h:\sdsu\notes\sdsutb1.doc

This note tends to help user to understand the SDSU’s DSP source code and the timing board ...X.Gao, 11-07-97

asm56000 -b -l -g -a ***.asm --- assembly command
The DSP assembly source code is very similar to those of Micro-controller (micro-processor) except that there are three memory locations instead of one and the source code can be written using overlay algorithm which might be new to some users.

Overlay algorithm in Motorola 24 bit DSP assembly means that when we write the DSP software, we are able to specify which memory space is for running the software (runtime space) and which memory space is for storing the software (load space). This is done in ORG Directive (definition of terms in DSP assembler reference manual). A simple complete source code assembled is illustrated here:

Motorola DSP56000 Assembler Version 5.3.2 97-07-15 16:26:38 demo24_1.asm Page 1

1 page 132,,,3

2 ;------------------------------------

3 ; DSP56000 Demonstration Program

4 ;------------------------------------

5 ;

6 ; The program does the following:

7 ; 1. clear accumulator A

8 ; 2. increment A

9 ; 3. save A (A2, A1, AND A0)

10 ; 4. goto 2.

11 ; 5. end of program

12 ;

13 ;------------------------------------

14

15 X:0000 P:4200 org x:0,P:$4200 ; Data block starts at zero

16 X:0000 P:4200 VALUE_A2 dc 0 ; define storage for A2

17 X:0001 P:4201 VALUE_A1 dc 0 ; define storage for A1

18 X:0002 P:4202 VALUE_A0 dc 0 ; define storage for A0

19 ;

20 ;--------------------------------

21 ;

22 P:0000 P:4000 org p:$0000,P:$4000 ; Program block starts at zero

23 P:0000 P:4000 0AF080 RESET jmp START ; Skip over interrupt vectors

 000040

24 P:0040 P:4040 org p:$0040,P:$4040

25 P:0040 P:4040 200013 START clr a ; Clear accumulator A

26 P:0041 P:4041 000008 LOOP inc a ; Increment A by 1

27 P:0042 P:4042 520000 move a2,x:VALUE_A2 ; Save A2

28 P:0043 P:4043 540100 move a1,x:VALUE_A1 ; Save A1

29 P:0044 P:4044 500200 move a0,x:VALUE_A0 ; Save A0

30 P:0045 P:4045 0C0041 jmp LOOP ; Loop to increment again

31 end

0 Errors

0 Warnings

in line 15, ORG X:$0,P:$4200 indicates that the constants (VALUE_A0. etc)will be stored in P memory starting at $4200, later transferred in DSP X memory at $0, ...before running time. The similar is in line 24, where ORG P:$0040,P:$4040 indicates that the instructions below will be stored in P memory starting at $4040, later transferred in DSP P memory at $0040, ...before running time. Just bear in mind that the P:$0200 to P:$FFFF refers to the external memory, i.e. DSP software is stored in external memory.

The Motorola 24-bit DSP56k doesn’t have user EPROM version (DSP56000 is factory programmed with user software), DSP56001/56002 are designed to load its program ad data from an external source (either memory or host interface or SCI) into the on-chip: 512 words Program memory (RAM), 256 words X data memory (RAM) and 256 words Y data memory (RAM). Program RAM provides a method of developing code efficiently, and programs can be changed dynamically, allowing efficient overlaying of DSP software algorithm. In this way, the on-chip program RAM operates as a fixed cache, thereby minimizing contention with accesses to external data memory space. (DSP56000/DSP56001 manual, p3-8).

SDSU controller uses DSP56002 with a 8-bit external EEPROM memory to store its boot program and part of application programs. Once the DSP leaves hardware reset, it will automatically-- actually depending on external peripheral circuit PAL which has set operating mode=1-- load (512 words) the program from the EEPROM into DSP P memory, X memory and Y memory, then start to execute the program from P:$0000. After the boot procedure, the application program No1 and date are loaded from the same EEPROM (in different location) into the DSP’s P or X or Y memory.

As the DSP memory is 24 bit while the external EEPROM is 8 bit, there is converting process involved in reading/writing the EEPROM. If the DSP is going to write a 24 bit data to the EEPROM, the 24-bit data has to be broken into low, mid and high bytes and written into three memory locations in the EEPROM. On contrast, if the DSP is going to read a data (has to be 24 bit) from the EEPROM, it will read low, mid and high bytes from three consecutive memory locations in the EEPROM, combine them into 24 bit and store in the DSP .

