

AOGUI User Manual Jure Skvarč for version 20131113

Table of Contents

Light path page	25
NCU	26
FSM	26
DM	26
WFS	26
OASIS mirror	26
Dichroic	27
Lucky mirror	27
Filter focus	27
Camera widget	27
Tutorials	
Starting and quitting the application	
Starting the AOServer	
Starting the real time software on the PC	
Flattening the mirror using aogui	
White light flattening	30
Removing non-common path errors	30
Moving the segments manually	30
Inspecting segment and spot status	31
Wavefront analysis using Zernike decomposition	31
Calibration of strain gauges	
Calibration of the pickoff probe	
Observing	
NAOMI troubleshooting guides	
Mechanisms	
WFS mechanisms do not respond or	
WFS status keeps red Error or blue Busy status	
Mechanisms are not initialised	
GUIS	
AOGUI stops responding	
AUGUI gets stuck or is very slow	
Real time system	
Some or all segments are extremely inclined and can not be moved	
The feat time system refuses to change the camera readout mode or speed	
The SG loop can not be closed or opened or.	
Segment tringes on the Segment page are static even if it is implied that the SC (the SC butten has a commond Open) or	
(the SG button has a command Open) or	
Try to open and close the SC loop. Check that the fringes move when loop is a	
I god the latest mirror configuration ("I god mirror")	105CU. 28
Real time system computer agend not running	
Real time process on sonel not running	
NaomiRestart accontrol1 does not finish properly	
Automider status is Error and shown in red	
Harmless messages in the terminal	<u>۲</u>
Annendix A	τ <i>Σ</i> ΔΛ
Calculation of fringes on the segments	 ДЛ
Culculation of hinges on the segments	

Appendix B	
Calculation of strain gauge gain and offset values	
Appendix C: Setting up the terminal server daemon	
	47
Glossary	
DAC demands	
Final demands	
Strain gauges	
Shack-Hartmann	
WFS	
TCS	

Introduction

NAOMI, the adaptive optics system at the WHT, has undergone a major upgrade of the real time image analysis computer and of operational procedures. In addition a new user interface application, called **aogui**, has been created to support new calibration and observing modes and to control the system. This document describes the functionality of aogui and provides tutorials for the tasks which are performed by engineers and observers to prepare the system for observations and to actually perform observations. In addition, a troubleshooting guide is added which extends its reach to other components of the AO system. Main differences between the old and the new operational model are outlined in the following paragraphs.

One of the most important tasks in preparing the NAOMI adaptive optics system for observations is optimisation of the deformable mirror (DM) so that it produces a diffraction limited spot on the science camera, Generally the process consists of three steps:

- 1. Co-alignment of the DM segment normals with the optical axis
- 2. Co-phasing of the segments using white light interferometry.
- 3. Removal of the non-common path errors using simplex optimisation of the spot on the science camera.

In the original NAOMI system step 1 is performed using a laser double-pass interferometer called FISBA and a special software called FisbaGui. This method is very sensitive both in positive and negative way. The positive side is that it can align segments very well. On the negative side it is very sensitive to any vibrations present on the optical bench and requires for operation that the optical bench is floating on air cushions. Although the software procedure which aligns the segments does its job quite quickly, the process of floating and then fixing the bench takes about 10-15 minutes. In contrast to this, aogui uses spots on the wavefront sensor to align the segments. This method is much faster and does not require to float the optical bench.

The cophasing step, known as AutoWhite, has been adopted from the original NAOMI software. Previously this has been a command line application while now it is integrated into aogui.

Removal of the common-path errors is done by a non-linear optimisation method known as "simplex". The mathematical part of this method is also the same as in NAOMI, but the GUI is new and is also integrated into aogui.

Aogui includes light path monitoring and control.

Finally, the observing interface is also enhanced by including control of the autoguiding and status of the telescope.

This document describes application deployment and the user interface functions. Users interested in practical use should follow the tutorials in this manual.

Deployment

Aogui is written in Python and uses wxPython GUI framework. There are many source files which are part of the application. In addition to this, aogui also uses many external libraries. Due to ING's transition to the PC Linux operating system, the application is only targeting this platform. The application runs on one of the aodisplay computers, which will be either aodisplay2 or aodisplay1. The

application is installed locally so it is not deployed through the OSCAR software control system.

Aogui depends on several services, files and applications.

- To communicate with the remains of the C40-based real time computer (RTC) an application **AOServer** must be running on the AO host machine accontrol1. The communication between acqui and AOServer is by CORBA framework. AOServer is a Python application and uses NAOMI libraries to communicate with the C40 RTC. acqui will recover and reestablish connection if AOServer is restarted, so there is no need to restart the GUI itself. Exception to this is the very invocation of the application. In case whern acqui is started and AOServer is not running there will be an error message in a graphical window, the application window will appear.
- The **CORBA name service** (omninames) for this application is running on whtens.ing.iac.es (alias for taurus) computer and is the same as for other ING applications.
- It is required that on aodisplay machine the directory *viss04:/export/Electra-save-dir* is mounted on */software/Electra/save* with read/write permissions for the user under which account the application is run.
- Directory aopc1:/home/tiptilt/.tiptilt must be mounted locally on /home/tiptilt/.tiptilt
- Configuration file **.spotalignrc** must exist in the home directory and must contain all parameters that aogui uses. Aogui is run under user name whtobs.
- A small daemon process called **terminalServer.py** is required to run under root privileges. This is necessary to allow communication of the aogui with the terminal which opens on taurus and is used to send commands like run and similar. The terminal server is part of the aogui distribution. It needs to be started from the upstart system. The configuration file for this is in /etc/event.d. Newer version of Linux have the configuration files in /etc/init. The content of the configuration file is described in Appendix C.
- An application dchgServer.py must be running on aodisplay2 to provide communication between aogui and the dichroic changer. This application is started by aogui if it is not running already.

The software is installed by copying the source tree to the machine where we want to install it, and running from the top level directory of the source tree the installation script like this:

install_scripts/installOnAodisplay2.py

or similar for other computers. For historical reasons the top level directory of the source is called spotAlign and not aogui.

Illustration 1: Deployment diagram for aogui

Starting and running

The application is started by typing *aogui* in the command line. If we want to run aogui in engineering mode, we invoke it by aogui *–engineering=True*. This allows saving of the working parameters.

General GUI layout

The GUI has a layout divided into two major panels. Each of the panels is divided into further subpanels, etc, until a single widget such as a button or input field. The left panel contains a display panel which presents the WFS image, and some buttons for executing the mirror flattening. The display panel allows some control of the image appearance.

Illustration 2: Aogui after starting up

On the right side there are different utility windows which allow finer control or monitoring of the AO system. Changing between these panels is by using tabs in the upper part of the GUI.

Big messages

Under the WFS image is a panel with "big messages". These are selected essential parameters of the AO system which must be within certain limits or have specific values to allow safe observing with the AO. Generally, the loop can only be closed if all messages are on a green background.

Illustration 3: Big messages

Operational control panel

The main actions on the AO system are performed from the control panel which located on the bottom of the main panel. There are two tabs, one for calibrations and the other for observing.

Calibration	Observing				
Prepare	Centre pick.	Centre spots	Stop	Pause	Continue
Cal. response	es Cal. actuate	ors Cal. picko	ff		
Save offsets	Load offsets	Zero offsets	Load mirror	Load raw	Save mirror

Illustration 4: Calibration panel

Before any calibration or observing task is performed it is necessary to configure several mechanisms and instruments. There are some other tools at the ING useful for this task, such as Obstool, however it is the idea of aogui to be eventually self sufficient and to improve efficiency by removing the need to use any other applications for the basic functionality it provides. Configuring will be done using the *sequencer* tool, however in the current version this operation is not yet supported because the actions

have not been defined. For this reason the following paragraph is obscured.

Centre pickoff probe

Practical use of aogui has proven that this action is actually rarely need to be used, so it is marked with strike-through effect.

The correct position of the pickoff probe is of critical importance for the final success of mirror flattening procedure. Although aogui will always accurately centre the spots as long as they are initially within their subapertures the segments may still have incorrect orientation relative to the optical axis. This only becomes apparent in later stages of mirror-flattening when it is not possible to achieve a good spot on the science camera.

The correct pickoff probe position is therefore found experimentally before each AO run and recorded. After that it is enough to have the spots from the central four segments inside their subapertures and eliek on **Centre pick**. Aogui will steer the pickoff probe so that the central four spots again occupy previously recorded positions. This procedure must be repeated after any pickoff probe movement. It is important to have high SNR spots for this, which means calibration lamp iris setting of 0.

