

• SortedSet, SortedSetFactory

• SortedBag, SortedBagFactory

• Sequence, SequenceFactory

• EqualitySequence, EqualitySequenceFactory

• Heap, HeapFactory

Restricted access collections and their factories

• RestrictedAccessCollection, RACollectionFactory

• Stack, StackFactory

• Queue, QueueFactory

• Deque, DequeFactory

• PriorityQueue, PriorityFactory

Iterator interfaces

• Iterator

• OrderedIterator

• SequentialIterator

• SortedIterator

• KeyIterator

• EqualityIterator

• EqualityKeyIterator
Object Collection Service: v1.0 Service Structure July 1997 17-9

17

n

re the

e
racter
d by

g the
 you
h the
 not

g of

e
 sorted
der.
• KeySortedIterator

• EqualitySortedIterator

• EqualitySequentialIterator

• EqualityKeySortedIterator

Function interfaces

• Operations

• Command

• Comparator

17.3 Combined Collections

The overview introduced properties and listed the meaningful combinations of these
properties that result in consistently defined collection interfaces forming a
differentiated offering. In the following sections, the semantics of each combinatio
will be described in more detail and demonstrated by an example.

17.3.1 Combined Collections Usage Samples

Bag, SortedBag

A Bag is an unordered collection of zero or more elements with no key. Multiple
elements are supported. As element equality is supported, operations which requi
capability “test of element equality” (e.g., test on containment) can be offered.

Example: The implementation of a text file compression algorithm. The algorithm
finds the most frequently occurring words in sample files. During compression, th
words with a high frequency are replaced by a code (for example, an escape cha
followed by a one character code). During re-installation of files, codes are replace
the respective words.

Several types of collections may be used in this context. A Bag can be used durin
analysis of the sample text files to collect isolated words. After the analysis phase
may ask for the number of occurrences for each word to construct a structure wit
255 words with the highest word counts. A Bag offers an operation for this, you do
have to “count by hand,” which is less efficient. To find the 255 words with the
highest word count, a SortedRelation is the appropriate structure (see “Relation,
SortedRelation” on page 17-13). Finally, a Map may be used to maintain a mappin
words to codes and vice versa. (See “Map, SortedMap” on page 17-12).

A SortedBag (as compared to a Bag) exposes and maintains a sorted order of th
elements based on a user-defined element comparison. Maintained elements in a
order makes sense when printing or displaying the collection content in sorted or
17-10 CORBAservices July 1997

17

 first
ach
orted,
, for

s is
ged
s and
e

le

an it
. In

using

 as

sing
tional
 more
same
est a
ser
the
cense
nt to
he
EqualitySequence

An EqualitySequence is an ordered collection of elements with no key. There is a
and a last element. Each element, except the last one, has a next element and e
element, except the first one, has a previous element. As element equality is supp
all operations that rely on the capability “test on element equality” can be offered
example, locating an element or test for containment.

Example: An application that arranges wagons to a train. The order of the wagon
important. The trailcar has to be the first wagon, the first class wagons are arran
right behind the trailcar, the restaurant has to be arranged right after the first clas
before the second class wagons, and so on. To check whether the wagon has th
correct capacity, you may want to ask: “How many open-plan carriages are in the
train?” or “Is there a bistro in the train already?”

Heap

A Heap is an unordered collection of zero or more elements without a key. Multip
elements are supported. No element equality is supported.

Example: A “trash can” on a desktop which memorizes all objects moved to the
trashcan as long as it is not emptied. Whenever you move an object to the trashc
is added to the heap. Sometimes you move an object accidentally to the trashcan
that case, you iterate in some order through the trashcan to find the object - not
a test on element equality. When you find it, you remove it from the trashcan.
Sometimes you empty the trashcan and remove all objects from the trashcan.

KeyBag, KeySortedBag

A KeyBag is an unordered collection of zero or more elements that have a key.
Multiple keys are supported. As no element equality is assumed, operations such
“test on collection equality” or “set theoretical operation” are not offered.

A KeySortedBag is sorted by key. In addition to the operations supported for a
KeyBag, all operations related to ordering are offered. For example, operations
exploiting the ordering such as “set_to_previous / set_to_next” and “access via
position” are supported.

A license server maintaining floating licenses on a network may be implemented u
a KeyBag to maintain the licenses in use. The key may be the LicenseId and addi
element data may be, for example, the user who requested the license. As usual,
than one floating license is available per product; therefore, many licenses for the
product may be in use. A LicenseId may occur more than once. A user may requ
license multiple times, it may also occur that the same LicenseId with the same u
occurs multiple times. If a user of the product requests and receives the license,
LicenseId, together with the request data, is added to the licenses in use. If the li
is released, it is deleted from the Bag of licenses in use. Sometimes you may wa
ask for the number of licenses of a product in use, that is ask for the number of t
licenses in use with a given LicenseId.
Object Collection Service: v1.0 Combined Collections July 1997 17-11

17

not

e a
ity).

y

eys
nd

Set,
the

mber

 card

e card
, and

must
 and
nt for
ps.

 all

ted.

.

t is
m

, the
ess
Access to licenses in use is via the key LicenseId. This sample application does
require operations such as testing two collections for equality or set theoretical
operations on collections. It is not exploiting element equality; therefore, it can us
KeyBag instead of a Relation (which would force the user to define element equal

If you want to list the licenses in use with the users holding the licenses sorted b
LicenseId, you could make use of a KeySortedBag instead of a KeyBag.

KeySet, KeySortedSet

A KeySet is an unordered collection of zero or more elements that have a key. K
must be unique. Defined element equality is not assumed; therefore, operations a
semantics which require the capability “element equality test" are not offered.

A KeySortedSet is sorted by key. In addition to the operations supported for a Key
all operations related to ordering are offered. For example, operations exploiting
ordering, such as “set_to_previous / set_to_next” and “access via position” are
supported.

Example: A program that keeps track of cancelled credit card numbers and the
individuals to whom they are issued. Each card number occurs only once and the
collection is sorted by card number. When a merchant enters a customer’s card nu
into the point-of-sales terminal, the collection is checked to determine whether the
number is listed in the collection of cancelled cards. If it is found, the name of the
individual is shown and the merchant is given directions for contacting the card
company. If the card number is not found, the transaction can proceed because th
is valid. A list of cancelled cards is printed out each month, sorted by card number
distributed to all merchants who do not have an automatic point-of-sale terminal
installed.

Map, SortedMap

A Map is an unordered collection of zero or more elements that have a key. Keys
be unique. As defined, element equality is assumed access via the element value
all operations which need to test on element equality, such as a test on containme
an element, test for equality, and set theoretical operations can be offered for ma

A SortedMap is sorted by key. In addition to the operations supported for a Map,
operations related to ordering are offered. For example, operations exploiting the
ordering like “set_to_previous / set_to_next” and “access via position” are suppor

Example: Maintaining nicknames for your mailing facility. The key is the nickname
Mailing information includes address, first name, last name, etc. Nicknames are
unique; therefore, adding a nickname/mailing inforation entry with a nickname tha
already available should fail, if the mailing information to be added is different fro
the available information. If it is exactly the same information, it should just be
ignored. You may define more than one nickname for the same person; therefore
same element data may be stored with different keys. If you want to update addr
17-12 CORBAservices July 1997

17

 To

le
two

hat
 are

t
. As
with

ment

on to
For
 and

nt to
se, and
dded

he
duct.

d a
ement

ot
information for a given nickname, use the replace_element_with_key() operation.
create a new nickname file from two existing files, use a union operation which
assumes element equality to be defined.

Relation, SortedRelation

A Relation is an unordered collection of zero or more elements with a key. Multip
keys are supported. As defined element equality is assumed, test for equality of
collections is offered as well as the set theoretical operations.

A SortedRelation is sorted by key. In addition to the operations supported for a
Relation, all operations related to ordering are offered. For example, operations t
exploit ordering such as “set_to_previous / set_to_next” and “access via position”
supported.

A SortedRelation may be used in the text file compression algorithm mentioned
previously in the Bag, Sorted Bag example to find the 255 words with the highes
frequency. The key is the word count and the additional element data is the word
words may have equal counts, multiple keys have to be supported. The ordering
respect to the key is used to find the 255 highest keys.

Set, SortedSet

A set is an unordered collection of zero or more elements without a key. Element
equality is supported; therefore, operations that require the capability “test on ele
equality” such as intersection or union can be offered.

A SortedSet is sorted with respect to a user-defined element comparison. In additi
the operations supported for a Set, all operations related to ordering are offered.
example, operations that exploit ordering such as “set_to_previous / set_to_next”
“access via position” are supported.

Example: A program that creates a packing list for a box of free samples to be se
a warehouse customer. The program searches a database of in-stock merchandi
selects ten items at random whose price is below a threshold level. Each item is a
to the set. The set does not allow an item to be added if it already is present in t
collection; this ensures that a customer does not get two samples of a single pro

Sequence

A Sequence is an ordered collection of elements without a key. There is a first an
last element. Each element (except the last one) has a next element and each el
(except the first one) has a previous element. No element equality is supported;
therefore, multiples may occur and access to elements via the element value is n
possible. Access to elements is possible via position/index.
Object Collection Service: v1.0 Combined Collections July 1997 17-13

17

he
sing
sed

esult,

rse
cific

ition.

It is an
 no
 last
 first

re
ed as a
e

 track
ta
ot
ta
ntil

ults

 is an
. As
ents

ys

ty
This
e to
om
Example: A music editor. The Sequence is used to maintain tokens representing t
recognized notes. The order of the notes is obviously important for further proces
of the melody. A note may occur more than once. During editing, notes are acces
by position and are removed, added, or replaced at a given position. To print the r
you may iterate over the sequence and print note by note.

A Sequence may also be used to represent how a book is constructed from dive
documents. It is obvious that ordering is important. It may be the case that a spe
document is used multiple times within the same book (for example, a specific
graphic). Reading the book, you may want to access a specific document by pos

17.4 Restricted Access Collections

17.4.1 Restricted Access Collections Usage Samples

Deque

A double ended queue may be considered as a sequence with restricted access.
ordered collection of elements without a key and no element equality. As there is
element equality, an element value may occur multiple times. There is a first and a
element. You can only add an element as first or last element and only remove the
or the last element from the Deque.

A Deque may be used in the implementation of a pattern matching algorithm whe
patterns are expressed as regular expressions. Such an algorithm can be describ
non-deterministic finite state machine constructed from the regular expression. Th
implementation of the regular-pattern matching machine may use a deque to keep
of the states under consideration. Processing a null state requires a stack-like da
structure - one of two things to be done is postponed and put at the front of the n
being postponed forever list. Processing the other states requires a queue-like da
structure, since you do not want to examine a state for the next given character u
you are finished with the current character. Combining the two characteristics res
in a Deque.

PriorityQueue

A PriorityQueue may be considered as a KeySortedBag with restricted access. It
ordered collection with zero or more elements. Multiple key values are supported
no element equality is defined, multiple element values may occur. Access to elem
is via key only and sorting is maintained by key. Accessing a PriorityQueue is
restricted. You can add an element relative to the ordering relation defined for ke
and remove only the first element (e.g., the one with highest priority).

PriorityQueues may be used for implementing a printer queue. A print job’s priori
may depend on the number of pages, time of queuing, and other characteristics.
priority is the key of the print job. When a user adds a print job it is added relativ
its priority. The printer daemon always removes the job with the highest priority fr
the queue.
17-14 CORBAservices July 1997

17

d
 last

or.

rithm.

on
s they
ueues

d
 last
ly
oses
or
sion.
is
ration

n the

17.
esent
crete
be

 such
PriorityQueues also may be used as special queues in workflow management to
prioritize work items.

Queue

A queue may be considered as a sequence with restricted access. It is an ordere
collection of elements with no key and no element equality. There is a first and a
element. You can only add (enque) an element as last element and only remove
(deque) the first element from the Queue. That is, a queue exposes FIFO behavi

You would use a queue in tree traversal to implement a breadth first search algo

Queues may be used for the implementation of all kinds of buffered communicati
where it is important that the receiving side handles messages in the same order a
were sent. Queues may be used in workflow management environments where q
collect messages waiting for processing.

Stack

A Stack may be considered as a sequence with restricted access. It is an ordere
collection of elements with no key and no element equality. There is a first and a
element. You can only add (push) an element as last element (at the top) and on
remove (pop) the last element from the Stack (from the top). That is, a Stack exp
LIFO behavior. The classical application for a stack is the simulation of a calculat
with Reverse Polish Notation. The calculator engine may get an arithmetic expres
Parsing the expression operands are pushed on to the stack. When an operator
encountered, the appropriate number of operands is popped off the stack, the ope
performed, and the result pushed on the stack.

A Stack also may be used in the implementation of a window manager to maintai
order in which the windows are superimposed.

17.5 The CosCollection Module

17.5.1 Interface Hierarchies

Collection Interface Hierarchies

The collection interfaces of the Collection Services are organized in two separate
hierarchies, as shown in Figure 17-1 on page 17-17 and Figure 17-2 on page 17-
The inner nodes of the hierarchy may be thought of as abstract views. They repr
the basic properties and their combinations. Leaf nodes may be thought of as con
interfaces for which implementations are provided and from which instances can
created via a collection factory. The organization of the interfaces as a hierarchy
enables reuse and the polymorphic usage of the collections from typed languages
as C++.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-15

17

t

r the

e
 a

ts,

 are

ted
 to
are
Each abstract view is defined in terms of operations and their behavior. The mos
abstract view of a collection is a container without any ordering or any specific
element or key properties. This view allows adding elements to and iterating ove
collection.

In addition to the common collection operations, collections whose elements defin
equality or key equality provide operations for locating and retrieving elements by
given element or key value.

Ordered collections provide the notion of well-defined explicit positioning of elemen
either by element key ordering relation or by positional element access.

Sorted collections provide no further operations, but introduce a new semantics;
namely, that their elements are sorted by element or key value. These properties
combined through multiple inheritance.

The fourth property, uniqueness/multiplicity of elements and keys, is not represen
by a separate abstract view for combination with other properties. This was done
reduce the complexity of the hierarchy. Instead, operations related to multiplicity
provided in the base interface from which the interface specializations with
multiplicity are derived.
17-16 CORBAservices July 1997

17

2 on
Figure 17-1 Collections Interfaces Hierarchy

The restricted access collections form their own hierarchy as shown in Figure 17-
page 17-17. This abstract view defines the operations that all restricted access
collections have in common.

Figure 17-2 Restricted Access Collections Interface Hierarchy

Collection

Equality
Collection

Sorted
Collection

Ordered
Collection

Sequential
Collection

Equality
Key

Collection

EqualityKey Sorted
 Collection

Sorted
Collection

Equality
Key Sorted
Collection

Key Set Map

Key Bag Relation

Set

Bag

Key Sorted
Set

KeySorted
Bag

Sorted

Sorted
Relation

Sorted Set

Sorted Bag
Equality

Sequence

Heap Sequence Map

Key
Collection

Equality
Sequential
 Collection

Stack Queue Priority
Queue

Restricted

Collection

Deque

Access
Object Collection Service: v1.0 The CosCollection Module July 1997 17-17

17

 in
ng of
del

d to

p
e
erator

ns

ard,
 used

 the
Iterator Hierarchy

The iterator interface hierarchy parallels the Collection interface hierarchy shown
Figure 17-3 on page 17-18. The defined interfaces support the fine-grain processi
very large collections via an iterator only and support a generic programming mo
similar to what was introduced with ANSI STL to the C++ world. Concepts like
constness of iterators, reverse iterators, bulk and combined operations are offere
strengthen the support for the generic programming model.

Figure 17-3 Iterator Interface Hierarchy

The top level Iterator interface represents a generic iterator that can be used for
iteration over and manipulation of all collections independent of their type. The to
level iterator allows you to add, retrieve, replace, and remove elements. There ar
operations to clone, assign, and test iterators for equality. There are tests on the it
state and you can check whether an iterator is const, created for a given collection, or
created for the same collection as another iterator.

The OrderedIterator interface adds those operations which are useful on collectio
with an explicit notion of ordering (all those collections inheriting from the
OrderedCollection interface). An ordered iterator can be moved forward and backw
set to a position, and its position can be computed. Only ordered iterators can be
with “reverse” semantics. The SequentialIterator is used with sequentially ordered
collections where it is possible to add elements at a user-defined position so that
iterator offers the capability to add elements relative to its position.

Iterator

Equality
Iterator

Sorted
Iterator

Ordered
Iterator

Sequential

Equality
Key

Iterator

EqualityKey Sorted
Sorted
Iterator

Equality
Key Sorted

Key
Iterator

Equality
Sequential
 Iterator

 Iterator

Iterator

Iterator
17-18 CORBAservices July 1997

17

ator

ted

y.

isted
The KeyIterator and EqualityIterator interface add operations for positioning an iter
by key or element value. The sorted versions of these interfaces add respective
backward movements and the capability to define lower and upper bounds in sor
collections.

An iterator is always created for a collection using the collection as iterator factor
Each iterator type is supported by each collection type. The Iterators and the
Collections that are supported by all interfaces derived from those collections are l
in Table 17-2 on page 17-19.

Table 17-2 Iterators and Collections

17.5.2 Exceptions and Type Definitions

The following exceptions are used by the subsequently defined interfaces.

module CosCollection {

// Type definitions

typedef sequence<any> AnySequence;

typedef string Istring;

struct NVPair {Istring name; any value;};

typedef sequence<NVPair> ParameterList;

// Exceptions

exception EmptyCollection{};

Supported by all interfaces derived from:

Iterator Collection

OrderedIterator OrderedCollection

SequentialIterator SequentialCollection

EqualitySequentialIterator EqualitySequentialCollection

KeyIterator KeyCollection

EqualityIterator EqualityCollection

EqualityKeyIterator EqualityKeyCollection

SortedIterator SortedCollection

KeySortedIterator KeySortedCollection

EqualitySortedIterator EqualitySortedCollection

EqualityKeySortedIterator EqualityKeySortedCollection
Object Collection Service: v1.0 The CosCollection Module July 1997 17-19

17

a

 list in

n.

lowed
s.

r the
r

exception PositionInvalid{};

enum IteratorInvalidReason {is_invalid, is_not_for_collection, is_const};

exception IteratorInvalid {IteratorInvalidReason why;};

exception IteratorInBetween{};

enum ElementInvalidReason {element_type_invalid, positioning_property_invalid,
element_exists};

exception ElementInvalid {ElementInvalidReason why;};

exception KeyInvalid {};

exception ParameterInvalid {unsigned long which; Istring why;};

AnySequence

A type definition for a sequence of values of type any used in bulk operations.

Istring

A type definition used as place holder for a future IDL internationalized string dat
type.

ParameterList

A sequence of name-value pairs of type NVPair and used as a generic parameter
a generic collection creation operation.

EmptyCollection

Raised when an operation to remove an element is invoked on an empty collectio

PositionInvalid

Raised when an operation on an ordered collection passes a position out of the al
range, that is less than 1 or greater than the number of elements in the collection

IteratorInvalid

Raised when an operation uses an iterator pointing to nothing, that is, using an invalid
iterator (in_valid) or when an operation uses an iterator which was not created fo
collection (is_not_for_collection) or if one tries to modify a collection via an iterato
that is created with const designation (is_const).

IteratorInBetween

Raised when an operation uses an iterator in a way that does not allow the statein-
between such as all “..._at” operations.

ElementInvalid
17-20 CORBAservices July 1997

17

easons

s).

.

he

ions
the
ntics
Raised when one of the operations passes an element that is for one of several r
invalid. It is raised

• when the element is not of the expected element type (element_type_invalid).

• if one tries to replace an element by another element changing the positioning
property (positioning_property_invalid).

• when an element is added to a Map and the key already exists (element_exist

KeyInvalid

Raised when one of the operations passes a key that is not of the expected type

Paramete rInvalid

Raised when a parameter passed to the generic collection creation operation of t
generic CollectionFactory is invalid.

17.5.3 Abstract Collection Interfaces

The Collection Interface

The Collection interface represents the most abstract view of a collection. Operat
defined in this top level interface can be supported by all collection interfaces in
hierarchy. Each concrete collection interface offers the appropriate operation sema
dependent on the collection properties. It defines operations for:

• adding elements

• removing elements

• replacing elements

• retrieving elements

• inquiring collection information

• creating iterators

// Collection

interface Iterator;

interface Command;

interface Collection {

// element type information

readonly attribute CORBA::TypeCode element_type;

// adding elements
Object Collection Service: v1.0 The CosCollection Module July 1997 17-21

17

een,
boolean add_element (in any element) raises (ElementInvalid);

boolean add_element_set_iterator (in any element, in Iterator where) raises (IteratorInvalid,
ElementInvalid);

void add_all_from (in Collection collector) raises (ElementInvalid);

// removing elements

void remove_element_at (in Iterator where) raises (IteratorInvalid, IteratorInBetween);

unsigned long remove_all ();

// replacing elements

void replace_element_at (in Iterator where, in any element) raises(IteratorInvalid, IteratorInBetw
ElementInvalid);

// retrieving elements

boolean retrieve_element_at (in Iterator where, out any element) raises (IteratorInvalid,
IteratorInBetween);

// iterating over the collection

boolean all_elements_do (in Command what) ;

// inquiring collection information

unsigned long number_of_elements ();

boolean is_empty ();

// destroying collection

void destroy();

// creating iterators

Iterator create_iterator (in boolean read_only);

};

Type checking information

readonly attribute CORBA::TypeCode element_type;

Specifies the element type expected in the collection. See also “The Operations
Interface” on page 17-117.

Adding elements

boolean add_element (in any element) raises (ElementInvalid);
17-22 CORBAservices July 1997

17

eady
ent

t a

iven
e

valid

he
ete

eady

ays

iven
e
Description

Adds an element to the collection. The exact semantics of the add operations
depends on the properties of the concrete interface derived from the Collection that
the collection is an instance of.

If the collection supports unique elements or keys and the element or key is alr
contained in the collection, adding is ignored. In sequential collections, the elem
is always added as last element. In sorted collections, the element is added a
position determined by the element or key value.

If the collection is a Map and contains an element with the same key as the g
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Return value

Returns true if the element is added.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

Side effects

All iterators keep their state.

boolean add_element_set_iterator(in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid);

Description

Adds an element to the collection and sets the iterator to the added element. T
exact semantics of the add operations depends on the properties of the concr
interface derived from the Collection that the collection is an instance of.

If the collection supports unique elements or keys and the element or key is alr
contained in the collection, adding is ignored and the iterator is just set to the
element or key already contained. In sequential collections, the element is alw
added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

If the collection is a Map and contains an element with the same key as the g
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Return value

Returns true if the element is added.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-23

17

d in
 add

to
Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

 void add_all_from (in Collection elements) raises (ElementInvalid);

Adds all elements of the given collection to this collection. The elements are adde
the iteration order of the given collection and consistent with the semantics of the
operation. Essentially, this operation is a sequence of add operations.

Removing elements

void remove_element_at (in Iterator where) raises(IteratorInvalid);

Description

Removes the element pointed to by the given iterator. The given iterator is set in-
between.

Exceptions

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exception IteratorInvalid is raised.

Side effects

Iterators pointing to the removed element go in-between. Iterators which do not
point to the removed element keep their state.

 unsigned long void remove_all();

Description

Removes all elements from the collection.

Return value

Returns the number of elements removed.
17-24 CORBAservices July 1997

17

,

n

l to

not
placed

d.

alid,

tput
Side effects

Iterators pointing to removed elements go in-between. All other iterators keep their
state.

Replacing elements

void replace_element_at (in Iterator where, in any element) raises (IteratorInvalid
IteratorInBetween, ElementInvalid)

Description

Replaces the element pointed to by the iterator by the given element. The give
element must have the same positioning property as the replaced element.

• For collections organized according to element properties such as ordering
relation, the replace operation must not change this element property.

• For key collections, the new key must be equal to the key replaced.

• For non-key collections with element equality, the new element must be equa
the replaced element as defined by the element equality relation.

Sequential collections have a user-defined positioning property and heaps do
have positioning properties. Element values in sequences and heaps can be re
freely.

Exceptions

The given element must not change the positioning property; otherwise, the
exception ElementInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raise

Retrieving elements

boolean retrieve_element_at (in Iterator where, out any element) raises (IteratorInv
IteratorInBetween);

Description

Retrieves the element pointed to by the given iterator and returns it via the ou
parameter element.

Return value

Returns true if an element is retrieved.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-25

17

f the
d.

n the
n the
nt is
y of

in
).

 the

 a

d to.

ions.
ising
Exceptions

The given iterator must belong to the collection and must point to an element o
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raise

Note – Whether a copy of the element is returned or the element itself depends o
element type represented by the any. If it is an object, a reference to the object i
collection is returned. If the element type is a non-object type, a copy of the eleme
returned. In case of element type object, do not manipulate the element or the ke
the element in the collection in a way that changes the positioning property of the
element.

Iterating over a collection

boolean all_elements_do (in Command what);

Description

Calls the “do_on()” operation of the given Command for each element of the
collection until the “do_on()” operation returns false. The elements are visited
iteration order (see “The Command and Comparator Interface” on page 17-121

• The “do_on()” operation must not remove elements from or add elements to
collection.

• The “do_on()” operation must not manipulate the element in the collection in
way that changes the positioning property of the element.

Return value

Returns true if the “do_on()” operation returns true for each element it is applie

Inquiring collection information

The collection operations do have preconditions which when violated raise except
There are operations for testing those preconditions to enable the user to avoid ra
exceptions.

 unsigned long number_of_elements ();

Return value

Returns the number of elements contained in the collection.

boolean is_empty ();

Return value

Returns true if the collection is empty.
17-26 CORBAservices July 1997

17

n

 not

at is
ribes
Destroying a collection

void destroy();

Description

Destroys the collection. This includes:

• removing all elements from the collection

• destroying all iterators created for this collection

• destroying the instance of Operations passed at creation time to the collectio
implementation.

Note – Removing elements in case of objects means removing object references,
destroying the collected objects.

Object references to iterators of the collections become invalid.

Creating iterators

Iterator create_iterator (in boolean read_only);

Creates and returns an iterator instance for this collection. The type of iterator th
created depends on the interface type of this collection. The following table desc
the type of iterator that is created for the type of concrete collection.

Table 17-3Collection interfaces and the iterator interfaces supported

Ordered Collection Interfaces Supported Iterator Interface

Bag EqualityIterator

yes SortedBag EqualitySortedIterator

yes EqualitySequence EqualitySequentialIterator

Heap Iterator

KeyBag KeyIterator

yes KeySortedBag KeySortedIterator

KeySet KeyIterator

yes KeySortedSet KeySortedIterator

Map EqualityKeyIterator

yes SortedMap EqualityKeySortedIterator

Relation EqualityKeyIterator

yes Sequence SequentialIterator
Object Collection Service: v1.0 The CosCollection Module July 1997 17-27

17

tion
the

tance

 can
e.,
ed
After creation, the iterator is initialized with the state invalid, that is, “pointing to
nothing.”

If the given parameter read_only is true, the iterator is created with const designa
(i.e., a trial to modify the collection content via this iterator is rejected and raises
exception IteratorInvalid).

