
Infrared Standard Star lists available at the ING

This note provides a brief description of the two sets of UKIRT infrared standard stars available for use with the Isaac Newton Group telescopes at the Roque de Los Muchachos Observatory on the island of La Palma. Lists of the tables of standards are also given. This version refers to CMS generation 3 of SYSTEM.CAT for the Alpha TCS

Star Positions: All star positions given in these tables are accurate to 1 arcsecond. The positions have been selected from the Hipparcos catalogue, the Carlsberg Meridian catalogue, the FK5, PPM or measured from Palomar Sky survey plates. They are available from the system catalogue by typing the name given in the Ing Name column. This name is formed, as in previous ING technical notes, according to the IAU standard, using the 1950 coordinates of the star.

Previous Tables: The original list, which provided the magnitudes, had some errors in the positions. It was stated that the positions were all 1950.0, but three of the stars had positions for 2000.0. These were BS 1637, BS 1869, BS 2228. BS 4689 had a negative sign omitted from the declination.

FS35/G21-15: I believe this star is not the Giclas star 21-15, but a star about 40 arcseconds south. The position given in this technical note, which agrees with the other sources, is for the southern star. Two diagrams are given showing comparisons of the colour and magnitude from the Landolt publication with those of the UKIRT values.

References

M.M.Casali & T.G.Hawarden, *JCMT - UKIRT Newsletter*, **3**, 33, 1992, and http://www.jach.hawaii.edu/UKIRT/astronomy/calib/

CMC(1985-1995):Carlsberg Meridian Catalogue La Palma. Copenhagen University Observatory, Royal Greenwich Observatory and Real Instituto y Observatorio de la Armada, San Fernando.

ESA:1997, 'The Hipparcos and Tycho Catalogues', ESA, SP-1200.

Fricke, W., Schwan, H., Lederle, T. (1988): Fifth Fundamental Catalogue (FK5). Vereoff. Astron. Rechen-Institut Heidelberg Nr. 32.

Mike Irwin, Steve Maddox, Richard McMahon, (1994), The APM Sky catalogues. **Spectrum**, Newletter of the Royal Observatories.

Landolt, A.U., Astron. J., 88, 439.

Landolt, A.U., Astron. J., 104, 340.

Röser, S. & Bastian, U., PPM Star Catalogue, 1991-1993, Astronomische Rechen-Institut, Heidelberg.

