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Abstract 

The algorithms used to convert between coordinates of an astronomical object given in a standard 
system and the demand position and velocity output to the telescope servo system are described in 
detail. Novel features of the WHT control system are emphasised, in particular the methods used to 
correct for errors in the different encoding systems, the control of derotation optics and the rotator 
and azimuth limit calculations. · 

1 Introduction 

Precise control is critical to the pointing, tracking and imaging of modern telescopes. The control 
system developed for the William Herschel Telescope (WHT) has met stringent performance targets 
and its conceptual framework is adequate for the yet more demanding requirements of the Gemini 
project. The purpose of the present paper is to describe the algorithms used in the WHT control 
system, without much reference to details of implementation. The aims are to document the existing 
code and to provide a starting point for specification of a new implementation using different hardware, 
language and operating system. 

The WHT is a 4.2-metre telescope with an altazimuth mount. It has four focal stations: Prime, 
Cassegrain and two N asmyth. The Telescope Control System (TCS) is the software required to point the 
telescope at an astronomical object, to track and focus it accurately and to make any offsets necessa.ry 
during the observation. The mechanisms to be controlled are therefore: altitude and azimuth dri ··es, 
instrument rotation at each of the four focal stations, secondary mirror tilt, dome, shutters, prim try 
mirror cover and focus. Acquisition cameras and autoguiders are not under the control of the Ti:::s, 
but provide data to it. 

The TCS is implemented in FORTRAN (with a minimum of Macro and C) on a Va..x 4000-200 mini­
computer. It is interfaced to the telescope hardware via Camac and to the autoguiders and acquisit..Jn 
cameras using serial lines. It may be operated either in stand-alone mode or from the system computer, 
to which it is interfaced using Decnet from an ADA:M D-task. 

Section 2 summarises the basic geometry for an altazimuth telescope and derives velocities and ac­
celerations, which are needed in order to estimate the necessary update rates for pointing calculatkns. 
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The tangent-plane coordinate systems used later are also defined. Section 3 describes the transforma­
tion between astronomical coordinates and the mount altazimuth system and section 4 outlines the 
processing of encoder and transducer readings and the calculation of drive demands. The derivation of 
the quantities shown on the Information Display is the subject of section 5; this is mostly concerned 
with software limits. Section 6 outlines calibration and diagnostic procedures and section 7 suggests 
some directions for future development of the system. 

A glossary of the symbols used is given in Appendix A. The sections of the William Herschel 
Telescope Users' Manual describing the TCS are attached as Appendices B - E. These give a complete 
specification of the system commands and display output. Their contents are: classified command sum­
mary (Appendix B), alphabetical glossary (Appendix C), interactive control using the TCS "handset" 
(Appendix D) and the Information Display (Appendix E). 

The algorithms used for autoguiding are described elsewhere (Laing 1993; hereafter AG). Extensive 
reference is also made to the Explanatory Supplement to the Astronomical Almanac (Seidelmann 1992), 
hereafter Explanatory Supplement. The sign conventions for astronomical coordinates are those ':sed 
in this reference: 

1. Azimuth (A) is measured from north through east in the plane of the horizon and elevation 
( E) or altitude is measured perpendicular to the horizon ("elevation" and "altitude" are used 
interchangeably, following conventional usage). Zenith distance z = 7r /2 - E is more often used 
in calculations, since it is a natural polar coordinate. Note that Wallace (1990) measures azimuth 
from south though east. 

2. Hour angle (h) is measured westwards in the plane of the equator from the meridian and decli­
nation ( 8) is measured perpendicular to the equator, positive to the north. 

3. Right ascension (a) is measured from the equinox eastward in the plane of the equator. 

4. Longitude is measured from the equinox eastward in the plane of the ecliptic and latitude(¢) is 
measured perpendicular to the ecliptic, positive to the north. 

5. Sky position angle (PA), 8, is measured anticlockwise from north. 

2 Basic Geometry 

2.1 Equatorial to Altazimuth Conversion 

In this section, we summarise the conversions between equatorial (h, 8, 8) and altazimuth (A, z, ¢) 
coordinates and the velocity and acceleration on the sky in the latter system during sidereal tracking. 
'I/; is the parallactic angle, i.e. the angle between the projections on the of the local vertical and the 
meridian. The conversions are contained in equation 4.5.17 of Murray (1983): 

cos z = cos 8 cos h cos </> + sin 8 sin ¢ 

sin .4 sin z = - sin h cos 8 

cos A sin z = sin 8 cos </> - cos 8 cos h sin</> 

sin 'I/; sin z cos </> sin h 

~'1/;~z ~8~</>-~8~</>~h 

The definition of sky PA is instrument-dependent, and a spectrograph slit or one of the detector 
axes is generally used as a reference. The mount position angle, p, measures the rut<1tion of a direction 
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fixed in the rotator around the optical a.xis of the telescope anticlockwise from the vertical direction. 
In order to maintain a fix:ed relation between mount and sky position angle for different configurations, 
the vVHT control system has an offset parameter, 80 , which is an instrument-dependent constant. The 
relation between sky PA, mount PA and parallactic angle, 7/J is then: 

p = ( B - Bo) - 7/J 

for Cassegrain and Prime foci and 
p = (B - B0) - 7/J ± E 

for the Nasmyth foci (+for the UES and - for the GHRIL focal stations). 

2.2 Velocities and accelerations 

The first derivatives of azimuth, zenith distance and parallactic angle are required in order to estimate 
the update rates required for pointing calculations. Primes denote differentiation with respect to hour 
angle. In order to get derivatives with respect to sidereal time, we need to multiply by µ or µ 2 for first 
and second derivatives, respectively, whereµ is the sidereal tracking rate, 7.272 x 10-5 rad s-1 . 

2.2.1 Zenith distance 

- z' sin z = - cos <P cos o sin h 

and therefore the elevation velocity is 

z' = cos o cos <P sin h / sin z = - sin A cos <P 

A further differentiation gives 

( z')2 cos z + z" sin z = cos <P cos o cos h 

and the acceleration is 
z" = cos¢( cos o cos h - sin2 A cos <P cos z) /sin z 

2.2.2 · Azimuth 

sin z sin A = - sin h cos o 

z' cos z sin A + A' cos A sin z = - cos h cos o 
= sin z cos A. sin <P - cos <P cos z 

and the azimuth velocity is therefore 

A' = (sin <P sin z - cos <P cos z cos A)/ sin z 

The maximum velocity is 1 deg s-1 , so the radius of the "blind spot" at the zenith is 0.21°. A 
convenient way of writing A' is in terms of the parallactic angle, 7/J, using the expression derived in the 
next subsection: 

sin 7/J = - sin .4 cos <P / cos 6 
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Consequently, 

A" 

= 

cos 1/J'l/J' = - cos AA' cos </>I cos 8 

1/J' = - cos</> cos A/ sin z 

~ A' = cos 1/J cos 8 J sin z 

cos 8 (- sin z sin 1/J~' - cos 1/J cos zz') 
sm 2 z 

cos 6 cos </> • • 
• 2 (cos 1/J cos z sm A - sm 1/J cos A) 

sm z 

2.2.3 Parallactic angle 

sin z cos 1/J = sin</> cos 8 - cos </> sin 8 cos h 

We differentiate this, and substitute for z', using the results of the previous subsection: 

.J,I - COS </> ( , A .J, • l: • h) 
'f/ = . . .J, Sln .'1. COS Z COS 'f/ + Sln u Sln 

sm z sm 'I' 
= -cos</>cosA/sinz 

We then differentiate again and insert the expressions for A' and z' derived earlier: 

1/J" = - ~o~ </> ( - sin z sin AA' - cos A cos zz') 
sm z 

sin A cos</> = . 2 (cos 1/J cos 8 - cos A cos z cos </>) 
sm z 

2.2.4 Recalculation of the velocity demand 

The position error can be estimated by expanding the quantity concerned in a Taylor series: 

x(h + 6.h/2) = x(h) + x'(h)(6.h/2) + x"(h)(l/2)(6.h/2)2 + .... 

If the velocity demand is x'(h ), i.e. that appropriate to the middle of the period h - 6.h/2 - h + 6.h/2, 
then the error at the end of the period is given to a first approximation by: 

x(h + 6.h/2)- [x(h) + x'(h)(6.h/2)] ~ x"(h)(8h2 /8) 

We wish to ensure that, within the allowed rate of the telescope (0.2° < z < 80°), the rate of recompu· 
tation of velocity is not the main factor affecting the timing of the servo loop (an update rate of 20 Hz 
is justified by the mechanics of the telescope). We use the expressions for the second derivatives of .4, 
z and 1/J calculated above. The worst cases occur near the zenith, and are approximate by µ2 /sin z in 
A and z and by µ 2r/ sin2 z for 1/J, where r is the field radius. The maximum positional error for an 
update rate of 20 Hz is then roughly 0.002 arcsec for A and z and 0.004 arcsec for 1/J (at a field radius 
of 30 arcmin). These numbers are negligible compared to other sources of error in the present case. 
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2.3 Coordinates in the tangent plane 

A common requirement is to move the telescope in such a way that an image moves by a given distance 
on the detector. The appropriate formulae (assuming a constant plate scale) are those for gnomonic 
projection onto a tangent plane (e.g. Murray 1983). A similar application is to offset the telescope by 
a given angular distance on the sky. Since the a.8 and Az coordinate systems are both polar, a given 
offset in a or A does not, of course, correspond to the same angular distance everywhere on the sky 
(e.g. it causes no movement on the a.xis of the coordinate system). The tangent-plane approximation is 
also suitable for this application and is well-behaved near the pole and zenith. The TCS uses angular 
units throughout, and the conversion between linear units on the detector and angular units on the sky 
is implicit in these equations. Three systems are used: 

Equatorial Cartesian coordinates ~ and 1J are defined along the projected +a and +8 directions at 
the tangent point (ao, 80): 

tan(o: - o:o) = ~sec80/(l -11tan80) 

a - a:o ~ ~sec 80 
tan8 = ( 1J + tan 80) cos( a - ao) / ( 1 - 1J tan 80) 

= ( 1J +tan 80)/[(l - 11tan 80)2 + e sec2 80]1/2 

8 - 80 ~ 1J 

where the approximations are the usual ones for small displacements at positions well away from 
the pole. 