Note – Collections serve as factories for their iterator instances. An iterator is created
in the same address space as the collection for which it is created. An iterator ins
can only point to elements of the collection for which it was created.

The OrderedCollection Interface

interface OrderedIterator;

// OrderedCollection

interface OrderedCollection: Collection {

// removing elements

void remove_element_at_position (in unsigned long position) raises (PositionInvalid);

void remove_first_element () raises (EmptyCollection);

void remove_last_element () raises (EmptyCollection);

// retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out any element) raises
(PositionInvalid);

boolean retrieve_first_element (out any element) raises (EmptyCollection);

boolean retrieve_last_element (out any element) raises (EmptyCollection);

// creating iterators

OrderedIterator create_ordered_iterator(in boolean read_only, in boolean reverse_iteration);

};

Ordered collections expose the ordering of elements in their interfaces. Elements
be accessed at a position and forward and backward movements are possible (i.
ordered collection can support ordered iterators). Ordering can be implicitly defin
via the ordering relationship of the elements or keys (as in sorted collections) or
ordering can be user-controlled (as in sequential collections).

yes SortedRelation EqualityKeySortedIterator

Set EqualityIterator

yes SortedSet EqualitySortedIterator

Table 17-3Collection interfaces and the iterator interfaces supported

yes Sequence SequentialIterator
17-28 CORBAservices July 1997

17

for

lid);

 of

ual

In addition to those inherited from the Collection Interface, which all ordered
collections have in common, the OrderedCollection interface provides operations

• removing elements,

• retrieving elements, and

• creating ordered iterators.

Removing elements

void remove_element_at_position (in unsigned long position) raises (PositionInva

Description

Removes the element from the collection at a given position. The first element
the collection has position 1.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exception PositionInvalid is raised. A position is valid if it is greater than or eq
to 1 and less than or equal to number_of_elements().

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

void remove_first_element () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

void remove_last_element () raises (EmptyCollection);

Description

Removes the last element from the collection.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-29

17

)

he

eter

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

Retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out any element
raises (PositionInvalid);

Description

Retrieves the element at the given position in the collection and returns it via t
output parameter element. Position 1 specifies the first element.

Return value

Returns true if an element is retrieved.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exception PositionInvalid is raised.

boolean retrieve_first_element (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the collection and returns it via the output param
element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

boolean retrieve_last_element (out any element) raises (EmptyCollection);
17-30 CORBAservices July 1997

17

e of
or is

o

rse
tics.

alid,
Description

Retrieves the last element in the collection and returns it via the output
parameter element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Creating iterators

OrderedIterator create_ordered_iterator (in boolean read_only, in boolean
reverse_iteration);

Description

Creates and returns an ordered iterator instance for this collection.

Which type of ordered iterator actually is created depends on the interface typ
this collection. Table 17-1 on page 17-4 describes which type of ordered iterat
created for which type of concrete ordered collection.

After creation, the iterator is initialized with the state invalid, that is, “pointing t
nothing.”

Exceptions

If the given parameter read_only is true, the iterator is created with const
designation (i.e., a trial to modify the collection content via this iterator is
rejected and raises the exception IteratorInvalid).

Side effects

If the given parameter reverse_iteration is true, the iterator is created with reve
iteration semantics. Only ordered iterators can be created with reverse seman

The SequentialCollection Interface

interface Comparator;

interface SequentialCollection: OrderedCollection {

// adding elements

void add_element_as_first (in any element) raises (ElementInvalid);

void add_element_as_first_set_iterator (in any element, in Iterator where) raises (ElementInv
IteratorInvalid);

void add_element_as_last (in any element) raises (ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-31

17

lid,

lid,

tor

valid,

re
ent is

ction
 that
void add_element_as_last_set_iterator (in any element, in Iterator where) raises (ElementInva
IteratorInvalid);

void add_element_as_next (in any element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

void add_element_as_previous (in any element, in Iterator where) raises
(ElementInvalid,IteratorInvalid);

void add_element_at_position (in unsigned long position, in any element) raises(PositionInva
ElementInvalid);

void add_element_at_position_set_iterator (in unsigned long position, in any element, in Itera
where) raises (PositionInvalid, ElementInvalid, IteratorInvalid);

// replacing elements

void replace_element_at_position (in unsigned long position, in any element) raises (PositionIn
ElementInvalid);

void replace_first_element (in any element) raises (ElementInvalid, EmptyCollection);

void replace_last_element (in any element) raises (ElementInvalid, EmptyCollection);

// reordering elements

void sort (in Comparator comparison);

void reverse();

};

Sequential collections expose user-controlled sequential ordering. Determine whe
elements are added by comparing to sorted collections where the “where an elem
added“ is determined implicitly by the defined element or key comparison.

The SequentialCollection interface adds all those operations to the OrderedColle
interface. “The SequentialCollection Interface” on page 17-31 describes operators
are unique for positional element access for

• adding elements,

• replacing elements, and

• re-ordering elements.

Adding elements

void add_element_as_first (in any element) raises (ElementInvalid);

Description

Adds the element to the collection as the first element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
17-32 CORBAservices July 1997

17

s the
Side effects

All iterators keep their state.

void add_element_as_first_set_iterator (in any element, in Iterator where) raises
(ElementInvalid,IteratorInvalid);

Description

Adds the element to the collection as the first element in sequential order and
sets the iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last (in any element) raises (ElementInvalid);

Description

 Adds the element to the collection as the last element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last_set_iterator (in any element, in Iterator where) raises
(ElementInvalid,IteratorInvalid);

Description

Adds the element to the collection as the last element in sequential order. Set
iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-33

17

lid,

ator.

n

ed to
 the
The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

void add_element_as_next(in any element, in Iterator where) raises (ElementInva
IteratorInvalid);

Description

Adds the element to the collection after the element pointed to by the given iter
Sets the iterator to the added element. If the iterator is in the state in-between, the
element is added before the iterator’s “potential next” element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and be valid; otherwise, the exceptio
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_previous (in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection as the element previous to the element point
by the given iterator. Sets the iterator to the added element. If the iterator is in
state in-between, the element is added after the iterator’s “potential previous”
element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

Side effects

All iterators keep their state.
17-34 CORBAservices July 1997

17

t the
g

al to

ent,

 the
dded

al to

lid
void add_element_at_position (in unsigned long position, in any element)
raises(PositionInvalid, ElementInvalid);

Description

Adds the element at the given position to the collection. If an element exists a
given position, the new element is added as the element preceding the existin
element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equ
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_at_position_set_iterator (in unsigned long position, in any elem
in Iterator where) raises (PositionInvalid, ElementInvalid IteratorInvalid);

Description

Adds the element at the given position to the collection and sets the iterator to
added element. If an element exists at the given position, the new element is a
as the element preceding the existing element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equ
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInva
is raised.

Side effects

All iterators keep their state.

Replacing elements

void replace_element_at_position (in unsigned long position, in any
element) raises (PositionInvalid, ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-35

17

ition

on);

on);

 of

Description

Replaces the element at a given position with the given element. The given pos
must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements()).

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void replace_first_element (in any element) raises (ElementInvalid, EmptyCollecti

Description

Replaces the first element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

void replace_last_element (in any element) raises (ElementInvalid, EmptyCollecti

Description

Replaces the last element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Re-ordering elements

void sort (in Comparator comparison);

Description

Sorts the collection so that the elements occur in ascending order. The relation
two elements is defined by the “compare” method, which a user provides when
implementing an interface derived from Comparator. See “The Command and
Comparator Interface” on page 17-121.
17-36 CORBAservices July 1997

17

 to a

alid);

een);
Side effects

All iterators in the state in-between go invalid.

All other iterators keep their state.

void reverse ();

Description

Orders elements in reverse order.

Side effects

All iterators in the state in-between go invalid.

All other iterators keep their state.

The SortedCollection Interface

interface SortedCollection: OrderedCollection{};

Sorted collections currently do not provide further operations but define a more
specific behavior; namely, that the elements or their keys are sorted with respect
user-defined element or key compare. See “The OrderedCollection Interface” on
page 17-28.

The EqualityCollection Interface

interface EqualityCollection: Collection {

// testing element containment

boolean contains_element (in any element) raises(ElementInvalid);

boolean contains_all_from (in Collection collector) raises(ElementInvalid);

// adding elements

boolean locate_or_add_element (in any element) raises (ElementInvalid);

boolean locate_or_add_element_set_iterator (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

// locating elements

boolean locate_element (in any element, in Iterator where) raises (ElementInvalid, IteratorInv

boolean locate_next_element (in any element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

boolean locate_next_different_element (in Iterator where) raises (IteratorInvalid, IteratorInBetw

// removing elements
Object Collection Service: v1.0 The CosCollection Module July 1997 17-37

17

alue
 the

the

uch
boolean remove_element (in any element) raises (ElementInvalid);

unsigned long remove_all_occurrences (in any element) raises (ElementInvalid);

// inquiring collection information

unsigned long number_of_different_elements ();

unsigned long number_of_occurrences (in any element) raises(ElementInvalid);

};

Collections whose elements define equality introduce operations which exploit the
defined element equality. These operations are for finding elements by element v
(and adding if not found), for testing containment of a given element, and inquiring
collection about how many elements of a given value were collected.

Testing element containment

boolean contains_element (in any element) raises (ElementInvalid);

Return value

Returns true if the collection contains an element equal to the given element.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.

boolean contains_all_from (in Collection collector) raises (ElementInvalid);

Return value

Returns true if all the elements of the given collection are contained in the
collection. The definition of containment is given in “contains_element.”

Exceptions

The elements in the given collection must be of the expected type; otherwise,
exception ElementInvalid is raised.

Adding elements

boolean locate_or_add_element (in any element) raises (ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. If no s
element is found, the element is added as described in add.
17-38 CORBAservices July 1997

17

ises

is

d,
Return value

Returns true if the element was found.

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_set_iterator (in any element, in Iterator where) ra
(ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. If no
such element is found, the element is added as described in add. The iterator
set to the found or added element.

Return value

Returns true if the element was found.

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

Locating elements

boolean locate_element (in any element, in Iterator where) raises (ElementInvali
IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-39

17

e
uch
nt in

lid

ated
ment
Description

Locates an element in the collection that is equal to the given element. Sets th
iterator to point to the element in the collection, or invalidates the iterator if no s
element exists. If the collection contains several such elements, the first eleme
iteration order is located.

Return value

Returns true if an element is found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInva
is raised.

Side effects

All iterators keep their state.

boolean locate_next_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the
given element, starting at the element next to the one pointed to by the given
iterator. Sets the iterator to point to the located element. The iterator is invalid
if the end of the collection is reached and no more occurrences of the given ele
are left to be visited. If the iterator is in the state in-between, locating is started at
the iterator’s “potential next” element.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_next_different_element (in Iterator where) raises (IteratorInvalid,
IteratorInBetween);
17-40 CORBAservices July 1997

17

nted
ator

ion;

such
ue

and
Description

Locates the next element in iteration order that is different from the element poi
to by the given iterator. If no more elements are left to be visited, the given iter
will no longer be valid.

Return value

Returns true if the next different element was found.

Exception

The iterator must belong to the collection and point to an element of the collect
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Removing elements

boolean remove_element (in any element) raises (ElementInvalid);

Description

Removes an element in the collection that is equal to the given element. If no
element exists, the collection remains unchanged. In collections with non-uniq
elements, an arbitrary occurrence of the given element will be removed.

Return value

Returns true if an element was removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

If an element was removed, all iterators pointing to this element go in-between.

All other iterators keep their state.

unsigned long remove_all_occurrences (in any element) raises (ElementInvalid);

Description

Removes all elements from the collection that are equal to the given element
returns the number of elements removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-41

17

es

ises
Side effects

All iterators pointing to elements removed go in-between.

All iterators keep their state.

Inquiring collection information

unsigned long number_of_different_elements ();

Return value

Returns the number of different elements in the collection.

unsigned long number_of_occurrences (in any element) raises (ElementInvalid);

Return value

Returns the number of occurrences of the given element in the collection.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The KeyCollection Interface

interface KeyCollection: Collection {

// Key type information

readonly attribute CORBA::TypeCode key_type;

// testing containment

boolean contains_element_with_key (in any key) raises(KeyInvalid);

boolean contains_all_keys_from (in KeyCollection collector) raises(KeyInvalid);

// adding elements

boolean locate_or_add_element_with_key (in any element) raises(ElementInvalid);

boolean locate_or_add_element_with_key_set_iterator (in any element, in Iterator where) rais
(ElementInvalid, IteratorInvalid);

// adding or replacing elements

boolean add_or_replace_element_with_key (in any element) raises(ElementInvalid);

boolean add_or_replace_element_with_key_set_iterator (in any element, in Iterator where) ra
(ElementInvalid, IteratorInvalid);

// removing elements
17-42 CORBAservices July 1997

17

alid);

,

 a
y
ent

s the

ace”
boolean remove_element_with_key(in any key) raises(KeyInvalid);

unsigned long remove_all_elements_with_key (in any key) raises(KeyInvalid);

// replacing elements

boolean replace_element_with_key (in any element) raises(ElementInvalid);

boolean replace_element_with_key_set_iterator (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

// retrieving elements

boolean retrieve_element_with_key (in any key, out any element) raises (KeyInvalid);

// computing the keys

void key (in any element, out any key) raises (ElementInvalid);

void keys (in AnySequence elements, out AnySequence keys) raises (ElementInvalid);

// locating elements

boolean locate_element_with_key (in any key, in Iterator where) raises (KeyInvalid, IteratorInv

boolean locate_next_element_with_key (in any key, in Iterator where) raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_different_key (in Iterator where) raises (IteratorInBetween
IteratorInvalid);

// inquiring collection information

unsigned long number_of_different_keys ();

unsigned long number_of_elements_with_key (in any key) raises(KeyInvalid);

};

A KeyCollection is a collection which offers associative access to its elements via
key. All elements of such a collection are keyed elements (i.e., they do have a ke
which is computed from the element value). How to compute the key from an elem
value is user-defined. A user specializes the Operations interface and implement
operation key() as desired (see “The Operations Interface” on page 17-117). This
information is passed to the collection at creation time.

Type checking information

readonly attribute CORBA::TypeCode key_type;

Specifies the key type expected in the collection. See also “The Operations Interf
on page 17-117.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-43

17

en

alid

tion.

ion;

);

uch
ged.

r
Testing containment

boolean contains_element_with_key (in any key) raises (KeyInvalid);

Return value

Returns true if the collection contains an element with the same key as the giv
key.

Exceptions

The given key has to be of the expected type; otherwise, the exception KeyInv
is raised.

boolean contains_all_keys_from (in KeyCollection collector) raises(KeyInvalid);

Return value

Returns true if all of the keys of the given collection are contained in the collec

Exceptions

The keys of the given collection have to be of the expected type of this collect
otherwise, the exception KeyInvalid is raised.

Adding elements

boolean locate_or_add_element_with_key (in any element) raises(ElementInvalid

Description

Locates an element with the same key as the key in the given element. If no s
element exists the element is added; otherwise, the collection remains unchan

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_with_key_set_iterator (in any element, in Iterato
where) raises (ElementInvalid, IteratorInvalid);
17-44 CORBAservices July 1997

17

ts the
ment

or
Description

Locates an element with the same key as the key in the given element and se
iterator to the located elements (see locate_element_with_key()). If no such ele
exists, the element is added and the iterator is set to the element added.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key (in any element) raises
(ElementInvalid);

Description

If the collection contains an element with the key equal to the key in the given
element, the element is replaced with the given element; otherwise, the given
element is added to the collection.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key_set_iterator (in any element, in Iterat
where) raises (ElementInvalid, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-45

17

given
r set

f no
-

id is
Description

If the collection contains an element with the key equal to the key in the given
element, the iterator is set to that element and the element is replaced with the
element; otherwise, the given element is added to the collection, and the iterato
to the added element.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

Removing elements

boolean remove_element_with_key (in any key) raises (KeyInvalid);

Description

Removes an element from the collection with the same key as the given key. I
such element exists, the collection remains unchanged. In collections with non
unique elements, an arbitrary occurrence of such an element will be removed.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

 Side effects

If an element was removed, all iterators pointing to the element go in-between.

All other iterators keep their state.

unsigned long remove_all_elements_with_key (in any key) raises(KeyInvalid);

Description

Removes all elements from the collection with the same key as the given key.
17-46 CORBAservices July 1997

17

id is

ment.
h
ced.

e)

ment,

ue
Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

Side effects

Iterators pointing to elements removed go in-between.

All other iterators keep their state.

Replacing elements

boolean replace_element_with_key (in any element) raises (ElementInvalid);

Description

Replaces an element with the same key as the given element by the given ele
If no such element exists, the collection remains unchanged. In collections wit
non-unique elements, an arbitrary occurrence of such an element will be repla

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

boolean replace_element_with_key_set_iterator (in any element, in Iterator wher
raises (ElementInvalid, IteratorInvalid);

Description

Replaces an element with the same key as the given element by the given ele
and sets the iterator to this element. If no such element exists, the iterator is
invalidated and the collection remains unchanged. In collections with non-uniq
elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-47

17

 key.

alid);

meter

 the
uch

rder
Computing keys

void key (in any element, out any key) raises(ElementInvalid);

Description

Computes the key of the given element and returns it via the output parameter

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void keys (in Any Sequence elements, out Any Sequence keys) raises(ElementInv

Description

Computes the keys of the given elements and returns them via the output para
keys.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

An implementation may rely on the key operation of a user supplied interface
derived from Operations. An instance of this interface is passed to a collection
at creation time and can be used in the collection implementation.

Locating elements

boolean locate_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets
iterator to point to the element in the collection, or invalidates the iterator if no s
element exists.

If the collection contains several such elements, the first element in iteration o
is located.

Return value

Returns true if an element was found.
17-48 CORBAservices July 1997

17

id is

,
e
d if
nt are

id is

the

t
t

.
Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_next_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates the next element in iteration order with the key equal to the given key
starting at the element next to the one pointed to by the given iterator. Sets th
iterator to point to the element in the collection. The given iterator is invalidate
the end of the collection is reached and no more occurrences of such an eleme
left to be visited. If the iterator is in the in-between state, locating starts at the
iterator’s “potential next” element.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

The given iterator must belong to the collection and must be valid; otherwise,
exception IteratorInvalid is raised.

boolean locate_next_element_with_different_key (in Iterator where)
raises(IteratorInvalid, IteratorInBetween)

Description

Locates the next element in the collection in iteration order with a key differen
from the key of the element pointed to by the given iterator. If no such elemen
exists, the given iterator is no longer valid.

Return value

Returns true if an element was found.

Exceptions

The given iterator must belong to the collection and must point to an element;
otherwise, the exception IteratorInvalid respectively IteratorInBetween is raised
Object Collection Service: v1.0 The CosCollection Module July 1997 17-49

17

” and

een,

nd
Inquiring collection information

unsigned long number_of_different_keys ();

Return value

Returns the number of different keys in the collection.

unsigned long number_of_elements_with_key (in any key) raises(KeyInvalid);

Return value

Returns the number elements with key specified.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The EqualityKeyCollection Interface

interface EqualityKeyCollection : EqualityCollection, KeyCollection{};

Description

This interface combines the interfaces representing the properties “key access
“element equality.” See “The EqualityCollection Interface” on page 17-37 and
“The KeyCollection Interface” on page 17-42.

The KeySortedCollection Interface

interface KeySortedCollection : KeyCollection, SortedCollection {

// locating elements

boolean locate_first_element_with_key (in any key, in Iterator where) raises (KeyInvalid,
IteratorInvalid);

boolean locate_last_element_with_key(in any key, in Iterator where) raises (KeyInvalid,
IteratorInvalid);

boolean locate_previous_element_with_key (in any key, in Iterator where) raises (KeyInvalid,
IteratorInvalid);

boolean locate_previous_element_with_different_key(in Iterator where) raises (IteratorInBetw
IteratorInvalid);

};

This interface combines the interfaces representing the properties “key access” a
“ordering.” See “The KeyCollection Interface” on page 17-42 and “The
SortedCollection Interface” on page 17-37.
17-50 CORBAservices July 1997

17

 the
 no

id is

s the
tor if

id is
Locating elements

boolean locate_first_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection with the same key as
given key. Sets the iterator to the located element, or invalidates the iterator if
such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element_with_key(in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection with the same key a
given key. Sets the given iterator to the located element, or invalidates the itera
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-51

17

ey,

id is

y of
 and

id is

lity”

e
Description

Locates the previous element in iteration order with a key equal to the given k
beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, locating begins at the iterator’s
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

The given iterator must belong to the collection and be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_previous_element_with_different_key(in Iterator where) raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the ke
the element pointed to, beginning at the element previous to the one pointed to
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInval
raised.

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualitySortedCollection Interface

This interface combines the interfaces representing the properties “element equa
and “ordering.” See “The EqualityCollection Interface” on page 17-37 and “The
SortedCollection Interface” on page 17-37. It adds those methods which exploit th
combination of both properties.

interface EqualitySortedCollection : EqualityCollection, SortedCollection {
17-52 CORBAservices July 1997

17

or if

alid,

or if
// locating elements

boolean locate_first_element (in any element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

boolean locate_last_element (in any element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

boolean locate_previous_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

boolean locate_previous_different_element (in Iterator where) raises (IteratorInvalid);

};

Locating elements

boolean locate_first_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterat
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element (in any element, in Iterator where) raises (ElementInv
IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterat
no such element exists.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-53

17

e
Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, the search begins at the iterator’s
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type otherwise the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_different_element (in Iterator where) raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the
element pointed to, beginning at the element previous to the one
pointed to and moving in reverse iteration order through the elements. Sets th
iterator to the located element or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.
17-54 CORBAservices July 1997

17

ty,”

ty”

valid,

valid,

s

or if

valid
The EqualityKeySortedCollection Interface

interface EqualityKeySortedCollection: EqualityCollection, KeyCollection,
SortedCollection {};

This interface combines the interface representing the properties “element equali
“key access,” and “ordering.”

The EqualitySequentialCollection Interface

This interface combines the interface representing the properties “element equali
and “(sequential) ordering” and offers additional operations which exploit this
combination.

interface EqualitySequentialCollection: EqualityCollection, SequentialCollection
{

// locating elements

boolean locate_first_element_with_value (in any element, in Iterator where) raises (ElementIn
IteratorInvalid);

boolean locate_last_element_with_value (in any element, in Iterator where) raises (ElementIn
IteratorInvalid);

boolean locate_previous_element_with_value (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

};

Locating elements

boolean locate_first_element_with_value (in any element, in Iterator where) raise
(ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterat
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-55

17

s

or if

valid

lid

aises

valid

n

uent
he
boolean locate_last_element_with_value (in any element, in Iterator where) raise
(ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterat
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInva
is raised.

boolean locate_previous_element_with_value (in any element, in Iterator where) r
(ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, locating begins at the iterators
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

The iterator must belong to the collection and be valid; otherwise, the exceptio
IteratorInvalid is raised.

17.5.4 Concrete Collections Interfaces

The previously listed “abstract views” on collections combine the properties “key
access,” “element equality,” and “ordering relationship” on elements. The subseq
interfaces add “uniqueness” support for “multiples.” To reduce the complexity of t
hierarchy, this fourth property is not represented by a separate interface.
17-56 CORBAservices July 1997

17

iple

ent
ired”

is

re
The KeySet Interface

interface KeySet: KeyCollection {};

The KeySet offers an interface representing the property “key access” with the
semantics of “unique keys required.” See “The KeyCollection Interface” on
page 17-42.

The KeyBag Interface

interface KeyBag: KeyCollection {};

The KeyBag offers the interface representing the property “key access” with mult
keys allowed. See “The KeyCollection Interface” on page 17-42.

The Map Interface

interface Map : EqualityKeyCollection {

// set theoretical operations

void difference_with (in Map collector) raises (ElementInvalid);

void add_difference (in Map collector1, in Map collector2)raises (ElementInvalid);

void intersection_with (in Map collector) raises (ElementInvalid);

void add_intersection (in Map collector1, in Map collector2) raises (ElementInvalid);

void union_with (in Map collector) raises (ElementInvalid);

void add_union (in Map collector1, in Map collector2)raises (ElementInvalid);

// testing equality

boolean equal (in Map collector) raises (ElementInvalid);

boolean not_equal (in Map collector) raises(ElementInvalid);

};

The Map offers the interface representing the combination of the properties “elem
equality testable” and “key access” and supports the semantics “unique keys requ
(which implies unique elements). See “The EqualityKeyCollection Interface” on
page 17-50.

With element equality defined, a test on equality for collections of the same type
possible as well as a meaningful definition of the set theoretical operations.

Set theoretical operations

void difference_with (in Map collector) raises(ElementInvalid);

Description

Makes this collection the difference between this collection and the given
collection. The difference of A and B (A minus B) is the set of elements that a
contained in A but not in B.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-57

17

lies

 Q

;

;

ce to

n;

 here

.
d B.

lies

d Q

;
The same operation is defined for other collections, too. The following rule app
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the difference of P and
contains the element X m-n times if “m > n,” and zero times if “m <= n.”

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Valid iterators pointing to removed elements go in-between. All other iterators keep
their state.

void add_difference (in Map collector1, in Map collector2) raises (ElementInvalid)

Description

Creates the difference between the two given collections and adds the differen
this collection.

Exceptions

Elements of the given collections must be of the expected type in this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the difference takes place one by one so the semantics for add applies
for raised exceptions and iterator state.

void intersection_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the intersection of this collection and the given collection
The intersection of A and B is the set of elements that is contained in both A an

The same operation is defined for other collections, too. The following rule app
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the intersection of P an
contains the element X “MIN(m,n)” times.

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.
17-58 CORBAservices July 1997

17

d);

o this

n;

 here

lies

;

d

tion.
Side effects

Valid iterators of this collection pointing to removed elements go in-between.

All other iterators keep their state.

void add_intersection (in Map collector1, in Map collector2) raises (ElementInvali

Description

Creates the intersection of the two given collections and adds the intersection t
collection.

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the intersection takes place one by one so the semantics for add apply
for raised exceptions and iterator state.

void union_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the union of this collection and the given collection. The
union of A and B are the elements that are members of A or B or both.

The same operation is defined for other collections, too. The following rule app
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the union of P and Q
contains the element X m+n times.

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Adding takes place one by one so the semantics for add applies here for raise
exceptions and iterator state.

void add_union (in Map collector1, in Map collector2) raises (ElementInvalid);

Description

Creates the union of the two given collections and adds the union to the collec
Object Collection Service: v1.0 The CosCollection Module July 1997 17-59

17

n;

the
ns

y
.

e

f the

n;
Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the intersection takes place one by one; therefore, the semantics for add
applies here for validity of iterators and raised exceptions.

Testing equality

boolean equal (in Map collector) raises(ElementInvalid);

Return value

Returns true if the given collection is equal to the collection.

This operation is defined for other collections, too. Two collections are equal if
number of elements in each collection is the same and if the following conditio
(depending on the collection properties) are fulfilled.

• Collections with unique elements: If the collections have unique elements, an
element that occurs in one collection must occur in the other collections, too

• Collections with non-unique elements: If an element has n occurrences in on
collection, it must have exactly n occurrences in the other collection.

• Sequential collections: They are sequential collections if they are
lexicographically equal based on element equality defined for the elements o
sequential collection.

