WRITING OBSERVING PROPOSALS
2013 June 17
Marc Balcells, Isaac Newton Group of Telescope
Observing proposals

- Goal of writing a proposal
- Parts/components of a proposal
- Be convincing – a good Scientific Justification
- Preparatory work
- Proposal needs to be clear
- Proposal needs to look good
- Learn from failed proposals
Goal of a proposal

- Show you know your stuff
 - You know the field
 - You have, or someone has had, a good idea
 - You know the novelty of what you propose to do
 - You know how to observe with the instrument
 - You know how you will get from data to knowledge
 - You have made good use of previous runs
Components of a proposal

- Title
- Abstract
- Scientific Justification
- Technical details
- Administration
 - Previous runs
 - State of data reduction; publications
Be specific

Be attractive, catch the eye of the committee
- Specific study will address a general question

The title needs to say it all

Examples
- The formation of elliptical galaxies
- Velocity dispersions of ten elliptical galaxies
- Dependence of the Fundamental Plane on age in elliptical galaxies
Abstract

- Say the entire justification here, in 10 lines of text.
- Write it at the start of the proposal writing
- Prepare to REwrite it entirely after the justification
Scientific Justification: function

- Motivation
 - Show there’s a problem that needs solving
 - Be specific. Speak only of the problem your observations will solve
 - Opening sentence!
 - Show what needs to be done to improve knowledge
 - Tell what observations you propose to do
 - Show how the observations will allow progress
- Show you control the subject
 - Choice of telescope, instrument
 - Technical demands of the programme; calibrations; seeing demands, etc.
 - Risks (balanced against potential gains)
- Be numerical throughout. No arm-waving.
Scientific Justification structure
Scientific Justification: structure

- Two main parts
 - Present the astrophysical problem
 - Show how you will address the problem

1. Motivation: a specific astrophysical problem
 - Including literature review; your own previous work

2. Proposed observations
 - The telescope/instrument is the best for the job
 - A few technical details on the observations
 - Explain how the data will help solve the problem described above

- Closing sentence
Now go back to the Abstract

- Compose the abstract from an extract of each important sentence in the scientific justification.
- Include a few numbers to show you will do actual measurements.
Technical details

- Explain details of the sample
- Show one or two examples (images; spectra)
- Be VERY specific with the ETC calculations
- Visibility; Moon requirements
 - Eg Virgo in bright time in March
- Give the total sum of needed time
 - Including calibrations
- One paragraph on the reduction/analysis
Administration section

- Previous observing runs
 - Status (reduction; analysis; publications)

- Backup programme
 - What if seeing/transparency are not good
Preparatory work

- Science definition
 - What others (and you) have done (read!)

- Can the observations to deliver the desired result?
 - S/N; exposure times
 - Spectral resolution needed; instrument setup(s)
 - Defining the sample (!@!)
 - Size of sample; biases; match to telescope aperture

- Takes about **one month** at least
 - Long group discussions
Clarity

- If there is room for doubt the panel will use it: don’t let them!

- Good simple arguments
 - Avoid “... but..., but...”

- Each sentence one argument. Each paragraph one argument.

- Entire SJ is one argument:
 - Close the circle: ‘Here is the problem, here is the solution’

- Typeset details to guide the eye
 - Bold face; underlines to show the structure; to show where the figures are cited in the text {\bf Figure 2}. Highlight the most important sentence (italics).
Good looks

- Impecable English
- Impecable figures
 - Line thickness. Colors catch the eye.
 - Clean, clear, complete figure captions.
 - Panel members do read the figure captions
- Impecable LaTeX
 - Learning LaTeX tricks is a good investment
- Needs 1-2 weeks work
Learning from previous proposals

- Keep a classified record of all previous proposals
- Keep copies of TAC feedback
- Believe the TAC feedback
- Don’t get discouraged with failed proposals
 - Submit again
- Understand the TAC constraints
 - Oversubscriptions (RA; moon phase)
 - Aim for easy proposals
- Publish results from previous proposals
A successful proposal

- A simple, well defined problem
- Yields results with a few nights of data
 - Publishable results each semester
- You establish yourself as expert in one field
 - Keep doing the same science for several semesters
- Work with a functional team
 - Mixture of senior, junior
- Shows enthusiasm; YOU KNOW your stuff!

12/09/2010