Massive Spectroscopic surveys of X-ray selected AGN and Clusters: from SPIDERS to 4MOST

Andrea Merloni MPE, Garching

Outline

- Why surveying the (extragalactic) X-ray sky?
- eROSITA on SRG: Scientific drivers and perspectives
- Spectroscopic Follow-up Programs:
 SPIDERS
 4MOST

The hot web

Dark Matter

Gas Temperature

ILLUSTRIS

The ILLUSTRIS Project, Vogelsberger et al. (2014) www.illustris-project.org

Clusters of galaxies, LSS and Cosmology

- Clusters of galaxies are the largest gravitational bound structures
- They are exponentially sensitive tracers of **growth of structures**
- Cosmological constraints with (well calibrated) ROSAT samples of <100 obj.

The eROSITA telescope

Telescope structure

www.mpe.mpg.de/eROSITA

7 identical telescopes (Wolter-I/ pnCCD-cameras) Focal length 1.6 m F.o.V. = 0.81 sqdeg Total weight ~800 kg

HEW on axis ~16.5", survey average ~26" Energy range: 0.3-8 keV Energy resolution: 138 eV @ 6 keV Effective Area: ~1400 cm2 (~XMM @1keV)

SRG: the Mission

- eROSITA hardware mostly completed. Calibration/assembly till ~August
- eROSITA delivery to Russia: Fall 2015
- Launch: March or October 2016 from Baykonour (Zenit+Fregat)
- 3 Months: flight to L2, verification and calibration phase
- 4 years: 8 all sky surveys eRASS:1-8 (scanning mode: 6 rotations/day)
- -3.5 years: pointed observation phase, including ~20% GTO. 1 AO per year

eROSITA surveys in context

ALL Massive Clusters

eROSITA will detect ~100k clusters with more than 50 net counts

Log redshift

~ 1,700 clusters with precise Temperature (to <10%), up to z~0.08
~23,000 clusters with accurate redshift determination, up to z~0.45
Borm et al. 2014; Pillepich et al. 2012

Legacy

- Sample size allows more than just hitting the systematics limit
- Provide all-sky LSS information (high-end of DMH mass function)
- The daunting task of "mass calibration" is a unique opportunity to study physics
- We will be limited by man-power (and creativity) in devising statistically significant sub-samples to combine/stack on
 - Redshift, Mass
 - X-ray luminosity & Temperature
 - SZ signal
 - Optical richness
 - Weak (and CMB) Lensing potential
 - Phase space denisty
 - Strong lensing
 - Radio relic/halos
 - ...

3 Million eROSITA AGN

1/2 Million X-ray Stars

- Cool Stars (late A to late M-type, magnetic activity, coronae)
- Hot Stars (O to early B-type incl. WR Stars, wind shocks)
- Variables

$\log L_{ m X}$	stars	distance limit	Stellar population studies
26.0	late M dwarf	10 pc	-1×1 bol relation along hot star sequence
26.5	active VLM (M9) star	20 рс	Dynamo theory
27.0	Sun, Altair (A7), Prox Cen (M5)	30 pc	- study of (super-) saturation effects and Lx/Lbol evolution
28.0	Procyon (F5), Eps Eri (K2)	100 pc	- transition effects at fully convective boundary
29.0	low-mass CTTS, active M dwarf	300 pc	Local star formation history & galactic structure
30.0	EK Dra (active G2)	1 kpc	- young nearby stellar population
31.0	Algol, bright TTS, early B star	3 kpc	- early evolution of planetary systems
32.0	WR1, O type star	10 kpc	Properties of individual SFR
33.0	$ heta^1$ Ori C (mag. O5)	30 kpc	- masses, INIF, star formation history - modes of star formation & scenarios

court. J. Robrade, J. Schmitt

And more...

See eROSITA science book (Merloni et al. 2012)

- Full census of Galactic XRB
- Isolated Pulsars, SNR
- Tens of thousans of CVs of all "flavors"
- Variability studies (from hours to years)
- "Quiescent" Black holes revealed by tidal disruption of stars (need rapid and long-term spectroscopic follow-up)
- Hot ISM of Milky Way (with spectroscopic information)
- Serendipity...