The success of the pickoff centring action can be best properly judged by an experienced operatorwhich is why this action is triggered from the GUI and not from the sequencer.

Auto-centre

The Auto-centre button is used to centre the pickoff probe in the wavefront sensor. Aogui will calculate the current average offset of the spots (except central 4) and move the pickoff probe so that this offset becomes zero. No segment needs to be selected for this action. This action is useful to obtain an approximate pickoff probe position when we start mirror-flattening from scratch or when we want to recover the pickoff probe position after it has been moved.

Centre spots

Mirror alignment based on spot centring replaces mirror flattening using FISBA interferometer. Once the mechanisms are configured and the spots are within their subapertures it is necessary to select the the segments which we want to centre on the **Segments** page on the right side of the GUI. Typically these will be all segments. The selected segments turn green on the GUI. Then click on **Centre spots** and in few seconds the spots will be centred. This procedure uses a fixed number of iterations while centring the spots. If it looks that some of the spots are not well centred, simply repeat the procedure.

As a matter of fact, the spots are not necessarily simply centred – instead they are brought to their offset position. The offset in context means the distance of the spot from the subaperture centre. In practice there has been little evidence that it really makes a difference whether the spots are exactly in the centre or slightly off. There the offsets can always remain 0.

Calibration panel

Aogui allows certain calibration actions. As they are potentially dangerous for regular operations, these actions are only enabled when aogui is in the engineering mode. Unsuccessful or incorrect use of the the calibration actions can render the aogui or even the AO system inoperable so calibration should only be performed by trained individuals who are able to recover the system to a working state.

Calibrate responses

By *segment responses* we define the amount of spot movement on the WFS sensor in x or y direction when the tip and tilt values for a segment are changed by one (transformed DAC) unit. The unit of movement on the WFS is pixels. The segment responses are needed so that aogui can know how much to move a segment in order to centre its spot. If the response is missing for any of the spots, the segment can't be moved. The values are saved in

/software/Electra/save/spotAlign/segmentResponses.dat.

After clicking on **Cal. responses aogui** will move all selected segments (except the central four) and find out the responses. This procedure takes few minutes and is not likely to be needed very often.

Calibrate actuators

Actuator calibration, which is actually calibration of the strain gauges, is very important for proper operation of the AO system. The main purpose of this action is to find the relation between raw actuator DAC values and strain gauge readout values. Once this relation is determined correctly, setting the DAC demands to the middle position will put 0 volts on the mirror regardless of whether the strain gauge loop is closed or open.

This calibration is only needed occasionally when the strain gauge response changes because of environmental reasons such as big humidity swings. The files which are changed after executing this procedure are /software/Electra/save/StrainGauge/calOffsets and /software/Electra/save/StrainGauge/calGains.

No light source is needed to make this calibration. After clicking on **Cal. actuators** aogui will open the strain gauge loop, apply different DAC demands, read the strain gauge values and calculate the transformation between the two. The procedure takes few minutes. There is a progress window on the sereen during calibration, indicating how much time is left until the end. If the user clicks Cancel, the action is aborted and not change in the system is made. The progress of the procedure is seen in the terminal window. The GUI progress indicator has been suspended temporarily because of occassional communication probelems.

Calibrate pickoff probe

By calibrating the pickoff probe we mean recording of current spot positions in the central 4 subapertures. These values are later used in the pickoff probe centering. The spot positions are recorded after clicking on the **Cal. pickoff** button. This action is performed only after a good quality spot is obtained on the science detector. The calibration source must be on and bright so that the SNR of spots is as high as possible, but care is needed that they are not saturated.

Mirror and spot configurations

Note that offsets are not practically need so they should be always kept at 0.

Save offsets

When the positioning of the spots in the subaperture centres is not enough for good image quality, it is necessary to save the optimal offset spot positions by clicking on **Save offsets**. This action is performed after a good quality spot is achieved. The application saves the offsets of spot positions from centres of the subapertures. The files are in /software/Electra/save/spotAlign with names in format YYYYmmdd-HHMMSS.offsets. These offsets only achieves reproducible alignment if the pickoff probe is in the same position.

Load offsets

After clicking on Load offsets a file selector will appear and offer to load any of the previously saved offsets. After they are loaded the spot centring routine will centre to that positions, not to the geometrical centres of the subapertures.

Zero offsets

Clicking on **Zero offsets** will set all offsets to zero. Any information on the previous offsets is lost. Zero offsets are also present when the real time system starts.

Load mirror

By clicking **Load mirror** a file selector is presented which allows loading of previously saved DAC demands. The file selector presents the files in a chronological order so it is usually best to press on "Modified" column label to reverse the order and so access the latest flat files more easily.

Load raw

This command is not likely to be used in normal operation.

This command is similar to Load mirror, however, there is an important difference. Using this command the final values are loaded when the SG loop is open, the strain gauge response is read back and then the DAC demands are calculated using known relation between DAC demands and strain-gauge feedback. After that the loop is closed.

Please read about the distinction of two types of DAC values – demands and final values in the Glossary.

Save mirror

Both current DAC demands and the final values are saved to disk. No file selector is presented.

Observing panel

The observing panel is used during observations. It allows control of the AO loop and of the telescope autoguider. I also shows the status of the telescope and the autoguider.

Calibration	Observing	
Adaptive op	cs	
Close loop	AO loop is open	
Telescope c	ntrol	
Status Mode: <mark>ENG</mark>	ODE Guide pixel:0, 0 Packets: Autoguidementor	
Control		
Start guid	g Can't send packets	

Illustration 5: Observing panel

Adaptive optics

Close loop / Open loop

The adaptive optics loop can be open or closed using this button. The label depends on the current state of the AO loop. When the loop is open, the button will have a label Close loop and when the loop is closed, the button will have a label Open loop

Static aberrations

Note that this still needs to be tested on-sky - so this option has been disabled.

The purpose of this function is to correct any static telescope aberrations by averaging the Zerniketerms of the wavefront and applying the correction on the DM. This could be useful for open-looplucky imaging applications. The procedure uses spot positions from the Shack-Hartmann WFS whichare recorded while the telescope is pointing at a bright guide star. A large number of positions isaveraged to remove the effect of seeing. After that the program calculates the aberrations using Zernikedecomposition and applies a piston correction to the DM. Then the tiptilt correction is applied usingnormal spot positions directly.

Telescope control

Start guiding / Stop guiding

This button sends Autoguide on/off command to the TCS, depending on the current state. If the telescope is not the state which would allow autoguiding, and error message will appear if we want to start guiding. Transition to guiding is only possible from the tracking mode.

Start packets / Stop packets

The TCS does not actually switch to the guiding mode until it has received guiding packets from the serial port. Sending of the packets is enabled or disabled by this button. If the Guide off button is pressed, the TCS will stop guiding even if the packets are still arriving.

Segment, FSM and pickoff probe control

Deformable mirror segments can be controlled individually or in groups within the aogui application. This is done from the **Segments** page. Ideally there should be no need to move the segments manually for operational purposes. This is because the DM in its relaxed state produces spots which fit well into their subapertures on the WFS. However, sometimes this need exists and therefore this possibility exists within aogui. These action are accessible when the tab "Segments" is selected.

Illustration 6: Segment control together with FSM and pickoff probe control

Selecting the segments

Most operations related to segments perform only on segments which are selected. A segment can be selected individually by clicking on it. It is possible to select all segments by clicking on **Select all**, deselect all segments and toggle their state. The selected segments appear green on the GUI.

The button **No response** can be used to select the segments for which no response has been determined. The central four segments always belong to this group. If any other segments are shown to be without a valid response, an action must be taken to determine the responses again.

Observing segment status

This can be done in two ways: when a single segment is selected the most important parameters related to its status are shown in the fields on the left side of the Segments page. The content will disappear when more than one segment is selected or if no segment is selected.

Another option is to check the **Show live info** check box and then hover the mouse cursor over the

segment of interest. A window with live updated information about that segment will appear. This information is much more comprehensive than the information presented in the GUI.

Changing segment status

Segment status can be changed individually when only a single segment is selected. This is done by entering numbers into **Demand** and **XYZ** fields. The change is made when Return key is pressed or the input field loses focus. A segment can be tilted by pressing on the target-like icon. The segment will be tilted so that the spot will move in the direction of the radius vector between the centre of the target and the cursor position. By pressing H and L buttons the segment is moved in piston.

