

Unveiling the combined evolution of galaxies and large scale structure at 0.5 < z <1.2

Angela Iovino INAF-OABrera on behalf of the VIPERS Team

La Palma March 2015

Multi-Object Spectroscopy in the Next Decade Big Questions, Large Surveys and Wide Fields

VIPERS: VIMOS Public Extragalactic Redshift Survey

PI. L. Guzzo

Total volume covered 5 x 10 ⁷ Mpc³

~100,000 redshifts,

~40% sampling

Density and volume comparable to 2dFGRS, but at z~0.8

~ half volume of SDSS main at z ~ 0

VIPERS in a nutshell

• 440.5 VLT hours @ VIMOS + LR Red grism

Exploiting VIMOS Multi-Object Spectroscopy at VLT

VIPERS in a nutshell

- 440.5 VLT hours @ VIMOS + LR Red grism
- ~24 deg² over W1 and W4 CFHTLS wide fields (~16 + 8)

VIPERS in a nutshell

- 440.5 VLT hours @ VIMOS + LR Red grism
- \sim 24 deg² over W1 and W4 CFHTLS wide fields (\sim 16 + 8)
- $I_{AB} < 22.5 + z > 0.5$ color-color pre-selection
- **PSF + SED-based star-galaxy separation (AGN color recovery)**

VIPERS COLOR-COLOR SELECTION: ISOLATING z>0.5 GALAXIES (calibrated using VVDS)

VIPERS COLOR-COLOR SELECTION: ISOLATING z>0.5 GALAXIES (calibrated using VVDS)

- Colour Sampling Rate = 1 for z>0.6
- Transition range 0.4<z<0.6 (due to mag errors and intrinsic scatter in colorredshift relation)
- Selection function in the transition reconstructed using complete VVDS data
- Data in this range can be used for some analyses but not for others

Guzzo & VIPERS team 2014

Advantages of VIPERS selection strategy

- Sampling ~40% of all I_{AB}<22.5 galaxies between z=0.5 and 1.2 in only one VIMOS pass:
 - Get high density of tracers at desired
 z range
 - Avoid multiple passes, thus maximize area for given telescope allocation
 - Targets are not dense: preserve most
 of angular clustering signal
 (minimize "proximity bias")

Fully automated web-based archive

SURVEY STATUS AS OF 24/02/2015

EFFECTIVE	MEASURED	STELLAR	COVERED
TARGETS	REDSHIFTS	CONTAMINATION	AREA
89052	84674	2207 (2.6 %)	93.7%

EFFECTIVE TARGETS (ET) are all the primary targeted objects with the exclusion of the ones flagged as -10 (undetected). MEASURED REDSHIFTS (MR) are the fraction of ET for which a redshift has been measured. STELLAR CONTAMINATION are the MR objects which have been identified as stars.

> (web management tool developed by P. Franzetti)

All data are already in our hands Redshift measurements are finishing these days

Fully automated web-based archive

VIPERS Target Sampling Rate

Guzzo & VIPERS team 2014

~40% on the whole VIPERS area

VIPERS Spectroscopic Success Rate

Guzzo & VIPERS team 2014

~80% on the whole VIPERS area

Public Data Release 1 (PDR1) (Oct. 2013, see Garilli & VIPERS Team A&A 2014)

Completion 64%

	W1	W4
Final surveyed area	15.7	7.8
PDR-1 surveyed area	7.9	7.8
PDR-1 effective area	5.5	5.1

VIPERS Team Members

57 people, 10 institutions, 5 nations

PDR1 cone diagrams

- Cosmological constraints from galaxy clustering measured up to 100 Mpc scales at $z \sim 1$
- Measure structure growth through Redshift Space Distortions out to z~1, possibly using different tracers

- Cosmological constraints from galaxy clustering measured up to 100 Mpc scales at z~1
- Measure structure growth through Redshift Space Distortions out to z~1, possibly using different tracers

See also:

- Marulli et al. A&A 2013: Luminosity and stellar mass dependence of galaxy clustering at 0.5<z<1.1
- Bel et al. A&A 2014: Ω_m from the clustering ratio measured at z~1
- Di Porto et al. A&A 2015: Measuring non-linear galaxy bias at z ~0.8

• Precise measurements of statistical properties of galaxy population (color, luminosity, stellar mass ...)

For each galaxy there is a suite of photometric data: u, g, r, i z from CFHTLS, near-UV (FUV and NUV) from GALEX, K-band from WIRCAM follow-up, UKIDSS public data (Y,J, H, K) where available

SED fitting program Hyperzmass

Galaxy rest-frame magnitudes, stellar masses together with measured spectral features

 Precise measurements of statistical properties of galaxy population (color, luminosity, stellar mass ...)

• Precise measurements of statistical properties of galaxy population (color, luminosity, stellar mass ...)

See also:

- Fritz et al. A&A 2013: A quiescent formation of massive red sequence galaxies over the past 9 Gyr
- Marchetti et al. A&A 2013: Spectral classification through Principal Component Analysis
- Malek et al. A&A 2013: A Support Vector Machine classification of galaxies, stars and AGNs

• Identify structures as groups, filaments, voids

• Identify structures as groups, filaments, voids

Groups catalog using FoF and VDM algorithms Al in prep.

• Identify structures as groups, filaments, voids

Filaments using Disperse -Davidzon in prep.

VIPERS skeleton obtained with Disperse (Sousbie 2013) http://spine-public.projet-horizon.fr

• Identify structures as groups, filaments, voids

Statistical reconstruction using Wiener filtering

Cucciati & VIPERS Team 2014

Summary

 VIPERS exploits VIMOS@VLT, filling a specific niche at z~1: large volume ~6 x 10⁷ h⁻³ Mpc³, high ~ 40% sampling. It is complementary to larger-volume, sparser BAO surveys

- VIPERS is designed to measure clustering, RSD, structures and environmental properties of galaxies at 0.5<z<1.0
- VIPERS is a powerful probe for galaxy evolution studies over
 8 billion years (see large and growing set of ancillary data: GALEX, WIRCAM, VISTA, XMM ...)
- Strong legacy value: DR1 is already available
- See www.VIPERS.inaf.it for more info