GALAXY FORMATION IN THE FIRST 3 GYRS WITH WIDE FIELD LYMAN-ALPHA SURVEYS*

*WITH THE INT AND WHT

Jorryt Matthee

Huygens fellow Universiteit Leiden

Leider

with David Sobral (Lancaster), Huub Röttgering (Leiden), et al.

When and how did the first stars and galaxies form?

STAR FORMATION HISTORY OF THE UNIVERSE

History of cosmic star formation peaks at z~2: 11 Gyr ago

STAR FORMATION HISTORY OF THE UNIVERSE

At z>2.3: normal optical emission line diagnostics ~impossible, hard to measure accurate SFR, metallicity, etc

LYMAN-ALPHA IS OUR BEST SPECTROSCOPIC TOOL AT Z>2.3

- + 1216 Å redshifts into optical at z > 2
- intrinsically most luminous emission
 line in star-forming HII regions
- line-resonance leads to scattering:
 (tau=1 at N_H ~10¹⁴ cm⁻²)
 - > not all galaxies emit observable Lya
 - > neutral hydrogen spreads Lya light

THE NARROW-BAND TECHNIQUE

directly targets galaxies with redshifted Lyman-alpha (1216Å) at z=2.2, 3.1, 4.8, 5.7, 6.6, 7.7, 8.8

Lyman-alpha typically traces young OB stars, low metallicity (low dust), hot sources

Ouchi+2008,2010; Konno+2014; Matthee+2014,2015; Murayama+2008 Nilsson+2007; Hu+2011; Malhotra&Rhoads2000,2004; Hayes+2010, +++

sources that can be followed up easily

TIME TRAVELLING WITH LYMAN-ALPHA

from the "epoch of galaxy formation"

TIME TRAVELLING WITH LYMAN-ALPHA

to the end of the dark ages

TIME TRAVELLING WITH LYMAN-ALPHA

and beyond

Before going: where are we actually going to travel to?

HST Deep fields may not be the best place to go...

HST Deep fields may not be the best place to go to..

CANDELS+ERS+BoRG (~all HST deep fields)

10,000 galaxies z>3 (e.g. Bouwens+2015), but only handful of bright objects at z>6

Pencil-beam surveys may give a biased view of galaxy formation

Our approach: wide fields from the ground

<u>s</u>

Our typical coverage

COSMOS/UltraVISTA UDS/XMM-LS SA22/CFHTLS Boötes/NDWFS

find bright targets

~20 times larger than combined HST fields, ~2 magnitudes shallower

First stop: the peak of star formation history (z=2, 11 billion years ago)

Our last chance of calibrating Lyman-alpha directly

CALYMHA: MATCHED (NARROW)-BAND TECHNIQUE *z*=2.2: **NB392** gets Ly α , NB_J [OII], NB_H [OIII], NB_K H α 772 H α emitters at z=2.23 from HiZELS (NB_K imaging)

 $Ly\alpha$ filter designed to match $H\alpha$

Similar technique: Sobral+2012, Nakajima+2012, Hayes+2010

CALYMHA: OBSERVATIONS OVERVIEW

~40 dedicated nights at the INT on La Palma, May 2013-January 2015

HA-LYA EMITTERS AT Z=2.2

588 HAEs are covered by NB392 observations.
Only 17 are directly detected as LAE. 5 of these are X-ray AGN.
> only ~5% of SFGs are LAEs if you select on ~L* Hα

THE LYMAN-ALPHA ESCAPE FRACTION

Fraction of produced Lya light that we observe in 3" aperture

for typical star-forming galaxies: f_{esc,Lya} = 1.6+-0.5 %

CORRELATIONS WITH GALAXY PROPERTIES: BIMODAL RELATIONS (!)

RED and massive LAEs exist (even without AGN)

LYMAN-ALPHA SELECTED GALAXIES

188 LAEs, typically not detected in H α : much lower SFR stack of LAEs: $f_{esc,Lya} = 37+-7$ %: $f_{esc,Lya}$ increases with lower Luminosity/higher EW

Sobral, Matthee, et al. 2016, arXiv: 1609.05897

EXTENDED LYMAN-ALPHA EMISSION IN STACKS

 $H\alpha/UV$ is not as extended as $Ly\alpha$, indicative of resonant scattering?

