The final clustering results from BOSS

Rita Tojeiro for the (e)BOSS collaboration University of St. Andrews

MOS in the next decade La Palma, 5 March 2015

Latest The final clustering results from BOSS and some stuff

Rita Tojeiro about eBOSS for the (e)BOSS collaboration University of St. Andrews

MOS in the next decade La Palma, 5 March 2015

MOS = precise 3-dimensional positions + spectra

higher-point statistics small-scale clustering topology / voids cross-correlations with [...]

two-point statistics

-> expansion, peutrinos, inflation, gal evolution, gravity, composition, etc

The state of the art in LSS:

The Baryon Oscillations Spectroscopic Survey (BOSS)

DR11 large-scale catalogues

	CMASS	LOWZ
Number objects used (LSS)	777,209	313,780
Total effective area (sq.deg)	8,377	7,341
Total volume (effective) (Gpc ³)	10.0 (6.0)	3.0 (2.4)

BOSS galaxies

[Masters et al. 2011]

g-r

Most massive galaxies, large bias Good spread in colour and bias and galaxy type Studying Dark Energy with BOSS galaxies

Baryon Acoustic Oscillations

Redshift-Space Distortions

Mapping the expansion history of the Universe

$$D_V(z) \equiv \left[cz(1+z)^2 D_A(z)^2 H^{-1}(z) \right]^{1/3} \qquad \alpha \equiv \frac{D_V(z) r_{d,\text{fid}}}{D_V^{\text{fid}}(z) r_d}$$

A 7 and 8 sigma detection

Combine power-spectrum and correlation function to give:

$$D_V(0.57) = (2056 \pm 20 \text{ Mpc}) \left(\frac{r_d}{r_{d,\text{fid}}}\right) \qquad 0.9\% (1.0\% \text{ W/ SyS})$$
$$D_V(0.32) = (1264 \pm 25 \text{ Mpc}) \left(\frac{r_d}{r_{d,\text{fid}}}\right) \qquad 1.9\% (2.1\% \text{ W/ SyS})$$

Anisotropic fitting

Mapping the expansion history of the Universe

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \Omega_{k} a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_{a}^{1} \frac{da'}{a'} \left[1 + w(a') \right] \right\} \right]$$