There are also collective functions for segment control: **Midrange** will apply demands in the middle of the DAC range. Note that these are demands and not necessarily the final (real) values. When the strain gauge loop is closed and the strain gauges are not properly calibrated there may be a significant difference between the two. **Zero pistons** is somewhat different function: It will make all segments have the average piston value equal 0, but will preserve whatever existing tip and tilt. The loop control button changes the label depending on the actual state of the strain gauge loop. If the loop is open it will have a label **Close loop**, if the loop is closed it will a label **Open loop**. In case that the loop state is unknown, it will change the label to display this. No action can be taken when the SG loop state is unknown.

Moving the FSM

The Fast Steering Mirror (FSM) can be controlled from the segment page either by entering the values between 0 and 8191 into the input fields, by clicking on the target-like icon or by pressing the **Midrange** button.

Moving the pickoff probe

The pickoff probe in the WFS unit moves the image on the WFS. For proper DM flattening it is very important to have it in the exactly right position. The pickoff probe position can be changed by entering a value into the input fields, followed by pressing the **Apply** button. The units are arc-seconds.

Zernike decomposition

Zernike decomposition page is a tool for analysing the WFS Shack-Hartmann pattern. It presents a number of Zernike terms in graphical and numerical format and will also calculate and draw the wavefront. The tool can be used to record any wavefront aberrations which is quite useful in on-sky operations, especially for detecting defocus. It is possible to switch between different modes of presentation, but normally the **Wavefront** will be selected.

Bar graphs on the right side of the panel show values of individual Zernike terms. On the bottom are the wavefront error RMS and the Strehl ratio, calculated for the wavelength defined in the Parameters panel.

Segments Zernike Parameters Status Sequend	er Real time AutoWhite	Simplex Light path	
		Wavefront statis	tics
	Piston	0.0	
	-1.0		1.0
	Tilt y	0.04054592	37379
	-1.0		1.0
	Tilt x	0.06768936	19262
	-1.0		1.0
	Astigmatism 45	0.02024409	80685
× .	-1.0		1.0
	Defocus	-0.0536136	198081
	-1.0		1.0
x = y = v =	Astigmatism 90	0.12513584	18847
	-1.0		1.0
Auto levels Min: 0 Max: 300	Trefoil	0.04344483	154651
Displayed object	-1.0		1.0
Wavefront O PSF O Image O Centr. O Calc. ce	entr. Coma along y	-0.0266202	145829
Contour Colour 3D	-1.0		1.0
Start Stop	Coma along x	0.00942478	320831
Fit order: 6	Wavefront error F Reconstruction e Strehl ratio:	RMS: 0.2113 rror RMS: N/A 0.1715	

Illustration 7: Zernike decomposition panel

Program parameters

This page should NOT be used by end users.

Parameters for the aogui application are stored in \$HOME/.spotslignrc. The contents of this file is editable from the **Parameters** page. Here are stored many program parameters. Full understanding of the program operation is required before a change is made, otherwise the application might be rendered useless. From this panel values of the aogui working parameters can be checked, changed and saved to the configuration file.

Segments	Zernik	e Paran	neters	Status	Sequencer	Rea	l time	AutoWhit	e Simplex	Light path					
		type		defau	ult_value		min	max		description					
andor1	l_y	int				208	1	16384	Window upp	per left corner y					
calDi	r	string	/softw	are/Electi	ra/save/spotA	lign	None	None	Directory wh	nere caibration spot coordinates are stored					
calLamp	oIris	float	0				None	None	one The white light lamp iris setting						
cameraS	tage	float	210				None	None	The camera	stage position					
dAngl	e	float	30				None	None	None The smallest angle between the segment radius vectors						
displayD	elay	int				250	None	None	Delay betwe	en image acquistions in continuous display					
dr		int				600	None	None	The amount	of movement between steps					
enginee	ring	boolean					None	None	Is the applic	ation started in engineering mode					
finalGa	ain	float	0.500				None	None	The gain use	g in final centering					
flatDi	ir	string	/softw	are/Electi	ra/save/flat		None	None	The director	y where DAC values of flats are stored					
foreOpt	tics	float	-0.3				None	None	The fore-opt	ics position					
ingrid_exp	Time	int				30	0	7200000	Exposure tin	ne					
ingrid_	_h	int				50	1	16384	Window hei	ght					
ingrid_	w	int				50	1	16384	Window wid	th					
ingrid_	_ X	int				482	1	16384	Window upp	per left corner x					
ingrid_	y	int				580	1	16384	Window upp	per left corner y					
lensle	et	string	f195_1.	.1			None	None	Name of the	lenslet wheel positionto be read from the database. If a number, use the					
maxDista	ance	float	0.5				None	None	The maximum distance in pixels between two objects to be considered the						
maxIt	er	int				1	None	None	The maximum number of attempts for one selection of segments						
maxTrave	lRate	float	5				None	None	The maximum allowed travel rate						
minObje	ects	int				3	None	None	The minimum number of objects needed to confirm motion						
minTrave	lRate	float	0.3				None	None	he minimum allowed travel rate						
nImag	es	int				1	None	None	The number	of images taken to average spot parameters					
nStep	s	int				6	None	None	The number	of steps when moving the segments					
ncuPosit	tion	string	101.05				None	None	Symbolic na	me of the NCU position (value is retrieved from a database). If a number,					
oasis_exp	Time	int				30	0	7200000	Exposure tin	ne					
oasis_	h	int				500	1	16384	Window hei	ght					
oasis_	w	int				500	1	16384	Window wid	th					
oasis_	<u>x</u>	int				1	1	16384	Window upp	per left corner x					
oasis_	y	int				1	1	16384	Window upp	per left corner y					
pickof	fX	float	1.85				None	None	The pickoff p	probe position in x					
pickof	fY	float	-0.49				None	None	The pickoff p	probe position in y					
pupilOff	setX	float	40				None	None	Offset of pu	pil centre projection to the image in x direction (unit pixels)					
pupilOff	setY	float	40				None	None	Offset of pu	pil centre projection to the image in y direction (unit pixels)					
pupilRad	dius	float	30.4				None	None	Pupil radius on the DM in the unit of pixels						
radiansPe	rPixel	float	1.212e	-6			None	None	Pixel size in r	radians					
rawFlat	Dir	string	/softw	are/Electi	ra/save/rawFl	at	None	None	The directory where raw flat files are stored.						
spotAr	ea	int				4	None	None	The minimu	m area of a blob to be accepted					
thresh	old	float	5				None	None	The thresho	ld for light detecion in sigma units					
wavelen	ngth	string	515e-9				None	None	The wavelen	gth for which the wavefront error is calculated					
Load	9	ave													

Illustration 8: Parameter panel

Status

Segments	Zernike	Parameter	s Status	Prepare for	or optical flattening CCD39				
Active	Name	Curr. value	Set value	Tolerance	Status	Action			
True	lris status	In Position	In Position	None	Ok				
True	lris position	0.0	0.0	0.1	Ok				
True	Helium lamp	0	0	None	Ok				
True	Neon lamp	0	0	None	Ok				
True	Continuum lai	0	0	None	Ok				
True	White light	ON	ON	None	Ok				
True	Pickoff X statu	ERROR	IDLE	None	Error	Fix it			
True	Pickoff Y statu	IDLE	IDLE	None	Ok				
True	Pickoff Fore of	IDLE	IDLE	None	Ok				
True	Lenslet	IDLE	IDLE	None	Ok				
True	CCD stage	ERROR	IDLE	None	Error	Fix it			
True	DM control	None	True	None	Error	Fix it			
True	Dichroic man	50/50	50/50	None	Ok				

Illustration 9: System status panel

The status page presents live status of mechanisms and services which are used by aogui. As this page has been designed when the scope of aogui was much more narrow, it does not currently provide the range of useful information which required for the variety of use cases. It should therefore not be used for observing.

Sequencer

Note 14. 5. 2010: This has not been sufficiently tested yet within the spotAlign environment. It does not work well if the sequences are executed repeatedly (which is normally not needed), Sometimes it appears to cause too many open files error and spotAlign must be restarted in this case.

The sequencer executes sequences of steps of an arbitrary length. It can be very useful for instrument configuration and similar tasks of sequential nature which don't require complex flow control. Each step in the sequence can contain any number of actions. Each action is followed by a number of checks. When the sequence is executed, the results of actions are checked and any errors are displayed.

All the user needs to know is which sequence to use for a certain task. Then click on the **Run** button and wait until the sequence finishes. The sequence has been completed successfully if there are no check fields in red or white.