From the simple example listed above we can see that although we can specify the memory locations for storing the instructions (software), the DSP assembler treats the address locations as 24-bits (i.e. one address holds three bytes data). So, the object code or HEX file(like those in most microcontroller) generated by the DSP assembler can not be down loaded directly to program the 8-bit external EEPROM. Motorola has developed a software --Srec-- to do the conversion for 8-bit EEPROM program (see the included file: S-rcord.doc). The function of the Srec is to break the 24 bit data into three bytes, multiply the address by 3 and put low ,mid and high bytes in the consecutive address locations. For instance, in the above example line 25

25 P:0040 P:4040 200013 START clr a ; Clear accumulator A

the P:4040 200013 will be converted into P:C0C0 13; P:C0C1 00 and P:C0C2 20.
Therefore, when we read the source code org P:$0000,P:$4000 in the above example, we know that the source codes are stored in the external 8-bit EEPROM beginning at $C000, later transferred into DSP P:$0000,... and be executed.

The physical EEPROM address depends on the hardware circuit arrangement. The SDSU controller generation II assigns the 8-bit EEPROM physical address $0000 as DSP external memory address $8000. (i.e. from DSP point of view) in the timing board

A simple memory mapping is illustrated in Figure1.

Figure 1 the memory mapping illustration for the SDSU II Timing board

When reading the SDSU DSP boot source code of any address point related to external memory, we have to multiply the address by 3 and subtract $8000 to get the EEPROM physical address. Hence, the address of $4000 will correspond to the external memory address of $C000 from the DSP point of view, but it will correspond to the physical address of $4000 in the external EEPROM. However, when reading a application source code of any address point related to external memory, we only multiply the address by 3 but not subtract $8000 to get the EEPROM physical address.(see SDSU DSP SOFTWARE document, 3 of 8, 05/13/97).

Once we understand this, it will be very easy to read the SDSU DSP source code.

TABLE 1 lists the memory mapping for the timboot. (from the .asm I got). SDSU is updating their source codes. So you might find some detail listed not be right.

TABLE 1 the memory mapping for the timing board

EEPROM physical address

(load address)
external memory address (load address)

DSP runtime address

boot P mem code
$4000~$45FF
$C000~$C5FF

P:$0000~P:$01FF

boot X mem code
$4600~$48FF
$C600~$C8FF

X:$0000~X:$00FF

command table
$0600~$065F
$8600~$865F

X:$0080~X:$009F

waveform table
$0660~$0959
$8660~$8959

Y:$0000~Y:$00FD

application #1
$0300~$05FF
$8300~$85FF

P:$0100~P:$01FF

Timing board
1). Communication with host over fiber: use scrambled NRZ protocol
Timing board receives command/data from Host through fiber optic at a speed of 4 Mbits (default)

the host/sender always sends header first, then commands/data (assume that the preamble is done in software, then $000304 ‘WRM’ $100078 $000000, is for host computer to write a NOP instruction to the Utility baord P:mem at location of $78. the $1 in $100078 of the ‘WRM’ instructiom is to updata P:mem. SDSU ‘User’s Manual, 1-11, system-Updateed may 12,1994) There is a change in the communication data format: For compatibilty with both Genneration I host interface boards and the newer Gen II boards, the jumps JP14 and JP15 are included. One jump for the serial receiver to processs 24-bit data words for Gen I system or 32-bit words for Gen II system. Another for serial transmitter to generate 24-bit serial word for Gen I system either 32-bit or 16-bit words for GenII system depending on whether inage data or command data is being transmitted--. “Timing board, pg#6, Updated Jan.12,1997 ”. For Gen II timing board, the received 24-bit data is read by DSP three time from FIFO (three one byte-->> one word). But in Gen I one , the received 24-bit data is read by DSP directly at once, so care must be exerised--Timing board, pg#2, Updated Jan.12,1997.

The replies from Gen II Timing board to host are transmitted with the same 1 start bit, 8 bits for ?? and 24 bits for data protocol, but image data is transmited as 1 start bit + 16 bits data to improve the data link bandwith --“ CCD controller requirements for ground-base optical astronomy” Robert Leach, section 4.1)

2). Bias setting
The DSP in the timing board writes 24 bits word to video/clock boards through SSI to set DC bias and clock high (low) voltages , with the DSP’s H0 bit =‘0’. The data format is:

there are no DSP on video and clock boards. The data sent from the timing board (using SSI) is interpreted by PAL chips on video/clock boards.

The equation for the DAC output (Analog Device: data sheet DCA8420)

 EMBED Equation.2

where XXXX is the decimal value of the 12 digital bits, Vref- is the negative reference voltage while Vref+ is the positive reference voltage for DAC.

