COSMOLOGY

CURRENT SURVEYS AND INSTRUMENTATION

MATTHEW COLLESS

MULTI-OBJECT SPECTROSCOPY IN THE NEXT DECADE SANTA CRUZ DE LA PALMA

2-6 MARCH 2015

WHY SURVEYS? WHY MOS?

- ASTRONOMY IS AN OBSERVATIONAL SCIENCE DEALING WITH LARGE POPULATIONS OF COMPLEX OBJECTS THAT FORM STRUCTURES IN SPACE AND EVOLVE IN TIME
- □ SURVEYS ALLOW US TO STUDY LARGE POPULATIONS, TO MAP STRUCTURES, AND TO TRACK EVOLUTION
- "A PICTURE IS WORTH A THOUSAND WORDS", BUT, TO AN ASTRONOMER,

"A SPECTRUM IS WORTH A THOUSAND IMAGES"

- MULTI-OBJECT SPECTROSCOPY (MOS) IS THE MOST EFFICIENT WAY TO GATHER ASTROPHYSICAL INFORMATION FOR LARGE POPULATIONS SCATTERED OVER TIME AND SPACE
- □ SO...IN THE LAST FEW DECADES MOS SURVEYS HAVE TRANSFORMED OBSERVATIONAL COSMOLOGY

MOS INSTRUMENTS FOR COSMOLOGY

- □ 1D (MULTI-FIBRES)
 - LAS CAMPANAS FIBRE SYSTEM (LCRS)
 - \circ 2DF (2DFGRS,2QZ) → AAΩ (WIGGLEZ,GAMA,OZDES)
 - 6DF (6DFGS) → TAIPAN (TAIPAN)
 - SDSS (SDSS-I, SDSS-II) → BOSS (BOSS, EBOSS)
- DEIMOS (DEEP, DEEP-2)
- □ 3D (MULTI-IFUS)
 - o MUSE(?)
 - HET/VIRUS (HETDEX)

FIBRES DOMINATE MOS COSMOLOGY SURVEYS BECAUSE SCIENCE DRIVERS ARE MULTIPLEX AND AREA

Redshift Surveys

MOVIE BY SIMON DRIVER

4 6 8 10 12

Lookback Time (Gyrs)

REDSHIFT SURVEYS: US SURVEYS, EUROPEAN SURVEYS, AUSTRALIAN SURVEYS; CELESTIAL SPHERE IS AT CMB

AAO Z-SURVEYS

MOVIE BY SIMON DRIVER

GAMA: THE VERY MODEL OF A MODERN REDSHIFT SURVEY

- $\Box \ \underline{G} \text{ALAXY} \ \underline{A} \text{ND} \ \underline{M} \text{ASS} \\ \underline{A} \text{SSEMBLY} \ \text{SURVEY}$
- □ FEDERATIVE, MULTI-λ, AND MULTI-FACILITY
 - GALAXY SEDS FROM UV TO RADIO USING EXISTING SURVEYS & NEW OBSERVATIONS
 - ALSO MULTI-Z WHEN ASKAP PROVIDES HI REDSHIFTS

