
Particle Physics and Astronomy

Research Council

Isaac Newton Group

TCS-GEN-1

Telescope Control System

Build and Release Procedures

Marion Fisher and Frank Gribbin

Issue 2.1; 9th May 2024

 Isaac Newton Group,

 Apartado 321, 38780 S/C La Palma,

 Tenerife , Canary Islands

 Telephone +34 922 425400

 Fax +34 922 425401

 Internet fjg at ing.iac.es

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 2 –

Document History

Document

Location

Printed on Thursday, 09 May 2024.

The document can be found at :

http://www.ing.iac.es/~docs/wht/tcs/wht-tcs-9/wht-tcs-9.pdf

The source is held in

https://ingbitbucket.ing.iac.es/projects/SOFT/repos/tcsdocs/browse/tcs-gen-

1.docx

Revision

History

Revision

date

Version Summary of Changes Changes

marked

14/11/05 1.1 Documented TCS build procedures for the

CAMAC based TCS. Earlier history not recorded.

MPF

10/03/22 2.0 Updated for the replacement TCS at the WHT

FJG

09/05/24 2.1 Added chapter on TCS Alphastation assignments FJG

http://www.ing.iac.es/~docs/wht/tcs/wht-tcs-9/wht-tcs-9.pdf
https://ingbitbucket.ing.iac.es/projects/SOFT/repos/tcsdocs/browse/tcs-gen-1.docx
https://ingbitbucket.ing.iac.es/projects/SOFT/repos/tcsdocs/browse/tcs-gen-1.docx

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 3 –

Contents :

1. INTRODUCTION 5

1.1 Purpose 5

1.2 Scope 5

1.3 Definitions, acronyms and abbreviations 5

1.4 Overview 5

2. SOURCE FILES 6

2.1 Configuration Management 6

2.2 MMS files 7

2.3 BUILD subsystem 8
2.3.1 Contents 8
2.3.2 MMS files 8
2.3.3 Command procedures 9

3. TCS VERSIONS 11

3.1 Version Files 11

3.2 Defaults file 11

3.3 Modifying the TCS 12

3.4 Full TCS Release 13
3.4.1 Building 13
3.4.2 Testing and Releasing 14

3.5 Partial TCS Release 14
3.5.1 Building 14
3.5.2 Testing and Releasing 15
3.5.3 Updating Help files 16

3.6 Structure of TCS Directories 17
3.6.1 Data directories 17
3.6.2 TCS version directories 18

4. OTHER RELATED SOFTWARE 19

4.1 DRAMA 19

4.2 SYSLOGD 19

4.3 CAMTEST 20

4.4 PLOT 20

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 4 –

4.5 PGPLOT 20

4.6 SLALIB 20
4.6.1 C version 20
4.6.2 Fortran version 20

4.7 TPOINT 21

4.8 COCO 21

4.9 CAMAC Interface Routines, device driver and USSAST 21

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 5 –

1. INTRODUCTION

1.1 Purpose

This document describes how to build and release versions of the Telescope Control System. It also

describes how to build and release other related software packages and utilities.

1.2 Scope

1.3 Definitions, acronyms and abbreviations

CMS Code Management System

MMS Module Management System

TCS Telescope Control System

1.4 Overview

There are currently five TCS Alphastations at the Isaac Newton Group of Telescopes (ING); All are on

the mountain-top . On the mountain-top, one Alphastation is used as the development machine (lpas3)

two other Alphastations are used to control the two ING telescopes. The two remaining machines are

spares. The development machine stores the source code for the TCS and related software. New versions

of this code are developed, built and tested on the development machine; if the tests are successful the

built system is copied to the relevant telescope control Alphastation. The built system is then tested at the

telescope and released for general use when the telescope manager is satisfied with its performance.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 6 –

2. SOURCE FILES

2.1 Configuration Management

The VMS Code Management System (CMS) is used for configuration management. The source files for

each of the 28 TCS subsystems are stored in separate CMS libraries; the source files for the utilities PLOT

and CAMTEST are also held in CMS libraries. Table 1 lists the CMS libraries.

CMS Library Brief description
Used at

INT

Used at

WHT

ALTAZLIB Altazimuth mount specific routines X

BUILD Builds the TCS X X

CAMACDB Produces file of valid CAMAC operations X

CAMTEST
Program to test CAMAC, aid to

diagnosing CAMAC faults

X

COMMS

TCS process; real-time process that

controls the telescope via the Bridge

Computer

 X

DISPLAY
TCS process; displays state of telescope

and associated hardware

X X

EQUATLIB
Library of equatorial mount specific

routines

X

GSEXAM
Utility to examine and alter global

variables on running TCS

X X

INCLIB
Library of Include files that define global

variables and constants

X X

INT Library of INT specific routines X

INTINIT Initialises global variables for INT X

JKT Library of JKT specific routines (obsolete)

JKTINIT
Initialises global variables for JKT

(obsolete)