Table I

Bright Infra-Red Standards referred to equinox J2000.0

ING Name	α	δ	μ_{α}	μ_{δ}	J	Н	K	T	Γ_{\prime}	mv	$_{ m LS}$	Name	Note
	s w q	11 1 0	s/yr	"/yr									
IR0000+355	00 02 46.03	+35 48 55.7	+0.0011	-0.002	7.082	6.993	6.962	6.94	96.9	7.5	A0	$\begin{array}{c} \text{HD } 225023 \\ \text{OUT } \end{array}$	က ¹
IR0004-077	00 06 43.4	37.5	-0.048	-1.68	8.378	7.781	7.447	0	7.04	15.6	M5	G158 - 27	က
1K0008-15/	00 11 15.80	-15 28 04·/	-0.0038	-0.209 -0.018	3.904 7.060	3.089 7.051	3.030	3.00 7.05	2.00	4 t	\ \ \ \	55 33 HD 1160	. c
IR0028-438	31	36		-0.004	7.178	7.093	7.067	7.04	F	7.5	A2	HD 2811	1 m
IR0031+201	00 33 39.52	$+20\ 26\ 01.5$	0.0	+0.002	7.263	7.125	7.093		90.2	6.7	A3	HD 3029	2
IR0106+353	60	37	+0.0146	-0.114	806:0-	-1.703	-1.853	-2.00	-1.98	2.1	MoIII		П
IR0221+563		36	•	+0.007	5.587	5.499	5.443	5.37	5.33	6.2	B2Iae		2
IR0225+082	02 28 09.54	$+08\ 27\ 36.2$	+0.0027	600.0-	4.374	4.390	4.390	4.40	4.41	4.3 Б	B9III	BS 718 BC 720	4 c
110050011		2 -		7000		017.0	171.0	,	, c		505		1 -
1K0Z29-154		15 14		-0.120 -0.993	3.879	3.023	3.585	3.50	3.50	4. ¢	F41V	BS 740	
IRO238+009 IBO343 04 E	02 40 42.87	+01 11 55.2	+0.0188	+0.231	7.305 7.509	6.063	6.539	0.47	6.46	ဂ္	MO	GL 105.5 BS 816	n c
IN0242+043	3	24 27		-0.042	7.130	7.135	7.140	7.15	7.14	7.1	St.O AO	LD 010 HD 18881	4 C
IR0308-392	10	33		+0.010	6.727	6.662	6.642	6.62	-	7.0	A2	HD 19904	1က
IR0310+045	03 13 23.0	+04 46 30	+0.118	+0.12	8.816	8.187	7.857	7.52		15.2	F8	G77 - 31	ಸಂ
IR0336+026	$\frac{38}{2}$	+02 45 48.6	9	-0.020	7.196	7.190	7.185	7.20	7.19	7.1	AO	HD 22686	3
IRO341+241	44	$+24\ 17\ 21.4$	9000.0+	-0.051	5.520	5.500	5.510	5.60	5.64	ت ت	B7IV	BS 1140	4
IR0433+164	$04\ 35\ 55.24$		+0.0044	-0.190	-1.848	-2.614	-2.783	-2.97	-2.89	6.0	K5III		
IR0447+068	04 49 50.41	+06 57 40.5	+0.0313	+0.012	2.353	2.117	2.095		2.07	3.2	F6V	BS 1543	
IR0448+055	04 51 12.36	36		+0.001	4.029	4.087	4.138	4.18	4.18	3.7	B2III		П
IR0503+411	$05\ 06\ 30.89$	14		890.0-	3.518	3.646	3.677	3.71	3.74	3.2	B7V		
IR0502+515	90	35	_	-0.173	4.312	4.204	4.153	4.11	4.14	5.0	F0V		2
IR0512-082	14	12		-0.001	0.240	0.241	0.211	0.13	60.0	0.1	B8Iae		
IR0512+459	$05\ 16\ 41.35$	$+45\ 59\ 52.9$	+0.0073	-0.425	-1.334	-1.717	-1.802	-1.87	-1.85	0.1	G4III	BS 1708	
IR0516+016	19	$+01\ 42\ 15.7$		-0.047	8.934	8.670	8.596		8.65	10.1	$^{\mathrm{F8}}$	$SAO\ 112626$	4
IR0532+476	$05\ 36\ 15.96$	42	4	-0.020	5.532	5.454	5.393	5.36	5.39	6.2	dF0	BS 1869	3
IR0545-382	47	13	000	-0.007	7.572	7.551	7.536	7.53		9.2	A0	HD 38921	က
IR0555+018	$\frac{5}{2}$	51		-0.01	6.555	6.473	6.452	6.43	6.43	7.2	A0	$^{+}$ HD $^{+}$ 0355	က
IR0613+464	$06\ 17\ 34.65$	$+46\ 25\ 26.2$	-0.0042	+0.011	6.012	5.943	5.892	5.84	5.88	6.5	FOV	BS 2228	3
IR0621+435	06 24 46.60	$+43\ 32\ 54.4$	-0.0003	-0.022	7.075	7.041	7.041	7.04	7.03	7.1	AO	HD 44612	2
IR0642-166	06 45 08.87	-164258.0	-0.0385	-1.205	-1.300	-1.319	-1.320	-1.35	-1.36	-1.5	A1V	BS 2491	П
IR0652+000	065442.5	03			5.750	4.857	4.606	4.43	4.43	9.5	٠.	BD + 00 1694	2
IR0712+473	15	47 14		-0.184	4.475	4.180	4.126	(4.08	5. 0.	G0V		
IRO736+053	07 39 18-11	+05 13 30-1	-0.0476	-1.023	-0.437	-0.564	-0.646	99:0-		0.4	F5IV	BS 2943	1

Table I

Bright Infra-Red Standards referred to equinox J2000.0 (contd)

