

The early Universe just around the corner: Fornax dSph

Andrés del Pino Molina Universidad de La Laguna; Instituto de Astrofísica de Canarias, 2012

Grupo Poblaciones Estelares en Galaxias

Outline

1 Introduction

2 The data

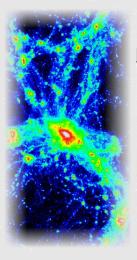
3 Obtaining the SFH and the spatial distribution

4 Results

5 Discussion and Conclusion

Outline

1 Introduction


- 2 The data
- 3 Obtaining the SFH and the spatial distribution

Introduction 3/34

4 Results

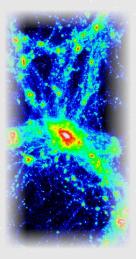
5 Discussion and Conclusion

A dark matter Universe Very brief description

Nowadays the most accepted scenario.

٨CDM

- Small systems \implies Big structures.
- Dwarf galaxies survivors.


But there are some issues.

The missing satellites problem

- Few found dwarf galaxies.
- Models predict much more halos.

Introduction 4/34

A dark matter Universe Very brief description

Nowadays the most accepted scenario.

ΛCDM

- Small systems \implies Big structures.
- Dwarf galaxies survivors.

But there are some issues.

The missing satellites problem

- Few found dwarf galaxies.
- Models predict much more halos.

Introduction 4/34

A dark matter Universe Quenching the star formation: Dark halos

Three main processes proposed as inhibitors of SF:

 Heating from the UV radiation arising from cosmic reionization (Barkana & Loeb 2001).

 $\label{eq:effects} {\sf Effects from } {\sf UV} \left\{ \begin{array}{ll} {\sf SF suppression.} & {\cal M} \lesssim 10^9 M_\odot \\ {\sf keep forming stars.} & {\cal M} \gtrsim 10^9 M_\odot \end{array} \right.$

• SNe feedback mass ejection (Mac Low & Ferrara 1999).

 $\label{eq:Effects from SNe} \left\{ \begin{array}{ll} \mbox{Gas completely blown away.} & M_b \lesssim 10^7 M_\odot \\ \mbox{Galaxy conserve gas.} & M_b \gtrsim 10^8 M_\odot \end{array} \right.$

Tidal stirring (Łokas *et al.* 2011, Mayer *et al.* 2006, 2008).

Observed galaxies below these limits

These galaxies must be dark!

Introduction 5/34

A dark matter Universe Quenching the star formation: Dark halos

Three main processes proposed as inhibitors of SF:

 Heating from the UV radiation arising from cosmic reionization (Barkana & Loeb 2001).

 $\label{eq:effects} {\sf Effects from } {\sf UV} \left\{ \begin{array}{ll} {\sf SF suppression.} & {\cal M} \lesssim 10^9 M_\odot \\ {\sf keep forming stars.} & {\cal M} \gtrsim 10^9 M_\odot \end{array} \right.$

SNe feedback mass ejection (Mac Low & Ferrara 1999).

 $\label{eq:Effects from SNe} \left\{ \begin{array}{ll} \mbox{Gas completely blown away.} & M_b \lesssim 10^7 M_\odot \\ \mbox{Galaxy conserve gas.} & M_b \gtrsim 10^8 M_\odot \end{array} \right.$

Tidal stirring (Łokas *et al.* 2011, Mayer *et al.* 2006, 2008).

Observed galaxies below these limits

These galaxies must be dark!

Introduction 5/34

A dark matter Universe Quenching too much.

Several theories have been proposed to overcome this apparent contradiction:

- Bullock et al. (2001): Halos formed during the prereionization era. 90% below observable limits.
- Stoehr et al. (2002): Masses of dark matter halos larger than those measured at the optical limit.
- Kravtsov et al. (2004): Larger halos in the pass.
- Susa & Umemura (2004): Self-Shielding effect.
- Busha et al. (2010): Inhomogeneous reionization.

Local Group Galaxies

Their proximity allow us to resolve their stars individually.