MONITOR
TCS process; starts TCS, stops TCS when

terminating flag is set

X X

MSG Error messages X X

NETSERVER
DECnet interface between TCS and VAX

instrument control computer (Obsolete)

OUTLOG TCS process; logs encoder data X X

PLOT
Utility to fit simple models and plot data

logged by TCS

X X

POINT TCS process; generates pointing

information

X X

RUN
Menu interface for starting and stopping

TCS, and setting various options

X X

SHARE
Management of global COMMON blocks

and inter-process ASTs

X X

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 7 –

SYNC
TCS process: real-time process that

controls the telescope via CAMAC

X

SYSCOMP
TCS process; sends TCS information at

1Hz to NETSERVER and TELD

X X

TCSLIB Library of general routines X X

TELD
DRAMA interface to Unix-based

Observatory Control System

X

TELS

TCS process; receives commands from the

Bridge Computer and returns command

completion status.

 X

TV
TCS process; reads and processes guiding

information from autoguider and TV

X X

USER TCS process; User Interface X X

WHT Library of WHT specific routines X

WHTINIT Initialises global variables for WHT X

Table 1

The logical name SOURCE_DIR defines the root directory of the whole CMS library tree; each CMS

library is a subdirectory of the root directory. To set the CMS library of subsystem aaa to be the current

CMS library, issue the command

> CMS SET LIB SOURCE_DIR:[aaa.CMS]

or use the SETCMS symbol:

> SETCMS aaa

Each CMS library has a reference directory which holds the most recent version of each file in that CMS

library; for subsystem aaa the reference directory would be SOURCE_DIR:[aaa.REF]. The reference

directory is automatically updated whenever an amended file is replaced in CMS. The reference directory

is provided as a convenience to the software developer, as it is very useful to have all the code available

for inspection when planning the addition of new functionality or when trying to find a software bug.

However, it must be stressed that these files should not be altered, nor should any other files be placed in

the reference directories. If you suspect that the reference directories have been changed in any way, then

they should be verified. You can verify all the CMS libraries as follows:

>ALLCMS VERIFY/REPAIR

This will check the reference copies and repair them if they have been altered but it will not report any

'foreign' files that should not be there. If a reference directory contains many 'foreign' files, it is best to

delete all files in that directory and then verify the CMS library as described above. This will recreate each

reference file.

2.2 MMS files

Each CMS library contains an MMS file which is used to build specified targets. Typical targets are

executable images, object libraries, command files and data files. The MMS files follow a standard format

and contain at least some of the sections described below.

 Suffices (sic) This section clears the default suffixes precedence list and replaces it with only those

suffixes necessary to build the specified targets for that particular CMS library.

 Update rules A list of MMS files that contain user-defined rules that will be used instead of the

MMS built-in rules to update a target. These files are kept in the BUILD CMS library. For instance,

the file BUILD_DIR:FOROBJ.MMS contains the user-defined rule to update an object file from a

Fortran file. It compiles the Fortran file and adds the name of the object file to the list of files to be

deleted at the end of the build process.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 8 –

 Tidying up

 .FIRST defines the action to be performed before any other actions. It simply deletes the file

DELETE_FETCHES.COM if it exists.

 .LAST defines the actions to be performed after all other action lines. If the file

DELETE_FETCHES.COM exists, it will be run and then deleted.

 Top-level targets All MMS files have the top-level target SYSTEM which is the default MMS

target. SYSTEM lists all the targets that should be present in the built system. There is also a target

named VERSION which consists of the file VERSION.NUM; this file lists the name and CMS class

of the built system, the date it was built, who built it, and the CMS class of all subsystems that contain

object and option files that can be linked in to produce an image file.

 Lower-level targets This section contains the dependency rules which describe how to build the

targets listed under the SYSTEM target. These targets may depend on files which are themselves

dependent on other files. The order of the dependency rules in an MMS file is important; if a target is

dependent on other files, then the rules that specify how to build those other files must come after the

dependency rule for the target. For this reason, the lower-level targets are ordered as follows:

 Executable image dependent on object libraries and other files from other subsystems

 Object library dependent on library modules

 Library modules dependent on object files

 Object files dependent on source files and include files

 Explicit actions to fetch files from CMS that need to stay in the built directory. If the user-

defined rules contained in the MMS files were to be used, then the file would be added to the list

of files to be deleted at the end of the build. Use of an explicit action avoids this.

 Explicit actions are also used to fetch files from other CMS libraries. An example is:

TV.INC : SOURCE_DIR:[TV.CMS]TV.INC~/GEN="$(TV_VERSION)"

 DEFINE/USER CMS$LIB SOURCE_DIR:[TV.CMS]

 $(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).INC -

 /GEN="$(TV_VERSION)" $(CMSCOMMENT)

The first line specifies that TV.INC depends on the file TV.INC in the TV CMS library, in the

class defined by the symbol TV_VERSION .

