Globular Cluster Systems as Tracers of Galaxy Formation and Evolution

Clues from MOS Surveys

Rubén Sánchez-Janssen

Plaskett Fellow NRC Herzberg Institute of Astrophysics

S/C de la Palma 2015-03-03

Stellar haloes hold important records of early star formation and mass assembly processes low densities and long dynamical times

Veljanoski+14

GCs are generally old (>10 Gyr) have witnessed a large fraction of host's history

Cenarro+06; Brodie & Strader (2006)

GCs are compact and 'bright' within reach of 8–10m class facilities

GCs are almost ubiquitous ~0.007 per cent of total halo mass in GCs

Spitler & Forbes 2009; Harris+13

Galaxy clusters: the realm of GCs the Next Generation Virgo Cluster Survey (NGVS)

Galaxy clusters: the realm of GCs Virgo has ~67,000 GCs

GCs follow galaxies, and trace their stellar halo shapes

Durrell+14

MOS surveys on extragalactic GCSs

Galaxy clusters: the realm of GCs Virgo has ~67,000 GCs

Rubén Sánchez-Janssen (NRC-Herzberg)

MOS surveys on extragalactic GCSs

GCSs trace ongoing assembly of M87's halo ~1 Gyr-old phase-space substructures

Romanowsky+12

Dynamical modelling of M87 922 GCs out to 180 kpc + SAURON IFS

Zhu+14

Dynamical modeling of NGC1399 in Fornax 700 GCs out to 100 kpc

 $9.5 \times 10^{12} M_{\odot}$

but no common halo able to reproduce simultaneously the properties of red and blue GCs

velocities of some blue GCs require very large apogalactic distances – recent accretion?

Schuberth+10

Dynamical modeling of NGC1399 in Fornax 700 GCs out to 100 kpc

$9.5 \times 10^{12} M_{\odot}$

but no common halo able to reproduce simultaneously the properties of red and blue GCs

velocities of some blue GCs require very large apogalactic distances – recent accretion?

a VLT/VIMOS survey of ~1500 GC candidates in the central 130 kpc around NGC1399

(Napolitano, Hilker et al.)

GCs are almost ubiquitous ~0.007 per cent of total halo mass in GCs

Spitler & Forbes 2009; Harris+13

the SLUGGS survey chemodynamics of 25 nearby early-types

Brodie+14

Rubén Sánchez-Janssen (NRC-Herzberg)

MOS surveys on extragalactic GCSs

MOS surveys on extragalactic GCSs

the NGVS/VIMOS survey on GCSs the baryonic angular momentum of galaxy haloes

a mass-limited sample of 27 quiescent and star-forming galaxies in Virgo

 $\log(M/M_{\odot}) > 10.8$

VLT/VIMOS in 0.48 < λ < 1 μm range

5,000 GC candidates down to V = 23 mag and out to $R_p \sim 50$ kpc

~45 km/s velocity accuracy

Puzia, Sánchez-Janssen & the NGVS team

Rubén Sánchez-Janssen (NRC-Herzberg)

the NGVS/VIMOS survey on GCSs the baryonic angular momentum of galaxy haloes

a mass-limited sample of 27 quiescent and star-forming galaxies in Virgo

 $\log(M/M_{\odot}) > 10.8$

VLT/VIMOS in 0.48 < λ < 1 μ m range

5,000 GC candidates down to V = 23 mag and out to $R_p \sim 50$ kpc

~45 km/s velocity accuracy

Puzia, Sánchez-Janssen & the NGVS team

the NGVS/VIMOS survey on GCSs the baryonic angular momentum of galaxy haloes

Puzia, Sánchez-Janssen & the NGVS team

the NGVS/VIMOS survey on GCSs 1150 GC candidates across 300 kpc in the M86 group

Puzia, Sánchez-Janssen & the NGVS team

MOS surveys on extragalactic GCSs

the NGVS/VIMOS survey on GCSs 1150 GC candidates across 300 kpc in the M86 group

Puzia, Sánchez-Janssen & the NGVS team

Rubén Sánchez-Janssen (NRC-Herzberg)

MOS surveys on extragalactic GCSs

GCs are almost ubiquitous ~0.007 per cent of total halo mass in GCs

Spitler & Forbes 2009; Harris+13

A disky origin for Virgo dEs?

Keck/Deimos kinematics for a dozen GCs in 3 Virgo dEs

Probably not, but complex picture

can't strip mass while preserving N_{GC} and rotation support

RSJ & Aguerri (2012); Smith, RSJ+13

Probably not, but complex picture not all GCSs in dEs rotate

+ Keck/Deimos kinematics of ~80 GCs in ~20 Virgo dEs (Toloba+ in prep.)

+ GTC/OSIRIS kinematics of GCSs in ~10 Virgo dEs (Beasley+ in prep.)

the future

exciting times ahead for GC MOS studies

what we need:

- high multiplexity (# 50–1000) in the optical
- *R* > 2,000 (kinematics + stellar populations)
- 5 arcmin < FOVs < 1 deg

what we can use:

- existing MOS instrumentation in 8–10m class telecopes (Deimos, VIMOS, OSIRIS, FORS, GMOS, IMACS...)
- upcoming instrumentation (PFS, Megara, MSE)
- E-ELT / TMT/ GMT if we want to go beyond *D* ~ 30 Mpc!

the SLUGGS survey exploring the GC colour-metallicity relation

Rubén Sánchez-Janssen (NRC-Herzberg)

the NGVS a clean GC photometric selection

Muñoz+14

Cluster early-type dwarfs early or late origin?

late (< 6 Gyr) red sequence buildup at low masses

Evidence for late origin from

similar shapes, structure and kinematics

presence of disc-like components...

"transformation due to tidal harassment is able to explain all of the above, *unless the dE progenitors were already compact and had lower angular momenta at higher redshifts*"

...disfavour a *recent* origin from gas- or stellar mass-stripped *field* dIrr

RSJ & Aguerri (2012)

Earlier dwarf (sub)types contain richer GCSs

Strong dependence on final DM content, orbit type and specific tidal history

Smith, RSJ et al. (2013)

Kinetic energy increase in the impulse approximation

energy gain from outside-in $(\Delta E/m) = G^2 M_P^2 v^{-2} b^{-4} r^2 f(P, A)$

> adiabatic + extended perturber correction (Gnedin+99)

The high GC mass specific frequencies of Virgo dIrrs

RSJ & Aguerri (2012)