Matthee et al. 2016, MNRAS, 458, 449

Sobral, Matthee, et al. 2016, arXiv: 1609.05897

EXTENDED EMISSION DRIVES LYA ESCAPE

Matthee et al. 2016, MNRAS, 458, 449

INDIRECT ESTIMATE: EVOLUTION OF FESC, LYA

Hayes et al. 2011, ApJ, 730, 8

THE PRODUCTION EFFICIENCY OF IONIZING PHOTONS

 $\xi_{ion} = Q_{
m ion}/L_{UV,
m int}$

(assumes f_{esc,LyC}=0)

"Number of ionising photons per unit UV luminosity"

 ξ_{ion} does correlate with EW(H α).

 $log(\xi_{ion}) \sim 24.8 \text{ Hz/erg}$

Redshift evolution of ξion

Combine trend ξ_{ion} with EW(H α) with redshift evolution of EW(H α)

>> in reionization era, $log(\xi_{ion}) \sim 25.2-25.4$ Hz/erg

Matthee et al. 2016, arXiv: 1605.08782

Summary part 1: Calibrating Lyman-alpha

- for typical galaxies at z=2.2, the Lya escape fraction is low
- Most Lyman-alpha emitters are young, low mass galaxies, but they can also be Lyman-alpha emitters at later stages in their evolution
- Resonant scattering creates Lyman-alpha haloes around each starforming galaxy: to deep surface brightness limit, every galaxy is a Lyman-alpha emitter
- the relative observed luminosity of Lyman-alpha w.r.t. UV increases with look-back time

Next stop: the end of reionization

How can we study reionization with galaxies?

LYMAN-ALPHA & REIONIZATION

Dijkstra, 2015

The observability of Lyman-alpha is affected by the presence of neutral hydrogen around galaxies

SUBARU LYMAN-ALPHA SURVEYS

SUBARU LYMAN-ALPHA SURVEYS

Reionization completed

Reionization ongoing

DIFFERENT SURVEY FIELDS: COSMIC VARIANCE

z=5.7 LAE LF:

z=6.6 LAE LF:

Selection: EW₀(Lya) > 25 Å & Lyman-break, 2" apertures

Allows to study changes in Lya luminosities (due to reionization?)

COMBINED Z=5.7 LAE LF

alpha very steep: -2.3+-0.4 (consistent with Dressler+2015) (c.f. -1.9 UV LF Bouwens+2015; theoretically argued by Gronke+2015)

Evolution of the Lya LF from z=5.7-6.6 and beyond

Number density evolves at the faint end, not at the bright end!

- > more neutral IGM scatters Lya out of line-of-sight?
- No comparable wide survey z>7 yet.

Extended emission at z=5.7-6.6

Simple analysis: Mag-auto luminosity vs 2" aperture luminosity Faint LAEs become more extended at z=6.6!

Similar to Momose+2014: median LAE in UDS more extended at z=6.6 than at z=5.7

Observing patchy reionization?

 Faint LAEs are less abundant and more extended at z=6.6 than at z=5.7
 Bright LAEs equally abundant and equally extended

Matthee et al. 2015 MNRAS 451, 4919

Redshift z~5.5 (Universe 1 billion year old): almost completely ionised

Simulation by Paul Shapiro +

Redshift z~6.5 (Universe 0.8 billion year old): neutral bubbles appear

Simulation by Paul Shapiro +

Redshift z~7.3 (Universe 0.7 billion year old): more neutral bubbles appear

Simulation by Paul Shapiro +

Redshift z~8.5 (Universe 0.6 billion year old): the earliest ionised bubbles (?)

z=7.7, Oesch et al. 2015

THE PROPERTIES OF LUMINOUS LAEs AT Z=6.6

THE BENEFIT OF HAVING BRIGHT SOURCES... (15 min) z=6.6

CR7 and the team of luminous z=6.6 LAEs

Sobral, Matthee et al. 2015 ApJ, 808, 139

Himiko: Ouchi+2009,2013 CR7, MASOSA: Sobral+2015 COLA1: Hu+2016 VR7: Matthee+2015 & in prep

THE NATURE OF LUMINOUS LAES

Luminous LAEs show a lot of diversity!

