

MOONS

Multi-Object Optical and Near-infrared Spectrograph for the VLT

Michele Cirasuolo on behalf of the MOONS consortium

Consortium

PI: Michele Cirasuolo, Royal Observatory Edinburgh (United Kingdom)

Instrument co-PIs: <u>Chile:</u> L. Vanzi (AIUC); <u>France:</u> H. Flores (GEPI, Paris); <u>Italy:</u> E. Oliva (INAF); <u>Portugal:</u> J. Afonso (CAAUL); <u>Switzerland:</u> M. Carollo (*ETH*), S. Paltani (Geneva)

Scientific and Technical Contributors: M. Abreu¹⁰, D. Atkinson¹, C. Babusiaux⁶, S. Beard¹, F. Bauer⁹, M. Bellazzini¹¹, P. Best², N. Bezawada¹, P. Bonifacio⁶, A. Bragaglia²⁰, I. Bryson¹, A. Cabral¹⁰, E. Caffau⁶, K. Caputi², M. Centrone¹⁵, F. Chemla⁶, A. Cimatti¹¹, M-R. Cioni¹², G. Clementini²⁰, J. Coelho¹⁰, D. Crnojevic², E. Daddi¹³, J. Dunlop², S. Eales³⁰, S. Feltzing¹⁴, A. Ferguson², H. Flores⁶, A. Fontana¹⁵, J. Fynbo¹⁶, B. Garilli²³, G. Gilmore²⁵, A. Glauser¹⁷, I. Guinouard⁶, F. Hammer⁶, P. Hastings¹, A. Hess⁴, R. Ivison¹, P. Jagourel⁶, M. Jarvis²⁷, G. Kauffman¹⁸, A. T. Kitching³¹, Lawrence², D. Lee¹, B. Lemasle⁷, G. Licausi¹⁵, S. Lilly¹⁷, D. Lorenzetti¹⁵, D. Lunney¹, R. Maiolino²⁵, F. Mannucci⁸, R. McLure², D. Minniti⁹, D. Montgomery¹, B. Muschielok⁴, K. Nandra⁵, R. Navarro¹⁹, P. Norberg²⁶, S. Oliver²⁹; L. Origlia²⁰, N. Padilla⁹, J. Peacock², F. Pedicini¹⁵, J. Peng²⁵, L. Pentericci¹⁵, J. Pragt¹⁹, M. Puech⁶, S. Randich⁸, A. Renzini²¹, N. Ryde¹⁴, M. Rodrigues²⁴, F. Royer⁶, R. Saglia^{4.5}, A. Sanchez⁵, H. Schnetler¹, D. Sobral², R. Speziali¹⁵, R. Stuik¹⁹, A. Taylor²; W. Taylor¹, S. Todd¹, E. Tolstoy²², M. Torres⁹, M. Tosi²⁰, E. Vanzella²⁰, L. Venema²², F. Vitali¹⁵, M. Wegner⁴, M. Wells¹, V. Wild²⁸, G. Wright¹, G. Zamorani²⁰, M. Zoccali⁹

¹STFC UK Astronomy Technology Centre, Edinburgh, UK; ²Institute for Astronomy, Edinburgh, UK; ³Observatorio Astronomico de Lisboa, Portugal; ⁴Universitaets-Sternwarte, Munchen, Germany; ⁵Max-Planck-Institut fuer Extraterrestrische Physik, Munchen, Germany; ⁶GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, France; ⁷Astronomical Institute Anton Pannekoer, Amsterdam, The Netherlands; ⁸INAF-Osservatorio Astrofisico di Arcetri, Italy; ⁹Centre for Astro-Engineering at Universidad Catolica, Santiago, Chile, ¹⁰Centre for Astronomy and Astrophysics of University of Lisboa, Portugal; ¹¹Università di Bologna - Dipartimento di Astronomia, Italy; ¹²University of Hertfordshire, UK; ¹³CEA-Saclay, France; ¹⁴Lund Observatory, Sweden; ¹⁵INAF-Osservatorio Astronomico Roma, Italy; ¹⁶Dark Cosmology Centre, Copenhagen, Denmark; ¹⁷ETH Zürich, Switzerland; ¹⁸Max-Planck-Institut für Astrophysik, Garching, Germany; ¹⁹NOVA-ASTRON, The Netherlands; ²⁰INAF-Osservatorio Astronomico Bologna, Italy; ²¹INAF-Osservatorio Astronomico Padova, Italy; ²²Kapteyn Astronomical Institute, Groningen, The Netherlands; ²³IASF-INAF, Milano, Italy; ²⁴ European Southern Observatory, Santiago, Chile, ²⁵Institute of Astronomy, Cambridge, UK, ²⁶Durham University, UK; ²⁷Oxford University, UK, ²⁸St Andrews University, UK; ²⁹University of Sussex, UK; ³⁰Cardiff University, UK; ³¹University College London, UK.

MOONS

Selected by ESO as third generation instrument for the VLT Started construction phase in June 2014 PDR in September 2015 Operational by 2019

- Highlight of science cases
 - Galactic Archaeology
 - Galaxy Evolution

Current Design

MOONS in a nutshell

Field of view: 500 sq. arcmin at the 8.2m VLT

Multiplex: 1024 fibers, with the possibility to deploy them in pairs

Medium resolution:

Simultaneously 0.64µm-1.8µm at R=4,000 – 6,000

High resolution:

Simultaneously 3 bands:

- 0.76-0.90µm at R = 9,000
- 0.95-1.35µm at R=4,000
- 1.52-1.63µm at R=20,000

Throughput: ~ 30 %

Galactic science case

On behalf of the Galactic Science Working Group

The evolution of stars and galaxies remains among the key unanswered questions.