...RICH SURVEY DATABASE

Team database > Tools > Single Object Viewer

	SPECID	SURVEY	z	NQ	PROB	IC_FLAG	DIST	IS_SBEST	IS_BES	т	URL	
AJ084936.3	G09_Y3_005_345	GAMA	0.3351	4	1	3	0.0500	1	1	D	ownload file	
D = 536632	Other spectra of this object	More infor	mation:									
1 1	SPECID	Click on on	e of the table:	s in the li	st below to	retrieve the curren	nt object's entry	y in that table.				
-	131671727250866176	ApMatcheo	Photom		Eron	n SersicCatAllv07:						
HO1	G09_Y2_014_355	Армат	chedCatv02		CA	TAID RA	DEC SIGM	A_INDEX OBJNAN	E	F	ILENAME	
1.2.1		ExternalSp External	alSpecv04		536	632 132.4016	0.0049 12	6056 \$001260	56 /GAMA/data/	imaging/gama	/SersicPhotom	vetry/v07/S0012605
1.1		Externa	alSpecAlv04									
~~	SIGMA_INDEX = 126056	Externa	alzAliv04			URL Data directory	URL_R	URL_K	PSF_FWHN 1 1594		1 2000	PSF_NUM_U
017	From SersicCatv07: u g r i z Y J	HI GroupFind	ing			Data directory	view inage	view inage	1.1304		1.2000	20
101	G00536632	G3CF0 G3CF0	FGroupV04 FGroupG12De	epv04	P	SF_RUN_U	SEX_XCEN_U	SEX_YCEN_	J SEX_MAG	U SEX	K_FLUXRAD_U	J SEX_RE_U
0.533		G3CGa	N04			1	-9999	-9999	-9999		-9999	-9999
	1091203646043	G3CGa	IsinPairG12D	eepv04	5	SEX_KRONRAD_	J SEX_A_	U SEX_B_U	SEX_PA_U	SEX_ELLIP_	U SEX_	CLASS_STAR_U
1945	A CONTRACTOR	G3CLin	kv04 kG12Deepv04	4		-9999	-9999	-9999	-9999	-9999		-9999
	22017264	InputCat			SI	EX_PIXSEP_U	SEX_SKY_U	SEX_SKY_RMS	S_U SEX_SK	Y_ERR_U	SEX_INDEX_	U SIG_TIME_U
- 6	2012/02/02/02/02	E Galacti	cExtinctionv02	2		-9999	-9999	-9999	-9	999	-9999	-9999
	8580312509038B	Galaxy	PartMatchesv Starsv03	07	G	AL_SKY_U G	AL_SKY_ERR	U GAL_FIT_U	GAL_FITWO	RD_U G/	AL_RUN_U	GAL_RESULT_U
9 73 00	1. Mar. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		atAv06			-9999	-9999	-9999			-9999	ERROR
	1	E SpStar	dardsv07		G/	AL_CHI2_U GAI	L_ITERATIONS	S_U GAL_COMP	B_U GAL_EXT	RAS_U GA	L_QFLAG_U	GAL_GHFLAG_U
CATA	Contraction of the local distance	E Tinge	xtrav02			-9999	-9999	-9999	-999	9	1	0
11	Ellipses + Masks	LocalFlow	Correction		G	AL_CHFLAG_U	GAL_RA_U	J GAL_DEC_U	GAL_TYPE_U	GAL_TY	PEWORD_U	GAL_XCEN_U
		Distanc	esFramesv06			0	-9999	-9999	-9999		••	-9999
		LTObs			G	AL_YCEN_U G	AL_MAG_U	GAL_MAG_10RE	U GAL_MU_	U GAL	MU_E_U G	AL_MU_E_AVG_U
	$ (\bigcirc) $	LTRed	shiftsv01			-9999	-9999	-9999	-9999	-9	999	-9999
		SersicPho Sersic	atv07			GAL_RE_U	GAL_R90_U	GAL_RE_C_U	GAL_INDE	X_U G	AL_ELLIP_U	GAL_PA_U
		Sersico	atAllv07			-0999	-9999	-9999	-9999	1	-9999	-9999
		SpecCat	-		C) 1
			nzHesultsv14 ecAllv14									
H H H	· 10 Mark	E AATSp	ecAllzAllv14									
4000	10 Prot	E LTSpe	cAlv02									
		E Speck	hkd.d									

...COMPLEX INFORMATION

STRIICTIERS

MOS SURVEYS/INSTRUMENTS HERE

IMPACT OF MOS SURVEYS - 1

- LITERATURE ANALYSIS BY TRIMBLE & CEJA (2008) LOOKED AT 11,831 PAPERS PUBLISHED IN 2001-3 (DATED, BUT RESULTS STILL APPLICABLE)
- □ THE MOST-CITED OPTICAL/INFRARED FACILITIES...