Altazimuth An equivalent pair of coordinates a, Tis defined in the altazimuth system, with a along 
the +A direction and T along +E at the tangent point (.40, E0 ) (note that the handedness is 
opposite to that of the equatorial system). 

tan(A - Ao) asecEo/(l - rtanEo) 

A - Ao ~ a sec Eo 

tanE ( T +tan E0 ) cos(.4. - Ao)/(l - T tan Ea) 

= (r + tanEo)/[(1- T tan E0)2 + a 2 sec2 E0 ]11 2 

E-E0 ~ T 

xy Finally, x and y are defined along a.."'(es fixed with respect to a stationary instrument rotator for a 
virtual telescope (i.e. in the absence of geometrical or flexure errors and refraction). These are 
used to give a convenient system for offsetting the telescope interactively and the x and y axes ue 
therefore aligned approximately with obvious directions such as detector axes or a spectrograph 
slit. This is, however, an approximation to the focal-plane coordinate system XA, YA, which 
is fixed with respect to the structure and therefore includes effects such as field rotation due 
to differential refraction and the effects of pointing errors. The xy system is rotated from the 
altazimuth system by the mount position angle, p, for a perfect telescope and from the ~1] system 
by the sky position angle B, corrected for the instrumental offset B0 • 

The conversions between these coordinate systems are simple rotations: 

x = -~cos( B - Bo) + 1J sin( B - Bo) 
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y = +~sin(B- B0 ) + T]Cos(B - Bo) 

x = +a cos p + r sin p 

y -a sin p + rcos p 

~ -a cos 'I/; + r sin 'I/; 

Tl = +a sin 'I/;+ rcos 'I/; 

for Cassegrain and Prime foci, modified by an additional rotation of ±E at Nasmyth (Section 2). 
Complications introduced by field distortions (e.g. the radial error typically introduced by refracting 
field correctors and focal reducers) a.re discussed in AG. The TCS does not currently make any allowance 
for them. 

3 Pointing Calculations 

3.1 General 

The philosophy adopted for the pointing calculations in the TCS is that of the "virtual telescope" 
(Straede & Wallace 1976), whose imperfections such as flexure and refraction are concealed from the 
user. All of the control is specified in terms of standard astronomical coordinate systems (for targets) or 
detector coordinates (for images) The majority of this section is concerned with the conversion between 
input positions and the (necessarily imperfect) measured coordinates of the mount. Mechanism control 
and the modelling of imperfections in the encoders are treated in the following section. Sections 3.2 -
3.11 describe aspects of the calculations in detail, whilst Section 3.12 summarises the whole sequence. 

In what follows, we refer to the input coordinate system (a, ~ and (} as specified by the user) and 
to mount coordinates (the demand values of A, E (or z) and p for the drives). The telescope is driven 
so as to make the encoder readings for these mechanisms (corrected as described in the next section) 
identical to these demand values. 

3.2 Time 

The time calculations performed by the TCS closely follow those given in Chapter 2 of the Explanatory 
Supplement and this section concerns specific details. The times used within the TCS are: 

UTC Coordinated Universal Time. This is given directly by the Observatory Time Service. 

TAI International Atomic Time. This is calculated from UTC, from which it differs from by a variable 
integer number of seconds (see below). 

TDT Terrestrial Dynamical Time. This is the theoretical timescale of apparent geocentric ephemerides 
of solar-system bodies and is specified to be TAI+ 32.184 s. 

TDB Barycentric Dynamical Time is the independent variable of the equations of motion with respect 
to the solar system barycentre. It is determined from TDT using the expressions given by Moyer 
(1981). 

UTl Universal Time. This is proportional to the angle of rotation of the Earth in space, reckoned 
around the true position of the rotation a.."Xis. The value of UTl - UTC is normally entered 
directly at the start of a night's observing, but by default is calculated using the extrapolation 
formula given in IERS Bulletin A. The coefficients are stored in the initialization file and should 
be updated regularly (preferably once per week). 
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LMST Local Mean Sidereal Time (the hour angle of the mean equinox of date). 

LAST Local Apparent Sidereal Time (the hour angle of the true equinox of date). This is determined 
from UTl using the formulae of Section 2.242 of the Explanatory Supplement. The values for the 
position of the Pole required in the conversion are either entered directly or calculated using an 
extrapolation formula, as for UTl - UTC. 

Dates may be specified as in Julian or Besselian years, with the conventional prefixes "J" and "B", as 
appropriate for the FKS and FK4 coordinate systems (see below). The standard epochs for the two 
systems are J2000.0 and B1950.0, respectively. 

UTC is kept within 0.9 s of Universal Time (UTl) by the insertion ofone-second steps (leap seconds). 
The procedure for inserting a leap second is as follows: 

1. The date at which the leap second is to be inserted is stored (as a modified Julian Date) in the 
initialization file for the control system. 

2. The time service is armed to put in a leap second on that date. 

3. The control system then compensates for the effects of the leap second until it is next restarted. 
The initialization file should then have the new value of UTC - TAI included. 

4. Care is needed to ensure that the ERPS coefficients used to extrapolate UTl - UTC include the 
effects of the leap second. 

3.3 Astronomical Coordinate Systems 

3.3.1 General 

The TCS accepts input in one of three equatorial coordinate systems: 

1. Geocentric apparent coordinates of the current date. 

2. Mean coordinates in the post-IAU1976 (FKS) system. 

3. Mean coordinates in the pre-IAU1976 (FK4) system. 

The procedure used to convert between systems is that described in the Explanatory Supplement 
and in Wallace (1990). The currently-available reference system is based on the FKS star catalogue, 
the IAU 1976 set of constants, the IAU 1980 theory of nutation and the set of procedures outlined 
below. It is in good agreement with the reference frame defined by VLBI observations (although it is 
expected that further radio observations and data from the Hipparcos satellite will refine the system 
still further). A considerable number of positions are still given in the older (FK4) system, and routines 
are provided in the TCS to perform the conversion. The sequence of conversions is FK4 => FKS => 
apparent. The procedures are unnecessarily rigorous for the application, but do not take significant 
CPU time: performing calculations to full accuracy makes comparison with standard test cases much 
more straightforward. 

3.3.2 FK4 to FK5 conversion 

This procedure is performed once, at the start of a new observation, and produces an FKS J2000.0 
position for the current epoch. An intermediate stage is to calculate the FK4, B 1950.0 position: 

1. Correct for space motion to the epoch of observation. 

2. Remove E-terms of aberration. 
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3. Precess to B1950.0 using FK4 constants. 

4. Add E-terms. 

The B1950.0 position is available for display purposes (see below). The position is then transformed to 
J2000.0: 

1. Remove E-terms. 

2. Apply space motions to 1984 January 1.0. 

3. Precess from B1950.0 to 1984 January 1.0 using the FK4 precession constants. 

4. Apply the equinox correction FK4 to FK5 to right ascension and its proper-motion component. 

5. Convert the units of proper motion (tropical to Julian centuries). 

6. Precess from 1984 January 1.0 to J2000.0 

7. Apply space motions to J2000.0 

If no proper motions are specified for the FK4 system, then they are assumed to be zero in the FK5 
system. The distinction is necessary because the FK4 frame rotates slightly with respect to FK5 and it 
makes more sense to assume that extragalactic objects have no space motions in our best approximation 
to an inertial frame. 

3.3.3 FK5 to geocentric apparent conversion 

The first stage is to correct for space motions and to derive a J2000.0 position for the epoch of obser­
vation. This is done once, on change of target: 

1. Correct for space motions to the epoch of observation. 

2. Precess to J2000.0. 

3. Correct for paralla..x. 

Conversion to geocentric apparent coordinates is performed continuously during tracking. The conver­
sion matrices are updated once every 5 minutes, but are applied at 20 Hz. The steps are: 

1. Correct for gravitational light deflection ( negigible in practice). 

2. Apply annual aberration. 

3. Correct for precession and nutation. 

3.4 Offsets 

A number of methods are provided to allow offsetting. These are used to move the telescope so that the 
image of a different object appears at the same place on the detector and therefore cause the displayed 
right ascension and declination to change. The opposite approach (moving the image of the same object 
to a different place on the detector is described in section 3.7. 
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3.4.1 RA-Dec offsets 

A group of TCS commands deals with differential offsets specified in right ascension and declination. 
These are applied in the input coordinate system. The first, and simplest, option allows the offset 
to be given directly as ti.a, ti.8, in which case these are merely added to the target position (OFFSST 
TIME). Alternatively, offsets ti.~, ll.ry in the tangent plane (along the a and 8 directions at the target 
position) may be given, in which case these are converted to ti.a, ti.8 using the tangent-plane formulae 
in Section 2.3 and again added to the target position (OFFSET ARC). Tangent-plane offsets may be typed 
in, stored, listed and applied later (see ENTER POSITION, SHOW POSITION and POSITION); they may also 
be defined interactively (see below). 

3.4.2 The handset 

The TCS "handset" (see Appendix D) allows offsets to be introduced interactively using cursor keys. 
Four modes are associated with offsets: three to implement them in different coordinate systems and 
the fourth to set them up interactively for storage and later use. Offsets may be applied in ~T/, xy or 
O'T systems as defined in Section 2.3. These are all tangent-plane offsets, so that a given increment 
causes the image to move by a given amount on the sky at any position. They are applied by rotating 
to the ~T/ system, converting to ti.a, ti.8 using the formula given in Section 2.3 and incrementing the 
target position. The accumulated offsets are displayed in the coordinate system of the mode selected. 
The systems used by the handset are all defined with respect to the input coordinate system, in order 
to permit easy conversion (a frequent use of the system is to move the telescope in xy coordinates and 
then to switch to ~T/ in order to read off the accumulated offset on the sky). A fourth handset mode 
is used to set up offset positions for later use. An image is placed at some reference point and is then 
moved to the offset position with the handset. The motion is in the xy system, for convenience, but 
the offset is stored in ~T/, so as to be independent of sky position angle. 

3.4.3 The blind-offset procedure 

A frequent application of the TCS is to acquire faint targets onto an instrument entrance aperture 
(usually the slit of a spectrograph). The standard procedure is to locate a reference star whose posit.ion 
relative to the target is known very accurately, centre it on the instrument and then offset to the 
faint target. Although the RA-Dec offsets described above can be used for th.is purpose, a somewhat 
different method is neater and more flexible. The reference star is first centred on the instrument, and 
the accumulated handset correction is converted to tangent-plane coordinates in the mount system and 
applied as a temporary addition to the collimation errors in elevation and azimuth (Section 3.6.1). This 
is a local modification to the pointing model which is expected to be valid close to the reference star, 
and is used for subsequent observations of faint targets. The advantages of this procedure (the BLIND_ 
OFFSET command described in Appendix C.10.) are that the target position need not be in the same 
coordinate system as that of the reference star and that the displayed telescope position is as accurate 
as possible, rather than including residual pointing corrections. 

