The systematically varying stellar IMF and some implications thereof

ING-Mercator Seminar ING-Mercator Mayantigo building Santa Cruz de La Palma 10th September 2019

Pavel Kroupa

Helmholtz-Institute for Radiation und Nuclear Physics (HISKP) University of Bonn

> Astronomical Institute, Charles University in Prague

c/o Argelander-Institut für Astronomie University of Bonn

I

Pavel Kroupa: University of Bonn / Charles University

We have $dN = \Psi(M_V) dM_V = \#$ of stars with $M_V \in [M_V, M_V + dM_V]$

$$dN = \xi(m) \ dm$$
 = # of stars with
 $m \in [m, m + dm]$

3

Pavel Kroupa: University of Bonn / Charles University

The massluminosity relation of low-mass stars

Kroupa, Tout & Gilmore 1990; Kroupa, 2002, *Science*

$$\Psi(M_{\rm V}) = -\frac{dm}{dM_{\rm V}} \,\xi(m)$$

The massluminosity relation of low-mass stars

Kroupa, Tout & Gilmore 1990; Kroupa, 2002, Science

$$\Psi(M_{\rm V}) = -\frac{dm}{dM_{\rm V}} \,\xi(m)$$

There are *two luminosity functions* for the solar neighbourhood

I. Count stars nearby to Sun

Obtain $M_{
m V}$ and d from trigonometric parallax

Well observed individual stars but small numbers at faint end (Ψ_{near})

<u>II.</u> Deep (100 - 300 pc) pencil-beam photographic/CCD surveys Formidable data reduction (10⁵ images $\rightarrow \approx 100$ stars) Obtain M_V and d from photometric parallax

> Large # of stars but *poor resolution* (2"-3") and *Malmquist bias* (Ψ_{phot})

> > Pavel Kroupa: University of Bonn / Charles University

The possibility of *dark matter* in the *Galactic disk* (Bahcall 1984)

9

> Many surveys of type II (pencil-beams) to constrain the LF :

ground	Reid & Gilmore	1982
	Gilmore, Reid & Hewett	1985
	Hawkins & Bessell	1988
	Leggett & Hawkins	1988
	Stobie, Ishida & Peacock	1989
	Tinney, Reid & Mould	1993
	Kirkpatrick et al.	1994
HST	Gould, Bahcall & Flynn	1997
	Zheng, Flynn, Gould et al.	2001

Problem :

The nearby and deep LFs are not equal.

Which LF do we use to calculate the MF?

$$\xi(m) = -\left(\frac{dm}{dM_V}\right)^{-1} \Psi(M_V)$$

Pavel Kroupa: University of Bonn / Charles University

17

Pavel Kroupa: University of Bonn / Charles University

Kroupa 2002 $\Psi(M_{\rm V}) = -\frac{dm}{dM_{\rm V}} \xi(m)$

MF(t) due to cluster evolution

MF(t) due to cluster evolution

N-body Models of **Binary-Rich Clusters**

 $20 \times (N = 400 \text{ stars})$ f = 1

Massive stars in very young clusters

OB stars in clusters / HII regions

Two competing processes:

(Pflamm-Altenburg & Kroupa 2006)

Clusters depopulate themselves off low-mass stars and high mass stars.

Thus, stellar-dynamical processes are extremely important when determining the IMF shape!!

29

Pavel Kroupa: University of Bonn / Charles University

discontinuity: Thies & Kroupa (2007, 2008), Parker & Goodwin (2010)

Some subtle hints for a systematically varying IMF are available at high masses

Star-counts: Correct star-counts in R136 for ejected stars

Some subtle hints for a systematically varying IMF are available at high masses

Star-counts: Correct star-counts in R136 for ejected stars IMF in R136 top-heavy (Banerjee & Kroupa 2012)

Excess of massive stars in whole 30Dor region (Schneider et al. 2018)

Top-heavy IMF in Magellanic Bridge cluster NGC796 (Kalari et al. 2018)

GCs in M31: more top-heavy IMF at lower metallicity (Zonoozi et sl. 2016; Haghi et al. 2017)

What we know from observation :

Globular clusters : deficit of low-mass stars increases with decreasing concentration

disagrees with dynamical evolution (Marks et al. 2012)

37

Pavel Kroupa: University of Bonn / Charles University

GCs (extreme star burst "clusters")

39

Pavel Kroupa: University of Bonn / Charles University

Baumgardt & Kroupa 2007

P. Kroupa: University of Bonn / Charles University

Nbody models of binary rich initially mass segregated clusters with redisual gas expulsion after birth

(Marks, Kroupa & Baumgardt 2008)

What we know from observation :

↓

Thus

IMF = IMF(Z, SFRD)

Z=metallicity, *SFRD*=star-formation rate density

Pavel Kroupa: University of Bonn / Charles University

Top-heavy IMF in extreme-density environments :

THE STELLAR IMF DEPENDENCE ON DENSITY AND METALLICITY: Resolved stellar populations show an invariant IMF (Eq. 55), but for $SFRD \gtrsim 0.1 M_{\odot}/(\text{yr pc}^3)$ the IMF becomes top-heavy, as inferred from deep observations of GCs. The dependence of α_3 on cluster-forming cloud density, ρ , (stars plus gas) and metallicity, [Fe/H],can be parametrised as

43

 $\begin{aligned} \alpha_{3} &= \alpha_{2}, & m > 1 M_{\odot} & \wedge x < -0.89, \\ \alpha_{3} &= -0.41 \times x + 1.94, & m > 1 M_{\odot} & \wedge x \ge -0.89, \\ x &= -0.14 \left[\mathbf{V}/\mathbf{H} \right] + 0.99 \log_{10} \left(\rho / \left(10^{6} M_{\odot} \, \mathrm{pc}^{-3} \right) \right). \end{aligned}$ (65)

Marks et al. 2012 Kroupa et al. 2013

Pavel Kroupa: University of Bonn / Charles University

UCDs (= Hilker objects) (extremely extreme star burst "clusters")

Properties of ultra compact dwarf galaxies (UCDs)

UCDs occur mostly in galaxy clusters

Image by M. Hilker

47

Pavel Kroupa: University of Bonn / Charles University

From close distance, a UCD probably looks similar to this:

Image from ESO

Would UCDs with a top-heavy IMF survive their early evolution?

Perform N-Body simulations of UCDs with mass-loss through gas expulsion and stellar evolution

UCDs can also form with top-heavy IMFs, but this implies extreme initial conditions for them. (Dabringhausen, Fellhauer & Kroupa 2010)

Pavel Kroupa: University of Bonn / Charles University

Initial parameters thereby implied for UCDs

49

Can this IMF variation be confirmed?

---> probe conditions at high redshift

scouting work by *Tereza Jerabkova*

ESO student of the year with ESO staff of the year (Chris Harrison and Michael Hilker) *ESO Annual Report 2018*

51

Pavel Kroupa: University of Bonn / Charles University

===> (

Quasar-like objects Jerabkova et al. 2017

The redshift dependent photometric properties are calculated as predictions for *James Webb* Space Telescope (JWST) observations.

53

Pavel Kroupa: University of Bonn / Charles University

Conclusions

The IMF is not observable (it is a mathematical "hilfsconstruct")

This hilfsconstruct is not a probability distribution function.

Significant evidence that the IMF varies with Z and rho.

The galaxy-wide IMF (the gwIMF) changes with SFR, as expected.

Testbed: extremely star-bursting clusters (UCDs) at high-z.

Are some/most quasars at very high z merely young UCDs? Jerabkova et al. 2017