FACILITY	CITATIONS	PAPERS
HST	15390	1063.1
Keck	8122	365.6
SDSS	7235	161
VLT	5696	345.5
AAT	4592	170.2
Schmidts	3430	247.8
2MASS	2937	182.9

IMPACT OF MOS SURVEYS - 2

Citations		Journal	Subject	Facilities
<u></u>	2770	ApJS	Cosmology	WMAP, ACBAR, CBI, AAT, HST, other optical
õ	1301	ApJS	Cosmology	WMAP, optical & X-Ray unidentified
MOST-CITED PAPERS 2001-3	632	ApJ	Cosmology	HST
	466	ApJS	Cosmology	WMAP
	450	MNRAS	Galaxies	JKT, Siding Spring 2.3m, SDSS, IUE
	397	ApJ	Cosmology	CFHT, CTIO-4, Keck II & I, CTIO-1.5, VLT,
		-		UKIRT, UHi 2.2, Vatican, WIYN, HST, SDSS
	383	ApJS	Cosmology	WMAP, CBI, ACBAR, AAT, other optical
	380	A&A	Service	XMM
	375	AJ	Service	SDSS
	370	A&A	Service	XMM
	313	AJ	Service	SDSS
	309	Nature	GRB	VLT 1 & 2
	306	A&A	Service	XMM
	298	ApJLett	GRBs	VLA, Keck, Palomar 5-m
	281	ApJS	Cosmology	WMAP
	281	ApJLett	GRBs	MMT, Magellan, Whipple-1.5
	279	MNRAS	Galaxies	AAT
	277	AJ	Service	Schmidt surveys (USNO catalogue)
	275	ApJ	Cosmology	Boomerang
	258	ApJ	Cosmology	HST, Keck, WIYN, ESO-3.6, CFHT, INT,
				ESO-NTT, CTIO-4 TRIMBLE & CEJA (2008)

SURVEY IMPACT BY FIELD

PHYSICS FROM LARGE-SCALE STRUCTURE

SIDEBAR: SPECTRO-Z'S vs PHOTO-Z'S

- □ PHOTO-Z'S ARE POTENTIALLY A CHEAP WAY TO MEASURE MANY GALAXY REDSHIFTS AND HENCE THE BAO PEAK
- PROBLEM IS LARGE ERRORS FOR Z-ERRORS > 1000 KM/S, BAO PEAK IS SMEARED OUT & H(Z) CANNOT BE MEASURED; FULL INFORMATION REQUIRES Z-ERRORS < 300 KM/S</p>
- □ TO MEASURE $D_A(z)$, A PRECISION OF $\sigma_z/(1+z) \le 4\%$ IS REQUIRED; WORSE PRECISION CAUSES CATASTROPHIC CANCELLATION OF BAO SIGNAL OVER WIDTH OF Z-SHELL
- HOWEVER 3-4% PRECISION YIELDS POOR CONSTRAINTS ON THE BAO PER UNIT VOLUME; A PHOTO-Z SURVEY NEEDS ~10X MORE VOLUME THAN A SPECTRO-Z SURVEY
- BETTER PRECISION HELPS, BUT AT Z<0.7, SPECTRO-Z SURVEYS ARE ALREADY COVERING LARGE FRACTION OF SKY, SO PHOTO-Z SURVEYS ONLY COMPETITIVE AT HIGHER Z'S
- PHOTO-Z SURVEYS REQUIRE STRINGENT CALIBRATION AND MORE EXTENSIVE MODELING THAN SPECTRO-Z SURVEYS

COSMOLOGY FROM 2DFGRS

- \square 2DFGRS measured 221,000 z's over 2000 deg²
- LARGE-SCALE STRUCTURE OF THE GALAXY DISTRIBUTION PRECISELY MAPPED ON SCALES OF 10⁶–10⁹ LIGHT-YEARS
- □ THE FORM OF LARGE-SCALE STRUCTURE IS CONSISTENT WITH GROWTH BY GRAVITATIONAL INSTABILITY ⇒ QUANTUM FLUCTUATIONS FROM THE BIG BANG ARE AMPLIFIED BY GRAVITY TO BECOME GALAXIES, CLUSTERS & SUPERCLUSTERS
- □ THE TOTAL DENSITY OF ALL TYPES OF MATTER IS Ω_{M} = 0.23 THERE IS ONLY 23% OF THE MATTER NEEDED TO MAKE A CRITICAL-DENSITY (I.E. FLAT = ZERO-CURVATURE) UNIVERSE
- THE TOTAL DENSITY IN ORDINARY MATTER IS Ω_B= 0.04 BARYONS ARE 17% & CDM 83% OF THE TOTAL MATTER
- □ NEUTRINOS MAKE UP LESS THAN 13% OF ALL MATTER ⇒ TOTAL MASS OF 3 NEUTRINO SPECIES IS LESS THAN 0.7 eV
- BARYON ACOUSTIC OSCILLATIONS DETECTED AT 2.5 σ

