

Regaining the FORS

Optical ground-based transmission spectroscopy of exoplanets with VLT+FORS2

Henri Boffin

E. Sedaghati, G. Blanchard, Sz. Csizmadia, N. Gibson, P. Kabath, M. Mallonn, and M.E. Van den Ancker

The depth of the transit will thus be wavelength dependent

H. Boffin – ING – November 2016

A tricky business

Ground-based detection of Sodium in HD 209458b (Snellen et al. 2008)

López-Morales 14 Thursday, February 6, 14

This is better done from space

+ES+ 0 +

Spectrophotometric data for transit observations of GJ 1214b.

L Kreidberg et al. Nature 505, 69-72 (2014) doi:10.1038/nature12888

Super-Earth GJ 1214b

The transmission spectrum of GJ 1214b.

A flat spectrum! Cloudy!

L Kreidberg et al. Nature 505, 69-72 (2014) doi:10.1038/nature12888

So, why on ground?

The case of HAT-P-1b: 6-hour observaJon

C. Huitson 15

Why on ground?

The case of HAT-P-1b: 6-hour observaJon

C. Huitson 15

Normalized Flux

GMOS Results

C. Huitson 15

H. Boffin – ING – November 2016

Transmission Spectroscopy

Boffin+ 16

Instrument	Telescope	Target	λ -range	Bin size	Reference
			(nm)	(nm)	
DOLORES	TNG	HAT-P-1	525 - 760	60	Montalto et al. 2015 [20]
FORS2	VLT	GJ 1214	780 - 1000	20	Bean et al. 2010 [3]
		$GJ \ 1214$	610 - 850	$10,\!20$	Bean et al. 2011 [4]
		WASP-19	560 - 820	16 - 22.5	Sedaghati et al. 2015 [25]
		WASP-17	570 - 825	5 - 20	Sedaghati et al. 2016 a $[26]$
		WASP-19	$400 - 1\ 000$	5 - 20	Sedaghati et al. 2016b $[27]$
		WASP-49	730 - 1000	10	Lendl et al. $2016 [16]$
GMOS	Gemini	HAT-P-32	520 - 930	14	Gibson et al. 2013a [11]
(N/S)		WASP-29	515 - 720	15	Gibson et al. $2013b$ [12]
		WASP-12	720 - 1010	15	Stevenson et al. 2014 [29]
IMACS	Magellan	WASP-6	480 - 860	20	Jordàn et al. 2013 $[14]$
LDSS-3C	Magellan	HAT-P-26	720 - 1000	12.5	Stevenson et al. 2016 [30]
MMIRS	Magellan	WASP-19	1250 – 2350	100	Bean et al. 2013 [5]
MODS	LBT	HAT-P-32	330 - 1000	11	Mallonn & Strassmeier 2016 [18]
MOSFIRE	Keck	GJ3470	1960 – 2390	40	Crossfield et al. 2013 [10]
OSIRIS	GTC	HAT-P-19	560 - 770	5 - 20	Mallonn et al. 2015 [17]
		WASP-43	540 - 920	$10,\!25$	Murgas et al. 2014 [21]
		HAT-P-32	518 - 918	20	Nortmann et al. 2016 $[22]$
		TrES-3	530 - 930	25	Parviainen et al. 2016 [23]

and based transmission spectroscopic studies as of ne Table 1 0

And at the VLT? FORS2

- FOcal Reducer and low dispersion Spectrograph
- ✤ At the Cassegrain focus of UT1
- ✤ FoV of 6.8'×6.8'
- Offers: imaging, polarimetry, long slit and multi-object spectroscopy
- Spectral coverage of 330-1100nm
- Mosaic of two 2k×4k MIT(red) or E2V(blue) available

FORS2

FOcal Reducer low dispersion Spectrograph

A wonderful German understatement!

It should be called

FOcal Reducer Fast Imager and Iow dispersion Single and Multi-Object Spectropolarimeter

FORFISMOS

Promising result

Time from mid-transit (h)

 Bean et al. (2010, Nature 468, 669): Lightcurve of transit of exo-planet GJ 1214b with FORS2.

The transmission spectrum of GJ 1214b compared to models.

Lack of spectral features rules out cloud-free Hydrogen atmosphere.

JL Bean et al. Nature 468, 669-672 (2010) doi:10.1038/nature09596

Promising result

- Bean et al. (2010, Nature 468, 669): Lightcurve of transit of exo-planet GJ 1214b with FORS2.
- Lack of spectral features rules out cloud-free Hydrogen atmosphere.
- Since then: Many exo-planet transit programmes executed with FORS2, but no papers!
- User questionnaire: Data suffers from unexpected high level of systematics which did not allow the PIs to reach their science goals.