The complex landscape of O/IR wide area surveys

Image courtesy of K. Nishikawa (NAOJ)

Spectroscopy of X-ray AGN surveys

- The combination of X-ray selection and optical spectroscopy is critical
- Wide area X-ray surveys well matched to current (and future) multi-object spectrographs
- eROSITA and Athena will exploit such a vast potential for exploration

XMM-BOSS combination: the unique example of XMM-XXL (Menzel's talk)

eROSITA_DE and MOS

North: SDSS IV/SPIDERS (2014-2020)

- A. ~8,000 redshifts of RASS & XMMSL AGN (adding in ~10k SDSSI,II,III sources, almost complete follow-up of r>17 RASS sources)
- B. eROSITA follow-up over a ~2000 deg² area in the NGC: reach >80% completeness for eRASS:4 (~50,000 spectra)

– South: VISTA/4MOST (2021-2026)

- Complete, systematic follow-up of both Clusters and AGN from eROSITA: reach >80% completeness for eRASS:8
- ~700k AGN spectra 0<z<6
- 1.4M galaxies in ~60k X-ray selected clusters (Clusters clustering, RSD, velocity dispersion, gravitational redshift)

A. Merloni – La Palma, 3/2015

Galaxy clusters in SPIDERS

(N. Clerc, A. Merloni, A. Finoguenov, J. Ridl, the SDSS collaboration)

SPIDERS' web

Status of SPIDERS/RASS Clusters, 2/3/2015

SEQUELS: 323 (Rich.>10)

- 222 $(N_{spec} > 3)$
- $125(N_{spec} > 10)$
- 66 (N_{spec} > 15)

SPIDERS: 487 (Rich.>10)

- 334 (N_{spec} > 3)
- 177 (N_{spec} > 10)
- 97 (N_{spec} > 15)

eROSITA+4MOST clusters detection efficiency

8σ BAO detection in 0.8<z<2 eROSITA+4MOST Kolodzig et al. 2013

4MOST sky coverage 5 years survey simulation (4FS, MPE)

- AGN/QSO densities [deg⁻²]
 - eRASS:8 only: **48** (**26** in 0<z<0.8; **22** in 0.8<z<2.5)
 - eRASS:8+XDQSO: **24** (0.8<z<2.2)
 - XDQSO only: 50 (0.8<z<2.2)
- Reach **~100/deg**² in 0.8<z<2.5 -> AGN BAO

4MOST Facility Simulator - OpSim

Mapping the structure of the hot Universe

Working with eROSITA

- eROSITA is a PI instrument
 - Data split 50% MPE and 50% IKI West/East (gal. coord.)
 - German data public after 2 years, 2 or 3 periodic releases (2018/2019-2022)
 - Proprietary access via eROSITA_DE consortium
 - Projects/papers regulated by working groups
- Working Groups:
 - Science: Clusters/Cosmology, AGN, Normal galaxies, Compact objects, Diffuse emission/SNR, Stars, Solar System
 - Infrastructure: Time Domain, Data analysis and catalogues, Multiwavelength follow-up, Calibration, Background
- Collaboration policy:
 - Individual External Collaborations (proposal to WGs)
 - Group External Collaborations (team-to-team MoUs)

Thank you

Image courtesy of K. Dolag

AGN selection basics: contrasts

Assume: (1) $M_{BH}/M_*=A_0$; (2) $\log SFR = \alpha(z)(\log M_* -10.5) + \beta(z)$

(BH-galaxy scaling relation) ("Main sequence" of star formation)

 $Eddington rate \lambda_{limit} (z=1, z=0)$ $\frac{L_{X,AGN}}{L_{X,SF}} \approx 10^5 \lambda 10^{-\beta(z)} \left(\frac{f_X}{0.03}\right) \left(\frac{A_0}{0.002}\right) \left(\frac{M_*}{10^{10.5} M_{\odot}}\right)^{1-\alpha(z)} (2 \times 10^{-4}, 2 \times 10^{-5})$ $\frac{L_{IR,AGN}}{L_{IR,SF}} \approx 160\lambda 10^{-\beta(z)} \left(\frac{f_{24}}{0.1}\right) \left(\frac{A_0}{0.002}\right) \left(\frac{M_*}{10^{10.5} M_{\odot}}\right)^{1-\alpha(z)} (0.13, 0.015)$ $\frac{L_{B,AGN}}{L_{B,host}} = 39\lambda \left(\frac{f_B}{0.1}\right) \left(\frac{A_0}{0.002}\right) \frac{(M_*/L_B)_{host}}{3(M_{\odot}/L_{\odot})} (0.025)$