COSMOLOGY FROM MOS – BAO

- BARYON ACOUSTIC OSCILLATIONS (BAO) PROVIDE STANDARD RULER
- BAO RESULT FROM PRESSURE WAVES IN PRE-RECOMBINATION PHOTON-BARYON FLUID IMPRINTING THE SOUND HORIZON SCALE ON THE MATTER DISTRIBUTION
- $\Box \quad GALAXY \text{ REDSHIFT SURVEYS YIELD} \\ \text{ANGULAR DIAMETER DISTANCES} \\ D_A(Z) \text{ & EXPANSION RATES } H(Z) \\ \end{array}$
- BAO MAP EXPANSION HISTORY BOTH ALONG AND ACROSS THE LINE OF SIGHT, PROBING BOTH DARK ENERGY AND GRAVITY
- A WELL-UNDERSTOOD, PRECISE TOOL; MAIN LIMITATION IS THE SCALE OF THE SURVEYS REQUIRED

BAO SURVEYS

- □ BAO FIRST DETECTED IN GALAXY DISTRIBUTION (AT 2.5σ) BY 2DFGRS AND SDSS (COLE+ 2005, EISENSTEIN+ 2005)
- □ THE WIGGLEZ SURVEY OBSERVED 2×10^5 EMISSION-LINE GALAXIES OVER 800 DEG² AND MEASURED BAO AT 0.5<Z<1 WITH 3.8% PRECISION AT Z=0.6 (BLAKE+ 2011)
- □ KAZIN+ (2010) USED THE FULL LRG SAMPLE FROM DR7 TO MEASURE THE GALAXY CORRELATION FUNCTION AND OBTAIN A 3.5% MEASUREMENT OF THE BAO SCALE AT z = 0.35
- PERCIVAL+ (2010) USED 900,000 GALAXIES OVER 9100 DEG² FROM THE COMBINED 2DFGRS, SDSS DR7/LRG SAMPLES TO OBTAIN THE BAO SCALE AT Z=0.27 WITH 2.7% PRECISION
- PADMANABHAN+ (2012) SHOWED THAT DENSITY FIELD RECONSTRUCTION COULD IMPROVE THESE BAO MEASURES BY ABOUT A FACTOR OF 2

COSMOLOGY FROM MOS - RSD

REDSHIFT-SPACE DISTORTIONS RESULT FROM PECULIAR MOTIONS DUE TO GRAVITY AND MEASURE THE GROWTH OF STRUCTURE

□ RSD MEASURE THE COMBINATION $f(z)\sigma_8(z)$ WHERE $f(z)=\Omega_M(z)^{\odot}$ AND σ_8 IS FLUCTUATION IN 8 MPC/h SPHERE

- □ RSD CONSTRAINTS COME FOR FREE WITH ANY LARGE GALAXY z-SURVEY
- MAIN UNCERTAINTY IS THEORETICAL MODELING OF THE NON-LINEAR GRAVITATIONAL EVOLUTION AND NON-LINEAR BIAS; CURRENTLY THIS LIMITS APPLICATION OF RSD METHOD TO CO-MOVING SEPARATIONS r > 10 MPC/h (OR k < 0.2 h/MPC)

Low-z Cosmology Surveys

- □ 6dFGS, though smaller than 2dFGRS & SDSS, gives valuable constraints on cosmology at low z, notably a direct measure of H_0 and Growth of Structure
- □ THE TAIPAN SURVEY (HOPKINS TALK) WILL HAVE 4X THE SAMPLE SIZE & VOLUME OF 6DFGS AND GIVE H₀ with ~1% precision and growth of structure to 5% at $\langle z \rangle$ ≈0.1
- □ DARK ENERGY IS A LATE-TIME (LOW-REDSHIFT) PHENOMENON!

