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The state of the art in LSS: 
The Baryon Oscillations Spectroscopic Survey (BOSS)

• Spectroscopic redshift survey over 10,000 sq. deg. (that’s most of the sky 
accessible from one hemisphere)


• Redshifts for approximately 1.5 million galaxies.


• [+ LyA quasars, and ancillary targets.]


• All data now public, after a 5-year observing campaign.4 L. Anderson et al.

Figure 2. Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show our observations in the North Galactic Cap (NGC) while lower panels
show observations in the South Galactic Cap (SGC). Colors indicate the spectroscopic completeness within each sector as indicated in the key in the lower
right panel. Gray areas indicate our expected footprint upon completion of the survey. The total sky coverage in DR9, DR10, and DR11 is 3,275 deg2, 6,161
deg2, and 8,377 deg2, respectively.

design appears in Eisenstein et al. (2011), and a full description, in-
cluding a discussion of the motivation for the targeting criteria, is
provided in Dawson et al. (2012).

2.2 Galaxy Catalogues

BOSS selects two classes of galaxies to be targeted for spec-
troscopy using SDSS DR8 imaging. The ‘LOWZ’ algorithm is de-
signed to select red galaxies at z < 0.45 from the SDSS DR8
imaging data via

r
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where here i and r indicate magnitudes and all magnitudes are cor-
rected for Galactic extinction (via the Schlegel, Finkbeiner & Davis
1998 dust maps), the subscript psf denotes PSF magnitudes, the
subscript mod denotes ‘model’ magnitudes (Stoughton et al. 2002),
the subscript cmod denotes ‘cmodel’ magnitudes (Abazajian et al.
2004), and
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The resulting LOWZ galaxy sample has three times the spatial den-
sity of the SDSS-II LRGs, as is shown in Fig. 1, with a similar
clustering amplitude to the CMASS sample (Parejko et al. 2013).

We define the effective redshift, z
e↵

, as the mean redshift of a
sample weighted by the number of galaxy pairs with separations
80 < s < 120h�1Mpc. For the LOWZ sample z

e↵

= 0.32,
slightly lower than that of the SDSS-II LRGs as we place a red-
shift cut z < 0.43 to ensure no overlap with the CMASS sample,
and hence independent measurements. Further details can be found
in Parejko et al. (2013) and Tojeiro et al. (2014). Due to difficulties

during the early phases of the project, the sky area of the LOWZ
sample lags that of the full survey by approximately 1 000 deg

2, as
can be seen in comparison of Tables 1 and 2.

The CMASS sample is designed to be approximately stellar-
mass-limited above z = 0.45. These galaxies are selected from the
SDSS DR8 imaging via
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and ifib2 is the i-band magnitude within a 2

00 aperture radius.
For CMASS targets, stars are further separated from galaxies by
only keeping objects with
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unless the target also passes the LOWZ cuts (Eqs. 1-4) listed above.
The CMASS selection yields a sample with a median redshift

z = 0.57 and a stellar mass that peaks at log
10

(M/M�) = 11.3
(Maraston et al. 2013) and a (stellar) velocity dispersion that peaks
at 240 km s

�1 (Bolton et al. 2012; Thomas et al. 2013). Most
CMASS targets are central galaxies residing in dark matter halos
of ⇠ 10

13 h�1M�, but a non-negligible fraction are satellites that
live primarily in halos about 10 times more massive (White et al.
2011; Nuza et al. 2013). Further discussion can be found in Tojeiro
et al. (2012). Kinematics and emission line properties are described
in Thomas et al. (2013).

Target lists are produced using these algorithms and are then
“tiled” to produce lists of galaxies to be observed with a single
pointing of the Sloan telescope. Not all targets can be assigned
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the BOSS galaxy samples to the latest dataset from the ongoing
BOSS.

This paper concentrates on the DR11 data set, comprised of
SDSS-III observations through May 2013, which is scheduled for
public release in December 2014 together with the final SDSS-
III data release (DR12). The DR10 data set, comprised of obser-
vations through June 2012, is already public (Ahn et al. 2013).
We provide the DR10 large scale structure samples, including the
masks, weights, and random catalogs needed for clustering anal-
yses, through the SDSS-III Science Archive Server. To facilitate
community comparisons to our results, in this paper we also present
several of our key analyses for the DR10 subset of our data sample.

Five companion papers present extensions to the methodol-
ogy, testing, and data sets beyond those applied previously to the
DR9 data:

(i) Ross et al. (2014) split the DR10 CMASS sample (see section
2) into red and blue galaxies, showing that consistent cosmological
measurements result from both data sets.

(ii) Vargas-Magana et al. (2013) investigates the different pos-
sible systematics in the anisotropic fitting methodologies, showing
that we achieve unbiased results with fiducial fitting methodology.

(iii) Manera et al. (2014) describes the production of mock cata-
logues, used here to determine errors and test our analysis methods.

(iv) Percival et al. (2014) presents a method to propagate errors
in the covariance matrices determined from the mocks through to
errors on the final measurements.

(v) Tojeiro et al. (2014) presents measurements made at z =

0.32 from the low-redshift “LOWZ” BOSS sample of galaxies
which we now include in our constraints.

We also have produced a series of companion papers present-
ing complementary cosmological measurements from the DR10
and DR11 data:

(i) Beutler et al. (2013) presents a fit to the CMASS power spec-
trum monopole and quadrupole, measuring Redshift-Space Distor-
tions (RSD).

(ii) Samushia et al. (2014) fits the CMASS correlation function
monopole and quadrupole, measuring Redshift-Space Distortions
(RSD) using a streaming model.

(iii) Chuang et al. (2013b) fits CMASS correlation function
monopole and quadrupole using quasi-linear scales (e.g. above
50h�1Mpc) to extract single-probe measurements. For the LOWZ
sample, they include smaller scales with Finger-of-God modeling.

(iv) Sánchez et al. (2013b) fits LOWZ and CMASS correlation
function monopole and wedges (Kazin et al. 2012) with a model
inspired by renormalised perturbation theory.

The layout of this paper is as follows. We introduce the data
and the catalogue in the next section. The catalogue construction
is similar to that described in Anderson et al. (2012) for DR9,
and so we focus primarily on the differences and improvements in
Section 3. We present the analysis methods for our isotropic and
anisotropic measurements in Sections 4 and 5, respectively. We
then present the isotropic results in Section 6 and the anisotropic
results in Section 7. Our systematic error assessment and final dis-
tance measurements are presented in Section 8 and these measure-
ments are placed in a cosmological context in Section 9. We con-
clude in Section 10.

Throughout the paper we assume a fiducial ⇤CDM+GR, flat
cosmological model with ⌦m = 0.274, h = 0.7, ⌦bh

2

= 0.0224,
ns = 0.95 and �

8

= 0.8, matching that used in Anderson et al.
(2012, 2014). Note that this model is different from the current

best-fit cosmology; however these parameters allow us to translate
angles and redshifts into distances and provide a reference against
which we measure distances. The BAO measurement allows us to
constrain changes in the distance scale relative to that predicted by
this fiducial model.

2 THE DATA

2.1 SDSS-III BOSS

We use data included in data releases 10 (DR10;Ahn et al. 2013)
and 11 (DR11; to be publicly released with the final BOSS data
set) of the Sloan Digital Sky Survey (SDSS; York et al. 2000). To-
gether, SDSS I, II (Abazajian et al. 2009), and III (Eisenstein et
al. 2011) used a drift-scanning mosaic CCD camera (Gunn et al.
1998) to image over one third of the sky (14 555 square degrees)
in five photometric bandpasses (Fukugita et al. 1996; Smith et al.
2002; Doi et al. 2010) to a limiting magnitude of r ' 22.5 us-
ing the dedicated 2.5-m Sloan Telescope (Gunn et al. 2006) located
at Apache Point Observatory in New Mexico. The imaging data
were processed through a series of pipelines that perform astromet-
ric calibration (Pier et al. 2003), photometric reduction (Lupton et
al. 2001), and photometric calibration (Padmanabhan et al. 2008).
All of the imaging was re-processed as part of SDSS Data Release
8 (DR8; Aihara et al. 2011).

BOSS is designed to obtain spectra and redshifts for 1.35
million galaxies over a footprint covering 10 000 square degrees.
These galaxies are selected from the SDSS DR8 imaging and are
being observed together with 160 000 quasars and approximately
100 000 ancillary targets. The targets are assigned to tiles of diam-
eter 3

� using a tiling algorithm that is adaptive to the density of
targets on the sky (Blanton et al. 2003). Spectra are obtained using
the double-armed BOSS spectrographs (Smee et al. 2013). Each
observation is performed in a series of 900-second exposures, in-
tegrating until a minimum signal-to-noise ratio is achieved for the
faint galaxy targets. This ensures a homogeneous data set with a
high redshift completeness of more than 97 per cent over the full
survey footprint. Redshifts are extracted from the spectra using the
methods described in Bolton et al. (2012). A summary of the survey
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Figure 1. Histograms of the galaxy number density as a function of redshift
for LOWZ (red) and CMASS (green) samples we analyse. We also display
the number density of the SDSS-II DR7 LRG sample in order to illustrate
the increase in sample size provided by BOSS LOWZ galaxies.
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Figure 2. Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show our observations in the North Galactic Cap (NGC) while lower panels
show observations in the South Galactic Cap (SGC). Colors indicate the spectroscopic completeness within each sector as indicated in the key in the lower
right panel. Gray areas indicate our expected footprint upon completion of the survey. The total sky coverage in DR9, DR10, and DR11 is 3,275 deg2, 6,161
deg2, and 8,377 deg2, respectively.

design appears in Eisenstein et al. (2011), and a full description, in-
cluding a discussion of the motivation for the targeting criteria, is
provided in Dawson et al. (2012).

2.2 Galaxy Catalogues

BOSS selects two classes of galaxies to be targeted for spec-
troscopy using SDSS DR8 imaging. The ‘LOWZ’ algorithm is de-
signed to select red galaxies at z < 0.45 from the SDSS DR8
imaging data via
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where here i and r indicate magnitudes and all magnitudes are cor-
rected for Galactic extinction (via the Schlegel, Finkbeiner & Davis
1998 dust maps), the subscript psf denotes PSF magnitudes, the
subscript mod denotes ‘model’ magnitudes (Stoughton et al. 2002),
the subscript cmod denotes ‘cmodel’ magnitudes (Abazajian et al.
2004), and
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The resulting LOWZ galaxy sample has three times the spatial den-
sity of the SDSS-II LRGs, as is shown in Fig. 1, with a similar
clustering amplitude to the CMASS sample (Parejko et al. 2013).

We define the effective redshift, z
e↵

, as the mean redshift of a
sample weighted by the number of galaxy pairs with separations
80 < s < 120h�1Mpc. For the LOWZ sample z

e↵

= 0.32,
slightly lower than that of the SDSS-II LRGs as we place a red-
shift cut z < 0.43 to ensure no overlap with the CMASS sample,
and hence independent measurements. Further details can be found
in Parejko et al. (2013) and Tojeiro et al. (2014). Due to difficulties

during the early phases of the project, the sky area of the LOWZ
sample lags that of the full survey by approximately 1 000 deg

2, as
can be seen in comparison of Tables 1 and 2.

The CMASS sample is designed to be approximately stellar-
mass-limited above z = 0.45. These galaxies are selected from the
SDSS DR8 imaging via
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and ifib2 is the i-band magnitude within a 2

00 aperture radius.
For CMASS targets, stars are further separated from galaxies by
only keeping objects with

i
psf

� i
mod

> 0.2 + 0.2(20.0� i
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unless the target also passes the LOWZ cuts (Eqs. 1-4) listed above.
The CMASS selection yields a sample with a median redshift

z = 0.57 and a stellar mass that peaks at log
10

(M/M�) = 11.3
(Maraston et al. 2013) and a (stellar) velocity dispersion that peaks
at 240 km s

�1 (Bolton et al. 2012; Thomas et al. 2013). Most
CMASS targets are central galaxies residing in dark matter halos
of ⇠ 10

13 h�1M�, but a non-negligible fraction are satellites that
live primarily in halos about 10 times more massive (White et al.
2011; Nuza et al. 2013). Further discussion can be found in Tojeiro
et al. (2012). Kinematics and emission line properties are described
in Thomas et al. (2013).

Target lists are produced using these algorithms and are then
“tiled” to produce lists of galaxies to be observed with a single
pointing of the Sloan telescope. Not all targets can be assigned
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Figure 2. Examples of SDSS composite colour gri images and ACS I-band images (shown as black on white) for BOSS CMASS galaxies with different
morphological types. Shown are 10 examples out of a total sample of 129 objects. All images are 15 arcsec2, and the BOSS 2 arcsec diameter fibre is illustrated
by a green circle. The redshifts of these objects are shown in the figure. The barred late-type was not observed by BOSS due to fibre collisions, but has a
redshift from zCOSMOS (Lilly et al. 2007). The double point source system has also been observed spectroscopically by BOSS and is confirmed to be made
up of stars in our Galaxy (i.e. z = 0).

C⃝ 2011 The Authors, MNRAS 418, 1055–1070
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS

[Masters et al. 2011]
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Table 3. Isotropic BAO scale measurements
recovered from BOSS LOWZ data. The ‘com-
bined’ results are the weighted mean of mea-
surement across bin centres, as shown in Ta-
ble 4. The ‘consensus’ results are the mean of
the combined P(k) and ξ (s) results.

Estimator α χ2/d.o.f.

DR11
Consensus 1.018 ± 0.020
Combined P(k) 1.021 ± 0.019
Combined ξ (s) 1.014 ± 0.021
Post-recon P(k) 1.020 ± 0.019 26/27
Post-recon ξ0(s) 1.012 ± 0.019 10/17
Pre-recon P(k) 1.015 ± 0.028 27/27
Pre-recon ξ0(s) 1.016 ± 0.033 15/17

DR10
Consensus 1.027 ± 0.028
Post-recon P(k) 1.028 ± 0.026 27/27
Post-recon ξ0(s) 1.026 ± 0.031 13/17
Pre-recon P(k) 1.031 ± 0.027 28/27
Pre-recon ξ0(s) 1.031 ± 0.031 22/17

As for DR11, both the post-reconstruction P(k) and ξ (s) yield
results that are significantly worse than the mean results from the
mocks, as can be seen by observing the orange stars in the bottom
panels of Fig. 10. We find that 5.1 per cent of the DR10 mocks yield
an uncertainty that is greater 0.031 for ξ (s) and 6.2 per cent yield
an uncertainty that is greater than 0.026 when using the P(k) mea-
surements. Pre-reconstruction, the uncertainty on the DR10 mea-
surements are each slightly better than the mean recovered from
the mocks. Unlike for DR11, reconstruction does not significantly
improve the LOWZ DR10 BAO measurements. The DR11 area is
more contiguous, and one can see in Fig. 10 that the precision im-
proves for a larger fraction of mock samples post-reconstruction for
DR11 than DR10.

The DR10 measurement is consistent with the DR11 measure-
ment. LOWZ DR10 covers 70 per cent of the LOWZ DR11 foot-
print. Assuming a correlation 0.7, the 0.009 difference is well within
the expected 1σ variation between LOWZ BAO measurements from
the two DRs of 0.020.

Figure 12. DR11 LOWZ clustering measurements (black circles) with ξ (s) shown in the left-hand panels and P(k) in the right-hand panels. The top panels
show the measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The curves show the best-fitting BAO
model.

MNRAS 440, 2222–2237 (2014)
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Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).
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necessary, as we find the pattern of seeing in the SGC has signif-
icant angular clustering and thus the systematic induces spurious
clustering into SGC measurements. The w

see

weights have negli-
gible impact on measurements of the NGC clustering (and, indeed,
the DR9 SGC clustering); there is negligible large-scale power in
the pattern of the seeing in the NGC data. The best-fit coefficients
for the seeing weights we find and apply to the DR10 CMASS data
are A

see

= 1.034, B
see

= 2.086 and �
see

= 0.731 and for DR11
A

see

= 1.046, B
see

= 2.055 and �
see

= 0.755. We find no trend
in the relationship between galaxy density and seeing as a function
of redshift. This implies that weighting based on Eq. 20 removes
from the CMASS density field any dependency on seeing in its full
3D space.

3 ANALYSIS CHANGES COMMON TO ISOTROPIC AND
ANISOTROPIC CLUSTERING SINCE DR9

We analyse the BAO feature and fit for distances using the 2-
point function in both configuration space (the correlation func-
tion, ⇠) and in Fourier space (the power spectrum, P ). In Section
4 we present the analysis techniques we use to obtain spherically
averaged P and ⇠ and extract isotropic distance scale measure-
ments. In Section 5, we present the analysis techniques we use
measure the distance scale along and perpendicular to the line-of-
sight using Multipoles and Wedges in configuration space. In this
section, we detail the changes common to both the isotropic and
anisotropic clustering analysis since DR9. These include changes
in: (i) density-field reconstruction, (ii) mock catalogs, and (iii) es-
timation of errors on these measurements by analyzing mock cata-
logues.