Se	gments	Zernike	Parameters	State	us Sequencer	Real time	AutoWhite	Simplex	Light p	ath			
		St	ер			Action				getSGloopStatus	ncuNeonLampStatus	ncuContinuumLampStatus	getDichroic
1	Prepare	for optical	flattening on CCD3	9 1	Set WFS lenslet to	8x8 (good seei	ng)	None		None	None	None	None
1	Prepare	for optical	flattening on CCD3	9 2	Select white light (calibration lam	p on the NCU un	it None		None	None	None	None
1	Prepare	for optical	flattening on CCD3	9 3	Switch on white ca	libration lamp		None		None	None	None	None
1	Prepare	for optical	flattening on CCD3	9 4	Set iris for optical	flattening		None		None	None	None	None
1	Prepare	for optical	flattening on CCD3	9 5	Switch off continue	um lamp		None		None	None	OFF	None
1	Prepare	for optical	flattening on CCD3	9 6	Switch off neon la	mp		None		None	OFF	OFF	None
1	Prepare	for optical	flattening on CCD3	9 7	Switch off helium	lamp		None		None	OFF	OFF	None
1	Prepare	for optical	flattening on CCD3	9 8	Put OASIS flat in			IN		None	OFF	OFF	None
1	Prepare	for optical	flattening on CCD3	9 9	Put LUCKY flat in			IN		None	OFF	OFF	None
1	Prepare	for optical	flattening on CCD3	9 10	Select dichroic 50	/ 50		IN		None	OFF	OFF	50/50
1	Prepare	for optical	flattening on CCD3	9 11	Configure WFS for	CCD39		IN		None	OFF	OFF	50/50
1	Prepare	for optical	flattening on CCD3	9 12	Open WFS shutter			IN		None	OFF	OFF	50/50
1	Prepare	for optical	flattening on CCD3	9 13	Close SG loop			IN		Closed	OFF	OFF	50/50
1	Prepare	for optical	flattening on CCD3	9 14	Set exposure time	for White Ligh	t procedure	IN		Closed	OFF	OFF	50/50
1	Prepare	for optical	flattening on CCD3	9 15	Set readout mode	80x80		IN		Closed	OFF	OFF	50/50
	1 Prepare for optical flattening on CCD39 14 Set exposure time for White Light procedure IN Closed OFF OFF 50/50 1 Prepare for optical flattening on CCD39 15 Set readout mode 80x80 IN Closed OFF OFF 50/50												
R	Run	St Ience Re	op Pau	use	Continue Compact view	Next	Skip						

Illustration 10: Sequencer panel

Real time control panel

From the real time control panel it possible to monitor and control the PC-based real time system.

Configuration

A set of working parameters which define the behaviour of the real time system is defined as a configuration. It is possible to define different configurations suitable for different observing conditions or calibration tasks and store them in the database. All of the real time system parameters are then changed simultaneously just by selecting the desired configuration. This is the recommended method to configure the real time system. Changing individual parameters on the fly can cause bad performance if not carefully tested. When any of the real time system parameters differs in value from the default for the current configuration the configuration status will changed from OK to Mismatched. This is indicates that the system is not properly configured and it should not be used for observations. Ideally, all configurations needed for observing should be prepared and tested in advance and the observations should be made with predefined configurations.

Reconstructor

Several parameters define the behaviour of the reconstructor. Currently the only type of the reconstructor is based on Zernike polynomial decomposition. It be used up 6th radial order of the Zernike polynomials. Apart from the polynomial order, it is also possible to change **Control loop** gains. There are separate gains for tip-tilt of the segments (XY), piston of the segments (Piston) and tip-tilt of the fast-steering mirror (FSM). Changing of the gains is very dangerous because it can cause instability of the system. It is not realistic to think that an ad-hoc change of the gains can give better results than values obtained with tests using turbulence simulator or on-sky tests.

There are some other parameters related to the reconstructor which are presented in the GUI but can not be changed because they relate to physical properties of the electrical, mechanical and optical systems and are therefore constant until the components themselves change.

Camera control

The WFS camera has few parameters that can be changed. Normally they should be changed as a part of configuration. The basic operational parameter of the camera is the **readout mode**. There are four readout modes. **Naomi mode 80x80** is the usual readout mode and allows frame rates up to 137 Hz. **Naomi mode 40x40** is a binned readout mode with 40x40 pixels and is intended for fast framing applications. The maximum practical frame rate is 270 Hz. Above this limit the C40 processors in the SG ring can't handle the incoming data anymore and crash. **Tiptilt mode 40x40** is identical to Naomi mode 40x40 except for the different header flag which allows the real time computer automatically switch to tip-tilt only correction using a single guide star. **Long exposure 40x40** is just like tiptilt 40x40 except for the way the images are buffered in the controller.

Configuration control
Status
Conliguration status: OK
Real time system
Select configuration
Reconstructor
Type Zernike
Control loon gains
XY 0.250 Piston 0.300 FSM 0.250
Pupil
X offset 40.00 Y offset 40.00 Radius 30.40
Active segments: Reduced pupil
Actuators
DAC range 8191 Min. 300 Max. 7891
Reconst. scale -6.67 Stroke 6.00e-06 m
Segment response
X -1080.0 ADU/pixel Y 1080.0 ADU/pixel
Camera control
Status
Camera:Framing
Neddout
Mode NAOMI mode 80x80
Exposure
Exposure time 2.70 ms Frequency 99.98 Hz
Bias
Take bias Start subtracting
Camera gain
Setting 0 Real gain: 1.00 e/ADU

Illustration 11: Real time process control panel

Autowhite panel

Segments	Zernike	Parameters	Status	Sequencer	Real time	AutoWhite	Simplex	Light path
Current sta Step: Action:	tus							
Results This proced	lure hasn't	been finished						
Start	Pau	se Sto	р					

Illustration 12: AutoWhite panel

After the spots are centred within their subapertures the segments need to be put in phase. This is done by the procedure called AutoWhite. The procedure is almost entirely based on the original NAOMI code, however it is integrated in another panel within aogui. Controls are very simple. The procedure can be started by clicking on Start button and when it is running, it can be either paused or stopped. Results of the processing are written in the panel. The resulting new mirror configuration is not automatically saved on disk. This must be done manually. No configuration changes in the instrument take place before the start of procedure. This also has to be done either manually or by running an appropriate script within the sequencer.

Simplex panel

Segments	Zernike	Parameters	Status	Sequencer	Real time	AutoWhite	Simplex	Light	path			
						Simp	lex GU	Ι				
Quarlaus		AND	OOR1									
Overlays	8.					1.0					_	
						0.8 -						
						0.6-						
	8					0.0						
						0.4 -						
						0.2 -						
						0.8.0	0.2	0.4	0.6	0.8	1.0	
						1.0				,	_	
						0.8 -						
						0.6						
× =		ý =				0.4						
	1					0.4						
Auto le	veis Min:	0 Ma	K: 300			0.2 -					1	
Display i	images					0.0	0.2	0.4	0.6	0.8	1.0	
Spot paran	neters					Camera	controls	NDOR1	•			
Maximum	value: N/A	Total intens	sity: N/A	No. of bri	ght pixels: N	I/A Server st	Server status:OK					
						PNB stat	PNB status:OK					
						w: 24	o y. 12 h:	42	J	Centr	engrit	
						Exp. tim	e: 50	ms				
						Use v	vindowin	g				
						Set temp	erature:	-40				
Simplex co	ntrols					Actual te	mperatui utter:shu	re:-39.7 t	c	Open		
S	tart	St	top	F	Pause	E	Binning: 1		-	open		
Cycle num Last maxim	ber: N/A num: N/A	Last merit:	Elapsed N/A	time: N/A Best meri	t: N/A	EMCO	D gain: 2	0	•			
						Clocks:id	lling					
				Object n	ame:							
						Mult	iplicity: 1		*			
						Rur		Arc				
						Flat	:	Dark		Bias		
						Run nu	mber:1					

Illustration 13: Non-common path error correction panel

The final mirror alignment stage is done to remove the remaining non-common path errors, i.e. the

difference in the optical aberrations between the WFS camera and the science camera. This is done from the Simplex panel which is named after the numerical algorithm used to optimise the image. Again, as in the case of AutoWhite, the algorithm is the same as in the original NAOMI. However, the user interface has changed quite significantly.

Running simplex procedure

The left side of the GUI contains the image viewer and buttons to start or stop the procedure. The values of the measured parameters are displayed while the procedure is running. As with AutoWhite, the instrument has to be configured before the procedure is started.

Camera selection and image viewing

The right side of the GUI consists of a general purpose image viewer for any on the AO related cameras: AG3, OASIS, INGRID and LUCKY. It is possible to change between them easily using the combo box. If the camera server is not available, this will be indicated in the server status.