Dwarf Spheroidal Galaxies (dSph)

- The most common.
- Low surface luminosity $(\sum_{v} \lesssim 0.002 L_{\odot} pc^{-2})$.
- Small sizes (a few hundred of parsecs).
- Lack of gas.
- Relatively large velocity dispersion (>7 km s⁻¹)
 - Abundant presence of dark matter.
 M/L ~ 5 500 In solar units (virialized).

Introduction 7/34

Local Group Galaxies A unique oportunity

Their proximity allow us to resolve their stars individually.

Dwarf Spheroidal Galaxies (dSph)

- The most common.
- Low surface luminosity $(\sum_{v} \leq 0.002 L_{\odot} pc^{-2})$.
- Small sizes (a few hundred of parsecs).
- Lack of gas.
- Relatively large velocity dispersion (>7 km s⁻¹)
 - Abundant presence of dark matter.
 - $M/L \sim 5-500$ In solar units (virialized).

Introduction 7/34

Local Group Galaxies The Milky Way satellites

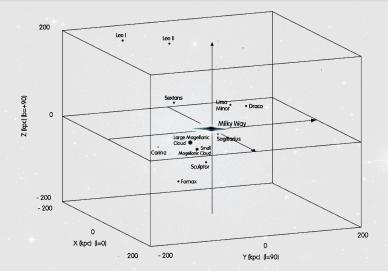
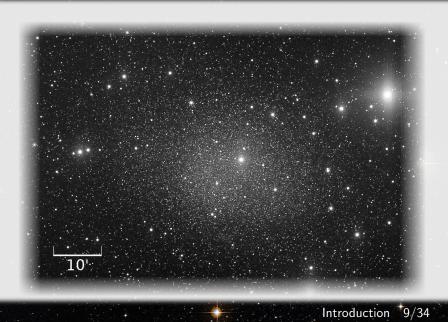



Figure: The Milky Way classic satellites

Introduction 8/34

Fornax dSph Our particular object

Fornax dSph

A quick look

- Complex system.
- The largest and most luminous of the dSphs companion of the MW.

Introduction 10/34

- It host globular clusters.
- Shows two shell structures.

Fornax dSph

Fornax at glance

RA, α (J2000.0)	2h 39' 53.1"
Dec, δ (J2000.0)	-34° 30' 16.0"
Galactic longitude, / (deg)	237.245
Galactic latitude, b (deg)	-65.663
Heliocentric distance (kpc)	138 ± 8
Heliocentric radial velocity (km s $^{-1}$)	55.3±0.1
Luminosity, L_V (L_{\odot})	$15.5 imes10^{6}$
Ellipticity, e	0.30 ± 0.01
Position angle (deg)	41±6
Core radius (pc)	${\sim}460~(13.8{\pm}0.8~arcmin)$
Tidal radius (kpc)	${\sim}2.4~(71{\pm}4~arcmin)$

Table: Fornax main data.

Fornax dSph

Fornax at glance

RA, α (J2000.0)	2h 39' 53.1"
Dec, δ (J2000.0)	-34° 30' 16.0"
Galactic longitude, / (deg)	237.245
Galactic latitude, <i>b</i> (deg)	-65.663
Heliocentric distance (kpc)	138 ± 8
Heliocentric radial velocity (km s $^{-1}$)	55.3 ± 0.1
Luminosity, L_V (L_{\odot})	$15.5 imes10^{6}$
Ellipticity, e	0.30 ± 0.01
Position angle (deg)	41±6
Core radius (pc)	${\sim}460~(13.8{\pm}0.8~arcmin)$
Tidal radius (kpc)	~ 2.4 (71 \pm 4 arcmin)

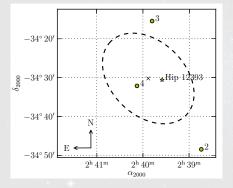
Table: Fornax main data.

