|
ING Scientific Highlights in 1997
Astronomical discoveries following from
observations carried out with ING telescopes
|
SOLAR SYSTEM
|
First ever images of a neutral gas tail in a comet
CoCAM WIDE FIELD INSTRUMENT
WILLIAM HERSCHEL TELESCOPE
JACOBUS KAPTEYN TELESCOPE
Observations carried out to study the distribution of sodium atoms in comet
Hale-Bopp led to the discovery of a new type of comet tail. Sodium atoms
had previously been seen near the center of other comets, but these
observations revealed for the first time a 6 degrees long straight tail of
sodium.
The discovery images were taken with the CoCAM wide-field CCD camera, built
and operated by staff at the Isaac Newton Group, set up next to the 2.5m
Isaac Newton Telescope. Members of the European Comet Hale-Bopp Team made
several exposures of the comet through a narrow filter that isolates
emission from sodium atoms, and to their great surprise the astronomers
found that these atoms are distributed over enormous region in and around
the comet. Contrary to earlier observations of bright comets near the Sun,
the sodium was present not only in the region next to the cometary nucleus,
but there were also large amounts in the region of the cometary tails.
Following a careful analysis of the observed distribution of these atoms,
the astronomers concluded that comet Hale-Bopp displays a third type of tail
never seen before and consisting of sodium atoms.
Whereas the well-known ion and dust tails so prominently displayed by
Hale-Bopp show a large amount of structure, the new sodium tail has a
completely different appearance. It takes the form of an approximately
600,000 km wide and 50 million km long tail, in a direction close but
slightly different to that of the ion tail. While the electrically charged
particles in the ion
tail are accelerated to large velocities by the solar wind (very fast atomic
particles emitted by the Sun), the sodium atoms are released from dust
grains and then accelerated in the antisolar direction by simple fluorescence.
These later conclusions were achieved thanks to observations carried out
with the William Herschel Telescope.
The European Comet Hale-Bopp Team also reported that high resolution
observations taken with the Jacobus Kapteyn Telescope broadly revealed
both spiral-jet and arc structures in the
inner coma of comet Hale-Bopp. The astronomers took these pictures through a
CN and a blue continuum filter and they obtained an expansion velocity for
CN of 1.3 km/s.
Picture 1
Picture 2
|
The sodium tail

Spiral and arc structures in Hale-Bopp coma
|
|
STARS
|
|
Picture still not available
|
Nuevas enanas marrones
WILLIAM HERSCHEL TELESCOPE
ISAAC NEWTON TELESCOPE
Desde que en 1995 se confirmó la naturaleza subestelar de la primera
enana
marrón descubierta, Teide 1, de 55 veces la masa de Júpiter,
mediante las
observaciones llevadas a cabo con el telescopio William Herschel y con el
Keck I del Observatorio de Hawaii, la búsqueda de nuevas enanas
marrones ha continuado sin cesar.
Durante 1997, y como resultado de las observaciones realizadas a lo largo de
1996 en los telescopios del ORM, entre ellos los telescopios Isaac Newton y
William Herschel, un equipo liderado por astrónomos del IAC dio a
conocer el
descubrimiento de nuevas enanas marrones
en los cúmulos estelares jóvenes de las Pléyades y el
Pesebre. En concreto,
la enana marrón denominada Roque 4, con una masa de 45 veces la masa de
Júpiter e I=19.75, resultó ser la enana marrón más
fría y menos masiva jamás
observada. Todas estas enanas marrones fueron descubiertas
tras realizar fotometría óptica e infrarroja y estudiar
tanto su emisión en
H alpha como su tipo espectral. Asimismo, el dato de la velocidad radial
fue fundamental para conocer su asociación con el cúmulo.
En base a estos datos, los astrónomos del equipo descubridor
concluyeron que el número de enanas marrones en nuestra Galaxia puede ser
alto, lo cual representaría un resultado crucial para entender
la estructura
de la Vía Láctea.