INGRID and LUCKY can be used for removal of the non-common path aberrations. For each camera, the readout window and binning factor can be defined. The exposure time is given in milliseconds. In addition, for Lucky camera (Andor) the electron multiplying gain and the cooling temperature can be defined from the GUI. To see the light on the LUCKY camera, the shutter has to be opened explicitly by clicking on the **Open** button. For INGRID this is not necessary because it doesn't have a shutter.

When the calibration spot is not in the centre of the image but it is still in the field of view, it is enough to press **Centre light** once or twice and the spot will be centred.

It is possible to execute run commands from the GUI. When pressing on one of the **Run**, **Arc**, **Dark**, **Flat** or **Bias** buttons, a terminal will be opened on taurus and the command will be executed. This assumes that the camera in question is properly configured in the observing system. When the terminal window already exists it will be reused. It is also possible to type observing system commands into that terminal.

Light path page

Illustration 14: Light path panel

The light path page provides a visual overview of the most of the mechanisms and light sources present in the NAOMI system. Apart from monitoring it also possible to change values and move mechanisms.

Here we describe the elements of the light path page

NCU

The NAOMI Calibration Unit (NCU) unit consists of pinholes on a moving stage. Each pinhole is illuminated by a light source. The moving stage can bring into the light path also the acquisition camera or pass the light from the telescopes into the AO system. The positions of the pinholes are in the database so it is possible to move the stage to any of the named positions or to a numerical position which is manually entered. The stage starts to move after the position in the combo box is clicked or when the numerical position is confirmed by pressing the return key.

The intensity of light on the pinholes is regulated by irises. The iris is changed by entering a numerical value and pressing return or the tabulator while the cursor is in the input field. The iris mechanism can be initialised by pressing the **Init** button. While the mechanism is moving, the current position field turns to blue. When the current position matches the demand the current position is green. In case of error the current position value is replaced by ERR on a red background.

Lamps can be switched on and off. When a lamp is on, its name appears on a yellow background.

FSM

The fast steering mirror status is indicated by the current numerical values and graphically by a spot on a small graph. The widget shows the last 20 acquired positions. The positions are samples about once a second so the graph is useful to see long-term drifts of the FSM positions and not for real time monitoring. It is possible to enter values and move the FSM or to centre it. The widget will not allow to enter values which exceed the DAC range.

DM

The deformable mirror display shows the virtual mirror shape calculated from the current demand values. This is opposed to the similar display on the segment page which is normally showing strain gauge positions. The purpose of this configuration is to catch attention when the real time system is actively controlling the DM. The pistons are largely magnified in this presentation. It is possible to record the current DM configuration and use is as a reference so that only offsets to that are displayed.

WFS

The WFS widget allows control of the pickoff probe related mechanisms, the lenslet array and the WFS shutter. The shutter can be either open or closed. The lenslet wheel can be moved to any of the named positions. The mechanisms start to move after the named position is selected in the combo box. The user tab allows entering of the pickoff probe positions in arc-seconds.

OASIS mirror

The OASIS mirror redirects the light either to INGRID, when out, or to OASIS/LUCKY, when in. It can only be in one of these two positions. To move the mirror, the target instrument is selected from the combo box. The current position is displayed next to the combo box. In the brief moments during the mirror movement the Current position displays the status of the mechanism, e.g. "Moving".

Dichroic

The dichroic widget shows the currently deployed dichroic and allows selection of other dichroics, parking the mechanism or its initialisation. When a specific dichroic is deployed in the light path, it shows a schematic representation of the transmittance curve which is a useful reminder of which dihroic is currently deployed.

Lucky mirror

This widget works exactly the same as the OASIS mirror, except that it directs the light either to OASIS (mirror out) or to LUCKY (mirror in).

Filter focus

The filter focus mechanism is moved by a motor which can be controlled from this widget. The focus position can be selected either from a list of named positions or by manually entering a number. The focus moves when a named position is selected or the return key is pressed.

Camera widget

In the bottom right corner of the light path panel is the science camera widget. It shows important status information from the science camera which is currently in the light path. The name of the camera is calculated according to the positions of the OASIS and Lucky mirrors.

Tutorials

Starting and quitting the application

AOGUI runs on AO display computer, such as aodisplay2. The observer must log in as user whtobs. AOGUI is started by typing aogui in a terminal window. There may be other instances of aogui running anywhere on the network. There should be no interference between these instances when they are just displaying information. Any change in the AO system which is monitored by aogui is reflected in all GUIs. However, when complex operations are started, such as calibration of actuators, no such action should be started in other instances as no interlocking of mechanisms is implemented. Under realistic usage scenarios this should not present a problem.

To quit aogui, press the Quit button and confirm your decision. Alternatively, it is possible to kill the window using standard X Windows actions or by typing C in the terminal where it was started. Starting and quitting aogui does not affect the real time AO system or the mechanisms in any way.

Starting the AOServer

Although AOServer is not part of aogui, it must be running for AO system to function correctly. It is running on accontrol1 computer. It is necessary to start-up the C40 system first. The commands to start software on accontrol1 are:

NaomiRestart aocontrol1

AOServer

The order in which the commands are executed is not important. Only if there are persistent errors with NaomiRestart it might be better to to kill AOServer and start it again when the restart succeeds. This measure is more for the piece of mind than because of any evidence that it really helps.

Starting the real time software on the PC

The real time software for image analysis and DM control (dm_control) runs on the computer called aopc1. It is started automatically when the computer starts and also restarted automatically if it is killed. The status of this computer and the real time process is visible on the aogui's Status page. Normally it should never be necessary to restart dm_control but if the need appears the right method is to log into aopc1 computer under shut account and reboot it.

Flattening the mirror using aogui

This task assumes that:

- The AOServer is up and running.
- The WFS camera which is currently in use is working.
- The optics covers are off.
- Database and name servers must be up and running.

Steps to be taken when starting from scratch:

- 1. Configure all mechanisms manually from the light path panel. Note that the complete sequence of actions below is necessary only if you are starting from scratch, with all mechanisms in some random positions. If you already see the spots approximately centred within their subapertures and SNR at lease 30, you can go to the next step.
 - Go to the "Light path" panel.
 - Set pickoff probe position x=1, y=-1. This will bring the spots somewhere to their subapertures.
 - Set the NCU to "Simplex" position.
 - Select Dichroic 50/50 or IR. This is normal for mirror flattening.
 - Switch on the "White light" lamp.
 - Set the white lamp iris to 0.
 - Go to the "Segments" panel.
- 2. Centre the pickoff probe more precisely:
 - Open the SG loop, select all segments and press "Midrange" button. This will bring the mirror to the nominal position.
 - Use "Auto-centre" button to centre the pickoff.
 - Close the SG loop.
- 3. At this step there should be a Shack-Hartmann pattern displayed on the GUI. The preparation sequence should have positioned the pickoff probe so that the pattern is centred on the image display. If the central 4 spots are not within their subapertures you must move the pickoff probe so that the spots are at least roughly centred.
- 4. a) For practical reasons it is often desired that the flattening procedure starts by using previously stored mirror shape which was known to produce good quality PSF. In this case we load the mirror by clicking the **Load mirror** button and selecting the required file from the file selector. b) When we want to start from the relaxed mirror (zero volt demands), we click on **Select all** and then **Midrange**. Note again that the SG loop must be closed at this stage.
- 5. Finally, to flatten the mirror, click on **Select all** and then **Centre spots**. If it looks like the spots are not well centred, simply repeat the step.
- 6. Check that none of the spots is missing or is not centred. In this case you must bring the spot to its subaperture by selecting it alone on the GUI and move it around by pressing on the controls. For details of how do this refer to "Moving the segments manually".
- 7. Save the DAC values by clicking on **Save mirror.** The values will be stored automatically with current time as the name.

White light flattening

The white light flattening procedure is very simple to perform. The spots must be centred and have the SNR of about 70 - 100. This is achieved by setting the iris to 0 and the exposure time of the WFS camera to 50 ms. The dichroic must be either 50/50 or IR. Select the AutoWhite tab on the GUI. After that just press Start and wait until the procedure finishes. The new mirror configuration is applied to the DM but it is not saved. You must save the configuration by clicking on **Save mirror**.

Removing non-common path errors

The non-common path errors are removed after the AutoWhite procedure has been finished. Go to the light path page and change the iris to a value of about -220.

Select the tab named "Simplex". From there select the camera which will be used for this operation. This will be either ANDOR1 or INGRID. Centre the spot by pressing **Centre light** button few times.