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

boolean not_equal (in Map collector) raises (ElementInvalid);

Return value

Returns true if the given collection is not equal to this collection.

The Relation Interface

interface Relation : EqualityKeyCollection {

// equal, not_equal, and the set-theoretical operations as defined for Map

};
17-60 CORBAservices July 1997

17

tics

ce”

with
e”

with

tion

er-

xt of
ical
The Relation interface offers the interface representing the combination of the
properties “element equality testable” and “key access” and supports the seman
“multiple elements allowed.” See “The EqualityKeyCollection Interface” on
page 17-50. For a definition of the set-theoretical operation see “The Map Interfa
on page 17-57.

The Set Interface

interface Set : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined for Map

};

The Set offers the interface representing the property “element equality testable”
the semantics of “unique elements required.” See “The EqualityCollection Interfac
on page 17-37.

The Bag Interface

interface Bag : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined for Map

};

The Bag offers the interface representing the property “element equality testable”
the semantics of “multiples allowed.” See “The EqualityCollection Interface” on
page 17-37.

The KeySortedSet Interface

interface KeySortedSet : KeySortedCollection {

long compare (in KeySortedSet collector, in Comparator comparison);

};

The KeySortedSet offers the sorted variant of KeySet. See “The KeySortedCollec
Interface” on page 17-50.

The sorted variant of KeySet introduces a new operation compare which can be
supported only when there is “ordering.” This operation takes an instance of a us
defined Comparator as given parameter. See “The Command and Comparator
Interface” on page 17-121.

The Comparator defines the comparison to be used for the elements in the conte
this compare operation. Comparison on two KeySortedSets then is a lexicograph
comparison based on this element comparison.

long compare (in KeySortedSet collector, in Comparator comparison) raises
(ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-61

17

ter
re

tion
Description

Compares this collection with the given collection. Comparison yields:

• <0 if this collection is less than the given collection,

• 0 if the collection is equal to the given collection, and

• >0 if the collection is greater than the given collection.

Comparison is defined by the first pair of corresponding elements, in both
collections, that are not equal. If such a pair exists, the collection with the grea
element is the greater one. If such a pair does not exist, the collection with mo
elements is the greater one.

The “compare” operation of the user’s comparator (interface derived from
Comparator) must return a result according to the following rules:

>0 if (element1 > element2)

 0 if (element1 = element2)

<0 if (element1 < element2)

Return value

Returns the result of the collection comparison.

The KeySortedBag Interface

interface KeySortedBag : KeySortedCollection {

long compare (in KeySortedBag collector, in Comparator comparison);

};

The KeySortedBag is the sorted variant of the KeyBag. See “The KeySortedCollec
Interface” on page 17-50 The additional operation compare is offered. See “The
KeySortedSet Interface” on page 17-61.

The SortedMap Interface

interface SortedMap : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedMap collector, in Comparator comparison);

};

The SortedMap interface is the sorted variant of a Map. See “The
EqualityKeySortedCollection Interface” on page 17-55. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-61.

The SortedRelation Interface

interface SortedRelation : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedRelation collector, in Comparator comparison);
17-62 CORBAservices July 1997

17

pare

ng.”
the
};

The SortedRelation interface is the sorted variant of a Relation. See “The
EqualitySortedCollection Interface” on page 17-52. The additional operation compare
is offered. See “The KeySortedSet Interface” on page 17-61.

The SortedSet Interface

interface SortedSet : EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedSet collector, in Comparator comparison);

};

The SortedSet interface is the sorted variant of a Set. The additional operation com
is offered. See “The KeySortedSet Interface” on page 17-61.

The SortedBag Interface

interface SortedBag: EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedBag collector, in Comparator comparison);

};

The SortedBag interface is the sorted variant of a Bag. See “The
EqualitySortedCollection Interface” on page 17-52. The additional operation compare
is offered. See “The KeySortedSet Interface” on page 17-61.

The Sequence Interface

interface Sequence : SequentialCollection {

// Comparison

long compare (in Sequence collector, in Comparator comparison);

};

The Sequence supports the interface representing the property “sequential orderi
This property enables the definition of comparison on two Sequences; therefore,
operation compare is offered. See “The SequentialCollection Interface” on
page 17-31.

The EqualitySequence Interface

interface EqualitySequence : EqualitySequentialCollection {

// test on equality

boolean equal (in EqualitySequence collector);

boolean not_equal (in EqualitySequence collector);

// comparison

long compare (in EqualitySequence collector, in Comparator comparison);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-63

17

ring”
 on

n

 a

 is
offer
ment,

 of

. For
d an
};

The EqualitySequence supports the combination of the properties “sequential orde
and “element equality testable.” See “The EqualitySequentialCollection Interface”
page 17-55. This allows the operations equal, not_equal and compare.

The Heap Interface

interface Heap : Collection {};

The Heap does not support any property at all. It just delivers the basic Collectio
interface. See “The Collection Interface” on page 17-21.

17.5.5 Restricted Access Collection Interfaces

Common data structures, such as a stack, may restrict access to the elements of
collection. The restricted access collections support these data structures. Stack,
Queue, and Dequeue are essentially restricted access Sequences. PriorityQueue
essentially a restricted access KeySortedBag. For convenience, these interfaces
the commonly used operation names such as push, pop, etc. rather than add_ele
remove_element_at. Although the restricted access collections form their own
hierarchy, the naming was formed in a way that allows mixing-in with the hierarchy
the combined property collections.

This may be useful to support several views on the same instance of a collection
example, a “user view” to a job queue with restricted access of a PriorityQueue an
“administrator view” to the same print job queue with the full capabilities of a
KeySortedBag.

17.5.6 Abstract RestrictedAccessCollection Interface

The RestrictedAccessCollection Interface

// Restricted Access Collections

interface RestrictedAccessCollection {

// getting information on collection state

boolean unfilled ();

unsigned long size ();

// removing elements

void purge ();

};

boolean unfilled ();
17-64 CORBAservices July 1997

17

d at the
ior is
Return value

Returns true if the collection is empty.

unsigned long size ();

Return value

Returns the number of elements in the collection.

void purge ();

Description

Removes all elements from the collection. See “The Collection Interface” on
page 17-21.

17.5.7 Concrete Restricted Access Collection Interfaces

The Queue Interface

interface Queue : RestrictedAccessCollection {

// adding elements

void enqueue (in any element) raises (ElementInvalid);

// removing elements

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

A Queue may be considered as a restricted access Sequence. Elements are adde
end of the queue only and removed from the beginning of the queue. FIFO behav
delivered.

Adding elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element as last element to the Queue.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-65

17

ised.

ent,

ised.
Exceptions

The given element must be the expected type; otherwise, the exception
ElementInvalid is raised.

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the queue.

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is ra

boolean element_dequeue(out any element) raises (EmptyCollection);

Description

Retrieves the first element in the queue, returns it via the output parameter elem
and removes it from the queue.

Return value

Returns true if an element was retrieved.

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is ra

The Dequeue Interface

interface Deque : RestrictedAccessCollection {

// adding elements

void enqueue_as_first (in any element) raises (ElementInvalid);

void enqueue_as_last (in any element) raises(ElementInvalid);

// removing elements

void dequeue_first () raises (EmptyCollection);

boolean element_dequeue_first (out any element) raises (EmptyCollection);

void dequeue_last () raises (EmptyCollection);

boolean element_dequeue_last (out any element) raises (EmptyCollection);

};
17-66 CORBAservices July 1997

17

moving
of the
face.

oving

ed.
The Dequeue may be considered as a restricted access Sequence. Adding and re
elements is only allowed at both ends of the double-ended queue. The semantics
Dequeue operation is comparable to the operations described for the Queue inter
See “The Queue Interface” on page 17-65.

The Stack Interface

interface Stack: RestrictedAccessCollection {

// adding elements

void push (in any element) raises (ElementInvalid);

// removing and retrieving elements

void pop () raises (EmptyCollection);

boolean element_pop (out any element) raises (EmptyCollection);

boolean top (out any element) raises (EmptyCollection);

};

The Stack may be considered as a restricted access Sequence. Adding and rem
elements is only allowed at the end of the queue. LIFO behavior is delivered.

Adding elements

void push (in any element) raises (ElementInvalid);

Description

Adds the element to the stack as the last element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Removing elements

void pop () raises (EmptyCollection);

Description

Removes the last element from the stack.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is rais

boolean element_pop (out any element) raises (EmptyCollection);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-67

17

ter

ed.

ter

ed.

ics
Description

Retrieves the last element from the stack and returns it via the output parame
element and removes it from the stack.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is rais

Retrieving elements

boolean top (out any element) raises (EmptyCollection);

Description

Retrieves the last element from the stack and returns it via the output parame
element.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is rais

The PriorityQueue Interface

interface PriorityQueue: RestrictedAccessCollection {

// adding elements

void enqueue (in any element) raises (ElementInvalid);

// removing elements

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

The PriorityQueue may be considered as a restricted access KeySortedBag. The
interface is identical to that of an ordinary Queue, with a slightly different semant
for adding elements.

Adding elements

void enqueue (in any element) raises (ElementInvalid);
17-68 CORBAservices July 1997

17

g

lid is

tion

 the

n is

rs a

 For
test
Description

Adds the element to the priority queue at a position determined by the orderin
relation provided for the key type.

Exceptions

The Element must be the expected type; otherwise, the exception ElementInva
raised.

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The priority queue must be not be empty; otherwise, the exception EmptyCollec
is raised.

boolean element_dequeue (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the priority queue and returns it via the output
parameter element, removes it from the priority queue, and returns the copy to
user.

Return value

Returns true if an element is retrieved.

Exceptions

The priority queue must not be empty; otherwise, the exception EmptyCollectio
raised.

17.5.8 Collection Factory Interfaces

There is one collection factory defined per concrete collection interface which offe
typed operation for the creation of collection instances supporting the respective
collection interface as its principal interface.

The information passed to a collection implementation at creation time is:

1. Element type specific information required to implement the correct semantics.
example, to implement Set semantics one has to pass the information how to
the equality of elements.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-69

17

uld
.

on

rray
e

nts,

);

s not

ype

nts to

e
2. Element type specific information that can be exploited by the specific
implementation variants. For example, a hashtable implementation of a Set wo
exploit the information how the hash value for collected elements is computed

This element type specific information is passed to the collection implementati
via an instance of a user-defined specialization of the Operations interface.

3. An implementation hint about the expected number of elements collected. An a
based implementation may use this hint as an estimate for the initial size of th
implementation array.

To enable the support for, and a user-controlled selection of implementation varia
there is a generic extensible factory defined. This allows for registration of
implementation variants and their user-defined selection at creation time.

The CollectionFactory and CollectionFactories Interfaces

interface Operations;

interface CollectionFactory {

Collection generic_create (in ParameterList parameters) raises (ParameterInvalid);

};

CollectionFactory defines a generic collection creation operation which enables
extensibility and supports the creation of collection instances with the very basic
capabilities.

Collection generic_create (in ParameterList parameters) raises (ParameterInvalid

Returns a new collection instance which supports the interface Collection and doe
offer any type checking. A sequence of name-value pairs is passed to the create
operation. The only processed parameter in the given list is “expected_size,” of t
“unsigned long.”

This parameter is optional and gives an estimate of the expected number of eleme
be collected.

Note – All collection interface specific factories defined in this specification inherit
from the interface CollectionFactory to enable their registration with the extensibl
generic CollectionFactories factory specified below.

interface CollectionFactories : CollectionFactory {

boolean add_factory (in Istring collection_interface, in Istring impl_category, in Istring
impl_interface, in CollectionFactory factory);

boolean remove_factory (in Istring collection_interface, in Istring impl_category, in Istring
impl_interface);

};
17-70 CORBAservices July 1997

17

n
e
uests
to the
ith

ing

ed

face.

ed

s to
s. A
t if

ce.

n

s
The interface CollectionFactories specifies a generic extensible collection creatio
capability. It maintains a registry of collection factories. The create operation of th
CollectionFactories does not create collection instances itself, but passes the req
through to an appropriate factory registered with it and passes the result through
caller. Note that only factories derived from CollectionFactory can be registered w
CollectionFactories.

boolean add_factory (in Istring collection_interface, in Istring impl_category, in Istr
impl_interface, in CollectionFactory factory);

Registers the factory with three pieces of information:

1. collection_interface specifies the collection interface (directly or indirectly deriv
from Collection) supported by the given factory. That is, a collection instance
created via the given factory has to support the given interface collection_inter

2. impl_interface specifies the implementation interface (directly or indirectly deriv
from the interface specified in collection_interface) supported by the registered
factory. Collection instances created via this factory are instances of this
implementation interface.

3. impl_category specifies a named group of equivalent implementation interface
which the implementation interface supported by the registered factory belong
group of implementation interfaces of a given collection interface are equivalen
they:

• rely on the same user-defined implementation support, that is, the same
operations defined in the user-defined specialization of the Operations interfa

• are based on essentially the same data structure and deliver comparable
performance characteristics.

The following table lists examples of implementation categories (representing commo
implementations).

Table 17-4Implementation Category Examples

Implementation
Category

Description

ArrayBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is an array.

LinkedListBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is a simple linked list.

SkipListsBased A compare operation has to be defined for the key element value
that depend on whether or not the collection is a KeyCollection
derived from KeyCollection. The basic data structure are skip lists.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-71

17

hat it
rs the
 the

tory

 the

The operation does not check the validity of the registration request in the sense t
checks any of the restrictions on the parameters described above, but just registe
given information with the factory. It is the responsibility of the user to ensure that
registration is valid.

The entry is added if there is not already a factory registered with the same three
pieces of information; otherwise, the registration is ignored. Returns true if the fac
is added.

boolean remove_factory (in Istring collection_interface, in Istring impl_category, in
Istring impl_interface)

Description

Removes the factory registered with the given three pieces of information from
registry.

Return value

Returns true if an entry with that name exists and is removed.

create (ParameterList parameters) raises (ParameterInvalid)

HashTableBased A hash-function has to be defined for key element values that
depend on whether or not the interface implemented is a
KeyCollection derived from KeyCollection. The basic data
structure is a hashtable based on the hash-function defined.

AVLTreeBased A compare operation has to be defined for the key element values
that depend on whether or not the collection is a KeyCollection
derived from KeyCollection. The basic data structure is an AVL
tree.

BStarTreeBased A compare operation has to be defined for key values. The basic
data structure is a B*tree.
17-72 CORBAservices July 1997

17

s
ory is

hing
ctory.
for a

ory.

ith

tory

 a

The create operation of the CollectionFactories interface does not create instance
itself, but passes through creation requests to factories registered with it. The fact
passed a sequence of name-value pairs of which the only mandatory one is
collection_interface” of type Istring.

If one or both of these name-value pairs are given, it is searched for a best matc
entry in the factory registry and the request is passed through to the respective fa
“Best matching” means that if an implementation interface is given, it is searched
factory supporting an exact matching implementation interface first. If no factory
supporting the desired implementation interface is registered, it is searched for a
factory supporting an implementation interface of the same implementation categ

If none of the two name-value pairs are given, the request is passed to a factory
registered as default factory for a given “collection_interface.” For each concrete
collection interface specified in this specification, there is one collection specific
factory defined which serves as default factory and is assumed to be registered w
CollectionFactories.

There must be a name-value pair with name “collection_interface” given and a fac
must be registered for “collection_interface;” otherwise, the
exception ParameterInvalid is raised.

If a desired implementation interface and/or an implementation category is given,
factory with matching characteristics must be registered; otherwise, the exception
ParameterInvalid is raised.

collection_interface” of type
Istring

A string which specifies the name of the
collection interface (directly or indirectly
derived from Collection) the collection
instance created has to support.

This name-value pair corresponds to the
collection_interface parameter of the
add_factory() operation.

The following name-value pairs are optional:

“ impl_category” of type Istring A string which denotes the desired
implementation category. This name-value
pair corresponds to the impl_category
parameter of the add_factory() operation.

“ impl_interface” of type Istring A string which specifies a desired
implementation interface. This name-value
pair corresponds to the impl_interface
parameter of the add_factory() operation.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-73

17

the

es

valid);

ace.
as
tion
For factories specified for each concrete collection interface in this specification,
following additional name-value pairs are relevant:

Those parameters are not processed by the create operation of CollectionFactori
itself, but just passed through to a registered factory.

The RACollectionFactory and RACollectionFactories Interfaces

interface RACollectionFactory {

RestrictedAccessCollection generic_create (in ParameterList parameters) raises (ParameterIn

};

The interface RACollectionFactory corresponds to the interface CollectionFactory,
but defines an abstract interface.

interface RACollectionFactories : RACollectionFactory {

boolean add_factory (in Istring collection_interface, in Istring impl_category, in Istring
impl_interface, in RACollectionFactory factory);

boolean remove_factory (in Istring collection_interface, in Istring impl_category, in Istring
impl_interface);

};

The interface RACollectionFactories corresponds to the CollectionFactories interf
It enables the registration and deregistration of collections with restricted access
well as control over the implementation choice for a given restricted access collec
at creation time.

The KeySetFactory Interface

interface KeySetFactory : CollectionFactory {

KeySet create (in Operations ops, in unsigned long expected_size);

};

KeySet create (in Operations ops, in unsigned long expected_size);

“operations” of type
Operations

An instance of a user-defined specialization of
Operations which specifies element- and/or
key-type specific operations.

“expected_size” of type
unsigned long

is an unsigned long and gives an estimate about
the expected number of elements to be
collected.
17-74 CORBAservices July 1997

17

ses

sses

Creates and returns an instance of KeySet. The given instance of Operations pas
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The KeyBagFactory Interface

interface KeyBagFactory : CollectionFactory {

KeyBag create (in Operations ops, in unsigned long expected_size);

};

KeyBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeyBag. The given instance of Operations pa
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The MapFactory Interface

interface MapFactory : CollectionFactory {

Map create (in Operations ops, in unsigned long expected_size);

};

Map create (in Operations ops, in unsigned long expected_size);

Table 17-5Required element and key-type specific user-defined information for
KeySetFactory. []- implied by key_compare.

KeySet

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 17-6Required element and key-type specific user-defined information for
KeyBagFactory. []- implied by key_compare.

KeyBag

equal compare hash key key_equal key_compare key_hash

x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-75

17

s user-
n.

sses

 user-
n.
Creates and returns an instance of Map. The given instance of Operations passe
defined element and key-type specific information to the collection implementatio
The following table defines the requirements for the element key operations to be
implemented.

The RelationFactory Interface

interface RelationFactory : CollectionFactory {

Relation create (in Operations ops, in unsigned long expected_size);

};

Relation create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Relation. The given instance of Operations pa
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SetFactory Interface

interface SetFactory : CollectionFactory {

Set create (in Operations ops, in unsigned long expected_size);

};

Set create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Set. The given instance of Operations passes
defined element and key-type specific information to the collection implementatio

Table 17-7Required element and key-type specific user-defined information for
MapFactory. []- implied by key_compare.

Map

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 17-8Required element and key-type specific user-defined information for
RelationFactory.[]- implied by key_compare.

Relation

equal compare hash key key_equal key_compare key_hash

x x [x] x
17-76 CORBAservices July 1997

17

s user-
n.

.[]-
The following table defines the requirements for the element key operations to be
implemented.

The BagFactory Interface

interface BagFactory {

Bag create (in Operations ops, in unsigned long expected_size);

};

Bag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Bag. The given instance of Operations passe
defined element and key-type specific information to the collection implementatio
The following table defines the requirements for the element key operations to be
implemented.

The KeySortedSetFactory Interface

interface KeySortedSetFactory {

KeySortedSet create (in Operations ops, in unsigned long expected_size);

};

KeySortedSet create (in Operations ops, in unsigned long expected_size)

Table 17-9Required element and key-type specific user-defined information for SetFactory
implied by compare.

Set

equal compare hash key key_equal key_compare key_hash

[x] x

Table 17-10 Required element and key-type specific user-defined information for
 BagFactory.[]- implied by compare.

Bag

equal compare hash key key_equal key_compare key_hash

[x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-77

17

ns

ons

Creates and returns an instance of KeySortedSet. The given instance of Operatio
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The KeySortedBagFactory Interface

interface KeySortedBagFactory : CollectionFactory {

KeySortedBag create (in Operations ops, in unsigned long expected_size);

};

KeySortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeySortedBag. The given instance of Operati
passes user-defined element and key-type specific information to the collection
implementation.

The following table defines the requirements for the element key operations to be
implemented.

The SortedMapFactory Interface

interface SortedMapFactory : CollectionFactory {

SortedMap create (in Operations ops, in unsigned long expected_size);

};

SortedMap create (in Operations ops, in unsigned long expected_size);

Table 17-11 Required element and key-type specific user-defined information for
 KeySortedSetFactory.[]- implied by key_compare.

KeySortedSet

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 17-12 Required element and key-type specific user-defined information for
 KeySortedBagFactory.[]- implied by key_compare.

KeySortedBag

equal compare hash key key_equal key_compare key_hash

x [x] x
17-78 CORBAservices July 1997

17

passes

ions

Creates and returns an instance of SortedMap. The given instance of Operations
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedRelationFactory Interface

interface SortedRelationFactory : CollectionFactory {

SortedRelation create (in Operations ops, in unsigned long expected_size);

};

SortedRelation create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedRelation. The given instance of Operat
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedSetFactory Interface

interface SortedSetFactory : CollectionFactory {

SortedSet create (in Operations ops, in unsigned long expected_size);

};

SortedSet create (in Operations ops, in unsigned long expected_size);

Table 17-13 Required element and key-type specific user-defined information for
SortedMapFactory.[]- implied by key_compare.

SortedMap

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 17-14 Required element and key-type specific user-defined information for
 SortedRelationFactory.[]- implied by key_compare.

SortedRelation

equal compare hash key key_equal key_compare key_hash

x x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-79

17

passes

passes

Creates and returns an instance of SortedSet. The given instance of Operations
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedBagFactory Interface

interface SortedBagFactory {

SortedBag create (in Operations ops, in unsigned long expected_size);

};

SortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedBag. The given instance of Operations
user-defined element and key-type specific information to the collection
implementation.

The following table defines the requirements for the element key operations to be
implemented.

The SequenceFactory Interface

interface SequenceFactory : CollectionFactory {

Sequence create (in Operations ops, in unsigned long expected_size);

};

Sequence create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Sequence. No requirements on the element
respectively key operations to be implemented is specified for a Sequence.
Nevertheless one still has to pass an instance of Operations as type checking
information has to be passed to the collection implementation.

Table 17-15 Required element and key-type specific user-defined information for
 SortedSetFactory. []- implied by compare.

SortedSet

equal compare hash key key_equal key_compare key_hash

[x] x

Table 17-16 Required element and key-type specific user-defined information for
 SortedBagFactory. []- implied by compare.

SortedBag

equal compare hash key key_equal key_compare key_hash

[x] x
17-80 CORBAservices July 1997

17

ation

tation

ations

er at
t

o be
ce of

ion.
Note – As the Sequence interface represents array as well as linked list implement
of sequentially ordered collections, a service provider should offer at least two
implementations to meet the performance requirements of the two most common
access patterns. That is, a service provider should offer an array based implemen
and a linked list based implementation.

The EqualitySequence Factory Interface

interface EqualitySequenceFactory : CollectionFactory {

EqualitySequence create (in Operations ops, in unsigned long expected_size);

};

EqualitySequence create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of EqualitySequence. The given instance of Oper
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

Note – As the EqualitySequence interface represents array as well as linked list
implementations of sequentially ordered collections, a service provider should off
least two implementations to meet the performance requirements of the two mos
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

The HeapFactory Interface

interface HeapFactory : CollectionFactory {

Heap create (in Operations ops, in unsigned long expected_size);

};

Heap create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Heap. No requirements for the element key operations t
implemented is specified for a Heap. Nevertheless, one still has to pass an instan
Operations as type checking information must pass to the collection implementat

Table 17-17 Required element and key-type specific user-defined information for
EqualitySequenceFactory.

Equality
Sequence

equal compare hash key key_equal key_compare key_hash

x

Object Collection Service: v1.0 The CosCollection Module July 1997 17-81

17

 to be
nce of
ion.

to be
ce of

ion.

 to be
nce of
ion.
The QueueFactory Interface

interface QueueFactory : RACollectionFactory {

Queue create (in Operations ops, in unsigned long expected_size);

};

Queue create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Queue. No requirements for the element key operations
implemented is specified for a Queue. Nevertheless, one still has to pass an insta
Operations as type checking information must pass to the collection implementat

The StackFactory Interface

interface StackFactory : RACollectionFactory {

Stack create (in Operations ops, in unsigned long expected_size);

};

Stack create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Stack. No requirements for the element key operations
implemented is specified for a Stack. Nevertheless, one still has to pass an instan
Operations as type checking information must pass to the collection implementat

The DequeFactory Interface

interface DequeFactory : RACollectionFactory {

Deque create (in Operations ops, in unsigned long expected_size);

};

Deque create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Deque. No requirements on the element key operations
implemented is specified for a Deque. Nevertheless, one still has to pass an insta
Operations as type checking information must pass to the collection implementat

The PriorityQueueFactory Interface

interface PriorityQueueFactory : RACollectionFactory {

PriorityQueue create (in Operations ops, in unsigned long expected_size);

};

PriorityQueue create (in Operations ops, in unsigned long expected_size);
17-82 CORBAservices July 1997

17

 user-
n.

ter

t

 only

lels

all
eries

alue,

n be
nt

d to
ent
rder.

lue.

Returns an instance of a PriorityQueue. The given instance of Operations passes
defined element and key-type specific information to the collection implementatio
The following table defines the requirements for the element key operations to be
implemented.

17.5.9 Iterator Interfaces

Iterators as pointer abstraction

An iterator is in a first approximation of a pointer abstraction. It is a movable poin
to elements of a collection. Iterators are tightly intertwined with collections. An
iterator cannot exist independently of a collection (i.e., the iterator life time canno
exceed that of the collection for which it is created). A collection is the factory forits
iterators. An iterator is created for a given collection and can be used for this and
this collection.

The iterators specified in this specification form an interface hierarchy which paral
the collection interface hierarchy. The supported iterator movements reflect the
capabilities of the corresponding collection type.

The top level Iterator interface defines a generic iterator usable for iteration over
types of collections. It can be set to a start position for iteration and moved via a s
of forward movements through the collection visiting each element exactly once.

The OrderedIterator is supported by ordered collections only. It “knows about
ordering;" therefore, it can be moved in forward and backward direction.

The KeyIterator exploits the capabilities of key collections. It can be moved to an
element with a given key value, advanced to the next element with the same key v
or advanced to the next element with a different key value in iteration order.

The KeySortedIterator is created for key collections sorted by key. The iterator ca
advanced to the previous element with the same key value or the previous eleme
with a different key value.

The EqualityIterator exploits the capabilities of equality collections. It can be move
an element with a given value, advanced to the next element with the same elem
value, or advanced to the next element with a different element value in iteration o

The EqualitySortedIterator is created for equality collections sorted by element va
The iterator can be advanced to the previous element with the same value or the
previous element with a different value.

Table 17-18 Required element and key-type specific user-defined information for
PriorityQueueFactory. [] - implied by key_compare.

