



## On the formation, evolution, and destruction of minor planetary bodies.

Thomas Wilson Jonathan Rawling, Jay Farihi, Bruce Swinyard (UCL) Ovidiu Vaduvescu (ING)

#### Outline

#### Formation

• Modelling the Origin of O<sub>2</sub> in Comet 67P

#### Evolution

 Herschel Observations of Non-Typical Cometary Water Ortho-to-Para Ratios

#### Destruction

- <u>White Dwarf Planetary Debris Disks</u> <u>Frequencies</u>
- Planetesimal Debris Disk Variation

Other projects I have worked on: Near-Earth Asteroids, Carbon-dominant white dwarfs, dwarf-Carbon stars.

Herschel **Observations of** Non-Typical **Cometary Water** Ortho-to-Para Ratios

## Why study comets???





#### Water, water everywhere





5

## Using isotopic ratios as a proxy for formation location



Altwegg et al. 2015

### **Observing water in the sub-millimetre**





Ortho H<sub>2</sub>O

Para H<sub>2</sub>O

# Ortho-to-Para Ratio (OPR) as a function of temperature





#### H2O and NH3 Ortho-to-Para ratios



Shinnaka et al. 2016

#### **Herschel/SPIRE Observations**

| Comet                              | Period<br>(yr) | $\begin{array}{c} \text{Radius} \\ \text{(km)} \end{array}$ | Observed Heliocentric<br>Distance, $r_h$ , (AU) |
|------------------------------------|----------------|-------------------------------------------------------------|-------------------------------------------------|
| 103P/Hartley 2<br>10P/Tempel 2     | 6.47<br>5.36   | 0.7                                                         | 1.07<br>1 42                                    |
| 45P/Honda-Mrkos-                   | 5.26           | 0.8                                                         | 1.00                                            |
| Pajdusakova<br>C/2009 P1 (Garradd) | 127,000        | <5.6                                                        | 1.81                                            |



### **Observations show multiple rotational lines**





#### 



## ... and OPR seems to vary with nucleocentric distance



### Conclusions

- Using spectroscopic observations taken by Herschel/SPIRE we determined values for the OPR of three JFCs and one OCC.
- While there is no substantial difference in the <u>OPRs</u> for comets from different families, implying a similar spin temperature, three of the comets have a non-typical OPR.
- This could be explained coma based nuclear spin conversion, however further theoretical, observational, and laboratory work is needed.

#### Wilson, T. G., et al. 2017. MNRAS; 466: 1954-1962 https://doi.org/10.1093/mnras/stw3152

White Dwarf **Planetary Debris** Disks Frequencies

And now for something completely different...





# Planetesimal debris disks around white dwarfs!



# Disrupted planets form disks which accretes onto the star



#### (Exo)planetary compositions







#### Water, water everywhere? in GD 61



25

### How do we find debris disks? -Atmospheric metals



### How do we find debris disks? -Infrared excess G29-38



27

#### **Our unbiased samples**

#### Infrared excess sample



#### Atmospheric metals sample











## ... and atmospheric metals

WD 1018+410



## Some white dwarfs show metals, but no infrared excess



## Infrared excess frequencies are a few percent...



35



### Conclusions

- The only unbiased Spitzer and Hubble single hydrogen dominated white dwarf sample over a large temperature/age range.
- 3 out of 206 stars have an infrared excess, yielding a frequency of 1.5%, whereas 61 out of 130 stars have atmospheric metals, roughly 47%.
- A significant percentage of debris disks still remain unobserved via infrared excesses.

#### The end

## Thanks for listening.

Any questions?

#### Formation

• Modelling the Origin of O<sub>2</sub> in Comet 67P

#### Evolution

Herschel Observations of Non-Typical
Cometary Water Ortho-to-Para Ratios

#### Destruction

- White Dwarf Planetary Debris Disks <u>Frequencies</u>
- Planetesimal Debris Disk Variation

Other projects I have worked on: Near-Earth Asteroids, Carbon-dominant white dwarfs, dwarf-Carbon stars.

## Extra slides

Modelling the Origin of O<sub>2</sub> in Comet 67P

## **Detection of O<sub>2</sub> in Comet 67P**



Bieler et al. 2015

Planetesimal Debris Disk Variation

#### WD 0959-0200 - The first variable disk



## **GD 56 - A highly variable disk**



#### **GD 56 - A highly variable disk**



Farihi et al. 2018





Xu et al. 2018