The second line defines the default CMS library to be TV, this definition only applies to the next

command, after which the default CMS library reverts to its original value.

The third line fetches the file TV.INC from the TV CMS library, from the class defined by the

symbol TV_VERSION.

2.3 BUILD subsystem

2.3.1 Contents

The BUILD subsystem comprises the common MMS files and the command procedures used in building

the TCS software. With the exception of BUILDSUB.COM, none of the command procedures should be

used directly. Use of the command procedures is described in Section 3.

2.3.2 MMS files

The MMS files contain the user-defined rules that are used to update a target, they have filenames of the

form ab.MMS where a defines the source file and b defines the target file type. For example, the file

CMSDAT.MMS contains the rule to fetch a file with an extension of .DAT from the default CMS library,

and the file COBJ.MMS contains the rules to produce an object file from a C source file. Intermediate

files such as object files and files fetched from CMS are added to the list of files to be deleted at the end of

the build process.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 9 –

2.3.3 Command procedures

BUILD_SETUP.COM

Usage: @BUILD_DIR:BUILD_SETUP [version-file]

BUILD_SETUP sets up the Fortran command symbol and FORT$LIBRARY logical name for compiling

TCS Fortran files; checks whether a parameter was given, if it was then the specified version file is

executed, if not then it only proceeds if the logical name BUILD_DIR is defined; creates the BUILD

subsystem itself in the directory BUILD_DIR if it doesn’t exist already; and sets up symbols for the

command procedures BUILDSUB and BUILDALL.

BUILDSUB.COM

Usage: @BUILD_DIR:BUILDSUB <subsys> <class> [dir] [skip] [debug] [supersede]

<subsys> is the name of the subsystem to be built

<class> is the name of the CMS class on which to base the build

[dir] is the directory in which the subsystem is to be built. This will be created if it doesn’t exist

already. If this parameter is omitted, the subsystem will be built in the current default directory. To

specify the current default directory explicitly if further parameters are being given, use [].

[skip] is a flag that controls the behaviour of MMS, and must be either NOSKIP or SKIP. If SKIP

is specified MMS will be invoked with the /SKIP qualifier. SKIP is the default.

[debug] is a flag that controls whether the subsystem is built in debug mode, and must be either

NODEBUG or DEBUG. NODEBUG is the default. DEBUG is not currently supported, and the build

will fail if it is specified.

[supersede] is a flag that controls the overwriting of pre-existing software, and must be either

NOSUPERSEDE or SUPERSEDE. If NOSUPERSEDE is specified, the build will not go ahead

unless the target directory is empty at the outset. The default is SUPERSEDE.

BUILDSUB builds a single TCS subsystem. Note that the logical names identifying the versions of the

subsystems required to build the target subsystem must be defined before this procedure is executed - you

must have already executed a version file at some stage.

Although you must specify a CMS class from which to build the subsystem, BUILDSUB will search the

build directory for any source files which are newer than those in CMS and use any that it finds in

preference. Therefore, for development work, you can use BUILDSUB without having to save your code

changes in CMS.

BUILDALL.COM

Usage: @BUILD_DIR:BUILDALL [version-file]

BUILDALL builds all the subsystems that constitute the TCS (including the BUILD subsystem but not the

operational data directories). For each subsystem, it calls BUILDSUB with the flags NOSKIP,

NODEBUG and NOSUPERSEDE.

Note that BUILDALL will not make any changes to a subsystem’s build directory unless it finds it empty.

This is designed to help avoid the accidental overwriting of pre-existing software, and it is also useful

when a full build fails owing to a problem with some particular subsystem. Once the problem has been

fixed, a subsequent BUILDALL will resume the build at the first subsystem whose directory is empty, and

thus avoids repeating builds that succeeded.

BUILD_UPDATE.COM

Usage: @BUILD_DIR:BUILD_UPDATE [version-file]

BUILD_UPDATE builds all TCS subsystems where source files have been updated, either in the current

CMS class or in the build directory. It will also relink any subsystems where an associated library has

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 10 –

been updated. For each subsystem, it calls BUILDSUB with the flags SKIP, NODEBUG and

SUPERSEDE.

BUILD_UPDATE is most useful when developing a new major TCS version and the source code needs to

be developed iteratively.

NOTE_VERSION.COM

Usage: @BUILD_DIR:NOTE_VERSION <subsystem> <class>

This file is used in MMS files to build the file VERSION.NUM. VERSION.NUM lists the name and CMS

class of the built subsystem, the date it was built, who built it, and the CMS class of all subsystems that

contain object and option files that can be linked in to produce an image file.

UPDATE_FETCHES.COM

Usage: @BUILD_DIR:UPDATE_FETCHES.COM <filename>

This file is used by some MMS files in the BUILD subsystem, containing the user-defined rules for

updating a target. UPDATE_FETCHES.COM appends a command to the file DELETE_FETCHES.COM

to delete <filename>. This provides a method whereby intermediate files are deleted from the target

directory, leaving only the higher-level targets, a log file of the build and the MMS file itself in the built

directory.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 11 –

3. TCS VERSIONS

3.1 Version Files

TCS versions are defined in version files, which are kept in the directory [<tel>_LOGIN.VERSION]. A

version file sets up the logical names and symbols required to build and run a given version of the TCS.