The real DC bias level and clock high(low) voltages are buffered with gain 1,2,.. etc. See circuit diagrams for details. Thus, when choosing the 12 bit DAC values for each DAC, we have to consider the buffer gains individually.

3).Sequence generation

 The sequences are generated by the DSP in the timing board writing several 24 bits words to a special address X:$FF80 (WRSS). The data format is

The 16 bits of D15~D0 are latched on the timing board (SS15~SS0), passed through backplane to video/clock boards. The SS11~SS0 are also latched on video/clock boards by PALs on those boards (the latch signal is generated by TIM_WRSS and SS15~SS12, it may differ in different boards). The delay value embedded in the high byte of the 24 bits words is sent to a PAL chip on the timing board, which will generate a delay signal on bus wait* pin of the DSP , the DSP will add wait states in current external memory instruction cycle until the PAL release the DSP to finish the external memory cycle (DSP56002 User’s Manual, P4-13).

Look at an example.

move
$0A0FFF,X:$FF80

 move
$810000,X:$FF80

move
$000FFF,X:$FF80

once the DSP writes $0A0FFF to X:$FF80 (external memory), the PAL will insert a delay and the DSP can not go to the second instruction until 10*20ns later when the PAL release it. It is similar for the second instruction that once the DSP sends $810000 to X:$FF80, the DSP can not go to the third instruction until 1*160ns later when the PAL release it. This sort of delay can also be achieved by software. But, software delay can only be multi-instruction cycle (one instruction cycle equals to two clock cycles) while the delay by the PAL (external circuit) can be multi-clock cycles. Another disadvantage of using software delay is more memory space required. By using the hardware PAL delay, the SDSU controller can generate waveform sequence in the time division of 40ns in samllest or of one clock cycle*N +60ns. [assume, 20ns for the DSP clock of 50 Mhz]. (see DSP56002 manual P4-13, SDSU Timing board Pg#3 Jan,12,1997, and DSP course note P3-27, for explanation).

4). Pixel read out
The Pixel data can be read into the DSP in the timing board by RDAD: move Y:$FF**,A, over the backplane lines AD15~AD0. The ** =$A0 to $BF, represents one of 32 A/Ds. The data can then be sent to host at 50 Mbits through a parallel-to-serial PAL to fiber optic transmitter by WRFO: move A,Y:$FFC0. To speed up the pixel data transfer an pixel data path is implemented by the SDSU controller that bypass the DSP so that the pixel data transfer to host can take place at the same time as sequence routine. This is enabled by writing to X:$FF80 (SDSU document says Y:$FF80, but in their source code “CLOCK” it is X:$FF80) with D12-D15=$F in the 24 bit command data (also WW line=1). It can also read mutli A/D data with one single instruction (in the 24 bit command: D4~D0 represents the staring A/D while D9~D5 represents the ending A/D).

In bypassing mode, the series transmit PAL (U12) generates ADADR4~ADADR0 that are latched as TIM_ADA4~TIM_ADA0 to video/clock boards over the backplane. The PAL on the video board combined these TIM_ADA4~TIM_ADA0 with other data, asserts RD_AD_* (* represents which A/D is selected) to release the data on the AD15~AD0 lines for the serial transmitter (U17) to send to the host. In multi A/D readout, each A/D value is read by the serial transmitter and sent over the fiber optic link, at the end of which the PAL reads the next A/D value until all of them are read (“ CCD controller requirements for ground-base optical astronomy” Robert Leach, section 4.1) For example, move $00F041 (SXMIT) to X:$FF80, will start to transmit No. 1(D4~D0) A/D data and No.2 (D9~D5) A/D data to host.

It is important to remember that initiating multi A/D readout only needs one single DSP command, and these readouts are in sequence (0,1,2,3,...).not in parallel. It is also important to realize that all these A/D readout occur in parallel with sequence routine (clock timing operation). So, the multi A/D readout would not affect the pixel readout speed if all A/D data is transmitted within the routine.

Writing command data(SXMIT) to X:$FF80 will not change switch states latch D_FF on video/clock boards, this needs to be noted in sequence routine time diagram.