3.1 Reconstruction

The statistical sensitivity of the BAO measurement is limited by
non-linear structure formation. Following Eisenstein et al. (2007a)
we apply a procedure to reconstruct the linear density field. This
procedure attempts to partially reverse the effects of non-linear
growth of structure and large-scale peculiar velocities from the
data. This is accomplished using the measured galaxy density field
and Lagrangian theory relations between density and displacement.
Reconstruction reduces the anisotropy in the clustering, reverses
the smoothing of the BAO feature due to second-order effects, and
significantly reduces the expected bias in the BAO distance scale
that arises from these same second-order effects. Reconstruction
thus improves the precision of our BAO scale measurements while
simplifying our analyses.

We apply reconstruction to both the LOWZ and CMASS sam-
ples. Briefly, we use the galaxy density field, applying an assumed
bias for the galaxies, in order to estimate the matter density field
and solve for the displacement field. A correction is applied to ac-
count for the effect of linear redshift space distortions. Full details
of the reconstruction algorithm we apply can be found in Padman-
abhan et al. (2012) and Anderson et al. (2012). Compared to Ander-
son et al. (2012), we have increased the number of points in the ran-
dom catalogues used both when estimating the displacement field,
and when sampling this field to give the shifted field (see Eisen-
stein et al. 2007a; Padmanabhan et al. 2012; Anderson et al. 2012,
for definitions). Internal tests have shown that the results can be bi-
ased if the number of points in the random catalogue is too small.
Given the large separation between the data in the NGC and SGC,
we continue to run reconstruction on these two regions separately.

3.2 Mock catalogs

To create mock galaxy catalogs for LOWZ and CMASS samples
we use the the PTHalos methodology described in Manera et al.
(2013a) assuming the same fiducial cosmology as the data analy-
sis. The mocks reproduce the monopole and quadrupole correla-
tion functions from the observed galaxies, and are randomly down-
sampled to have the same mean n(z) as a fitted 10-node spline to
the sample n(z). This achieves a smooth redshift distribution for
the mean of the mocks. We mask each mock to the area of the ob-
served samples, simulate close-pair completeness (fiber collisions)
and randomly downsample to the overall sky completeness based
on regions defined by the specific tiling geometry of the data.

To analyse the DR10 and DR11 CMASS samples, 600 mock
CMASS galaxy catalogs were used with a slightly updated method
as described in Manera et al. (2014). For the LOWZ sample, 1000
mock LOWZ catalogs were created (again assuming the same fidu-
cial cosmology) using a new incarnation of the PTHalos method-
ology (Manera et al. 2014) that includes a redshift dependent halo
occupation distribution. The redshift dependence is fit to the data
based jointly on the observed clustering and the observed n(z).

The analysis presented in this paper uses an earlier version of
the mocks than the ones that will be publicly released in Manera et
al. (2014). The differences are small and include an early estimate
of the redshift distribution, a small difference in the way redshifts
are assigned to random points, and lower intra-halo peculiar ve-
locities. The mock catalogs are used to test our methodology and
estimate covariance matrices. We expect these differences to have
negligible statistical and systematic effects, especially when taking
the approximate nature of the PTHalos methodology into account.
Our systematic error budget is discussed further in Section 9.1.

3.3 Covariance matrices

For each clustering metric we measure on the data, we also mea-
sure on the each mock galaxy catalog. We use the distribution of
values to estimate the sample covariance matrices that we use in
the fitting. We use 600 mock catalogs for CMASS and 1000 for the
LOWZ analysis. As the same underlying simulation was used to
construct NGC and SGC versions of each mock catalog, we care-
fully combine a total measurement for each mock by using NGC
and SGC measurements from different boxes. The full procedure
we adopted is described in detail in Percival et al. (2014), which
focuses on understanding the error in the derived covariance ma-
trix. Percival et al. (2014) also includes how we propagate errors in
the covariance matrix through to the parameter errors for all results
presented in this paper.

4 MEASURING ISOTROPIC BAO POSITIONS

The BAO position in spherically averaged 2-point measurements is
fixed by the projection of the sound horizon at the drag epoch, rd,
and provides a measure of

DV (z) ⌘
⇥
cz(1 + z)2DA(z)

2H�1

(z)
⇤
1/3

, (21)

where DA(z) is the angular diameter distance and H(z) is the
Hubble parameter. Matching our DR9 analysis (Anderson et al.
2012) and previous work on SDSS-II LRGs (Percival et al. 2010),
we assume that the enhanced clustering amplitude along the line-
of-sight due to redshift-space distortions does not alter the relative
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importance of radial and angular modes when calculating spheri-
cally averaged statistics. This approximation holds best for our re-
sults including reconstruction, which are also our statistically most
constraining measures. If we measure the correlation function or
power spectrum using a fiducial cosmological model, denoted by
a subscript fid, to convert angles and redshifts into distances, then
to an excellent approximation the observed BAO position depends
simply on the scale dilation parameter

↵ ⌘

DV (z)rd,fid
Dfid

V (z)rd
, (22)

which measures the relative position of the acoustic peak in the
data versus the model, thereby characterising any observed shift.
If ↵ > 1, the acoustic peak is shifted towards smaller scales, and
↵ < 1 shifts the observed peak to larger scales. We now outline
the methodology we use to measure ↵, tests made using mock cat-
alogues, and how we combine results from ⇠(s), and P (k) mea-
surements and from different binning schemes.

4.1 Methodology

We have created separate pipelines to measure the average BAO
position in the BOSS data in configuration space using the correla-
tion function, ⇠(s), and in Fourier space using the power spectrum,
P (k). The BAO position presents as a single peak in ⇠(s) and an
oscillation in P (k).

To calculate ⇠(s) we use the Landy & Szalay (1993) estimator,
summing pair-counts into bins of width 8h�1

Mpc (as discussed
further in Percival et al. 2014). As a fiducial choice, the smallest
s bin is centred at 6h�1

Mpc, but we will also obtain results for
the eight binning choices shifted by increments of 1h�1

Mpc. For
each binning, we calculate ⇠(s) for bin centres in the range 29 <
s < 200h�1

Mpc (22 bins, for our fiducial choice).
To calculate P (k), we use the Feldman, Kaiser & Pea-

cock (1994) estimator. We use a Fourier grid of size 2048

3,
4000h�1

Mpc along each side: this comfortably encloses the sur-
vey including both the NGC and SGC components; we use with
sufficient zero-padding that aliasing is not a problem which was
confirmed by consistency between results from other box sizes.
Compared to our DR9 analysis presented in Anderson et al. (2012),
we modify our normalisation to properly account for the weights of
galaxies introduced to account for nearby close-pair or redshift fail-
ures. We calculate P (k) in Fourier modes averaged over bin widths
of �k = 0.008hMpc

�1. Percival et al. (2014) find this bin width
minimises the combined error when fluctuations in the covariance
matrix are also included. Our fiducial choice has the smallest k-bin
centred at k = 0.004hMpc

�1. We will also use the nine addi-
tional binning schemes that shift the bin centres by increments of
0.0008hMpc

�1. We calculate P (k) for bin centres in the range
0.02 < k < 0.3hMpc

�1, giving 35 bins for our fiducial choice.
These limits are imposed because the BAO have effectively died
out for smaller scales, and larger scales can be sensitive to observa-
tional systematics.

We fit the measured, spherically averaged, correlation func-
tion and power spectrum separately and then combine results using
the mocks to quantify the correlation coefficient between measure-
ments. Our fits use polynomial terms to marginalise over the broad-
band shape in either 2-point measurement, while rescaling a model
of the damped BAO to fit the data. We use slightly different tem-
plate BAO models for ⇠(s) and P (k) fits, as they enter the model
functions in different ways.

To produce a template model for the P (k) fit, we first com-
pute a linear power spectrum P lin produced by CAMB (Lewis et
al. 2000). We then split into two components, one oscillatory Olin

and the other smooth P sm,lin, that return the CAMB derived power
spectrum when multiplied together. To perform the split, we fit P lin

using the same method that we use to fit to the data, but with a
BAO model calculated using the fitting formulae of Eisenstein &
Hu (1998). The resulting smooth model is taken to be P sm,lin, and
Olin is calculated by dividing P lin by this. This follows the proce-
dure used in Anderson et al. (2012).

The full model fitted to the data power spectrum is then

P fit

(k) = P sm

(k)
h
1 + (Olin

(k/↵)� 1)e�
1
2 k2

⌃

2
nl

i
, (23)

where

P sm

(k) = B2

PP
sm,lin

(k)+A
1

k+A
2

+

A
3

k
+

A
4

k2

+

A
5

k3

. (24)

There are therefore six “nuisance” parameters: a multiplicative con-
stant for an unknown large-scale bias BP , and five polynomial pa-
rameters, A

1

, A
2

, A
3

, A
4

, and A
5

, which marginalise over broad-
band effects including redshift-space distortions, scale-dependent
bias and any errors made in our assumption of the model cosmol-
ogy. These effects may bias our measurement of the acoustic scale
if not removed.

The damping was treated as a free parameter, with a Gaussian
prior with conservative width ±2h�1Mpc centered at the best-fit
values recovered from the mocks: for the CMASS sample these are
⌃nl = 8.3h�1Mpc pre-reconstruction, and ⌃nl = 4.6h�1Mpc
post-reconstruction and for LOWZ they are ⌃nl = 8.8h�1Mpc
pre-reconstruction and ⌃nl = 4.8h�1Mpc post-reconstruction.
This model, which differs from that used to fit the power spectrum
in Anderson et al. (2012), is better matched to the now standard
model for the correlation function (e.g. Anderson et al. 2012) that
we adopt.

To fit to the correlation function, we adopt the template model
for the linear correlation function given in Eisenstein et al. (2007b),
with damped BAO

⇠mod

(s) =

Z
k2dk
2⇡2

Pmod

(k)j
0

(ks)e�k2a2

, (25)

where the Gaussian term has been introduced to damp the oscilla-
tory transform kernel j

0

(ks) at high-k to induce better numerical
convergence. The exact damping scale used in this term is not im-
portant, and we set a = 1h�1Mpc, which is significantly below
the scales of interest. The power spectrum is given by

Pmod

(k) = P nw

(k)


1 +

✓
P lin

(k)
P nw

(k)
� 1

◆
e�

1
2 k2

⌃

2
nl

�
, (26)

where P lin

(k) is the same model produced by CAMB, and used to
create the power spectrum fit template. P nw

(k) is a model created
using the no-wiggle fitting formulae of Eisenstein & Hu (1998), in
which the BAO feature is erased. We refer to this template as the
“De-Wiggled” template.

Using this template, our correlation function model is given
by

⇠fit(s) = B2

⇠⇠
mod

(↵s) +A⇠
(s) . (27)

where B⇠ is a multiplicative constant allowing for an unknown
large-scale bias, and the additive polynomial is

A⇠
(s) =

a
1

s2
+

a
2

s
+ a

3

, (28)

where a
1

, a
2

, a
3

help marginalize over the broadband signal.
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Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).
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tude of clustering, as this does not represent a bias in the mean, but
rather an error on the error.

We next turn to systematic errors from true astrophysical shifts
due to non-linear structure formation and galaxy clustering bias.
Prior to reconstruction, one can see the small expected shift, of or-
der 0.4 per cent, in the fitting of the mocks. From perturbation the-
ory (Crocce & Scoccimarro 2008; Padmanabhan & White 2009)
and simulations (Padmanabhan & White 2009; Seo et al. 2010) we
expect shifts in the clustering of matter at 0.2-0.25 per cent at these
redshifts. Galaxy bias produces additional small shifts (Padman-
abhan & White 2009; Mehta et al. 2011). As reconstruction im-
proves due to the larger and more contiguous survey volume, we
expect it to remove the shifts due to large-scale velocities. Mehta
et al. (2011) found no example in their models in which the shift
after reconstruction was non-zero, with errors of about 0.1 per cent
r.m.s.. The mock catalogs used here, as well as the two in Ross et
al. (2014), also show no offsets at this level. Of course, our mock
catalogs and the galaxy bias models of Mehta et al. (2011) do not
span all possibilities, but there is a good physical reason why recon-
struction is successful at removing shifts: in a wide range of bias
models, the galaxy density field is proportional to the dark matter
density field at scales above 10Mpc. The shifts in the acoustic scale
arise in second-order perturbation theory due to large-scale flows,
which are well predicted by the galaxy maps. Reconstruction sub-
stantially reduces the flows and hence the source of the acoustic
scale shifts. To be conservative, we triple the level of uncertainty
implied by our current mocks and adopt a systematic error of 0.3
per cent in ↵ for shifts from galaxy bias that are not corrected by
reconstruction.

Our systematic error budget for galaxy clustering bias does
not encompass offsets that could result from the effects of rela-
tive streaming velocities between baryons and dark matter in the
earliest collapse of proto-galaxies (Tseliakhovich & Hirata 2010).
Although this effect is large at the cosmological Jeans scale of
10

6

M� halos, the galaxies we measure in BOSS occupy halos over
a million times larger and one might imagine that the impact of the
early streaming velocities have been significantly diluted. Empiri-
cally, a recent paper by Yoo & Seljak (2013) limited the acoustic
scale shifts from this effect through its impact on the large-scale
DR9 power spectrum; they found a remaining r.m.s. uncertainty of
0.6 per cent. While we look forward to more work on the possi-
ble effects of relative streaming velocities, we do not inflate our
systematic errors by this much, as theories often predict the effect
to be negligible at mass scales well above the cosmological Jeans
scale (see e.g. McQuinn & O’Leary 2012).

To summarize, for our isotropic analysis, we adopt systematic
errors of 0.3 per cent for fitting and survey effects and 0.3 per cent
for unmodeled astrophysical shifts. These are applied in quadra-
ture. These systematic errors increase the error on the CMASS con-
sensus DV value from 0.9 per cent to 1.0 per cent and the error on
the LOWZ consensus value DV from 2.0 per cent to 2.1 per cent.
For the anisotropic analysis, we apply the above effects in quadra-
ture to ↵ and then add an additional independent systematic error
of 0.5 per cent in quadrature to ✏. The impact on the measurement
of DA and H is subdominant to the statistical errors.

8.2 The Distance Scale from BOSS BAO

As described in Anderson et al. (2012) and Anderson et al. (2014),
the value of ↵ is directly related to the ratio of the quantity

DV (z)/rd to its value in our fiducial model:

DV /rd = ↵ (DV /rd)
fid

. (47)

Similarly, ↵? and ↵k measure the ratios of DA/rd and rd/H , re-
spectively, to their values in our fiducial model.

We opt to quote our results by writing these quantities as

DV (z
e↵

) = ↵DV,fid(ze↵)

✓
rd

rd,fid

◆
, (48)

DA(z
e↵

) = ↵?DA,fid(ze↵)

✓
rd

rd,fid

◆
, (49)

H(z
e↵

) = ↵kHfid

(z
e↵

)

✓
rd,fid
rd

◆
. (50)

With this form, we emphasize that only the ratio of rd between the
adopted and fiducial cosmology matters. There are a variety of pos-
sible conventions and fitting formulae available for rd; any of these
can be used so long as one is consistent. Moreover, within the usual
class of CDM cosmologies, the CMB data sets tightly constrain rd.
For example, the Planck Collaboration (2013b) results imply rd to
0.4 per cent r.m.s. precision for the minimal ⇤CDM model and ex-
tensions to spatial curvature and low-redshift dark energy. As this
is somewhat tighter than our statistical errors on the ↵’s, it is rea-
sonable to choose a form of the results that emphasizes the absolute
measurement of the distance scale.