When using ANDOR1, the exposure time should be 35 ms, the electron-multiplying gain 20 and the temperature -40 degrees C. Window size should be 42 x 42 pixels.

With INGRID, set the exposure time to 50 ms and the window size to 32 x 32 pixels.

Press **Start** and wait until the procedure is finished or the spot looks good enough. If the spot doesn't look good by the iteration 3000, it is best to terminate the procedure by pressing **Stop** and start again. Good values for the merit function are -0.008 or less (more or absolute value) for ANDOR1 and -0.06 or less for INGRID. The best FWHM achievable is about 2.7 and 1.7 pixels for ANDOR1 and INGRID, respectively. You should always consider the profile and 2D isophote representation before deciding that the spot is good enough.

Moving the segments manually

The segment positions can be individually changed manually by entering the DAC demand values or the transformed X, Y, Z (tip, tilt, piston) values into the appropriate fields which are clearly marked on the GUI. Alternatively, a segment can be moved by pressing on the target-like icon which is located left of the graphical representation of the mirror. Steps are the following:

- 1. Make sure that exactly one segment is selected (marked in green). If there are several segments marked, click on **Deselect all** and then click on the segment you want to move.
- 2. Enter the desired numbers into the *Demand* or *XYZ* fields. Note that these fields are in principle changing in real time. For example if the values are changed by an external application they will change in aogui too. However, when the input field has focus, it will not reflect the actual value of the system so that the user can enter own value.
- 3. Alternatively, click inside the coloured area of the target-like icon. The target is divided into several zones. Clicking on black or white zone has no effect. Clicking on blue, green or red zone will move the segment so that the spot moves in the direction parallel to the vector connecting the centre of the target and the mouse pointer position. The amount of movement depends on the colour of the zone and is higher in the outside zone.

Inspecting segment and spot status

There are basically two ways to inspect the value corresponding to a single segment.

- 1. When a single segment is selected (green), some of the values related to the segment and the corresponding spot are shown in the fields left to the graphical representation of the mirror.
- 2. When **Show live info** check box is selected it is enough to hover with the mouse over a segment and all available information related to this segment will appear in a yellow tooltip window. Warning! The tooltip window may not appear or will be flickering if the application window is not entirely contained on the desktop.

Wavefront analysis using Zernike decomposition

Aogui is able to reconstruct the wavefront using spot offsets from their nominal position which is usually the centre of the subaperture. The wavefront reconstruction is done using Zernike decomposition, based on the slopes inferred from the spot positions. The values of coefficients are presented as numbers or as bars in the "Wavefront statistics" panel. In addition, the reconstructed wavefront is drawn on the GUI.

Calibration of strain gauges

Calibration of the strain gauges should only be performed by trained people who understand well the consequences of changing the parameters of the system and are able to detect and correct possible error while calibrating. This action need to be performed sporadically, after the AO system underwent changes in environment, such as humidity and temperature.

The calibration itself is very simple. No light source is necessary as the procedure is not analysing the images.

Simply press **Cal. Actuators** button and wait until the procedure finishes. The progress of the procedure is printed in the terminal window indicating current step in the procedure.

During the calibration all segments are moved in piston by applying DAC final values from 1000 to 7000 and then back. The gain and offset for each channel are calculated using expressions in Appendix B.

Calibration of the pickoff probe

WX SOM NEW MARY SOM MAR SCREW SECRIMENTAL X ACCEPTEN XOME GROUPLIK IN X BOOM XMEA TO XECTIN MAR POSITIONS MIXING XIMING XIN AND XIMING X MARY A XECTING AND A MARY A MARY A XOM XMEA TO XECTINA AND A MIXING X MARY A MARY A MARY A XECTING A XECTING AND A MARY A XOM X MARY A MIXING X MARY A MARY A MARY A XECTING A MARY A XECTING AND A MARY A XOM X MIXING X MARY A XOM X MARY A XOM X MARY A MARY A

Observing

For observations the user selects the Observing tab. On the right-hand panel, select the "Light path"

page.

First the guide star has be acquired by the telescope operator. When the star is centred in the WFS, the loop should be closed by pressing **Close loop** and autoguiding started by **Guide on**. Also, sending of the autoguiding packets must be enabled by clicking on **Start packets** button. After the loop is closed, it is a good idea to wait a little and check that the FSM is not near saturation. If it is, the offload to the autoguider should correct this in about 20 seconds. Until the observations are finished, sending of packets can be left active. The AO loop and the autoguiding loop are opened and closed as needed.

During observations, the observer and the OSA should be aware of the big indicators on left side of the GUI. They should be all green (green meaning ready) before closing the loop. When the loop is closed, the AO loop state indicator turns light blue to indicate that the system is active. Take care that the SNR remains within safe limits and that the spots on the WFS have not exited their subapertures.

NAOMI troubleshooting guides

The troubleshooting guides here include also some of the systems which are not part of AOGUI, but AOGUI communicates with them and therefore we need to fix those system in order to continue operation.

After any troubleshooting action always check that you see a perfect spot on the science camera when using the calibration lamp! If you achieve this, most of the subsystems are automatically confirmed to working.

Mechanisms

WFS mechanisms do not respond or

WFS status keeps red Error or blue Busy status

Rate of incidence

Once per week or two. Seems to depend on frequency of use.

Summary

Both errors above are related and will typically appear simultaneously. They indicate that the WFS mechanism control computer does not function properly any more. The cause for this faults is unknown and is not likely to be ever identified. A very similar system which is used for control of the mechanisms on the optical bench does not exhibit this kind of problems.

<u>Scenario</u>

The problem usually becomes apparent when trying to move the pickoff probe either manually by the operator through the GUI or by an automated procedure like AutoWhite. The pickoff probe would not move in spite of the command being given. This also sometimes happens when the lenslet wheel is moved during the AutoWhite procedure. The wheel does move, however the application does not detect that the wheel has not reached the intended position yet and continues with further steps.

Diagnosis

- The WFS mechanisms behave erratically as described above
- The status in the WFS widget on the Light path page stays in Error (red) or Busy (blue)
- The Epics engineering GUI of the pickoff probe also shows Error or Busy status without changing to IDLE.

<u>Recovery</u>

- Go to GRACE electronics room
- Switch off the *naomiomc* VME-based control computer (green switch in the middle rack)
- Switch off the two motor driver units (green switches protected by transparent plastic cover)

- Wait 30 seconds
- Switch on the motor drivers
- Switch on *naomiomc*
- Wait until the green LED on *naomiomc* comes on
- Go back to the control room and from *aogui* reinitialise the mechanisms and then put them to their working positions.

Verification

Check that the operation which was failing before now works.

Mechanisms are not initialised

Rate of incidence

Very rarely.

<u>Summary</u>

Some or all of the mechanisms are not initialised.

<u>Scenario</u>

This kind of fault does normally not occur unexpectedly. Typically this may be the consequence of a (either scheduled or unexpected) power cut in GRACE (normally it is protected by a UPS) or somebody power-cycling the control computers.

<u>Diagnosis</u>

The mechanisms appear uninitialised.

Recovery

On the light path page of *aogui* hit the *Init* buttons of all uninitialised mechanisms.

Verification

Check that normal NAOMI operations can be performed.

GUIs

AOGUI stops responding

Rate of incidence

Rare, maybe every few weeks. Typically related to some other problems which the GUI doesn't handle well.

<u>Summary</u>

AO GUI crashes but remains on screen.

<u>Scenario</u>

This happens sometimes when communication errors between *aogui* and the real time system occur.

Diagnosis

In the terminal where aogui was started a segmentation fault message appears an the prompt is returned to the terminal. Aogui stops responding.

Recovery

• First kill the existing GUI. This is done by clicking on the cross-like "kill window" icon in the upper right of the GUI window. The system will ask for confirmation, to which we agree. If

this doesn't work for any reason, type xkill in the terminal window and click on the aogui window with the death-depicting icon.

• Start a new instance of aogui in the terminal.

Verification

Aogui should now run OK.

AOGUI gets stuck or is very slow

Rate of incidence

Rare.

<u>Summary</u>

Under some circumstances aogui response might become very sluggish or might appear to be stuck. This always indicates some communication problems which may be also affecting other parts of the observing system.

<u>Scenario</u>

Normally this is not a consequence of user action. Aogui response to actions such as changing pages is very slow, the WFS image is updated very slowly.

Diagnosis

Try to establish if other network applications are performing well. Run the web-based GUI at http://aopc1/~tiptilt/dm_controlGUI.html and see if it responds normally. Check by pinging that the machines with which aogui communicates are running and responsive: aopc1, naomiomc, usp, taurus. Check if the rest of the observing system is performing OK.

