Modelling of SEDs and spectra of EQJ0704-0350

(A talk from the parallel world) Yakiv V.Pavlenko Main astronomical observatory 27 Sabolotnoho, Kyiv, Ukraine www.mao.kiev.ua/staff/yp

Topics of my interest: abundances and SEDs Hydrogen-normal stars --- EQJ0704.0-0350 (?) --- M-giants ---- C-giants (?) Hydrogen poor stars ---- R CrB --- Sakurai's object

Collaborators

- Nye Evans, J.Th. van Loon, M.Rushnon, B.Smalley (Keele)
- Yakovina Larisa(MAO)
- Kaminsky Bogdan (MAO)
- Lisa Krause (SAAO)
- Ulisse Munary(INAF)
- A.V.Filippenko (Berkeley)

Valentina Klochkova (SAO) Hilmar Duerbeck (OU)Tonu Kipper (IAFA) Thomas Geballe (UKIRT)

PROCEDURE

Model atmospheres

SAM12 (Pavlenko 2003) (ATLAS12 Kurucz 1999)/

NextGen(Hauschildt et al. 1999)

1D,

Convection + radiation,

LTE, line No sinks and sources SEDs of energy Opacity sampling for

Synthetical spectra WITTA (Pavlenko 200<mark>0</mark>) 1D, LTE, **Voigt function for** lines **VCS theory for H** lines

OPACITIES:

• C/O < 1, **Opacity sources:** VO, TiO; $H_{2}O, CO$ Methane???

-C/O > 1CN, CO, CH, C_2 , HCN, C_3 , ---- [H]?? --- isotopes!

Fits to observed spectra

$$S(f_{\rm s}, f_{\rm h}, f_{\rm g}) = \sum \left(1 - f_{\rm h} \times r^{\rm synt} / r^{\rm obs}\right)^2$$

$$r_{\nu}^{x} = \int r_{\nu}^{y} \times G(x - y) * dy$$

(Pavlenko & Jones 2002, A&A, 397, 967)

Observational data:

- Eshelle at 6-m relescope (Febr.4: V.Klochkova)
- Eshelle+spectrograph on 1.8 m telrscope (Asiago, Febr.26, March 25: U.Munary)
- Eshelle fibre-red spectrograph at 1.9 m at SAAO telescope (March, 2-nd: L.Crause)
- Kast spectrograph at 3-m Shane telescope (Nov. 6-th: Filippenko)

Munari et al. 2002, A&A, 389, L51.

Kaminsky & Pavlenko, 2005, MNRAS, 357, 38.

The same in the larger scale (kaminsky & Pavlenko (2005)

Comparison with Arcturus spectrum (Kaminsky & Pavlenko, 2005).

Kaminsky & Pavlenko (2005)

Table 2. Atmospheric parameters for V838 Mon

Order	Wavelength range (A)	T_{eff} (K)	$V_{\rm t}~({\rm km~s^{-1}})$	$\log N(Fe)$	$V_{\rm g}~({\rm km~s^{-1}})$	$V_{\rm r}~({\rm km~s^{-1}})$
Asiago spectra						
February 25						
11	6480 - 6685	5250	15	-4.7	53.2	-79.6
12	6300 - 6490	5000	14	-4.9	54.5	-76.3
13	6125 - 6315	5250	10	-4.7	56.0	-82.7
14	5960 - 6145	5750	17	-4.5	52.5	-79.5
16	5660 - 5810	5000	9	-4.9	60.7	-67.1
17	5520 - 5670	5750	14	-4.7	51.1	-73.6
Averaged		5330	13.2	-4.73	54.7	-76.5
SAAO spectra						
March 2						
11	6480 - 6685	5500	12	-4.6	45.3	-80.6
12	6300 - 6490	5250	16	-4.9	55.8	-77.3
13	6125 - 6315	5250	7	-4.6	42.8	-78.9
14	5960 - 6145	5750	14	-4.8	49.0	-80.6
16	5660 - 5810	5500	15	-4.9	51.7	-68.1
17	5520 - 5670	6000	16	-4.7	42.1	-80.0
Average		5540	13.3	-4.75	47.8	-77.6
March 26						
11	6480 - 6685	4750	12	-4.8	43.7	-67.3
12	6300 - 6490	4750	14	-4.8	44.7	-68.3
13	6125 - 6315	4750	10	-4.5	46.0	-74.3
14	5960 - 6145	5000	15	-4.8	42.1	-65.8
16	5660 - 5810	5000	11	-4.7	38.8	-52.2
17	5520 - 5670	5500	13	-4.5	39.7	-63.6
Average		4960	12.5	-4.68	42.5	-65.2

Kaminsky & Pavlenko, 2005

	T_{eff} (K)	$V_{\rm t}~({\rm km~s^{-1}})$	$\log N(Fe)$	$V_{\rm g}~({\rm km~s^{-1}})$	$V_{\rm r} \ ({\rm km \ s^{-1}})$
Asiago sp. February 25 Averaged	5330	13.2	-4.73	54.7	-76.5
SAAO sp. March 2 Average	5540	13.3	-4.75	47.8	-77.6
Asiago sp. March 26 Average	4960	12.5	-4.68	42.5	-65.2

Sakurai's object (V4334 Sgr)

Pavlenko & Duerbeck 2001, A&A, 367, 933.

Table 1. Abundances of H, He, C, N, O (scaled to $\sum N_i = 1$) used in this paper.

Element	Asplund	Asplund	Kipper &	[C] = +0.6
	et al.	et al.	Klochkova	
	(1997)	(1999)	(1997)	
Η	-1.730	-2.42	-2.10	-2.45
He	-0.027	-0.020	-0.01	-0.05
\mathbf{C}	-1.73	-1.62	-2.01	-1.05
Ν	-2.53	-2.52	-2.70	-2.55
Ο	-1.93	-2.02	-2.59	-2.05

Pavlenko, Yakovina, Duerbeck, 2000, A&A, 355, 245

Pavlenko et al. 2000

Pavlenko 2003, Astr. Repts, 47,59.

Normalised flux

Energy distribution in EQJ0704.0-0350 spectrum at November, 2002

Pavlenko, Evans, Loon et al., A&A, submitted

Pavlenko et al., A&A, submitted.

Pavlenko et al., A&A, submitted

Flux F_{λ}

RADIUS OF EQJ0704.0-0350 in 2002, Nov. Theory provides: $Flux_{V838Mon}/Flux_{B3}=0.01,$ i.e for the equal distance $R_{B3V}^{2*}T_{B3V}^{4/} (R_{EQJ....}^{2*}T_{EQJ....}^{4}) = 100.$ So: $R_{V838 Mon} = 6000 R_{\odot}$

Teff vs time