The effective redshift of CMASS is z
e↵

= 0.57, while
that of LOWZ is z

e↵

= 0.32. Our fiducial cosmology is
⌦m = 0.274, H

0

= 70 km s�1 Mpc�1, ⌦bh
2

= 0.0224,
ns = 0.95, m⌫ = 0 eV, w = �1, ⌦K = 0, and
�
8

= 0.8. Using this cosmology, we obtain DV,fid(0.57) =

2026.49Mpc, DA,fid(0.57) = 1359.72Mpc, and H
fid

(0.57) =

93.558 km s�1 Mpc�1 for CMASS. For LOWZ, we have
DV,fid(0.32) = 1241.47Mpc, DA,fid(0.32) = 966.05Mpc, and
H

fid

(0.32) = 81.519 km s�1 Mpc�1.
Inserting the constraints on ↵, we find the primary isotropic

results of this paper:

DV (0.57) = (2056± 20 Mpc)

✓
rd

rd,fid

◆
(51)

DV (0.32) = (1264± 25 Mpc)

✓
rd

rd,fid

◆
(52)

for the post-reconstruction DR11 consensus values. For the
anisotropic CMASS fit, we find

DA(0.57) = (1421± 20 Mpc)

✓
rd

rd,fid

◆
, (53)

H(0.57) =

�
96.8± 3.4 km s

�1

Mpc

�1

�✓rd,fid
rd

◆
, (54)

with a correlation coefficient between DA and H of 0.539 (in the
sense that higher H favors higher DA). As described in Section 7.5,
we recommend the anisotropic values as our primary result at z =

0.57 when fitting cosmological models.
When applying these constraints to test cosmology, one must

of course consider the variation in the sound horizon in the models.
Our fiducial cosmology has a sound horizon rd,fid = 153.19Mpc
if one adopts the definition in Eqs. 4 through 6 of Eisenstein & Hu
(1998, hereafter, EH98). Alternatively, if one adopts the definition
of the sound horizon in CAMB, one finds rd,fid = 149.28Mpc,
which is 2.6 per cent less. Much of the past BAO literature uses the
EH98 convention, but we now recommend using CAMB as it pro-
vides a transparent generalization to models with massive neutrinos
or other variations from vanilla CDM. As discussed in Mehta et al.
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Combine power-spectrum and correlation function to give:
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Table 13. Comparison of CMB flat ⇤CDM predictions for the BAO distance scale to our BOSS DR11 measurements. We translate the CMB predictions to our
observables of ↵, ✏, ↵k, and ↵?. As the CMB data sets vary notably in the value of ⌦mh2, we report these quantities. We also translate our BOSS distance
measurements to the constraints they imply on ⌦mh2, assuming the flat ⇤CDM model and using the CMB measurements of ⌦bh

2 and the angular acoustic
scale. We stress that this inference of ⌦mh2 is entirely model-dependent and should not be used as a more general result of this paper. However, it does allow
an easy comparison of the CMB and BOSS data sets in the context of ⇤CDM.

dataset z
e↵

↵ ✏ ↵k ↵? ⌦mh2

Planck 0.32 1.040± 0.016 �0.0033± 0.0013 1.033± 0.014 1.043± 0.018 0.1427± 0.0024
WMAP 0.32 1.008± 0.029 �0.0007± 0.0021 1.007± 0.025 1.009± 0.031 0.1371± 0.0044

eWMAP 0.32 0.987± 0.023 0.0006± 0.0016 0.988± 0.020 0.986± 0.025 0.1353± 0.0035

LOWZ 0.32 1.018± 0.021 - - - 0.1387± 0.0036

Planck 0.57 1.031± 0.013 �0.0053± 0.0020 1.020± 0.009 1.037± 0.015 0.1427± 0.0024

WMAP 0.57 1.006± 0.023 �0.0012± 0.0034 1.004± 0.017 1.007± 0.027 0.1371± 0.0044
eWMAP 0.57 0.988± 0.019 0.0010± 0.0027 0.990± 0.013 0.987± 0.021 0.1353± 0.0035

CMASS-iso 0.57 1.0144± 0.0098 - - - 0.1389± 0.0022

CMASS 0.57 1.019± 0.010 �0.025± 0.014 0.968± 0.033 1.045± 0.015 0.1416± 0.0018

Figure 23. Comparison of the 68 and 95 per cent constraints in the
DA(0.57)(rfidd /rd) � H(0.57)(rfidd /rd) plane from CMASS consensus
anisotropic (orange) and isotropic (grey) BAO constraints. The Planck con-
tours correspond to Planck+WMAP polarization (WP) and no lensing. The
green contours show the constraints from WMAP9.

our isotropic and anistropic BAO observables at z = 0.32 and
z = 0.57. All three predictions are in good agreement with
our isotropic measurements. The largest discrepancy between the
Planck ⇤CDM predictions and BOSS measurements is about 1.5�
for the anisotropic parameter ✏ (or the closely related ↵k) at z =

0.57. eWMAP and BOSS disagree at about 1.8� in ✏, which leads
to an approximately 2.2� offset in ↵?.

Our measurements therefore provide no indication that addi-
tional parameters are needed to describe the expansion history be-
yond those in flat ⇤CDM. However, it is also clear from Fig. 22 and
Table 13 that the disagreement between the WMAP+SPT/ACT and
Planck ⇤CDM BAO predictions is comparable to the error on the
BOSS acoustic scale measurement. Under the assumption of a flat

⇤CDM model, our anisotropic measurements show a mild prefer-
ence for the Planck parameter space over WMAP+SPT/ACT. We
are optimistic that the further analysis of the CMB data sets will
resolve the apparent difference.

Since the uncertainties in the ⇤CDM prediction of the BAO
observables from the CMB are dominated by the uncertainty in
⌦ch

2, another way to summarize and compare the BAO measure-
ments across redshift is as a constraint on ⌦mh2 from the flat
⇤CDM model holding the CMB acoustic scale, `A (Eq. 10 of
Planck Collaboration 2013b), and physical baryon density, ⌦bh

2

fixed. These values are given in the ⌦mh2 column of Table 13.
We stress that these inferences depend critically on the assump-
tion of a flat ⇤CDM expansion history. Using this method, the
BOSS inferences are more precise than the CMB and fall between
the WMAP and Planck constraints. The isotropic CMASS analy-
sis yields ⌦mh2

= 0.1389 ± 0.0022, in close agreement with the
LOWZ result of 0.1387 ± 0.0036. Our anisotropic analysis shifts
to a notably larger value, ⌦mh2

= 0.1416 ± 0.0018, closer to the
Planck measurement. This shift in ⌦mh2 between the isotropic and
anisotropic CMASS fits is simply a restatement of the half sigma
shift in ↵ between our isotropic and anistropic fits, discussed in
Sec. 7.5.

For our cosmological parameter estimation, we present
Planck in most cases but show the results for WMAP and
WMAP+SPT/ACT in some cases so that the reader can assess the
differences. For most combinations, the agreement is good. This is
because the BAO data fall between the two CMB results and hence
tend to pull towards reconciliation, and because the low-redshift
data sets dominate the measurements of dark energy in cosmolo-
gies more complicated than the vanilla flat ⇤CDM model.

Fig. 23 and Table 13 illustrate many of the features of the
⇤CDM model fits we present in Table 14. For instance, the ad-
dition of a CMASS BAO measurement to the CMB improves the
constraint on ⌦mh2 by 40 per cent for Planck (with similar im-
provements for the other CMB choices). The central values for
all three reported ⇤CDM parameters shift by one sigma between
isotropic and anisotropic CMASS fits. There are also one sigma
shifts between Planck and WMAP/eWMAP central parameter val-
ues at fixed BAO measurements; taken together, WMAP+CMASS-
iso or eWMAP+CMASS-iso and Planck+CMASS differ in their
central values of ⌦m and H

0

by about 2�. Additionally combin-
ing with other BAO and SN measurements relaxes this tension to
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Figure 19. The DR11 wedge measurements along with their fits. The top
panel is pre-reconstruction while the bottom one is post-reconstruction.

peak sharper for both ⇠|| and ⇠?. Further, reconstruction has de-
creased the difference in their amplitudes as the redshift space dis-
tortion signal has been reduced.

7.2 DR11 Acoustic Scale Measurement from Anisotropic
Clustering

As for our isotropic analysis, the results of our anisotropic BAO fits
to the DR10 and DR11 mocks show significant improvement on
average with reconstruction (see Table 5), and therefore we adopt
post-reconstruction results as our default. Our consensus value for
the CMASS anisotropic BAO measurement, ↵|| = 0.968± 0.032,
↵? = 1.044 ± 0.013, is determined from a combination of the
measurements using the multipoles and the wedges methodologies,
and we describe the individual measurements and the process of
arriving at our consensus measurement in what follows.

The curves in Figs. 18 and 19 show the best-fit BAO mod-
els3 to the pre- and post-reconstruction data using the multipoles
and wedges methodology. The fits, with characteristics listed in Ta-
ble 10, provide a good description of the data for 30 dof: the largest

3 The best fits to both ⇠`(r) where ` = 0, 2 and ` =k,? respectively.

�2 is 35 (a larger �2 would be expected 24 per cent of the time)
and the smallest is 21 (a smaller �2 would be expected 11 per cent
of the time).

The uncertainties on the anisotropic BAO measurements are
typical of those we find in the mock samples. For the multipoles
result, this is illustrated in Fig. 7, which shows that the uncertainties
recovered from the data (orange stars) are within the range of those
recovered from mock samples (blue points). The uncertainty on the
BAO measurements using the wedges methodology are similar to
the multipoles results, with a small increase for ↵?, that exactly
matches that seen fitting mock catalogues. We further illustrate the
constraints obtained from each method in Fig. 20 where one can
see the comparison of the 60 per cent and 95 per cent constraints in
the DA and H(z) plane scaled by rfid/rd using the two methods.
The size of the contours from both methods agree very well, with a
slightly more elongated contour from multipoles, showing that the
multipoles and wedges contain slightly different information.

The precision of the DR11 results are improved by reconstruc-
tion, as expected. This is illustrated in Fig. 20, where the post-
reconstruction DA(z), H(z) contours in the right-hand plot show
a dramatic decrease compared to the pre-reconstruction results dis-
played in the left-hand panel. Based on our testing of 600 mock
CMASS samples, we found (as shown in Figure 7) that reconstruc-
tion is expected to improve the precision of the multipoles method
measurement of ↵? by ⇠ 40 per cent (the median uncertainty de-
creases from 0.021 to 0.015) and of ↵k by 63 per cent (the median
uncertainty decreases 0.044 to 0.027), with very similar results us-
ing the wedges methodology. We find that for the DR11 data, the
results are similar to our expectation, as the improvements in the
precision of the results gained by reconstruction are all between 39
and 50 per cent. The improvement in ↵? (50 per cent for multi-
poles and 42 per cent for wedges) is slightly better than expected
and the improvement in ↵|| (39 per cent for multipoles and 48 per
cent for wedges) is slightly worse, but Fig. 7 shows that the results
(orange stars) are well within the range of the results determined
from mock samples (blue points).

Table 10 shows that the DR11 post-reconstruction multipoles
and wedges results disagree by close to 1-�: ↵k,Mult

= 0.952 ±

0.031, ↵k,Wedges

= 0.982 ± 0.031; ↵?,Mult

= 1.051 ± 0.012,
↵?,Wedges

= 1.038 ± 0.012 . The difference in ↵k is 0.030. We
then turn to the galaxy mock catalogs to see whether this behavior
is common. We find that 39 out of 600 mocks show the same or
larger differences between the two methods. The mean difference
is 0.005 with a RMS of 0.016 suggesting that this difference in
the data is a 1.9 � event. The difference in ↵? is 0.013, we also
found 45 out of 600 cases that show the same or larger differences
between the two methods. The mean difference found in the mocks
is 0.001 and the r.m.s. is 0.008, this suggests that the difference
in the data is a 1.6� event. This is mostly driven by differences in
the fitted results of ✏, Table 10 shows us that the fitted values of
↵ from both methodologies only differ by 0.2 per cent, while ✏ is
different by 1.5 per cent, which is comparable to the 1� error on
✏. We thus turn to a discussion using ↵-✏ parametrization in the
following discussion.

Pre-reconstruction, the multipoles and wedges measurements
in ↵ and ✏ differ by less than 0.25� as shown in Table 10. Fig. 20
shows that, as reconstruction tightens the constraints from both
methods, the central values shift slightly along the axis of con-
stant ↵ by 1.5 per cent in ✏. When we look at this comparison in
our mocks, we find a r.m.s. difference in ✏ fits of 0.007, indicat-
ing that the data is a 2� outlier. 27 of 600 mocks have differences
more extreme than ±0.015. The other three cases (DR10 and DR11
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random and random-random galaxy pair counts respectively. The
correlation function is computed in bins of �r = 4h�1Mpc and
�µ = 0.01. Multipoles and wedges - the two estimators that un-
derpin the results in this paper - are constructed from ⇠(r, µ) fol-
lowing Section 4.2.

3.4 Mock Catalogues

We use 600 galaxy mock catalogues of Manera et al. (2013) to
estimate sample covariance matrices for all measurements in this
paper. These mocks are generated using a method similar to the
PTHalos mocks of Scoccimarro & Sheth (2002) and recover the
amplitude of the clustering of halos to within 10 per cent. Full de-
tails on the mocks can be found in Manera et al. (2013). The mock
catalogues correspond to a box at z = 0.55 (and do not incorporate
any evolution within the redshift of the sample, which is expected
to be small), include redshift-space distortions, follow the observed
sky completeness and reproduce the radial number density of the
observed galaxy sample.

Figure 1 shows the average monopole and quadrupole and
transverse and radial wedges of the correlation function over the
600 mocks (see § 4.2 for definitions).

3.5 Reconstruction

Following Anderson et al. (2012), we attempt to improve the sta-
tistical sensitivity of the BAO measurement by reconstructing the
linear density field, correcting for the effects of non-linear struc-
ture growth around the BAO scale (Eisenstein et al. 2007a). The
reconstruction technique has been successfully implemented on an
anisotropic BAO analysis by Xu et al. (2013) using SDSS-II Lumi-
nous Red Galaxies at z = 0.35, achieving an improvement of a fac-
tor of 1.4 on the error on DA and of 1.2 on the error on H , relative
to the pre-reconstruction case. Anderson et al. (2012) successfully
applied reconstruction on the same dataset used here when measur-
ing DV from spherically-averaged two-point statistics. They ob-
served only a slight reduction in the error of DV , when compared
to the pre-reconstruction case, but at a level consistent with mock
galaxy catalogues.

The algorithm used in this paper is described in detail in Pad-
manabhan et al. (2012), to which we refer the reader for full details.
Briefly, reconstruction uses the density field to construct a displace-
ment field that attempts to recover a galaxy spatial distribution that
more closely reproduces the expected result from linear growth. A
summary of the implementation of the algorithm on the CMASS
DR9 dataset (as used here) is given in Section 4.1 of Anderson
et al. (2012).

Figure 2 shows the average of the multipoles and wedges
of the correlation function before and after reconstruction. Re-
construction sharpens the acoustic feature in the monopole, while
decreasing the amplitude of the quadrupole, particularly at large
scales where it goes close to zero. These changes are manifested
in the wedges as a sharpening of the BAO feature in both wedges
as well as a decrease in the difference in amplitude between the
transverse and radial wedge. This is expected since reconstruction
removes much of the large-scale redshift-space distortions. Assum-
ing the correct cosmology, an ideal reconstruction algorithm would
perfectly restore isotropy and eliminate the quadrupole 3 In the

3 Reconstruction only corrects for the dynamical quadrupole induced by
peculiar velocities. The incorrect cosmology would induce a quadrupole

wedges, this would be manifest by the transverse and radial wedge
being the same. We depart from this ideal because of an imperfect
treatment of of nonlinear evolution and small-scale effects, the sur-
vey geometry and imperfections in the implementation of the re-
construction algorithm itself. However, these imperfections affect
the broad band shape of the correlation function but do not bias the
location of the BAO feature, as we explicitly demonstrate below.

4 METHOD

4.1 Parametrization

The choice of an incorrect cosmology distorts the BAO feature
in the galaxy correlation function, stretching it in both the trans-
verse and radial directions. The shift in the transverse direction con-
strains the angular diameter distance relative to the sound horizon,
DA(z)/rs, while the radial direction constrains the relative Hub-
ble parameter cz/(H(z)rs). As is standard in the BAO literature,
when fitting for these, we parameterize with respect to a fiducial
model (indicated by a superscript fid) :

↵? =

DA(z)r
fid

s

Dfid

A rs
, (4)

and

↵|| =
Hfid

(z)rfids
H(z)rs

. (5)

An alternative parametrization is to decompose these shifts
into isotropic and anisotropic components. We define an isotropic
shift ↵

↵ = ↵2/3
? ↵1/3

|| , (6)

and the anisotropic shift ✏ by

1 + ✏ =

✓
↵||

↵?

◆
1/3

. (7)

For the fiducial cosmological model, we have ↵ = ↵? = ↵k = 1

and ✏ = 0. For completeness, we note

↵? =

↵
1 + ✏

(8)

↵|| = ↵(1 + ✏)2 . (9)

The majority of previous BAO results have restricted their
analysis to the isotropically averaged correlation function and have
therefore presented their results in terms of ↵. In this work, the
fitting of the multipoles uses the ↵, ✏ parametrization, while the
clustering wedges use ↵||,↵?. While these are formally equiva-
lent, the choices of data fitting ranges and priors imply that differ-
ent parametrizations probe somewhat different volumes in model
space, an issue we discuss in later sections. Although we use differ-
ent parametrizations, we transform to the ↵?,↵|| parametrization
when presenting results for ease of comparison.

through the Alcock-Paczynski test, even in the absence of this dynamical
quadrupole (see Padmanabhan & White (2008), Kazin et al. (2012) and Xu
et al. (2013) for a detailed discussion and illustrative examples.)
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random and random-random galaxy pair counts respectively. The
correlation function is computed in bins of �r = 4h�1Mpc and
�µ = 0.01. Multipoles and wedges - the two estimators that un-
derpin the results in this paper - are constructed from ⇠(r, µ) fol-
lowing Section 4.2.

3.4 Mock Catalogues

We use 600 galaxy mock catalogues of Manera et al. (2013) to
estimate sample covariance matrices for all measurements in this
paper. These mocks are generated using a method similar to the
PTHalos mocks of Scoccimarro & Sheth (2002) and recover the
amplitude of the clustering of halos to within 10 per cent. Full de-
tails on the mocks can be found in Manera et al. (2013). The mock
catalogues correspond to a box at z = 0.55 (and do not incorporate
any evolution within the redshift of the sample, which is expected
to be small), include redshift-space distortions, follow the observed
sky completeness and reproduce the radial number density of the
observed galaxy sample.