This serves the purposes of:

documentation the components of a TCS version are defined explicitly in a single place;

building the version file contains all the information required to build the given version of the

TCS;

executing the version file contains all the information required to run the given version of the

TCS.

The names of the version files, which are the same as the names of the versions they define, are of the

form ti-j-k. The following naming scheme is used:

t is used to identify the telescope, e.g. W=WHT, I=INT.

i is the base revision id. This identifies the root directory under which all the built software

comprising the corresponding version of the TCS lives; it is changed as a result of a change to any

subsystem which requires one or more other subsystems to be rebuilt. Examples of such subsystems

are the library of common include files, any of the object libraries, or a piece of infrastructure such

as the interprocess-communication package.

j is the major revision id, something which is changed as a result of a modification to any other

subsystem except the program OWNINIT.FOR, which initialises the installed COMMON blocks.

k is the minor revision id, something which is changed as a result of a modification to the program

OWNINIT.FOR, which initialises the installed COMMON blocks.

A version file defines the following -

 the telescope name;

 the type of its mount (altaz or equatorial);

 the name of the disk which accommodates the built software;

 the base revision id (and therefore the root directory for this TCS version);

 the version (CMS class) of each of the TCS subsystems;

 directories containing proprietary software;

 the set of logical names defining the built subsystem directories;

 a logical name which defines the version itself;

 logical names pointing to the shareable images which are used to hold the global COMMON blocks,

to send ASTs to other TCS processes, and to communicate with the observing system;

 the data directories which the running TCS uses.

3.2 Defaults file

The file DEFAULTS.COM defines defaults which are not specific to a particular TCS version. It defines

the following -

 the telescope name;

 the default TCS version;

 the default bridge computer host name for status broadcasts (WHT only)

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 12 –

 the default syslog host for logging. This will normally be the local machine and is specified for WHT

only.

3.3 Modifying the TCS

From time to time the TCS will need to be modified. The usual reasons for this are

 to update variables such as IERS parameters or pointing coefficients;

 to add new functionality;

 to fix bugs.

Once the modifications to the source files have been identified, a new CMS class must be created for each

of the subsystems to be modified. CMS class names are of the form Vm-n, where m is the major version id

and n is the minor version id. If the change to the CMS subsystem is major, then increment the major

version id, otherwise increment the minor version id. Each source file to be changed must be reserved,

which will copy the source file to your default directory so that it can be edited. It is advisable to reserve

the source file from the previous class, otherwise the latest generation of the source file will be used. This

may be a version under development for a future class and it could contain untested code. This is more

likely to happen if more than one person is working on the TCS code, but it is easy to forget about files

under development. The command:

CMS SHOW GEN/MEMBER/DESC <filename>

can be used to list all generations of a filename and show the classes each generation belongs to.

Each reserved source file is modified, replaced in its CMS library and inserted into the new CMS class. If

a new file is created, a CMS element must be created from it, and the element must be inserted into the

new class. A new entry must be made in the file <subsys>_CHANGES.TXT to describe the changes made

for the new class.

The new class must then be completed by inserting all unmodified files from the previous class. It is

important to insert unmodified files from the previous class or from the class that the new version is based

on, otherwise by default the latest generation of all files contained in the CMS library that are not

currently present in the new class will be inserted. This could cause obsolete files to be inserted in the new

class; these obsolete files may be part of an older class and still need to be stored in CMS to enable the

older class to be rebuilt if necessary. Alternatively, the latest generation of a file may be a version under

development for some future class, and it should not be inserted into the new class currently being

completed.

If a file from the previous class has become obsolete, it should be removed from the new class.

The CMS commands necessary to create and populate a new CMS class as described above are listed

below. These commands are described in detail in VMS HELP and in the CMS manual.

 CMS SET LIBRARY <subsystem>

 CMS CREATE CLASS <class> "date: reason for new class"

 CMS RESERVE/GEN=<previous-class> <filename> "Reason for modification"

 CMS REPLACE <filename> ""

 CMS INSERT GEN <filename> <class> "Reason for modification"

 CMS REPLACE/INSERT=<class> <filename> “Reason for modification”

 CMS CREATE ELEMENT <new-filename> "Very brief description of file"

 CMS INSERT GEN <new-filename> <class> "Very brief description of file"

 CMS INS GEN/IF_ABSENT/GEN=<previous-class> *.* <class> "Unchanged"

 CMS REMOVE GEN <filename> <class> "Reason for removal"

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 13 –

3.4 Full TCS Release

3.4.1 Building

You will need to build a new base TCS version if any of the modified subsystems necessitate the rebuild

of any unmodified subsystem. For example, if one of the object library subsystems is modified, any

unmodified subsystem that links against that object library will have to be relinked, and that subsystem

will thus have a different executable image but the same version number (as it is built from the same

class).