Note		Π	1	2	က	2	3	1	3	2	_	2	5	2	2	3	1	2	2	1	2	Π	1	1	2	2	2	4	1	2	2	1	1	5	5	4
Name		BS 2990	BS 3314	HD 75223	HD 77281	GL 347A	HD 84800	BS 3888	BS 3903	V 569	BS 4069	GT 390	GL 406	BS 4358	HD 101452	Y2730	BS 4550	$HD\ 105601$	$\mathrm{HD}106965$	BS 4689	BS 4935	BS 4983	BS 5340	BS 5447	HD 129653	HD 129655	HD 130163	$BD + 03\ 2954$	BS 5685	$\mathrm{HD}136754$	$BD + 02\ 2957$	BS 6092	BS 6084	S-R3	Oph S1	BS 6136
$_{ m LS}$		KOIIIb	A0V	A0	A2	M3.5	A2	F2IV	G7III	M3	MOIII	M1.5	$_{ m Me}$	K3III	A2	dM4.5	G8V	A2	A2	A2IV	F7V	GOV	KIIIIb	F2V	A2	A2	A0	M0	B8V	A0	K2	A9III	B2II*	?	?	K4111
mv		1:1	3.9	7.5	7.4	12.1	7.8	3.8	4.1	9.3	3.0	10.2	13.5	5.8 8.5	9.2	11.6	6.4	6.9	9.2	3.9	5.6	4.3	0.0	4.5	7.2	7.2	6.9	10.8	2.6	7.2	9.8	3.9	2.9		ı	7.3
Γ_{\prime}		-1.17	3.92		2.06	7.36	7.54	2.94		4.89	96.0-			3.14		5.26	4.38	6.65	7.34	3.79		2.89	-3.05	3.49	6.93	89.9			2.85	7.14	4.19	4.35	2.42			
T		-1.15	3.94	7.26	7.00	7.41	7.55	2.98	1.98	4.93	-0.94	5.87	5.69		6.81	5.34	4.35	6.64	7.30	3.79		2.88	-3.09	3.48	6.91	29.9	6.81	4.64		7.14	4.08		2.43	6.25	5.71	1.86
K		-1.050	3.940	7.281	7.031	7.658	7.538	2.983	2.050	5.106	-0.803	6.061	660.9	3.202	6.848	5.646	4.400	99.9	7.316	3.781	4.266	2.886	-2.976	3.489	6.921	6.692	6.835	4.825	2.799	7.135	4.263	4.298	2.421	6.543	6.378	2.036
H		-0.975	3.919	7.296	7.052	7.881	7.549	3.005	2.136	5.310	-0.654	6.275	6.469	3.299	6.890	5.935	4.466	6.719	7.337	3.781	4.290	2.929	-2.878	3.522	6.942	6.724	6.846	5.026	2.789	7.146	4.454	4.257	2.442	7.001	7.344	2.184
ſ		-0.523	3.920	7.329	7.111	8.483	7.592	3.162	2.617	5.992	0.132	6.633	7.143	3.879	7.018	6.532	4.957	6.821	7.380	3.810	4.604	3.194	-2.200	3.723	6.985	6.826	6.856	5.926	2.759	7.155	5.280	4.192	2.491	7.804	9.007	2.898
μ_{δ}	11/yr	-0.046	-0.023	+0.023	-0.013	-0.70	-0.030	-0.151	-0.022	-0.23	+0.034	+0.116	-2.50	-0.100	-0.020	-1.219	-5.813	090.0-	-0.004	-0.018	900.0+	+0.882	-1.998	+0.132	-0.007	-0.023	-0.010	-0.007	-0.019	600.0-	-0.005	+0.040	-0.021		,	-0.062
μ_{α}	s/yr	-0.0474	-0.0044	-0.0012	-0.0011	600.0-	-0.0026	-0.0380	+0.0013	-0.010	-0.0073	-0.0462	-0.239	+0.0029	-0.0026	+0.0404	+0.3374	-0.0027	-0.0018	-0.0042	+0.0102	-0.0604	-0.0771	+0.0145	+0.0025	-0.0016	-0.0027	-0.0022	-0.0065	-0.0026	+0.0003	-0.0011	-0.0008			0.0
δ	11 1 0	$+28\ 01\ 34\cdot 3$		47	-012834.8	$-07\ 22\ 16.0$	+43 39 55.6	$+59\ 02\ 19.4$	-145047.8	-03 44 44.7	+41 29 58·3	$-10\ 13\ 43.4$	+07 00 54	03	08	+00 48 16.4	+37 43 07.4	37	$+013431\cdot0$		$-20\ 35\ 00.4$	+27 52 41.4	$+19\ 10\ 56.7$	44	$+36\ 45\ 24.4$	-02 30 20.0	-395534.8	59		$+24\ 20\ 36.1$	+01 30 34.8	+46 18 48.2		34	23	$+00\ 39\ 54.3$
α	s m y	07 45 18.95	25	08 47 22.00	$09\ 01\ 38.01$	09 28 53.33	09 48 44.64	09 50 59.37	09 51 28.69	10 12 17.68	10 22 19.74	10 25 10.83	56	14	40	11 47 44.40	11 52 58.77	60	17		13 03 46 09	13 11 52.40	14 15 39.68	34	$14\ 42\ 39.55$	14 43 46.46	14 47 46.96		17		$15\ 25\ 01.31$	16 19 44.44	16 21 11.32	26		16 28 33.97
ING Name		IR0742+281	IR0823-037	IR0845-396	IR0859-012	IR0926-071	IR0945+458	IR0947+592	IR0949-146	IR1009-034	IR1019+417	IR1022-099	IR1054+074	IR1111+083	IR1137-388	IR1145 + 010	IR1150+380	IR1206+389	IR1215+018	IR1217+003	IR1301-203	IR1309+281	IR1413+194	IR1432+299	IR1440+369	IR1441-022	IR1444-397	IR1452+031	IR1514-091	IR1519+245	IR1522 + 016	IR1618+464	IR1618-254	IR1623-244	IR1623-242	IR1626+007