Figure 1 shows the average monopole and quadrupole and
transverse and radial wedges of the correlation function over the
600 mocks (see § 4.2 for definitions).

3.5 Reconstruction

Following Anderson et al. (2012), we attempt to improve the sta-
tistical sensitivity of the BAO measurement by reconstructing the
linear density field, correcting for the effects of non-linear struc-
ture growth around the BAO scale (Eisenstein et al. 2007a). The
reconstruction technique has been successfully implemented on an
anisotropic BAO analysis by Xu et al. (2013) using SDSS-II Lumi-
nous Red Galaxies at z = 0.35, achieving an improvement of a fac-
tor of 1.4 on the error on DA and of 1.2 on the error on H , relative
to the pre-reconstruction case. Anderson et al. (2012) successfully
applied reconstruction on the same dataset used here when measur-
ing DV from spherically-averaged two-point statistics. They ob-
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to the pre-reconstruction case, but at a level consistent with mock
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The algorithm used in this paper is described in detail in Pad-
manabhan et al. (2012), to which we refer the reader for full details.
Briefly, reconstruction uses the density field to construct a displace-
ment field that attempts to recover a galaxy spatial distribution that
more closely reproduces the expected result from linear growth. A
summary of the implementation of the algorithm on the CMASS
DR9 dataset (as used here) is given in Section 4.1 of Anderson
et al. (2012).

Figure 2 shows the average of the multipoles and wedges
of the correlation function before and after reconstruction. Re-
construction sharpens the acoustic feature in the monopole, while
decreasing the amplitude of the quadrupole, particularly at large
scales where it goes close to zero. These changes are manifested
in the wedges as a sharpening of the BAO feature in both wedges
as well as a decrease in the difference in amplitude between the
transverse and radial wedge. This is expected since reconstruction
removes much of the large-scale redshift-space distortions. Assum-
ing the correct cosmology, an ideal reconstruction algorithm would
perfectly restore isotropy and eliminate the quadrupole 3 In the

3 Reconstruction only corrects for the dynamical quadrupole induced by
peculiar velocities. The incorrect cosmology would induce a quadrupole

wedges, this would be manifest by the transverse and radial wedge
being the same. We depart from this ideal because of an imperfect
treatment of of nonlinear evolution and small-scale effects, the sur-
vey geometry and imperfections in the implementation of the re-
construction algorithm itself. However, these imperfections affect
the broad band shape of the correlation function but do not bias the
location of the BAO feature, as we explicitly demonstrate below.

4 METHOD

4.1 Parametrization

The choice of an incorrect cosmology distorts the BAO feature
in the galaxy correlation function, stretching it in both the trans-
verse and radial directions. The shift in the transverse direction con-
strains the angular diameter distance relative to the sound horizon,
DA(z)/rs, while the radial direction constrains the relative Hub-
ble parameter cz/(H(z)rs). As is standard in the BAO literature,
when fitting for these, we parameterize with respect to a fiducial
model (indicated by a superscript fid) :

↵? =
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, (4)

and
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. (5)
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shift ↵

↵ = ↵2/3
? ↵1/3

|| , (6)
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For the fiducial cosmological model, we have ↵ = ↵? = ↵k = 1

and ✏ = 0. For completeness, we note

↵? =
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1 + ✏

(8)

↵|| = ↵(1 + ✏)2 . (9)

The majority of previous BAO results have restricted their
analysis to the isotropically averaged correlation function and have
therefore presented their results in terms of ↵. In this work, the
fitting of the multipoles uses the ↵, ✏ parametrization, while the
clustering wedges use ↵||,↵?. While these are formally equiva-
lent, the choices of data fitting ranges and priors imply that differ-
ent parametrizations probe somewhat different volumes in model
space, an issue we discuss in later sections. Although we use differ-
ent parametrizations, we transform to the ↵?,↵|| parametrization
when presenting results for ease of comparison.

through the Alcock-Paczynski test, even in the absence of this dynamical
quadrupole (see Padmanabhan & White (2008), Kazin et al. (2012) and Xu
et al. (2013) for a detailed discussion and illustrative examples.)
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tude of clustering, as this does not represent a bias in the mean, but
rather an error on the error.

We next turn to systematic errors from true astrophysical shifts
due to non-linear structure formation and galaxy clustering bias.
Prior to reconstruction, one can see the small expected shift, of or-
der 0.4 per cent, in the fitting of the mocks. From perturbation the-
ory (Crocce & Scoccimarro 2008; Padmanabhan & White 2009)
and simulations (Padmanabhan & White 2009; Seo et al. 2010) we
expect shifts in the clustering of matter at 0.2-0.25 per cent at these
redshifts. Galaxy bias produces additional small shifts (Padman-
abhan & White 2009; Mehta et al. 2011). As reconstruction im-
proves due to the larger and more contiguous survey volume, we
expect it to remove the shifts due to large-scale velocities. Mehta
et al. (2011) found no example in their models in which the shift
after reconstruction was non-zero, with errors of about 0.1 per cent
r.m.s.. The mock catalogs used here, as well as the two in Ross et
al. (2014), also show no offsets at this level. Of course, our mock
catalogs and the galaxy bias models of Mehta et al. (2011) do not
span all possibilities, but there is a good physical reason why recon-
struction is successful at removing shifts: in a wide range of bias
models, the galaxy density field is proportional to the dark matter
density field at scales above 10Mpc. The shifts in the acoustic scale
arise in second-order perturbation theory due to large-scale flows,
which are well predicted by the galaxy maps. Reconstruction sub-
stantially reduces the flows and hence the source of the acoustic
scale shifts. To be conservative, we triple the level of uncertainty
implied by our current mocks and adopt a systematic error of 0.3
per cent in ↵ for shifts from galaxy bias that are not corrected by
reconstruction.

Our systematic error budget for galaxy clustering bias does
not encompass offsets that could result from the effects of rela-
tive streaming velocities between baryons and dark matter in the
earliest collapse of proto-galaxies (Tseliakhovich & Hirata 2010).
Although this effect is large at the cosmological Jeans scale of
10

6

M� halos, the galaxies we measure in BOSS occupy halos over
a million times larger and one might imagine that the impact of the
early streaming velocities have been significantly diluted. Empiri-
cally, a recent paper by Yoo & Seljak (2013) limited the acoustic
scale shifts from this effect through its impact on the large-scale
DR9 power spectrum; they found a remaining r.m.s. uncertainty of
0.6 per cent. While we look forward to more work on the possi-
ble effects of relative streaming velocities, we do not inflate our
systematic errors by this much, as theories often predict the effect
to be negligible at mass scales well above the cosmological Jeans
scale (see e.g. McQuinn & O’Leary 2012).

To summarize, for our isotropic analysis, we adopt systematic
errors of 0.3 per cent for fitting and survey effects and 0.3 per cent
for unmodeled astrophysical shifts. These are applied in quadra-
ture. These systematic errors increase the error on the CMASS con-
sensus DV value from 0.9 per cent to 1.0 per cent and the error on
the LOWZ consensus value DV from 2.0 per cent to 2.1 per cent.
For the anisotropic analysis, we apply the above effects in quadra-
ture to ↵ and then add an additional independent systematic error
of 0.5 per cent in quadrature to ✏. The impact on the measurement
of DA and H is subdominant to the statistical errors.

8.2 The Distance Scale from BOSS BAO

As described in Anderson et al. (2012) and Anderson et al. (2014),
the value of ↵ is directly related to the ratio of the quantity

DV (z)/rd to its value in our fiducial model:

DV /rd = ↵ (DV /rd)
fid

. (47)

Similarly, ↵? and ↵k measure the ratios of DA/rd and rd/H , re-
spectively, to their values in our fiducial model.

We opt to quote our results by writing these quantities as

DV (z
e↵

) = ↵DV,fid(ze↵)

✓
rd

rd,fid

◆
, (48)

DA(z
e↵

) = ↵?DA,fid(ze↵)

✓
rd

rd,fid

◆
, (49)

H(z
e↵

) = ↵kHfid

(z
e↵

)

✓
rd,fid
rd

◆
. (50)

With this form, we emphasize that only the ratio of rd between the
adopted and fiducial cosmology matters. There are a variety of pos-
sible conventions and fitting formulae available for rd; any of these
can be used so long as one is consistent. Moreover, within the usual
class of CDM cosmologies, the CMB data sets tightly constrain rd.
For example, the Planck Collaboration (2013b) results imply rd to
0.4 per cent r.m.s. precision for the minimal ⇤CDM model and ex-
tensions to spatial curvature and low-redshift dark energy. As this
is somewhat tighter than our statistical errors on the ↵’s, it is rea-
sonable to choose a form of the results that emphasizes the absolute
measurement of the distance scale.

The effective redshift of CMASS is z
e↵

= 0.57, while
that of LOWZ is z

e↵

= 0.32. Our fiducial cosmology is
⌦m = 0.274, H

0

= 70 km s�1 Mpc�1, ⌦bh
2

= 0.0224,
ns = 0.95, m⌫ = 0 eV, w = �1, ⌦K = 0, and
�
8

= 0.8. Using this cosmology, we obtain DV,fid(0.57) =

2026.49Mpc, DA,fid(0.57) = 1359.72Mpc, and H
fid

(0.57) =

93.558 km s�1 Mpc�1 for CMASS. For LOWZ, we have
DV,fid(0.32) = 1241.47Mpc, DA,fid(0.32) = 966.05Mpc, and
H

fid

(0.32) = 81.519 km s�1 Mpc�1.
Inserting the constraints on ↵, we find the primary isotropic

results of this paper:

DV (0.57) = (2056± 20 Mpc)

✓
rd

rd,fid

◆
(51)

DV (0.32) = (1264± 25 Mpc)

✓
rd

rd,fid

◆
(52)

for the post-reconstruction DR11 consensus values. For the
anisotropic CMASS fit, we find

DA(0.57) = (1421± 20 Mpc)

✓
rd

rd,fid

◆
, (53)

H(0.57) =

�
96.8± 3.4 km s

�1

Mpc

�1

�✓rd,fid
rd

◆
, (54)

with a correlation coefficient between DA and H of 0.539 (in the
sense that higher H favors higher DA). As described in Section 7.5,
we recommend the anisotropic values as our primary result at z =

0.57 when fitting cosmological models.
When applying these constraints to test cosmology, one must

of course consider the variation in the sound horizon in the models.
Our fiducial cosmology has a sound horizon rd,fid = 153.19Mpc
if one adopts the definition in Eqs. 4 through 6 of Eisenstein & Hu
(1998, hereafter, EH98). Alternatively, if one adopts the definition
of the sound horizon in CAMB, one finds rd,fid = 149.28Mpc,
which is 2.6 per cent less. Much of the past BAO literature uses the
EH98 convention, but we now recommend using CAMB as it pro-
vides a transparent generalization to models with massive neutrinos
or other variations from vanilla CDM. As discussed in Mehta et al.
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Figure 21. The distance-redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11
CMASS and LOWZ consensus values from this paper, along with those
from the acoustic peak detection from the 6dFGS (Beutler et al. 2011) and
WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). The grey region
shows the 1� prediction for DV (z) from the Planck 2013 results, assum-
ing flat ⇤CDM and using the Planck data without lensing combined with
smaller-scale CMB observations and WMAP polarization (Planck Collab-
oration 2013b). One can see the superb agreement in these cosmological
measurements.

9.2 Comparison of BAO and CMB Distance Scales in ⇤CDM

Results from the BAO method have improved substantially in the
last decade and we have now achieved measurements at a wide
range of redshifts. In Fig. 21 we plot the distance-redshift rela-
tion obtained from isotropic acoustic scale fits in the latest galaxy
surveys. In addition to the values from this paper, we include the
acoustic scale measurement from the 6dFGS (Beutler et al. 2011)
and WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). As the
BAO method actually measures DV /rd, we plot this quantity mul-
tiplied by rd,fid. The very narrow grey band here is the predic-
tion from the Planck CMB dataset detailed in Sec. 9.1. In vanilla
flat ⇤CDM, the CMB acoustic peaks imply precise measurements
of ⌦mh2 and ⌦bh

2, which in turn imply the acoustic scale. The
angular acoustic scale in the CMB then determines the distance
to z = 1089, which breaks the degeneracy between ⌦m and h
once the low-redshift expansion history is otherwise specified (e.g.,
given ⌦K , w, and wa). The comparison between low-redshift BAO
measurements and the predictions from the CMB assuming a flat
⇤CDM cosmology therefore allows percent-level checks on the ex-
pansion history in this model over a large lever arm in redshift. One
sees remarkably good agreement between the BAO measurements
and the flat ⇤CDM predictions from CMB observations.

Fig. 22 divides by the best-fit prediction from Planck Collabo-
ration (2013b) to allow one to focus on a percent-level comparison.
In addition to the BAO data from the previous figure, we also plot
older BAO measurements based primarily on SDSS-II LRG data
(Percival et al. 2010; Padmanabhan et al. 2012). This figure also
shows the flat ⇤CDM prediction from the WMAP+SPT/ACT data
set. The predictions from these two data sets are in mild conflict
due to the ⇠ 5 per cent difference in their ⌦mh2 values, discussed
in Section 9.1. One can see that the isotropic BAO data, and the
BOSS measurements in particular, fall between the two predictions
and are consistent with both. Note that the recent revision of Planck
data by Spergel et al. (2013) results in a value of ⌦mh2 that is in
excellent agreement with our isotropic BAO measurements, which

Figure 22. The DV (z)/rd measured from galaxy surveys, divided by
the best-fit flat ⇤CDM prediction from the Planck data. All error bars
are 1�. The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fit flat ⇤CDM prediction from the
WMAP+SPT/ACT results, including their smaller-scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1 � varia-
tion in the predictions for DV (z) (at a particular redshift, as opposed to
the whole redshift range), which are dominated by uncertainties in ⌦mh2.
As the value of ⌦mh2 varies, the prediction will move coherently up or
down, with amplitude indicated by the grey region. One can see the mild
tension between the two sets of CMB results, as discussed in Planck Col-
laboration (2013b). The current galaxy BAO data fall in between the two
predictions and are clearly consistent with both. As we describe in Sec. 7.5,
the anisotropic CMASS fit would yield a prediction for this plot that is 0.5
per cent higher than the isotropic CMASS fit; this value would fall some-
what closer to the Planck prediction. In addition to the BOSS data points,
we plot SDSS-II results as open circles, that from Percival et al. (2010) at
z = 0.275 and from Padmanabhan et al. (2012) at z = 0.35. These data
sets have a high level of overlap with BOSS LOWZ and with each other,
so one should not include more than one in statistical fitting. However, the
results are highly consistent despite variations in the exact data sets and dif-
ferences in methodology. We also plot results from WiggleZ from Kazin
et al. (2014) as open squares; however, we note that the distance measure-
ments from these three redshift bins are substantially correlated.

brings Planck predictions of the distance scale at z = 0.32 and
z = 0.57 much closer to BOSS measurements.

Our 68 and 95 per cent constraints in the DA(0.57)(r
fid

d /rd)�
H(0.57)(rd/r

fid

d ) plane from CMASS consensus anisotropic mea-
surements are highlighted in orange in Fig. 23. In grey we overplot
one-dimensional 1- and 2� contours of our consensus isotropic
BAO fit. Also shown in Fig. 23 are the flat ⇤CDM predictions from
the Planck and WMAP CMB data sets detailed in Section 9.1. The
CMB constraints occupy a narrow ellipse defined by the extremely
precise measurement of the angular acoustic scale of 0.06 per cent
(Planck Collaboration 2013b). The extent of the ellipse arises pri-
marily from the remaining uncertainty on the physical cold dark
matter density, ⌦ch

2; Planck narrows the allowed range by nearly
a factor of two compared with WMAP. The CMASS isotropic BAO
constraints are consistent with both CMB predictions shown here.
The anisotropic constraints in particular prefer larger values of
⌦ch

2 (right edge of the WMAP contour) also favored by Planck.
Also evident in this plot is the offset between the best fit anisotropic
constraint on H(0.57)(rd/r

fid

d ) (or ✏) and the flat ⇤CDM predic-
tions from the CMB.

To make the flat ⇤CDM comparison between the CMB
and our BAO measurements more quantitative, we report in Ta-
ble 13 the Planck, WMAP, and eWMAP ⇤CDM predictions for
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Figure 21. The distance-redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11
CMASS and LOWZ consensus values from this paper, along with those
from the acoustic peak detection from the 6dFGS (Beutler et al. 2011) and
WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). The grey region
shows the 1� prediction for DV (z) from the Planck 2013 results, assum-
ing flat ⇤CDM and using the Planck data without lensing combined with
smaller-scale CMB observations and WMAP polarization (Planck Collab-
oration 2013b). One can see the superb agreement in these cosmological
measurements.