3.5 Refraction 

3.5.1 Refraction formulae 

Refraction is treated separately from the other pointing corrections because it is known a priori. The 
algorithm used is derived from the expressions in Murray (1983) for refractive inde.."X: n and the formulae 
given by Saastamoinen (1972a, b). Murray's equation 7.4.10 is used to calculate the refractive in<lex 
as a function of the partial pressures of dry and wet air (in turn derived from the total pressure and 
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relative humidity), temperature and wavelength. Murray's equation 7.6.8 gives the refraction as: 

Za - z R(za) =RA tan Za +RB tan3 Za 

RA = n -1-I 

RB = -[J-(n-1)2/2] 

where the apparent and true zenith distances are Za and z, respectively and I is the integral of ln(n)/s 
over path length s. Saastamoinen ( 1972a, b) gives simple approximations to I which can be absorbed 
into the coefficients RB, Re, Rn and RE to give a formula: 

Za - z = R(za) =RA tanza +RB tan3 Za +Re tans Za +Rn tan7 Za +RE tan9 Za 

This algorithm gives results within 0.1 arcsec of the numerical integration presented in the Explana­
tory Supplement for z <80°. The refraction formula as quoted is not in a suitable form for pointing 
calculations, since the refraction is required in terms of the true zenith distance z. We thefore expand 
R( za) in a Taylor series to first order: 

z ~ Za + R(z) + (za - z)R'(z) 

and derive the approximate formula 

z - Za ~ R(z)/[1 + R'(z)] 
RA tanz +RB tan3 z +Re tans z +Rn tan7 z +RE tan9 z 

= 
1 + sec2 z(RA + 3Rs tan2 z + 5Re tan4 z + 7 Rn tan6 z + 9RE tan8 z) 

Further elaboration is not justifiable, since accurate measurements of refraction at the CAMC (Morri­
son, private communication) show unpredictable night-to-night variations of up to 0.4tan z arcsec. 

3.5.2 Differential refraction 

In addition to the effects of refraction on the target position, the field is rotated and distorted. The latter 
effect can only be corrected using additional optics (as is done at Prime focus), but the former may be 
taken out using the instrument rotator. This is done automatically as part of the pointing calculation 
described in Section 3.12, but the analytical treatments in the literature (Hinks 1898, Wallace & Tritton 
1979) use obscure notation and a paraphrase is given here using the teminology of the present paper. 

Consider a tangent-plane projection (a, r) as defined earlier. Then: 

a= sin(.4- Ao) csczo/[cotzcot zo +cos( A - Ao)] 

r =[cot z - cot zo cos( A. - Ao)]/[cotzcot zo +cos( A - Ao)] 

The effect of refraction is to decrease the value of z, leaving A unchanged. The changes in a and r may 
be calculated from: 

t::..a ~ (aa/az)t::..z 

[csc z0 cot z0 csc2 z sin( A - A0)]/[cot z cot z0 + cos( A - Ao)] 

cos zo csc za( 1 + a2 + r 2 ) 112 

t::..r ~ (ar/fJz)t::..z 

-[csc2 z csc2 zo cos(.4 - .40)]/[cot z cot zo +cos( A - Ao)] 
-(1 + a2 + r 2) cot z tan zo + r(l + a 2 + r 2

)
112 sec zo ms z 
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In the linear approximation, which is entirely adequate here, we take 6z ~ -RA tan z and neglect any 
terms that are second order in (j and r. Then: 

6r ~ +RA(tanzo - r sec2 zo) 

We now rotate the coordinate system by the parallactic angle 'if;. This leads to the relations given by 
Hinks (1898): 

6(j ~ RA[X - (1 + X 2 )(j - XYr] 

6r ~ RA[Y -XY(j - (1 + Y 2 )r] 

where X and Y are the quantities defined by Hinks (but in terms of hand 8, so his formulae are messy): 

X = sin 'if; tan zo 

Y = cos 1/J tan zo 

The first terms in the expressions for 6(j and 6r are just the shifts of the tangent point due to 
refraction, which is eliminated by moving the telescope, as discussed earlier, and the introduction of 
1/J makes it obvious that X and Y are components of a vertical displacement resolved along h and fJ, 
respectively. A rotation of the :field results from the fact that the projected north-south line is no longer 
at position angle 0. The pole is at (0, cot 80 ) in the tangent plane, but the origin is displaced to (X, Y) 
by refraction, so the necessary rotator offset 68 satisfies: 

except very close to the pole (Hinks 1898). The implications of differential refraction for off-a.xis 
autoguiding are discussed in AG. 

3.6 The WHT pointing model 

A pointing model is a set of analytical functions and look-up tables used to correct for departures from 
an ideal altazimuth telescope. The pointing model for the WHT uses up to 21 functions, divided into 
3 groups: a geometrical model of the telescope, elevation flexure and harmonics of azimuth. Look-up 
tables in altitude and azimuth are implemented, but are not currently used. The residuals from a fit 
to a pointing test (see later) typically have an r.m.s. between 0.8 and 1.5 arcsec, depending on seeing 
conditions, focal station and measurement technique. An example is shown in Figure 1 and the model 
terms are listed in Table 1 with their names in the notation of the TPOINT analysis package (Wallace 
1989), their functional forms, and typical values for the Cassegrain focus (the sign convention appears 
strange because the TPOINT software uses a. different definition of azimuth). Note that some of the 
terms a.re now not significantly different from 0, but a.re retained because they have been needed in the 
past. 

3.6.1 Geometrical and index Errors 

This group has 6 terms, all with some geometrical interpretation. The angles between the instrument 
rotator a.xis (which defines the fundamental pointing direction) and the normal to the azimuth and 
elevation axes a.re known as collimation errors and the residual zero-point corrections are referred to 
a.s index errors. The index and collimation errors in elevation a.re not separable, and are combined in 
one coefficient. For this reason, and for convenience in updating the model at the start of an observing 
session" index errors in both coordinates are included in the pointing corrections, despite the fact that 
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Table 1: The Pointing Model for the WHT. 

Term Description ~A ~z Value 
(TPOINT) (arcsec) 

IA Azimuth index -1 0 0.5 
IE Elevation index 0 -1 6.7 
CA Azimuth collimation - cscz 0 73.9 
NPAE Non-perpendicularity - cotz 0 -12.2 
AX NS a.xis tilt - sin A cotz cos A 34.1 
AY EW axis tilt cosAcotz -sin A 17.2 
TF Hooke's Law fl.exure 0 - sinz -18.0 
TX 0 -tanz 0.0 
HZSZ4 0 sin4z 0.0 
HSCAl cos A -1.5 
HSSAl -sin A -3.3 
HZCAl -cos A 3.0 
HZSAl sin A -1.6 
HSCA2 -cos2A 1.5 
HSSA2 sin 2.4. 0.3 
HZCA2 cos2A -0.8 
HZSA2 -sin2A 0.3 
HSCA3 cos3A 0.0 
HSSA3 - sin3.4. 2.7 
HZCA3 - cos3A -2.1 
HZSA3 sin3A 0.9 
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Figure 1: Residuals from a pointing test at the Ca.ssegrain focus. (a) - (f), (h): residuals in S = A sin z, 
z, A and R (total error) plotted against A and z. Units are degrees on the x axes and arcsec on they 
axes. (g) Scatter plot of residuals (U =up; L =left). (i) Histogram of errors in X = h cos a, D =a, S, 
z and R. 
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Figure 2: The elevation component of the pointing model for the WHT Cassegrain focus, derived by 
fitting a model to the data, setting the sin z, tan z and sin 4z terms in f).z to 0 and plotting the residuals 
against zenith distance. 

they are logically part of the encoder model (see below). They are kept close to zero by changing the 
encoder model coefficients. The three simplest terms (elevation and azimuth index errors and left-right 
collimation) may be updated using the CALIBRATE procedure (see below). The remaining geometrical 
terms are the non-perpendicularity of azimuth and elevation axes and the tilts of the azimuth axis in 
the north-south and east-west directions. 

It is worth noting that a clock error is equivalent to a tilt of the azimuth ax.is in the east-west 
direction, together with an azimuth index error. A 1 s clock error is equivalent to a change in axis tilt 
by 15cos </> arcsec and an azimuth offset of -15sin </> arcsec. If an error is made in the time (e.g. because 
UTl-UTC is not updated frequently enough, or as a result of time service drift) when the telescope 
pointing is determined, then it may become absorbed in these coefficients, causing confusion later. 

3.6.2 Elevation Flexure 

The pointing model includes a number of terms which model the tilt and flexure of the structure. 
Three of these describe the effects of gravitational deflection on the telescope tube and main mirrors. 
The biggest effect is due to relative translation of the top and bottom ends. The pointing error is 
given to a surprisingly good approximation by the f).z ex sin z (Hooke's Law) relation for a simple 
beam. The form of the deflection is plotted in Figure 2; it is modelled by an expression of the form 
.6.z = (1 sin z + (z tan z + (3 sin 4z. 
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Figure 3: The elevation harmonic component of the pointing model for the WHT Cassegrain focus, 
derived by fitting a model to the data, setting the harmonic terms to 0 and plotting the residuals in 
zenith distance against Azimuth. 

3.6.3 Azimuth Harmonics 

The remaining terms in the pointing model are harmonics of azimuth of the form: 

D.z cx: sin nA 

D.z ex: cos nA 

~A sin z ex sin nA 

~A sin z ex cos nA 

where n = 1, 2 or 3 (~Asinz is the left-right error on the sky). These represent tilts of the entire 
telescope, due primarily to deviations of the azimuth track from a plane. Their effects are illustrated 
in Figures 3 and 4. 

3. 7 The focal-plane coordinate system 

It is often necessary to offset the telescope in such a way that an image moves by a given vector in 
the focal plane, regardless of rotator position angle. The conventional usage for such an operation 
("beamswitching" or "aperture offsetting") comes from two-channel photometry. The TCS defines a 
Cartesian coordinate system (xA, YA) in the focal plane for this purpose. If the position angle of the 
rotator in the mount coordinate system is PM, then the y A axis is aligned with the vertical direction 
for PM = 0. The origin of the system is fixed by the intersection of the instrument rotator axis of the 
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Figure 4: The azimuth harmonic component of the pointing model for the WHT Ca.ssegrain focus, 
derived by fitting a model to the data, setting the harmonic terms to 0 and plotting the residuals in 
D.S = D.A sin z against azimuth. The mean of the four tape encoder heads was used to measure azimuth 
for this test. 