Table I

Bright Infra-Red Standards referred to equinox $\rm J2000\cdot 0~(contd)$

ING Name	σ	δ	$\eta \sim \eta$	μ_{δ}	J	Н	K	T	T_{\prime}	mv	$_{ m LS}$	Name	Note
	s m q	11 1 0	ın/ıı ın/s										
IR1628-165	$16\ 31\ 08.38$	$-16\ 36\ 45.9$	-0.0032 -0.	2 20.0-	2.767	2.334	2.269	2.19	2.22	4.3	G8IIIa	BS 6147	2
IR1712+144		$+14\ 23\ 25.2$		+0.033 -5	2.276	-3.110	-3.351	-3.70	99.6	3.6	M5Ib	BS 6406	33
IR1746+399	17 47 58 54	+39 58 50.5			7.223	7.141	7.112	2.09	7.14	7.7	Α0	HD 162208	4
IR1745-017	17 48 19.23	-014830.0	-		7.172	7.059	7.023	66.9	7.01	8.3	A2	HD 161903	4
IR1745-381	17 48 57.95	-38 07 07.6	+0.0007 -0.	-0.015	7.620	7.620	7.615	9.2		9.2	A0	HD 161743	2
IR1756+301	17 58 30.15	$+30\ 11\ 21.4$			3.470	3.252	3.210	3.16	3.18	4.4	F2II	BS 6707	2
IR1846-238	18 49 49.38	$-23\ 50\ 10.4$			3.297	5.680	5.416	5.12	5.03	11.0	$\mathrm{dM}4.5\mathrm{e}$	Y4338	2
IR1852-227		$-22\ 40\ 16.6$			2.739	2.120	2.033	1.91		5.1	K3II	BS 7120	2
IR1909+028	19 12 14.65	+025310.7	+0.1189 -0.		201.2	6.557	6.319	6.05	00.9	11.2	dM4	GL 748	2
IR1954+349	19 56 18.38	$+35\ 05\ 00.3$	-0.0026 -0.		2.199	1.716	1.640	1.51	1.56	3.9	K0III	BS 7615	1
IR2017-129	20 20 39.83	-124533.0	+0.0011 -0	-0.020	4.825	4.859	4.859	4.86	4.86	4.8	B9.5V	BS 7773	4
IR2054-106	20 56 46.46	$-10\ 26\ 54.8$	-0.013 -1.		7.832	7.185	6.946	6.70	69-9	11.6	dM4	GL 811·1	2
IR2110+024	21 12 45.32	$+02\ 38\ 33.8$			969.5	6.657	6.626	09-9	6.61	2.0	A2	HD 201941	2
IR2115+391	21 17 24.95	$+39\ 23\ 40.9$		-0.003	3.886	3.838	3.797	3.73	3.73	4.2	B9Iab	BS 8143	Π
IR2121+398	$21\ 23\ 35.53$	+40 01 07·1			3.926	6.887	6.861	6.84	6.84	7.2	A0	$\mathrm{HD}203856$	2
		-410252.2	+0.0018 +0.		7.775	7.688	7.657	7.64		8.0	A3	HD 205772	က
IR2221+549	22 23 42.27	$+55\ 12\ 25.2$		+0.003	7.933	2.766	7.734		7.74	9.8	F0	SAO34401	2
IR2222+492	22 24 30.98	$+49\ 28\ 35.0$	-0.0012 +0.	+0.002	4.305	4.267	4.235	4.23	4.22	4.6	B9Iab	BS 8541	2
IR2225+044		$+04\ 41\ 44.6$	+0.0055 -0.		5.956	2.378	2.312	2.25	2.24	4.8	KOIII	BS 8551	2
IR2250-145	$22\ 53\ 16.73$	$-14\ 15\ 48.9$	+0.064 -0.	-0.62	5.980	5.344	5.066	4.80	4.74	10.3	dM5	Y5546	2