Introduction 11/34

Outline

1 Introduction

2 The data


3 Obtaining the SFH and the spatial distribution

The data 12/34

4 Results

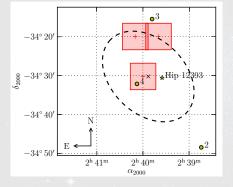
5 Discussion and Conclusion

Data sets Three kind of observations

Wide field photometry (Stetson 2000, 2005)

 $\bullet m_I \lesssim 23$

$$\sim 0.7~degrees^2$$
 covered


- Deep FORS1@VLT photometry
 - \blacksquare $m_I \lesssim 25$
 - $\blacksquare \sim 135 \; arcmin^2 \; {
 m covered}$

Spectroscopy (Battaglia *et al.* 2006)

CaT metallicities of RGB stars

The data 13/34

Data sets Three kind of observations

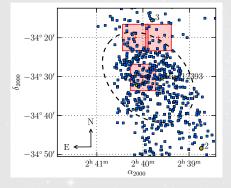
Wide field photometry (Stetson 2000, 2005)

 $\bullet m_I \lesssim 23$

$$\sim 0.7 \ degrees^2$$
 covered

Deep FORS1@VLT photometry

$$\blacksquare$$
 $m_I \lesssim 25$


$$\sim 135 \; arcmin^2 \; {
m covered}$$

Spectroscopy (Battaglia *et al.* 2006)

CaT metallicities of RGB stars

The data 13/34

Data sets Three kind of observations

Wide field photometry (Stetson 2000, 2005)

 $\bullet m_I \lesssim 23$

$$\sim 0.7 \ degrees^2$$
 covered

Deep FORS1@VLT photometry

$$\bullet$$
 $m_I \lesssim 25$

$$\sim 135~arcmin^2$$
 covered

Spectroscopy (Battaglia *et al.* 2006)

CaT metallicities of RGB stars

The data 13/34

Outline

1 Introduction

2 The data

3 Obtaining the SFH and the spatial distribution

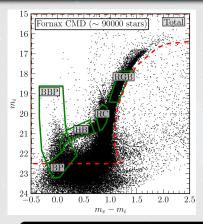
4 Results

5 Discussion and Conclusion

Obtaining the SEH and the spatial distribution 14/34

Wide field photometry Obtaining the spatial distribution maps

Five regions in the CMD


- HB: Old ($\gtrsim 11 12$ Gyrs).
- RGB: Intermediate-old $(\gtrsim 1 2Gyrs)$.
- RC: Intermediate-young.
- BP: Young ($\gtrsim 1 Gyr$, $\lesssim 4 Gyrs$).
- BBP: Very young $(\lesssim 1 2Gyrs)$.

Spatial distribution maps

- 2d histogram of 142 × 128 pixels.
 - Normalized & convolved with a gaussian filter.

Obtaining the SEH and the spatial distribution 15/34

Wide field photometry Obtaining the spatial distribution maps

Spatial distribution maps

- 2d histogram of 142 x 128 pixels.
 - Normalized & convolved with a gaussian filter.

Obtaining the SEH and the spatial distribution 15/34

Five regions in the CMD

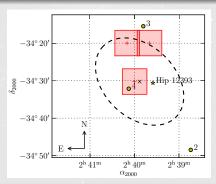
■ HB: Old ($\geq 11 - 12 Gyrs$).

■ RGB: Intermediate-old (≥ 1 - 2Gyrs).

RC: Intermediate-young.

BBP: Very young

 $(\leq 1-2Gyrs)$.

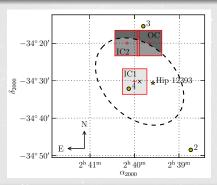

BP: Young ($\geq 1 Gyr$, $\leq 4 Gyrs$).

Deep photometry The stars position

Deep photometric list selection

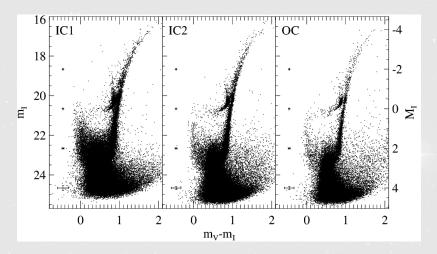
• We define three regions:

Name of Region	Surface (pc ²)	Galactocentric dist. (pc)	No. of stars
Inside the Core 1 (IC1)	75770.1	56.8	69590
Inside the Core 2 (IC2)	84248.6	360.4	69712
Outside the Core (OC)	59181.5	473.6	38643