Recovery

Terminate and restart aogui.

Power-cycle any computers if they are not responding.

Verification

Check that aogui response time is as usual.

Real time system

Some or all segments are extremely inclined and can not be moved

Rate of incidence

Rare. Always related to some electrical activity in GRACE.

<u>Summary</u>

One or all segments appear strongly tilted and can not be forced to the neutral position any more.

<u>Scenario</u>

This only happens when there is some activity in GRACE which disturbs normal electrical

consumption: using vacuum cleaner, switching on and off other large electric loads, etc.

<u>Diagnosis</u>

The segments on the Segment page of aogui are strongly tilted so that the bottom side is visible. The actuator values read either 300 or 7891 and can not be changed.

Recovery

The recovery is rather straightforward and involves simply running NaomiRestart accontrol1 on accontrol1 computer. After the restart process is successfully finished, all segments will assume the neutral position within seconds. It is not necessary to restart AOserver (unless restart fails, see the troubleshooting guide for this). Make sure to close the SG loop after that and load the latest flat again.

Verification

Check that you can move the segments manually or configure the DM using "Load mirror" button.

The real time system refuses to change the camera readout mode or speed

Rate of incidence

Medium

Summary

When on the Real time page or Light path page, the requested configuration change doesn't happen.

<u>Scenario</u>

This typically happens when the current exposure times are very long - in order of seconds.

Diagnosis

After the change of configuration is requested, which typically includes a change of the exposure time, nothing happens and the system continues with the same readout mode.

Recovery

Sometimes the change is just very slow. Allow 10 - 30 seconds to make sure that the change takes place.

Try to change the mode few more times.

If the problem persists, use "Stop" button on the real time page to stop framing and when it stops, issue the command again.

If even this doesn't help, restart the real process by using the "Kill" button on the web based GUI at http://aopc1/~tiptilt/dm_controlGUI.html. In this case you will have to reload the DM configuration.

Verification

Check that the system is running with the required readout time and mode.

The SG loop can not be closed or opened or

Segment fringes on the Segment page are static even if it is implied that the SG is closed (the SG button has a command Open) or

Segments can not be moved manually

Rate of incidence

Once every few days or week.

<u>Summary</u>

The SG controller regularly blocks all communications after it has been running for several days. This seems to be a bug in the old NAOMI C40-based strain-gauge controller, apparently after some counter overflows.

<u>Scenario</u>

After few days or week of normal operations the SG loop status can not be controlled.

Diagnosis

The system does not respond when the operator tries to open or close the SG loop. Segment fringes are static even if the loop seems to be closed.

<u>Recovery</u>

Run NaomiRestart accongtrol1 on accontrol1.

Verification

Try to open and close the SG loop. Check that the fringes move when loop is closed. Load the latest mirror configuration ("Load mirror").

Real time system computer aopc1 not running

Rate of incidence

Very rarely. Possible problems restarting the computer.

Summary

Aopc1 is not running

<u>Scenario</u>

This does not just happen spontaneously but there are two possible scenarios which lead to that.

First would be that there is a power failure in GRACE. This is rather unlikely because everything there is connected to a UPS, however it has happened before. If this happens, many more things on the observatory will not be working. The obvious solution is to switch on AOPC1 once the power is restored.

Second scenario is more likely. It has been observed before that when the WFS camera is streaming images the computer with the PCI camera does not want to start, for example, after a simple reboot via a shut account.

Diagnosis

Aopc1 does not respond to ping.

Recovery

Power cycle the camera's power supply which is at the bottom of the middle rack in GRACE electronics room and reset aopc1 again.

A solution is in preparation to allow remote power-cycling of the camera and some other controllers in GRACE. For controlled shutdown we have set up a script which stops the camera before the computer reboots or shuts down.

<u>Verification</u> Aopc1 responds to ping again.

Real time process on aopc1 not running

Rate of incidence

Very rarely.

<u>Summary</u>

The real time process on aopc1 may not be running.

<u>Scenario</u>

This may happen for various reasons, possibly because the camera controller is off, faulty or is not connected to the computer.

Diagnosis

Aopc1 responds to pings but all big indicators on aogui are either red or orange.

Recovery

The simplest solution is to log into aopc1 with ssh using "shut" account and reboot the computer. The real time process should restart again automatically after reboot.

Verification

The bottom two big indicators "Camera framing" and "Conf." (configuration) should be green. The image in the WFS image panel should be changing.

NaomiRestart accontrol1 does not finish properly

Rate of incidence

Frequent.

<u>Summary</u>

When the command "NaomiRestart accontrol1" on accontrol1 machine is invoked the procedure doesn't finish.

<u>Scenario</u>

When the C40 system stops communicating, it needs to be restarted. This is done in a terminal opened

under naomi account on aocontrol1 by "NaomiRestart aocontrol1". This command often fails to complete.

Diagnosis

Verify if the Python error message as shown below appear after restart.

```
SendBoot 4 9 /software/Electra/bin/c40Diag.x40
Booting Strain Gauge C40 Ring
host: aocontrol1
DynSendBoot 0 12 /software/Electra/bin/SGBSP2.x40
DynSendBoot 0 13 /software/Electra/bin/SGBSP2.x40
DynSendBoot 0 15 /software/Electra/bin/SGBSP2.x40
DynSendBoot 0 18 /software/Electra/bin/SGBSP2.x40
DynSendBoot 18 11 /software/Electra/bin/SGBSP2.x40
DynSendBoot 13 14 /software/Electra/bin/SGBSP2.x40
DynSendBoot 15 16 /software/Electra/bin/SGBSP2.x40
DynSendBoot 14 17 /software/Electra/bin/SGBSP2.x40
**Target CPU failed to respond**
Traceback (innermost last):
 File "/software/Electra/bin/c40Run", line 22, in ?
   c40Run.Run(config, verbose = 1)
 File "/software/Electra/lib/python/c40Run.py", line 51, in Run
   SGlib.Run(SWconfig, verbose)
 File "/software/Electra/lib/python/SGlib.py", line 1361, in Run
   SGring.Boot(SWconfig)
 File "/software/Electra/lib/python/RTlib.py", line 108, in Boot
   c40Boot.BootNet(bt)
 File "/software/Electra/lib/python/c40Boot.py", line 74, in BootNet
   BootOne(fromCPU,toCPU,programs[toCPU])
 File "/software/Electra/lib/python/c40Boot.py", line 58, in BootOne
   raise error, "Exec'd program returned an error"
Boot error: Exec'd program returned an error
aocontrol1 : Local and remote Naomi services restarted
```

Recovery

There is no solution other than to repeat the restart command until it succeeds. Sometimes it may take 20 - 30 attempts. Kill AOServer by control-C in the window where it is running. When the restart succeeds, start AOServer again.

Verification

The output from a successful restart should look like this (ending with "Recording configuration"):

```
Booting Wavefront Sensor C40 Ring and diagnostic CPU
host: aocontrol1
DynSendBoot 0 2 /software/Electra/bin/NaomiGenericBSP.x40
DynSendBoot 0 3 /software/Electra/bin/NaomiGenericBSP.x40
DynSendBoot 0 5 /software/Electra/bin/NaomiGenericBSP.x40
DynSendBoot 0 8 /software/Electra/bin/NaomiGenericBSP.x40
DynSendBoot 8 1 /software/Electra/bin/NaomiGenericBSP.x40
DynSendBoot 3 4 /software/Electra/bin/NaomiMirrorBSP.x40
DynSendBoot 5 6 /software/Electra/bin/NaomiGenericBSP.x40
DynSendBoot 4 7 /software/Electra/bin/NaomiGenericBSP.x40
CPU 8 is alive
CPU 7 is alive
CPU 6 is alive
CPU 5 is alive
CPU 4 is alive
CPU 3 is alive
CPU 2 is alive
CPU 1 is alive
DynSendBoot 4 9 /software/Electra/bin/c40Diag.x40
Booting Strain Gauge C40 Ring
host: aocontrol1
DynSendBoot 0 12 /software/Electra/bin/SGBSP2.x40
DynSendBoot 0 13 /software/Electra/bin/SGBSP2.x40
DynSendBoot 0 15 /software/Electra/bin/SGBSP2.x40
DynSendBoot 0 18 /software/Electra/bin/SGBSP2.x40
DynSendBoot 18 11 /software/Electra/bin/SGBSP2.x40
DynSendBoot 13 14 /software/Electra/bin/SGBSP2.x40
DynSendBoot 15 16 /software/Electra/bin/SGBSP2.x40
DynSendBoot 14 17 /software/Electra/bin/SGBSP2.x40
CPU 15 is alive
CPU 14 is alive
CPU 13 is alive
CPU 12 is alive
CPU 11 is alive
CPU 18 is alive
CPU 17 is alive
CPU 16 is alive
Recording Configuration
aocontroll : Local and remote Naomi services restarted
```

Autoguider status is Error and shown in red

Rate of incidence

Medium. After reboot of aopc1 or portserver9.