The switch states on an IR video board (U5)

SS6=D6

SS5=D5
XFER-B
rising edge latch A/D-B to D-FF

SS4=D4
A/D-B
rising edge trig A/D-B convert

SS3=D3

SS2=D2

SS1=D1
XFER-A
rising edge latch A/D-A to D-FF

SS0=D0
A/D-A
rising edge trig A/D-A convert

The switch states on a CCD video board (U3)

SS6=D6
XFER
rising edge latch A/D to D-FF

SS5=D5
A/D
rising edge trig A/D convert

SS4=D4
INTEG
0: connect integrator to input

SS3=D3
POL+
0:invert buffer on

SS2=D2
POL-
0: non-invert buffer on

SS1=D1
DC_REST
0: DC claim to GND

SS0=D0
RESET
0: reset integrator C

Clock subroutine in timEEV.asm

; Core subroutine for clocking out CCD charge

CLOCK MOVE Y:(R0)+,X0 ; # of waveform entries

 MOVE Y:(R0)+,A ; Start the pipeline

 DO X0,CLK1 ; Repeat X0 times

 MOVE A,X:(R6) Y:(R0)+,A ; Send out the waveform

CLK1

 MOVE A,X:(R6) ; Flush out the pipeline

 RTS ; Return from subroutine

R6=$FF80, R0 is the address pointer to a sequence routine entry.

assume R0=$SERIAL_IDLE, then, the sequence routine is :

; Test New Rev. 2C CCD video board 1-30-97 A/D 0

;
 xfer, A/D, integ, Pol+, Pol-, DCrestore, rst 1 => switch open

SERIAL_IDLE

DC
SSKIP-SERIAL_IDLE-2

DC
VIDEO+$000000+%1110100
; Change nearly everything

DC
BD2+SI1L+SI2H+SI3L+RL+R1L+R2H+R3L

DC
BD2+SI1L+SI2H+SI3L+RL+R1L+R2H+R3H

DC
BD2+SI1L+SI2H+SI3L+RL+R1L+R2L+R3H

DC
BD2+SI1L+SI2H+SI3L+RL+R1H+R2L+R3H

;
DC
SXMIT

; Transmit A/D data to host

DC
VIDEO+$000000+%1110111
; Stop resetting integrator

DC
VIDEO+$2e0000+%0000111
; Integrate for 1 microsec

DC
VIDEO+$000000+%0011011
; Stop Integrate

DC
BD2+SI1L+SI2H+SI3L+RL+R1H+R2L+R3L

DC
VIDEO+$000000+%0011011
; Delay for signal to settle

DC
VIDEO+$000000+%0011011
; Delay for signal to settle

DC
VIDEO+$2c0000+%0001011
; Integrate for another microsec

DC
VIDEO+$000000+%0001011
; Continue integrating

DC
VIDEO+$000000+%0011010
; Stop integrate, A/D is sampling

; Serial clocking waveform for skipping

SSKIP DC
DACS-SSKIP-2

 the time diagram of the serial-ilde routine is shown in Figure 2.

Figure 2 The time diagram of the serial-ilde routine. Time division=40ns unless otherwise stated.

S-record address

 -$8000

S-record address

8-bits

$C600

P:mem

$4200

$C000

$4000

EEPROM physical

address, 8-bits

$4000

X:mem

Srec -bs

DSP mem address

24-bits

boot

P:mem

Boot

X:mem

$4600

D0-D7

data format:

33 bits: 1 start bit, 8 bits for preamble and 24 bits for data

fiber optic receiver 4Mbit

Serial to parallel

 PAL

FIFO

=$AC data ==> FIFO

=$53, reset DSP

others nothing happen

byte=0, host; =1 VME; =2 Timing;=3 Utility,

source byte,destination byte, number of words in string

header identification:

start

1 bit

 Preamble

8 bits

data

24 bits

which output (A,B,C,or D) in DAC

which DAC

19 16

15 14

13

12

11 0

DAC volts

N/U

DAC or MUX

which board

23 20

address for 4 outputs : A:00; B:01;

 C:10; D:11

=1 coarse delay (160ns)

=0 fine delay (20ns)

delay value

board select

state of each of 12 analog switch

11 0

22 16

23

15 12

RD_AD_*

during the A/D transmit , the latched data will be released to AD lines on backplane,OC pin of ABT574

the rising edge of XFER will latch N-2 A/D output to D-FF (74ABT574), clk pin of ABT574

XFER

A/D

the rising edge of A/D will trig the A/D to convert N data, while N-2 data already on output, ADS937 pipeline action

dump charge

charge transfer:

H3->H2(SW)->H1

REF-INT

A/D transmit

A/D convert

SIG-INT

REST=R

VP3=SI3

VP2=SI2

VP1=SI1

H2=R3

H1=R1

H3=R2

1 us

1 us

DC_REST

RESET

POL-

POL+

INTEG

A/D

XFER

PAGE
3

_930566657.unknown

_930566812.unknown