Priorit yQueue

equal compare hash key key_equal key_compare key_hash

x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-83

17

s.
 main

eric

t
, and
when

port
h the
rk in

ce

 of
re

rs

ing
aged

ut it

rced
().
Iterators and support for generic programming

Iterators go far beyond being simple “pointing devices.” There are essentially two
reasons to extend the capabilities of iterators.

1. To support the processing of very large collections which allows for delayed
instantiation or incremental query evaluation in case of very large query result
These are scenarios where the collection itself may never exist as instantiated
memory collection but is processed in “finer grains” via an iterator passed to a
client.

2. To enrich the iterator with more capabilities strengthens the support for the gen
programming model, as introduced with ANSI STL to the C++ world.

You can retrieve, replace, remove, and add elements via an iterator. You can tes
iterators for equality, compare ordered iterators, clone an iterator, assign iterators
destroy them. Furthermore an iterator can have a const designation which is set
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to sup
this, but a reverse designation is set at creation time. An ordered iterator for whic
reverse designation is set reinterprets the operations of a given iterator type to wo
reverse.

Iterators and performance

To reduce network traffic, combined operations and batch or bulk operations are
offered.

Combined operations are combinations of simple iterator operations often used in
loops. These combinations support generic algorithms. For example, a typical
combination is “test whether range end is reached; if not retrieve_element, advan
iterator to next element.”

Batch or bulk operations support the retrieval, replacement, addition, and removal
many elements within one operation. In these operations, the “many elements” a
always passed as a CORBA::sequence of elements.

The Managed Iterator Model

All iterators are managed. The real benefit of being managed is that these iterato
never become undefined. Note that “undefined” is different from “invalid.” While
“invalid” is a testable state and means the iterator points to nothing, “undefined”
means you do not know where the iterator points to and cannot inquiry it. Chang
the contents of a collection by adding or deleting elements would cause an unman
iterator to become “undefined.” The iterator may still point to the same element, b
may also point to another element or even “outside” the collection. As you do not
know the iterator state and cannot inquiry which state the iterator has, you are fo
to newly position the unmanaged iterator, for example, via a set_to_first_element
17-84 CORBAservices July 1997

17

table
ents

he
aged
f the

, can
 in a
ded or

e
it

s in
or

less,
us)
 a

nt, it

ns

ents
ent

erent

 the
 is

ion

n.
This kind of behavior, common in collection class libraries today, seems unaccep
in a distributed multi-user environment. Assume one client removes and adds elem
from a collection with side effects on the unmanaged iterators of another client. T
other client is not able to test whether there have been side effects on its unman
iterators, but would only notice them indirectly when observing strange behavior o
application.

Managed iterators are intimately related to the collection they belong to, and thus
be informed about the changes taking place within the collection. They are always
defined state which allows them to be used even though elements have been ad
removed from the collection. An iterator may be in the state invalid, that is pointing to
nothing. Before it can be used it has to be set to a valid position. An iterator in th
state valid may either point to an element (and be valid for all operations on it) or
may be in the state in-between, that is, not pointing to an element but still
“remembering" enough state to be valid for most operations on it.

A valid managed iterator remains valid as long as the element it points to remain
the collection. As soon as the element is removed, the according managed iterat
enters a so-called in-between state. The in-between state can be viewed as a vacuum
within the collection. There is nothing the managed iterator can point to. Neverthe
managed iterators remember the next (and for ordered collection, also the previo
element in iteration order. It is possible to continue using the managed iterator (in
set_to_next_element() for example) without resetting it first.

There are some limitations. Once a managed iterator no longer points to an eleme
remembers the iteration order in which the element stood before it was deleted.
However, it does not remember the element itself. Thus, there are some operatio
which cannot be performed even though a managed iterator is used.

Consider an iteration over a Bag, for example. If you iterate over all different elem
with the iterator operation set_to_next_different_element(), then removing the elem
the iterator points to leads to an undefined behavior of the collection later on. By
removing the element, the iterator becomes in-between. The
set_to_next_different_element() operation then has no chance to find the next diff
element as the collection does not know what is different in terms of the current
iterator state. Likewise, for a managed iterator in the state in-between all operations
ending with “..._at” are not defined. The reason is simple: There is no element at
iterator’s position - nothing to retrieve, to replace, or to remove in it. This situation
handled by raising an exception IteratorInvalid.

Additionally, all operations that (potentially) destroy the iteration order of a collect
invalidate the corresponding managed iterators that have been in the state in-between
before the operation was invoked. These are the sort() and the reverse() operatio

The Iterator Interface

// Iterators

interface Iterator {
Object Collection Service: v1.0 The CosCollection Module July 1997 17-85

17

alid,

 more)

ses

lid);

en,

ber)

umber)
// moving iterators

boolean set_to_first_element ();

boolean set_to_next_element() raises (IteratorInvalid);

boolean set_to_next_nth_element (in unsigned long n) raises (IteratorInvalid);

// retrieving elements

boolean retrieve_element (out any element) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_element_set_to_next (out any element, out boolean more) raises (IteratorInv
IteratorInBetween);

boolean retrieve_next_n_elements (in unsigned long n, out AnySequence result, out boolean
raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_retrieve_element_set_to_next (in Iterator test, out any element) raises
(IteratorInvalid, IteratorInBetween);

// removing elements

void remove_element() raises (IteratorInvalid, IteratorInBetween);

boolean remove_element_set_to_next() raises (IteratorInvalid, IteratorInBetween);

boolean remove_next_n_elements (in unsigned long n, out unsigned long actual_number) rai
(IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_next (in Iterator test) raises (IteratorInvalid,
IteratorInBetween);

// replacing elements

void replace_element (in any element) raises (IteratorInvalid, IteratorInBetween, ElementInva

boolean replace_element_set_to_next (in any element) raises(IteratorInvalid, IteratorInBetwe
ElementInvalid);

boolean replace_next_n_elements (in AnySequence elements, out unsigned long actual_num
raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean not_equal_replace_element_set_to_next (in Iterator test, in any element)
raises(IteratorInvalid,IteratorInBetween, ElementInvalid);

// adding elements

boolean add_element_set_iterator (in any element)raises (ElementInvalid);

boolean add_n_elements_set_iterator (in AnySequence elements, out unsigned long actual_n
raises (ElementInvalid);

// setting iterator state

void invalidate ();

// testing iterators

boolean is_valid ();

boolean is_in_between ();

boolean is_for(in Collection collector);

boolean is_const ();
17-86 CORBAservices July 1997

17

gs

ates

 or

boolean is_equal (in Iterator test) raises (IteratorInvalid);

// cloning, assigning, destroying an iterators

Iterator clone ();

void assign (in Iterator from_where) raises (IteratorInvalid);

void destroy ();

};

Moving iterators

boolean set_to_first_element ();

Description

The iterator is set to the first element in iteration order of the collection it belon
to. If the collection is empty, that is, if no first element exists, the iterator is
invalidated.

Return value

Returns true if the collection it belongs to is not empty.

boolean set_to_next_element () raises (IteratorInvalid);

Description

Sets the iterator to the next element in the collection in iteration order or invalid
the iterator if no more elements are to be visited. If the iterator is in the state in-
between, the iterator is set to its “potential next” element.

Return value

Returns true if there is a next element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_next_nth_element (in unsigned long n) raises (IteratorInvalid);

Description

Sets the iterator to the element n movements away in collection iteration order
invalidates the iterator if there is no such element. If the iterator is in the statein-
between the movement to the “potential next” element is the first of the n
movements.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-87

17

een);

.

n

n the
n the
nt is
y of

nt.
Return value

 Returns true if there is such an element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

Retrieving elements

boolean retrieve_element (out any element) raises (IteratorInvalid, IteratorInBetw

Description

Retrieves the element pointed and returns it via the output parameter element

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must point to an element of the collection; otherwise, the exceptio
IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends o
element type represented by the any. If it is an object, a reference to the object i
collection is returned. If the element type is a non-object type, a copy of the eleme
returned. In case of element type object, do not manipulate the element or the ke
the element in the collection in a way that changes the positioning property of the
element.

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid,
IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter eleme
The iterator is moved to the next element in iteration order. If there is a next
element more is set to true. If there are no more next elements, the iterator is
invalidated and more is set to false.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.
17-88 CORBAservices July 1997

17

out

ion
ng
last
re is
there
t to
end

he

ent;
boolean retrieve_next_n_elements (in unsigned long n, out AnySequence result,
boolean more) raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves at most the next n elements in iteration order of the iterator’s collect
and returns them as sequence of anys via the output parameter result. Counti
starts with the element the iterator points to. The iterator is moved behind the
element retrieved. If there is an element behind the last element retrieved, mo
set to true. If there are no more elements behind the last element retrieved or
are less than n elements for retrieval, the iterator is invalidated and more is se
false. If the value of n is 0, all elements in the collection are retrieved until the
is reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_next (in Iterator test, out
any element) raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the next
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is not moved to the
next element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of t
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an elem
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Removing elements

void remove_element () raises (IteratorInvalid, IteratorInBetween);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-89

17

 the

next

 the

ion.
 the
ehind
rator
Description

Removes the element pointed to by this iterator and sets the iterator in-between.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise,
exception IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_element_set_to_next() (IteratorInvalid, IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the
element.

Return value

Returns true if a next element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise,
exception IteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_next_n_elements (in unsigned long n, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the next n elements in iteration order of the iterator’s collect
Counting starts with the element the iterator points to. The iterator is moved to
next element behind the last element removed. If there are no more elements b
the last element removed or there are less than n elements for removal, the ite
17-90 CORBAservices July 1997

17

ntil
umber

d,

ent
 true
et

rwise
is invalidated. If the value of n is 0, all elements in the collection are removed u
the end is reached. The output parameter actual_number is set to the actual n
of elements removed. If the value of n is 0, all elements in the collection are
removed until the end is reached.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_next(in iterator test) (IteratorInvali
IteratorInBetween);

Description

Compares this iterator with the given iterator test. If they are not equal the elem
this iterators points to is removed and the iterator is set to the next element, and
is returned. If they are equal the element pointed to is removed, the iterator is sin-
between, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal when the
operations starts.

Exception

This iterator and the given iterator test must be valid otherwise the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation othe
the exception IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-91

17

alid

 the

alid
Replacing elements

void replace_element (in any element) raises (IteratorInvalid, IteratorInBetween,
ElementInvalid);

Description

Replaces the element pointed to by the given element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInv
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning properties, see “The Collection Interface” on page 17-21.

boolean replace_element_set_to_next(in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by this iterator by the given element and sets
iterator to the next element. If there are no more elements, the iterator is
invalidated.

Return value

 Returns true if there is a next element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInv
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.
17-92 CORBAservices July 1997

17

 the
 are
ents

s

here
nts in

tor is

same

raises

ment
 the
 this
ent,
For positioning properties, see“The Collection Interface” on page 17-21.

boolean replace_next_n_elements(in AnySequence elements, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

Replaces at most as many elements in iteration order as given in elements by
given elements. Counting starts with the element the iterator points to. If there
less elements in the collection left to be replaced than the given number of elem
as many elements as possible are replaced and the actual number of element
replaced is returned via the output parameter actual_number.

The iterator is moved to the next element behind the last element replaced. If t
are no more elements behind the last element replaced or the number of eleme
the collection to be replaced is less than the number given elements, the itera
invalidated.

Return value

Returns true if there is another element behind the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the
as that of the element replacing it; otherwise, the exception ElementInvalid is
raised.

For positioning property see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_next (in Iterator test, in any element)
(IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iterator test. If they are not equal, the ele
pointed to by this iterator is replaced by the given element, the iterator is set to
next element, and true is returned. If they are equal, the element pointed to by
iterator is replaced by the given element, the iterator is not set to the next elem
and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-93

17

;

alid

or to
ection

eady

ays

e

iven
e
Exceptions

This iterator and the given iterator must be valid and point to an element each
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInv
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Adding elements

boolean add_element_set_iterator (in any element) (ElementInvalid);

Description

Adds an element to the collection that this iterator points to and sets the iterat
the added element. The exact semantics depends on the properties of the coll
for which this iterator is created.

If the collection supports unique elements or keys and the element or key is alr
contained in the collection, adding is ignored and the iterator is just set to the
element or key already contained. In sequential collections, the element is alw
added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

Return value

Returns true if the element was added. The element to be added must be of th
expected type; otherwise, the exception ElementInvalid is raised.

Exceptions

If the collection is a Map and contains an element with the same key as the g
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_set_iterator (in AnySequence elements, out unsigned long
actual_number) (ElementInvalid);
17-94 CORBAservices July 1997

17

nts
antics
s
meter

a test

r
Description

Adds the given elements to the collection that this iterator points to. The eleme
are added in the order of the input sequence of elements and the delivered sem
is consistent with the semantics of the add_element_set_iterator operation. It i
essentially a sequence of add_element_set_iterator operations. The output para
actual_number is set to the number of elements added.

Setting iterator state

void invalidate ();

Description

Sets the iterator to the state invalid, that is, “pointing to nothing.” You may also say
that the iterator, in some sense, is set to “NULL.”

Testing iterators

Whenever there is a precondition for an iterator operation to be checked, there is
operation provided that enables the user to avoid raising an exception.

boolean is_valid ();

Return value

Returns true if the Iterator is valid, that is points to an element of the collection o
is in the state in-between.

boolean is_for (in Collection collector);

Return value

Returns true if this iterator can operate on the given collection.

boolean is_const ();

Return value

Returns true if this iterator is created with “const” designation.

boolean is_in_between ();

Return value

Returns true if the iterator is in the state in-between.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-95

17

, the

wise,
boolean is_equal (in Iterator test) raises (IteratorInvalid);

Return value

Returns true if the given iterator points to the identical element as this iterator.

Exceptions

The given iterator must belong to the same collection as the iterator; otherwise
exception IteratorInvalid is raised.

Cloning, Assigning, Destroying iterators

Iterator clone();

Description

Creates a copy of this iterator.

void assign (in Iterator from_where) raises (IteratorInvalid)

Description

Assigns the given iterator to this iterator.

Exceptions

The given iterator must be created for the same collection as this iterator; other
the exception IteratorInvalid is raised.

void destroy();

Description

Destroys this iterator.

The OrderedIterator Interface

interface OrderedIterator: Iterator {

// moving iterators

boolean set_to_last_element ();

boolean set_to_previous_element() raises (IteratorInvalid);

boolean set_to_nth_previous_element(in unsigned long n) raises (IteratorInvalid);

void set_to_position (in unsigned long position) raises (PositionInvalid);
17-96 CORBAservices July 1997

17

lean

s

 raises

tween,

umber)
// computing iterator position

unsigned long position () raises (IteratorInvalid);

// retrieving elements

boolean retrieve_element_set_to_previous(out any element, out boolean more) raises
(IteratorInvalid, IteratorInBetween);

boolean retrieve_previous_n_elements (in unsigned long n, out AnySequence result, out boo
more) raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_retrieve_element_set_to_previous (in Iterator test, out any element) raise
(IteratorInvalid, IteratorInBetween);

// removing elements

boolean remove_element_set_to_previous() raises (IteratorInvalid, IteratorInBetween);

boolean remove_previous_n_elements (in unsigned long n, out unsigned long actual_number)
(IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_previous(in Iterator test) raises (IteratorInvalid,
IteratorInBetween);

// replacing elements

boolean replace_element_set_to_previous(in any element) raises (IteratorInvalid, IteratorInBe
ElementInvalid);

boolean replace_previous_n_elements(in AnySequence elements, out unsigned long actual_n
raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean not_equal_replace_element_set_to_previous (in Iterator test, in any element) raises
(IteratorInvalid,IteratorInBetween, ElementInvalid);

// testing iterators

boolean is_first ();

boolean is_last ();

boolean is_for_same (in Iterator test);

boolean is_reverse ();

};

Moving iterators

boolean set_to_last_element();

Description

Sets the iterator to the last element of the collection in iteration order. If the
collection is empty (if no last element exists) the given iterator is invalidated.

Return value

Returns true if the collection is not empty.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-97

17

rator

;

on
the
he

irst

 or
sed.
boolean set_to_previous_element() raises (IteratorInvalid);

Description

Sets the iterator to the previous element in iteration order, or invalidates the ite
if no such element exists. If the iterator is in the state in-between, the iterator is set
to its “potential previous” element.

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_nth_previous_element (in unsigned long n) raises (IteratorInvalid)

Description

Sets the iterator to the element n movements away in reverse collection iterati
order or invalidates the iterator if there is no such element. If the iterator is in
state in-between, the movement to the “potential previous” element is the first of t
n movements.

Return value

Returns true if there is such an element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

void set_to_position (in unsigned long position) raises (PositionInvalid);

Description

Sets the iterator to the element at the given position. Position 1 specifies the f
element.

Exceptions

Position must be a valid position (i.e., greater than or equal to 1 and less than
equal to number_of_elements()); otherwise, the exception PositionInvalid is rai

Computing iterator position

unsigned long position () raises (IteratorInvalid, IteratorInBetween);
17-98 CORBAservices July 1997

17

 the

aises

nt.
us
or is

lt, out

lt.
d to

less
se.

 is
Description

Determines and returns the current position of the iterator. Position 1 specifies
first element.

Exceptions

The iterator must be pointing to an element of the collection; otherwise, the
exception IteratorInvalid respectively IteratorInBetween is raised.

Retrieving elements

boolean retrieve_element_set_to_previous (out any element, out boolean more) r
(IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter eleme
The iterator is set to the previous element in iteration order. If there is a previo
element, more is set to true. If there are no more previous elements, the iterat
invalidated and more is set to false.

Return value

Returns true if an element was returned.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_previous_n_elements(in unsigned long n, out AnySequence resu
boolean more) raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves at most the n previous elements in iteration order of this iterator’s
collection and returns them as sequence of anys via the output parameter resu
Counting starts with the element the iterator is pointing to. The iterator is move
the element before the last element retrieved.

• If there is an element before the last element retrieved, more is set to true.

• If there are no more elements before the last element retrieved or there are
than n elements for retrieval, the iterator is invalidated and more is set to fal

• If the value of n is 0, all elements in the collection are retrieved until the end
reached.

Return value

Returns true if at least one element is retrieved.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-99

17

ment)

ous

he

ent;

 the
 is
Exceptions

The iterator must be valid and pointing to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_previous (in Iterator test, out any ele
raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the previ
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is not moved to the
previous element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of t
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an elem
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Replacing elements

boolean replace_element_set_to_previous(in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by this iterator by the given element and sets
iterator to the previous element. If there are no previous elements, the iterator
invalidated.

Return value

Returns true if there is a previous element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.
17-100 CORBAservices July 1997

17

d

ong

ts in

d is

re no
the
r is

same

ent)

e
The element must be the expected element type; otherwise, the ElementInvali
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21.

boolean replace_previous_n_elements(in AnySequence elements, out unsigned l
actual_number) raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

At most, replaces as many elements in reverse iteration order as given in elements.
Counting starts with the element the iterator points to. If there are less elemen
the collection left to be replaced than the given number of elements as many
elements as possible are replaced and the actual number of elements replace
returned via the output parameter actual_number.

The iterator is moved to the element before the last element replaced. If there a
more elements before the last element replaced or the number of elements in
collection to be replaced is less than the number of given elements, the iterato
invalidated.

Return value

Returns true if there is an element before the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the
as that of the element replacing it; otherwise, the exception ElementInvalid is
raised.

For positioning property, see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_previous (in Iterator test, in any elem
raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iterator test.
• If they are not equal, the element pointed to by this iterator is replaced by th

given element, the iterator is set to the previous element, and true is returned.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-101

17

ven

;

alid

en);

 the
• If they are equal, the element pointed to by this iterator is replaced by the gi
element, the iterator is not set to the previous element, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.

Exceptions

This iterator and the given iterator each must be valid and point to an element
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInv
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Removing elements

boolean remove_element_set_to_previous() raises (IteratorInvalid, IteratorInBetwe

Description

Removes the element pointed to by this iterator and moves the iterator to the
previous element.

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise,
exception IteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.
17-102 CORBAservices July 1997

17

’s
s

less

al

or is

ation
boolean remove_previous_n_elements (in unsigned long n, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the previous n elements in reverse iteration order of the iterator
collection. Counting starts with the element the iterator points to. The iterator i
moved to the element before the last element removed.

• If there are no more elements before the last element removed or there are
than n elements for removal, the iterator is invalidated.

• If the value of n is 0, all elements in the collection are removed until the
beginning is reached. The output parameter actual_number is set to the actu
number of elements removed.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_previous(in Iterator test) raises
(IteratorInvalid, IteratorInBetween);

Description

Compares this iterator with the given iterator test.

• If they are not equal, the element this iterator points to is removed, the iterat
set to the previous element, and true is returned.

• If they are equal, the element pointed to is removed, the iterator is set in-between,
and false is returned.

Return value

Returns true if this iterator and the given iterator test are equal when the oper
starts.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-103

17

s to.

 to.

valid);

Exceptions

This iterator and the given iterator test must be valid; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation;
otherwise, the exception IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

Testing iterators

boolean is_first ();

Return value

Returns true if the iterator points to the first element of the collection it belong

boolean is_last ();

Return value

Returns true if the iterator points to the last element of the collection it belongs

boolean is_for_same (in Iterator test);

Return value

Returns true if the given iterator is for the same collection as this.

boolean is_reverse();

Return value

Returns true if the iterator is created with “reverse” designation.

The SequentialIterator Interface

interface SequentialIterator : OrderedIterator {

// adding elements

boolean add_element_as_next_set_iterator (in any element) raises(IteratorInvalid, ElementIn

void add_n_elements_as_next_set_iterator(in AnySequence elements) raises(IteratorInvalid,
ElementInvalid);
17-104 CORBAservices July 1997

17

alid,

,

dded.
l

al

alid,
boolean add_element_as_previous_set_iterator(in any element) raises(IteratorInvalid,
ElementInvalid);

void add_n_elements_as_previous_set_iterator(in AnySequence elements) raises(IteratorInv
ElementInvalid);

};

Adding elements

boolean add_element_as_next_set_iterator (in any element) raises(IteratorInvalid
ElementInvalid);

Description

Adds the element to the collection that this iterator points to (in iteration order)
behind the element this iterator points to and sets the iterator to the element a
If the iterator is in the state in-between, the element is added before the “potentia
next” element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the given elements to the collection that this iterator points to behind the
element the iterator points to. The behavior is the same as n times calling the
operation add_element_as_next_set_iterator().

If the iterator is in the state in-between, the elements are added before the “potenti
next” element.

The elements are added in the order given in the input sequence.

boolean add_element_as_previous_set_iterator(in any element) raises(IteratorInv
ElementInvalid)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-105

17

nt

 the

al

alid);
Description

Adds the element to the collection that this iterator points to (in iteration order)
before the element that this iterator points to and sets the iterator to the eleme
added. If the iterator is in the state in-between, the element is added after the
“potential previous” element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_previous_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the given elements to the collection that this iterator points to previous to
element the iterator points to. The behavior is the same as n times calling the
operation add_element_as_previous_set_to_next().

If the iterator is in the state in-between, the elements are added behind the “potenti
previous” element.

The elements are added in the reverse order given in the input sequence.

The KeyIterator Interface

interface KeyIterator : Iterator {

// moving the iterators

boolean set_to_element_with_key (in any key) raises(KeyInvalid);

boolean set_to_next_element_with_key (in any key) raises(IteratorInvalid, KeyInvalid);

boolean set_to_next_element_with_different_key() raises (IteratorInBetween, IteratorInvalid);

// retrieving the keys

boolean retrieve_key (out any key) raises (IteratorInBetween, IteratorInvalid);

boolean retrieve_next_n_keys (out AnySequence keys) raises (IteratorInBetween, IteratorInv

};
17-106 CORBAservices July 1997

17

 the
ists.

rder

en
ts the

 Moving iterators

boolean set_to_element_with_key (in any key) raises (KeyInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets
iterator to the element located or invalidates the iterator if no such element ex

If the collection contains several such elements, the first element in iteration o
is located.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_next_element_with_key (in any key) raises (IteratorInvalid,
KeyInvalid);

Description

Locates the next element in iteration order with the same key value as the giv
key, starting search at the element next to the one pointed to by the iterator. Se
iterator to the element located.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the state in-between, locating starts at the iterator’s “potential
next” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_next_element_with_different_key () raises (IteratorInBetween,
IteratorInvalid)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-107

17

the
 the

tput

rators
rns
tor

r

til
Description

Locates the next element in iteration order with a key different from the key of
element pointed to by the iterator, starting the search with the element next to
one pointed to by the iterator. Sets the iterator to the located element.

If no such element exists, the iterator is invalidated.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween respectively IteratorInvalid is raised.

Retrieving keys

boolean key (out any key) raises(IteratorInvalid,IteratorInBetween);

Description

Retrieves the key of the element this iterator points to and returns it via the ou
parameter key.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_next_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)

Description

Retrieves the keys of at most the next n elements in iteration order, sets the ite
to the element behind the last element from which a key is retrieved, and retu
them via the output parameter keys. Counting starts with the element this itera
points to.

• If there is no element behind the last element from which a key is retrieved o
there are less then n elements to retrieve keys from the iterator is invalidated.

• If the value of n is 0, the keys of all elements in the collection are retrieved un
the end is reached.

Return value

Returns true if at least one key is retrieved.
17-108 CORBAservices July 1997

17

id);

);

e
ts. If
er is

valid

 Sets
Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The EqualityIterator Interface

interface EqualityIterator : Iterator {

// moving the iterators

boolean set_to_element_with_value(in any element) raises(ElementInvalid);

boolean set_to_next_element_with_value(in any element) raises(IteratorInvalid, ElementInval

boolean set_to_next_element_with_different_value() raises (IteratorInBetween, IteratorInvalid

};

Moving iterators

boolean set_to_element_with_value (in any element) raises(ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets th
iterator to the located element or invalidates the iterator if no such element exis
the collection contains several such elements, the first element in iteration ord
located.

Return value

Returns true if an element is found.

Exceptions

The element must be of the expected type; otherwise, the expected ElementIn
is raised.

boolean set_to_next_element_with_value(in any element) raises (IteratorInvalid,
ElementInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the
given element, starting at the element next to the one pointed to by the iterator.
the iterator to the located element in the collection.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the state in-between, locating is started at the iterator’s
“potential next” element.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-109

17

valid

);

nted
rator

 the

lid);

alid);
Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

boolean set_to_next_different_element () raises (IteratorInvalid, IteratorInBetween

Description

Locates the next element in iteration order that is different from the element poi
to. Sets the iterator to the located element, or if no such element exists, the ite
is invalidated.

Return value

Returns true if the next different element was found.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise,
exception IteratorInvalid or IteratorInBetween is raised.

The EqualityKeyIterator Interface

interface EqualityKeyIterator : EqualityIterator, KeyIterator {};

This interface just combines the two interfaces EqualityIterator (see “The
EqualityIterator Interface” on page 17-109) and KeyIterator (see “The KeyIterator
Interface” on page 17-106).

The SortedIterator Interface

interface SortedIterator : OrderedIterator {};

This interface does not add any new operations but new semantics to the
operations.