Obtaining the SEH and the spatial distribution 16/34

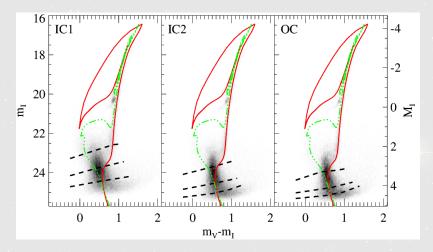
Deep photometry The stars position

Deep photometric list selection


• We define three regions:

Name of Region	Surface (pc ²)	Galactocentric dist. (pc)	No. of stars
Inside the Core 1 (IC1)	75770.1	56.8	69590
Inside the Core 2 (IC2)	84248.6	360.4	69712
Outside the Core (OC)	59181.5	473.6	38643

Obtaining the SEH and the spatial distribution 16/34


Deep photometry Observed CMDs

■ Isochrones from BaSTI stellar evolution library: Z=0.004, 1Gyr (dotted-dashed green) and Z=0.001, 13.5 Gyr (red solid line).

Obtaining the SEH and the spatial distribution 17/34

Deep photometry Observed CMDs

 Isochrones from BaSTI stellar evolution library: Z=0.004, 1Gyr (dotted-dashed green) and Z=0.001, 13.5 Gyr (red solid line).

Obtaining the SEH and the spatial distribution 17/34

Deep photometry Obtaining the SFH

Synthetyc CMDs fitting techniques (Aparicio & Hidalgo 2009; Hidalgo *et al.* 2011).

Basic functions.

- SFH defined as \u03c8(t,z), \u03c9(t,z)dtdz is the mass transformed in stars in t' (t < t' < t + dt) with z' (z < z' < z + dz).</p>
- IMF, Frequency and distribution of binary stars masses $\beta(f, q)$, etc.

sCMD

- We created a sCMD populated by millions of stars.
- Stars distributed in *n* × *m* simple populations.

Obtaining the SEH and the spatial distribution 18/34

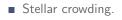
Deep photometry Obtaining the SFH

Synthetyc CMDs fitting techniques (Aparicio & Hidalgo 2009; Hidalgo *et al.* 2011).

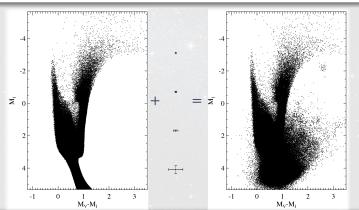
Basic functions.

- SFH defined as ψ(t, z), ψ(t, z)dtdz is the mass transformed in stars in t' (t < t' < t + dt) with z' (z < z' < z + dz).
- IMF, Frequency and distribution of binary stars masses $\beta(f, q)$, etc.

sCMD


- We created a sCMD populated by millions of stars.
- Stars distributed in $n \times m$ simple populations.

Obtaining the SEH and the spatial distribution 18/34


Deep photometry Obtaining the SFH Simulating observational effects in the sCMD Information provided by the completeness test. S/N limitations. Stellar crowding. Detector defects. etc. Obtaining the SEH and the spatial distribution 19/34

Deep photometry Obtaining the SFH Simulating observational effects in the sCMD

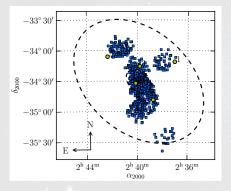
- Information provided by the completeness test.
 - S/N limitations.
 - Detector defects.

etc.

Obtaining the SEH and the spatial distribution 19/34

Deep photometry Obtaining the SFH

Sample and comparison of both CMDs


- Observed CMD $(\psi(t, z))$ vs. synthetic CMD $(\sum_{i}^{n \times m} \psi_i)$.
- Process ends with the best solution found: $\psi(t, z) = A \sum_{i} \alpha_i \psi_i$.
- We used χ^2_{γ} defined by Mighell (1999) as merit function.

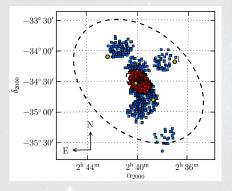
Used codes

- Four main codes are the mainstays of this method:
 - IAC-star (Aparicio & Gallart 2004).
 - Obsersin (Hidalgo et al. 2011).
 - IAC-pop (Aparicio & Hidalgo 2009).
 - MinnIAC (Hidalgo *et al.* 2011).