Picture
|
|
New type of star
WILLIAM HERSCHEL TELESCOPE
A new type of star was discovered by an international team led by
astronomers of the University of Wyoming. The astronomers used observations
from some of
the world's largest telescopes, including the William Herschel Telescope,
and theoretical models run on supercomputers to develop new theories about
the evolution of old binary systems. They found that in many binary systems,
the initially more massive star ends its life and becomes a white dwarf,
while the initially less massive star tries to evolve normally, but all the
while loses mass to the white dwarf. Eventually, all that remains of the
less massive star is an exposed stellar core with a size near that of the
planet Jupiter and a mass of only 5/100th or so of its original value.
Having used up or lost essentially all its hydrogen, this very small star
has no remaining energy generation. It cannot ever become one of the usual
stellar end-products. Therefore, it has a structure unlike any other kind of
known star.
Picture
| Picture still not available
|
|
 Doppler tomogram
of IP Pegasi |
First detection of Spiral Waves in a stellar accretion disc
ISAAC NEWTON TELESCOPE
For the first time, astronomers detected spiral structure in the disc
of gas that surrounds one of the stars in an interacting binary star system.
The system they observed is known as IP Pegasi. IP Pegasi is an eclipsing
dwarf nova (a subclass of cataclysmic variables) consisting of a K5
secondary star (0.5 solar masses) losing mass to a white dwarf (1.0 solar
masses) in a 3.8-hour orbit. At semi-regular intervals of about three months
the system brightens by 2 magnitudes as the mass transfer
through the accretion disc suddenly increases. St Andrews University
researchers
observed the star in the first few days of one of these outbursts, when the
disc was at its maximum extent.
The disc is smaller than the radius of the Sun, so it is no possible to
resolve it directly in any telescope. The technique they used involved
measuring
the velocity of the gas by looking at the Doppler shift in its spectrum. As
the stars revolve around each other in their 3.8-hour orbit, the observers
got successively different view of the disc. By using a technique called
tomography, they were able to reconstruct a picture of the
flow pattern of the gas.
The results showed a two-armed trailing spiral in the outer part of the
disc. Such spirals are thought to be created by tidal forces due to the
gravitational pull of the normal star. The formation of such spirals had
been predicted, but this is the first positive detection.
This discovery was thanks to observations carried out at the Isaac
Newton Telescope using SERVICE time. The SERVICE programme at the ING
telescopes is well suited for undertaking a quick look on new cataclysmic
variables or provide complimentary emission line information for old ones.
But the programme's main advantage is that it offers the observers the
opportunity of some flexibility over the predetermined schedule to cover
unexpected events such as nova outbursts. Indeed the astronomers observed IP
Pegasi while it was on the rise to outburst with the intermediate dispersion
spectrograph on the Isaac Newton Telescope during SERVICE time, which
resulted in the discovery of spiral structure in the binary's accretion disc.
Picture 1
Picture 2
-
Some references:
Steeghs D. et al., MNRAS, 290, L28
Harlaftis E. T. and Steeghs D.,
Spectrum Newsletter, 13, 4
"Spiral waves in stellar discs", 1997, Astronomy Now, October issue,
p. 25
"Spiral waves: not just for Galaxies anymore", 1997, Sky &
Telescope, August, p. 20
http://star-www.st-and.ac.uk/~ds10/spirals.html
RAS Press Release 97/21,
08/04/97, "First detection of spiral waves in gas Disc in
Interacting Binary Star"
Picture of the Day, NASA, 22 August 1997.
|
|
GALAXIES
|
Prueba observacional del origen por fusión de las galaxias
elípticas
ISAAC NEWTON TELESCOPE
Desde la década de los ochenta se conoce que las galaxias elípticas, tras su
aparente simplicidad y uniformidad, esconden importantes peculiaridades.
Casi la mitad de las elípticas estudiadas muestran tenues arcos luminosos,
también llamados conchas. Entre un 20% y un 30% de las galaxias
elípticas
muestran núcleos que rotan en dirección opuesta u ortogonal a la del resto
de la galaxia. Una fracción indeterminada de elípticas tiene anillos o
discos polares con estrellas, gas y polvo. La existencia de tales
estructuras sólo puede entenderse como resultado de procesos de
acreción y/o
fusión entre galaxias ya formadas, y no por un colapso monolítico en la
etapa de formación. En concreto, la presencia de dos colas de
marea contrapuestas es signo inequívoco de la fusión de
dos galaxias de
disco. El hecho de que las colas se diluyen con el tiempo hasta ser
inobservables ha dificultado hasta ahora la realización de una prueba
fundamental sobre el origen de las elípticas por fusión
de espirales.
