

#### Highly multiplexed spectroscopy Getting what you really want

Jeremy Allington-Smith Durham University Centre for Advanced Instrumentation

Collaborators: Graham Murray, Claire Poppett, Ulrike Lemke, Jürgen Schmoll, Robert Content, George Dodsworth, Ray Sharples, John Girkin, Gordon Love, Joss Bland-Hawthorn, Miles Padgett, Robert Thomson, Ajoy Kar, AstroPhotonica Europa partners

# The main points

- New and recycled ideas for Highly-multiplexed spectroscopy
  - Diverse Field Spectroscopy: *paradigm and technology*
  - Astrophotonics: *cut-price revolution*
- Key to successful exploitation of new observatories for a wide range of astrophysics
- $\cdot\,$  WHT could be the gateway

Jeremy Allington-Smith

nced Instrumentation



# Collecting the light that we actually want

Poppett, Allington-Smith & Murray 2009 MNRAS 399,433 Murray & Allington-Smith 2009 MNRAS 399, 209 Allington-Smith 2007. MNRAS 379, 143

#### Advantages of spatially-resolved spectroscopy

- Avoid aperture effects
- Correct radial velocity
- No ambiguity in slit position
- Spectral and spatial resolution decoupled

Jeremy Allington-Smith Centre for Advanced Instrumentation

### The confused and blobby universe

SAURON 24h exposure with WHT of LAB-1/SSA-2 protocluster

*Is the whole sky like this at levels accessible to ELTs?* 

#### Other traditional targets (GMOS-IFU):



(Gerssen et al. 2006) What is the most efficient

way to address such targets?

Jeremy Allington-Smith Centre for **Å**dvanced Instrumentation



CfÅl

### Dilute sampling

ELTs  $\rightarrow 10^{10} - 10^{12} \lambda(\mu m)^{-2}$  spatial elements in fully-corrected FOV  $\Rightarrow 10^{14} - 10^{16} \lambda(\mu m)^{-2}$  detector pixels for spectroscopy WHT  $\rightarrow 10^{8} - 10^{10} \lambda(\mu m)^{-2}$  spatial elements in fully-corrected FOV  $\Rightarrow 10^{12} - 10^{14} \lambda(\mu m)^{-2}$  detector pixels for spectroscopy

 $\Rightarrow$  select only specified Regions of Interest (Rols)

ELTs will often target clumpy & confused distributions (proto-galactic objects under assembly; IMBH & SMBH hosts)

Need to address arbitrary distributions of targets: MOS+IFS =

#### **Diverse Field Spectroscopy**







# DFS requirements

#### Cosmological applications (ELT FOV) $\rightarrow$

- 10<sup>5</sup> 10<sup>6</sup> potential inputs
- 10<sup>3</sup> 10<sup>4</sup> selectable outputs
- Downselection factor 10-100

#### • But smaller formats useful (e.g. microscopy, demonstrators)



Jeremy Allington-Smith Centre for **Å**dvanced Instrumentation CfÅl

# DFS Technology









Fibre optical switches

 $n \ge m$  switch made from 3 layers of  $n \ge 1$  switches

<u>Any</u>  $N_0 = m$  points in the field of  $N_1 = n^2$  points can be routed to the output with downselection factor,  $F = n^2/m$ 

Example shown: n = 6, m = 3with contiguous field (red) so  $N_1 = 36$ ,  $N_0 = 3$ , F = 6

[Note: IP protected]



Jeremy Allington-Smith Centre for **Å**dvanced Instrumentation



### Free-space technologies

#### **Fully Steerable MEMS**



# Remapping

- If you cannot use switches in cascade
  - $N_o = m$  points in the field of  $N_I = n^2$  points can be routed to the output with downselection factor,  $F = n^2/m$
  - But only n x 1 switches are available (no cascade)
- $\Rightarrow$  Contiguity is lost since only 1 output from each group of n
- can be switched to the output
- Solution:
  - Randomise input-output mapping in fibre bundle to give finite probability that adjacent inputs can be routed to the output



Jeremy Allington-Smith Centre for **Å**dvanced Instrumentation

### Simulated Rol selection



Jeremy Allington-Smith Centre for Advanced Instrumentation

Durham



## Incoherent remapping



(Poppett, Allington-Smith and Murray 2009, MNRAS)

Remapping is very beneficial for clumpy distributions
DFS is much more versatile than IFS or MOS

Jeremy Allington-Smith Centre for **Å**dvanced Instrumentation



# More radical options







# Phased photonic disperser



# Conclusions

- Maximum flexibility in sampling the field using Diverse Field Spectroscopy
- More radical options using *Astrophotonics*
- To demonstrate the technology we need money and telescope access!
- Could the WHT become the channel through which these ideas become reality?

Allington-Smith & Bland-Hawthorn; MNRAS in press Czetojevic et al. 2009. Optics Express, Vol. 17, No.21, 18643 LeCoarer et al. Nature 2007. Photonics 1, 473 Thomson, Kar & Allington-Smith, 2009. OpEx 17, 1963 Poppett, Allington-Smith & Murray 2009 MNRAS 399,433 Murray & Allington-Smith 2009 MNRAS 399, 209 Allington-Smith 2007. MNRAS 379, 143

Jeremy Allington-Smith Centre for Advanced Instrumentation



## Issues to address

- Unique facility aimed at niche science?
  - What aspects of the telescope are unique? [but photon-starved]
  - What niches are compelling? [Cosmic EoS; G-archeology, planets]
  - Dedicated to follow-up? [planets]
  - What is the competition & window of opportunity?
- Excellent facility to empower community?
  - Who are the community, what are their interests?
  - Is the telescope excellent in every area?
  - What other facilities are available?
- Testbed for future observatories?
  - Relevance and scalability? [few photons, low spatial resolution]
  - Who pays?

Jeremy Allington-Smith Centre for Advanced Instrumentation