9.2 Comparison of BAO and CMB Distance Scales in ⇤CDM

Results from the BAO method have improved substantially in the
last decade and we have now achieved measurements at a wide
range of redshifts. In Fig. 21 we plot the distance-redshift rela-
tion obtained from isotropic acoustic scale fits in the latest galaxy
surveys. In addition to the values from this paper, we include the
acoustic scale measurement from the 6dFGS (Beutler et al. 2011)
and WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). As the
BAO method actually measures DV /rd, we plot this quantity mul-
tiplied by rd,fid. The very narrow grey band here is the predic-
tion from the Planck CMB dataset detailed in Sec. 9.1. In vanilla
flat ⇤CDM, the CMB acoustic peaks imply precise measurements
of ⌦mh2 and ⌦bh

2, which in turn imply the acoustic scale. The
angular acoustic scale in the CMB then determines the distance
to z = 1089, which breaks the degeneracy between ⌦m and h
once the low-redshift expansion history is otherwise specified (e.g.,
given ⌦K , w, and wa). The comparison between low-redshift BAO
measurements and the predictions from the CMB assuming a flat
⇤CDM cosmology therefore allows percent-level checks on the ex-
pansion history in this model over a large lever arm in redshift. One
sees remarkably good agreement between the BAO measurements
and the flat ⇤CDM predictions from CMB observations.

Fig. 22 divides by the best-fit prediction from Planck Collabo-
ration (2013b) to allow one to focus on a percent-level comparison.
In addition to the BAO data from the previous figure, we also plot
older BAO measurements based primarily on SDSS-II LRG data
(Percival et al. 2010; Padmanabhan et al. 2012). This figure also
shows the flat ⇤CDM prediction from the WMAP+SPT/ACT data
set. The predictions from these two data sets are in mild conflict
due to the ⇠ 5 per cent difference in their ⌦mh2 values, discussed
in Section 9.1. One can see that the isotropic BAO data, and the
BOSS measurements in particular, fall between the two predictions
and are consistent with both. Note that the recent revision of Planck
data by Spergel et al. (2013) results in a value of ⌦mh2 that is in
excellent agreement with our isotropic BAO measurements, which

Figure 22. The DV (z)/rd measured from galaxy surveys, divided by
the best-fit flat ⇤CDM prediction from the Planck data. All error bars
are 1�. The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fit flat ⇤CDM prediction from the
WMAP+SPT/ACT results, including their smaller-scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1 � varia-
tion in the predictions for DV (z) (at a particular redshift, as opposed to
the whole redshift range), which are dominated by uncertainties in ⌦mh2.
As the value of ⌦mh2 varies, the prediction will move coherently up or
down, with amplitude indicated by the grey region. One can see the mild
tension between the two sets of CMB results, as discussed in Planck Col-
laboration (2013b). The current galaxy BAO data fall in between the two
predictions and are clearly consistent with both. As we describe in Sec. 7.5,
the anisotropic CMASS fit would yield a prediction for this plot that is 0.5
per cent higher than the isotropic CMASS fit; this value would fall some-
what closer to the Planck prediction. In addition to the BOSS data points,
we plot SDSS-II results as open circles, that from Percival et al. (2010) at
z = 0.275 and from Padmanabhan et al. (2012) at z = 0.35. These data
sets have a high level of overlap with BOSS LOWZ and with each other,
so one should not include more than one in statistical fitting. However, the
results are highly consistent despite variations in the exact data sets and dif-
ferences in methodology. We also plot results from WiggleZ from Kazin
et al. (2014) as open squares; however, we note that the distance measure-
ments from these three redshift bins are substantially correlated.

brings Planck predictions of the distance scale at z = 0.32 and
z = 0.57 much closer to BOSS measurements.

Our 68 and 95 per cent constraints in the DA(0.57)(r
fid

d /rd)�
H(0.57)(rd/r

fid

d ) plane from CMASS consensus anisotropic mea-
surements are highlighted in orange in Fig. 23. In grey we overplot
one-dimensional 1- and 2� contours of our consensus isotropic
BAO fit. Also shown in Fig. 23 are the flat ⇤CDM predictions from
the Planck and WMAP CMB data sets detailed in Section 9.1. The
CMB constraints occupy a narrow ellipse defined by the extremely
precise measurement of the angular acoustic scale of 0.06 per cent
(Planck Collaboration 2013b). The extent of the ellipse arises pri-
marily from the remaining uncertainty on the physical cold dark
matter density, ⌦ch

2; Planck narrows the allowed range by nearly
a factor of two compared with WMAP. The CMASS isotropic BAO
constraints are consistent with both CMB predictions shown here.
The anisotropic constraints in particular prefer larger values of
⌦ch

2 (right edge of the WMAP contour) also favored by Planck.
Also evident in this plot is the offset between the best fit anisotropic
constraint on H(0.57)(rd/r

fid

d ) (or ✏) and the flat ⇤CDM predic-
tions from the CMB.

To make the flat ⇤CDM comparison between the CMB
and our BAO measurements more quantitative, we report in Ta-
ble 13 the Planck, WMAP, and eWMAP ⇤CDM predictions for
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Cosmological Data Sets ⌦
m

h2 ⌦
m

H
0

⌦
K

w
0

wa

Model km s�1 Mpc�1

⇤CDM Planck + CMASS-iso + LOWZ 0.1403 (14) 0.300 (8) 68.4 (6) · · · · · · · · ·
⇤CDM Planck + CMASS + LOWZ 0.1416 (13) 0.309 (8) 67.7 (6) · · · · · · · · ·
⇤CDM Planck + BAO 0.1418 (13) 0.310 (8) 67.6 (6) · · · · · · · · ·
⇤CDM Planck + CMASS + LOWZ + SN 0.1415 (13) 0.308 (8) 67.8 (6) · · · · · · · · ·
⇤CDM Planck + BAO + SN 0.1417 (13) 0.309 (8) 67.7 (6) · · · · · · · · ·
⇤CDM WMAP + BAO + SN 0.1401 (22) 0.302 (8) 68.1 (7) · · · · · · · · ·
⇤CDM eWMAP + BAO + SN 0.1414 (16) 0.302 (8) 68.4 (6) · · · · · · · · ·

oCDM Planck + CMASS-iso + LOWZ 0.1419 (25) 0.301 (8) 68.7 (8) +0.0021 (30) · · · · · ·
oCDM Planck + CMASS + LOWZ 0.1420 (25) 0.309 (8) 67.8 (7) +0.0004 (30) · · · · · ·
oCDM Planck + BAO 0.1423 (25) 0.311 (8) 67.7 (7) +0.0005 (29) · · · · · ·
oCDM Planck + CMASS + LOWZ + SN 0.1418 (25) 0.308 (8) 67.9 (7) +0.0004 (30) · · · · · ·
oCDM Planck + BAO + SN 0.1421 (25) 0.310 (8) 67.8 (7) +0.0005 (29) · · · · · ·
oCDM WMAP + BAO + SN 0.1385 (40) 0.301 (9) 67.9 (8) -0.0020 (40) · · · · · ·
oCDM eWMAP + BAO + SN 0.1365 (34) 0.297 (9) 67.8 (7) -0.0056 (35) · · · · · ·

wCDM Planck + CMASS-iso + LOWZ 0.1430 (22) 0.273 (21) 72.6 (32) · · · -1.18 (13) · · ·
wCDM Planck + CMASS + LOWZ 0.1426 (22) 0.301 (16) 69.0 (22) · · · -1.06 (10) · · ·
wCDM Planck + BAO 0.1419 (22) 0.310 (14) 67.7 (18) · · · -1.01 (8) · · ·
wCDM Planck + CMASS + LOWZ + SN 0.1427 (19) 0.300 (12) 69.1 (16) · · · -1.06 (7) · · ·
wCDM Planck + BAO + SN 0.1423 (19) 0.306 (12) 68.3 (14) · · · -1.03 (6) · · ·
wCDM WMAP + BAO + SN 0.1383 (32) 0.308 (11) 67.1 (16) · · · -0.94 (8) · · ·
wCDM eWMAP + BAO + SN 0.1382 (28) 0.313 (12) 66.5 (15) · · · -0.90 (7) · · ·

owCDM Planck + CMASS-iso + LOWZ 0.1419 (25) 0.262 (31) 74.1 (46) -0.0017 (39) -1.26 (21) · · ·
owCDM Planck + CMASS + LOWZ 0.1419 (25) 0.297 (24) 69.3 (28) -0.0006 (49) -1.08 (15) · · ·
owCDM Planck + BAO 0.1421 (25) 0.314 (20) 67.3 (22) +0.0017 (47) -0.98 (11) · · ·
owCDM Planck + CMASS + LOWZ + SN 0.1420 (25) 0.297 (14) 69.2 (16) -0.0012 (34) -1.08 (8) · · ·
owCDM Planck + BAO + SN 0.1423 (26) 0.305 (13) 68.3 (14) -0.0002 (33) -1.04 (7) · · ·
owCDM WMAP + BAO + SN 0.1372 (42) 0.306 (13) 67.0 (16) -0.0013 (44) -0.95 (8) · · ·
owCDM eWMAP + BAO + SN 0.1356 (34) 0.305 (13) 66.7 (15) -0.0041 (41) -0.93 (8) · · ·

w
0

waCDM Planck + CMASS-iso + LOWZ 0.1434 (21) 0.305 (51) 69.4 (63) · · · -0.86 (50) -0.90 (123)
w

0

waCDM Planck + CMASS + LOWZ 0.1433 (21) 0.350 (41) 64.4 (41) · · · -0.54 (39) -1.40 (102)
w

0

waCDM Planck + BAO 0.1430 (21) 0.361 (31) 63.1 (29) · · · -0.44 (30) -1.60 (85)
w

0

waCDM Planck + CMASS + LOWZ + SN 0.1434 (22) 0.304 (17) 68.7 (18) · · · -0.98 (18) -0.33 (64)
w

0

waCDM Planck + BAO + SN 0.1431 (22) 0.311 (16) 67.9 (17) · · · -0.94 (17) -0.37 (60)
w

0

waCDM WMAP + BAO + SN 0.1373 (43) 0.301 (16) 67.6 (17) · · · -1.02 (16) 0.21 (56)
w

0

waCDM eWMAP + BAO + SN 0.1367 (31) 0.300 (15) 67.6 (16) · · · -1.05 (14) 0.43 (40)

ow
0

waCDM Planck + CMASS-iso + LOWZ 0.1417 (25) 0.294 (48) 70.2 (60) -0.0042 (41) -0.84 (44) -1.40 (115)
ow

0

waCDM Planck + CMASS + LOWZ 0.1416 (24) 0.343 (40) 64.6 (39) -0.0043 (49) -0.53 (35) -1.71 (96)
ow

0

waCDM Planck + BAO 0.1420 (24) 0.359 (32) 63.0 (29) -0.0021 (49) -0.43 (29) -1.72 (87)
ow

0

waCDM Planck + CMASS + LOWZ + SN 0.1418 (26) 0.306 (16) 68.2 (19) -0.0046 (44) -0.87 (20) -0.99 (89)
ow

0

waCDM Planck + BAO + SN 0.1421 (25) 0.312 (16) 67.5 (17) -0.0027 (42) -0.87 (19) -0.73 (80)
ow

0

waCDM WMAP + BAO + SN 0.1371 (43) 0.302 (16) 67.5 (18) +0.0007 (59) -1.01 (18) 0.21 (72)
ow

0

waCDM eWMAP + BAO + SN 0.1360 (36) 0.302 (15) 67.2 (17) -0.0025 (54) -0.99 (16) 0.17 (60)

Table 15. Cosmological constraints by different datasets in the cosmological models ⇤CDM, oCDM, wCDM, owCDM, w
0

waCDM, and ow
0

waCDM. We
compare the cosmological constraints from combining Planck with acoustic scale from BOSS galaxies as well as lower and higher redshift BAO measurements
from the 6-degree field galaxy redshift survey (6DF) and the BOSS-Lyman alpha forest (Ly↵F), respectively. We also compare how these combinations benefit
from the constraining power of type-Ia Supernovae from the Union 2 compilation by the Supernovae Cosmology Project (SN). The WMAP and eWMAP cases
have been added for comparison. As in Table 14, ’CMASS-iso’ means the isotropic measurement from the CMASS sample, whereas the anisotropic one is
referred to simply as ’CMASS’. ’LOWZ’ is the isotropic measurement from the LOWZ sample. ’BAO’ stands for the combination CMASS + LOWZ + 6DF
+ Ly↵F.
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Figure 2. The two-dimensional correlation function of DR11 sample measured in bins of 1 h−1 × 1 h−1 Mpc2. We use first two Legendre multipoles of the
correlation function in our study rather than the two-dimensional correlation function displayed here.

where DD(!r i) is the weighted number of galaxy pairs whose
separation falls within the !r i bin, RR(!r i) is number of similar
pairs in the random catalogue and DR(!r i) is the number of cross-
pairs between the galaxies and the objects in the random catalogue.

Fig. 2 shows the two-dimensional correlation function of DR11
sample measured in bins of 1 h−1 × 1 h−1 Mpc2. Both the ‘BAO
ridge’ (a ring of local maxima at approximately 100 h−1 Mpc) and
the RSD signal (LOS ‘squashing’ of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the volume
covered by galaxies with random points with zero correlation. We
use a random catalogue that has 50 times the density of galaxies
to eliminate extra uncertainty associated with the shot noise in the
random catalogue.

We weight each galaxy in the catalogue with three indepen-
dent weights. First is the Feldman–Kaiser–Peacock (FKP; Feldman,
Kaiser & Peacock 1994) weight wFKP = 1/[1 + n̄(z)20 000]. This
approach downweights galaxies in high-density regions, achieving
a balance between cosmic variance and shot-noise errors. The sec-
ond weight wsys = wstarwsee accounts for the systematic effects
associated with both the varying stellar density (wstar; Ross et al.
2012) and seeing variations in the imaging catalogue used for tar-
geting (wsee; Anderson et al. 2013). The third weight corrects for the
missed galaxies due to fibre collisions and redshift failures using the
algorithm described in Anderson et al. (2012). The former is caused
by the finite size of fibres that makes simultaneous measurement
of spectra of two galaxies with small angular separation impossi-

ble. To correct for both of these effects, we upweight each galaxy
by the number of its lost neighbours and the resulting weight is
(wcp +wzf − 1). Since these effects are statistically independent, the
total weight is a product of three wtot = wFKPwsys(wcp + wzf − 1).
The weight of the pair is the product of individual weights for two
galaxies. Since the stellar and close-pair effects are absent in the
random catalogue, we apply only the FKP weight to them.

The observed correlation function is a function of two variables:
we use r, the distance between galaxies, and µ, the cosine of the
angle between their connecting vector and the LOS. The optimal
choice of binning for the correlation function measurements de-
pends on two competing effects. Using small bin size retains more
information, but since we estimate covariance matrices by comput-
ing a scatter of finite number of mock catalogues (see Section 4),
using more bins deteriorates the precision at which the elements of
the covariance matrices can be estimated. Empirical tests performed
on the mock catalogues suggest that the RSD signal is more or less
insensitive to the binning choice, while the BAO measurements
are optimal at ∼8 h−1 Mpc (for details see Percival et al. 2013).
We bin r in 16 bins of 8 h−1 Mpc in size in the range of 24 h−1 <

r < 152 h−1 Mpc and µ in 200 bins in 0 < µ < 1, and estimate the
correlation function on this two-dimensional grid. The information
in the correlation function below 24 Mpc h−1 is strongly contami-
nated by non-linear effects, and the scales above 152 Mpc h−1 have
low signal-to-noise ratio and contribute little information.

We compress the information in the two-dimensional correlation
function by computing the Legendre multipoles with respect to µ

MNRAS 439, 3504–3519 (2014)
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Figure 8. Posterior likelihood of parameters DV/rd, F and f�8 from BOSS DR11 (red contours) and BOSS DR9 (green contours) data, along with expectations
from Planck data within standard ⇤CDM-GR models (blue contours). All estimates are mutually consistent.

Figure 9. Various estimates of DV/rd from CMASS DR9 and DR11 data
sets. The blue band corresponds to 1� uncertainty in Planck prediction as-
suming ⇤CDM. All measurements are mutually consistent.

6.1 Comparison to other similar measurements

The companion papers, Anderson et al. (2014), Beutler et al.
(2013), Sanchez et al. (2014) and Chuang et al. (2013) use the same
CMASS DR11 data to constrain the distance–redshift relation at
z = 0.57.

Fig. 9 shows our measurement of distance along with the re-
sult from BAO only fits and previous similar measurements and
Planck predictions for spatially-flat ⇤CDM model.

In Fig. 9, the label 1D refers to the result derived by fitting the
monopole of the correlation function only, while the label 2D refers
to the result derived from the fit to the monopole and the quadrupole
of the correlation function (see Anderson et al. 2014, for details).
differ from our analysis in two important aspects. They apply ‘re-
construction’ to the measured galaxy distribution to partially re-
move the nonlinear smearing of the BAO feature, and marginalize
over the broad-band shape of the correlation function, so that the
estimate of the distance comes from the BAO peak feature alone.