To build a new base version of the TCS, perform the following steps on the development machine:

1. Go to the directory [<tel>_LOGIN.VERSION] and create a new version file ti-0-0 based on the

version file for the previous release.

2. In the new version file, update the base revision id and update the version number of each modified

subsystem that is to be included in the new TCS version. Note that the build process interprets the

version of each subsystem to be the name of a CMS class, from which it will attempt to build the

software. It is not possible to build the TCS from scratch unless the version specified for each

subsystem has a corresponding CMS class.

3. Go to the [RELEASE] directory and check that the file BUILDALL.COM is the latest version in the

BUILD subsystem.

4. Issue the command:

@[RELEASE]TCSBUILD <TCS-version>

This will submit a batch job which executes BUILDALL.COM and writes the output to the log file

[RELEASE]<TCS-version>_BUILD.LOG .

5. Once the build has completed, issue the command:

@CHECK_BUILD.COM <TCS-version>

This procedure checks both the build log file and each individual subsystem’s log files for reported

errors with the following severity codes: E(rror), F(atal) and W(arning). If the build was successful,

CHECK_BUILD.COM will output six identical lines as follows:

%SEARCH-I-NOMATCHES, no strings matched

If the build was unsuccessful, then one or more of the six lines will contain an error message. In this

case, examine the build log file <TCS-version>_BUILD.LOG to determine at which subsystem the

build process failed. The error messages in this file, and in the log file for the failed subsystem, give

the reason for the failure. Once the fault has been fixed, go to the subsystem's directory and run

BUILDSUB as follows:

BUILDSUB <subsys> <class>

This will continue building the subsystem, repeat if necessary until the build is successful.

6. Once the subsystem builds successfully, put the corrected file(s) into CMS using the command:

CMS INSERT GEN/SUPER <filename> <class> ""

Then delete all files in the failed subsystem’s directory, and return to step 4. This will continue the

build starting at the first subsystem whose directory is empty.

7. Add a description of the version to [<tel>_LOGIN.VERSION]VERSIONS.TXT.

8. Update the TCS version number in the file [<tel>_LOGIN.VERSION]DEFAULTS.COM

9. If there were more than a couple of failures when building the TCS, it is advisable to delete the whole

version tree [<tel>.S<n>...]and build the TCS again.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 14 –

3.4.2 Testing and Releasing

The new TCS should be tested in simulation mode on the development machine before it is copied to the

relevant telescope control computer. The tests to be carried out will depend on the modifications made to

the code, but you should always test the general health of the TCS by getting the simulated telescope to

track a source. It is also useful to perform a CALIBRATE, applying small offsets using the Handset for

each source. Any bugs that are found should be fixed, the corrected files need not be replaced in CMS

until the TCS is working correctly as the build procedure will use source files from the current directory if

they are newer than the source file in CMS. Each faulty subsystem can be rebuilt using the command:

BUILDSUB <subsystem> <class> []

When you are satisfied with the corrected files, they can be replaced into CMS as described in a previous

section. Unless you only made a few corrections, you should delete the TCS directory tree for the new

version and rebuild it completely.

Once the TCS performs acceptably in simulation mode you can copy it to the relevant telescope control

computer. To make a backup saveset of the new TCS version, issue the command:

@[RELEASE.BACK]BACK-TCS <TCS-version>

This will create a backup saveset called TCS_<tel>_<base-version>.BCK in [RELEASE.BACK],

containing the TCS built directories, the TCS version file and the file VERSIONS.TXT from

[<tel>_LOGIN.VERSION]. Copy this saveset to [RELEASE.BACK] on the relevant telescope control

computer using ftp or DECnet COPY. Log in to the telescope control computer and unpack the saveset

with the command:

@[RELEASE.BACK]RESTORE-TCS <TCS-version>

This will restore all the files in the saveset, giving an exact copy of the original TCS directory tree and the

associated version files in [<tel>_LOGIN.VERSION].

By default, the version of the TCS to be used is read from a file on the system computer; the file

specification as seen from the TCS computer is <TEL>:[etc]tcs_version.<tel>. On the Unix file system

<TEL>:[etc] equates to /<tel>/etc. The version given in DEFAULTS.COM is not used unless the system

computer is unavailable.

When testing a new TCS version, use the menu option to choose the TCS version. The new TCS should be

tested as much as possible during the daytime, so that the time required for testing at night is minimised.

Night testing should be carried out during an S/D night, with the permission of the telescope manager

and/or the Support Astronomer for that night.

Once the TCS is working satisfactorily and has been accepted by the telescope manager, it can be released

for general use. To enable the new version of the TCS to be used by default, update the file on the system

computer that specifies the TCS version, /<tel>/etc/tcs_version.<tel>, and also update or copy the file

[<tel>_LOGIN.VERSION]DEFAULTS.COM.