- Lya sizes

NB816 z=5.7

COSMOS >L* LAEs

NB921 z=6.6

THE NATURE OF LUMINOUS LAES

Luminous LAEs show a lot of diversity!

- Lya sizes
- UV magnitudes

THE COSMOS REDSHIFT 7 GALAXY

The most luminous Lyman-alpha emitter known at z=6.6

Detailed properties of CR7

Ve

Sobral, Matthee et al. 2015 ApJ, 808, 139

sion

NO METAL EMISSION LINES

Metallicity must be very low: <1/200 Z_{sun}

Sobral, Matthee et al. 2015 ApJ, 808, 139

(ARCHIVAL) HST VIEW OF CR7

Bowler+2016: all luminous z~7 LBGs multiple components

Thanks Forster-Schreiber (PI HST data)!

Sobral, Matthee et al. 2015 ApJ, 808, 139

CURRENT DATA IS FULLY CONSISTENT WITH POPIII-LIKE CLUMP A+"NORMAL"STELLAR POP IN B+C

PopIII-like formation scenario:

Himiko (Ouchi+10) Similar to CR7?

Himiko: no Hell, nor metal lines: Zabl+2015

- However, many theorists 'prefer' that CR7 is the first detection of a Direct Collapse Black Hole (DCBH)
- The Brightest Ly α Emitter: Pop III or Black Hole?
- **Detecting Direct Collapse Black Holes: making the case for CR7**
- Exploring the nature of the Lyman- α emitter CR7
- Evidence for a direct collapse black hole in the Lyman lpha source CR7

LY α SIGNATURES FROM DIRECT COLLAPSE BLACK HOLES

- AB INITIO COSMOLOGICAL SIMULATIONS OF CR7 AS AN ACTIVE BLACK HOLE
- Formation of Massive Population III Galaxies through Photoionization Feedback: A Possible Explanation for CR7

Pallotini+2015, Agarwal+2015, Hartwig+2015, Smith+2016, Dijkstra+2016, Smidt+2016 (but Visbal+2016 argue PopIII through similar mechanism)

DCBH formation scenario:

HST+Subaru image of CR7

Artist impression (Kornmesser, ESO)

Pallotini+2015, Agarwal+2015, Hartwig+2015, Smith+2016, Dijkstra+2016, Smidt+2016 (but Visbal+2016 argue PopIII through similar mechanism)

DCBH formation scenario:

HST+Subaru image of CR7

Artist impression (JM)

Pallotini+2015, Agarwal+2015, Hartwig+2015, Smith+2016, Dijkstra+2016, Smidt+2016 (but Visbal+2016 argue PopIII through similar mechanism)

Ongoing ALMA+HST follow-up: metallicity of hot and warm ISM

Current constraint from X-SHOOTER: $Z/Z_{sun} < 10^{-2.5}$ HST grism early 2017 will give $Z/Z_{sun} < 10^{-4}$

metal poor DLAs: Cooke, Pettini & Jorgensen 2015

SUMMARY

Matthee, Sobral et al. 2015 MNRAS 451, 4919 Sobral, Matthee et al. 2015 ApJ, 808, 139 Santos, Sobral & Matthee, 2016, arXiv: 1606.07435

Faint LAEs are less abundant and more extended at z=6.6 than at z=5.7: patchy reionization?

Bright LAEs show a surprisingly variety: compact vs extended Lya, multiple clumps, narrow FWHMs.

COSMOS Redshift 7 hosts an extreme ionising source in low metallicity gas: PopIII stars or DCBH? Follow-up of CR7 and similar sources is ongoing.

Future:

New survey into the reionization era:
 Y-NBS z=7.7 with VLT

- The physical properties of LAEs

Spectroscopy of 100s LAEs at z=3-6

WHT/AF2+WYFFOS