Beutler et al. (2013) and Chuang et al. (2013) measured
the distance–redshift relationship using the Legandre moments of
power spectrum and correlation function, respectively. Beutler et al.
(2013) perform their analysis in Fourier space. The Chuang et al.
(2013) analysis is in configuration space but uses a different range
of scales and theoretical model than our work. Despite differences

Figure 10. Various estimates of f�8 from CMASS DR9 and DR11. The
blue band corresponds to 1� uncertainty in Planck prediction assum-
ing ⇤CDM-GR. Clustering measurements are mutually consistent and are
lower than the CMB prediction.

in the applied methodology, the estimates are consistent within 1�
error bars.

The growth rate, f�8, has also been measured in the same red-
shift bin by Beutler et al. (2013, DR11), Reid et al. (2012, DR9),
Chuang et al. (2013, DR11) and Sanchez et al. (2014). The com-
parison of results is presented in Fig. 10. In the Sanchez et al.
(2014) analysis, f�8 is a derived parameter computed by com-
bining CMASS data with Planck assuming ⇤CDM model; their
estimate is perfectly consistent with ours. The Reid et al. (2012)
analysis is similar in the range of scales and theoretical modelling
to the current paper, but performed on DR9 data set. All measure-
ments are consistent with each other and are somewhat lower than
the Planck ⇤CDM-GR expectations.

6.1.1 Comparison with our DR9 measurements

The fitting methodology adopted in this paper is identical to that
used in our DR9 analysis (Reid et al. 2012), but some of the pri-
ors have been updated. We adopt a prior on the linear matter power
spectrum shape from Planck rather than WMAP7; Planck has sub-
stantially smaller errors, and so we expect the marginalization over
the P(k) to contribute negligibly to our error budget in DR11. We
also adopted a slightly more conservative top-hat prior on �2

FOG, by
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Figure 1. The data points show the CMASS DR9 measurement of fσ8
(circle) along with similar, low redshift, measurements (squares) and 1σ
errorbars as presented in Table 1. The three stripes show theoretical pre-
dictions for different gravity models allowing for uncertainty in the back-
ground cosmological parameters, constrained using only the WMAP 7 data
(Komatsu et al. 2011).

z DV Mpc3 survey reference

0.106 456 ± 27 6dFGRS Beutler et al. (2011)
0.35 1380 ± 68 SDSS LRG Reid et al. (2010)
0.57 2071 ± 44 BOSS CMASS Reid et al. (2012)
0.60 2234 ± 115 WiggleZ Blake et al. (2011b)

0.35 1356 ± 25 SDSS LRG Padmanabhan et al. (2012)
0.57 2094 ± 34 BOSS CMASS Anderson et al. (2012)

Table 2. Constraints on DV from recent surveys shown in Fig. 2. We
do not include the BAO measurements of Padmanabhan et al. (2012) or
Anderson et al. (2012) in our analysis, as they are correlated with the mea-
surements of Reid et al. (2010, 2012).

(2007); the general f (R) model has a clear GR limit and by tuning
model parameters its predictions can be made arbitrarily close to
the GR predictions.

Geometrical measurements are also available from the local
Universe up to redshift of z ∼ 0.8. Fig. 2 shows the most recent
CMASS DR9 estimates of DV and F along with similar results
from other surveys. The numerical values of these estimates, 1σ
errorbars and references to original publications are presented in
Tables 2 and 3.

The bands on Fig. 2 show theoretical predictions of the
spatially-flatΛCDMmodel when a WMAP 7 prior is applied to the
relevant cosmological parameters, and the Einstein-DeSitter (EdS)
model (Ωm = 1) with H0 = 73.8 ± 2.4km/Mpc/s (as measured by
Riess et al. 2011).

z F survey reference

0.22 0.28 ± 0.04 WiggleZ Blake et al. (2011c)
0.41 0.44 ± 0.07 WiggleZ Blake et al. (2011c)
0.57 0.67 ± 0.026 BOSS CMASS Reid et al. (2012)
0.60 0.68 ± 0.06 WiggleZ Blake et al. (2011c)
0.78 0.97 ± 0.12 WiggleZ Blake et al. (2011c)

Table 3. AP constraints on F from recent surveys shown in Fig. 2.

4 MODELLING DEVIATIONS FROM ΛCDMGR

The standard cosmological model comprises three main assump-
tions: first, that the Universe on large scales is homogeneous and
isotropic, second, that DE is Cosmological Constant and third, that
gravity is described by GR on all scales. In this model the back-
ground geometry of the Universe can be fully described by three
numbers that can be chosen to be the current relative energy densi-
ties of nonrelativistic matter Ωm and cosmological constant ΩΛ and
the current value of Hubble expansion rate H0. The angular diam-
eter distance and Hubble expansion rate at any redshift are given
by

DA(z) =
c

H0(1 + z)
χ

(
∫ z

0

dz′

E(z′)

)

, (4)

H(z) = H0E(z), (5)

where

χ(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x if Ωk = 0
1√
Ωk
sinh

(√
Ωkx

)

if Ωk > 0
1√
−Ωk

sin
(√
−Ωkx

)

if Ωk < 0
, (6)

the quantity Ωk = 1 − Ωm − ΩΛ is the relative energy density of
spatial curvature and

E(z) =
√

Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛ. (7)

When the three basic cosmological parameters are fixed the
growth of matter overdensities in GR to linear order in overdensi-
ties follows the growth equation

d2G
d ln a2

+

(

2 +
d lnH
d ln a

)

dG
d ln a

=
3
2
Ωm(a)G, (8)

where a = 1/(1 + z) is the scale factor and the growth factor
G(a) = δ(a)/δ(aini) shows by how much the overdensities have
grown compared to some arbitrary initial time aini. In a spatially-
flat ΛCDMGR model the growth rate f = d lnG/d ln a can be well
approximated by a fitting formula f (a) = Ωm(a)0.55 (Peebles 1984).

4.1 Parametrizing deviations from GR

A large number of viable alternatives to GR have been suggested
within the scientific community, each with its own theoretical jus-
tifications and advantages (for a recent review of MG see, e.g.,
Clifton et al. 2012). The deviations from GR are usually con-
strained in terms of phenomenological parameterisations, with two
main approaches, either parametrizing the observables (such as f
and G) or the perturbation equations (Eq. 8).

The most widely used parameterisation for the growth rate f
allows for deviations from GR through (Wang & Steinhardt 1998)

f = Ωm(a)γ, (9)

c⃝ 0000 RAS, MNRAS 000, 1–15
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Figure 17. Constraints on � index and nonrelativistic matter density from
the combination of BOSS DR11 data with CMB, SNIa, BAO and H0 data
sets. The contours correspond to 1� and 2� confidence levels in posterior
likelihood. The best fit is consistent with GR at 1�.

parameter space cannot be effectively constrained by current data.
For these reasons, we follow the approach of Samushia et al. (2013)
and apply several few-parameter consistency tests to our measure-
ments.

We parametrize the growth rate as a function of ⌦m using

f =
"
⌦m(z)
E(z)

#�
(33)

(Linder & Cahn 2008). This approach does not provide a fully self-
consistent test of MG models, as MG models predict a more com-
plex change in observables compared to GR. This parametrization
is, however, easy to implement and provides a simple consistency
test. In GR, we expect the �-index to be equal to 0.554. Measuring
a significantly higher value would indicate a preference for a force
weaker than GR gravity and vice versa. In our fits, we apply a hard
prior of � < 1.0.

When constraining deviations from GR, we fix DE to be a
cosmological constant. We also ignore the CMB power spectrum
on large scales (` < 50) to ensure that CMB data are used only to
constrain the background evolution. The parametrizations that we
use are not physically motivated and are simply meant to describe
effective gravity at low redshifts rather than provide a full model
that works accurately at all redshifts up to last-scattering surface.

Constraints on � and ⌦m are shown in Fig. 17. When combin-
ing BOSS DR11 with ePlanck data, we recover � = 0.691 ± 0.111
(a 16 per cent measurement). With the BAO data set, we recover
� = 0.699 ± 0.110 (a 16 per cent measurement). The values are
within 1.2� confidence of GR values but favour a weaker gravity.

Next, we parametrize the linear equation of growth following
the approach of Pogosian et al. (2010) as

�̈ +
⇣
2 + Ḣ

⌘
�̇ =

3
2
⌦m(z)G� (1 + µas) , (34)

where � is a matter overdensity, the overdot denotes a derivative
with respect to ln a, G is the gravitational constant, and µ and s
are parameters describing deviations from GR. The GR limit is re-
covered when µ = 0, where negative values of µ correspond to
weaker than GR gravity and vice versa. The s parameter dictates
how rapidly the modifications are set larger values of s correspond-
ing to the modifications that appear at later times. Since large val-
ues of s correspond to models in which gravity is indistinguishable

Figure 18. Constraints on µ and s from the combination of BOSS DR11
data with CMB and BAO data sets. The contours correspond to 1� and 2�
confidence levels in posterior likelihood.

from GR until some low redshift when the modification suddenly
becomes significant, they are basically unconstrained. We place a
flat prior of 0 < s < 3 to avoid this problem. The confidence level
contours of µ and s are shown in Fig. 18.

The GR predictions are within 2� in posterior likelihood.
Similar to �-parametrization, the data again provide a mild pref-
erence for a weaker than GR gravity. This result is consistent with
the DR9-based results reported in Samushia et al. (2013).

8 CONCLUSIONS

We have used the anisotropic clustering of galaxies in the BOSS
DR11 data set to simultaneously constrain the growth rate, the
redshift–distance relationship and the expansion rate at the redshift
of z = 0.57. Overall, our measurements are in good agreement with
the results of the Planck satellite propagated to low redshifts as-
suming ⇤CDM-GR.

By combining our measurements of f , DV and F with the
CMB data we were able to derive tight constraints on basic cos-
mological parameters and parameters describing deviations from
the ⇤CDM-GR model. We were able to constrain the curvature of
Universe with 0.3 per cent precision, the DE EoS parameter w with
8 per cent precision and the �-index for growth with 16 per cent
precision.

When we vary the background expansion within ⇤CDM
predictions of the Planck data we measure the growth rate
(parametrized by �) to be weaker but consistent within 1.2� of
GR predictions. This preference for lower values of growth rate
has also been observed in other similar low-redshift measurements
(see e.g. Macaulay, Wehus & Eriksen 2013, for discussion). Our
measurement of f�8 follows this trend but is closer to the GR pre-
dictions compared to the DR9 results of Reid et al. (2012) and the
DR11 measurement of Beutler et al. (2013).

Similar measurements from a lower redshift (LOWZ) sample
of BOSS galaxies will provide a complementary measurement of
the growth rate in the DE-dominated redshift range of 0.2 < z <
0.43, which will significantly strengthen the constraining power
over possible GR modifications and can potentially increase the
significance of the ‘low growth rate’ signal.
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Figure 3. The number density of galaxies we select around stars with 17.5 < imod < 19.9 (unless otherwise noted), divided by the average number density, in
1-arcsec-wide annuli, plotted against the maximum radius of the annulus. The top left-hand panel displays the results when we divide the galaxy sample into
the noted icmod magnitude bins. The top right-hand panel displays the case where we use the full galaxy sample and find the number densities around stars
within the noted i-band magnitude bins. In the bottom left-hand panel, we display the results when the imaging regions are restricted to lie within the labelled
seeing bounds. In the bottom right-hand panel, we divide the LGs into bins based on their i-band magnitude within a 2 arcsec aperture (ifib2). Errors are Poisson.

density of stars is below nstar. It shows that the majority of the data
(60 per cent) have nstar < 2000 deg2, but there are still data (5 per
cent) with nstar > 6000 deg2.

Foreground stars appear to remove area from the survey. Integrat-
ing 2π[1 − n/nave(θ )]θ , we can estimate the effective area lost per
star due to the occultation effect. For the stars with 19.3 < i < 19.6,
this yields an effective area of 67.2 arcsec2 and thus an effective
radius of 4.6 arcsec.

Alternatively, we can assume that each star removes an effective
area, which we denote by ‘Astar’, and we determine Astar by finding
the radius, rstar, which makes the values displayed in the bottom
left-hand panel of Fig. 4 closest to 1. We find that χ 2, using Poisson
errors and the model n̄/n̄tot = 1, is minimized for rstar = 9.48 arcsec.
This rstar is determined using only stars with 17.5 < i < 19.9. Fig. 3
suggests that stars with i-band magnitudes as faint as 20.3 have an
effect, and there are an additional 6.3 million stars with 19.9 < i <

20.3 within our footprint. Scaling rstar to account for these additional
stars yields an effective circular area of radius of 8.44 arcsec. This
is still far greater than the value of ∼5 arcsec we expect based
on integrating 2π[1 − n/nave(θ )]θ , given the n/nave(θ ) relationships
displayed in Fig. 3. Thus, the n̄/n̄tot(nstar) relationship (displayed
in the bottom left-hand panel of Fig. 4) is stronger than one might
expect, suggesting there are additional effects due to stellar density
beyond the occultation effect. This issue is studied in further detail
using the BOSS spectroscopic sample in Ross et al. (in preparation).

We proceed by assuming each star effectively masks an amount
of area consistent with n̄/n̄tot(nstar) = 1. For our full LG sample
and stars with 17.5 < i < 19.9, we determined rstar = 9.48 arcsec.
This radius implies that stars are effectively removing a total area of
500 deg2, which is 5 per cent of our masked footprint. The resulting
n̄/n̄tot(nstar) relationship is displayed in blue in the bottom left-hand
panel of Fig. 4. We note that this effective radius is likely to depend
on the magnitudes of the LGs, so any subsets of the data are likely
to have different rstar.

The relationship between galaxy density and stellar density is
important, due to the fact that stars display significant clustering
on large angular scales (see e.g. Myers et al. 2006); the stars may
therefore affect the measured clustering of galaxies at large physical
scales. The autocorrelation function, w(θ ), calculated as described
in Section 3.1, of stars (with 17.5 < i < 19.9) is displayed in black
triangles in the top panel of Fig. 5. The amplitudes are significant
and exhibit a monotonic decrease from ∼0.4 at θ = 1◦ to ∼0 at
θ = 50◦. The cross-correlation of the stars with the psg-weighted
LGs, displayed in black triangles in the bottom panel of Fig. 5,
is significant and negative and increases towards 0 in a manner
that mirrors the decrease in the star autocorrelation function. This
implies that if it is unaccounted for, the presence of stars will cause
systematic errors on the measured large-scale clustering of LGs.

We note that foreground stars will be a problem for any current
or future large-scale-structure surveys, and the problem will only

C⃝ 2011 The Authors, MNRAS 417, 1350–1373
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS
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Stars matter, seeing matters.

[Ross et al. 2011]
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Figure 3. Dependence of the CMASS galaxy surface number density on the density of SDSS stars with 17.5 < i < 19.9 (panel a), r-band Galactic extinction
(b) and the i-band seeing of the imaging data (c). These lines deviate from ng = 1, indicating the presence of systematics affecting the galaxy distribution. We
correct for the systematic relationships using weights, with the relationships after applying weights shown in green. The relationship with seeing is dramatic,
but only one per cent of the DR11 footprint has i-band seeing worse than 1.006.

DR10 DR11
i
fib2

range A
fib2

B
fib2

A
fib2

B
fib2

< 20.3 1.015 -6.3⇥10�6 0.998 1.1⇥10�6

20.3,20.6 0.991 3.8⇥10�6 0.983 7.8⇥10�6

20.6,20.9 0.952 2.03⇥10�5 0.953 2.11⇥10�5

20.9,21.2 0.902 4.20⇥10�5 0.906 4.33⇥10�5

> 21.2 0.853 6.42⇥10�5 0.870 6.06⇥10�5

Table 3. The coefficients we determine to apply weights for stellar density,
as defined by Eq. 19. The stellar density weights are determined in bins of
i
fib2

magnitude.

the surface number density of galaxies in the CMASS sample, ob-
tained after applying the completeness and close-pair corrections
described above, and the stellar density (panel a), Galactic extinc-
tion (panel b) and i-band seeing (panel c). These lines systemat-
ically deviate from ng/n̄g = 1, indicating the presence of sys-
tematics affecting the galaxy distribution. The error bars in these
relations were obtained by applying the same test to the mock cat-
alogues described in Section 3.2. The systematic effect associated
with the surface density of stars, n

s

, is clearly visible in panel (a),
causing a decrease in the number of galaxies of as much as 20 per
cent in regions with high stellar density. A weak relation between
the observed number of galaxies and the galactic extinction can be
seen in panel (b). This is due to the correlation between Ar and
n
s

and not to an independent systematic. Panel (c) illustrates the
strong impact of poor seeing conditions on the observed galaxy
number density: an i-band seeing of S ' 2

00 leads to a loss of
approximately 50 per-cent of the galaxies. While this effect is dra-
matic, only 1 per cent of the survey footprint has S > 1.006. The
systematic relationship we find between the DR11 CMASS sample
and the seeing in the imaging catalog is consistent with relationship
found in the DR9 data (Ross et al. 2012).