Merloni (2015)

Clusters-finding experiments

universitätbonn

eROSITA Collaboration

PI: Peter Predehl; PS: A. Merloni (MPE)

Core Institutes (DLR funding):

MPE, Garching/D Universität Erlangen-Nürnberg/D IAAT (Universät Tübingen)/D SB (Universität Hamburg)/D Astrophysikalisches Institut Potsdam/D

Associated Institutes:

MPA, Garching/D IKI, Moscow/Ru USM (Universität München)/D AIA (Universität Bonn)/D

Industry:

Media Lario/I Mirrors, Mandrels Kayser-Threde/D **Mirror Structures** Carl Zeiss/D **ABRIXAS-Mandrels** Invent/D **Telescope Structure** pnSensor/D CCDs IberEspacio/E Heatpipes Mechanisms RUAG/A HPS/D,P MLI + many small companies

MPE: Scientific Lead Institute, Project Managment Instrument Design, Manufacturing, Integration & Test Data Handling & Processing, Archive etc.

Clusters dynamics

Clerc et al. in prep

Cosmology Forecasts

- Photons registered at detector; detection threshold fixed at **50 counts**.
- Include scatter in L_X –*M* relation; "self-calibration".
- Include expected redshift uncertainty.
- Apply two cosmological tests simultaneously; evolution of (i) cluster **mass function** and (ii) **angular clustering**.
- Assume: hardware works, flat Universe, fiducial cosmology and L_X-M relation, redshifts (either specz or photoz), one sky for all, etc.

Pillepich+2012; Merloni+2012

SPIDERS AGN

z and M_{dyn} calibration

Courtesy of Y. Zhang, Bonn Univ.

A. Merloni – La Palma, 3/2015

SPIDERS/SEQUELS

Early (eRASS:1-4) spectroscopic follow-up over most of the eROSITA_DE/eBOSS overlap region (2000-3000 deg²) + complete follow-up of RASS AGN and clusters (PI: Merloni & Nandra)

Clusters astrophysics

Relative Temperature Uncertainty

~ 1,700 clusters with precise Temperature (to <10%), up to z~0.08
~23,000 clusters with accurate redshift determination, up to z~0.45

AGN: Can we follow them up?

- IDENTIFICATION COUNTERPARTS:

•X-ray positional uncertainty is an issue: test with ML (degraded XMMCOSMOS) = ~87 (+5)% secure ID at i=24 [~60-70% in VHS]

•test on ROSAT and XMM with Bayesian statistics using more than 1 catalog and priors (Salvato et al, in prep.) ~90% at r<23

Expected r_{AB} magnitude distribution of 0.5-2 keV selected AGN in eROSITA surveys

Merloni et al. 2012

www.mpe.mpg.de/eROSITA

No.5, November 2014

Between September 15 and 17, 2014, more than 70 members and guest of the German eROSITA Consortium gathered at the Leibnitz Institut für Astrophysik (AIP) in sunny Potsdam for the yearly Consortium meeting. Alongside plenary sessions and working group splinter meetings, special dedicated parallel sessions devoted to time-domain astrophysics, imaging and spectroscopic followup plans and the 'cosmology challenge' were also scheduled. More information, and all the presentations are available on the eROSITA_DE Wiki pages.

1. Overall project status and milestones

The tests with the eROSITA Technological Model performed at Lavochkin Association (LA) last October were successful. eROSITA and the 'Navigator' platform were able to communicate as required. The clearing of this critical hurdle allows now the work on the interface and control electronics to proceed as planned Merloni – La Palma, 3/2015

A legacy sample of 3M AGN

Unobscured/obscured AGN

	logNH>21		Log X-ray					
			44-45	45-46	46-47			
		0-1	2.20×10 ⁵ (4.90×10 ⁴)	2.02×10 ³ (8.15×10 ²)	12 (7)			
	Redshift range	1-2	1.00×10 ⁶ (1.13×10 ⁵)	4.14×10 ⁴ (1.29×10 ⁴)	355 (200)			
		2-3	1.81×10 ⁵ (2.37×10 ⁴)	7.90×104 (2.32×104)	765 (400)			
		>3	3.20×10 ³ (3.32×10 ²)	2.14×104 (5.50×103)	472 (3)			
	using XBG models from Gilli+07 See also Kolodzig							
0.5-2keV 0.2-0.5/se CT AGN 6000-150 all sky! (Akylas+12)	6×10^{4} -30% obscur expect 4×10^{4} 3×10^{4} 3×10^{4} 1×10^{4} 1×10^{4} 41 42	ed AGN ed	under State	8×10^4 6×10^4 4×10^4 2×10^4 0 0 0 1 2	3 4 5 6			

