Adaptive Optics

(and its implementation on the WHT)

- Overall principle
- Subsystems (DM, WFS, etc.)
- Laser Guide Star

Objective: to understand what are the key components of the system

Image quality

Telescope diffraction limit

Angular resolution $\sim \lambda/D$ for 2.5m telescope in V band this is 0.045 arcsec !

Intrinsic optical performance

for classical telescope of order few times 0.1 arcsec

Atmosphere

typically 1 arcsecond

Conclusion: for any large telescope the atmosphere is the limiting factor in setting the spatial resolution

Atmospheric turbulence and seeing

A few key concepts #1:

FWHM: width of the image at half height

Strehl ratio: ratio of peak intensity of aberrated image compared to perfect image

Entry Course on Adaptive Optics Euro50 Adaptive Optics Simulation

K-band

A few key concepts #2:

A few key concepts #3:

Wavelength dependence of seeing:

Everything related to seeing improves towards longer wavelengths

'Seeing' FWHM ~
$$\lambda/r_0$$
 ~ $\lambda^{-1/5}$

Zernike polynomials:

a mathematical description used to describe wavefront distortions

Adaptive Optics seeks to correct for the atmospheric turbulence in order to recover the theoretical diffraction-limited image quality of the telescope.

The Adaptive Optics cycle

Wavefront Sensor

Divide up the primary mirror ('telescope pupil')

Image star for each segment

Spot centroid positions are a measure for the local wavefront tilt. The centroids are used to correct the DM.

Wavefront distortion

A local wavefront tilt causes a star image to slightly shift to away from the centre.

By tilting an element on the deformable mirror the wavefront is flattened again.

Deformable mirror

Wavefront sensor element

Deformable Mirror

76 element segmented mirror. Each mirror element is mounted on three piezo elements with strain gauge

The DM in its mount With Strain Gauge Pre-amps

Interferometric view

NAOMI LGS WFS NGS WFS M NAOMI AO SYSTEMS

NAOMI

An image showing NAOMI during laboratory integration.

When AO works...

Limitations

Performance degrades at shorter wavelengths as r_0 and t_0 both reduce with wavelength. The result is that at shorter wavelength wavefront sensing and correction must happen on a *finer scale* as well as at *higher frequency*

High Strehl ratios are readily obtained in K-band but are still impossible in the optical.

Limitations

Needs bright star very close to target, resulting in sky coverage of ~1%

Improve this using laser guide star – Sodium or Rayleigh laser

GLAS laser schematic

Laser focussed at of 15km

First expand beam, then project using small telescope

Back scattered light is used for wavefront sensing

GLAS principles

Project laser beam on small spot at ~15km

Pulsed laser linked to fast shutter to select height and duration of scatter region

Still needs natural star

Two wavefront sensors, for star and laser

The laser at work...

Sky coverage

Entry Course on Adaptive Optics When Laser AO works...

Entry Course on Adaptive Optics The 42-m E-ELT

1 arcsecond

E-ELT (diffraction limit a few milliarcsec in the near-IR)