HIGH-Z COSMOLOGY SURVEYS

REDSHIFT SURVEYS COVERING A RANGE OF EPOCHS (WIGGLEZ, BOSS...) CONSTRAIN THE EVOLUTION OF THE GEOMETRY OF THE UNIVERSE AND THE GROWTH OF STRUCTURE OVER COSMIC TIME

PLANCK COLLABORATION (PAPER XIII, 2015)

COSMOLOGICAL POWER OF MOS

BOSS: THE STATE OF THE ART

- □ GOAL: MEASURE BAO OVER LARGER VOLUME AND Z-RANGE THAN ALL PREVIOUS Z-SURVEYS
- □ FINAL DATASET IS SDSS DR12 (TO JULY 2014)
- \Box GALAXIES: 1.4×10⁶ AT Z<0.7 (i<19.9) OVER 10⁴ DEG²
 - \circ Forecast: D_A to 1.0% and H(z) to 1.8% and 1.7% at z=0.3 and z=0.57

BOSS AND **eBOSS**

BOSS: THE STATE OF THE ART

- $\square BOSS DETECTS BAO FEATURE AT 7\sigma$ IN GALAXIES AND 5σ IN Ly α FOREST
- BAO ALONE YIELD A HIGH CONFIDENCE DETECTION OF DARK ENERGY AND, WITH THE CMB ACOUSTIC SCALE, BAO IMPLY A NEARLY FLAT UNIVERSE
- $\square BAO+CMB+SN DATA JOINTLY GIVE H_0$ $= 67.3 \pm 1.1 \text{ KM/S/MPC} (1.7\%)$ ROBUST TO ASSUMPTIONS ABOUT DARKENERGY OR SPACE CURVATURE
- □ FOR CONSTANT DARK ENERGY (Λ), BAO+CMB+SN YIELDS

 $\begin{array}{l} \Omega_{M} = 0.301 \pm 0.008 \ (2.7\%) \\ \Omega_{K} = -0.003 \pm 0.003 \end{array}$

- $\Box \quad For evolving forms dark energy, \\ BAO+CMB+SN \ Data \ are \ always \\ consistent \ with \ flat \ \Lambda CDM \ at \ \sim 1\sigma$
- □ BAO+PLANCK-WL GIVES A SUMMED MASS OF NEUTRINOS $\square M_v < 0.25 \text{ eV}$

COSMOLOGY - PECULIAR VELOCITIES

- □ MOS COSMOLOGY IS NOT JUST ABOUT REDSHIFTS!
- □ PECULIAR VELOCITY SURVEYS (V-SURVEYS) CAN PROVIDE ADDITIONAL INFORMATION REMOVING SOME DEGENERACIES INTRINSIC TO Z-SURVEYS (E.G. BETWEEN β AND r_g)
- V-SURVEYS ARE NECESSARILY LOW-REDSHIFT DUE TO FIXED FRACTIONAL DISTANCE ERRORS
- DISTANCE ERRORS ARE TYPICALLY SIGNIFICANT (E.G. 20-25% FOR TF AND FP, BUT 5-8% FOR SNE)
- 6DFGRS IS THE CURRENT STATE-OF-THE-ART Z+V-SURVEY:
 - 125,000 REDSHIFTS AND 9000 PECULIAR VELOCITIES (USING FUNDAMENTAL PLANE DISTANCES FOR EARLY-TYPE GALAXIES)
 - $\circ~V\text{-}survey covers 17000 \mbox{ deg}^2$ to depth of ${\sim}16000 \mbox{ km/s}$

V-SURVEY COSMOLOGY

- □ JOHNSON+ (2014) USE THE POWER SPECTRUM OF THE 6DFGS PECULIAR VELOCITIES TO OBTAIN FIRST SCALE-DEPENDENT MEASUREMENTS OF THE GROWTH RATE OF STRUCTURE $f\sigma_8$ (IN COMBINATION WITH Z<0.07 SNE)
- $\square MEASURED THE GROWTH RATE IN <math>\Delta k=0.03 h/MPC$ BINS TO $\sim 35\%$ PRECISION, INCL. A MEASUREMENT ON SCALES >300 h/MPC, THE LARGEST-SCALE MEASUREMENT OF THE GROWTH RATE TO DATE