Optical Characterization

BLAGN1

NLAGN1

A. Merloni – La Palma, 3/2015

Menzel et al. in prep

A fast survey machine

eROSITA power for AGN physics

- Only samples of this size will allow studying AGN vs. L, z, N_H, M, SFR, etc.
- Stacked AGN "templates" vs. L-z
- X-ray Baldwin effect: Narrow/Broad Iron K α emission line vs. L_X
- High L/L_{edd}; QSO feedback via disk winds:
 - For log L_X>45 @z~1 >10⁶ counts in 4-20 keV (rest frame)
 - For log L_X>45 @z~3 >10⁶ counts in 2-8 keV (rest frame)

Cosmology Forecasts II

Data Stage IV	Redshifts	Prior Scenario	Model	$\Delta f_{ m NL}^{ m local}$	$\Delta \sigma_8$	$\Delta \Omega_{\rm m}$	Δw_0	Δw_a	$\mathrm{FoM}^{\mathrm{DEFT},1\sigma}$
eROSITA	photo-z	Pessimistic	LCDM+PNG	8.1	0.012	0.0101	-	-	-
eROSITA spectro-z eROSITA + Planck photo-z		Optimistic	LCDM+PNG	6.4	0.007	0.0060	-	-	-
		Pessimistic	LCDM+PNG	6.5	0.006	0.0021	-	-	-
eROSITA + Planck spectro-		Optimistic	LCDM+PNG	5.0	0.004	0.0015	-	-	-
eROSITA photo-z		Pessimistic	w0CDM+PNG	8.2	0.016	0.0109	0.066	-	-
eROSITA spectro-z		Optimistic	w0CDM+PNG	6.6	0.009	0.0063	0.043	-	-
eROSITA + Planck	photo-z	Pessimistic	w0CDM+PNG	6.9	0.007	0.0034	0.026	-	-
eROSITA + Planck	spectro-z	Optimistic	w0CDM+PNG	5.6	0.005	0.0025	0.023	<1%,	, <3%-
								,	
eROSITA	photo-z	Pessimistic	wCDM+PNG	8.2	0.018	0.0120	0.098	0.27	57.4
eROSITA spectro		Optimistic	wCDM+PNG	6.6	0.011	0.0066	0.075	0.23	103.1
eROSITA + Planck	photo-z	Pessimistic	wCDM+PNG	7.0	0.007	0.0036	0.059	0.21	179.4
eROSITA + Planck	spectro-z	Optimistic	wCDM+PNG	5.7	0.006	0.0026	0.048	0.16	263.3
•								>300	for $f_{\text{NII}}=0$
DES Stage III	photo-z	WL+2D photometric	wCDM+PNG	8.6	0.009	0.0082	0.093	0.61	
DES + Planck	photo-z	WL+2D photometric	wCDM+PNG	8.2	0.009	0.0074	0.090	0.35	- 1
Euclid Stage IV	photo-z	WL+2D photometric	wCDM + PNG	4.7	0.005	0.0048	0.054	0.32	-
Euclid	spectro-z	WL+2D spectroscopic	wCDM + PNG	5.7	0.005	0.0051	0.051	0.35	-
Euclid + Planck	photo-z	WL+2D photometric	wCDM + PNG	4.5	0.005	0.0044	0.052	0.20	-
Euclid + Planck	spectro-z	WL+2D spectroscopic	wCDM + PNG	5.3	0.005	0.0037	0.035	0.15	-

- Photons registered at detector; detection threshold fixed at **50 counts**.
- Include scatter in L_X –*M* relation; "self-calibration".
- Include expected redshift uncertainty.
- Apply two cosmological tests simultaneously; evolution of (i) cluster mass function and (ii) angular clustering.
- Assume: hardware works, flat Universe, fiducial cosmology and L_X-M relation, redshifts (either specz or photoz), one sky for all, etc.
 Pillepich+2012; Merloni+2012

eROSITA clusters

- <u>Confirmation</u>
 - Best: > 10 similar z
 - Average: 3 similar z
 - Extreme case: 1 z (BCG)+photo-z

