MaNGA Mapping Nearby Galaxies at APO

Anne-Marie Weijmans University of St Andrews

Kevin Bundy (IPMU), Niv Drory (UT Austin) David Law (STScI), Renbin Yan (Kentucky)

Multi-Object Spectroscopy in the Next Decade Santa Cruz de La Palma 4 March 2015

PI: Kevin Bundy

Survey Scientist: Renbin YanSaInstrument Scientist: Niv DrorySaChief Engineer/Proj. Manager:
Nick McDonaldLVick McDonaldMaxLead Data Scientist: David LawDSDSS-IV Project Scientist: Matt Bershady

Science Team Chair: Daniel Thomas Sample Design Lead: David Wake Lead Observer: Anne-Marie Weijmans Multi-λ Science Coordinator: Karen Masters Deputy Lead Sample Design: N Aleks Diamond-Stanic

Galaxies in the local Universe: blue cloud and red sequence

e.g. Faber et al. 2007

Lives of galaxies

- How does gas accretion drive the growth of disks?
- What are the relative roles of stellar accretion, major mergers and instabilities for forming bulges?

Death of galaxies

- What quenches star formation?
- How is star formation affected by groups and clusters?
- Birth of galaxies
 - What was the initial distribution of angular momentum?
 - How do baryons and stars trace and influence the dark halo?
 - Is galaxy growth the same at low and high z?

IFU studies at high z

Bundle single fibers together in IFUs

- use BOSS spectrographs
- create 17 IFUs, from 19 to 127 fibers per bundle
- Plug bundles in plates, similar to single fibers
 - integrate sky fibers with IFUs
 - 12 mini-IFUs for standard stars

Observe 10,000 galaxies, 3hr dithered exposures

- spatial resolution: 2" fibers or 1 4 kpc
- spectral resolution: 50 80 km/s (R = 2500)
- spectral coverage: 3600 10,000 A
- S/N: ~ 30 in central fiber, ~4-8 at 1.5 R_e

Bundy et al. 2015

Drory et al. 2015

Drory et al. 2015

MaNGA Hardware

17 Science IFUs per cartridge (6 total)

sizes between 19 and 127 fibers (12" – 32" across)

12 Mini-bundles (7 fibers) per cartridge
92 Sky-fibers, associated with IFUs

Operations at APO

Law et al. submitted

Observing Strategy

Observe sets of three dithered 15min exposures
 Repeat until S/N threshold is reached

 typically: 3hr

 Combine dithered sets into datacubes

= 75 um

D1

a = r/cos(30)=86.6 µm

= a/(2 * cos(30)) = 50.0 urb

Law et al. submitted

Why dither?

Wake et al. in prep

Sample Design

Selection from NYU VAGC and NASA-Sloan Atlas (Blanton et al. 2011)

- Flat stellar mass distribution
- Colour-enhanced sample (16%)
 Ancillary programs

MaNGA & APOGEE

MaNGA uses same cartridges as APOGEE

 both MaNGA and APOGEE fibers

 MaNGA observes in dark time

 APOGEE co-observes for halo stars

 APOGEE observes in bright time

 MaNGA co-observes for stellar library

Increased survey efficiency!!!

P-MaNGA

Bundy et al. 2015

Proto-type run in January 2013
 Total science yield: 18 galaxies

 6 with survey quality, 12 under less optimal conditions

p9-19D

p9-19E

p9-19B

P-MaNGA: Resolved Gas Ionisation and Chemical Abundances

P-MaNGA: Gradients in Recent Star Formation

 $\Delta X(R) = X(R) - X(0)$

Red = Centrally Quenched Blue = Centrally Star Forming

> Li et al. 2015, in press astro-ph 1502.07040

P-MaNGA: Stellar Population Maps...

spiral

ģ

8

/ log ₎₍(M

Position / arcsec

(a) SDSS Imaging data with P-MaNGA footprint in pink, previous SDSS spectra location in red.

(b) Dust extinction, E(B-V) map.

(d) Mean total metallicity map, where $Z_{\odot} = 0.02$.

(a) SDSS Imaging data with P-MaNGA footprint in pink, previous SDSS spectra location in red.

(c) Mean stellar age map.

(b) Dust extinction, E(B-V) map.

0.30

(d) Mean total metallicity map, where Z_☉ = 0.02.

Wilkinson et al. 2015, in press

... and Dust Maps

Wilkinson et al. 2015, in press

MaNGA: first plate

MaNGA: first datacube

Mrk 848: SDSS-IV/MaNGA First-Article Data Cube

David Law

MaNGA: first bonus galaxy

manga-7443-9101

Christy Tremonti

□ 10,000 galaxies are coming your way – data cubes and data products ■ Want to know more? – MaNGA overview paper: Bundy et al. 2015 – MaNGA instrumentation paper: Drory et al. 2015 - on-line: http://www.sdss.org/surveys/manga/ Follow us @MaNGASurvey

MaNGA stellar library Stellar library with same instrument as galaxy survey \rightarrow facilitate galaxy studies \square Improve λ coverage and flux calibration Improve stellar parameter coverage - e.g., carbon-stars, high Z stars in bulge

Restrictions on Hour Angle

5500 A

IFU surveys at a glance

	Atlas3D	DiskMass	CALIFA	MASSIVE	SAMI	MaNGA
# of galaxies	260	46 / 146	600	116	3,400	10,000
galaxy types	early-type	face-on spirals	all types	massive early-types	all types	all types
spatial coverage	$0.6 - 1.5 R_{e}$	$1.1 - 3 R_{e}$	1.8 – 3.7 R _e	$\sim 2 R_e$	$1.1 - 2.9 R_{e}$	1.5 / 2.5 R _e
spatial sampling	0.8"	2.7" / 4.7"	2.7"	4.1"	2.1"	2.0"
spectral coverage (nm)	480 - 538	498 – 538 648 – 689	375 - 750 370 - 475	365 - 585	370 – 570 625 – 735	360 - 1000
spectral resolution (σ in km/s)	98	16 / 13	150 / 69	100 - 150	75 / 28	50 - 80

source: Bundy et al. 2015, Ma et al. 2014 (MASSIVE)

SDSS 90"x90" image

CALIFA (V500/V1200)

Sánchez et al. 2014 Atlas3D

MaNGA largest FoV

FoV~1.5Re

~2.5Re

Z~Z califa

Example: galaxy in 19-fiber IFU

- extract stellar and gas kinematics, and line strengths
- discovery of counterrotating gas disc!

 Test data indicative of rich MaNGA data set

Three papers now in referee process

P-MaNGA

Richard McDermid & MaNGA Team

MaNGA kinematics

We will provide stellar and gaseous velocity and velocity dispersion maps

Plan: construct Jeans models for all galaxies

 but careful with interpreting irregulars / mergers

 Schwarzschild models for larger bundles

P-MaNGA 61 bundle

Bundy et al. 2015

0

10

10

20

- SAURON has 4800 5300A range, we have 3600 – 10,000A
 - many more emission and absorption lines
- This is only one galaxy, we will have 10,000 of them!

Star Formation KatesDynamical Models

SAURON Survey: Emsellem et al. 2004, Kuntschner et al. 2006, 2010, Sarzi et al. 2006