A new version of the Release Notes for the released TCS version should be produced. The files

*_CHANGES.TXT can be helpful here, as they detail the changes made to each subsystem, at least they

do if they are kept up-to-date! The *_CHANGES.TXT files should be updated with the release date.

3.5 Partial TCS Release

3.5.1 Building

If the modified subsystems do not necessitate the rebuild of any other subsystem, then you only need to

perform a partial release of the TCS. The modified subsystems are built under the same base version as the

current TCS, and unmodified subsystems form part of the new TCS version. Reasons for building a partial

release include updating the IERS parameters, updating the pointing model for a particular focal station, or

making changes to the User Interface.

To build a new partial version of the TCS, perform the following steps on the development machine:

1. Go to the directory [<tel>_LOGIN.VERSION] and create a new version file ti-j-k based on the

current version file.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 15 –

2. In the new version file, update the version number of each modified subsystem.

3. Go to the [RELEASE] directory and issue the command:

@[RELEASE]TCSBUILD <TCS-version>

This will submit a batch job which executes BUILDALL.COM and writes the output to the log file

[RELEASE]<TCS-version>_BUILD.LOG . This will build the modified subsystems only, ie. those

subsystems with a new CMS class.

Once the build has completed, issue the command:

@CHECK_BUILD.COM <TCS-version>

This procedure checks both the build log file and each individual subsystem’s log files for reported

errors with the following severity codes: E(rror), F(atal) and W(arning). If the build was successful,

CHECK_BUILD.COM will output six identical lines as follows:

%SEARCH-I-NOMATCHES, no strings matched

If the build was unsuccessful, then one or more of the six lines will contain an error message. In this

case, examine the build log file <TCS-version>_BUILD.LOG to determine at which subsystem the

build process failed. The error messages in this file, and in the log file for the failed subsystem, give

the reason for the failure. Once the fault has been fixed, go to the subsystem's directory and run

BUILDSUB as follows:

BUILDSUB <subsys> <class>

This will continue building the subsystem, repeat if necessary until the build is successful.

4. An alternative method, useful if only one or two subsystems are modified, is to run BUILDSUB for

each subsystem. Issue the command:

SETLOGS <TCS-version>

This will define the logical names and symbols for the new version.

For each subsystem that has been modified, issue the command:

BUILDSUB <subsystem> <class> <subsystem_dir>

This will build the subsystem in the directory pointed to by the logical subsystem_dir. If the build

failed, correct the error and run BUILDSUB again.

5. If any files were corrected in steps 3 or 4, replace the corrected files into CMS using the command:

CMS INSERT GEN/SUPER <filename> <class> "Reason for replacement"

6. Add a description of the version to [<tel>_LOGIN.VERSION]VERSIONS.TXT.

7. Update the TCS version number in the file [<tel>_LOGIN.VERSION]DEFAULTS.COM

3.5.2 Testing and Releasing

The new TCS should be tested in simulation mode on the development machine in the same way as for a

full release. Once the tests have been completed satisfactorily, the modified subsystems can be copied to

the relevant telescope control computer. Go to [RELEASE.BACK] and make a backup saveset using the

command similar to:

BACKUP <subsystem-1>_dir,<subsystem-2>_dir TCS_<tel>_<base-id>_PART.BCK/SAVE

Copy this saveset to [RELEASE.BACK] on the target computer using ftp or DECnet COPY. Log in to the

target computer, go to [RELEASE.BACK]and unpack the saveset with the command:

BACKUP TCS_<tel>_<base-id>_PART.BCK/SAVE/SEL=[<tel>...] [<tel>...]/BY=PARENT

This will restore all the files in the saveset, copying them into the correct locations.

Copy the new version file and VERSIONS.TXT to the target machine.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 16 –

The new TCS version should be tested in the same way as for a full release. When it is ready to be

released for general use, update the files [<tel>_LOGIN.VERSION]DEFAULTS.COM and

<TEL>:[etc]tcs_versions.<tel> so that they define the new TCS version.

3.5.3 Updating Help files

Help is implemented using VMS LIBRARY command to build a help library.

LIB/CREATE/HELP. See the OpenVMS Command Definition, Librarian, and Message Utilities Manual

for more details.

Files (one per command) have extension .HLP

Files for commands for both telescopes are held in USER

Files for telescope specific commands are held in OWN (INT or WHT)

Mount specific help is found in MNTLIB (ALTAZLIB or EQUATLIB)

Building of the help library USER_HLP.HLB is performed by the build of USER

MAKEHELP.FOR is source for MAKEHLP.EXE, which is run to combine help files into

USER_HLP.HLP.