16 



( 

focal station in use with the focal plane. Positions in this system are referred to as "apertures". If 
a given (xA, YA) offset is introduced, an image coincident with the rotator centre will be moved to a 
position fixed in the focal plane, independent of sky position angle, 0. Consequently, any movement of 
the rotator causes the telescope to be offset in such a way that the field appears to rotate about (xA , 
YA)· Apertures are numbered from 0 - 10, aperture 0 (the "reference position") being a special case. 
Aperture 0 is the default on change of source and can be set to some useful position on the instrument, 
such as the centre of a spectrograph slit or polarimetric dekker. It is particularly important if the 
instrument is significantly displaced from the axis of rotation. The remaining aperture positions are 
selectable by the user, as described in Appendix C under the ENTER, STORE, APERTURE and BEAMSWITCH 
commands. · 

It is possible to define an aperture interactively using a mode of the handset (see Appendix D). An 
image is centred on the reference position using one of the xy, o:b or ar modes. The handset is then 
switched to the XAYA system and the image is moved to the desired position in the focal plane, which 
is then kept for latter use. The XAYA mode may be used whilst autoguiding, since the position of the 
guide star on the autoguider CCD is then automatically compensated for motion in the focal plane. 

A rotational offset PA may be introduced in an analogous way. This is conceptually a change in the 
conversion between virtual sky PA and actual mount PA. In the acquisition of a field onto a multislit 
mask or long slit, for instance, it is necessary to correct for rotational errors (e.g. incorrect positioning 
of the mask in the instrument) as well as translational ones. In addition, some instruments (e.g. the 
Utrecht Echelle Spectrograph) have a rotating slit unit which changes the relation between mount and 
sky PA. The TWEAK command (Appendix C.73) implements an XAYAPA offset which also works whilst 
autoguiding. The xy coordinates for this command may be in a different system from XAYA, and 
scale, rotation and handedness conversions are done using instrument-dependent parameters. Thus, for 
example, the TCS will accept the displacement and rotation output by the LEXT software used for 
aligning multislit fields. 

3.7.1 Rotation and focus 

The handset allows the sky PA and focus values to be adjusted interactively. 

3.8 Tilt and translation of optical surfaces 

Tilts and relative translations of the primary, secondary and tertiary mirrors cause significant pointing 
errors. The reproducible parts of these errors are taken out by the pointing model, but significant 
residuals remain. The secondary mirror tilts by small amounts within its cell as the telescope elevation 
changes (Figures 5 and 6). Since the tilt shows some hysteresis, it is measured using three displacement 
transducers and corrected as a collimation error rather than being included in the pointing model. A 
similar technique may be applied in the future to compensate for small tilt errors of the primary mirror 
measured using the support load cells. Relative translation of the primary and secondary mirrors is 
currently included in the pointing model, primarily in the term proportional to sin z. 

The pointing corrections required for primary and secondary tilts Ep and Es and relative translation 
( are given by the following formulae, in the notation of Schroeder (1987). A rotation of the secondary 
by Es causes a displacement of the image in the focal plane of 2Es( d + fi/3), where d is the separation 
of the primary and secondary mirrors, Ji is the focal length of the primary and f 1 /3 is the back-focal 
distance. This corresponds to a pointing error of 6.s = 2Es(d + f 1/3)/ f = 2kEs, where f is the focal 
length of the two-mirror system and k is the ratio of the heights of rays at the margins of secondary and 
primary. For the vVHT, .6.s = 0.460/Es if the two quantities are in the same units. A relative translation 
of the two mirrors by ( perpendicular to the optical a.xis results in an image motion in the focal plane 
of -((d + f 1/3)/ h (where h, the focal length of the secondary mirror, is < 0), so the pointing error is 
6.t = -((d + f 1/3)/ hf= -kb/ Ji . .6.t = +15.25( for 6.t in arcsec and (in mm. Finally, the effect of 
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Figure 5: The variation of secondary tilt in elevation with elevation for the William Herschel Telescope. 
The telescope was driven from the zenith to an elevation of 10° and back. Note the hysteresis effect. 

tilting the primary mirror by an angle Ep is an image movement in the focal plane of 

The corresponding pointing error is D.p = 2Ep, as expected for a single-mirror telescope. 

3.9 Derotation Optics 

In order to correct field rotation for stationary instruments mounted on the N asmyth platforms, optical 
derotators consisting of two Dove prisms and a fl.at mirror are used (Bingham 1984). These are mounted 
on the instrument rotators and are driven by the TCS. The derotators are aligned using the altitude 
axis as a reference, but small residual errors remain to be corrected by the TCS. A first-harmonic 
term is introduced if the components of the derotation optics are not in accurate relative alignment; a 
second-harmonic term corresponds to a tilt of the whole assembly with respect to the axis of rotation. 
For an input beam along this axis, the path of an image in the focal plane of the telescope may be 
described as follows: 

XA = xo +a cos(p - P1) + b cos(2p - p2) 
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YA =Yo+ a sin(p - P1) + b sin(2p - P2) 

where p is the mount position angle of the instrument rotator and a, b, Pl and p2 are constants. 
This is the sum of two circular motions, with periods of 180° and 360° in mount position angle. In 
practice, however, the measured second-harmonic term is a mixture of two effects: the tilt of the optical 
assembly with respect to the rotation a.us and the misalignment of the input beam with that axis. Their 
superposition is still a circle, and it is always possible to find a position in the field where the image is 
stationary (the "rotator centre") provided that the first-harmonic term is zero. 

These errors are measured by imaging a star onto an autoguider or acquisition camera whose field 
includes the centre of rotation and logging its position periodically as the derotation optics are turned 
through a full revolution. An example of a measured track is shown in Figure 7. A correction is 
implemented as an offset in the focal-plane coordinate system: residuals are plotted in Figure 8. 

3.10 Focus 

The focus of the telescope depends on temperature (through expansion of the structure), on elevation 
and on the optical thickness of filters and other components in the beam above the focal plane. The 
focus value input by the user is a virtual position, whose value does not change with these quantities 
and which should depend only on the focal station. It is compensated for expansion using temperatures 
measured by a pair of platinum resistance thermometers on the upper Serrurier trusses which are 
connected to a Camac ADC module. A linear model is then used to correct the demand focus position. 
No significant variation of focus with elevation has yet been detected, although provision has been made 
for an appropriate model. Finally, the focus correction for above-slit filters, polarization elements and 
similar components are input using the DFOCUS command. This may be issued automatically from the 
system computer when the component is inserted into the beam. 

3.11 Autoguiding 

In order to correct for irreproducible tracking errors, two types of detector may be used to provide 
autoguiding signals: off-a.us autoguiders and acquisition cameras (which view the spectrograph slit 
jaws). The methods used to autoguide the WHT are described in detail in AG and only a brief 
summary is given here. 

Both types of detector measure image centroid positions, which are sent to the TCS at intervals 
between 0.1 and 10 s. These are converted from pixel coordinates to the TCS focal-plane system, 
correcting for the orientation of the guide probe if necessary, and finally rotated to mount AE and 
added to the position demand. The accumulated autoguiding corrections are stored separately as 
tangent-plane coordinates in the mount system, rather than being used to update the target right 
ascension and declination. This reflects the fact that, in normal use, the autoguider is maintaining the 
image of a given position at a fixed point on the instrument. 

3.12 Pointing Calculations 

This section outlines the sequence of calculations which perform the pointing corrections described 
earlier. The treatment by Wallace (1990) is followed closely. The pointing calculations can be divided 
into those done once (on startup, irregularly when the parameters affecting them are altered or on 
change of target) and those performed in three loops running at 1/300, 1 and 20 Hz. Unit vectors and 
matrices are used throughout for efficient and rigorous computation. 
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Figure 7: The track of an image on the autoguider at the UES Nasmyth focal station of the WHT 
during a full revolution of the derotation optics, without the corrections described in the text. The 
autoguider was placed at the approximate centre of rotation for this test. Note the first a.nd second 
harmonic components. The best fit to the model in the text is also shown. 
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Figure 8: The track of an image on the autoguider at the UES Nasmyth focal station of the WHT during 
a full revolution of the derotation optics, with the corrections described in the text. The systematic first 
and second harmonic errors are negligible, but there is some random scatter due to residual tracking 
drift during the test, and to poor seeing. 
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3.12.1 Startup 

When the TCS starts up, the default values of UTl-UTC and polar motion are calculated from the 
extrapolation formulae given in IERS Bulletin A. They may be overridden at any time thereafter. 

3.12.2 Startup and on change of input parameters 

A set of calculations is done at startup and thereafter only when relevant parameters are changed: 

• Evaluation of the refraction coefficients RA - RE, which depend on pressure, temperature, hu­
midity and wavelength. 

• Correction of latitude and longitude for polar motion. 

• Derivation of the rotation matrix which corrects for azimuth a.xis tilt. 

• Calculation of the constant of diurnal aberration. 

3.12.3 Source change 

The operations done once, on change of target, are: 

• Correction of space motions to the current epoch. 

• Formation of the precession matrices needed to convert from FK4 input coordinates to FK4, 
B1950.0 or FK5 input coordinates to FK5, J2000.0, as appropriate. 

• For a blind offset only, conversion of accumulated handset corrections to collimation corrections. 

3.12.4 Slow loop: target independent calculations 

A number of quantities which change slowly and which are independent of the target being observed are 
calculated once every 300 s. These are: TDT and TDB, Julian and Besselian epochs and the equation 
of the equinoxes. 

3.12.5 Slow loop: target-dependent calculations 

The other portion of the slow loop calculat es the parameters needed to convert from mean to apparent 
place (precession and nutation matrices and aberration vector). These depend on the input coordinate 
system and the current time, but not on the target position, to which they are applied at higher 
frequency. 

3.12.6 Medium-frequency loop 

The function of the medium-frequency (1 Hz) loop is essentially to derive a pair of matrices Mu A and 
MAM which perform the transformation of a unit vector pointing at the target from user coordinates 
(U) to apparent coordinates (A) and from apparent to mount coordinates (M), respectively. These are 
then applied at the full loop rate. This avoids the need to re-evaluate pointing corrections which do not 
change abruptly, but retains the ability to offset the telescope rapidly by changing the target position 
or collimation corrections. In addition, the medium-frequency loop is used to derive the displayed 
telescope position in a variety of coordinates systems. 

MuA and MAM, called "osculating transformation matrices" by Wallace (1990) are determined as 
follows: 
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1. Generate three unit vectors around the target position. 