Notes to Tables 1 and II, indicating source of positions

- 1. FK5 catalogue.
- 2. Carlsberg Meridian Circle Catalogue
 - 3. Hipparcos Catalogue.
 - 4. PPM.
- 5. Measured with Coradograph.6. APM catalogue

Faint Infrared Standards referred to equinox $J2000 \cdot 0$

_																																		
note		5 b	5 a	2 a,b	5 a	2 a, b	$_{2 \text{ a,b}}$	2 a	5 a	5 а	5 b	2 a	5 a	5 а	5 b	э 9	э 9	э 9	5 а	5 a,b	2 a, b	2 d	2 d	p 9	5 а	5 a	5 a	p 9	5 а	5 b	$_{2\mathrm{d}}$	$_{2 \text{ a,b}}$		
Other Names		G158-100, FS1	SA 92 342, FS 2	Feige 11, FS3	SA 93 317, FS4	Feige 16, FS 5	Feige 22, FS6	SA 94 242, FS 7	SA 94 251, FS8	SA 94 702, FS 9	$\mathrm{GD}\ 50,\mathrm{FS}10$	SA 96 83, FS 11	GD 71, FS12	SA97249, FS13	Rubin 149, FS 14	M67 I 48, FS 15	M67 IV 8, FS 16	M67 IV 27, FS 17	SA 100 280, FS 18	G162-66, FS 19	G163-50, FS20	GD 140, FS 21	GD 153, FS33	M3 193, FS 23	SA 106 1024, FS 24	SA 107 1006, FS 25	$SA\ 108\ 475, FS\ 26$	M13 A14, FS 27	SA 109 71, FS 28	G21-15**, FS35	EG141, FS34	G93-48, FS 29	SA 114 750, FS30	100E 010 CD
H - K		0.081 (0.012)		(200.0) (200.0)	0.040 (0.007)	-0.002(0.004)	-0.069(0.012)	$0.037\ (0.010)$	$0.129\ (0.004)$	0.158 (0.005)	-0.049 (0.060)	0.016 (0.019)	-0.091(0.018)	0.047 (0.005)	-0.079(0.020)	$(200 \cdot 0) 090 \cdot 0$	0.038 (0.005)	0.073 (0.003)	0.031(0.003)	-0.142(0.047)	-0.069(0.012)	-0.101 (0.037)	-0.078 (0.024)	0.072 (0.018)	0.019(0.004)	0.070 (0.005)	$0.155\ (0.006)$	$0.058\ (0.014)$	0.047 (0.005)	0.089 (0.005)	(600.0) 020.0-	-0.075 (0.012)	-0.036(0.005)	(1100) 0010
J-K		$0.462\ (0.011)$	0.247 (0.003)	-0.222(0.011)	$0.292\ (0.003)$	-0.007(0.004)	-0.135 (0.014)	$0.165\ (0.012)$	0.766(0.002)	$0.884\ (0.003)$	-0.170(0.077)	0.076 (0.025)	-0.217 (0.014)	$0.382\ (0.002)$	-0.153(0.005)	0.418 (0.008)	0.340 (0.006)	0.411 (0.007)	$0.292\ (0.003)$	-0.231(0.021)	-0.120 (0.015)	$-0.184\ (0.033)$	-0.223(0.010)	$0.623\ (0.004)$	$0.151\ (0.006)$	0.475 (0.003)	$0.858\ (0.004)$	0.371(0.013)	0.148 (0.010)	0.474 (0.008)	-0.170 (0.008)	-0.171 (0.011)	-0.092(0.013)	(000) 1100