Obtaining the SEH and the spatial distribution 20/34

CaT spectroscopy Obtaining the AMR and the metallicity map.

Metallicity and age Maps


 2d histograms of 30 x 33 pixels.

Obtaining the AMR

- Stars lying inside the core.
- Combining metallicities from CaT with positions in CMD.
 - Polynomial relationship (Carrera *et al.* 2008).

Obtaining the SEH and the spatial distribution 21/34

CaT spectroscopy Obtaining the AMR and the metallicity map.

Metallicity and age Maps

 2d histograms of 30 x 33 pixels.

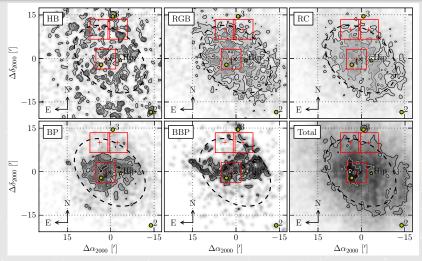
Obtaining the AMR

- Stars lying inside the core.
- Combining metallicities from CaT with positions in CMD.
 - Polynomial relationship (Carrera *et al.* 2008).

Obtaining the SEH and the spatial distribution 21/34

Outline

1 Introduction

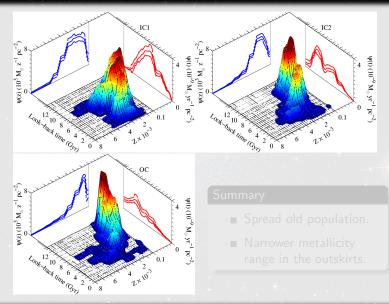

- 2 The data
- 3 Obtaining the SFH and the spatial distribution

Results 22/34

4 Results

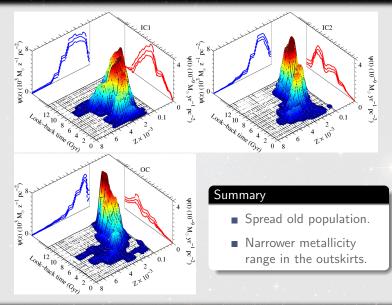
5 Discussion and Conclusion

Spatial distribution Strong differences between populations

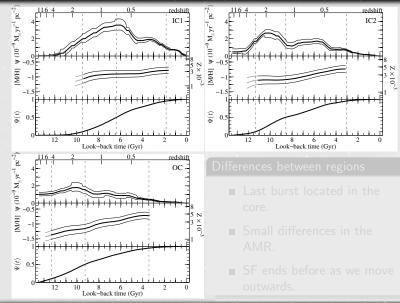


Strong asymetries found in the young populations.

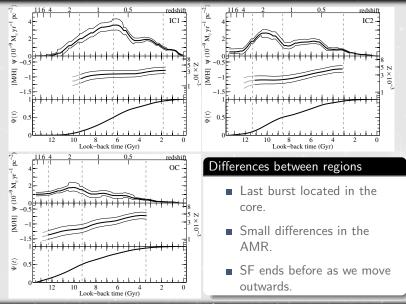
Shell like structures of young stars ($\sim 2 - 3Gyrs$).


Results 23/34

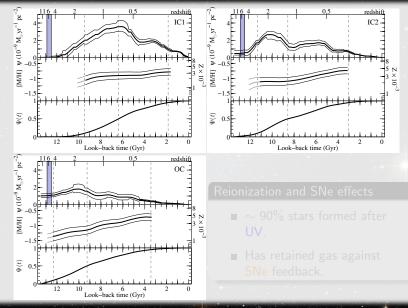
The star formation history General view


Results 24/34

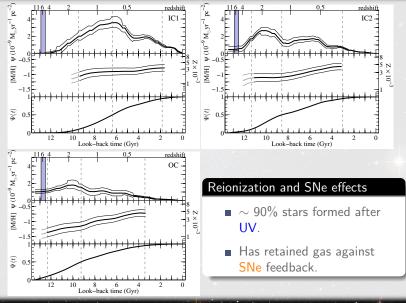
The star formation history General view


Results 24/34

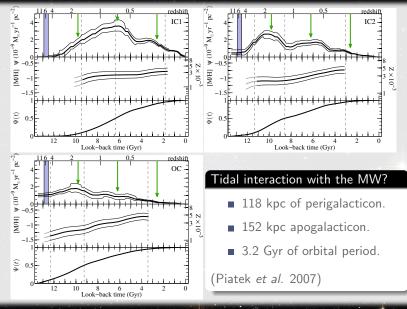
The star formation history Detailed view