The resolved stellar populations of the Milky Way provide us with a fossil record of the chemo-dynamical and star-formation histories over many gigayears timescale.

Follow-up of VISTA, Gaia and LSST imaging surveys

MOONS will provide

Medium resolution mode

Radial velocities via CaT @R=9,000 for I<21 + [M/H] (via Fe,Si,Ti,Mg) @R=4000-6000 (J+H)

High resolution mode

Detailed chemical abundances (Si, Ca, Ti, Mg, Fe, Cr, Mn, CNO ...) @R=20,000 for H_{Vega}<15.5 + CaT @R=9,000

MOONS for Galactic studies

Ongoing programme led by O. Gonzalez to build a sample of stars in the inner Galaxy observed with FLAMES, KMOS and APOGEE

Disk and bulge

Near-IR is less sensitive to dust obscuration and combined with collective power of 8.2m VLT can reach a distance of ~12 kpc, essentially looking through the Bulge and disc.

Inner galaxy Bulge and Disc

IR obs crucial because of reddening

red clump crucial to trace sub-structures

Disk and Bulge

Near-IR is less sensitive to dust obscuration and combined with collective power of 8.2m VLT can reach a distance of ~12 kpc, essentially looking through the whole Bulge and Disc.

Streams in the Halo field and clusters

Photometrically selected with Gaia, SDSS, Pan-STARRS, VISTA, UKIDSS, LSST etc.

Resolved stellar population in external galaxies

Magellanic clouds, Nearby galaxies, follow-up of VISTA and UKIDSS

Disk and Bulge

Near-IR is less sensitive to dust obscuration and combined with collective power of 8.2m VLT can reach a distance of ~12 kpc, essentially looking through the whole Bulge and Disc.

Streams in the Halo field and clusters

Photometrically selected with Gaia, SDSS, Pan-STARRS, VISTA, UKIDSS, LSST etc.

Resolved stellar population in external galaxies

Magellanic clouds, Nearby galaxies, follow-up of VISTA and UKID

Radial velocities and detailed chemical abundances for several million stars over >500 sq. deg.

Chemistry and dynamics for all components of the Milky Way (Bulge, Disc and Halo)

Extragalactic science case

On behalf of the Extragalactic Science Working Group

Sloan Digital Sky Survey (SDSS)

In the local Universe the SDSS has been extremely successful due to both size and spectral quality.

MOONS: a SDSS-like machine probing the peak of galaxy and black hole formation

Extra Galactic Science Case

SDSS-like survey 1M galaxies at z>1 across the peak of star-formation and black hole accretion, up to the very first galaxies at z>7-8

Extra Galactic Science Case

SDSS-like survey 1M galaxies at z>1 across the peak of star-formation and black hole accretion, up to the very first galaxies at z>7-8

Galaxy Evolution: Diagnostics for passive and star-forming galaxies

- Metallicity (R₂₃, N₂)
- SFR (Hα, Hβ, [OII])
- AGN power (BPT)
- Dust extinction (H α /H β)
- Galaxy mass (σ_v)
- BH mass (BLR)

Extra Galactic Science Case

SDSS-like survey 1M galaxies at z>1 across the peak of star-formation and black hole accretion, up to the very first galaxies at z>7-8

Galaxy Evolution: Diagnostics for passive and star-forming galaxies

- Metallicity (R₂₃, N₂)
- SFR (Hα, Hβ, [OII])
- AGN power (BPT)
- Dust extinction $(H\alpha/H\beta)$
- Galaxy mass (σ_v)
- BH mass (BLR)
- ✓ Follow-up of large-area imaging surveys: VISTA, Herschel, DES, UKIDSS, eRosita, etc.
- ✓ Strong synergies: Euclid, SKA, LSST and E-ELT

MOONS basic layout

System Overview

See H. Schnetler et al, SPIE 9150-23

System Overview

Fiber positioner micro-mechanical pick-off system

- \checkmark Large overlap between positioners
- \checkmark Possibility to pair all fibers for optimal sky subtraction
- \checkmark Both motors with encoders and anti-backlash
- ✓ Fast reconfiguration time (< 1min)</p>

Path analysis and anti-collision

Spectrograph optical design

Spectrograph optical design

Cryostat

MOONS on Nasmyth

Expected performances

Sensitivities in 1hr integration:

Emission lines: $2 \times 10^{-17} \text{ erg/s/cm}^2$ (5 σ)

Continuum:

AB = 22.7 (5 σ) with the spectrum rebinned, after sky subtraction, to an effective resolution of R=1,000

Continuum high resolution:

 $H_{vega} = 15.5 \text{ S/N} > 30$

Advanced end-to-end simulator and Observation preparation tool

Summary

MOONS is the long-awaited near-IR MOS for the VLT

Construction phase started in June 2014 Operational by 2019

N/Iain	CONDICO	CJEDE.
iviaiii	30101100	Lases.

Galactic Archaeology:

✓ Radial velocities and detailed chemical abundances for **several million** stars over >500 sq. deg in our own Galaxy.

Galaxy evolution:

✓ Formidable SDSS-type survey for >1M galaxies at z>1. Unique insight into the effect of environment, chemical and physical evolution, nature of Dark Matter.

Synergies:

✓ Essential follow-up of large-area imaging surveys: Gaia, VISTA, Herschel, DES, UKIDSS, LOFAR, eRosita, Euclid, LSST, SKA

Field of view	500 sq. arcmin
Multiplex	1000 fibres
Low resolution mode	R = 4,000-6000 λ = 0.64μm – 1.8μm simultaneously
High resolution mode	R>9,000 for CaT + R=4,000 in YJ-band + R=20,000 in H band
Throughput	> 30 %