The KeySortedIterator Interface

// enumeration type for specifying ranges

enum LowerBoundStyle {equal_lo, greater, greater_or_equal};

enum UpperBoundStyle {equal_up, less, less_or_equal};

interface KeySortedIterator : KeyIterator, SortedIterator

{

// moving the iterators

boolean set_to_first_element_with_key (in any key, in LowerBoundStyle style) raises(KeyInva

boolean set_to_last_element_with_key (in any key, in UpperBoundStyle style) raises (KeyInv
17-110 CORBAservices July 1997

17

lid);

ses

ment

ment
boolean set_to_previous_element_with_key (in any key) raises(IteratorInvalid, KeyInvalid);

boolean set_to_previous_element_with_different_key() raises (IteratorInBetween, IteratorInva

// retrieving keys

boolean retrieve_previous_n_keys(out AnySequence keys) raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_first_element_with_key (in any key, in LowerBoundStyle style) rai
(KeyInvalid);

Description

Locates the first element in iteration order in the collection with key:

• equal to the given key, if style is equal_lo

• greater or equal to the given key, if style is greater_or_equal

• greater than the given key, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_last_element_with_key(in any key, in UpperBoundStyle style);

Description

Locates the last element in iteration order in the collection with key:

• equal to the given key, if style is equal_up

• less or equal to the given key, if style is less_or_equal

• less than the given key, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-111

17

ey,

r

y of
inted

r to
Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_previous_element_with_key (in any key) raises(IteratorInvalid,
KeyInvalid);

Description

Locates the previous element in iteration order with a key equal to the given k
beginning at the element previous to the one pointed to and moving in reverse
iteration order through the elements. Sets the iterator to the located element, o
invalidates the iterator if no such element exists. If the iterator is in the state in-
between, the search begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_previous_element_with_different_key() raises (IteratorInBetween,
IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the ke
the element pointed to, beginning search at the element previous to the one po
to and moving in reverse iteration order through the elements. Sets the iterato
the located element, or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

Retrieving keys

boolean retrieve_previous_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)
17-112 CORBAservices July 1997

17

he
and
his

r if
d.

ntil

alid);

le)

ment
Description

Retrieves the keys of at most the previous n elements in iteration order, sets t
iterators to the element before the last element from which a key is retrieved,
returns them via the output parameter keys. Counting starts with the element t
iterator points to.

• If there is no element previous the one from which the nth key is retrieved o
there are less than n elements to retrieve keys from, the iterator is invalidate

• If the value of n is 0, the keys of all elements in the collection are retrieved u
the beginning is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The EqualitySortedIterator Interface

interface EqualitySortedIterator : EqualityIterator, SortedIterator {

// moving the iterator

boolean set_to_first_element_with_value (in any element, in LowerBoundStyle style) raises
(ElementInvalid);

boolean set_to_last_element_with_value (in any element, in UpperBoundStyle style) raises
(ElementInvalid);

boolean set_to_previous_element_with_value (in any elementally) raises (IteratorInvalid,
ElementInvalid);

boolean set_to_previous_element_with_different_value() raises (IteratorInBetween, IteratorInv

};

Moving iterators

boolean set_to_first_element_with_value (in any element, in LowerBoundStyle sty
raises(ElementInvalid);

Description

Locates the first element in iteration order in the collection with value:

• equal to the given element value, if style is equal_lo

• greater or equal to the given element value, if style is greater_or_equal

• greater than the given element value, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-113

17

valid

le)

ment

valid

id,

 and

ator
Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

boolean set_to_last_element_with_value(in any element, in UpperBoundStyle sty
raises (ElementInvalid);

Description

Locates the last element in iteration order in the collection with value:

• equal to the given element value, if style is equal_up

• less or equal to the given element value, if style is less_or_equal

• less than the given element value, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

boolean set_to_previous_element_with_value(in any element) raises(IteratorInval
ElementInvalid);

Description

Locates the previous element in iteration order with a value equal to the given
element value, beginning search at the element previous to the one pointed to
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists. If the iter
is in the state in-between, the search begins at the iterator’s “potential previous”
element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.
17-114 CORBAservices July 1997

17

valid

n,

lue

e
ists.

tor.

);

ual
The element must be of the expected type; otherwise, the exception ElementIn
is raised.

boolean set_to_previous_element_with_different_value() raises (IteratorInBetwee
IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the va
of the element pointed to, beginning search at the element previous to the one
pointed to and moving in reverse iteration order through the elements. Sets th
iterator to the located element, or invalidates the iterator if no such element ex

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualityKeySortedIterator Interface

interface EqualityKeySortedIterator: EqualitySortedIterator, KeySortedIterator {};

This interface combines the interfaces KeySortedIterator and EqualitySortedItera
This interface does not add any new operations, but new semantics.

The EqualitySequentialIterator Interface

interface EqualitySequentialIterator : EqualityIterator, SequentialIterator
{

// locating elements

boolean set_to_first_element_with_value (in any element) raises (ElementInvalid);

boolean set_to_last_element_with_value (in any element) raises (ElementInvalid);

boolean set_to_previous_element_with_value (in any element) raises (ElementInvalid);

};

Moving Iterators

boolean set_to__first_element_with_value (in any element) raises(ElementInvalid

Description

Sets the iterator to the first element in iteration order in the collection that is eq
to the given element or invalidates the iterator if no such element exists.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-115

17

valid

ual

valid

iven

rator
e
t.

valid
Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

boolean set_to_last_element (in any element) raises(ElementInvalid);

Description

Sets the iterator to the last element in iteration order in the collection that is eq
to the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementIn
is raised.

boolean set_to_previous_element_with_value (in any element) raises
(IteratorInvalid, ElementInvalid);

Description

Sets the iterator to the previous element in iteration order that is equal to the g
element, beginning search at the element previous to the one specified by the
iterator and moving in reverse iteration order through the elements. Sets the ite
to the located element or invalidates the iterator if no such element exists. If th
iterator is in the state in-between, search starts at the “potential precious” elemen

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementIn
is raised.
17-116 CORBAservices July 1997

17

g.
ction.
low
of
t or

ive
tion
ison”
Set
ce is
17.5.10 Function Interfaces

The Operations Interface

Interface Operations {

// element type specific information

readonly attribute CORBA::TypeCode element_type;

boolean check_element_type (in any element);

boolean equal (in any element1, in any element2);

long compare (in any element1, in any element2);

unsigned long hash (in any element, in unsigned long value);

// key retrieval

any key (in any element);

// key type specific information

readonly attribute CORBA::TypeCode key_type;

boolean check_key_type (in any key);

boolean key_equal (in any key1, in any key2);

long key_compare (in any key1, in any key2);

unsigned long key_hash (in any thisKey, in unsigned long value);

// destroying

void destroy();

};

The function interface Operations is used to pass a number of other user-
defined element type specific information to the collection implementation.

The first kind of element type specific information passed is used for typecheckin
There are attributes specifying the element and key type expected in a given colle
In addition to the type information there are two typechecking operations which al
customizing the typechecking in a user-defined manner. The “default semantics”
these operations is a simple check on whether the type code of the given elemen
key exactly matches the type code specified in the element key type attribute.

Dependent on the properties as represented by a collection interface the respect
implementation relies on some element type specific or key type specific informa
to be passed to it. For example one has to pass the information “element compar
to implementation of a SortedSet or “key equality” to the implementation of a Key
to guarantee uniqueness of keys. To pass this information, the Operations interfa
used.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-117

17

a
ison
n the
age

ent
ent
 use.
n be

nnot
g the

are
The third use of this interface is to pass element or key type specific
information relevant for different categories of implementations. (Performing)
implementations of associative collections essentially can be partitioned into the
categories comparison-based or hashing-based. An AVL-tree implementation for
KeySet (for example) is key-comparison-based; therefore, it relies on key compar
defined and a hash table implementation of KeySet hashing-based (which relies o
information how a hash key values). Passing this information is the third kind of us
of the Operations interface.

The operations defined in the Operations interface are in summary:

• element type checking and key type checking

• element equality and the ordering relationship on elements

• key equality and ordering relationship on keys

• key access

• hash information on elements and keys

In order to pass this information to the collection, a user has to derive and implem
an interface from the interface Operations. Which operations you have to implem
depends on the collection interface and the implementation category you want to
An instance of this interface is passed to a collection at creation time and then ca
used by the implementation.

Ownership for an Operations instance is passed to the collection at creation
time. That is, the same instance of Operations respectively a derived interface ca
be used in another collection instance. The collection is responsible for destroyin
Operations instance when the collection is destroyed.

Operations only defines an abstract interface. Specialization and implementation
part of the application development as is the definition and implementation of
respective factories and are not listed in this specification.

Element type specific operations

readonly attribute CORBA::TypeCode element_type;

Description

Specifies the type of the element to be collected.

boolean check_element_type (in any element);

Description

A collection implementation may rely on this operation being defined to use it
for its type checking. A default implementation may be a simple test whether
the type code of the given element exactly matches element_type. For object
17-118 CORBAservices July 1997

17

t a

ined

qual,

cifies
 of
less
references, sometimes a check on equality of the type codes is not desired bu
check on whether the type of the given element is a specialization of the
element_type.

Return value

Returns true if the given element passed the user-defined element type-
checking.

boolean equal (in any element1, in any element2);

Return value

Returns true if element1 is equal to element2 with respect to the user-defined
semantics of element equality.

Note – If case compare is defined, the equal operation has to be consistently def
(i.e., is implied by the defined element comparison).

long compare (in any element1, in any element2);

Return value

Returns a value less than zero if element1 < element2, zero if the values are e
and a value greater than zero if element1 > element2 with respect to the user-
defined ordering relationship on elements.

unsigned long hash (in any element, in unsigned long value);

Return value

Returns a user-defined hash value for the given element. The given value spe
the size of the hashtable. This information can be used for the implementation
more or less sophisticated hash functions. Computed hash values have to be
than value.

Note – The definition of the hash function has to be consistent with the defined
element equality (i.e., if two elements are equal with respect to the user-defined
element equality they have to be hashed to the same hash value).

Computing the key

any key (in any element);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-119

17

s of

ently
ent
nt

d a
g

 the
ore
an
Description

Computes the (user-defined) key of the given element.

Key type specific information

readonly attribute CORBA::TypeCode key_type;

Description

Specifies the type of the key of the elements to be collected.

boolean check_key_type (in any key);

Return value

Returns true if the given key passed the user-defined element type-checking.

boolean key_equal (in any key1, in any key2);

Return value

Returns true if key1 is equal to key2 with respect to the user-defined semantic
key equality.

Note – If case key_compare is defined, the key_equal operation has to be consist
defined (i.e., is implied by the defined key comparison). When both key and elem
equality are defined, the definitions have to be consistent in the sense that eleme
equality has to imply key equality.

key_compare (in any key1, in any key2);

Return value

Returns a value less than zero if key1 < key2, zero if the values are equal, an
value greater than zero if key1 > key2 with respect to the user-defined orderin
relationship on keys.

unsigned long key_hash (in any key, in unsigned long value);

Return value

Returns a user defined hash value for the given key. The given value specifies
size of the hashtable. This information can be used for the implementation of m
or less sophisticated hash functions. Computed hash values have to be less th
value.
17-120 CORBAservices July 1997

17

y
t

s is
 the

tor)
Note – The definition of the hash function has to be consistent with the defined ke
equality (i.e., if two elements are equal with respected to the user defined elemen
equality they have to be hashed to the same hash value).

Destroying the Operations instance

void destroy();

Destroys the operations instance.

The Command and Comparator Interface

Command and Comparator are auxiliary interfaces.

A collection service provider may either provide the interfaces only or a default
implementation that raises an exception whenever an operation of these interface
called. In either case, a user is forced to provide his/her implementation of either
interfaces or a derived interface to make use of them in the operations
all_elements_do, and sort.

The Command Interface

An instance of an interface derived from Command is passed to the operation
all_elements_do to be applied to all elements of the collection.

interface Command {

boolean do_on (in any element);

};

The Comparator Interface

An instance of a user defined interface derived from Comparator is
passed to the operation sort as sorting criteria.

interface Comparator {

long compare (in any element1, in any element2);

};

The compare operation of the user’s comparator (interface derived from Compara
must return a result according to the following rules:

>0 if (element1 > element2)

 0 if (element1 = element2)

<0 if (element1 < element2)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-121

17

ery

tion

assed
e of
and

s a

e fact
is
rator

rvice
n

tion

ns
 Appendix A OMG Object Query Service

 A.1 Object Query Service Differences

Identification and Justification of Differences

The relationship between the Object Collection Service (OCS) and the Object Qu
Service (OQS) is two-fold. The Object Query Service uses collections as query result
and as scope of query evaluation.

The get_result operation of CosQuery::Query for example and the evaluate opera
of CosQuery::QueryEvaluator may return a collection as result or may return an
iterator to the query result.

There may be a QueryEvaluator implementation that takes a collection instance p
as input parameter to evaluate a query on this collection which specifies the scop
evaluation. The query evaluator implementation relies on the Collection interface
the generic Iterator being supported by the collection passed.

A CosQuery::QueryableCollection is a special case of query evaluator which allow
collection to serve directly as the scope to which a query may be applied. As
QueryableCollection is derived from Collection a respective instance can serve to
collect a query result to which further query evaluation is applied.

Both usages of collections - as query result and as scope of evaluation - rely on th
that a minimum collection interface representing a generic aggregation capability
supported as a common root for all collections. Further, they rely on a generic ite
that can be used on collections independent of their type.

Summarizing, Object Query Service essentially depends on a generic collection se
matching some minimal requirements. As Object Query Service was defined whe
there was not yet any Object Collection Service specification available a generic
collection service was defined as part of the Query Service specification.

The CosQueryCollection module defines three interfaces:

• CollectionFactory: provides a generic creation capability

• Collection: defines a generic aggregation capability

• Iterator: offers a minimal interface to traverse a collection.

Those interfaces specify the minimal requirements of OQS to a generic collection
service. The following discusses whether it is possible to replace CosQueryCollec
module by respective interfaces in the CosCollection module as defined in this
specification. Differences are identified and justified.

In anticipation of the details given in the next paragraph we can summarize:

• The CosCollection::Collection top level collection interface matches the
CosQueryCollection::Collection interface except for minor differences. Collectio
as defined in the CosCollection module can be used with Query Service.
17-122 CORBAservices July 1997

17

ion
The

n a
fects

a

 not

odel

from
ject
ccess
eless,
e
ce
e. In
ess,

s

n
tion
• The CosCollection::Collection top level collection interface proposes an operat
which one may consider as an overlap with the Object Query Service function.
operation all_elements_do which can be considered a special case of query
evaluation.

• The CosCollection::Iterator top level iterator interface is consistent with
CosQueryCollection::Iterator interface in the sense that operations defined in
CosQueryCollecton::Iterator are supported in CosCollection::Iterator. In additio
managed iterator semantics is defined which is reflected in the specified side ef
on iterators for modifying collection operations. This differs from the iterator
semantics defined in the Object Query Service specification but is considered
requirement in a distributed environment.

• There are a number of operations in the CosCollection::Iterator interface you do
find in the CosQueryCollection::Iterator interface. They are defined in the
CosCollection::Iterator interface to provide support for performing distributed
processing of very large collections and to support the generic programming m
as introduced with ANSI STL to the C++ world.

• The restricted access collections which are part of this proposal do not inherit
the top level CosCollection::Collection interface. They cannot be used with Ob
Query Service as they are. But this is in the inherent nature of the restricted a
semantics of these collections and is not considered to be a problem. Neverth
the interfaces of the restricted access collections allow combining them with th
collections of the combined property collections hierarchy via multiple inheritan
to enable usage of restricted access collections within the Object Query Servic
doing so, the restricted access collections lose the guarantee for restricted acc
but only support interfaces offering the commonly used operation names for
convenience.

• The CosQueryCollection::CollectionFactory defines the exact same interface a
CosCollection::CollectionFactory.

Replacing the interfaces defined in the Object Query Service CosQuery::Collectio
module by the respective interface defined in this specification, the Object Collec
Service enables the following inheritance relationship:
Object Collection Service: v1.0 The CosCollection Module July 1997 17-123

17

bject
ce
 the
Figure 17-4 Inheritance Relationships

A detailed comparison of the interfaces is given in the following sections and is
outlined along the CosQueryCollection module definitions.

CosQueryCollection Module Detailed Comparison

Exception Definitions

The following mapping of exceptions holds true:

• CosQueryCollection::ElementInvalid maps to CosCollection::ElementInvalid

• CosQueryCollection::IteratorInvalid maps to CosCollection::IteratorInvalid (with
IteratorInvalidReason not_for_collection)

• CosQueryCollection::PositionInvalid maps to CosCollection::IteratorInvalid (with
IteratorInvalidReason is_invalid) and CosCollection::IteratorInBetween

Type Definitions

There are a number of type definitions in the CosQueryCollection module for the
mapping of SQL data types and for defining the type Record. These types are O
Query Service specific; therefore, they are not part of the Object Collection Servi
defined in this specification. Object Query Service may move these definitions to
CosQuery module.

OCS

Collection

OQS
Queryable
Collection

OCS Collection

Any

Any
Queryable

OCS Collection
17-124 CORBAservices July 1997

17

s

not
tory

s or

e
ry
this

ing.
ype

pe

tion
e.

ace.

r
CollectionFactory Interface

The CosQueryCollection::CollectionFactory interface defines the same interface a
CosCollection::CollectionFactory and with it the same generic creation capability.

While the generic create operations of CosQueryCollection::CollectionFactory do
raise any exceptions, the respective operation in the CosCollection::CollectionFac
raises exception “ParameterInvalid.”

Collection Interface

The CosQueryCollection::Collection interface defines a basic collection interface,
without restricting specializations to any particular type such as equality collection
ordered collections.

Collection Element Type

The element type of Object Query Service collections is a CORBA any to meet th
general requirement that collections have to be able to collect elements of arbitra
type. The same holds true for the proposed Object Collection Service defined in
specification.

Using the CORBA any as element type implies the loss of compile time type check
The Object Collection Service as defined here-in considers support for run-time t
checking as important; therefore, it offers respective support. In the interface
Collection this is reflected by introducing a read-only attribute “element_type” of ty
TypeCode which enables a client to inquiry the element type expected.

This differs from Object Query Service collections which do not define any type
checking specific support.

Collection Attributes

The following attribute is defined in the OQS Collection interface:

cardinality

This read-only attribute maps to the operation number_of_elements() in
CosCollection::Collection. This is semantically equivalent. The name of the opera
was chosen consistently with the overall naming scheme of the Collection Servic

Collection Operations

The following operations are defined in the Object Query Service Collection interf

void add_element (in any element) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterato
semantics - to

boolean add_element(in any element) raises (ElementInvalid)

Object Collection Service: v1.0 The CosCollection Module July 1997 17-125

17

r

r

,

,

)

r

en).

r

void add_all_elements (in Collection elements) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterato
semantics - to

void add_all_from (in Collection collector) raises (ElementInvalid).

void insert_element_at (in any element, in Iterator where) raises (IteratorInvalid,
ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterato
semantics - to

boolean add_element_set_iterator(in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid).

void replace_element_at (in any element, in Iterator where) raises (IteratorInvalid
PositionInvalid, ElementInvalid);

This operations maps to

void replace_element_at (in Iterator where, in any element) raises (IteratorInvalid
IteratorInBetween,ElementInvalid).

void remove_element_at (in Iterator where) raises (IteratorInvalid, PositionInvalid

This operation maps - except for side effects on iterators due to managed iterato
semantics - to

void remove_element_at (in Iterator where) raises (IteratorInvalid, IteratorInBetwe

void remove_all_elements ()

This operation maps - except for side effects on iterators due to managed iterato
semantics - to

unsigned long remove_all ().

any retrieve_element_at (in Iterator where) raises (IteratorInvalid, PositionInvalid)

This operation maps to
17-126 CORBAservices July 1997

17

alid,

d
ing

aged
re

d in
d in

 that
e

port

OQS
ice

d to
e

boolean retrieve_element_at (in Iterator where, out any element) raises (IteratorInv
IteratorInBetween).

Iterator create_iterator ()

This operation maps to

Iterator create_iterator (in boolean read_only).

The parameter “read_only“ parameter is used to support const iterators. This is
introduced to support the iterator centric ANSI STL like programming model.

Where different operation names are used in the Object Collection Service define
here-in this is done to maintain consistency with the Collection Service overall nam
scheme.

Side effects to iterators specified differ from those specified in the Query Service
collection module as the Object Collection Service defined here-in specifies a man
iterator model which we consider necessary in a distributed environment. For mo
details in the managed iterator semantics see chapter “Iterator Interfaces.”

The top-level CosCollection::Collection interface proposes all the methods define
CosQueryCollection::Collection. There are some few additional operations define
CosCollection::Collection:

boolean is_empty()

This operation is provided as there are collection operations with the precondition
the collection must not be empty. To avoid an exception, the user should have th
capability to test whether the collection is empty.

void destroy()

This operation is defined for destroying a collection instance without having to sup
the complete LifeCycleObject interface.

void all_elements_do(in Command command)

This operation is added for convenience; however, it seems to be an overlap with
functionality. This frequently used trivial query should be part of the collection serv
itself. A typical usage of this operation may be, for example, iterating over the
collection to print all element values. Note that the Command functionality is very
restricted to enable an efficient implementation. That is, the command is not allowe
change the positioning property of the element applied to and must not remove th
element.

Iterator Interface

The CosQueryCollection::Iterator corresponds to CosCollection::Iterator.
CosCollection::Iterator is supported for all collection interfaces of the Object
Collection Service derived from Collection. The Object Collection Service iterator
Object Collection Service: v1.0 The CosCollection Module July 1997 17-127

17

and
rful

ator

tor.

:

r of

r
ent
interfaces defined in this specification are designed to support an iterator centric
generic programming model as introduced with ANSI STL. This implies very powe
iterators which go far beyond simple pointing devices as one needs to be able to
retrieve, add, remove elements from/to a collection via an iterator. In addition iter
interfaces are enriched with bulk and combined operations to enable an efficient
processing of collections in distributed scenarios. Subsequently, the
CosCollection::Iterator is much more powerful than the CosQueryCollection::Itera

Iterator Operations

The following operations are defined in the CosQueryCollection::Iterator interface

• any next () raises (IteratorInvalid, PositionInvalid)

This operation maps to

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid,
IteratorInBetween)

• void reset ()

This operation maps to

boolean set_to_first_element() of the Object Collection Service Iterator interface.

• boolean more ()

This operation maps to

boolean is_valid() && ! is_inbetween()

Due to the support for iterator centric and generic programming there are numbe
additional operations in the CosCollection::Iterator interface:

• set_to_next_element, set_to_next_nth_element

• retrieve_element, retrieve_next_n_elements,
not_equal_retrieve_element_set_to_next

• remove_element, remove_element_set_to_next, remove_next_n_elements,
not_equal_remove_element_set_to_next

• replace_element, replace_element_set_to_next, replace_next_n_elements,
not_equal_replace_element_set_to_next

• add_element_set_iterator, add_n_elements_set_iterator

• invalidate

• is_in_between, is_for, is_const, is_equal

• clone, assign, destroy

Most of the operations can be implemented as combinations of other basic iterato
operations so that the burden put on Object Query Service providers who implem
such an interface should not be too high.
17-128 CORBAservices July 1997

17

nt

or
e
ed

ces.

n

s in
ct
ct

use

rvice

ent
 its

nize

bject,

g
We
ink

bject

nt
e
r that
allow
 A.2 Other OMG Object Services Defining Collections

There are several object services that define collections, that is Naming Service,
Property Service, and the OMG RFC "System Management: Common Manageme
Facility, Volume 1" submission, for example.

These services define very application specific collections. The Naming Service f
example defines the interface NamingContext or the Property Service an interfac
PropertySet. Both are very application specific collections and may be implement
using the Object Collection Service probably wrappering an appropriate Object
Collection Service collection rather than specializing one of those collection interfa

The collections defined in the System Management RFC form a generic collectio
service. But the service defines collection members that need to maintain back
references to collections in which they are contained to avoid dangling reference
collections. This was considered as inappropriate heavyweight for a general obje
collection service. The collections in the System Management RFC may use Obje
Collection Service collections for their implementation up to some extent even re
interfaces.

 A.3 OMG Persistent Object Services

Collections as persistent objects in the sense defined by the Persistent Object Se

• may support the CosPersistencePO::PO interface. This interface enables a cli
being aware of the persistent state to explicitly control the PO’s relationship with
persistent data (connect/disconnect/store/restore)

• may support the CosPersistence::SD interface which allows objects to synchro
their transient and persistent data

• have to support one of protocols used to get persistent data in and out of an o
like DA, ODMG, or DDO.

Support for these interfaces does not effect the collection interface.

Persistent queryable collections may request index support for collections. “Indexin
of collections” enables to exploit underlying indices for efficient query evaluation.
do not consider “indexed collections” as part of the Object Collection Service but th
that indexing support can be achieved via composing collections defined in the O
Collection Service proposed.

 A.4 OMG Object Concurrency Service

Any implementation of the Object Collection Service probably will have to impleme
concurrency support. But we did not define any explicit concurrency support in th
collection interfaces as part of the Object Collection Service because we conside
as an implementation issue that can be solved by specialization. This also would
to reuse the respective interfaces of the Object Concurrency Service rather than
introducing a collection specific support for concurrency.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-129

17
17-130 CORBAservices July 1997

17

s
ms

iners
e

hich
 that
ment
n

t is,
s a

nt at

cess,

 of
 Appendix B Relationship to Other Relevant Standards

 B.1 ANSI Standard Template Library

The ISO/ANSI C++ standard, as defined by ANSI X3J16 and OSI WG21, contain
three sections defining the Containers library, the Iterators library and the Algorith
library, which form the main part of the Standard Template L ibrary. Each section
describes in detail the class structure, mandatory methods and performance
requirements.

Containers

The standard describes two kinds of container template classes, sequence conta
and so called associative containers. There is no inheritance structure relating th
container classes.

Sequence containers organize the elements of a collection in a strictly linear
arrangement. The following sequence containers are defined

• vector: Is a generalization of the concept of an ordinary C++ array the size of w
can be dynamically changed. It’s an indexed data structure, which allows fast,
is, constant time random access to its elements. Insertion and deletion of an ele
at the end of a vector can be done in constant time. Insertion and deletion of a
element in the middle of the data structure may take linear time.

• deque: Like a vector it is an indexed structure of varying size, allowing fast, tha
constant time random access to its elements. In addition to what a vector offer
deque also offers constant time insertion and deletion of an element at the
beginning.

• list: Is a sequence of varying size. Insertion and deletion of an element at any
position can be done in constant time. But only linear-time access to an eleme
an arbitrary position is offered.

Associative containers provide the capability for fast, O(log n), retrieval of elements
from the collections by “contents”, that is, key value. The following associative
containers are provided:

• set: Is a collection of unique elements which supports fast access, O(log n), to
elements by element value.

• multiset: Allows multiple occurrences of the same element and supports fast ac
O(log n), to elements by value.

• map: Is a collection of (key, value) pairs which supports unique keys.It is an
indexed data structure which offers fast, O(log n), access to values by key.

• multimap: Is a collection of (key, value) pairs which allows multiple occurrences
the same key.