We use the method to determine the corrective weight for
stellar density, w

star

, defined in Ross et al. (2012). This method
weights galaxies as a function of the local stellar density and the
the surface brightness of the galaxy. We use the i

fib2

as a measure

of surface brightness and adopt a form for

w
star

(n
s

, i
fib2

) = Aifib2 +Bifib2ns

, (19)

where Aifib2 and Bifib2 are coefficients to be fit empirically. To
construct these weights we divide the CMASS catalogue into five
bins of i

fib2

, and fit the coefficients Aifib2 and Bifib2 in each bin so
as to give a flat relation between galaxy density and n

s

. The stellar
density map used for this task is based on a HEALPix grid with
N

side

= 128, which splits the sky into equal area pixels of 0.21
deg2. This relatively coarse mask is enough to reproduce the large-
scale variations of the stellar density. The values of the Aifib2 and
Bifib2 coefficients for DR10 and DR11 are given in Table 3. The
final weight w

star

for a given galaxy is then computed according
to the local stellar density by interpolating the binned values of
the coefficients Aifib2 and Bifib2 to its observed i

fib2

. The blue
lines in Fig. 3 illustrate the effect of applying these weights, which
correct for the systematic trend associated with n

s

while leaving
the relationship with the seeing unchanged, implying there is no
significant correlation between the seeing and the stellar density.

Previous analyses of CMASS data (Ross et al. 2011; Ho et al.
2012; Ross et al. 2012) found a systematic dependency with seeing
consistent with the one we find for the DR11 CMASS data. In DR9,
the relationship was not found to significantly impact the measured
clustering and no weight was applied. For DR11, we now find a
detectable impact of the relationship with seeing on the measured
clustering. We therefore extend the DR9 analyses include a weight,
w

see

, for the i-band seeing, S, defined as

w
see

(S) = A
see


1� erf

✓
S �B

see

�
see

◆��1

, (20)

which gives a good description of the observed relation. Here the
coefficients A

see

, B
see

and �
see

are fitted using the full sample, as
opposed to bins of i

fib2

. For this task we use a HEALPix map with
N

side

= 1024 (each pixel as a area 0.003 deg2) as high resolu-
tion is required to sample the intricate structure of the seeing in the
footprint of the survey. The green lines in Fig. 3 show the effect
of applying the full weights w

sys

= w
star

w
see

, which correct for
all the observed systematic trends. To avoid applying large weights
we set w

sys

to a constant value for S > 2.005. Introducing w
see

is

c� 2014 RAS, MNRAS 000, 2–39

[Anderson et al. 2014]
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Figure 8. The spherically-averaged power spectrum for the NCG and SGC.
The error bars computed using the 1000 DR11 PTHalo mocks described in
Section 4.4.
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Figure 9. On-sky angular target fluctuations as a function of RA for the
DR11 LOWZ spectroscopic catalogue. Error bars are computed from the
1000 PTHalo mocks.

though we will explore this in the final analysis of the full BOSS
dataset.

4.1 Reconstruction

We apply the reconstruction technique (Eisenstein et al. 2007) to
the data and mock catalogues in order to produce measurements
that are optimised for measuring the BAO scale. Reconstruction
uses the galaxy map to construct a displacement field used to re-
distribute galaxies into a spatial configuration that more closely re-
produces their positions had they only undergone linear growth and
mitigates the effect of redshift space distortions.

The algorithm used in this paper is similar to the prescription

of Eisenstein et al. (2007) and Padmanabhan et al. (2012). The La-
grangian displacement field is calculated to first order using the
Zel’dovich approximation applied to the smoothed galaxy overden-
sity field. The displacement field is corrected for redshift effects in
the measured overdensity. Our implementation deviates from Pad-
manabhan et al. (2012) slightly in that we solve for the redshift
space corrected displacement field in Fourier space rather than us-
ing the finite difference method in configuration space, although
we find both methods produce similar results. We refer the reader
to Padmanabhan et al. (2012) for more details. We use a bias value
of b = 1.85, a linear growth rate of f = 0.6413 and a smoothing
scale of 15h�1 Mpc.

The reconstruction technique has been successfully imple-
mented using SDSS-II LRGs at z = 0.35 by Padmanabhan et al.
(2012) and Xu et al. (2013), who performed a spherically averaged
and anisotropic BAO analysis, respectively. Padmanabhan et al.
(2012) achieved an improvement of a factor of 1.8 on the error on
D

V

, and Xu et al. (2013) reported an improvement of a factor of
1.4 on the error on D

A

and of 1.2 on the error on H , relative to the
pre-reconstruction case.

Anderson et al. (2012) and Anderson et al. (2013b) success-
fully applied reconstruction on the DR9 CMASS sample, on an
spherically averaged and anisotropic BAO analysis, respectively.
They observed only a slight reduction in the error of D

V

, D
A

and
H , when compared to the pre-reconstruction case, but at a level
consistent with mock galaxy catalogues. This result can be partly
explained by the fact that at higher redshift there is less to be gained
as the density field is less affected by non-linearities at the BAO
scale.

We present full-sky clustering measurements and covariances
using both original and reconstructed catalogues. Whilst recon-
struction has been shown to improve the accuracy of the BAO peak
position, the effect on the full shape of two-point clustering statis-
tics is not at the moment well studied.

4.2 Power-spectrum

The spherically averaged power-spectrum, P (k), is calculated us-
ing the Feldman et al. (1994) Fourier method, as detailed in Per-
cival et al. (2007b) and Reid et al. (2010), and most recently im-
plemented in Anderson et al. (2012) and Anderson et al. (2013a).
We maintain a box size of 4000h�1 Mpc and a grid that is 20483,
yielding an Nyquist frequency of k ⇡ 1.6hMpc�1, well above
the maximum frequency used to fit the BAO scale (see Anderson
et al. 2013a).

As in these two most recent papers, we do not convert from
galaxy density field to a halo density field, do not apply corrections
for Finger-of-God effects, and do not apply luminosity-dependent
weights. As such, our measurement of the power-spectrum is ide-
ally suited for measuring the BAO scale, but care should be taken
when accuracy at small scales, or modelling the full shape, is nec-
essary.

The expected distribution of galaxies is modelled using the
random catalogues that are constructed as described in Section 2.3.
The weights applied to the random catalogue are normalised such
that the total weighted number density matches for galaxies and
randoms. When using full-sky catalogues (by combining NGC and
SGC galaxies and randoms into single full-sky samples), this nor-
malisation of the random weights is done independently for each
Galactic cap. This approach is needed when analysing the mocks
whilst using a single random catalogue (as we do) - the ratio of
randoms to galaxies in each hemisphere varies slightly from one

c� 0000 RAS, MNRAS 000, 000–000
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NGC+SGC
SGC       
NGC

Figure 4. Fluctuations of on-sky angular target density for the NGC (red lines), SGC (blue lines) and their combination (purple circles), as a function of
angular stellar density, r-band extinction, i-band sky background, airmass in the i band, and seeing in the i band, from left to right. No significant trends are
apparent.
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Figure 5. Weighted galaxy number density for LOWZ galaxies as a function
of redshift for the NGC and SGC (solid lines, lower and upper respectively).
The dashed line is the expected number density in the SGC once colour
offsets between the two galactic caps, as reported in Schlafly & Finkbeiner
(2011), are taken into consideration. The tension between the two galactic
caps is significantly alleviated, but it remains unusual at a 3� level - see text
for details.

know how this offset impacts on the type of galaxies that are tar-
geted in each galactic cap.

Comparing the distribution of observed colours and magni-
tudes of the two samples brings little insight, due to the spread in-
troduced by the n(z) of the samples. Instead we examine intrinsic
(rest-frame) colours and magnitudes and their difference between
the NGC and SGC. To compute rest-frame colours we use the k-
corrections of the purely passive model of Maraston et al. (2009).
Rest-frame colours are computed in shifted filters to z = 0.3,
thereby minimising the dependence on the modelling whilst pro-
viding rest-frame colours that can be directly compared to the esti-
mated photometric offsets of Schlafly & Finkbeiner (2011).

We present the offset in rest-frame colours between the NGC
and SGC in Fig. 6. The insets in each panel display the offset in the
median colours between the two hemispheres, and how these com-
pare to the offsets of Schlafly & Finkbeiner (2011) (±1� values are
shown in the dashed lines).

The offsets in rest-frame [r � i]
0.3

and [g � r]
0.3

are in
good agreement with the predicted offsets reported by Schlafly &
Finkbeiner (2011). This result suggests that the targeting algorithm
is selecting similar types of galaxies in the two hemispheres, in
spite of the offset in photometry. As the LOWZ targeting was de-
signed to select a well-defined and isolated red-sequence, this is not
a surprise. Finally, the SGC galaxies have on average a fainter ab-
solute r�band magnitude by 0.01 mags - a value consistent with
the increase in number density in the south being driven by the in-
clusion of slightly fainter targets, but of similar intrinsic colours.

3.3 Clustering

Fig. 7 shows the two-point correlation function of LOWZ galaxies
in the northern and southern Galactic caps, with points displaying
the DR11 data and dotted lines presenting the DR10 results. The
excess of power observed in the SGC, although clearly visible by
eye, is consistent with sample variance. We compute the �2

NS

be-
tween the two hemispheres as

�2

NS

=
X

ij

[⇠
N

(s
i

)� ⇠
S

(s
i

)]C�1

ij

[⇠
N

(s
j

)� ⇠
S

(s
j

)], (8)

where the subscripts
N

and
S

to refer to the NGC and SGC respec-
tively, and C = C

N

+ C
S

as we expect the measurements in the
two Galactic caps to be uncorrelated.

For DR11, we find �2

NS

= 27.7 for 23 dof in the range 20 <
s < 200h�1 Mpc. A larger �2 would be expected 23 per cent of
the time, and thereby not unusual.

The results for DR10 are somewhat more discrepant, but still
do not raise cause for significant concern: we find �2

NS

= 30.9
for the same 23 bins with 20 < s < 200h�1 Mpc, a larger value
would be expected 12.5 per cent of the time.

Fig. 8 shows the spherically averaged power spectra for the
NGC and SGC. The two curves appear broadly consistent. The
power in the SGC is greater than that of the NGC primarily at
k < 0.06h�1 Mpc. One would expect the power in the SGC to be
less than that of the NGC, due to its smaller footprint and therefore
larger integral constraint. Due to these window function effects, one
cannot directly compare the NGC and SGC P (k) measurements,
but the results appear consistent with our findings for ⇠(s) that the
two regions yield consistent clustering measurements. In Section
6.4, we present BAO measurements for each region.

c� 0000 RAS, MNRAS 000, 000–000
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Prior to reconstruction, a small shift, due to non-linear structure
growth, is expected in the BAO position (see, e.g. Eisenstein et al.
2007a; Angulo et al. 2008; Padmanabhan & White 2009; McCul-
lagh et al. 2013). In terms of α, Padmanabhan & White (2009)
predict a shifts of order 0.005D2(z) for samples with b = 2 and
0.002D2(z) for samples with b = 1. We find similar behaviour in
our mock samples, as the αKS values for the Blue sample are 0.003
smaller than those of the Red sample for both P(k) and ξ (s). The
significance of the difference is 2σ given the uncertainty on the
mean of the 600 realizations (as the uncertainty on the mean is the
standard deviation divided by

√
600, ∼0.001 for both). Applying

reconstruction moves the mean α values closer to 1 and brings the
Red and Blue samples into better agreement; both of these results
are as expected (Anderson et al. 2012; Padmanabhan et al. 2012).
The significance of the difference between the Red and Blue αKS

after applying reconstruction is reduced to less than 1σ . Expected
or not, all of the deviations from 1 we find in the mean α mea-
surements or αKS are negligible (<0.2σα) compared to the mean
recovered uncertainty, and we cannot expect any to be detectable in
our CMASS data samples.

The modelling we employ to fit the BAO scale was designed,
in part, to maximize the consistency between the measurements
obtained from ξ (s) and P(k). Our tests on the mocks confirm that
we have achieved a tight correlation. We show the α recovered
from ξ (s) versus that recovered for P(k), for both the Red and Blue
samples in Fig. 12. The correlation, CP, ξ , is given by

C1,2 = Cov1,2

σ1σ2
, (45)

where we use the standard deviation of mock values as σ . We find
CP, ξ = 0.89 for the Red sample and CP, ξ = 0.87 for the Blue

Figure 12. The 600 BAO-scale measurements, αξ , recovered from corre-
lation functions of each mock realization versus the BAO scale, αP, ***re-
covered from the power spectrum of the same mock realization, for the Red
(red points) and Blue (blue points) samples. The correlation between the two
estimates for both the Red and Blue samples is higher than 0.87, as quan-
tified using the C factor defined in equation (45), and the mean differences
(the labelled σP, ξ values) are both less than 0.35 of the values expected for
independent samples.

sample. Defining σP ,ξ =
√

⟨(αP − αξ )2⟩, we find σ P, ξ = 0.013 for
the Red sample and σ P, ξ = 0.019 for the Blue. For both data sets,
this value is less than 0.35 the dispersion expected for independent
samples.

The correlation between the Red and Blue BAO measurements
recovered from the mock realizations is 0.15 for ξ (s) and 0.14 for
P(k). These values are close to the correlation between the Red and
Blue P(k) measurements at k = 0.15, as shown in Fig. 10. This scale
is close to the mid-point of the scales used to fit the P(k) BAO (see
Fig. 14). In Section 6, we find a larger correlation (0.37) between the
Red and Blue growth measurements, suggesting the effective k for
the growth measurements is smaller than for BAO measurements.

Fig. 13 displays the measured ξ 0(s), using CMASS data, and
the best-fitting model, both with ξNoBAO(s) subtracted, for each of
the Blue, Red and Red×Blue measurements. As implied by the
agreement displayed in Fig. 13, the χ2 values for the best-fitting
models are good, as all are smaller than 1 per degree of freedom
(dof). The best-fitting α values differ by at most 0.014 (between
Red×Blue and Red measurements). Quantifying the difference as

dα(1, 2) =
(

(α1 − α2)2

σ 2
1 + σ 2

2

)1/2

(46)

we find that 318 of the mock samples (more than 50 per cent)
have a larger dα(ξRed × Blue, ξRed) than we find for CMASS. The α

measurements are clearly consistent. Narrowing the fitting range to
50 < s < 160 h−1 Mpc (27 data points) has a negligible effect, as
each of the measured α values change by less than 0.1σ .

The uncertainties we recover from the CMASS data ξ 0(s) BAO
measurements are typical of those recovered from the mock re-
alizations. The uncertainty on the Blue data sample measurement
(0.031) is better than the mean uncertainty recovered from the Blue
mock realizations (0.037). However, we find that 147 of the mock

Figure 13. The measured ξ0 (points with error bars) and the best-fitting
BAO model (dashed curves) for the Red (red) and Blue (blue) data samples
and their cross-correlation (purple). Each has had the smooth component of
the best-fitting model subtracted. Clear agreement is observed in the location
of the BAO peak, and confirmed by the best-fitting α values that are labelled.
For clarity, we have omitted the error bars for the cross-correlation.
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Figure 14. The measured P(k) (points with error bars) and the best-fitting
BAO model (dashed curves), both divided by the smooth shape component of
the best-fitting model, for the Red (red) and Blue (blue) data samples. Clear
agreement is observed in the location of the BAO feature, and confirmed by
the best-fitting α values that are labelled.

Blue ξ 0(s) (24.5 per cent) yield lower uncertainty, suggesting the
Blue data value is not unusual. The uncertainty we recover from the
Red data ξ 0(s) BAO measurement (0.027) matches the mean uncer-
tainty we find for the mock samples. The uncertainty we find for
the BAO scale measured from the cross-correlation of the Red and
Blue data samples is typical, as we find 205 of the mock realizations
(34 per cent) yield an uncertainty lower than 0.024.

Fig. 14 displays the measured P(k) and the best-fitting BAO
model for the Blue and Red data samples, all divided by the PNoBAO

component of the best-fitting model. The best-fitting measurements
appear to agree well, and this is confirmed by χ2 values that are
less than 1.2/dof. The Red and Blue BAO measurements are clearly
consistent with each other, as they differ by only 0.007. Narrowing
the fitting range to 0.04 < k < 0.2 h Mpc−1 (20 data points) has a
negligible effect, as each of the α values change by less than 0.1σ .
Similar to the ξ 0(s) result, the uncertainty on the CMASS data
Blue BAO measurement (0.030) is better than the mean uncertainty
recovered from the mock realizations (0.038), but we find 126 mock
Blue P(k) measurements (21 per cent) that yield σα < 0.030.

The power spectrum and correlation function BAO measure-
ments are clearly consistent for the Blue data sample. We find
αP, Blue = 0.999 ± 0.030, αξ , Blue = 1.005 ± 0.031 and the mean
difference, ⟨|αξ , Blue − αP, Blue|⟩, recovered from Blue mock realiza-
tions is 0.019 and the majority of these realizations have a larger
dα value. We find a larger discrepancy for the Red data sample
(αP ,Red = 0.992 ± 0.025, αξ,Red = 1.010 ± 0.027), and the differ-
ence is larger than the mean difference we find in the mock samples,
0.013. However, for 61 of the Red mock realizations we find a larger
dα(PRed, ξRed) than we find for our data sample, and thus the chance
of finding such a difference was greater than 10 per cent.