- Velocity dispersions
 - ~10 members: scatter and bias (understood with simulations)
 - Stacking in M (or Lx/z) → accurate scaling relations
- <u>Completeness</u>
 - X-ray selection well-handled
 - Sampling ok if unrelated to Xray properties

Telescope structure

Wide area surveys

Survey	Lat	Date	Ω	u	g	r	i	z	Υ	J	Η	K
SDSS	+30	-'10	10000	21.6	22.6	22.4	21.6	20.1	-	-	-	-
PS1	+20	'10-'12	30000	-	22.6	22.4	22.1	21.1	-	-	-	-
SkyMapper	-30	' 14-	30000	22.5	22.5	22	20.9	20.6	- /	-	-	
KIDS+VIKING	-20	' 11-	1500	24.8	25.4	25.2	24.2	22.4	21.6	21.2	20.7	20.5
DES+VHS	-30	'12-'16	5000	-	24.6	24.1	24.3	23.8	21.5	20.5	20.1	19.5
ATLAS+VHS	-20	' 11- ₁	4500	22.0	22.2	22.2	21.3	23.8	21.5	20.2	19.9	19.3
HSC	+20	'14-'18	1500	- 1	25.5	25.2	25.5	24.3	23.3	-	- L	-
DECcam Legacy	-30	'14-'18	6000		24	23.6	/-	23	-	-	/-	-
GAIA	-	·13-	41253			20						
J-PAS	+40	'15-'20	8 <mark>5</mark> 00	22.7	23.2	23.5						
Euclid	-	20-'25	15000			24.5			24.0	24.0	24.0	-
LSST	-30	'20-'30	18000	24.0	26.0	26.0	26.0	26.0	26.0	-	-, -	-
LSST	-30	'20-'30	18000	24.0	26.0	26.0	26.0	26.0	26.0	/	-	

Cadence Map

eROSITA Hardware

Friedrich et al, 9144-185

A fast survey machine

~30 pointings ~2 Msec [0.5" HEW] **~1 pointing**, **~80 ksec** Churazov, IKI, MPA [28" HEW (FoV avg)]

The SASS pipeline processes all-sky survey and pointed data:

All-sky survey:

- Sky is divided into 5839 equatorial equal-area fields of approx. 3°x3°
- After event-calibration, incoming data stream is split and accumulated in same number of overlapping 3.6°x3.6° fields, centred on each of these fields (local, parallel projection sky maps)
- Source detection and further source-level analysis is performed on these sky maps

Pointed observations:

- ➤ Incoming data stream is split in different pointings (←timeline)
- Source detection is performed on 1.6°×1.6° fields, centred on pointing

7+1 Mirror Modules

- 54 nested gold-coated nickel mirror shells
- Mirror modules competed and accepted in 12/2013
- Mirror assemblies (mirror + baffles) integrated & tested in 2014
- Calibration of all 8 telescopes at PANTER until summer-2015

Galaxy clusters in SPIDERS/SEQUELS

(N. Clerc, A. Merloni, A. Finoguenov, J. Ridl, the SDSS collaboration)

Pre-eRosita: CODEX (RASS+RedMapper)

eRosita PSF

- 16"/18" on-axis HEW (@ 1.5 keV)
- → 29"/26" survey-averaged
- ➔ 4"-6" Localization accuracy

PANTER FM2 focal plane measurements @ 1.49 keV (*image NC, Panter-MPE*)

A. Merloni - eROSITA - IoA, 2/2015

7+1 pnCCD cameras

- 384×384 pixels or an image area of 28.8mm × 28.8mm
- Frame store area to reduce out-of-time events

A. Merloni - eROSITA - IoA, 2/2015

Spectral resolution, calibration

A. Merloni - eROSITA - IoA, 2/2015

Effective Area and Grasp

- Effective area at 1keV comparable with XMM/Newton
- Factor ~7-8 larger surveying speed
- 4 years dedicated to all sky survey (with estimated 70-80% efficiency)

eRASS:1-8

RASS (ROSAT) vs. eRASS:8

<u>ROSAT</u> 3x3 deg² field with REFLEX detections (Böhringer 2005)

<u>eROSITA</u> all-sky survey 3x3 deg² Simulation (N. Clerc, C.Schmid, F.Pace, M.Roncarelli)

A. Merloni - eROSITA - IoA, 2/2015