Container adapters are the well known containers with restricted access, that is:

• stack
Object Collection Service: v1.0 The CosCollection Module July 1997 17-131

17

k at

 and

The
. The

et
e

 the
I

ad of
one

is
 new

er
• queue

• priority_queue

As roughly sketched ANSI STL specifies performance requirements for container
operations. Those enforce up to some extent the kind of implementation. If you loo
the performance requirements for vector, deque and list they correspond to array
list like implementations.

This differs from what the here-in discussed Object Collection Service proposes.
collection classes vector, deque, and list all map to the same interface Sequence
different performance profiles are delivered via the implementation choice.

Algorithms

Different from other container libraries ANSI STL containers offer a very limited s
of operations at the containers themselves. Instead, all higher level operations lik
union, find, sort, and so on are offered as so called generic algorithms. A generic
algorithm is a global template function that operates on all containers - supporting
appropriate type of iterator. There are approximately 50 algorithms offered in ANS
STL.

There are:

• non-mutating sequence algorithms

• mutating sequence algorithms

• sorting and related algorithms

• generalized numeric algorithms

The basic concept here is the separation of data structures and algorithms. Inste
implementing an algorithm for each container in the library you provide a generic
operating on all containers.

If one implements a new container and ensures that an appropriate iterator type
supported one gets the respective algorithms “for free”. One may also implement
generic algorithms working on iterators only which will apply to all containers
supporting the iterator type.

In addition, because the algorithms are coded as C++ global template functions,
reduction of library and executable size is achieved (selective binding).

Iterators

The key concept in ANSI STL that enables flexibility of STL are Iterator classes.
Iterator classes in ANSI STL are C++ pointer abstractions. They allow iteration ov
the elements of a container.
17-132 CORBAservices July 1997

17

the
r
 it is

imal,
he
, are

ried

ass

on

fic
uage
nd
ry

ys via
r one

ers in

eneric
Their design ensures, that all template algorithms work not only on containers in
library but also on built-in C++ data type array. Algorithms work on iterators rathe
then on the containers themselves. An algorithms does not even “know” whether
working with an ordinary C++ pointer or an iterator created for a container of the
library.

There are:

• input iterator, output iterator

• forward iterator

• bidirectional iterator

• random access iterator

• const, reverse, insert iterators

Consideration on choice

The collection class concept as defined by the ANSI standard is designed for opt
local use within programs written in C++. In some sense they are extensions of t
language and heavily exploit C++ language features. No considerations, of course
given to distribution of objects or language neutrality.

Some of the advantages clearly visible in a local C++ environment cannot be car
over into a distributed and language neutral environment. Some of them are even
counterproductive.

In summary, the following list of issues are the reason why the ANSI collection cl
standard has not been considered as a basis for this proposal:

• Aiming with its design at high performance and small code size of C++
applications ANSI STL seems to have avoided inheritance and virtual
functions. As no inheritance is defined, polymorphic use of the defined collecti
classes is not possible.

• The ANSI STL programming model of generic programming is very C++ speci
one. ANSI STL containers, iterators, and algorithms are designed as C++ lang
extension. Containers are smooths extensions of the built-in data type array a
iterators are smooth extensions of ordinary C++ pointers. Container in the libra
are processed by generic algorithms via iterators in the same way as C++ arra
ordinary pointers. Rather then subclassing and adding operations to a containe
extends a container by writing a new generic algorithm. This is a programming
model just introduced to the C++ world with ANSI STL and for sure not the
programming model Smalltalk programmers are used to.

• As a consequence of the separation of data structures and algorithms contain
ANSI STL up to some extent expose implementation. As an
example consider the two sequential containers list and vector. The
algorithms sort and merge are methods of the list container. vector
on the other hand can support efficient random access and therefore use the g
Object Collection Service: v1.0 The CosCollection Module July 1997 17-133

17

the

ble

d
sed.

 is
e a

r
ry

sing

uch

an

ns
T>,

n

d
ing

ration

() a
o
algorithms sort and merge. Subsequently you do not find them as methods in
vector interface. This requires rework of clients when server implementations
changes from list to vector or deque because of changing access patterns.

• The IDL concept has no notion of global (template) functions. The only conceiva
way to organize the algorithms is by collecting them in artificial algorithm
object(s). The selective binding advantage is lost in a CORBA environment an
careful placement of the algorithm object(s) near the collection must be exerci

• In the ANSI STL approach the reliance on generic programming as algorithms
substantial. We believe that this concept is not scalable. It is difficult to imagin
generic sort in a CORBA environment is effective without the knowledge of
underlying data structures. Each access to a container has to go via an iterato
mediated somehow by the underlying request broker, which is not a satisfacto
situation.Object Collection Services will be used in an wide variety of
environments, ranging from simple telephone lists up to complex large stores u
multiple indices, exhibiting persistent behavior and concurrently accessed via
Object Query Service. We do not believe that generic algorithms scale up in s
environments.

 B.1.1 ODMG-93

Release 1.1 of the ODMG specification defines a set of collection templates and
iterator template class.

An abstract base class Collection<T> is defined from which all concrete collectio
classes are derived. The concrete collection classes supported are Set<T>, Bag<
List<T>, Varray<T>. In addition an Iterator class Iterator<T> is defined for iteratio
over the elements of the collection.

Set and Bag are unordered collections and Bag allows multiples. List is an ordere
collection that allows multiples. The Varray<T> is a one dimensional array of vary
length.

Collection<T> offers the test empty() and allows to ask for the current number of
elements, cardinality(). Further the tests is_ordered() and allows_duplicates() are
offered.There is a test on whether an element is contained in a given collection.
Operations for insertion, insert_element(), and removal, remove_element() are
provided. Last not least there is a remove_all() operation.

Each of the derived classes provides an operator== and an operator!= and an ope
create_iterator().

A Set<T> is derived from Collection<T> and offers in addition operations
is_subset_off(), is_proper_subset_of(), is_superset_of(), or is proper_superset_of
suite of set-theoretical operations to form the union, difference, intersection of tw
sets.

A Bag<T> offers the same interface as Set<T> but allows multiples.
17-134 CORBAservices July 1997

17

t
ving,

th.
find,

 and

xt(),

t

an
me

med
tion
e are
 the
. The
f the

3
A List<T> offers specific operations to retrieve or remove the first respectively las
element in the list or to insert an element as first respectively last element. Retrie
removing, and replacing an element at a given position is supported. Inserting an
element before or after a given position is possible.

Varray<T> exposes the characteristics of a one dimensional array of varying leng
An array can be explicitly re-sized. The operator[] is supported. The operations to
remove, retrieve, and replace an element at a given position are supported.

An instance Iterator<T> is created to iterate over a given collection.The operator=
operator == are defined. There is a reset() operation moving an iterator to the
beginning of the collection. There is an operation advance() and overloaded the
operator++ to move the iterator to the next element. Retrieving and replacing the
element currently “pointed to” is possible. A check on whether iteration is not yet
finished is offered, not_done().For convenience in iteration there is an operation ne
combining “check end of iteration, retrieval of an element, and moving to the nex
element”.

ODMG-93 structure is very similar to the proposed Object Collections Service.
ODMG-93 Set <T> and Bag<T> correspond very well to Set and Bag as defined
herein. List<T> maps one-to-one to an EqualitySequence. A Varray<T> maps to
EqualitySequence too. That the interfaces List<T> and Varray <T> map to the sa
interface in the Object Collection Service proposed reflects that List<T> and
Varray<T> somehow expose the underlying kind of implementation structure assu
- namely a list like structure respectively a table like structure. In the Object Collec
Service proposed the different kinds of implementation of a sequence like interfac
not reflected in the interface but only in the delivered performance profile. This is
reason why List<T> and Varrary<T> map to the same interface EqualitySequence
Iterator interface maps to the top level Iterator interface of the iterator hierarchy o
Object Collection Service.

In summary the Object Collection Service proposed is a superset of the ODMG-9
proposed collections and iterators.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-135

17
 Appendix C References

 C.1 List of References

OMG, CORBAservices: Common Object Services Specification, Volume 1, March
1996.
17-136 CORBAservices July 1997

Index
A
abort

see rollback
absolute_time 14-9
Abstract Collection Interfaces 17-21
Abstract interface hierarchy 17-4
Abstract Interfaces 16-28
Abstract RestrictedAccessCollection Interface 17-64
accept_security_context 15-164
Access by key 17-3
Access control 15-194
access control model 15-24
Access Decision object 15-118, 15-169
access decision time 15-161
access_allowed 15-118
access_decision 15-111
accountability 15-3
Add Type Operation 16-62
Add_Link Operation 16-51
Additional ObjectID 16-4
Admin Interface 16-70
Administration of Time 14-18
algId 15-257
AlreadyBound 3-9, 3-11
ANSI Standard Template Library 17-131
application components 15-50
application interfaces - level 1 15-289
application interfaces - level 2 15-290
application object xlviii, 4-1
association options 15-280
atomicity 10-49, 10-52, 10-56

glossary definition 10-85
attribute definitions 15-255
Attribute status 14-16
attribute types 15-254, 15-307
attributes

control attributes 15-27
miscellaneous attributes 15-238
pivilege attributes 15-27
privilege attributes 15-238

Attributes and Set Operations 16-48
attributeType 15-254
Audit 15-194
audit event families and types 15-309
Audit objects 15-169
audit_channel 15-115
audit_channel_id 15-116
audit_decision 15-112
audit_needed 15-114
audit_write 15-115
auditing application activities 15-68
authenticate 15-91
availability 15-3

B
Bag Interface 17-61
Bag, SortedBag 17-10
BagFactory Interface 17-77
basic key distribution 15-262
basic keys 15-239
basic symmetric key distribution scheme 15-240

Basic Time Service 14-4
basic token format 15-228
bind time 15-161

client side 15-159
target side 15-160

binding handle
securing to the target 15-281

BindingIterator interface 3-12
next_n operation 3-12
next_one operation 3-12

bindings 15-52

C
caCertInformation 15-261
callback interface

described 2-4
call-back object 8-26
cancel_timer 14-16
CannotProceed 3-10
certificate 15-267
check value 15-261
clear_audit_selectors 15-146
CLI 5-34
Collectible elements and the operations interface 17-7
Collectible elements and type safety 17-7
Collectible elements of key collections 17-8
collection 11-4, 11-10

model 11-12
Collection factories 17-2, 17-5
Collection Factory Interfaces 17-69
Collection Interface 17-21
Collection interface 11-14

add_all_elements operation 11-17
add_element operation 11-16
create_iterator operation 11-18
insert_element_at operation 11-17
remove_all_elements 11-18
remove_element_at operation 11-17
replace_element_at operation 11-17
retrieve_element_at operation 11-18

Collection Interface Hierarchies 17-15
Collection interfaces 17-2
CollectionFactory and CollectionFactories Interfaces 17-70
CollectionFactory interface 11-14
Collections 17-2
Combined Collections 17-10
Command and Comparator Interface 17-121
Common collection types 17-2
common contents fields 15-257
common facilities xlviii
common secure interoperability level 0 15-192
common secure interoperability level 1 15-192
common secure interoperability level 2 15-193
compare_time 14-10
CompleteEstablishContext 15-214
component protection 15-56
compound copy request 6-27
compound externalization 2-10, 8-26
compound life cycle 2-9, 9-36, 9-37

and containment roles 6-42
and relationship service 6-37, 6-39, 6-41
CORBAservices December 1998 Index-1

Index

-42
copy operation example 6-27–6-30
copying, moving relationships 6-39–6-41
copying, moving roles 6-37–6-39
copying, moving, removing nodes 6-35–6-37
copying, moving, removing objects 6-33–6-35

compound name 3-1, 3-2, 3-11, 3-17
compound object 2-2
compound operations 9-36

propagation 9-37
concepts of 2-1
Concrete Restricted Access Collection Interfaces 17-65
concurrency control service

overview 1-3, 7-1
ConcurrencyControl module

OMG IDL 7-8–7-9
confDKuseInfo 15-272
confidentiality 15-3
confKeyDerivationInfo 15-271
confKeySeed 15-271
Conformance Criteria 16-68
Conformance Requirements for Implementation Conformance

Classes 16-71
Conformance Requirements for Trading Interfaces as Server 16-69
connect 4-18
Connection interface 5-37

operations 5-37
ConnectionFactory interface 5-37

operations 5-37
Consolidated OMG IDL 14-20, 16-74, 16-93, 16-99
Constraint Language 16-93
Constraint Language BNF 16-95
Constraint Recipe Languag 16-99
consumer 4-2
ConsumerAdmin interface 4-16, 4-17, 4-26

for_consumers operation 4-16
obtain_pull_supplier operation 4-17
obtain_push_supplier operation 4-17

ContainedInRole interface 8-27
containment relationship 9-1, 9-9

defining 9-48–9-49
example 9-23
overview 9-47

ContainsRole interface 8-27
ContextDeleteToken 15-230, 15-252
contextFlags 15-248
continue_authentication 15-92
continue_security_context 15-166
ContinueEstablishContext 15-215
ContinueEstablishToken 15-229
Control interface 10-22
control object 10-21, 10-28, 10-61
Coordinator interface 10-24

create_subtransaction operation 10-28
get_parent_status operation 10-25
get_status operation 10-25
get_top_level_status operation 10-26
get_transaction_name operation 10-28
hash_top_level_tran operation 10-27
hash_transaction operation 10-26
is_ancestor_transaction operation 10-26
is_descendant_transacation operation 10-26

is_related_transaction operation 10-26
is_same_transaction operation 10-26
is_top_level_transaction operation 10-26
register_resource operation 10-27
register_subtran_aware operation 10-27
rollback_only operation 10-28

coordinator object 10-30, 10-33, 10-41, 10-42, 10-53, 10-61
glossary definition 10-86

copy 15-95
CORBA 2-1

documentation set xlix
object references 2-10
standard requests 4-1

CORBA Interfaces 15-200
CORBA OMG IDL based Specification of the Trading

Function 16-74
CORBA security facilities and extensibility 15-202
CORBA Standard Security Mechanisms 15-187
CosCompoundExternalization

Node interface 8-7
CosCompoundExternalization module

OMG IDL ??–8-23
CosCompoundLifeCycle module

OMG IDL 6-30–6-33
CosCompoundLifeCycleOperations interface 6-26
CosConcurrencyControl module

overview 7-7
CosContainment module

attributes and operations 9-48–9-49
OMG IDL 9-48

CosEventChannelAdmin module
OMG IDL 4-15–4-16

CosEventComm module
OMG IDL 4-8

CosExternalization module
OMG IDL 8-13–8-14

CosExternalizationContainment module
OMG IDL 8-27
see also CosCompoundExternalization module 8-27
see also CosContainment module 8-27

CosExternalizationReference module
OMG IDL 8-28–8-29
see also CosCompoundExternalization module 8-29
see also CosReference module 8-29

CosGraphs
TraversalCriteria interface 6-41

CosGraphs module 8-26
OMG IDL 9-39–9-41

CosLicensingManager module
OMG IDL for 12-17

CosLifeCycle module
OMG IDL 6-10–6-11

CosLifeCycleContainment module
andCosCompoundLifeCycle and CosContainment modules 6
OMG IDL 6-42

CosLifeCycleLifeCycleObject interface 6-37
CosLifeCycleReference module

OMG IDL 6-44
CosNaming module

OMG IDL 3-6–3-8
CosPersistenceDDO module 5-31–5-33
Index-2 CORBAservices December 1998

Index

33
OMG IDL 5-31
CosPersistenceDS_CLI module

OMG IDL 5-35–5-36
CosPersistencePDS module

OMG IDL 5-20
CosPersistencePDS_DA module 5-21–5-29

OMG IDL 5-22
CosPersistencePID module

OMG IDL 5-9
CosPersistencePO module

OMG IDL 5-12
CosPropertyService 13-4
CosQuery module

OMG IDL for 11-23
CosQueryCollection module

OMG IDL for 11-14
CosReference module

attributes and operations 9-50–9-51
CosRelationships module

OMG IDL 9-20–9-23
CosStream module

OMG IDL 8-16–8-20
CosTime 14-4, 14-5
CosTransactions module

datatypes defined by 10-15
OMG IDL 10-69

CosTSInteroperation module
PIDL 10-62, 10-73

CosTypedEventComm module
OMG IDL 4-22

create_invoc_creds_policy 15-113
create_mechanism_policy 15-113
create_qop_policy 15-112
Creating iterators 17-27
creationTime 15-257
credential content at the client 15-197
Credentials 15-60
Credentials object 15-94, 15-169
crypAlgIdentifier 15-260
cryptographic profiles 15-186, 15-226
CSI protocols 15-230
CSI-ECMA hybrid mechanism 15-265
CSI-ECMA protocol 15-237
CSI-ECMA public mechanism 15-269
CSI-ECMA secret key mechanism 15-264
Current 15-60

security operations on 15-105
Current interface 10-41
Cursor interface 5-38

operations 5-38
CursorFactory interface 5-38

operations 5-38
cValues 15-260

D
DA protocol 5-19

compared to ODMG-93 protocol 5-30
DADO 5-26
DAObject interface 5-24

boolean dado_same (inDAObject d) operation 5-24
DataObjectID dado_oid() operation 5-24

PID_DA dado_pid() operation 5-24
void dado_free() operation 5-24
void dado_remove() operation 5-24

DAObjectFactory interface 5-24
DAObjectFactory create() operation 5-25

DAObjectFactoryFinder interface 5-25
find_factory operation 5-25

Data Definition Language
see DDL

data objects 5-27, 5-28
and dynamic access to attributes 5-28

data structures 15-253
Data Types

for Non-repudiation Policy Management Interfaces 15-154
data types 15-90
datastore 5-7, 5-13, 5-17, 5-18, 5-26, 5-34, 5-43

and DDO protocol 5-31
Datastore_CLI interface 5-40

and CLI 5-43
operations 5-41–5-43

DCE association options reduction algorithm 15-280
DCE RPC authorization services 15-278
DCE RPC protection levels 15-279
DCE RPC Security Services 15-278
DCE security parameters 15-280
DCE-CIOP

IOR Security Components for 15-274
DDL 5-21, 5-26, 5-27, 5-28
DDO

storing,restoring,deleting 5-40
DDO interface

attributes 5-32
short add_data() operation 5-32
short add_data_property (in short data_id) operation 5-32
short get_data_count() operation 5-32
short get_data_property_count (in short data_id) operation 5-
void get_data operation 5-33
void get_data_property operation 5-33
void set_data operation 5-33
void set_data_property operation 5-33

DDO protocol 5-19, 5-30
define 13-9, 13-10, 13-16
Defining 13-9, 13-15
defining and modifying properties 13-9
definingAuthority 15-254
delegation 15-30

privilege delegation 15-31
delegation options

specifying 15-35
technology support for 15-35

delegation schemes
overview of 15-31

delete 9-30, 13-12
Deleting 13-12
deleting properties 13-12
Deque 17-14
DequeFactory Interface 17-82
Dequeue Interface 17-66
Describe Link Operation 16-52
Describe Operation 16-41
Describe Proxy Operation 16-58
CORBAservices December 1998 Index-3

Index
Describe Type Operation 16-65
design goals, of event service interfaces 1-2
destroy 3-18, 15-95
destroy operation 3-12
Destroying 13-20
Destroying a collection 17-27
destroying the iterator 13-19, 13-20
Determining 13-13
determining defined property 13-13
dialogue key block 15-271
dialogue keys 15-239
dialogueKeyBlock 15-249
direct access protocol

see PDS_DA protocol
direct attribute protocol

see DA protocol
directionIndicator 15-251
DiscardContext 15-215
distributed object system

threats in 15-3
distributed objects 6-3
Domain Access Policy object 15-137
domain objects 15-53
domains

and interoperability 15-42
at object creation 15-76, 15-77
environment domains 15-56
federated policy domains 15-39
ORB Technology Domains

interoperating between 15-43
overlapping policy domains 15-40
policy domain hierarchies 15-39
policy domains 15-131
security administration domains 15-228
security environment domains 15-41

managing 15-44
security policy domains 15-38

interoperating between 15-176
managing 15-44

security technology domains 15-42
interoperating between 15-43
managing 15-45

dynamic data object protocol
see DDO protocol

Dynamic Property Evaluation interface 16-67
Dynamic Property Module 16-88
DynamicAttributeAccess interface 5-28

any attribute_get(in string name) operation 5-28
AttributeNames attribute_names() operation 5-28
void attribute_set(in string name, in any value) operation 5-28

E
edge structure 9-46
EdgeIterator interface 9-46

destroy operation 9-47
next_n operation 9-47
next_one operation 9-47

encryptedPlainKey 15-267
Enum ComparisonType 14-7
Enum EventStatus 14-14
Enum OverlapType 14-7

Enum TimeComparison 14-7
Enum TimeType 14-14
Equality collection 17-3
EqualityCollection Interface 17-37
EqualityIterator Interface 17-109
EqualityKeyCollection Interface 17-50
EqualityKeyIterator Interface 17-110
EqualityKeySortedCollection Interface 17-55
EqualityKeySortedIterator Interface 17-115
EqualitySequence 17-11
EqualitySequence Factory Interface 17-81
EqualitySequence Interface 17-63
EqualitySequentialCollection Interface 17-55
EqualitySequentialIterator Interface 17-115
EqualitySortedCollection Interface 17-52
EqualitySortedIterator Interface 17-113
ErrorToken 15-229, 15-246, 15-250
EstablishContext 15-214
establishing credentials 15-59
etContents 15-250
event channel 1-2, 2-2, 2-3, 4-5, 4-13

adding consumers 4-16
adding consumers to 4-17
adding consumers to typed 4-26
adding pull consumer to typed 4-28
adding pull consumers to 4-18
adding pull suppliers to 4-18
adding push consumers to 4-19
adding push suppliers to 4-17
adding push suppliers to typed 4-27
adding suppliers 4-16
adding suppliers to 4-17
adding suppliers to typed 4-27
and CORBA requests 4-10
decoders 4-31
defined 4-2, 4-10
encoders 4-31
filtering 4-28–4-29
implementing typed 4-30–4-31
sample use 4-32–4-33

event communication
mixed 4-11
multiple 4-12
pull model 1-2, 4-2, 4-7, 4-11
push model 1-2, 4-2, 4-6, 4-10
typed pull model 4-20
typed push model 4-19

event consumer 4-2, 4-6, 4-10
proxy 4-13

event service
and CORBA scoping 4-5
and license service 12-13, 12-15
design goal of interfaces 1-2
overview 1-2, 4-1

event supplier 4-2, 4-6, 4-10
proxy 4-13

event_time 14-17
EventChannel interface 2-2, 4-13, 4-16
exception 4-27
Exceptions 16-23

Additional Exceptions for Link Interface 16-26
Index-4 CORBAservices December 1998

Index
Additional Exceptions for Lookup Interface 16-24
Additional Exceptions for Proxy Offer Interface 16-27
Additional Exceptions For Register Interface 16-25
For CosTrading module 16-23

exceptions
described 2-4
InvalidName 3-10

Exceptions and Type Definitions 17-19
export 16-2
Export Operation 16-39
Export Proxy Operation 16-55
Exporter 16-4
Exporter Policies 16-18
Extended Time Service 14-26
external control values construct 15-260
external security services

linking to 15-171
externalization

defined 8-2
externalization service

and compound life cycle 8-7
and inheritance and use of objects 8-8
and life cycle service 2-10
and persistent object service 8-20
and relationship service 2-10, 8-26
and transaction service 8-20
interface summary 8-11
overview 1-4

externalizing a node 8-23
externalizing a relationship 8-25
externalizing a role 8-24

F
facilities

description of 15-90
factory finder 6-7, 6-13, 6-21, 8-3
factory keys

and kind field 6-14, 6-16
factory object 1-2, 6-4

definition 6-18
FactoryFinder interface 6-8, 6-13–6-14

find_factories operation 6-13
feature packages 15-12

and modules 15-17
Federated query example 16-19
FileStreamFactory interface 8-9, 8-13, 8-14

create operation 8-14
flags 15-249
form_complete_evidence 15-130
framework 11-10
Friendly Time Object 14-26
Full-service Trader 16-73
Fully Describe Type Operation 16-65
Function Interfaces 17-3, 17-117
Functional Interfaces 16-30

G
general security data module 15-283
generate_token 15-125
generic factory

criteria parameters 6-17–6-18

generic factory interface 6-5
GenericFactory interface 6-14–6-18, 6-22

and criteria parameter 6-17
and criteria parameters 6-17
create_object operation 6-15, 6-17
supports operation 6-16

get 13-11, 13-12, 13-14, 13-15, 13-17, 13-18
get_all_properties 13-12
get_all_property_names 13-11
get_association_options 15-151
get_attributes 15-98, 15-107
get_audit_selectors 15-147
get_component operation 3-16
get_credentials 15-109
get_delegation_mode 15-152
get_domain_managers 15-100, 15-103
get_effective_rights 15-136
get_NR_features 15-124
get_NR_policy_info 15-154
get_number_of_properties 13-11
get_policy 15-100, 15-103, 15-110
get_properties 13-11
get_property_value 13-11
get_required_rights 15-135
get_rights 15-143
get_security_features 15-96
get_security_names 15-112
get_supported_mechs 15-165
get_token_details 15-128
Getting 13-17
global identifier 2-4
goals of secure DCE-CIOP 15-273
grant_rights 15-141
graphical notation 2-3
graphs of related objects

copying to 6-33
creating traversal criteria for 8-26
destroying 6-35
examples 9-33
moving 6-34
removing 6-34
traversal of 9-35, 9-37
traversing 9-36

GSS Kerberos protocol 15-234
GSS-API 15-203
gss-key-estb-alg 15-268

H
hashAlgId 15-257, 15-261, 15-262
hashedName 15-267
Heap 17-11
Heap Interface 17-64
HeapFactory Interface 17-81
hniIssuingKDS 15-267
hybrid iInter-domain key distribution scheme data

elements 15-266
Hybrid Interdomain Scheme

Profile of Ticket as Used in 15-268

I
ictContents 15-247
CORBAservices December 1998 Index-5

Index
ictSeal 15-247
IDAPI standard 5-34
import 16-2
ImportAttributes 16-29
Importer 16-4
Importer Policies 16-17
init_security_context 15-162
initial context token 15-233, 15-236, 15-246
InitialContextToken 15-246
initiatorAddress 15-248
inner context tokens 15-229
integDKuseInfo 15-271
integKeyDerivationInfo 15-271
integKeySeed 15-271
integrity 15-3
interceptors

Access Control Interceptor 15-156
access control interceptor 15-161
Secure Invocation Interceptor 15-156
secure invocation interceptor 15-158

Interface Hierarchies 17-15
interface inheritance.see subtyping
interface repository 2-7
Interfaces

SecurityLevel2
AuditDecision Interface 15-114

interfaces
application developer’s interface 15-88
for non-repudiation 15-296
implementation-Level Security Object interfaces 15-161
Implementor’s Security interfaces 15-156
NRservice

NRCredentials interface 15-124
NRPolicy interface 15-154

security administration interface 15-294
security replaceable service interfaces 15-300
SecurityAdmin

AccessPolicy interface 15-136
AuditPolicy interface 15-144
DelegationPolicy interface 15-152
DomainAccessPolicy interface 15-141
SecureInvocationPolicy interface 15-150

