I saac N ewton G roup R ed I maging D etector

SDSU INTERFACE CONTROL DOCUMENT VERSION 2.1

Peter Moore 16th August 1999.

Introduction

This document describes the protocol used for communication between the Host computer system and the SDSU detector controller which forms part of the INGRID instrument. These sub systems are linked together using two fibre optic cables connected directly between the Sbus interface card in the Host Computer and the Timing Board of the SDSU controller. The uplink from Host to SDSU is a slow link operating at 4 MHz which is used for sending commands to the SDSU controller. The downlink operates at 50 MHz and is used for sending responses to the uplink commands and also image data to the Host System. There is also an electrical communication serial link operating between the Timing Board and Utility Board in the SDSU controller using the standard Motorola DSP SSI interface.

This document presents the protocol in a table format. The significance of each of the columns is as follows:-

Column 1 = Executable Command Column 2 = Originator of Command Column 3 = Destination of Command (specifies if available after BOOT or only when an application APPL has been uploaded) Column 4 = Number of words in command Column 5 = Response to the command Column 6 = Specifies the action taken on receiving the command Column 7 = Remarks and more information The format of the messages sent between HOST and SDSU has been described many times elsewhere; suffice to say that each command or response consists of 2 - 7 words. Each word is made up of 33 bits. Of these, 24 bits are valid and the rest are used as header information. The programmer need not worry about this header information. The hardware strips away the header information to leave the expected 24 bit word, which is then processed by the SDSU controller.

The downlink is used for responses and image data. When transmitting image data, then it takes the form of 17 bit words, with one stop bit and 16 data bits. The host programmer should know when to expect the 33 bit packet or 17 bit packet and act accordingly. Again this is described in more detail in the SDSU documentation.

The intended audience for this document are those who are programming either the Host computer end or SDSU controller end of the fibre links. Although not the best place for it, the document also gives information on the expected start exchange of messages as passed between the Host and SDSU. It also gives a table of useful addresses in the SDSU controller. See also 'RELEASE NOTES FOR SDSU SOFTWARE VERSION 2.1.

Command	Source	Destination	Words	Response	Action	Remarks
TDL nnnnn	HOST	TIMING, UTILITY	3	nnnnnn	Test Data Link. Destination echoes	
0≤ nnnnnn ≤ ffffff					nnnnnn back to Source.	
(BOOT)						
NOP	HOST	TIMING, UTILITY	2	DON	No Operation	A NOP command useful to determine if the system is
(BOOT)						responding to polling.
RDM maaaaa dddddd	HOST	TIMING, UTILITY	3	ddddd	ReaD Memory. Read DSP address maaaaa. Returned data = dddddd.	This command is used to read memory locations for low level
$0 \le aaaaa \le 0$ ffff $0 \le dddddd \le fffffff$					The most significant nibble of the address indicates	fault finding or checking the simple
					the memory type.	variables, e.g. elapsed
(BOOT)					m = 1: P memory m = 2: X memory m = 4: Y memory	integration time.
					m = 8: EEPROM	

Command	Source	Destination	Words	Response	Action	Remarks
WRM maaaaa dddddd 0 ≤ aaaa ≤ 0ffff 0≤ dddddd ≤ ffffff (BOOT)	HOST	TIMING, UTILITY	4	DON	Write Memory. Write dddddd to DSP address maaaaa. The most significant nibble of the address indicates the memory type. m = 1: P memory m = 2: X memory m = 4: Y memory	This command can be used to download new applications to program memory etc.
MRA n 0≤n≤ 0xffffff (APPL)	HOST	TIMING	3	image data, DON	Execute Multiple Non Destructive Read consisting of an array reset, n Reads – Integration and n reads. transmits DON at completion	The type of data sent depends on the flag set by the DAT command. A DON command is sent before and after the image data is sent (required for IRCAM usage)
TST (APPL)	HOST	TIMING	2	DON	Put Controller into Continuous Clock Test Mode	DO NOT USE IN ANY HOST PROGRAM Array must not be connected during this mode

4

Command	Source	Destination	Words	Response	Action	Remarks
ABR (APPL)	HOST	TIMING	2	DON	Mode – Post reset image data is transmitted.	ABR can be sent anytime after MRA command but will only be processed after post reset reads are completed. See v2.1 release notes for further info.
PON (APPL)	HOST	UTILITY	2	DON	5 5	This command must be used before the CON command
POF (APPL)	HOST	UTILITY	2	DON	Disable voltages to analogue circuitry	
SET nnnnnn 0≤ nnnnnn ≤ ffffff (APPL)	HOST	TIMING	3	DON	Set the integration time to nnnnn milliseconds. This is the time the array is integrated AFTER the post reset reads of an MRA command	Elapsed can be determined by using

Command	Source	Destination	Words	Response	Action	Remarks
СНК (ВООТ)	HOST	TIMING, UTILITY	2	nnnnnn	Calculate checksum and return the calculated value nnnnnn	Timing P:0 -> P:1FFE Timing X:80 -> X:1FFE Timing Y:0 -> Y:1FFE Utility P:0 -> P:1FE Utility X:10 -> X:7E Utility Y:70 -> Y:FE
DAT n 0 ≤ n ≤ 3 (APPL)	HOST	TIMING	3	DON	Determines type of data that MRA command transmits where n=0 then data = real n=1 then data = 1111,2222 n=2 then data = 0,1,2,365535 n = 3 then data is 'read up ramp' mode	Image data is transmitted faster than the test data because its algorithms runs from fast DSP memory whereas the test data runs from slow memory – done to reduce program size Mode set to 0 by reset & CON
OSH	HOST	UTILITY	2	DON	Open shutter	Remains OPEN until RESET or CSH sent
(APPL)						
СЅН	HOST	UTILITY	2	DON	Close shutter	
(APPL)						