Esta prueba fue encontrada gracias a las observaciones llevadas a cabo
con el telescopio Isaac Newton de la galaxia elíptica peculiar NGC 3656.
Esta galaxia había sido interpretada como el resultado de una
fusión menor
(una galaxia elíptica engulle a otra galaxia más pequeña)
debido a la
presencia de conchas fotométricas y de un núcleo con
rotación ortogonal. Los
datos del INT, tratados con un proceso especial de ecualización de la
respuesta fotométrica del detector, han revelado un halo luminoso extenso y
dos colas de marea. Tales colas son incompatibles con
una fusión menor, y apuntan a una fusión mayor entre dos galaxias con disco
de tamaño similar en órbita directa.
Picture
-
Some references:
Balcells M., 1997, "Two tails in NGC 3656, and the major
merger origin of shell and minor axis dust lane ellipticals",
ApJ, 486, L87
Balcells M., IAC Noticias, 41 (2/1997), 4
|  NGC 3656 and the two tidal
tails |
|
COSMOLOGY
|
 Optical Counterpart of a Gamma-Ray
Burst |
First Detection of the Optical Counterpart of a Gamma-Ray Burst
WILLIAM HERSCHEL TELESCOPE
ISAAC NEWTON TELESCOPE
Since their discovery Gamma-Ray Bursts (GRBs) have been one of astronomy's
great mysteries. For a long time
it was expected that the detection of a counterpart at other wavelengths
would provide the key to understanding the GRB phenomenon. However, such
counterparts were not found, in spite of much effort during the last 25
years. The main problem for this was the lack of fast and accurate GRB
positions. With the launch of the Wide Field Cameras (WFCs) on board the
Italian-Dutch X-ray satellite BeppoSAX this has changed. For the first time
GRB positions can be determined with accuracies of a few arcminutes within a
few hours after the burst, unprecedented in GRB astronomy.
Finally the situation changed dramatically on February 28, 1997 when a team
of
astronomers led by Jan van Paradijs of the University of Amsterdam and the
University of Alabama in Huntsville pointed the William Herschel Telescope
to the part of the sky where shortly before a new GRB had been detected
(GRB 970228) by the Gamma-Ray Burst Monitor onboard BeppoSAX satellite.
What the William Herschel
Telescope saw was a faint optical source at the position on the sky
determined
by the X-ray satellite. Rapid follow-up with the William Herschel Telescope,
and subsequent observations with the William Herschel and the Isaac Newton
Telescopes revealed a fading optical source that was coincident with all
the known error-boxes of GRB 970228. This led the discovery team to conclude
that they had identified the first example of optical afterglow of a GRB.
Picture
- Some references:
Van Paradijs J. et al., 1997, "Transient Optical Emission
from the error box of the gamma-ray burst of 28 February
1997", Nature, 386, 686
Galama T. et al., "The
decay of optical emission from the
gamma-ray burst GRB 970228", Nature, 387, 479
Groot P. J., Galama T. J., Spectrum
Newsletter, 14, 8
Groot P. J. et al., IAU circular
6584
|
|
Discovery of the third most distant quasar and the highest redshift
radio and X-ray source
WILLIAM HERSCHEL TELESCOPE
ISAAC NEWTON TELESCOPE
During a CCD imaging phase of an investigation into the evolution of the
space density of radio-loud quasars at high redshift, a quasar at z=4.72 was
discovered. This quasar, GB1428+4217, is the third most distant quasar and
the highest redshift radio and X-ray source currently known. Observations
were carried out by astronomers from the University of California in Berkeley
and the Institute of Astronomy in Cambridge using the Isaac Newton Telescope
for imaging and the William Herschel Telescope for the spectroscopic
follow-up.
Picture
|  GB1428+4217 quasar |
|
Searched publications:
ING Press Releases
RAS Press Releases
IAC Press Releases
NFRA Press Releases
Spectrum Newsletter
IAC Noticias
NFRA/ASTRON Newsletter
IAU circulars
S&T news bulletins
Nature
Science
[Public Relations Page]
Javier Méndez
18 November, 1997
jma@ing.iac.es
|