SecurityLevel1
Current interface 15-107

SecurityLevel2
AccessDecision interface 15-118
AuditChannel interface 15-115
Credentials interface 15-95
Current interface 15-108
PrincipalAuthenticator Interface 15-91
RequiredRights interface 15-134

SecurityReplaceable
SecurityContext interface 15-166
Vault interface 15-162

intermediate objects 15-64
internalization

object’s model 8-6
internalizing a node 8-23
internalizing a relationship 8-25
internalizing a role 8-24
interoperability model 15-173

interval 14-10
InvalidName exception 3-10
Invocation Credentials 15-100
invocation credentials 15-105
Invocation Credentials Policy 15-102
invocation policy objects

client-side 15-101
invocation time policies 15-158
IOR encoding 15-235, 15-244
is_valid 15-98, 15-168
issuerCAName 15-261
issuerDomain 15-257
issuerIdentity 15-257
Iterating over a collection 17-26
Iterator Hierarchy 17-18
Iterator interface 11-14

any next operation 11-18
boolean more operation 11-19
void reset operation 11-18

Iterator Interfaces 17-3, 17-83
Iterators 17-5
Iterators and performance 17-6, 17-84
Iterators and support for generic programming 17-84
Iterators as pointer abstraction 17-83

K
kdSchemeOID 15-263
Key collection 17-3
Key collections 17-8
Key Distribution Schemes 15-263
key distribution schemes 15-239
key distribution types 15-184
key establishment algorithm 15-268
key establishment algorithms 15-227
key establishment data elements 15-267
KeyBag Interface 17-57
KeyBag, KeySortedBag 17-11
KeyBagFactory Interface 17-75
keyId 15-262
KeyIterator Interface 17-106
KeySet Interface 17-57
KeySet, KeySortedSet 17-12
KeySetFactory Interface 17-74
keySize 15-271
KeySortedBag Interface 17-62
KeySortedBagFactory Interface 17-78
KeySortedCollection Interface 17-50
KeySortedIterator Interface 17-110
KeySortedSet Interface 17-61
KeySortedSetFactory Interface 17-77
krb5Ticket 15-266
kying iInformation syntax 15-262

L
Legal Property Value Types 16-94
library names

PIDL operations 3-18
license service

and event service 12-13, 12-15
and life cycle service 12-19
and properties service 12-24
Index-6 CORBAservices December 1998

Index
and relationship service 12-27
and security service 12-27
example implementation 12-28
exceptions 12-19
overview 12-8
sample implementation 12-14

LicenseServiceManager interface 12-13, 12-17
check_use operation 12-13
end_use operation 12-13
obtain_producer_specific_license_service operation 12-19, 12-

28
start_use operation 12-13

licensing attributes
examples of 12-25

life cycle service
and license service 12-19
and naming service 2-9, 6-15
and relationship service 2-9
client’s model 6-4
overview 1-2, 6-1, 6-21

LifeCycleObject interface 1-2, 6-6, 6-11–6-13, 6-22, 6-25
and crieteria parameter 6-17
copy operation 6-11
move operation 6-12
NoFactory exception for copy operation 6-11
remove operation 6-13

Link 16-49
Link Creation Policies 16-18
Link Interface 16-70
Link Traversal Control 16-18
LinkAttributes 16-30
Linked Trader 16-72
Linking Traders 16-3
Links 16-11
List Offers Operation 16-48
List Proxies Operation 16-48
List Types Operation 16-64
Listing 13-10
listing and getting properties 13-10
LName interface 3-3, 3-15

delete_component operation 3-17
destroy operation 3-16
equal operation 3-17
insert_component operation 3-16
less_than operation 3-17
num_components operation 3-17

LNameComponent interface 3-3, 3-13, 3-15
get_id operation 3-15
get_kind attribute 3-3
get_kind operation 3-15
set_id operation 3-15
set_kind operation 3-15

LockCoordinator interface 7-9
drop_locks operation 7-10

locks 1-4, 2-7, 7-1, 7-2–7-7
and nested transactions 7-6
intention read and write 7-4
mode compatibility 7-5
multiple possession semantics 7-5
read,write,upgrade 7-4
transaction-duration 7-6

LockSet interface 7-9, 7-10–7-11
change_model operation 7-11
get_coordinator operation 7-11
lock operation 7-11
try_lock 7-11
unlock operation 7-11

LockSetFactory interface 7-13
create operation 7-13
create_related operation 7-13
create_transactional operation 7-13
create_transactional_related operation 7-13

Lookup 16-30
Lookup Interface 16-69

M
Managed Iterator Model 17-84
Managed iterators 17-6
Map Interface 17-57
Map, SortedMap 17-12
MapFactory Interface 17-75
Mapping

to Local Attribute Values 15-200
mapping of common elements to the SECIOP protocol 15-228
mapping security names to externally valid identities 15-199
Mask Type Operation 16-66
MD5 message digest algorithm 12-31
mechanism identifiers 15-244
Mechanism Policy 15-101
mechanism tags 15-225
mechanism types 15-201
message definitions 15-214
Message Protection 15-160
message protection 15-22
MessageError 15-216
MessageInContext 15-216
messages

protecting messages 15-175
methodId 15-259
methodParams 15-260
MICToken 15-230, 15-246, 15-252
miscellaneousAtts 15-259
model

implementing 15-45
model for use and contents of credentials 15-196
models

administrative model 15-75
security object models 15-58

Modify Link Operation 16-53
Modify Operation 16-42

N
name 3-2

binding 3-1
binding operations 3-8
component attributes 3-2
components 3-2
compound 3-2
resolution 3-1
simple 3-2
structure 3-18

name binding 3-1
CORBAservices December 1998 Index-7

Index
name component
attributes 3-15

nameHashingAlg 15-267
names library 1-1, 3-3, 3-13

PIDL 3-13–3-14
namespace adminstration 3-5
name-to-object association 3-1
naming context 1-1, 3-1, 3-5, 3-6

and property lists 2-5
deleting 3-11

naming graph 3-1
example 3-2

naming service
and internationalization 3-3, 3-6
design of 3-4
overview 1-1

NamingContext interface 3-8, 3-13, 3-18
bind operation 3-8
bind_context operation 3-9
bind_new_context operation 3-11
destroy operation 3-11
list operation 3-12
new_context operation 3-11
rebind operation 3-8
rebind_context operation 3-9
resolve operation 3-9
unbind operation 3-10

nested queries 11-20
nested transaction 2-10
new_interval 14-12
new_universal_time 14-12
next 13-19, 13-20
Node interface 6-35, 9-35, 9-44

add_role operation 9-45
copy operation 6-35
externalize_node operation 8-23
internalize_node operation 8-23
move operation 6-36
related_object attribute 9-45
remove operation 6-37
remove_role operation 9-45
roles_of_node attribute 9-45
roles_of_type operation 9-45

NodeFactory interface 9-46
create_node operation 9-46

nodes
creating 9-46

NoFactory 6-40
non-repudiation 15-35, 15-70, 15-170
non-repudiation credentials 15-106
non-repudiation service data types 15-123
NotCopyable 6-40
NotMovable 6-40
NotRemovable 6-37

O
Object Management Group xlvii

address of xlix
object model xlix
object references 15-52
object request broker xlviii

object service
context xlviii
specification defined xlix

ODBC standard 5-34
ODMG-93 17-134
ODMG-93 protocol 5-19, 5-30, 5-43, 10-83

integration with transaction service 10-84
Offer Id Iterator 16-45
Offer Identifier 16-9
Offer Iterator 16-35
Offer Selection 16-9
OMG 13-3
OMG Constraint Language BNF 16-93
OMG Constraint Recipe Language 16-99
OMG IDL xlix, 2-2, 3-3
OMG Trading Function Module 16-74
OperationFactory interface

create_compound_operations operation 6-33
operations 3-15
Operations Interface 17-7, 17-117
Operations interface 6-33

copy operation 6-33
destroy operation 6-35
move operation 6-34
remove operation 6-34

OperationsFactory interface 6-33
Operator Restrictions 16-94
OQL-93 Basic Query Language 11-7
OQL-93 Query Language 11-6
ORB security implementors

security replaceability for 15-203
ORB security services 15-80
ORB services 15-51
Ordering of elements 17-3
OSI TP protocol 10-80

exported transactions 10-82
imported transactions 10-81
transaction identifiers 10-81

overlaps 14-11
owfId 15-271
own credentials 15-106
own_credentials 15-110

P
PAC format 15-256
PAC Protection and Delegation 15-242
pacAndCVs 15-248
PACs

specific certificate contents for 15-257
pacSyntaxVersion 15-258
pacType 15-258
PDS 5-43

see persistent data service
PDS interface 5-19–5-20

and DA protocol 5-25
PDS connect operation 5-20
void delete operation 5-20
void disconnect operation 5-20
void restore operation 5-20
void store operation 5-20

PDS_ClusteredDA interface 5-29
Index-8 CORBAservices December 1998

Index

0-
ClusterID cluster_id() operation 5-29
ClusterIDs clusters_of() operation 5-29
PDS_ClusteredDA copy_cluster(in PDS_DA source)

operation 5-29
PDS_ClusteredDA create_cluster(in string kind) operation 5-29
PDS_ClusteredDA open_cluster(in ClusterID cluster)

operation 5-29
string cluster_kind() operation 5-29

PDS_DA interface 5-21, 5-25
and ODMG-93 protocol 5-30
DAObject get_data() operation 5-25
DAObject lookup(in DAObjectID id) operation 5-25
DAObjectFactoryFinder data_factories() operation 5-26
PID_DA get_object_pid(in DAObject dao) operation 5-25
PID_DA get_pid() operation 5-25
void set_data(in DAObject new_data) operation 5-25

PDS_DA protocol 5-21, 5-25
and data objects 5-26

per-message tokens 15-250
persistent data service 5-7, 5-17, 5-26, 5-27

overview 5-18
persistent data service interface

see PDS interface
persistent identifier 5-7

compared to CORBA object reference 5-9
persistent object interface

see PO interface
persistent object manager 5-11

and PO interface 5-13
purpose of 5-17

persistent object service
and clients 5-5
and CORBA accessor operations 5-27
and CORBA Dynamic Invocation interface 5-28
and CORBA persistent reference handling 5-2, 5-3
and datastore 5-6
and factory finders 5-25
and factory objects 5-24
and object implementation 5-6
and persistent data service 5-6
and query service 5-42
and transaction service 5-42
overview 1-3

PID
see persistent identifier

PID interface 5-8
PID_CLI interface 5-38

attributes 5-39
PID_DA interface 5-23

DAObjectID attribute 5-23
PIDL 2-13, 3-3
plainKey 15-267
pmtSeal 15-251
PO interface 5-12–5-13

... connect operation 5-13
void delete operation 5-13
void disconnect operation 5-13
void restore operation 5-13
void store operation 5-13

policies
access policies 15-26, 15-133, 15-189

access policy 15-82
application access policies 15-67
application access policy 15-26
application-enforced policies 15-40
audit policies 15-28, 15-189
object invocation access policy 15-25
Secure Invocation Policies 15-148
Security Policies 15-131
security policies 15-70, 15-75
security policies and domain objects 15-53
security policy 15-80
system-enforced policies 15-40

policiesaudit policies 15-144
POM interface

...connect operation 5-16
OMG IDL 5-16
void delete operation 5-16
void disconnect operation 5-16
void restore operation 5-16
void store operation 5-16

PPID method 15-243
ppidType 15-265
ppidValue 15-265
Preferences 16-10
principal authentication 15-170
Principal Authenticator 15-60
principal_authenticator 15-111
principals

and their security attributes 15-20
PriorityQueue 17-14
PriorityQueue Interface 17-68
PriorityQueueFactory Interface 17-82
privileges 15-258
ProducerSpecificLicenseService interface 12-13, 12-14, 12-17

check_use operation 12-20, 12-21, 12-28
end_use operation 12-20, 12-28
start_use operation 12-20, 12-28

propagation 10-34–10-38, 10-41, 10-44, 10-60, 10-63, 10-65, 1
66

deep 9-37
glossary definition 10-88
none 9-38
shallow 9-37

propagation context 2-13
PropagationCriteriaFactory interface 8-26

create operation 6-41, 8-26
Properties 16-7

Dynamic 16-8
modifiable 16-8

properties
defining and modifying with modes 13-15

properties service
and license service 12-24

PropertiesIterator 13-18
PropertiesIterator interface 13-18
Property 13-23
property list 4-1, 12-24
property modes

getting and setting 13-17
property service

object classification 13-1
CORBAservices December 1998 Index-9

Index

4

object usage count 13-1
Property service IDL 13-23
PropertyNamesIterator 13-19
PropertyNamesIterator interface 13-19
PropertySet 13-9
PropertySetDef 13-14
PropertySetDef interface 13-14
PropertySetDefFactory 13-21
PropertySetDefFactory interface 13-21
PropertySetFactory 13-20
PropertySetFactory interface 13-20
protect_message 15-167
protection methods 15-259
protectionMethods 15-258
protocol initialization 15-209
protocol state 15-207
proxies and Time 14-23
Proxy 16-54
Proxy Interface 16-70
Proxy Trader 16-73
ProxyPullConsumer interface 4-18

connect_pull_supplier operation 4-18
ProxyPullSupplier 4-18
ProxyPullSupplier interface 4-3, 4-18

connect_pull_consumer operation 4-18
ProxyPushConsumer interface 4-3, 4-17

connect_push_supplier operation 4-18
disconnect_push_supplier operation 4-18

ProxyPushSupplier interface 4-19
connect_push_consumer operation 4-19

pseudo object 2-13, 3-3, 3-13, 3-18
creating library name 3-14

publicAlgId 15-261
publicKeyBlock 15-266
PullConsumer interface 4-3, 4-10, 4-21

disconnect_pull_consumer operation 4-7
PullSupplier interface 2-2, 4-7, 4-9

disconnect_pull_supplier operation 4-7, 4-10
pull operation 4-9
try_pull operation 4-9

PushConsumer interface 2-2, 4-6, 4-8, 12-28
disconnect_push_consumer operation 4-9
push operation 4-8

PushSupplier interface 4-3, 4-9
disconnect_push_supplier operation 4-7, 4-9

PV/CV delegation method 15-243

Q
QOP 15-100
QOP Policy 15-101
qualifier attributes 15-255
quality of service 2-2, 4-3, 4-4, 4-6, 4-12
query collection 11-10
query evaluator 11-3

defined 11-19
Query Example 16-19
query framework 11-10
query framework interfaces

overview of 11-10
Query interface

execute operation 11-26

get_result operation 11-27
get_status operation 11-27
prepare operation 11-26
readonly attribute 11-26

query object
defined 11-21

Query Operation 16-31
query service

and transaction service 11-2
list of interfaces for 11-23

Query Trader 16-71
queryable collection

defined 11-20
QueryableCollection interface 11-25
QueryEvaluator interface

attributes for 11-25
QueryManager interface

create operation 11-26
Queue 17-15
Queue Interface 17-65
QueueFactory Interface 17-82

R
RACollectionFactory and RACollectionFactories Interfaces 17-7
Readonly attribute inaccuracy 14-9
Readonly attribute tdf 14-9
Readonly attribute time 14-9
Readonly attribute time_interval 14-10
Readonly attribute utc_time 14-9
received credentials 15-106
received_credentials 15-109, 15-166
received_security_features 15-110
Recipe Syntax 16-99
reclaim_message 15-168
recoverable object 10-5

and nested transactions 10-33
recoverable server 10-6, 10-42

glossary definition 10-88
implementing 10-38–10-39

RecoveryCoordinator interface 10-29
replay_completion operation 10-29

reference model xlviii
reference relationship 9-1, 9-9

defining 9-50–9-51
overview 9-47

refresh 15-99, 15-169
Register 16-36
register 14-17
Register Interface 16-69
Relation Interface 17-60
Relation, SortedRelation 17-13
RelationFactory Interface 17-76
relationship

and nodes, defined 9-35
creating 9-24
destroying 9-26
determining roles 9-26

relationship factory attributes 6-42, 6-44
Relationship interface 6-39, 8-25, 8-27, 9-25

copy operation 6-39
destroy operation 9-26
Index-10 CORBAservices December 1998

Index

217
externalize_role operation 8-25
internalize_relationship operation 8-25
life_cycle_propagation operation 6-41
move operation 6-40
named_roles attribute 9-26
propagation_for operation 8-25

relationship service
and base level operations 9-17
and cardinality 9-2, 9-18
and containment relationship 9-47–9-48
and CORBA object references 2-10
and degree 9-2
and entity 9-2
and levels of service 9-3, 9-7–9-10
and license service 12-27
and reference relationship 9-47–9-48
and semantics 9-2
and type 9-1, 9-14
attribute and operation rationale 9-15
interface summary 9-11–9-13
overview 1-4

Relationship to Other Relevant Standards 17-131
RelationshipFactory interface 9-23

create operation 9-24
degree attribute 9-25
named_role_types attribute 9-25
relationship_type attribute 9-25

RelationshipIterator interface 9-32
destroy operation 9-32
next_n operation 9-32
next_one operation 9-32

relationships
and defining role attributes 9-30
and operations on roles 9-26–9-30
containment 8-26
reference 8-26

Remove Link Operation 16-52
Remove Type Operation 16-64
replace_audit_selectors 15-146
replace_rights 15-142
replaceable security services 15-170
Representation of Literals 16-95
representation of Time 14-1
required_rights_object 15-111
Resetting 13-19
resetting

position in an iterator 13-20
resetting position in iterator 13-20
Resetting the position in an iterator 13-19
Resolve Operation 16-45
Resource interface 10-29

commit operation 10-31
commit_one_phase operation 10-31
forget operation 10-32
prepare operation 10-30
rollback operation 10-31

resource manager 10-9, 10-68, 10-78
mappings to 10-76

resource object
defined 10-6

Restricted Access Collection Interfaces 17-64

Restricted Access Collections 17-4, 17-14
RestrictedAccessCollection Interface 17-64
restrictions 15-258
Retrieval 13-14
retrieval of PropertySet constraints 13-14
revoke_rights 15-142
rights families 15-134
RM

see resource manager
role factory attributes 6-42, 6-45
Role interface 6-37, 8-24, 9-26, 9-46

check_minimum_cardinality operation 9-29
copy operation 6-38
destroy operation 9-29
destroy_relationships operation 9-28
externalize_propagation operation 8-25
externalize_role operation 8-24
get_edges operation 9-46
get_other_related_object operation 9-27
get_other_role operation 9-27
get_relationships operation 9-28
how_many operation 9-28
internalize_role operation 8-24
life_cycle_propagation operation 6-39
link operation 9-29
move operation 6-38
related_object attribute 9-27
unlink operation 9-30

RoleFactory interface 9-27, 9-30
and max_cardinality attribute 9-31
and min_cardinality attribute 9-31
and role_type attribute 9-31
create_role operation 9-30
related_object_type attribute 9-32

roles
and cardinality 9-29, 9-31

rollback
glossary definition 10-88

S
SAId 15-247
Scoping Policies 16-13
SD interface 5-11
sealValue 15-261
SECIOP Context Management Finite State Machine Tables 15-
SECIOP context management layer 15-212
SECIOP context management layer message header 15-212
SECIOP context management layer protocol 15-213
SECIOP sequencing layer 15-206
SECIOP tokens 15-235

when using CSI-ECMA 15-245
SECIOP-hosted CSI protocols 15-224
secretAlgId 15-262
secure association options 15-149
secure DCE CIOP 15-306
secure DCE-CIOP operational semantics 15-280
secure interoperability bridges 15-177
secure interoperability levels 15-183
secure inter-ORB protocol (SECIOP) 15-301
secure invocation 15-63, 15-194
secure invocations
CORBAservices December 1998 Index-11

Index
implementor’s view of 15-79
Secure Object Creation

Implementor’s View of 15-85
secure object invocations 15-21
Secure Time 14-18
secure_universal_time 14-12, 14-17
SecureUniversalTime 14-3
security association 15-174
security associations

establishing 15-22
security attributes

selecting 15-61
Security Context 15-83
Security Context object 15-165
Security Features Policy 15-102
security functionality packages 15-89
security mechanism types 15-175
Security Mechanisms 15-100
security mechanisms 15-67, 15-309

hosted directly on IIOP 15-185
hosted on SECIOP 15-184

security model
administrator’s view of 15-48
application developer’s view of 15-47
end user’s view of 15-47
enterprise management view of 15-46
object system implementor’s view of 15-48

security name 15-227
security reference model

definition of 15-18
Security Service 15-1
security service

and license service 12-27
security specification 15-3
security technology 15-55
security_features 15-166
securityValue 15-254
see also data objects
sending Time across the network 14-23
seq-number 15-248, 15-249, 15-251
Sequence 17-13
Sequence Interface 17-63
SequencedDataFrame

sending a 15-211
SequenceFactory Interface 17-80
SequentialCollection Interface 17-31
serialNumber 15-257
Service Offers 16-7
Service Type Repository 16-59
Service Type Repository Module 16-88
set 13-18
Set, SortedSet 17-13
set_association_options 15-150
set_audit_channel 15-147
set_audit_selectors 15-145
set_credentials 15-108
set_data 14-16
set_delegation_mode 15-152
set_NR_features 15-124
set_NR_policy_info 15-155
set_policy_override 15-100

set_policy_overrides 15-104
set_privileges 15-97
set_required_rights 15-135
set_security_features 15-95
set_timer 14-16
SetFactory Interface 17-76
signature 15-267
signatureValue 15-261
signedPKBPart 15-266
simple name 3-2
Simple Trader 16-72
SNA LU protocol 10-80, 10-82

incoming communication 10-83
outgoing communication 10-83
transaction identifiers 10-82

SortedBag Interface 17-63
SortedCollection Interface 17-37
SortedIterator Interface 17-110
SortedMap Interface 17-62
SortedMapFactory Interface 17-78
SortedRelation Interface 17-62
SortedRelationFactory Interface 17-79
SortedSet Interface 17-63
SortedSetFactory Interface 17-79
source of Time 14-2
spans 14-11
SPKM

using for SECIOP 15-233
SPKM protocol 15-231
SPKM_REQ Used in Public Key Mechanism

Profile of 15-270
SQL Query Language 11-6
SSL 15-306
Stack 17-15
Stack Interface 17-67
StackFactory Interface 17-82
Stand-alone Trader 16-72
standard data types

values for 15-307
Standardized Capability Supported Policies 16-15
Stream interface 8-13, 8-14

begin_context operation 8-15
end_context operation 8-15
externalize operation 8-14
flush operation 8-15
internalize operation 8-14, 8-15
internalize_from_stream operation 8-16

stream object
creating 8-14
data format 8-29–8-31
externalizing 8-14
externalizing group 8-15
internalizing 8-14, 8-15

stream service 8-4
and begin_context request 8-4
and externalize_to_stream request 8-4
and internalize_from_stream request 8-4
and readonly key attribute 8-4

Streamable interface 8-4, 8-8, 8-21
externalize_to_stream operation 8-21
internalize_from_stream 8-22
Index-12 CORBAservices December 1998

Index

,
is_identical operation 8-21
streamable object

and inheritance 8-21
creating

create_uninitialized operation 8-23
creation key 8-21

StreamableFactory interface 8-23
StreamFactory interface 8-9, 8-13, 8-14

create operation 8-14
StreamIO interface 8-4, 8-9, 8-20

read_ operation 8-22
read_object operation 8-22
read_t operation 8-20
write_ operation 8-21, 8-30
write_object operation 8-21
write_operation 8-20

structural model 15-49
SubtransactionAwareResource interface 10-33

commit_substransaction operation 10-33
commit_subtransaction operation 10-33

subtransactions 10-7, 10-12, 10-56, 10-58, 10-60, 10-62, 10-66
subtyping 2-1, 2-5
supplier 4-2
SupplierAdmin interface 4-3, 4-16, 4-17

for_suppliers operation 4-16
obtain_pull_consumer operation 4-17
obtain_push_consumer operation 4-17

SupportAttributes 16-29
symmetric key distribution with asymmetric KDS 15-240
symmIntradomain scheme 15-264
synchronization of Time 14-18
synchronized data interface

see SD interface

T
TAG_ASSOCIATION_OPTIONS 15-180, 15-276
TAG_DCE_SEC_MECH 15-275
TAG_GENERIC_SEC_MECH 15-179
TAG_SEC_NAME 15-181, 15-278
TAG_x_SEC_MECH 15-179
target

security at the target 15-64
target_requires field 15-277
target_supports field 15-277
targetAddress 15-248
TargetAEF Part 15-248
targetAEFPart 15-247
targetAEFPartSeal 15-247
targetIdentity 15-249
targetKeyBlock 15-249
targetName 15-262, 15-267
TargetResultToken 15-229, 15-246, 15-249
Terminator interface

rollback operation 10-23
terminator object 10-41
time 14-11
Time Interval Object (TIO) 14-10
Time Interval Objects (TIOs) 14-3
Time Service interface 14-11
Time Service Requirements 14-1
Time Service requirements 14-1

time_set 14-16
time_to_interval 14-10
TimeBase 14-4, 14-5
timePeriods 15-259
Timer Event Handler 14-3, 14-15
Timer Event Service 14-3, 14-4, 14-13, 14-16, 14-22
TimeUnavailable 14-4, 14-8
tokenId 15-247
tokentype 15-214
Trader Attributes 16-21
Trader Policies 16-16
trading object service 16-2
transacations

resource manager 10-68
transaction abort

see Resource interface
rollback operation 10-31

transaction context 10-18
management of 10-22
propagation of 10-22

transaction originator 10-13, 10-19, 10-23, 10-47
glossary definition 10-90

transaction service
and concurrency control service 2-10
and orb interoperability 2-12
and persistent object service 2-11
application use of 10-34

transactional client 10-4, 10-38
glossary defintion 10-89

transactional object 10-4
example 10-43

transactional server
defined 10-6

TransactionalLockSet interface 7-9
TransactionalLockSet interface operations 7-12
TransactionalObject interface 10-34
TransactionFactory interface 10-41
transactions

checked 10-36–10-38, 10-39, 10-40
consistency property 10-58
consistency property,glossary definition 10-86
coordinator object 10-30, 10-33, 10-41, 10-42, 10-53, 10-61
distributed 10-40
durability 10-56
durability, glossary definition 10-86
flat 10-6, 10-7, 10-9, 10-39
flat,glossary definition 10-86
implicit propagation 10-41
interposition 10-49, 10-60, 10-62
interposition, glossary defintion 10-87
isolation 10-7, 10-9, 10-13, 10-23
isolation, glossary definition 10-87
propagation 10-34–10-38, 10-41, 10-44, 10-60, 10-63, 10-65

10-66, 10-88
propagation to resource manager 10-78
recoverable object 10-5, 10-33
recoverable server 10-6, 10-38–10-39
recoverable server, glossary defintion 10-88
recoverable server,example 10-42
resource manager 10-9, 10-78
terminator object 10-41
CORBAservices December 1998 Index-13

Index
two-phase commit protocol 2-11, 10-12, 10-29, 10-49, 10-52,
10-58, 10-62, 10-68, 10-80, 10-83

two-phase commit, glossary definition 10-90
TraveralCriteria interface

next_n operation 9-44
traversal criteria

creating 6-41, 9-36
example of 9-37

Traversal interface
destroy operation 9-43
next_n operation 9-43
next_one operation 9-42
ScopedEdge structure 9-42

traversal object 9-35, 9-36
creating 9-41

TraversalCriteria interface 9-36, 9-43
destroy operation 9-44
next_one operation 9-43
visit_node operation 9-44
Weighted_Edge structure 9-43

