

Credits: DiskMass Survey team SDSS-IV/MaNGA team

Matthew Bershady University of Wisconsin-Madison

Outline

Theme:

- Is the MW a typical spiral galaxy?
- State of the Art Instrumentation
 - Monoliths, Megaliths & MOS
- Key topics

 \checkmark

- Heating and cooling of disks
- dwarfs and the galactic periphery

I. Is the Milky Way a typical galaxy?

M/L and star-formation: MW and the DiskMass Survey

Bershady+2015 DMS: Bershady+10, Martinsson+2013

Outstanding issues

- The Milky Way appears to have a maximal disk and a very small size for its rotation speed.
- DiskMass Survey spirals have *submaximal* disks.

Bovy+14 *cf* locco+15 Bershady+11 Martinsson+13

Do we really live in an unusual galaxy?

...or are different vantage points leading to observational bias? e.g., mass vs light weighting...

II. State of the Art is IFS

- The future just arrived
 - MUSE VLT 8m
 - VIRUS HET 10m
 - MOS

Wide-field

- KMOS VLT 8m
- SAMI AAT 3.9m
- MaNGA Sloan 2.5m

- Common themes:
 - Large A Ω \leftarrow instrument multiplex
 - Few have large specific grasp ${\rm Ad}\Omega$
 - object multiplex: different solutions
 - KMOS and MUSE: slicers
 - VIRUS, SAMI, MaNGA: fibers
 - instrument multiplex:

cost-driven

- Economies of scale
- Limited camera field

MUSE

AMAZING

- Science goals
 - Detailed study of high-redshift galaxies, structure formation, discovery.
- Technical approach
 - Replicate 24 modest-resolution spectrographs fed with advanced (catadioptric) images slicers.
 - Premium on image quality / information.
 - Ground-layer AO (GLAO) assisted.
- Instrument capabilities
 - VLT 8m
 - Two scales:
 - 1 arcmin² FoV, (0.04 arcsec² elements)
 - 56 arcsec² FoV, (6.3x10⁻³ arcsec²)
 - integrally sampled
 - 0.465-0.93 nm range (one shot)
 - ~2000 spectral elements (R~3000)
 - $-\epsilon \sim 0.24$

Bacon et al. '04

MUSE: great contributions at low-z

MUSE: great contributions at low-z

But there's a real need for better *spectral* resolution: MUSE can't *kinematically* resolve gas dispersions in normal disks

VIRUS

- Science goals
 - Measure BAO from Lyα-e's at 1.8<z<3.7: HETDEX
- Technical approach
 - Replicate 150, small, cheap, low resolution bare-fiber fed spectrographs
- Instrument capabilities
 - HET 10m + new corrector
 - 16.5' field, sparsely sampled
 - 75 IFUs, 16.5 arcmin² coverage
 - 33600 fibers (1.5" diam.)
 - 350-550 nm range (one shot)
 - 410 spectral elements (R~700)

- ε ~ 0.15

Hill+12a,b

KMOS

- Science goals
 - Investigate physical properties driving galaxy formation/evolution; measure comoving starformation rate.
- Technical approach
 - Multi-object image slicer feeding cryogenic spectrographs (3).
- Instrument capabilities
 - VLT 8m
 - 24 MOS probes, 2.8x2.8 arcsec each, sampled at 0.2 arcsec (14 slices)
 - 4704 spatial elements total (188 arcsec²)
 - 7.2 arcmin diameter patrol field
 - 0.8-2.5 μm range
 - 1000 spectral elements (R~3600)
 - ϵ = 0.3 * telescope * atmosphere

Sharples+12

CALIFA, SAMI and MaNGA

- Science goals
 - Dissect nearby galaxy population to determine dynamics and composition physical properties driving galaxy formation/evolution;
- Technical approach
 - Multi-object fiber IFUs feeding dual-beam spectrographs.
- Instrument capabilities

	CALIFA	SAMI	MaNGA
D _{TEL}	CA 3.5m	AAO 3.9m	SDSS 2.5m
Patrol FoV		1 deg	3 deg
# IFU	1	13	17
# fibers	382	819	1423
D _{fiber}	2.7"	1.6″	2.0"
IFU FoV	70"	15	12-32"
spectrograph	PMAS	AAOmega	BOSS
λ coverage (nm)	380-730	370-570, 625-735	350-1050
R=λ/dλ	1500,1100	1730,4500	1400-2700
Efficiency, ϵ	0.13	0.09,0.14	0.30

CALIFA:

4 x 37-fibers

Sanchez+12

PMAS: Roth+'05

2 x 91-fibers

PPK: Verheijen+'04, Kelz+'06

, 70″

Metrics

 \prec

Bundy+2015 (MaNGA PI)

Hill 2014

WEAVE / IFUs and key parameters

Spectral resolution

- At $\delta\lambda/\lambda$ = 9000 (33 km s⁻¹ FWHM) with galaxy internal velocity spread of 150 km s⁻¹ (5:1) sky lines can be completely removed.
- Lower resolution significantly degrades spectral data.