2. Transform them through the relevant portion of the pointing :flow. 

3. Solve for the matrix that precisely transforms the input to the output vectors. 

The matrix would be orthogonal for pure rotations, but some of the pointing corrections (e.g. refraction) 
cannot be modelled in this way. The matrix gives a smoothly changing transformation which should 
be accurate for any vector close to the target. 

The computations included in Mu A are: 

• FK4 to FK4 Bl950.0, using the precession matrix calculated on source change. 

• FK4 Bl950.0 to FK5 J2000.0, or 

• FK5 to FK5 J2000.0. 

• FK5 J2000.0 to geocentric apparent. 

Therefore, 

where VA and vu are unit vectors in user and apparent ob coordinates. 
The terms in MAM are: 

• Rotation from (a.,6) to (-h,o) (by the local apparent sidereal time). 

• Diurnal aberration. 

• Rotation to (A, E) (by tr /2 - </> about the elevation axis). 

• Refraction. 

• Correction for azimuth a.xis tilt. 

and, 
VM = J..tJAMVA 

where VA is a unit vector in the mount coordinate system. 
In addition to transforming the three probe vectors in order to derive Mu A and MAM. the medium­

frequency loop does the same for the precise target position. The results of intermediate stages in the 
computation are used to generate the displayed telescope position in various coordinate systems. 

3.12. 7 Fast loop 

The fast (20 Hz) loop performs the following operations: 

1. Get UTC and calculate UTl and local apparent sidereal time. 

2. Work out the UTC interval since the start of the track. 

3. Apply handset xy, a.fl or ar increments accumulated since the last cycle to the running total. 

4. Add offsets, handset corrections and non-sidereal tracking corrections to the target position. and 
generate a unit vector vu in the user coordinate system. 

5. Correct the autoguider reference position for XAYA or rotational offsets since the last cycle. 
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6. For the current and next cycles: 

(a) Apply MuA and MAM to generate a unit vector in the mount coordinate system, VM· 

(b) Work out the collimation corrections which are specified in the focal-plane ( x A, YA ) system 
and rotate them to mount (A, E) . These are aperture offsets, autoguiding errors and the 
corrections for misalignment of the derotation optics. 

( c) Add the collimation corrections which are specified in (A, E), that is the azimuth collima­
tion error, non-perpendicularity of azimuth and elevation axes, harmonic terms and blind 
offset model. The collimation errors are applied by calculating the azimuth and elevation 
corrections .6..4, .6.E from the tangent-plane offsets a, T using the formulae given earlier and 
rotating the unit vector by these amounts. 

( d) Correct for elevation flexure. 

( e) Calculate demand A and E from the unit vector and apply index errors. 

7. The demand positions for the next and current cycles are differenced to derive a velocity pre_dic­
tion. 

8. The demand mount position angle is derived by constructing a vector in the user coordinate system 
which is orthogonal to the target vector and parallel to the projected north-south direction. This is 
transformed into mount coordinates by multiplying by the matrices Mu A and MAM and the angle 
between it and a vector along the direction of the local vertical in the focal plane is generated. 

9. A correction is then made for collimation errors, which are not included in the matrices. 

10. The calculation is also done for the current and next cycles, in order to derive a velocity. 

Rotator index errors are included in the encoder model. 

3.12.8 Sequence of operations on change of source 

The use of cascaded loops requires some care on change of source, in order to avoid using matrices 
derived for one object in calculations for another, especially as only the fast loop is uninterruptible. 
The order of operations is as follows: 

1. One-off calculations are done by the user interface command routine. 

2. The slow loop is then triggered immediately. Since it can be interrupted, its results are not made 
accessible to the rest of the TCS until the calculations are complete (meanwhile, the results of 
the last cycle are used). 

3. The medium-frequency loop is then triggered in a similar way. 'When it has completed, it instructs 
the relevant mechanisms to move by modifying their command fields (see below). 

4. Finally, the next cycle of the fast loop detects that a source change has happened, and performs 
a number of special operations: 

(a) Set the new target position. 

(b) Clear positional, aperture and rotator offsets and handset corrections. 

( c) Store the UTC at the start of the track in order to apply non-sidereal tracking corrections. 

( d) Stop autoguiding. 

( e) Recalculate the sky position angle if the rotator is being driven so as to minimise the slew 
time or to set the spectrograph slit vertical at the start of an observation. 

(f) Decide which way to move the azimuth and rotator if there is more than 360° of travel and 
the demand position is ambiguous (the closest position is always selectc<l). 
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4 Drives and Encoders 

4.1 Mechanism control 

4.1. l General 

Each mechanism is described within the TCS by a record containing the following fields: 

Demand position The desired position for the mechanism in the mount coordinate system, either 
updated continuously during a sidereal track or set to a constant value if a mechanism is to be 
moved to a given position and stopped. 

Actual position The position of the mechanism in the mount coordinate system (corrected for any 
errors peculiar to the encoding system). This should be equal to the demand position if the 
telescope is tracking or stopped in position. 

Command field The field set by the user-interface command routines in order to instruct the mech­
anism to move, stop or zeroset. 

Status field The field which records whether the mechanism is: moving or stopped, following or not 
following, in position or not and zeroset or not. 

Servo constants A general servo algorithm is used for the main mechanisms. This allows for: 

1. A velocity demand proportional to the square root of the position error at large distances 
from the target. 

2. A PID controller for small errors. The velocity demand for a sidereal track is the sum of 
that predicted by the pointing loop and the output of the PID algorithm. 

Limits Software limits on position (positive and negative), velocity and acceleration can be set, al­
though some (e.g. the rotation limits for the Nasmyth turntables) are not often used. If the 
demand position is outside a software limit, then the mechanism is stopped and an alarm is 
triggered; excessive velocities and accelerations are clipped. 

Stopping radius This is the tolerance within which a mechanism will be set by a command to move 
to position and stop. 

In-position radius The in-position radius defines the tolerance within which observing is possible for 
a moving mechanism. If the position error is less than this value, then the mechanism is said to 
be "tracking". 

"Following" means that the position of the mechanism is being updated continuously. For altitude, 
azimuth, field and dome rotation this is done during a sidereal track; the focus is adjusted in response 
to changes in temperature. 

The TCS performs mechanism control in three logical stages: 

1. The user-interface routines (one for each of the commands listed in Appendix C) either initiate 
the continous updating of demand positions required if the mechanisms concerned are following 
or set a constant value if not. They then modify the appropriate command and status fields. 

2. The pointing calculation is executed in four loops (once/source change, 1/300, 1 and 20 Hz) as 
described in Section 3 if a sidereal track is in progress. All this does is to update the demand 
position. 
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3. A second set of routines running at 20 Hz reads and decodes the time and encoders, looks at 
the command and status :fields for each mechanism, and at the demand and actual positions, 
calculates velocity demands, checks for software limits and outputs appropriate commands to the 
drives. 

4.1.2 Rotator modes 

A number of different ways of controlling the field rotation have proved to be useful in practice: 

1. The sky position angle is specified explicitly, as discussed earlier. 

2. On change of target, the demand sky position angle is recalculated to cause the minimum rotation 
from the present position. Thereafter, sidereal tracking continues as in the first option. 

3. The mount position angle is specified. The main applications are: to keep a spectrograph slit 
vertical so that differential refraction does not cause significant light loss and optical testing, 
where the test equipment should not rotate with respect to the mirrors. Off-axis autoguiding is 
not currently possible in this mode, although modifications to allow it over a limited range of 
rotation are described in AG. 

4. The sky position angle is reset on change of target to place the slit vertical, but thereafter to 
track at sidereal rate. This allows autoguiding whilst minimising the effects of refraction. 

At the Nasmyth foci , three modes are possible: 

1. The instrument is stationary and derotation optics are used to maintain the field orientation. The 
field then rotates by twice the change in mount position angle. 

2. The instrument is stationary and the derotation optics are not fitted (the situation where they 
are fitted, but stopped, is not identical, since there is a constant rotational offset). 

3. The instrument is mounted directly on the rotator, as at the other focal stations, and is rotated 
to track the sky. 

4. The instrument is mounted directly, but is rotated to track the Nasmyth fl.at (p = ±E to a first 
approximation). This maintains the orientation of the instrument with respect to the telescope 
optics and is appropriate for optical testing and some interferometric applications. 

The TCS treats a Nasmyth focus with and without derotation optics as two separate focal stations, 
although the same physical drive and encoders are used for both. Different scaling factors are used for 
position and rate and the pointing models a.re independent. A stationary instrument without derotation 
optics is currently treated as a special case of a rotating instrument with a constant mount position 
angle but this is unsatisfactory in principle (e.g. flexure of the rotator is relevant only if the instrument 
is attached to it). 

4.1.3 Wrap problems 

Azimuth and Cassegrain field rotation have more than 360° of travel and parts of their ranges are 
ambiguous. On change of target, the TCS selects the nearest option by default, regardless of the time 
remaining before a limit is hit (Section 5.2). It is therefore occasionally necessary to rotate by a full 
turn in order to avoid tracking into a limit or to reset the mechanism if a limit has been hit during 
observing. This is done using the UNWRAP command (Appendix C), which has four modes of operation, 
depending on the initial state of the mechanism: 
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1. If the mechanism is tracking normally, and is in its ambiguous range, then the demand position 
is changed by 360°. 

2. If a software limit is encountered during tracking, then the demand position is reset and the 
mechanism is commanded to move. Offsets and other accumulated corrections are preserved; 
otherwise the effect is the same as slewing to the target again. 

3. If the mechanism is stopped in an ambiguous part of its travel, then it is rotated by 360° and 
stopped again. 

4. If the mechanism is in the process of being driven to a fixed position, then this position is altered 
by 360° (if possible) and the move continues. 

4.2 Encoders 

4.2.1 General 

Multiple encoding systems are used on the azimuth, elevation and rotator axes. The purpose of the 
encoder models used by the TCS is to produce estimates of the position of each axis which are indepen­
dent of the details of the encoding hardware, so that values from different encoders can be combined 
or compared. Four types of encoder are used: 

Absolute These are optical absolute encoders of relatively coarse resolution used primarily to set 
initial zero-points and thereafter as a check. They are gear-driven and are used on all a.xes. 

Gear The primary encoders used in normal operation are gear-driven optical incremental systems. 
They are zeroset against the absolute encoders when the TCS starts up. 