- □ NO EVIDENCE FOR A SCALE DEPENDENCE IN GROWTH RATE OR VARIATION FROM PREDICTIONS OF PLANCK ACDM MODEL
- $\hfill\square$ Combining all scales, the growth rate at z=0 is measured with \sim 15% precision, independent of galaxy bias & in good agreement with RSD growth rate measurements from 6dFGS z-survey
- □ FUTURE PECULIAR VELOCITY SURVEYS WILL ALLOW US TO UNDERSTAND IN DETAIL THE GROWTH OF STRUCTURE IN THE LOW-REDSHIFT UNIVERSE, PROVIDING STRONG CONSTRAINTS ON THE NATURE OF DARK ENERGY

DARK ENERGY – FUTURE PROGRESS

- □ ALL OBSERVATIONS TO DATE OF THE COSMIC EXPANSION HISTORY AND THE GROWTH OF STRUCTURE ARE CONSISTENT WITH A FLAT Λ CDM + GR MODEL WITH $\Omega_M \approx 0.3$ AND $\Omega_\Lambda \approx 0.7$
- Z-SURVEY METHODS (BAO, RSD) ARE
 EXPECTED IN FUTURE TO
 PROVIDE 10X BETTER
 CONSTRAINTS ON THE
 DARK ENERGY
 EQUATION OF STATE

CONSTRAINTS FROM MOS SURVEYS

PERCIVAL (2013)

MOS COSMOLOGY IN 2025

- □ WHAT WILL MOS COSMOLOGY LOOK LIKE IN 2025? SOME SAFE PREDICTIONS...
 - 1. Redshift surveys exist totaling a few x 10^7 galaxies out to $z\sim 1.7$ and a few x 10^6 galaxies/QSOs out to $z\sim 3$
 - 2. PECULIAR VELOCITY SURVEYS (OPTICAL AND HI) EXIST TOTALING >10⁵ GALAXIES IN THE NEARBY UNIVERSE
 - 3. LSST PROVIDES ULTIMATE TARGET LIST FOR MOS SURVEYS; HOW CAN WE FULLY EXPLOIT THIS? NEED DEDICATED 8M MOS!
 - 4. A COMMON FEDERATED DATABASE SYSTEM HAS EMERGED FROM A HETEROGENEOUS SET OF SURVEYS AND SOFTWARE
 - 5. MANY MORE PAPERS ARE BASED ON ARCHIVAL MOS SPECTRA AND DATABASES THAN ON FRESH OBSERVATIONS
 - 6. 'DATA SCIENTISTS' OUTNUMBER 'OBSERVERS' (AND HAVE MORE KUDOS AND BETTER CAREER PROSPECTS)
 - 7. TEAM LEADERS ARE STILL COMPLAINING THAT SCIENCE OUTPUTS FROM THEIR SURVEYS ARE PERSON-/BRAIN-POWER-LIMITED

FUTURE MOS INSTRUMENTS

- □ EVERY SELF-RESPECTING GENERAL-PURPOSE 4M OR 8M-CLASS TELESCOPE NEEDS MOS CAPABILITY
- MOS IS EXPANDING IN NEW DIRECTIONS: NOT JUST HIGH-MULTIPLEX BUT ALSO HIGH-RESOLUTION AND MULTI-IFUS (& EVENTUALLY MOAO MULTI-IFUS)
- □ IN THE ELT ERA, MOST 8M-CLASS TELESCOPES WILL HAVE A MOS INSTRUMENT OF SOME VARIETY AS THEIR CUTTING-EDGE FACILITY
- □ GMT TO HAVE HIGHLY VERSATILE MOS/MULTI-IFU CAPABILITY PROVIDED BY THE MANIFEST FACILITY
 - COUPLED TO LARGE OPTICAL/NIR SPECTROGRAPHS (BOTH MEDIUM AND HIGH RESOLUTION)
 - \circ AQ = 25M APERTURE X 20 ARCMIN DIAMETER FIELD
 - \circ Operating in natural seeing and GLAO modes

IN MEMORIAM

This talk is dedicated to PROFESSOR PETER MCGREGOR

A FINE ASTRONOMER, A SUPERB INSTRUMENTALIST AND A WONDERFUL COLLEAGUE AT THE AUSTRALIAN NATIONAL UNIVERSITY WHO PASSED AWAY 5 MARCH 2015