Sky resolved at: $\delta \lambda / \lambda = 2300$

 $\delta\lambda/\lambda$ = 9000

 $\delta\lambda/\lambda$ = 35000

(Osterbrock+96)

Best abundance information in dynamically cold systems if you have the spectral resolution.

III. Key questions

Disk assembly: settling, heating or both?

• Why this question:

- Go beyond distributions of integrated properties, e.g., galaxy mass-function, $\phi(M,...)$
- Directly probe astrophysical processes of mass assembly with *resolved maps* of mass, kinematics, and composition for *galaxy populations*
- Couple to full chemo-dynamical phase-space for gas and stars uniquely accessed in MW

- 1. The Milky Way as a Galaxy
- 2. The look-back record: distant galaxies
- 3. Breakthroughs very nearby: M31 & NGC 891
- 4. Statistical studies of low-z galaxies
- 5. Concluding challenges

- 1. The Milky Way as a Galaxy
- Historical debate on origin stellar disk heating e.g., Spitzer & Schwarzchild+51, Weilen'77, Ostriker'86, Binney+'00
- Thick disk controversy cf Gilmore & Reid'83, Bovy+12; see also Brook+04, Forbes+12, Bird+13, Martig+14, Minhchev+13,14
- Data renaissance: RAVE (Steinmetz+06), SEGUE (Yanny+2009; SDSS-II), GALAH/HERMES (De Silva+15), APOGEE-1,2 (Majewski+15; SDSS-III,IV)
- Earth-quake in process: GAIA

2. The look-back record: *photometry*

(a) build-up of stellar mass with time and radius in MW-mass galaxies is smooth, inside out, with 90% assembled between 0.4 < z < 2.5

2. The look-back record:

(c) settling must be a function of merger and SF history

DYNAMO: Green+13

2. The look-back record: simulations

- Heating and cooling/settling of gas disk imprinted on stars observed today
- Establishes age-velocity-metallicity relations (e.g., Minchev+12,14; Martig+14a,b)
- Relative roles of heating vs settling unclear: cf Bird+13, Martig+14a

2. The look-back record: simulations

- Heating and cooling/settling of gas disk imprinted on stars observed today
- Establishes *age-velocity-metallicity relations* (e.g., Minchev+12,14; Martig+14a,b)
- Relative roles of heating vs settling unclear: cf Bird+13, Martig+14a

- 3. Very nearby: Resolved stellar kinematics in M31
- age-velocity-metallicity relations not the same for two massive LG spirals

3. Very nearby: NGC 891 heating model

 NGC 891 K-band vertical light profile well fit by MW heating model and constant SFR for ~9-12

Gyr

Bershady+15

3. Very nearby: variable pitch IFUs

WIYN 3.5M TELESCOPE ~ BENCH SPECTROGRAPH

The universe is logarithmic; why aren't our instruments?

Wood+12

3. Very nearby: spectro-photometric chronometers

- Vertical gradients in spectra
 - ... age \bigcirc

Sensitivity in blue

NGC 891

 \geq

... metallicity Ο

> z~2 kpc

N891-like edge-on massive spiral, MW disk-heating, const. SFR

3. Very nearby: vertical population gradients

- Can be applied to large samples
- NB: must account for different LOS depth w/height

Disk assembly: settling, heating or both? 4. SDSS-IV Dissects 10,000 Galaxies in Nearby Universe

5000

7000

9000

- SDSS
- Cover 350 1050nm at resolution of 60 km/s
- Sample all galaxy types and environments
- Multiplex 17 IFUs at once

MaNGA Bundy et al. 2015

David R. Law

Measuring stellar velocity dispersions with only velocities

- measure V_g, V_{*} 1.
- infer σ_* 2.
- calibrate with DiskMass Survey 3.

Projected tangential velocities ("rotation curves") of gas and stars show **A**symmetric **D**rift

Asymmetric drift (AD) depends on inplane $\sigma_*(\sigma_R, \sigma_{\phi})$, radial derivatives of V and σ , and shape of σ -ellipsoid.

 v_R and $v_R v_{\phi}$ moments of the collisionless **Boltzman equation**

Epicycle approximation

AD

Westfall+ 2014

4. MaNGA: Asymmetric Drift

Summary Charge to the Community

Disk assembly: settling, heating or both?

- 5. Challenges:
 - a) Measure stellar disk dynamics, ages, and abundances outside of the local group
 - How: large-grasp IFUs with broad spectral coverage and high spectral resolution
 - b) Define the observational test distinguishing between disk settling (cooling) and stellar heating.
 - Make this a well-posed problem.