TraversalFactory interface 9-41
create_traversal_on operation 9-42

trtContents 15-249
trtSeal 15-250
Type checking information 17-22
Type Definitions 17-19
Type InaccuracyT 14-6
Type IntervalT 14-6
Type safety 17-7
Type TdfT 14-6
Type TimerEventT 14-15
Type TimeT 14-6
Type UtcT 14-6
TypedConsumerAdmin interface

obtain_typed_pull_supplier operation 4-26
obtain_typed_push_supplier operation 4-26

TypedProxyPullSupplier interface 4-28
TypedProxyPushConsumer interface 4-27
TypedPullSupplier interface 4-21
TypedPushConsumer interface 4-20
TypedSupplierAdmin interface 4-27

obtain_typed_pull_consumer operation 4-27
obtain_typed_push_consumer operation 4-27

U
Unique entries (collections) 17-4
universal object identity 2-5
Universal Time Coordinated (UTC) 14-1
Universal Time Object (UTO) 14-8
Universal Time Objects (UTOs) 14-3
universal_time 14-4, 14-12
UniversalTime 14-3
Unmask Type Operation 16-66
unregister 14-17
useAlgId 15-272
usec 15-248
useHashAlgId 15-272
user sponsor 15-59
userData 15-251
UserEnvironment interface

operations 5-37
utcTime 15-248
uto_from_utc 14-12

V
validity 15-257
Vault 15-83
Vault object 15-162
verify_evidence 15-126
void destroy() 15-95

W
Withdraw Operation 16-41
Withdraw Proxy Operation 16-58
Withdraw Using Constraint Operation 16-44
WrapToken 15-230, 15-246, 15-252

X
X/Open xlviii
X/Open CLI standard 5-34
X/Open TX interface 10-74–10-76
X/Open XA interface 10-68
Index-14 CORBAservices December 1998

CORBAservices: Common
Object Services Specification

TO: CORBAservices Readers

FROM: OMG Headquarters

RE: Security Update package for Security
Service Specification v/1.2

DATE: December 21, 1998

Pages to remove from CORBA
services

Pages to add from this update

Title and copyright Title and copyright

Table of Contents (footer reads
November 1997)

Table of Contents (footer reads
December 1998)

List of Figures (footer reads
November 1997)

List of Figures (footer reads Decem-
ber 1998)

List of Tables (footer reads
November 1997)

List of Tables (footer reads December
1998)

Chapter 8 - Externalization Service
(footer reads March 1995)

Chapter 8 - Externalization Service
(footer reads December 1998)

Chapter 15 - Security Service
(footer reads November 1996)

Chapter 15 - Security Service (footer
reads December 1998)

Index (footer reads November
1997)

Index (footer reads December 1998)

	Table of Contents
	0.1 About This Document
	0.1.1 Object Management Group
	0.1.2 X/Open

	0.2 Intended Audience
	0.3 Need for Object Services
	0.3.1 What Is an Object Service Specification?

	0.4 Associated Documents
	0.5 Structure of this Manual
	0.6 Acknowledgements

	Preface
	1. Overview
	1.1 Summary of Key Features
	1.1.1 Naming Service
	1.1.2 Event Service
	1.1.3 Life Cycle Service
	1.1.4 Persistent Object Service
	1.1.5 Transaction Service
	1.1.6 Concurrency Control Service
	1.1.7 Relationship Service
	1.1.8 Externalization Service
	1.1.9 Query Service
	1.1.10 Licensing Service
	1.1.11 Property Service
	1.1.12 Time Service
	1.1.13 Security Service
	1.1.14 Object Trader Service
	1.1.15 Object Collections Service

	2. General Design Principles
	2.1 Service Design Principles
	2.1.1 Build on CORBA Concepts
	2.1.2 Basic, Flexible Services
	2.1.3 Generic Services
	2.1.4 Allow Local and Remote Implementations
	2.1.5 Quality of Service is an Implementation Characteristic
	2.1.6 Objects Often Conspire in a Service
	2.1.7 Use of Callback Interfaces
	2.1.8 Assume No Global Identifier Spaces
	2.1.9 Finding a Service is Orthogonal to Using It

	2.2 Interface Style Consistency
	2.2.1 Use of Exceptions and Return Codes
	2.2.2 Explicit Versus Implicit Operations
	2.2.3 Use of Interface Inheritance

	2.3 Key Design Decisions
	2.3.1 Naming Service: Distinct from Property and Trading Services
	2.3.2 Universal Object Identity

	2.4 Integration with Future Object Services
	2.4.1 Archive Service
	2.4.2 Backup/Restore Service
	2.4.3 Change Management Service
	2.4.4 Data Interchange Service
	2.4.5 Internationalization Service
	2.4.6 Implementation Repository
	2.4.7 Interface Repository
	2.4.8 Logging Service
	2.4.9 Recovery Service
	2.4.10 Replication Service
	2.4.11 Startup Service
	2.4.12 Data Interchange Service

	2.5 Service Dependencies
	2.5.1 Event Service
	2.5.2 Life Cycle Service
	2.5.3 Persistent Object Service
	2.5.4 Relationship Service
	2.5.5 Externalization Service
	2.5.6 Transaction Service
	2.5.7 Concurrency Control Service
	2.5.8 Query Service
	2.5.9 Licensing Service
	2.5.10 Property Service
	2.5.11 Time Service
	2.5.12 Security Service
	2.5.13 Trader Service
	2.5.14 Collections Service

	2.6 Relationship to CORBA
	2.6.1 ORB Interoperability Considerations: Transaction Service
	2.6.2 Life Cycle Service
	2.6.3 Naming Service
	2.6.4 Relationship Service
	2.6.5 Persistent Object Service
	2.6.6 General Interoperability Requirements

	2.7 Relationship to Object Model
	2.8 Conformance to Existing Standards

	3. Naming Service Specification
	3.1 Service Description
	3.1.1 Overview
	3.1.2 Names
	3.1.3 Names Library
	3.1.4 Example Scenarios
	3.1.5 Design Principles
	3.1.6 Resolution of Technical Issues

	3.2 The CosNaming Module
	3.2.1 Binding Objects
	3.2.2 Resolving Names
	3.2.3 Unbinding Names
	3.2.4 Creating Naming Contexts
	3.2.5 Deleting Contexts
	3.2.6 Listing a Naming Context
	3.2.7 The BindingIterator Interface

	3.3 The Names Library
	3.3.1 Creating a Library Name Component
	3.3.2 Creating a Library Name
	3.3.3 The LNameComponent Interface
	3.3.4 The LName Interface

	4. Event Service Specification
	4.1 Service Description
	4.1.1 Overview
	4.1.2 Event Communication
	4.1.3 Example Scenario
	4.1.4 Design Principles
	4.1.5 Resolution of Technical Issues
	4.1.6 Quality of Service

	4.2 Generic Event Communication
	4.2.1 Push Model
	4.2.2 Pull Model

	4.3 The CosEventComm Module
	4.3.1 The PushConsumer Interface
	4.3.2 The PushSupplier Interface
	4.3.3 The PullSupplier Interface
	4.3.4 The PullConsumer Interface

	4.4 Event Channels
	4.4.1 Push-Style Communication with an Event Channel
	4.4.2 Pull-Style Communication with an Event Channel
	4.4.3 Mixed Style Communication with an Event Channel
	4.4.4 Multiple Consumers and Multiple Suppliers
	4.4.5 Event Channel Administration

	4.5 The CosEventChannelAdmin Module
	4.5.1 The EventChannel Interface
	4.5.2 The ConsumerAdmin Interface
	4.5.3 The SupplierAdmin Interface
	4.5.4 The ProxyPushConsumer Interface
	4.5.5 The ProxyPullSupplier Interface
	4.5.6 The ProxyPullConsumer Interface
	4.5.7 The ProxyPushSupplier Interface

	4.6 Typed Event Communication
	4.6.1 Typed Push Model
	4.6.2 Typed Pull Model

	4.7 The CosTypedEventComm Module
	4.7.1 The TypedPushConsumer Interface
	4.7.2 The TypedPullSupplier Interface

	4.8 Typed Event Channels
	4.9 The CosTypedEventChannelAdmin Module
	4.9.1 The TypedEventChannel Interface
	4.9.2 The TypedConsumerAdmin Interface
	4.9.3 The TypedSupplierAdmin Interface
	4.9.4 The TypedProxyPushConsumer Interface
	4.9.5 The TypedProxyPullSupplier Interface

	4.10 Composing Event Channels and Filtering
	4.11 Policies for Finding Event Channels

	5. Persistent Object Service Specification
	5.1 Introduction
	5.2 Goals and Properties
	5.2.1 Basic Capabilities
	5.2.2 Object-oriented Storage
	5.2.3 Open Architecture
	5.2.4 Views of Service

	5.3 Service Structure
	5.4 The CosPersistencePID Module
	5.4.1 PID Interface
	5.4.2 Example PIDFactory Interface

	5.5 The CosPersistencePO Module
	5.5.1 The PO Interface
	5.5.2 The POFactory Interface
	5.5.3 The SD Interface

	5.6 The CosPersistencePOM Module
	5.7 Persistent Data Service (PDS) Overview
	5.8 The CosPersistencePDS Module
	5.9 The Direct Access (PDS_DA) Protocol
	5.10 The CosPersistencePDS_DA Module
	5.10.1 The PID_DA Interface
	5.10.2 The Generic DAObject Interface
	5.10.3 The DAObjectFactory Interface
	5.10.4 The DAObjectFactoryFinder Interface
	5.10.5 The PDS_DA Interface
	5.10.6 Defining and Using DA Data Objects
	5.10.7 The DynamicAttributeAccess Interface
	5.10.8 The PDS_ClusteredDA Interface

	5.11 The ODMG-93 Protocol
	5.12 The Dynamic Data Object (DDO) Protocol
	5.13 The CosPersistenceDDO Module
	5.14 Other Protocols
	5.15 Datastores: CosPersistenceDS_CLI Module
	5.15.1 The UserEnvironment Interface
	5.15.2 The Connection Interface
	5.15.3 The ConnectionFactory Interface
	5.15.4 The Cursor Interface
	5.15.5 The CursorFactory Interface
	5.15.6 The PID_CLI Interface
	5.15.7 The Datastore_CLI Interface

	5.16 Other Datastores
	5.17 Standards Conformance
	5.18 References

	6. Life Cycle Service Specification
	6.1 Service Description
	6.1.1 Overview
	6.1.2 Organization of this Chapter
	6.1.3 Client’s Model of Object Life Cycle
	6.1.4 Factory Finders
	6.1.5 Design Principles
	6.1.6 Resolution of Technical Issues

	6.2 The CosLifeCycle Module
	6.2.1 The LifeCycleObject Interface
	6.2.2 The FactoryFinder Interface
	6.2.3 The GenericFactory Interface
	6.2.4 Criteria

	6.3 Implementing Factories
	6.3.1 Minimal Factories
	6.3.2 Administered Factories

	6.4 Target’s Use of Factories and Factory Finders
	6.5 Summary of Life Cycle Service
	6.5.1 Summary of Life Cycle Service Structure

	7. Concurrency Control Service
	7.1 Service Description
	7.1.1 Basic Concepts of Concurrency Control

	7.2 Locking Model
	7.2.1 Lock Modes
	7.2.2 Multiple Possession Semantics

	7.3 Two-Phase Transactional Locking
	7.4 Nested Transactions
	7.5 CosConcurrencyControl Module
	7.5.1 Types and Exceptions
	7.5.2 LockCoordinator Interface
	7.5.3 LockSet Interface
	7.5.4 TransactionalLockSet Interface
	7.5.5 LockSetFactory Interface

	8. Externalization Service Specification
	8.1 Service Description
	8.2 Service Structure
	8.2.1 Client’s Model of Object Externalization
	8.2.2 Stream’s Model of Object Externalization
	8.2.3 Object’s Model of Externalization
	8.2.4 Object’s Model of Internalization

	8.3 Object and Interface Hierarchies
	8.4 Interface Summary
	8.4.1 Externalization Service Architecture: Audience/Bearer Mapping

	8.5 CosExternalization Module
	8.5.1 StreamFactory Interface
	8.5.2 FileStreamFactory Interface
	8.5.3 Stream Interface

	8.6 CosStream Module
	8.6.1 Standard Stream Data Format
	8.6.2 The StreamIO Interface
	8.6.3 The Streamable Interface
	8.6.4 The StreamableFactory Interface
	8.6.5 The Node Interface
	8.6.6 The Role Interface
	8.6.7 The Relationship Interface
	8.6.8 The PropagationCriteriaFactory Interface

	8.7 Specific Externalization Relationships
	8.8 The CosExternalizationContainment Module
	8.9 The CosExternalizationReference Module
	8.10 Standard Stream Data Format
	8.10.1 OMG Externalized Object Data
	8.10.2 Externalized Repeated Reference Data
	8.10.3 Externalized NIL Data

	8.11 References

	9. Relationship Service Specification
	9.1 Service Description
	9.1.1 Key Features of the Relationship Service
	9.1.2 The Relationship Service vs. CORBA Object References
	9.1.3 Resolution of Technical Issues

	9.2 Service Structure
	9.2.1 Levels of Service
	9.2.2 Hierarchy of Relationship Interface
	9.2.3 Hierarchy of Role Interface
	9.2.4 Interface Summary

	9.3 The Base Relationship Model
	9.3.1 Relationship Attributes and Operations
	9.3.2 Higher Degree Relationships
	9.3.3 Operations
	9.3.4 Consistency Constraints
	9.3.5 Implementation Strategies
	9.3.6 The CosObjectIdentity Module
	9.3.7 The CosRelationships Module

	9.4 Graphs of Related Objects
	9.4.1 Graph Architecture
	9.4.2 Traversing Graphs of Related Objects
	9.4.3 Compound Operations
	9.4.4 An Example Traversal Criteria
	9.4.5 The CosGraphs Module

	9.5 Specific Relationships
	9.5.1 Containment and Reference
	9.5.2 The CosContainment Module
	9.5.3 The CosReference Module

	9.6 References

	10.Transaction Service Specification
	10.1 Service Description
	10.1.1 Overview of Transactions
	10.1.2 Transactional Applications
	10.1.3 Definitions
	10.1.4 Transaction Service Functionality
	10.1.5 Principles of Function, Design, and Performance

	10.2 Service Architecture
	10.2.1 Typical Usage
	10.2.2 Transaction Context
	10.2.3 Context Management
	10.2.4 Datatypes
	10.2.5 Structures
	10.2.6 Exceptions

	10.3 Transaction Service Interfaces
	10.3.1 Current Interface
	10.3.2 TransactionFactory Interface
	10.3.3 Control Interface
	10.3.4 Terminator Interface
	10.3.5 Coordinator Interface
	10.3.6 Recovery Coordinator Interface
	10.3.7 Resource Interface
	10.3.8 Synchronization Interface
	10.3.9 Subtransaction Aware Resource Interface
	10.3.10 TransactionalObject Interface

	10.4 The User’s View
	10.4.1 Application Programming Models
	10.4.2 Interfaces
	10.4.3 Checked Transaction Behavior
	10.4.4 X/Open Checked Transactions
	10.4.5 Implementing a Transactional Client: Heuristic Completions
	10.4.6 Implementing a Recoverable Server
	10.4.7 Application Portability
	10.4.8 Distributed Transactions
	10.4.9 Applications Using Both Checked and Unchecked Services
	10.4.10 Examples
	10.4.11 Model Interoperability
	10.4.12 Failure Models

	10.5 The Implementers’ View
	10.5.1 Transaction Service Protocols
	10.5.2 ORB/TS Implementation Considerations
	10.5.3 Model Interoperability

	10.6 The CosTransactions Module
	10.6.1 The CosTSPortability Module

	11.Query Service Specification
	11.1 Service Description
	11.1.1 Overview
	11.1.2 Design Principles
	11.1.3 Architecture
	11.1.4 Query Languages
	11.1.5 Key Features

	11.2 Service Structure
	11.2.1 Overview
	11.2.2 Collection Interface Structure
	11.2.3 Query Framework Interface Hierarchy/Structure
	11.2.4 Interface Overview

	11.3 The Collection Model
	11.3.1 Common Types of Collections
	11.3.2 Iterators

	11.4 The CosQueryCollection Module
	11.4.1 The CollectionFactory Interface
	11.4.2 The Collection Interface
	11.4.3 The Iterator Interface

	11.5 The Query Framework Model
	11.5.1 Query Evaluators
	11.5.2 Queryable Collections
	11.5.3 Query Managers
	11.5.4 Query Objects

	11.6 The CosQuery Module
	11.6.1 The QueryLanguageType Interfaces
	11.6.2 The QueryEvaluator Interface
	11.6.3 The QueryableCollection Interface
	11.6.4 The QueryManager Interface
	11.6.5 The Query Interface

	11.7 References

	12.Licensing Service Specification
	12.1 Existing License Management Products
	12.1.1 Business Policy
	12.1.2 License Types
	12.1.3 A History of License Types
	12.1.4 Asset Management
	12.1.5 License Usage Practices
	12.1.6 Scalability
	12.1.7 Reliability
	12.1.8 Legacy Applications
	12.1.9 Security
	12.1.10 Client/Server Authentication
	12.1.11 Example: Application Acquiring and Releasing a Concurrent License

	12.2 Service Description
	12.2.1 Overview
	12.2.2 Key Components of a Licensing System
	12.2.3 Licensing in the CORBA Environment
	12.2.4 Design Principles
	12.2.5 Licensing Service Interfaces
	12.2.6 Licensing Event Trace Diagram

	12.3 The CosLicensing Module
	12.3.1 LicenseServiceManager Interface
	12.3.2 ProducerSpecificLicenseService Interface

	12.4 References

	13.Property Service
	13.1 Overview
	13.1.1 Service Description
	13.1.2 OMG IDL Interface Summary
	13.1.3 Summary of Key Features

	13.2 Service Interfaces
	13.2.1 CosPropertyService Module
	13.2.2 PropertySet Interface
	13.2.3 PropertySetDef Interface
	13.2.4 PropertiesIterator Interface
	13.2.5 PropertyNamesIterator Interface
	13.2.6 PropertySetFactory Interface
	13.2.7 PropertySetDefFactory Interface

	14.Time Service Specification
	14.1 Introduction
	14.1.1 Time Service Requirements
	14.1.2 Representation of Time
	14.1.3 Source of Time
	14.1.4 General Object Model
	14.1.5 Conformance Points

	14.2 Basic Time Service
	14.2.1 Object Model
	14.2.2 Data Types
	14.2.3 Exceptions
	14.2.4 Universal Time Object (UTO)
	14.2.5 Time Interval Object (TIO)
	14.2.6 Time Service

	14.3 Timer Event Service
	14.3.1 Object Model
	14.3.2 Usage
	14.3.3 Data Types
	14.3.4 Exceptions
	14.3.5 Timer Event Handler
	14.3.6 Timer Event Service

	14.4 Conformance

	15.Security Service Specification
	15.1 Introduction to Security
	15.1.1 Why Security?
	15.1.2 What Is Security?
	15.1.3 Threats in a Distributed Object System
	15.1.4 Summary of Key Security Features
	15.1.5 Goals

	15.2 Introduction to the Specification
	15.2.1 Specification Structure
	15.2.2 CORBA Security and Secure Interoperability Feature Packages
	15.2.3 Feature Packages and Modules

	15.3 Security Reference Model
	15.3.1 Definition of a Security Reference Model
	15.3.2 Principals and Their Security Attributes
	15.3.3 Secure Object Invocations
	15.3.4 Access Control Model
	15.3.5 Auditing
	15.3.6 Delegation
	15.3.7 Non-repudiation
	15.3.8 Domains
	15.3.9 Security Management and Administration
	15.3.10 Implementing the Model

	15.4 Security Architecture
	15.4.1 Different Users’ View of the Security Model
	15.4.2 Structural Model
	15.4.3 Security Technology
	15.4.4 Basic Protection and Communications
	15.4.5 Security Object Models

	15.5 Application Developer’s Interfaces
	15.5.1 Introduction
	15.5.2 Finding Security Features
	15.5.3 Authentication of Principals
	15.5.4 The Credentials Object
	15.5.5 Operations on Object Reference
	15.5.6 Security Operations on Current
	15.5.7 Security Audit
	15.5.8 Administering Security Policy
	15.5.9 Access Control
	15.5.10 Delegation Facilities
	15.5.11 Non-repudiation

	15.6 Administrator’s Interfaces
	15.6.1 Concepts
	15.6.2 Domain Management
	15.6.3 Security Policies Introduction
	15.6.4 Access Policies
	15.6.5 Audit Policies
	15.6.6 Secure Invocation and Delegation Policies
	15.6.7 Non-repudiation Policy Management

	15.7 Implementor’s Security Interfaces
	15.7.1 Security Interceptors
	15.7.2 Implementation-Level Security Object Interfaces
	15.7.3 Replaceable Security Services

	15.8 Security Interoperability Protocols
	15.8.1 Introduction
	15.8.2 Interoperability Model
	15.8.3 Protocol Enhancements
	15.8.4 CORBA Interoperable Object Reference with Security
	15.8.5 Common Secure Interoperability Levels
	15.8.6 Key Distribution Types
	15.8.7 Security Mechanisms Hosted on SECIOP
	15.8.8 Security Mechanisms Hosted Directly on IIOP
	15.8.9 Choices of Protocols, Cryptographic Profiles, and Key Technologies
	15.8.10 Common Secure Interoperability Requirements
	15.8.11 Relation to CORBA Security Facilities and Interfaces
	15.8.12 Security Functionality
	15.8.13 Model for Use and Contents of Credentials
	15.8.14 CORBA Interfaces
	15.8.15 Support for CORBA Security Facilities and Extensibility
	15.8.16 Security Replaceability for ORB Security Implementors

	15.9 Secure Inter-ORB Protocol (SECIOP)
	15.9.1 Architectural Assumptions
	15.9.2 SECIOP Sequencing Layer
	15.9.3 SECIOP Context Management Layer
	15.9.4 SECIOP Context Management Finite State Machine Tables

	15.10 The SECIOP-Hosted CSI Protocols
	15.10.1 IOR
	15.10.2 Mechanism Tags
	15.10.3 Association Options
	15.10.4 Cryptographic Profiles
	15.10.5 Security Name
	15.10.6 Security Administration Domains
	15.10.7 Mapping of Common Elements to the SECIOP Protocol
	15.10.8 CSI Protocols

	15.11 SPKM Protocol
	15.11.1 Cryptographic Profiles
	15.11.2 IOR Encoding
	15.11.3 Using SPKM for SECIOP

	15.12 GSS Kerberos Protocol
	15.12.1 Cryptographic Profiles
	15.12.2 Mandatory and Optional Cryptographic Profiles
	15.12.3 IOR Encoding
	15.12.4 SECIOP Tokens

	15.13 CSI-ECMA Protocol
	15.13.1 Concepts
	15.13.2 Security Attributes
	15.13.3 Target Access Enforcement Function
	15.13.4 Basic and Dialogue Keys
	15.13.5 Key Distribution Schemes
	15.13.6 Cryptographic Algorithms and Profiles
	15.13.7 PAC Protection and Delegation - Outline
	15.13.8 PPID Method
	15.13.9 PV/CV Delegation Method
	15.13.10 Mechanism Identifiers and IOR Encoding
	15.13.11 Security Names
	15.13.12 SECIOP Tokens When Using CSI-ECMA
	15.13.13 Initial Context Token
	15.13.14 TargetResultToken
	15.13.15 ErrorToken
	15.13.16 Per-Message Tokens
	15.13.17 ContextDeleteToken
	15.13.18 Security Attributes
	15.13.19 Privilege and Miscellaneous Attribute Definitions
	15.13.20 Qualifier Attributes
	15.13.21 Target Names
	15.13.22 PAC Format
	15.13.23 Common Contents Fields
	15.13.24 Specific Certificate Contents for PACs
	15.13.25 Check Value
	15.13.26 Basic Key Distribution
	15.13.27 Keying Information Syntax
	15.13.28 Summary of Key Distribution Schemes
	15.13.29 CSI-ECMA Secret Key Mechanism
	15.13.30 CSI-ECMA Hybrid Mechanism
	15.13.31 CSI-ECMA Public Mechanism
	15.13.32 Dialogue Key Block

	15.14 Integrating SSL with CORBA Security
	15.14.1 Introduction
	15.14.2 Cryptographic Profiles
	15.14.3 IOR Encoding
	15.14.4 Relation to SECIOP

	15.15 DCE-CIOP with Security
	15.15.1 Goals of Secure DCE-CIOP
	15.15.2 Secure DCE-CIOP Overview
	15.15.3 DCE RPC Security Services

	16.Trading Object Service Specification
	16.1 Overview
	16.1.1 Diversity and Scalability
	16.1.2 Linking Traders
	16.1.3 Policy
	16.1.4 Additional ObjectID

	16.2 Concepts and Data Types
	16.2.1 Exporter
	16.2.2 Importer
	16.2.3 Service Types
	16.2.4 Properties
	16.2.5 Service Offers
	16.2.6 Offer Identifier
	16.2.7 Offer Selection
	16.2.8 Interworking Mechanisms
	16.2.9 Trader Attributes

	16.3 Exceptions
	16.3.1 For CosTrading module
	16.3.2 For CosTradingDynamic module
	16.3.3 For CosTradingRepos module

	16.4 Abstract Interfaces
	16.4.1 TraderComponents
	16.4.2 SupportAttributes
	16.4.3 ImportAttributes
	16.4.4 LinkAttributes

	16.5 Functional Interfaces
	16.5.1 Lookup
	16.5.2 Offer Iterator
	16.5.3 Register
	16.5.4 Offer Id Iterator
	16.5.5 Admin
	16.5.6 Link
	16.5.7 Proxy

	16.6 Service Type Repository
	16.7 Dynamic Property Evaluation interface
	16.8 Conformance Criteria
	16.8.1 Conformance Requirements for Trading Interfaces as Server
	16.8.2 Conformance Requirements for Implementation Conformance Classes

	17.Object Collection Specification
	17.1 Overview
	17.2 Service Structure
	17.2.1 Combined Property Collections
	17.2.2 Iterators
	17.2.3 Function Interfaces
	17.2.4 List of Interfaces Defined

	17.3 Combined Collections
	17.3.1 Combined Collections Usage Samples

	17.4 Restricted Access Collections
	17.4.1 Restricted Access Collections Usage Samples

	17.5 The CosCollection Module
	17.5.1 Interface Hierarchies
	17.5.2 Exceptions and Type Definitions
	17.5.3 Abstract Collection Interfaces
	17.5.4 Concrete Collections Interfaces
	17.5.5 Restricted Access Collection Interfaces
	17.5.6 Abstract RestrictedAccessCollection Interface
	17.5.7 Concrete Restricted Access Collection Interfaces
	17.5.8 Collection Factory Interfaces
	17.5.9 Iterator Interfaces
	17.5.10 Function Interfaces

	Index
	Update