HELP_DEFINE.COM sets up the logical names needed

 COMMANDS.LIST -----------------------\
 (USER) |
 V
 USER_DIR:*.HLP ------->
 MNT_DIR:*HLP -------> MAKEHELP.EXE -----> USER_HELP.HLP
 TEL_DIR:*.HLP ------->

 |
 |
 V

 LIB/CREATE/HELP

 |
 |
 V

 USER_HELP.HLB

It can be valid for a help topic to have a help files in more than subsystem. AGSELECT has

a top level entry in USER AGSELECT.HLP and details of the command parameters in WHT

AGSELECT.HLP

MAKEHELP does report if a help topic is not found, but it is not necessarily an error. For instance, the

ALTITUDE command is not available at the INT, so there is no ALTITUDE help. However ALTITUDE

is a command listed in COMMANDS.LIST, so when INT USER subsystem is built, there is a message

output from MAKHELP.EXE saying "No HELP text for ALTITUDE"

http://odl.sysworks.biz/disk$axpdocjun011/opsys/vmsos73/vmsos73/6100/6100pro_contents.html

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 17 –

See USER_BUILD.LOG for these build messages.

3.5.3.1 Adding help for a new command

 Create a new command.HLP file in appropriate subsystem library (e.g. USER,WHT,

ALTAZLIB…)

 Add the new command to COMMANDS.LIST

 Check that when the subsystem is built, that the command.HLP is extracted (i.e. to USER_DIR)

and if necessary update the subsystem MMS file.

 Delete USER_DIR:USER_HELP.HLB and USER_HELP.HLP

 Rebuild the USER subsystem.

 Check USER_DIR:USER_BUILD.LOG for "No HELP text for" messages for this command or

other build errors.

3.6 Structure of TCS Directories

The top level directory of the released system is named for the telescope, eg [WHT].

The subdirectories of the top level directory are the root directory for the data directories, [.DATA], and

the root directories for the TCS base versions, [.Sn].

3.6.1 Data directories

The subdirectories of [.DATA] are

 AUTOGUIDER this holds the autoguider log files. The files are named AGyymmdd.DAT.

 CALIBRATE this holds the files generated by CALIBRATE. Each time CALIBRATE is run

it creates a log file for each encoder in use, named <enc-name>yymmdd.DAT; a

log file for the demanded position, DEMANDyymmdd.DAT; a log file for the

tracking position, TRACKyymmdd.DAT, a file containing the pointing model,

PROCS.DAT; and a file containing the graphic output from TPOINT,

PGPLOT.PS. The TPOINT log is written to the file TPLOG.LIS, this file is

overwritten each time. If the calibrate solution is accepted, the file

TRACKyymmdd.DAT is renamed to TRACKyymmdd.SAV, and the solution is

written to the file <focal-station>.RED

 CATALOGUE this holds the catalogues made by telescope users.

 ENCODER this holds the encoder log files. The files are named ENCyymmdd.DAT.

 POINTING this holds the files generated by POINT during a pointing test. POINT creates a

log file for each encoder in use, named <enc-name>yymmdd.DAT; a log file for

the demanded position, DEMANDyymmdd.DAT; and a log file for the tracking

position, TRACKyymmdd.DAT.

 PROCESS this holds the log files created by the TCS processes. There is a log file for each

process, DISPLAY.LOG, MONITOR.LOG, OUTLOG.LOG, POINT.LOG,

SYNC.LOG (INT only), COMMS.LOG (WHT only), SYSCOMP.LOG,

TV.LOG and USER.LOG. CLONE.LOG is created by the CLONE command

and TRANSFER.LOG is created by the TRANSFER command.

 SNAPSHOT this holds files generated by the SNAPSHOT command.

 TV this holds the TV log files. The files are named TVyymmdd.DAT.

At the INT, catalogue files can also be held on the Unix disk. The file specification as seen from the TCS

computer is <TEL>:[cat]<catfile>.CAT, on the Unix file system <TEL>:[cat] equates to /<tel>/cat.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 18 –

3.6.2 TCS version directories

Each TCS base version has a subdirectory for each TCS subsystem, under these subdirectories is a

subdirectory for the subsystem version, named for the CMS class. For example, the directory containing

the built subsystem RUN, class v0-6, for the WHT base version S9 is [WHT.S9.RUN.V0-6] and is pointed

to by the logical name RUN_DIR.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 19 –

4. OTHER RELATED SOFTWARE

4.1 DRAMA (INT only)

If a new DRAMA version has been obtained from AAO, create a subdirectory of [DRAMA] called

<version> and unpack the new version into [DRAMA.<version>...]

[DRAMA.<version>] should contain the files DRAMASTART.COM, DRAMA_MAKE.COM and the

directory DRAMA_SOURCE.DIR

To build the new version, go to [DRAMA.<version>] and login with logging enabled:

SET HOST/LOG=DRAMA_BUILD.LOG LPAS3

Once logged in, execute the following commands:

DEFINE/JOB/TRANS=CONCEAL DRAMADISK SYS$SYSDEVICE:[DRAMA.<version>]

SET DEF DRAMADISK:[000000]

@DRAMA_MAKE

Once the build has finished, either successfully or not, log out and examine DRAMA_BUILD.LOG

Fix any obvious errors, but if it looks as if a file is missing or it is not obvious how to fix the problem,

email tjf@aaoepp.aao.gov.au with details of the problem and ask for help.