Results 25/34

The star formation history Detailed view


Results 25/34

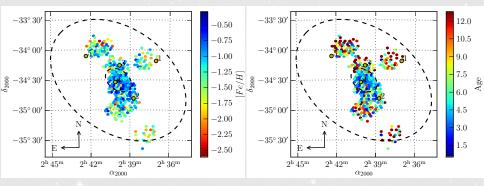
The star formation history Global and cosmological evolution


Results 26/34

The star formation history Global and cosmological evolution

Results 26/34

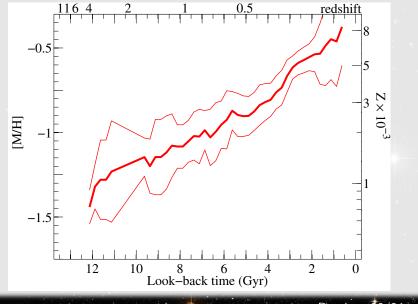
The star formation history Possible tidal interactions



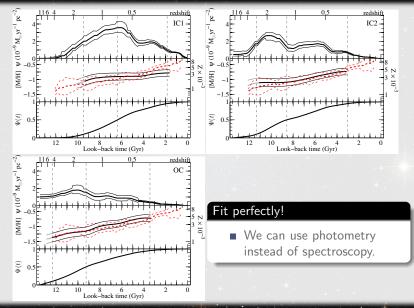
Results 27/34

CaT spectroscopy Metallicity and Age map

Metallicity map:



 Metallicity and age distributions do not follow optical shape.


Results 28/34

CaT spectroscopy

Results 29/34

CaT spectroscopy Comparison between results

Results 30/34

Outline

1 Introduction

- 2 The data
- 3 Obtaining the SFH and the spatial distribution

4 Results

5 Discussion and Conclusion

Discussion and Conclusion 31/34

Global and local considerations

Reionization and SNe effects on Fornax

- $\blacksquare~\sim$ 90% stars formed after UV.
- Has retained gas against SNe feedback.

 $M\gtrsim 10^8-10^9 M_\odot$ (Self-Shielding effect)

Discussion and Conclusion

32/34

Possible tidal interactions

Our results favored an interaction with a smaller system (~ 3 Gyrs ago)
 Strong asymetries found in the young populations.
 Shell like structures of young stars (~ 2 - 3 Gyrs).
 Z = 0.004 for Clump stars (Olszewski *et al.* 2006).

Random motion kinematic (Walker & Mateo, 2006).

Global and local considerations

Reionization and SNe effects on Fornax

- $\blacksquare~\sim$ 90% stars formed after UV.
- Has retained gas against SNe feedback.

Possible tidal interactions

Our results favored an interaction with a smaller system (~ 3 Gyrs ago)
 Strong asymetries found in the young populations.

 $M \gtrsim 10^8 - 10^9 M_{\odot}$ (Self-Shielding effect)

Discussion and Conclusion 32/34

- Shell like structures of young stars ($\sim 2 3Gyrs$).
- \blacksquare Z = 0.004 for Clump stars (Olszewski *et al.* 2006).
- Random motion kinematic (Walker & Mateo, 2006).

Conclusions

- Fornax has been forming stars continiously up to less than 1 Gyr.
- There exist strong differences as a function of the position.
 - Last burst located mostly at the center (\lesssim 4 Gyrs).
 - Old population uniformly distributed well beyond the core ($\gtrsim 11$ Gyrs, $z \lesssim 0.002$).
 - Mean metallicity higher in the innermost regions.
- Both, reionization and SNe feedback do not show decisive effects.
- Our results favored an interaction with a smaller system (\sim 3 Gyrs ago), and do not discard a tidal interaction with the MW.

Discussion and Conclusion 33/34

And...

Thank you!

Discussion and Conclusion 34/34