Command	Source	Destination	Words	Response	Action	Remarks
CON (APPL)	HOST	TIMING	2	DON	Switch voltages ON to array Clears readout mode to 0 (real array data).	Must be sent after the PON command
COF (APPL)	HOST	TIMING	2	DON	Switch voltages OFF to array	
LON (APPL)	HOST	UTILITY	2	DON		Remains ON until RESET or LOF sent
LOF (APPL)	HOST	UTILITY	2	DON	Switch internal LED OFF.	
TEM n 0 ≤ n ≤ 16 (APPL)	HOST	UTILITY	3	xxxxxx or 'ERR'	Read temperature channels. Currently channels 5,6,7 are legitimate temperature channels corresponding to Detector, Camera and cold shield respectively.	0 < xxxxxx < 00014D in units Kelvin

Command	Source	Destination	Words	Response	Action	Remarks
SDT n	HOST	UTILITY	3	DON	Set detector servo	
0 ≤ n ≤ 333					temperature. Setting to >	
(APPL)					60c (333 Kelvin) is not	
					allowed and results in	
					ERR. Setting 0 disabled	
					temperature control loop.	

MSN = Most Significant Nibble NSN = Next Significant Nibble LSN = Least Significant Nibble

Notes to COMMAND Table :-

1. Not all commands are available at all times. Column #1 indicates whether each command is: (i) a BOOT command which is available on power-up or reset, or (ii) an APPLication command which is available only in an application program which has been downloaded from the Host system.

2. All modes of operation should be possible by using particular combinations of the above command set.

8

Version 2.1

The SDSU controller is capable of replying with certain responses to the commands received from the HOST computer. These responses are shown in the table below.

Response	Source	Destination	Words	Description
Image Data (APPL)	TIMING	HOST		Data words returned instead of replies to commands
SYR (BOOT)	TIMING	HOST	2	Informs HOST system that SDSU controller has performed a RESET. (required for IRCAM compatibility)
DON (BOOT)	TIMING, UTILITY	HOST	2	Informs HOST system that previous command action was completed successfully.
FOR (BOOT)	TIMING, UTILITY	HOST	2	Informs HOST that first word of command (i.e. source, destination or number) was invalid
ERR (BOOT)	TIMING, UTILITY	HOST	2	Informs HOST that command was unknown

10

Appendix A

This table shows a typical flow of commands and responses after the system has been reset.

Sequence	HOST command	SDSU Response	Description
1			System Reset
2		SYR	SDSU replies that it has
			RESET and REBOOT
3	000203 TDL 555555	020002 555555	Test the link to the
			TIMING board
4	000303 TDL	030002 AAAAAA	Test the link to the
	AAAAAA		UTILITY board
5	000203 RDM 100007	020002 xxxxxx	Read version no. of
			Timing board boot code
6	000202 CHK	020002 xxxxxx	Do checksum of Timing
			board
7	000303 RDM 100007	030002 xxxxxx	Read version no. of
			Utility board boot code
8	000302 CHK	030302 xxxxxx	Do Checksum of Utility
			board
9	*.lod file		Download Timing Board
	downloaded using		Application Code
	WRM command		
10	000203 RDM 100007	020002 xxxxxx	Read version no. of
			Timing board application
			code
11	000202 CHK	030002 xxxxxx	Do checksum of Timing
			board
12	*.lod file		Download Utility Board
	downloaded using		application code
	WRM command		
13	000303 RDM 100007	030002 xxxxxx	Read version no. of
			Utility board application
		00000	code
14	000302 CHK	030002 xxxxxx	Do checksum of Utility
	000202 DOM	000000 DON	board
15	000302 PON	030002 DON	Switch supplies ON to
	000000 001		boards
16	000202 CON	020002 DON	Switch supplies ON to
18	000202 857	020002 DOM	array
17	000203 SET xxxxx	020002 DON	Set exposure time
18	000203 MRA 1	020002	Sends DON then image
		DONImage	data then DON back
		Data 020002 DON	

<u>Appendix B</u>

Board	Address	Available	Format	Description
Timing / Utility	P:6	BOOT	Ascii	Version No. of Boot code
Timing / Utility	P:7	BOOT	Ascii	Version No. of Application code
Timing	X:2	APPL		Elapsed Integration Time in ms.
Timing	X:2E	APPL	Integer	Number of columns in image data
Timing	X:2F	APPL	Integer	Number of rows in image data
Timing	X:30	APPL	Integer	Number of reads in MRA sequence
Timing	X:31	APPL	Integer	Reset delay before first read (100ns)
Timing	X:35	APPL	Integer	Number of reset pulses in reset
Timing	X:36	APPL	Integer	Number of reset cycles
Timing	X:37	APPL	Integer	Pixel Time in units of ns
Timing	X:38	APPL	Integer	Minimum Exposure Time in ms.
Timing	X:39	APPL	Integer	Number of read precondition cycles
Timing	X:3A	APPL	Integer	Readout mode

Addresses which can be accessed using the RDM command.