J		12.967 (0.021)	10.466 (0.003)	12.822 (0.007)	$10.264\ (0.005)$	12.342 (0.006)	$13.374\ (0.015)$	10.940 (0.005)	$8.313\ (0.006)$	8.266 (0.006)	14.919 (0.072)	11.278 (0.018)	13.898 (0.003)		14.261 (0.012)	12.360 (0.021)	$12.631\ (0.008)$	$12.270\ (0.007)$	10.522 (0.008)	13.796 (0.025)	13.473 (0.017)	$13.132\ (0.004)$	14.240 (0.016)	$12.374\ (0.000)$	10.753 (0.008)	9.756 (0.017)	7.972 (0.009)	13.123 (0.018)	10.597 (0.016)	11.757 (0.017)	12.989 (0.011)	13.346 (0.024)	12.015 (0.020)	(010 0) 000 11
μ_{lpha} μ_{δ}	s/yr 11/yr	+0.011 -0.17		+0.001 -0.04			+0.005 -0.03	-0.001 -0.01			+0.002 -0.15		+0.006 -0.19							-0.021 -0.06	-0.003 -0.43	-0.012 -0.01	-0.001 -0.15								+0.023 -0.09	+0.002 -0.21		000
δ	11 1 0	-12 07 57		+04 13 37	+004301	-06 46 00	$+05\ 15\ 51$	+00 18 38	$+00\ 16\ 03$		-00 58 32	-00 14 41	$+15\ 53\ 13$	$+00\ 01\ 11$	-00 33 04	+11 43 47	$+11\ 49\ 21$	+115210	-00 36 42	-11 41 38	-05 09 26	+29 47 58		29		+00 14 20	-00 34 39		-00 24 57	$+04\ 03\ 10$	$-20\ 04\ 36$	$+02\ 23\ 20$	$+01\ 12\ 37$	10 41 07
α	s w y	00 33 54.5	55	$01\ 04\ 21.7$		015434.6		025721.2	0257469		$03\ 48\ 50.0$	04 52 58.9	52	22		$08\ 51\ 05.8$		51	53	$10\ 33\ 42.8$	$11.08\ 00.0$		1257023		40	$15\ 38\ 33.3$	$16\ 37\ 00.6$	16 40 41.6		27	20 42 34.7	21 52 25.4	41	0 10 01 00
Ing Name		IR0031 - 124	IR0052+004	IR0101 + 039	IR0152 + 004	IR0152-070	IR0227+050	IR0254+001	IRO255+000	IRO255+009	IR0346-011	IR0450-003	IR0549 + 158	IR0554+000	IR0721 - 004	IR0848+119	IR0848+120	IR0848+121	IR0851-004	IR1031-114	IR1105-048	IR1134 + 300	IR1254 + 223	IR1339+287	IR1437 + 002	IR1535+004	IR1634-004	IR1638+364	IR1741-003	IR1824 $+040**$	IR2039-202	IR2149+021	IR2239+009	TD0.00000T

G21-15**,FS35 see note in text

Notes to Table II, indicating source of identifications

- a: Landolt 1983 AJ, 88,439.
- b: Turnshek etal 1990 AJ, **99**,1243.
- c: Eggen and Sandage ApJ, 140, 130.
- d: Private comm.