Summary

Aopc1 can't connect to portserver9 with its drpd daemon any more so no autoguiding is possible.

<u>Scenario</u>

<u>After</u>

Diagnosis

aogui shows big "Autoguider error" label on red background. In the Telescope panel the value next to the "Packets:" label is also "Autoguider error" on red background.

Recovery

At the time of writing this can only be recovered by the computing group. Luis should be contacted. We are working on a more solid solution with dedicated portserver for NAOMI.

After the portserver connection has been established again it is usually necessary to restart the real time system. Load the web-based engineering GUI and press the "Kill" button. Confirm the decision in the pop-up window that appears. The application will restart itself immediately. Mirror configuration has to be reloaded again and the working configuration has to be loaded.

Verification

About 10 seconds after the restart the "Autoguider error" label should turn to "Autoguider idle" on green background.

Harmless messages in the terminal

Here are some error messages and warnings which may appear in the terminal where aogui was started:

At startup:

*** The executable "caRepeater" couldn't be located
**** because of errno = "No such file or directory".
**** You may need to modify your PATH environment variable.
**** Unable to start "CA Repeater" process.

Error in reading the naming service host, taking default whtcns.ing.iac.es Error in reading the naming service port, taking default 35777 Creating server CA client library is unable to contact CA repeater after 50 tries. Silence this message by starting a CA repeater daemon or by calling ca_pend_event() and or ca_poll() more often.

When switching between tabs:

```
CORBA.COMM_FAILURE(omniORB.COMM_FAILURE_WaitingForReply, CORBA.COMPLETED_MAYBE)
Traceback (most recent call last):
   File "/usr/local/aoSoftware/lib/python/aoguiDir/WFSImage.py", line 638, in grabLoop
   el = historyServer.objref.getElement(-1)
   File "/usr/local/aoSoftware/lib/python/dm_control_idl.py", line 371, in getElement
      return _omnipy.invoke(self, "getElement", _0_dm_controlIDL.HistoryServer._d_getElement,
   args)
COMM_FAILURE: CORBA.COMM_FAILURE(omniORB.COMM_FAILURE_UnMarshalResults, CORBA.COMPLETED_YES)
CORBA.TRANSIENT(omniORB.TRANSIENT CallTimedout, CORBA.COMPLETED_MAYBE
```

These messages can be ignored as they have no impact on functionality of aogui and NAOMI in general.

Appendix A

Calculation of fringes on the segments

In the three-dimensional representation of segments it possible to superimpose an image of calculated interference fringes on top of each segment. These are similar as would be seen using FISBA interferometer. However, as they are calculated and not obtained by real laser interferometer, there is a significant amount of arbitrariness on how they are going to look like. We can decide to use raw (also referred to as final) DAC values to the segments, we can use demand values, or we can use spot positions within subapertures. Any of these methods can be using absolute values or values relative some zeroset values, for example, taken after the spot on the science sensor is optimised.

Regardless of the method, it is necessary to obtain the piston value of the segment (distance of the segment centre from the zero plane) and the normal vector to the segment plane.

Let's assume that actuators A, B and C have coordinates $(0, 0, z_A)$, (x_B, y_B, z_B) and (x_c, y_c, z_C) , respectively. Then the normal **n** to the plane is perpendicular to vectors AB, AC and BC, so we get a system of equations:

$$x_{B}n_{x} + y_{b}n_{y} + (z_{B} - z_{A})n_{z} = 0$$

$$x_{C}n_{x} + y_{C}n_{y} + (z_{C} - z_{A})n_{z} = 0$$

$$(x_{C} - x_{B})n_{x} + (y_{C} - y_{B})n_{y} + (z_{C} - z_{B})n_{z} = 0$$

We can set $n_z=1$ and get

$$x_B n_x + y_b n_y = -(z_B - z_A)$$

$$x_C n_x + y_C n_y = -(z_C - z_A)$$

with the solution:

$$n_{x} = \frac{y_{C}(z_{A} - z_{B}) + y_{B}(-z_{A} + z_{C})}{-x_{C}y_{B} + x_{B}y_{C}}$$
$$n_{y} = \frac{x_{C}(-z_{A} + z_{B}) + x_{B}(z_{A} - z_{C})}{-x_{C}y_{B} + x_{B}y_{C}}$$

To get normalised vector **n**', we divide all components by the norm of **n**,

$$\vec{n}' = \frac{\vec{n}}{|n|}$$

$$|n| = \sqrt{n_x^2 + n_y^2 + n_z^2}$$

$$|n| = \sqrt{\frac{(-x_C(-z_A + z_B) + x_B(z_A - z_C))^2 + (y_C(z_A - z_B) + y_B(-z_A + z_C))^2}{(-x_C y_B + x_B y_C)^2} + 1}$$

The phase difference between the reflected waves in zero and tilted position is

$$\delta = -2\frac{2\pi}{\lambda}(h + \gamma x + \beta y)$$

with the following meaning of symbols:

δ	Phase difference in radians
λ	Laser wavelength
γ	
β	
x	X coordinate in the plane of untilted segment
у	Y coordinate in the plane of untilted segment
h	Segment offset in z direction

The intensity in the interferogram at the position x, y is then proportional to (Born & Wolf)

$$I_0 + I_1 \cos\left(\frac{\delta}{2}\right)^2 ,$$

where I_0 and I_1 are positive constants. As the only part that matters is dependence on δ , it is enough to draw properly scaled value of

$$\cos{\bigl(\frac{\delta}{2}\bigr)^2}$$

Appendix B

Calculation of strain gauge gain and offset values

Each of the actuators that move the segments is mechanically coupled with a corresponding strain gauge. This is to provide proper feedback to the real time control system of the current mirror shape. Without it the hysteresis of the piezoelectric actuators would cause significant deviation between the desired and actual mirror shape, thus rendering the system useless. The strain gauges have almost linear response in the entire range of actuator movement. The feedback appears to the system as a value in the ADC converter, denoted here as a. We consider this to correspond to the real position of the actuator in a linear relation. The part of the real time system which calculates the wavefront aberrations, sends a demand, denoted by d, to the mirror control system. From this we calculate the strain gauge response a and the mirror control system changes the actual, final demand until the desired response is achieved.

Fig. 1: Response of an actuator ot increasing (green) and decreasing (red) values of the DAC demand. The blue line represents a fit to the average.

Appendix C: Setting up the terminal server daemon

In order to allow aogui to send commands to an open terminal window, it is required to have a running program a user root which inserts characters into the keyboard queue. This program is started automatically by the operating system. At the moment of writing this documentation the mechanisms of starting programs at certain events is managed by the system called upstart. As it is being developed quickly, there are different ways how to use in different Linux distributions. On Fedora 11, the configuration file is in directory /etc/event.d and is called terminalServer. On some newer distributions, the configuration file is in directory /etc/init and is called terminalServer.conf. In both cases it has the same content, given in the frame below. Obviously, the program teminalServerXML must exist and be executable in directory /usr/local/aoSoftware/bin. If it is stored in any other location, the configuration file must be changed accordingly.

terminalServer

#

start on runlevel [345]

respawn

exec /usr/local/aoSoftware/bin/terminalServerXML.py

Glossary

DAC demands

These are the values submitted by client applications to the mirror controller and have the same range as final demands (see below). When the application submits the demands and the strain gauge loop is closed, the mirror controller moves the actuator until the value which is read out from the strain gauges corresponds to the demand value. The feedback value is calculated with a linear transformation from the ADC value using previously determined calibration coefficients.

Final demands

These are actual values in DAC outputs, so they are directly proportional to the voltages applied to the actuators. In the closed loop operation these values are constantly changing.

Strain gauges

These are electromechanical components which change their resistance proportionally to the strain. They are used to assure more linear response of the actuators. For proper operation they require very stable temperature and especially humidity which should always be between 30 and 40 %.

Shack-Hartmann

A type of WFS which senses the wavefront using an array of small lenses.

WFS

Wavefront sensor is an optical device used to measure wavefront aberrations.

TCS

Telescope control system. Communicates with external processes using DRAMA. However, all communication from the clients is done using CORBA, via software interface called corbaDramaInterface.