Tape The azimuth a.xis is equipped with an inductive tape encoder with four reading heads (Amos et 
al. 1992). This has higher performance than the gear encoder and is likely to become the primary 
system for azimuth once its stability and robustness have been verified. 

Roller The altitude and azimuth a..xes are also fitted with friction-driven encoders. These have proved 
to be unsatisfactory and are not currently used. 

The raw values read from the encoders are processed through a model which has the following 
components (not all of which are used for every encoder): 

1. Scale and zero-point. 

2. A look-up table, which is derived from smoothed tracking data. 

3. Sinusoidal and triangular functions of arbitrary period and phase. 

4. A correction derived from displacement measurements (see below). 

The zero-points of the incremental encoders may be determined in a number of different ways: 
by comparison with the absolute encoders; by driving the telescope past a reference position where a 
proximity detector produces a hardware signal to clear the counter or by driving the telescope to one 
of its hardware park position, which are defined by independent microswitches. 
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Figure 9: The azimuth drive and encoder gear train (from Amos et al. 1992). 

4.2.2 Azimuth gear encoder 

Fourier analysis of tracking and encoder difference data can be used to identify periodic components 
and this has been done in detail for the azimuth axis as part of the test programme for the tape encoder 
(Amos et al. 1992). Several obvious spatial frequencies result from the layout of the drive chain and 
encoder gearing (Figure 9): these are listed in Tables 2 and 3, respectively. The most sensitive way of 
detecting short-period errors is to difference the gear and tape encoders whilst the telescope is moving 
very slowly and then to take a Fourier Transform (Figure 10). 

The largest systematic error affects the gear-driven encoder on the azimuth axis. The radial hy­
drostatic support of the telescope is insufficiently stiff to prevent sideways movement. There are two 
main effects. Firstly, the opposing anti-backlash torques of the two azimuth drive motors cause the 
telescope to displace sideways by about 50 µm along the perpendicular to the line joining them. Ro­
tation in azimuth then leads to a first-harmonic error. Secondly, there is a sideways movement with 
the tooth period of the main drive gear (0.4018°). The encoder sees a component of the translation 
as an apparent azimuth error of amplitude 2 - 3 arcsec (Figure 11). In order to remove these effects, 
a pair of displacement transducers is used to measure the translation along the appropriate direction. 
These are mounted on a fixed part of the structure, and impinge on a nominally cylindrical, precision­
ground surface on the telescope. Their readings are scaled, averaged (to remove the effects of elliptical 
distortion of the surface on which they bear) and subtracted from the encoder readings. Figure 12 
shows the scaled displacement corresponding to the tracking data in Figure 11. The correction removes 
approximately 97% of the 0.4018° error, but is still not entirely satisfactory, since additional errors a.re 
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Figure 10: A FFT of the difference between one of the tape encoder heads and the gear encoder in 
azimuth over a period when the telescope was being driven at a very slow, constant rate. Significant 
periods associated with both encoding systems are marked. The units of spatial frequency are degrees-1

• 
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Table 2: Characteristic spatial frequencies for the azimuth drive and gear chain. 

Component Calculation Period (deg) Detected? 

Spur tooth / bull gear 360/896 0.4018 Yes 
Spur gear rotation 38 x 0.4018 15.276 No 
First stage gear tooth 15.276 I 142 0.1076 No 
First stage gear rotation 38 x 0.1076 4.088 No 
Second stage gear tooth 4.088 /147 0.0278 Yes 
Motor shaft rotation 26 x 0.0278 0.7228 No 
First motor cogging frequency 0.7228/(190/2) 7.608 x 10-3 Yes 
First tacho ripple frequency 0.7228/(139/2) 0.0104 ? 

Table 3: Characteristic spatial frequencies for the azimuth gear encoder chain. 

Component Calculation Period (deg) Detected? 

Pinion tooth 360/896 0.4018 Yes 
Pinion rotation 22 x 0.4018 8.8392 ? 

Intermediate gear tooth 8.8392/170 0.0520 Yes 
Intermediate gear rotation 21 x 0.0520 1.092 Yes 
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Figure 11: The azimuth component of image motion measured with an on-axis acquisition camera. The 
gear encoder was used without corrections, in order to show the 0.4° error due to horizontal translation. 

introduced because the ground surface is not a perfect cylinder. 
Figure 13 shows the residual error in azimuth after subtracting the 0.4° component. The major 

remaining systematic error is a symmetrical sawtooth with the period (1.09°) of rotation of the second 
gear in the encoder gearbox and an amplitude of 0.88 arcsec. It is modelled using a triangular function 
derived from tracking data. An example of a tracking test with all encoder corrections turned on is 
shown in Figure 14. Nate that the error measured on the sky is multiplied by cos E ( ~ 0.62 for this 
test). 

Figure 15, shows an FFT of open-loop tracking errors using the gear encoder. The trace is dominated 
by three components: the translation error at 0.4018° and the rotation (1.09°) and tooth (0.052°) 
periods of the second encoder gear. The first two of these are the residuals of the corrections described 
earlier, and represent roughly 33 and 113 of the original uncorrected error, respectively. 

4.2.3 The azimuth tape encoder 

The tape encoder deals with the problem of translation by averaging the readings from heads placed 
180° apart, which see equal and opposite effects. The residuals for a single tape head show a first­
harmonic component of amplitude 3 arcsec due to the wander of the axis of rotation mentioned earlier 
and the 0.4018° translational error, but neither of these effects is significant in the mean. 

The tape is manufactured with a pitch of 2 mm, and errors at the first (0.038°) and second (0.019°) 
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Figure 12: The correction to the azimuth gear encoder reading derived from displacement transducer 
readings for the data in the previous figure. 
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Figure 13: The azimuth component of image motion measured with an on-axis acquisition camera 
after subtracting the 0.4° translational error from the gear encoder reading. The 1.09° sawtooth cor­
responding to the rotation period of the second gear in the encoder gearbox is clear in this diagram. 
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Figure 14: The azimuth component of image motion measured with an on-axis acquisition camera. for 
a track between elevations of 49° and 56°. The gear encoder was used to measure azimuth position, 
after correction for 0.4° and 1.09° errors. Note that the error measured on the sky is cos E ~0.62 of 
that displayed here. 
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Figure 15: FFT of open-loop tracking errors in azimuth, measured using an on-axis TV camera for 
the gear encoder. The units of spatial frequency are degrees-1 • The three prominent periods are: the 
residual from the second encoder gear rotation period (0.9 deg-1 or 1.09°), the residual translational 
error at the main drive tooth period (2.5 deg- 1 or 0.4018°) and the tooth period of the second encoder 
gear (19.2 deg- 1 or 0.052°). 

harmonics of this period are expected. The r.m.s. pitch errors for a single head are <0.025 arcsec 
(first harmonic) and 0.036 arcsec (second harmonic) on average, with significant differences between 
individual heads. When all four heads are averaged, however, these errors are undetectable ( <0.01 arcsec 
and <0.025 arcsec r.m.s., for first and second harmonics, respectively). Large-scale errors are expected 
from the manufacturing process (these were calibrated before the tape was fitted), from uneven fitting 
of the tape to the telescope and from the tape join. With no calibration, the maximum discontinuity 
on the WHT would be averaged to 0.3 arcsec and scale non-linearities are no worse than one part in 
20000. The use of empirical look-up tables (implemented in the TCS but not yet calibrated) should 
lead to further improvements. Models for individual heads should also be introduced in order to allow 
arbitrary combinations to be used in case of failure. 

The superior tracking performance of the azimuth tape encoder is illustrated in Figures 16 and 17 
(compare Figures 14 and 15, noting the changes of scale). The tape encoder is free of obvious periodic 
components (even tape pitch errors) and this test gives a good illustration of current performance limits 
under optimum conditions. The r.m.s. error is 0.11 arcsec, superimposed on a mean drift of 0.12 arcsec 
in 36 minutes. During this period, the servo position error was 0.049 arcsec r.m.s. In addition, some 
contribution to image motion (very roughly 0.05 arcsec r.m.s.) comes from the atmosphere, so a best 
estimate of the contribution from systematic encoding errors is 0.09 arcsec r.m.s. The tape encoder 
is also superior on large scales: the r.m.s. residuals in A cos E from a pointing model fit are typically 
0.8 arcsec and 0.6 arcsec, respectively, for the gear and mean tape encoders. 

The tape encoder is clearly superior and will become the primary encoding system in azimuth once 
its stablity and reliability have been fully tested. As a results of the study described in Amos et al. 
(1992) and summarised here, encoders of this type have been selected for the Gemini telescopes. 

4.2.4 Elevation encoding 

The elevation axis has not been subjected to as detailed an analysis as the azimuth axis, partly because 
only one encoder is fitted, but also because its systematic errors are much smaller. Part of the reason 
for this is that translational errors act against gravity, and are therefore much less likely to move the 
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Figure 16: The azimuth component of image motion measured with an on-axis acquisition camera. The 
mean of the four tape encoder reading heads was used to derive the azimuth position. The duration 
of the track was 36 minutes and the initial elevation was 45°, so the error measured on the sky is 
cos E ~o. 7 of that displayed here. 
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Figure 17: FFT of open-loop tracking errors in azimuth, measured using an on-axis TV camera for the 
mean of the four tape encoder heads. The units of spatial frequency are degrees-1 . Note the change of 
scale from the equivalent plot for the gear encoder. 
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Figure 18: The elevation component of image motion for a tracking test between elevations of 49° and 
56°. 

telescope. The encoder gearbox is also significantly better than the azimuth equivalent. Figure 18 
shows the elevation component of the tracking test in Figure 14. 

5 Display Calculations 

5.1 The Information Display 

5.1.1 General 

The Information Display is a set of text pages updated at 1 Hz which describes the current state of 
the telescope. Its layout is described in detail in Appendix E and the present section is concerned only 
with non-trivial calculations, particularly those involving limits (section 5.2). The other areas worth 
noting are the calculation of telescope a and 6 and air mass. 

The telescope right ascension and declination are only displayed when the position errors are small. 
The reason for this is that they are derived (in the medium frequency pointing loop) from the demand 
positions, after making a small correction for the servo error, in order to avoid a full reverse transfor­
mation. Since the errors are in (slightly) different coordinate systems, this approximation breaks down 
far from the tracking condition. For similar reasons, there are restrictions on the coordinate system in 
which the telescope position may be displayed, as described in Appendix C.18. The pointing transfor­
mations are carried out in the order: mean FK4, mean FK5, geocentric apparent, topocentric h, 6, as 
described earlier. The position may be displayed in any system downstream of the input system, but 
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not in one requiring a reverse conversion. 
The formula used for air mass relative to zenith is equation 7.5.34 of Murray (1983) rather than the 

commonly-used sec z. 