Systematic problems with FORS2

WASP49-b transmission spectroscopy Lendl et al. (2016)

FORS2 MXU Spectro-Photometry of an Exoplanet Transit

- Systematics ~6 x 10⁻³ on timescales of 0.5-5 hours.
- Time scales and amplitude consistent with hypothesis that systematics are dominated by nonuniform throughput of LADC.

Atmospheric Dispersion

RefractionDispersion

 $[\text{H=30\% (=> Pw=368.0849304 Po)}] \ [\text{P=77500 Po}] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{WHM}] \ [\text{H=30\% (=> Pw=368.0849304 Po)}] \ [\text{P=77500 Po}] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{H=30\% (=> Pw=368.0849304 Po)}] \ [\text{P=77500 Po}] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{H=30\% (=> Pw=368.0849304 Po)}] \ [\text{P=77500 Po}] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{H=30\% (=> Pw=368.0849304 Po)}] \ [\text{P=77500 Po}] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{H=30\% (=> Pw=368.0849304 Po)}] \ [\text{P=77500 Po}] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\text{D(fib)=1.799999952 ''}] \ [1'' FWHM] \ [\text{T=283.1499939 K}] \ [\lambda_w=450 \text{ nm}] \ [\lambda_w=450 \text{ n$

This will spread light - imaging: degrade image quality - spectroscopy: loose light from slit

LADC coating initially

LADC at origin

Systematic problems with FORS2

LADC: Longitudinal Atmospheric Dispersion Corrector

Addressing the Problem

69 69 ⁶⁹

Anti-reflective coating removed from FORS1 LADC

Boffin et al. H(2005); ESOS Messengler 1259 6

Sky flats

FORS2 is back!

Broadband (white) light curve model

31

A closer look at the systematics

A closer look at the systematics

H. Boffin – ING – November 2016

Spectrophotometric light curves

All non-wavelength dependent parameters fixed to the white LC solution Only scaled planetary radius, Limb darkening coefficients^{*} & noise model parameters free

34

Literature comparison \rightarrow highest spectral resolution!

Black filled circles: Sedaghati et al. (2015), FORS2+VLT spec. Purple filled stars: Huitson et al. (2013), STIS+HST spec. Red crosses: Mancini et al. (2013), 1.54 Danish, PEST, GROND phot. Green cricle: Lendl et al. (2013), HAWK-I/VLT, EulerCam phot. Orange triangle: Tregloan-Reed (2013), EFOSC2/NTT phot.

Atmospheric model comparison

Atmospheric model comparison

Coincidence??

WASP-19b – FORS2 – 3 grisms 0.155Huitson et al. (2013, MNRAS) 600z+23 (OG590) 600RI+19 (OG435) 600B+22 0.1500.145 R_p/R_{\star} 0.140 0.135**Confirmed with** another transit and another grism 0.130 8000 5000 6000 7000 9000 10000 Wavelength [Å]

H. Boffin – ING – November 2016

Transmission spectrum from space

Transmission spectrum from space

Sing et al. (2015)

WASP-17b

Spectrophotometric light curves

Searching for optical absorbers

Searching for optical absorbers

The importance of setting things up right

- Targets in the middle
- Similar magnitudes
- Wide slits
- Include sky slits for each detector
- Check proper motion for fine placement
- Adjust exposure time to get as close as possible to saturation
- Check counts in-situ
- Consider non-standard readout
- Avoid observing through meridian if possible since telescope rotation can have adverse effects

See Boffin+ 16, SPIE, for hints on the best strategy

Still many planets reachable

Figure 2. The transmission signal $(\Delta \delta)$ of known transiting exoplanets versus the V magnitude of the host star. The line represents the detection limit of FORS2, estimated from previous transmission spectroscopy observations with this instrument. Atmospheric signals of planets in the dark grey region are beyond the reach of the instrument, whereas those in the white area should be detectable with FORS2. Light grey represents an area where the detection would be tentative.

Conclusions & Outlook

- FORS2 appears now ready again for multi-object spec. obs.
- Transmission spectrum of WASP-19b with feature due to unknown optical absorbers
- WASP-17 shows no Na but clear K
- Global effort required to obtain a statistically large sample of atmospheric spectra
 → FORS2 will hopefully be key to this effort

KEEP CALM MAY THE FORS BE **WITH YOU**

H. Boffin – ING – November 2016