	Cosmological	Data Sets	$\Omega_{ m m}h^2$	$\Omega_{ m m}$	H_0	Ω_{K}	w_0	w_a	
	Model				$km s^{-1} Mpc^{-1}$				
	ΛCDM	Planck + CMASS-iso + LOWZ	0.1403 (14)	0.300 (8)	68.4 (6)				
	ΛCDM	Planck + CMASS + LOWZ	0.1416 (13)	0.309 (8)	67.7 (6)	•••		•••	
	ΛCDM	Planck + BAO	0.1418 (13)	0.310 (8)	67.6 (6)	•••		•••	
	ΛCDM	Planck + CMASS + LOWZ + SN	0.1415 (13)	0.308 (8)	67.8 (6)	••••	• • •	•••	
	ΛCDM	Planck + BAO + SN	0.1417 (13)	0.309 (8)	67.7 (6)	•••	•••	•••	
	ΛCDM	WMAP + BAO + SN	0.1401 (22)	0.302 (8)	68.1 (7)	•••	•••	•••	
	ΛCDM	eWMAP + BAO + SN	0.1414 (16)	0.302 (8)	68.4 (6)		•••		
	oCDM	Planck + CMASS-iso + LOWZ	0.1419 (25)	0.301 (8)	68.7 (8)	+0.0021 (30)	•••		
	oCDM	Planck + CMASS + LOWZ	0.1420 (25)	0.309 (8)	67.8 (7)	+0.0004(30)		•••	
	oCDM	Planck + BAO	0.1423 (25)	0.311 (8)	67.7 (7)	+0.0005(29)		•••	
	oCDM	Planck + CMASS + LOWZ + SN	0.1418 (25)	0.308 (8)	67.9 (7)	+0.0004(30)		•••	
	oCDM	Planck + BAO + SN	0.1421 (25)	0.310 (8)	67.8 (7)	+0.0005(29)		•••	
	oCDM	WMAP + BAO + SN	0.1385 (40)	0.301 (9)	67.9 (8)	-0.0020 (40)			
	oCDM	eWMAP + BAO + SN	0.1365 (34)	0.297 (9)	67.8 (7)	-0.0056 (35)			
	wCDM	Planck + CMASS-iso + LOWZ	0.1430 (22)	0.273 (21)	72.6 (32)		-1.18 (13)		
	wCDM	Planck + CMASS + LOWZ	0.1426 (22)	0.301 (16)	69.0 (22)		-1.06 (10)	•••	
	wCDM	Planck + BAO	0.1419 (22)	0.310 (14)	67.7 (18)		-1.01 (8)		
	wCDM	Planck + CMASS + LOWZ + SN	0.1427 (19)	0.300 (12)	69.1 (16)		-1.06 (7)		
	wCDM	Planck + BAO + SN	0.1423 (19)	0.306 (12)	68.3 (14)		-1.03 (6)		
con			0.1383 (32)	0.308 (11)	67-1 (16)	GDN	-0.94 (8)	osmo	IOdV
••••	-wCDM	ewmap 4 bao F 3N	0.1382 (28)	0.313 (12)	-66.5 (15)		-0.90-(7)		
	owCDM	Planck + CMASS-iso + LOWZ	0.1419 (25)	0.262 (31)	74.1 (46)	-0.0017 (39)	-1.26 (21)	•••	
	owCDM	Planck + CMASS + LOWZ	0.1419 (25)	0.297 (24)	69.3 (28)	-0.0006 (49)	-1.08 (15)	•••	
	owCDM	Planck + BAO	0.1421 (25)	0.314 (20)	67.3 (22)	+0.0017 (47)	-0.98 (11)		
	owCDM	Planck + CMASS + LOWZ + SN	0.1420 (25)	0.297 (14)	69.2 (16)	-0.0012 (34)	-1.08 (8)		
	owCDM	Planck + BAO + SN	0.1423 (26)	0.305 (13)	68.3 (14)	-0.0002 (33)	-1.04 (7)		
	owCDM	WMAP + BAO + SN	0.1372 (42)	0.306 (13)	67.0 (16)	-0.0013 (44)	-0.95 (8)		
	owCDM	eWMAP + BAO + SN	0.1356 (34)	0.305 (13)	66.7 (15)	-0.0041 (41)	-0.93 (8)	•••	
	$w_0 w_a \text{CDM}$	Planck + CMASS-iso + LOWZ	0.1434 (21)	0.305 (51)	69.4 (63)		-0.86 (50)	-0.90 (123)	
	$w_0 w_a \text{CDM}$	Planck + CMASS + LOWZ	0.1433 (21)	0.350 (41)	64.4 (41)		-0.54 (39)	-1.40 (102)	
	$w_0 w_a \text{CDM}$	Planck + BAO	0.1430 (21)	0.361 (31)	63.1 (29)		-0.44 (30)	-1.60 (85)	
	$w_0 w_a \text{CDM}$	Planck + CMASS + LOWZ + SN	0.1434 (22)	0.304 (17)	68.7 (18)		-0.98 (18)	-0.33 (64)	
	$w_0 w_a \text{CDM}$	Planck + BAO + SN	0.1431 (22)	0.311 (16)	67.9 (17)	•••	-0.94 (17)	-0.37 (60)	
	$w_0 w_a \text{CDM}$	WMAP + BAO + SN	0.1373 (43)	0.301 (16)	67.6 (17)		-1.02 (16)	0.21 (56)	
	$w_0 w_a \text{CDM}$	eWMAP + BAO + SN	0.1367 (31)	0.300 (15)	67.6 (16)		-1.05 (14)	0.43 (40)	
	ow ₀ w _a CDM	Planck + CMASS-iso + LOWZ	0.1417 (25)	0.294 (48)	70.2 (60)	-0.0042 (41)	-0.84 (44)	-1.40 (115)	
	ow_0w_a CDM	Planck + CMASS + LOWZ	0.1416 (24)	0.343 (40)	64.6 (39)	-0.0043 (49)	-0.53 (35)	-1.71 (96)	
	ow_0w_a CDM	Planck + BAO	0.1420 (24)	0.359 (32)	63.0 (29)	-0.0021 (49)	-0.43 (29)	-1.72 (87)	
	ow_0w_a CDM	Planck + CMASS + LOWZ + SN	0.1418 (26)	0.306 (16)	68.2 (19)	-0.0046 (44)	-0.87 (20)	-0.99 (89)	
	ow_0w_a CDM	Planck + BAO + SN	0.1421 (25)	0.312 (16)	67.5 (17)	-0.0027 (42)	-0.87 (19)	-0.73 (80)	
	$ow_0 w_a CDM$	WMAP + BAO + SN	0.1371 (43)	0.302 (16)	67.5 (18)	+0.0007 (59)	-1.01 (18)	0.21 (72)	
	$ow_0 w_a CDM$	eWMAP + BAO + SN	0.1360 (36)	0.302 (15)	67.2 (17)	-0.0025 (54)	-0.99 (16)	0.17 (60)	

Probing gravity via the growth rate of structure

[Samushia et al. 2014]

Lessons and challenges

+ General Relativity and Homogeneity

Way forward lies in improvements on the **modelling**, a better understanding of the **galaxy** population and a robust **analysis** of the data and **systematics**.