We apply reconstruction (see Section 4.2) to the Red and Blue
samples (for both the data and the 600 mock realizations) and re-
measure the BAO scale using ξRec

0 (s). Fig. 15 displays the 600 of
recovered uncertainties after applying reconstruction versus the un-

Figure 15. The uncertainty on the BAO position recovered from ξ0 mea-
surements after applying reconstruction (‘Rec’) versus those obtained before
(‘No Rec’). Points display the results from the 600 mock realizations of the
Red (red points) and Blue (blue points) galaxy samples. The large black
square and triangle represent the results for the Red and Blue CMASS data
samples. Each result recovered from the CMASS data is within the locus of
the uncertainties recovered from the mock realizations.

certainty recovered prior to reconstruction for both the Blue (blue
points) and Red (red points) mock samples. For both samples, the
vast majority of mock realizations show an improvement in pre-
cision of the BAO measurement. As can be seen in Table 1, the
improvement due to reconstruction larger for the Red samples, as
the mean uncertainty has decreased by 32 per cent for the Red sam-
ples and by 24 per cent for the Blue samples.

The measured ξRec
0 (s) of the Red and Blue data samples are com-

pared to the best-fitting models, both with the smooth component
of the best-fitting subtracted, in Fig. 16. The χ2 of the best fit for
the Red sample is unusually high (51 for 37 dof), but, as noted in
Section 4.3, this result is mainly due to the data at s > 150 h−1 Mpc.
Reconstruction reduces the uncertainties on the Red and Blue data
BAO measurements by 35 and 19 per cent, similar to the mean ef-
fect found from the mock realizations. In Fig. 15, the data results
are displayed using a black triangle for the Blue sample and a black
square for the Red sample. Each are within the locus of points
displaying the results recovered from the mock realizations.

After applying reconstruction, both measurements of α have
shifted only slightly from their pre-reconstruction values. The post-
reconstruction Red and Blue data BAO measurements are clearly
consistent, as they differ by only 0.005. We narrow the fitting range
to 50 < s < 160 h−1 Mpc and re-measure the BAO scale, denoting
it α′. We find α′

Red = 1.008 ± 0.021 and α′
Blue = 1.002 ± 0.025.

Each α′ measurement has shifted by 0.3σ compared to the fiducial
α measurement. While coherent, such a shift alters none of our
conclusions.

In summary, we find consistent BAO-scale measurements for the
clustering of the Red and Blue CMASS data samples and their
cross-correlation, determined from both P(k) and ξ (s). The pair of
measurements that disagree the most is αP ,Red = 0.992 ± 0.025,

αξ,X = 1.024 ± 0.024 and we find that 118 of the mock pairs have
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two measurements is not indicative of an existence of a bias in ei-
ther measurement.

Our tests on mocks suggest no systematic effects for either
the P (k) or ⇠(s) results when they are obtained by combining re-
sults across bin centres. Our methodology applied to mock sam-
ples recovers unbiased estimates of the BAO position for both ⇠(s)
and P (k) with nearly identical uncertainty. We therefore obtain the
consensus BAO scale measurement by assuming the mean uncer-
tainty of the ⇠(s) and P (k) measurements for each and using the
0.95 correlation factor. The correct treatment of the data, assum-
ing Gaussian statistics and no systematic uncertainty is to take the
mean of P (k) and ⇠(s) measurements, reducing the uncertainty
based on their correlation factor. Thus, our consensus value for the
CMASS BAO measurement is ↵ = 1.0144 ± 0.0089, where this
uncertainty is purely statistical. Our systematic error budget is dis-
cussed in Section 8.1.

We obtain our consensus DR11 LOWZ isotropic BAO mea-
surement, at an effective redshift z = 0.32 by applying the same
process as applied to CMASS. The details can be found in To-
jeiro et al. (2014). The difference in the recovered BAO scale from
LOWZ P (k) and ⇠(s) is within 1� of the expected difference and is
opposite in sign to the difference we find for CMASS. The consen-
sus DR11 LOWZ measurement is ↵ = 1.018± 0.020, considering
only the statistical uncertainty.

6.3 DR10 BAO measurements

For completeness, we also include DR10 BAO measurements in
Table 7. Post-reconstruction, these data produce a 1.4 per cent
BAO scale measurement that is consistent with the DR11 mea-
surements discussed in the previous section. For pre-reconstruction
measurements the error on DR11 the result is 30 per cent lower
than for DR10. For the post-reconstruction results, the improve-
ment increases to 40 per cent. The reconstruction is more efficient
for DR11, which almost certainly results from the more contiguous
nature of the DR11 survey mask.

As shown in Fig. 12, the detections for DR10 are both greater
than 5�, with the significance for the ⇠(s) measurement being
higher than that of the P (k) measurement. As discussed in Sec-
tion 6.2 the improved detection observed in ⇠(s) is because the
P (k) broad-band model is better able to model the full P (k) when
no BAO are included, compared with the broad-band ⇠(s) model.

The most obvious issue for the DR10 results in Table 7 is that,
for the DR10 P (k), the measurement of ↵ shifts by �0.020 post-
reconstruction, compared to a mean shift of �0.004 ± 0.015 ob-
served in the mocks (here the uncertainty is the standard deviation
of the mock values). The size of this shift is thus only just greater
than 1� and is consequently not a significant concern.

6.4 DR11 Robustness Checks

In order to ensure that our measurements on the CMASS data are
robust to our methodological and binning choices, we re-measure
the BAO scale using the reconstructed DR11 power spectrum and
correlation function, changing the fitting methods, binning and fit-
ting to the NGC and SGC separately. Table 9 lists the results of
these tests.

The absolute difference in the ↵ values recovered from the
NGC and SGC regions has decreased considerably from Ander-
son et al. (2012). For the correlations function fits, the decrease if
from 0.055 to 0.031. Given the decrease in the uncertainty thanks

Table 9. Robustness checks on isotropic BAO scale measurements recov-
ered from DR11 reconstructed data.

Estimator Change ↵ �2/dof

P (k) fiducial 1.0114± 0.0093 18/27
NGC only 1.0007± 0.0113 16/27
SGC only 1.0367± 0.0167 15/27

0.02 < k < 0.25hMpc�1 1.0082± 0.0094 14/21
0.02 < k < 0.2hMpc�1 1.0121± 0.0113 11/15
0.05 < k < 0.3hMpc�1 1.0120± 0.0091 15/23

⌃nl = 3.6± 0.0h�1Mpc 1.0111± 0.0085 19/28
⌃nl = 4.6± 0.0h�1Mpc 1.0119± 0.0089 19/28
⌃nl = 5.6± 0.0h�1Mpc 1.0116± 0.0097 18/28
A

1

, A
2

= 0 1.0136± 0.0095 40/29
Spline fit 1.0109± 0.0094 17/24

�k = 0.0032hMpc�1 1.0122± 0.0097 71/79
�k = 0.004hMpc�1 1.0082± 0.0094 55/62
�k = 0.006hMpc�1 1.0091± 0.0096 33/39
�k = 0.01hMpc�1 1.0120± 0.0097 16/20
�k = 0.012hMpc�1 1.0133± 0.0091 9/15
�k = 0.016hMpc�1 1.0100± 0.0099 5/9
�k = 0.02hMpc�1 1.0186± 0.0105 5/6

⇠(s) fiducial 1.0209± 0.0091 16/17
NGC only 1.0132± 0.0105 12/17
SGC only 1.0441± 0.0190 15/17

50 < s < 150h�1 Mpc 1.0208± 0.0094 6/7
a
1

, a
2

, a
3

= 0 1.0210± 0.0097 24/20
a
1

, a
2

= 0 1.0232± 0.0098 19/19
a
1

= 0 1.0231± 0.0099 19/18
a
2

= 0 1.0218± 0.0097 18/18
B⇠ free 1.0209± 0.0091 15/17
⌃nl = 3.6h�1 Mpc 1.0212± 0.0089 15/17
⌃nl = 5.6h�1 Mpc 1.0206± 0.0095 17/17

recon � = 0.318 1.0195± 0.0090 11/17
recon � = 0.478 1.0206± 0.0094 18/17
recon b = 1.50 1.0224± 0.0100 23/17
recon b = 2.24 1.0183± 0.0086 14/17

�s = 4h�1 Mpc 1.0197± 0.0090 42/38
�s = 5h�1 Mpc 1.0156± 0.0093 31/29
�s = 6h�1 Mpc 1.0189± 0.0093 19/23
�s = 7h�1 Mpc 1.0165± 0.0088 20/19
�s = 9h�1 Mpc 1.0188± 0.0089 10/14
�s = 10h�1 Mpc 1.0175± 0.0099 9/12

to the larger area coverage in both regions, the significance of the
discrepancy is similar to that found for DR9, 1.4�. We find 79 out
of the 600 mock samples (13 per cent) have a larger discrepancy,
consistent with the estimation of a 1.4� discrepancy. We find a sim-
ilar picture when we fit to the P (k) measurements from NGC and
SGC although, in this case, the discrepancy is slightly larger, at
1.8�. Less significant differences, with opposite sign, are found in
the DR11 LOWZ sample (Tojeiro et al. 2014).

Table 9 also presents results fitting to the power spectrum for
different ranges in k, removing the largest and smallest-scale data
in turn. The recovered errors on ↵ do not change significantly if
we remove data at k < 0.05hMpc

�1 or at k > 0.25hMpc

�1.
This is not surprising, given there is little BAO signal on these
scales. Only fitting to 0.02 < k < 0.25hMpc

�1 reduces the
best-fit value of ↵ by 0.0039, but cutting further in k to 0.02 <
k < 0.2hMpc

�1 returns the best fit back to the fiducial value,
suggesting that there is no wavelength-dependent systematic trend

c� 2014 RAS, MNRAS 000, 2–39

Mocks vital to validate methodologies and quantify  
statistical and systematic errors.
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Figure 1. A pictorial explanation of how density field reconstruction can improve the acoustic scale measurement. In each panel, we show a thin slice of a
simulated cosmological density field. Top-left panel: in the early Universe, the initial densities are very smooth. We mark the acoustic feature with a ring of
150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution of the black points from the centroid of the blue points is
shown in the inset. Top-right panel: we evolve the particles to the present day, here by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows
the initial radius of the ring, centred on the current centroid of the blue points. The large-scale velocity field has caused the black points to spread out; this
causes the acoustic feature to be broader. The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line)
compared to the initial rms (dashed line). Bottom-left panel: as before, but overplotted with the Lagrangian displacement field, smoothed by a 10 h−1 Mpc
Gaussian filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back to their initial
positions. Bottom-right panel: we displace the present-day position of the particles by the opposite of the displacement field in the previous panel. Because of
the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has been moved substantially closer to the red circle. The inset
shows the new rms radius of the black points (solid), compared to the initial width (long-dashed) and the uncorrected present-day width (short-dashed). The
narrower peak will make it easier to measure the acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this
figure illustrates the basic opportunity of reconstruction.

(ii) Estimate the galaxy bias b and the linear growth rate f ≡
d ln D/d ln a ∼ !0.55

m (Carroll, Press & Turner 1992; Linder 2005),
where D(a) is the linear growth function as a function of scale factor
a and !m is the matter density relative to the critical density. We
hold the values of b and f fixed in our analyses to fiducial values
(described below) and demonstrate that our results are robust to
changes in these adopted values.

(iii) Embed the survey into a larger volume, chosen such that the
boundaries of this larger volume are sufficiently separated from the
survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that matches

the observed density and interpolates over masked and unobserved
regions (Section 2.3).

(vi) Estimate the displacement field Ψ within the Zel’dovich
approximation (Section 2.4).

(vii) Shift the galaxies by −Ψ. Since linear redshift-space distor-
tions arise from the same velocity field, we shift the galaxies by an
additional −f (Ψ · ŝ)ŝ (where ŝ is the radial direction). In the limit of
linear theory (i.e. large scales), this term exactly removes redshift-

space distortions (Kaiser 1987; Hamilton 1998; Scoccimarro 2004).
We denote these points by D.

(viii) Construct a sample of points randomly distributed accord-
ing to the angular and radial selection function and shift them by
−". Since these points have not been observed, they are not af-
fected by redshift-space distortions. We do not therefore apply the
additional redshift-space distortion correction as with the galaxies.
We denote these points by S.

(ix) The reconstructed correlation function ξ is then given by the
Landy–Szalay estimator (Landy & Szalay 1993):

ξ = DD − 2DS + SS

RR
, (1)

where DD, etc. are the number of pairs at a given separation between
various sets of points. The random points R are distributed randomly
according to the angular and radial selection functions; these are as-
sumed to be different from those to generate S. We weight the points
by an approximate minimum variance weight (Feldman, Kaiser &
Peacock 1994),

wi = 1
1 + n̄(zi)P (k0)

, (2)
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RSD in BOSS limited by modelling, not data

BOSS anisotropic clustering 9

Figure 8. Posterior likelihood of parameters DV/rd, F and f�8 from BOSS DR11 (red contours) and BOSS DR9 (green contours) data, along with expectations
from Planck data within standard ⇤CDM-GR models (blue contours). All estimates are mutually consistent.

Figure 9. Various estimates of DV/rd from CMASS DR9 and DR11 data
sets. The blue band corresponds to 1� uncertainty in Planck prediction as-
suming ⇤CDM. All measurements are mutually consistent.

6.1 Comparison to other similar measurements

The companion papers, Anderson et al. (2014), Beutler et al.
(2013), Sanchez et al. (2014) and Chuang et al. (2013) use the same
CMASS DR11 data to constrain the distance–redshift relation at
z = 0.57.

Fig. 9 shows our measurement of distance along with the re-
sult from BAO only fits and previous similar measurements and
Planck predictions for spatially-flat ⇤CDM model.

In Fig. 9, the label 1D refers to the result derived by fitting the
monopole of the correlation function only, while the label 2D refers
to the result derived from the fit to the monopole and the quadrupole
of the correlation function (see Anderson et al. 2014, for details).
differ from our analysis in two important aspects. They apply ‘re-
construction’ to the measured galaxy distribution to partially re-
move the nonlinear smearing of the BAO feature, and marginalize
over the broad-band shape of the correlation function, so that the
estimate of the distance comes from the BAO peak feature alone.

Beutler et al. (2013) and Chuang et al. (2013) measured
the distance–redshift relationship using the Legandre moments of
power spectrum and correlation function, respectively. Beutler et al.
(2013) perform their analysis in Fourier space. The Chuang et al.
(2013) analysis is in configuration space but uses a different range
of scales and theoretical model than our work. Despite differences

Figure 10. Various estimates of f�8 from CMASS DR9 and DR11. The
blue band corresponds to 1� uncertainty in Planck prediction assum-
ing ⇤CDM-GR. Clustering measurements are mutually consistent and are
lower than the CMB prediction.

in the applied methodology, the estimates are consistent within 1�
error bars.

The growth rate, f�8, has also been measured in the same red-
shift bin by Beutler et al. (2013, DR11), Reid et al. (2012, DR9),
Chuang et al. (2013, DR11) and Sanchez et al. (2014). The com-
parison of results is presented in Fig. 10. In the Sanchez et al.
(2014) analysis, f�8 is a derived parameter computed by com-
bining CMASS data with Planck assuming ⇤CDM model; their
estimate is perfectly consistent with ours. The Reid et al. (2012)
analysis is similar in the range of scales and theoretical modelling
to the current paper, but performed on DR9 data set. All measure-
ments are consistent with each other and are somewhat lower than
the Planck ⇤CDM-GR expectations.

6.1.1 Comparison with our DR9 measurements

The fitting methodology adopted in this paper is identical to that
used in our DR9 analysis (Reid et al. 2012), but some of the pri-
ors have been updated. We adopt a prior on the linear matter power
spectrum shape from Planck rather than WMAP7; Planck has sub-
stantially smaller errors, and so we expect the marginalization over
the P(k) to contribute negligibly to our error budget in DR11. We
also adopted a slightly more conservative top-hat prior on �2

FOG, by
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If you wanted to start a BAO survey today…

NAM - Jun 26th, 2014AJR for eBOSS 

say you want to start a BAO survey today...

GAP between 0.6 < z < 2.4

BAO Distance Ladder

6

Discovery*Space

Use the SDSS telescope 
Galaxies in 0.5 <z < 1. 

Quasars z < 2. 
eBOSS
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eBOSS samples

• Luminous red galaxies (LRGs)

• 350,000 at z > 0.6 over 7500 deg2

• Emission line galaxies (ELGs)

• 190,000 at 0.6 < z < 1.0 over 1500 deg2

• Low-Redshift Quasars (QSOs)

• 470,000 at 0.9 < z < 2.2 over 7500 deg2

• Lyman-α forest (Lyα)

• 50,000 new, re-ob 70,000 with SNR < 3
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eBOSS samples
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eBOSS

• eBOSS will provide first precise BAO and RSD 
measurements for 0.7 < z < 2.2, improve Lyα at 
z~2.5

• Use multiple tracers (LRGs, ELGs, QSOs)

• Wealth of spectra for galaxy and quasar science

• projected factor of 3 DE FoM improvement 
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for the (e)BOSS collaboration 
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MOS in the next decade
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