5.2 Limit Calculations 

The efficient planning of a sequence of observations depends on the ability to calculate the period of 
time a target can be observed, starting from a given telescope position. This is complicated in the case 
of an altazimuth mount by the fact that the azimuth and rotator drives have finite ranges of travel. 
The following calculations have not been published elsewhere, and are therefore given in detail. 

5.2.1 Elevation Limits 

It is clear that an object is always above the horizon limit if 8 > 7l" - </> - z and always below it if 
8 < </> - z. These declinations are +71.24° and -51.24°, respectively for the WHT. An object with 
declinations between these values rises above the elevation limit at an hour angle -h, where: -

cos z = cos 8 cos h cos </> + sin 8 sin </> 

or 

h (
cos z - sin 8 sin</>) = arccos 

cos 8 cos</> 

and sets at hour angle +h. 

5.2.2 Azimuth 

Azimuth is given in terms of hour angle and declination by the expressions in Section 2. Therefore: 

A 
- sinh cos8 

a= tan = ----------­
sin 8 cos </> - cos 8 cos h sin </> 

Squaring this equation gives a quadratic in c = cos h: 

where 

Bc2 +Cc+ D = O 

B = cos2 8(1 + a2 sin2 </>) 

C = - 2a2 sin 8 cos 8 sin</> cos</> 

D = a2 cos2 ¢sin2 8 - cos2 8 

The discriminant of this equation is: 

C 2 
- 4B D = 4 cos2 o[a2( cos2 o - cos2 </>) + cos2 8] 

An object never encounters an azimuth limit if 

cos 8 < I sin .4 cos <Pl 

or 
8 > arccos( I sin A cos 4>1) 
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for a telescope in the Northern hemisphere. The WHT's positive azimuth limit is set at A = 355°, 
which corresponds to a declination of 8 :::: 85.62°. For declinations less than this value, the quadratic 
has the solutions: 

h ± { 
a2 sin 8 sin <P cos¢± [a2( cos2 8 - cos2 ¢) + cos2 8]112)} 

:::: arc cos 
cos o(l + a2 sin2 ¢) 

The first ± in the solution results from the fact that we have used an equation for cos h and cannot 
distinguish between positive and negative hour angles. The ambiguity can be sorted out by inspection or 
more formally by noting that, since sin A. = - cos 8 sin hf sin z with -7r /2 ::; o ::; 7r /2 and 0 ::; z ::; 7r /2, 
sin A and sin h must have opposite signs. The second ± occurs because an object may pass through 
the same azimuth twice. The telescope will, however, be moving in opposite directions in azimuth in 
the two cases and a limit forbids motion only in one of these. 

In the case of the WHT, the positive and negative limits are at A = 355° and A = -175°, respectively. 
The azimuth velocity is given by: 

A
' . ,;.. cos ¢ cos z cos A 

:::: Sln 'I' - -----­
sin z 

The azimuth of an object at A= -175° therefore always increases with time and the negative limit is 
irrelevant for normal tracking. The positive limit can only be encountered when tracking a Northern 
object below the Pole and this corresponds to the solution: 

h { 
a 2 sin o sin <P cos¢ - [a2( cos2 o - cos2 ¢) + cos2 o]112 } :::: + arccos 

cos o(l + a2 sin2 ¢) 

Objects below a certain declination will encounter the horizon limit first. We equate the expressions 
for cos h derived for the elevation and azimuth limits. The resulting equation reduces to a quadratic in 
s :::: sin o: 

Es2 + Fs + G:::: 0 

where 

E 1 + a2 

F -2 cos zsin ¢(1 + a2
) 

G cos2 z(l + a2 sin2 ¢) - cos2 <P 

For the vVHT, A = 355°, z = 80° and <P = 28.76°. This gives the solution 8 = 70.66°. Hence the 
azimuth limit is only relevant for declinations between 70.66° and 85.62° when tracking below the Pole. 

5.2.3 The zenith blind spot 

The condition for the tracking speed in azimuth to exceed V is µjdA/ dhj > V, where µ is the tracking 
rate in hour angle (15 arcsec s- 1 ). We define v = ±V/ µ ( = ±240 for the WHT, the sign being negative 
to the North of the zenith and positive to the South) and solve the equation dA/ dh = v for cos h to 
give the hour angle at which an object enters the blind spot. 

v dA./dh 

= 

cos 'ljJ cos o / sin z 
cos o( cos 0 sin <P - sin 0 cos <P cos h 
1 - (cos o cos h cos <P + sin o sin <P )2 
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This can be rewritten in the form: 
Hc2 +le+ J = 0 

where (as before) c = cos h and 

H +v cos2 8 cos2 <P 
I = cos 8 sin 8 cos <P ( 2v sin <P - 1) 

J = cos2 8sin¢-v+vsin2 8sin2 ¢ 

The relevant solutions are: 

h sin 8(1 - 2lvl sin¢)± (sin2 8 - 4jvj sin¢+ 4v2)1/2 cos = ~---'~~-'--'~~'----'-~~~--'---'--~~~---'-~ 
. ±2jvjcos8cos¢ 

where the + and - signs refer to objects passing South and North of the zenith, respectively. 
Solution of this equation confirms that a simple approximation is sufficient to give the range of 

declinations which is affected by the zenith blind spot. Close to transit: 

dA/ dh ~ cos <Pf sin( 8 - ¢) 

so the condition jdA/dhl > lvl gives 18 - <Pl< cos¢/v. For the WHT, this corresponds to 8 = ¢± 0.21° 
or 28.55° < 8 < 28.97°. In the worst case, the azimuth velocity first exceeds 1 deg s-1 at an hour angle 
of -31 s, so for all practical purposes it can be thought of as entering the blind spot exactly at transit. 
The telescope will then rotate as rapidly as possible in order to acquire the object at the other side of 
the blind spot. This takes roughly 3 minutes at full speed. 

5.2.4 Rotation limits 

We start from the expressions relating sky and mount position angles and parallactic angle given in 
Section 2. The variation of parallactic angle with hour angle for various declinations is shown in Figure 
19. The parallactic angle is undefined at the zenith (8 = ¢ , h = 0) and the nadir (8 = - ¢, h = tr ). In 
the special cases 'I/; = 0 and 'I/; = 7r, the hour angle is given by: 

'I/; = 0 => h = 0 for 8 < <P and h = tr for 8 > -¢. 

'I/; = 7r => h = 0 for 8 > <P and h = 7r for 8 < -¢. 

Curves of 'l/;(h) (Figure 19) pass through the following points: 

h = 7r, 'I/; = 7r and h = 0, 'I/; = 0 for 8 < -¢. 

h = 7r, 'I/; = 0 and h = 0, 'I/;= 0 for -¢ < 8 < ¢. 

h = 0, 'I/; = 0 and h = 7r, 7f; = 0 for 8 > ¢. 

During a sidereal track, a given parallactic angle may occur once, twice or not at all. The condition 
for 0 or 2 solutions is that the function 7/J(h) has extrema. Its derivative at a maximum or minimum is: 

'I/;' ( h) = - cos <P cos A/ sin z = 0 

giving the solutions cos A = 0 or A = ±tr /2. The expression for cos A given in Section 2 can be used 
to reduce this to: 

cos h = tau 8 / tan <P 
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Figure 19: The variation of parallactic angle with hour angle for the latitude of the La Palma Obser­
vatory. Curves are plotted for declinations of -45°, -30°, -15°, 0°, 15°, 30°, 45°, 60°, 75° and 90°. 
The curves are only plotted for observable elevations (> 10°). Declination increases upwards in the 
top-right quadrant and downwards in the bottom-left quadrant. 
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which only has solutions if-</> :S 8 :S </>. The maximum occurs for h > 0 (A = rr /2), so 

sin 'f/J = - cos </> sin A/ cos 8 = cos </> / cos 8 

and the minimum at h < 0 (A = rr /2), so 

sin 'f/J = - cos </> / cos 8 

Hence: 

• There are no solutions if-</> :S 8 :S </> and 11/J !< 71" /2, sin 'f/J > cos</>/ cos 8 or sin 'f/J < - cos</>/ cos 8. 

• There are two solutions if-</> :S 8 :S </> and - cos</>/ cos 8 < sin 'f/J < cos</>/ cos 8. 

• There is one solution if 8 > </> or 8 < -</>. 

In order to determine the hour angle corresponding to a given parallactic angle and declination, we 
start from the relations for sin 'f/J and cos 'f/J given earlier. These give: 

·'· cos </> sin h p = tan 'I" = -----------
(cos 8 sin </> - sin 8 cos </> cos h) 

This relation can again be squared and rearranged to give a quadratic in c = cos h: 

]( c2 + Le + M = 0 

with 
]( = (1 + p2 sin2 8) cos2 </> 

L = -2p2 sin 8 cos 8 sin</> cos</> 

M = p2 cos2 8 sin2 </> - cos2 </> 

There are no solutions if L2 - 4]( M < 0, which reduces to: 

as before. Otherwise, the possible solutions are: 

h ± { 
p2 sin 8 cos 8 sin</>± [p2( cos2 </> - cos2 8) + cos2 <f>]112 } = arccos 

cos </>(1 + p2 sin2 8) 

As with azimuth, the use of an equation for cosh with terms in tan2 'f/J introduces ambiguities (1/J and 
±,,P + nrr give the same value of p for any integer n). The sign of the arccos function is determined by 
noting that h < 0 if 'f/J < 0 and h > 0 if 'f/J > 0. We therefore take + arccos for 'f/J > 0 and - arccos 
for 'f/J < 0. This leaves the positive and negative roots of the quadratic. For 8 > </>, it is obvious from 
Figure 19 that there is only one solution for a given parallactic angle. In fact, for 0 :S 'f/J :S rr the 
roots correspond to parallactic angles 'f/J and 71" - 'f/J. Similarly for 8 < -</>, -11" :S 'f/J :::; 0 and the roots 
correspond to 'f/J and -1/J - rr. The situation for-</> :S 8 :S </>is different: either there are no roots (see 
above) or both roots correspond to the same parallactic angle. 

If 'f/J = ±rr /2, p2 --+ oo and the roots merge. In this case, 

h = ± arccos(± tan</>/ tan8) 

with the special cases h = ±rr /2 at the Poles. 
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Finally, we consider the sense of rotation. 