Stars matter, seeing matters.

n_{stor} (deg⁻²) A_r SKY I airmass I seein

Accurate photometric calibrations matter

[Tojeiro et al. 2014]

Colour doesn't matter - for now.

...almost everything matters (a little bit).

Estimator	Change	α	χ^2 /dof
P(k)	fiducial NGC only	1.0114 ± 0.0093 1.0007 ± 0.0113	18/27 16/27
	SGC only	1.0367 ± 0.0113 1.0367 ± 0.0167	15/27
	$\begin{array}{l} 0.02 < k < 0.25 h \mathrm{Mpc}^{-1} \\ 0.02 < k < 0.2 h \mathrm{Mpc}^{-1} \\ 0.05 < k < 0.3 h \mathrm{Mpc}^{-1} \end{array}$	$\begin{array}{c} 1.0082 \pm 0.0094 \\ 1.0121 \pm 0.0113 \\ 1.0120 \pm 0.0091 \end{array}$	14/21 11/15 15/23
	$\Sigma_{nl} = 3.6 \pm 0.0 h^{-1} \text{Mpc}$ $\Sigma_{nl} = 4.6 \pm 0.0 h^{-1} \text{Mpc}$ $\Sigma_{nl} = 5.6 \pm 0.0 h^{-1} \text{Mpc}$ $A_1, A_2 = 0$ Spline fit	$\begin{array}{c} 1.0111 \pm 0.0085 \\ 1.0119 \pm 0.0089 \\ 1.0116 \pm 0.0097 \\ 1.0136 \pm 0.0095 \\ 1.0109 \pm 0.0094 \end{array}$	19/28 19/28 18/28 40/29 17/24
	$\Delta k = 0.0032 h \mathrm{Mpc}^{-1}$ $\Delta k = 0.004 h \mathrm{Mpc}^{-1}$ $\Delta k = 0.006 h \mathrm{Mpc}^{-1}$	$\begin{array}{c} 1.0122 \pm 0.0097 \\ 1.0082 \pm 0.0094 \\ 1.0091 \pm 0.0096 \end{array}$	71/79 55/62 33/39
	$\Delta k = 0.01 h \text{ Mpc}^{-1}$ $\Delta k = 0.012 h \text{ Mpc}^{-1}$ $\Delta k = 0.016 h \text{ Mpc}^{-1}$ $\Delta k = 0.02 h \text{ Mpc}^{-1}$	$\begin{array}{c} 1.0120 \pm 0.0097 \\ 1.0133 \pm 0.0091 \\ 1.0100 \pm 0.0099 \\ 1.0100 \pm 0.0107 \end{array}$	16/20 9/15 5/9
	$\Delta k = 0.02 h \mathrm{Mpc^{-1}}$	1.0186 ± 0.0105	5/6

Mocks vital to validate methodologies and quantify statistical and systematic errors.

Reconstruction works

[Padmanabhan et al. 2012, Burden et al. 2014]

RSD in BOSS limited by modelling, not data

If you wanted to start a BAO survey today...

Quasars z < 2.

eBOSS samples

- Luminous red galaxies (LRGs)
 - 350,000 at z > 0.6 over 7500 deg²
- Emission line galaxies (ELGs)
 - I90,000 at 0.6 < z < 1.0 over 1500 deg²
- Low-Redshift Quasars (QSOs)
 - 470,000 at 0.9 < z < 2.2 over 7500 deg²
- Lyman- α forest (Ly α)
 - 50,000 new, re-ob 70,000 with SNR < 3

27

eBOSS samples

28

- eBOSS will provide first precise BAO and RSD measurements for 0.7 < z < 2.2, improve Lyα at z~2.5
 - Use multiple tracers (LRGs, ELGs, QSOs)
- Wealth of spectra for galaxy and quasar science
- projected factor of 3 DE FoM improvement

29

Thanks!

Rita Tojeiro for the (e)BOSS collaboration University of St. Andrews

MOS in the next decade La Palma, 5 March 2015