,,P'(h) = _ cos~cosA = _ cos</>~in</>coso [tano _ cosh] 
sm z sm2 z tan</> 

It is clear from this equation that 1/J'( h) is always < 0 for o > +</> and > 0 for o < -</>. For intermediate 
declinations, the quadratic has two valid solutions. The condition that its discriminant is zero is 
cos h = tan o /tan</>. Thus the positive root has cos h > tan o /tan</>, so ,,P' > 0. Conversely, the 
negative branch has cos h < tan o /tan</> and 'lj;' < 0. 

The limit conditions are as follows (note that the mount PA and parallactic angle increase in opposite 
senses): 

o > </> ,,P' < 0 for all hour angles, so the rotator can only track into the positive mount PA limit. 
Since the rotation is monotonic, the limit will eventually be reached from any starting position 
provided that the telescope is not stopped by the azimuth or horizon limit, each complete rotation 
taking 24 hours. It is possible for the telescope to track continuously if 0 >85.62°' in which case 
the length of the observation is restricted only by the positive mount PA limit (admittedly a 
somewhat academic example). The positive root of the quadratic applies if 11/J I> -,r/2, otherwise 
the negative root. 

-</> < o < </> There are no solutions if I sin 'ljJ I> cos</>/ cos o or I 'ljJ I> 7r /2, in which case no limits can be 
hit; otherwise both roots give valid solutions and either limit can be encountered provided that 
the initial value of the mount PA is sufficiently close. The condition is: 

(B- B0 ) - arcsin(cos<f>/ coso) < p < (B- B0 ) + arcsin(cos<f>/ coso) 

where p is the current mount position angle and (B - B0 ) is ranged by adding or subtracting 
multiples of 27r so that ( B - Bo) - P± is in the range [-7r, -,r]. The positive root corresponds to the 
negative mount position angle limit, and conversely. 

o < - </> The positive root is allowed, so ,,P' > 0 and the rotator can track into the negative mount 
PA limit. As for o > </>, the rotation is monotonic, so the turntable will eventually hit the limit 
provided that the object does not set first. For a telescope in the Northern hemisphere, such as 
the WHT, objects with o <</>are not circumpolar, so it is impossible for the turntable to rotate 
by more than a full turn whilst the object remains above the horizon. The negative root of the 
quadratic applies if I 'ljJ I> 7r /2, otherwise the positive root. 

5.2.5 Summary and practical limitations 

The effects of the elevation and azimuth limits and of the zenith blind spot are summarised for the WHT 
in Table 4. Only the elevation limit need be considered in most cases, the possibility of encountering 
the azimuth limit being restricted to a few northerly objects observed below the Pole. 

It should be noted that the azimuth and elevation limits are defined in the mount coordinate system 
and that further transformations are required in order to convert to astronomically-useful ( h, o). Since 
the index errors for the WHT are included to a good approximation in the encoder model, the difference 
between mount and topocentric apparent systems is not significant at the level of accuracy required 
( ~ 1 minute of time). If higher precision is required, then the full pointing model must be included 
in the calculation. The theoretical radius of the zenith blind spot has been used, and it is likely that 
tracking will become progressively less accurate as this is approached. For practical purposes, a larger 
radius might be appropriate. The rotator limits are summarised in Table 5(the same caveats apply as 
for azimuth and elevation limits). 
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Table 4: Summary of effective limits for the WHT. 

Declination Effective limit 

8 < -51.24° Never above elevation limit 

-51.24° < 8 < 28.55° Rises and sets at elevation limit 

28.55° < 8 < 28.97° Rises and sets at elevation limit; passes through blind spot 

28.97° < 8 < 70.66° Rises and sets at elevation limit 

70.66° < 8 < 71.24° Rises at elevation limit; sets at positive azimuth limit 
( + wrap) or elevation limit ( - wrap) 

71.24° < 8 < 85.62° Always above elevation limit; 
Sets at positive azimuth limit (+wrap only) 

85.62° < 8 No limits 

Table 5: Summary of turntable limits for the WHT ( 'ljJ = B - Bo - p, where Bis the sky position angle, 
B0 is an instrument-dependent offset and p is the mount position angle of the limit). 

Declination Effective limit 

8 < -28.76° Can hit negative mount PA limit 

-28.76° < 8 < 28.76° No limits if J sin 1/J I> cos 8 /0.877 
or J 7/J I> -;r/2; 
otherwise can hit either mount PA limit 

28.76° < 8 Can hit positive mount PA limit 
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6 Diagnostic Procedures 

6.1 Pointing tests 

In order to measure the terms in the pointing model, a grid of stars with accurately known positions 
covering all of the accessible parts of the sky is used. The stars are slewed to in sequence and centred on 
a given point in the focal plane (usually the rotator centre). The values of a and 8 in the encoder system 
are then logged, together with the sidereal time. 100 - 150 measurements are taken, concentrating on 
the zenith where a number of the terms become easier to distiniguish. The data are analysed using the 
TPOINT package (Wallace 1989), which uses a least-squares fit to the functional forms give in Table 1 
in order to estimate the coefficients. Tests are performed 3 or 4 times a year at each focal station, and 
after any major mechanical change. 

6.2 The CALIBRATE procedure 

The CALIBRATE procedure is a short pointing test performed at the start of a night's observing in 
order to measure the three coefficients which are most likely to change (the azimuth and elevation 
index errors and the horizontal collimation) and to provide an estimate of the telescope's pointing 
performance. Seven stars are selected from the standard grid, on the northern or southern meridian 
(whichever is closer) and with a range of elevations. The telescope is slewed to each star in turn and 
the operator is invited to centre it on the reference position. The data are logged and automatically 
analysed as in a standard pointing test, but with all except the three coefficients set to the default values 
for the current focal station. The values of the coefficients and the r.m.s. fitting error are displayed 
and the raw data are stored for later analysis. The operator may then accept the new coefficients or 
revert to the previous or default values. Sky r.m.s. errors significantly in excess of 1 arcsec generally 
indicate either a breakdown or a slow change in the pointing model. 

6.3 Tracking, rotation and encoder performance 

The TCS is capable of logging image centroids from an acquisition camera or autoguider and a variety 
of data concerned with tracking performance at rates up to 20 Hz. These may then be plotted, analysed 
further (e.g. to generate look-up tables or to fit simple functions) or ex:ported using the TCS PLOT 
utility. Several examples of the use of this technique were given in Section 4.2; it is also used to measure 
the misalignment of the derotation optics. In order to test the rotator performance at the Cassegrain 
and Prime foci, an acquisition camera is used to autoguide on a star at the centre of rotation (eliminating 
tracking errors) whilst an off-a.xis autoguider simultaneously logs the centroid of an image at the edge 
of the field. 

6.4 Other diagnostic software 

Two other utilities are used primarily for hardware testing. GSEXAM sets and reads the global variables 
used by the TCS for interprocess communication and allows easy access to raw encoder and transducer 
data. CAMAC_TEST is a test program for the hardware interface which is independent of the TCS. 

1 Summary and Future Development 

The present paper has summarised the calculations performed by the WHT telescope control system in 
a manner independent of implementation. The TCS has proved to be accurate and reliable in practical 
use, and its algorithms are well-tested. Enhancements are planned in two main <lr0'1s: measurement 
and control of main mirror position and more sophisticated autoguiding. 
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Shack-Hartmann testing of the telescope optics has shown that the secondary mirror tilts and 
translates in such a way as to introduce significant coma away from the zenith (where the alignment 
is optimised). The coma is a reproducible function of elevation and can, in fact, be predicted from 
the pointing model and direct measurements of secondary tilt. The tilt of the secondary mirror can 
be controlled by the TCS, although the drive was not designed for continuous use and may have to be 
rebuilt. Calculations show that tilt of the secondary alone can remove coma at the field centre without 
introducing excessive astigmatism at large field radii and this would lead to significant gains in image 
quality. A second, somewhat easier, possibility is to measure residual tilt on the primary mirror (which 
is significant at the 0.1 arcsec level and tends to vary slowly with time) and to correct its effects on 
pointing using the mount_ 

The aim of improvements to the autoguiding algorithms (see AG for more detail) is to allow accurate 
blind acquisition given an off-axis guide star with an accurately-known displacement from the target . 
The requirements are: 

1. A very accurate calibration of the focal-plane geometry (autoguider probe movement, detector 
orientation, scale and rotation). 

2. An algorithm which predicts the coordinates of the off-axis guide star on the autoguider given 
its position on the sky and the location of the guide probe. This would be updated continuously 
in order to allow for time-variable effects such as differential refraction between guide star and 
target, probe flexure and (for solar-system objects) non-sidereal motion. 

The control system for the Gemini telescopes differs from that for the WHT in one major respect: 
the optical surfaces are under full computer control, some at high speed. The WHT system as described 
here is entirely adequate to control the mount, field rotation and auxiliary mechanisms of the Gemini 
telescopes, but requires additional routines to deal with the primary and secondary mirror supports 
and their associated wavefront sensors. In addition, the hardware and software environment proposed 
by the Gemini project differs in almost all respects from that used at the WHT. Nevertheless, the work 
described in this paper goes a considerable way towards solving the problems posed by the new project. 
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A Notation 

4> Latitude of the telescope ( </> = 28°45' 38.1") 

h Hour angle 

o: Right ascension 

8 Declination 

E Elevation 

z Zenith distance (z = 7r/2 - E) 

A Azimuth 

'ljJ parallactic angle 

8 Sky position angle 

80 Instrument-dependent position angle offset 

p mount position angle 

µ Sidereal tracking rate in hour angle 

~' 77 Cartesian coordinates in the tangent plane, parallel to +a and +8, respectively 

CT, r Cartesian coordinates in the tangent plane, parallel to +A and +E, respectively 

x, y Cartesian coordinates in the tangent plane along mount position angle 0° and 90°, respectively in 
the input coordinate system 

XA, YA Cartesian coordinate system fixed in the focal plane 

fi, h, f Focal lengths of the primary and secondary mirrors, and of the Cassegrain combination, 
respectively 

Ep, Es Tilts of the primary and secondary mirrors with respect to the axis of the instrument rotator(s) 

( Relative transverse displacement of primary and secondary mirrors 

/3 Back focal distance / !1 

k Ratio of heights of rays at the margins of the secondary and primary mirrors 

d Separation of primary and secondary mirrors 

~P' ~s' ~t Pointing errors due to primary tilt, secondary tilt and decentre, respectively 

RA - RE Refraction coefficients 

Mu A Matrix to transform a unit vector from user to apparent coordinate system 

MAM Matrix to transform a unit vector from apparent to mount coordinate system 
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