The built version will be in [DRAMA.<version>.RELEASE...]

4.2 SYSLOGD

The source code is kept in [SYSLOGD.SOURCE]. It is not possible to build a working version of

SYSLOGD with the current version of VMS, but the existing built version can still be used.

To release SYSLOGD on a target machine, create the directory [SYS0.UCX_SYSLOGD] if it does not

already exist on the target machine and copy to it the following files from [SYSLOGD.SOURCE] :

LOGIN.COM, LOGGER.EXE, SYSLOGD.EXE, SYSLOGD.CFG, UCX_SYSLOGD_STARTUP.COM

Amend SYSLOGD.CFG so that the second line refers to the observing system computer, for the WHT the

second line would read:

. @whtics.roque.ing.iac.es

Check that the account UCX_SYSLOGD has been created. If it has not, create the account by copying the

account on LPAS3. If it has already been created, make sure that the DISUSER flag is not set, it can be

unset by the SYSUAF command

UAF> MOD/FLAGS=NODISUSER UCX_SYSLOGD

Check that the UCX service SYSLOGD has been defined. If it has not, define the service by copying the

file DEFINE_SYSLOG_SERVICE.COM from LPAS3 to the target machine and executing it. This will

define the service and enable it. To enable it by hand, type:

$ TCPIP ENABLE SERVICE SYSLOG

Add the above line into SYS$MANAGER:SYSTARTUP_VMS.COM, immediately after the line:

$ @SYS$STARTUP:TCPIP$STARTUP

This will enable the SYSLOG service at boot time.

SYSLOG is part of the Talker system which is documented in OBS-TALK-4.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 20 –

4.3 CAMTEST (INT only)

CAMTEST source files are held in CMS, in the CMS library tree. Once a new class has been created and

the files modified for a new version, CAMTEST can be built using BUILDSUB. First create a directory

for the new built version, called [CAMTEST.<class>]. Go to this directory, then execute the command

SETLOGS <version>

where <version> is any recent version. Then execute the command

BUILDSUB CAMTEST <class> []

to build the new version. Any errors in the build will be reported on the screen, and also in the log file,

CAMTEST_BUILD.LOG .

Once the new version has been tested successfully, the system logical name CAMTEST_DIR should be

repointed to SYSDEV:[CAMTEST.<class>]. The definition of CAMTEST_DIR should also be updated in

the file SYS$MANAGER:TCS_STARTUP.COM, which is run at boot time.

4.4 PLOT

PLOT source files are held in CMS, in the CMS library tree. Once a new class has been created and the

files modified for a new version, PLOT can be built using BUILDSUB. First create a directory for the new

built version, called [PLOT.<class>]. Go to this directory, then execute the command

SETLOGS <version>

where <version> is any recent version. Then execute the command

BUILDSUB PLOT <class> []

to build the new version. Any errors in the build will be reported on the screen, and also in the log file,

PLOT_BUILD.LOG .

Once the new version has been tested successfully, the system logical name PLOT_DIR should be

repointed to SYSDEV:[PLOT.<class>]. The definition of PLOT_DIR should also be updated in the file

SYS$MANAGER:TCS_STARTUP.COM, which is run at boot time.

4.5 PGPLOT

This graphics package is available from Caltech, free to academic and non-commercial organisations. The

built system is in [PGPLOT], the source is in [PGPLOT.SOURCE...] and instructions for building and

installing PGPLOT are in the file [PGPLOT.SOURCE]INSTALL.TXT

Documentation for PGPLOT is in Postscript files in [DOCS.PGPLOT] on LPAS3.

4.6 SLALIB

4.6.1 C version

The source code is in [STARLINK.LIB.SLALIB_C]. To rebuild the object library, use the MMS file

SLALIB.MMS that is provided.

The C version of Slalib is a Starlink product released for Unix. This version was copied from the Unix

Starlink distribution by Pete Bunclark.

4.6.2 Fortran version

The source code is in [STARLINK.LIB.SLALIB_F]. To rebuild the text and object libraries, execute the

command

@[STARLINK.LIB.SLALIB_F]BUILDLIBS

The Fortran version of Slalib is a Starlink product and is documented in Starlink User Note 67.

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 21 –

4.7 TPOINT

The source code is in [TPOINT.CODE]. To rebuild TPOINT, rename [TPOINT.CODE]RELEASE.DIR to

something suitable, eg. [TPOINT.CODE]OLD_RELEASE.DIR as the first thing the build procedure does

is to delete everything in [TPOINT.CODE.RELEASE] if that directory exists. The build procedure copies

the data files from [TPOINT.CODE] to [TPOINT.CODE.RELEASE], including PROCS.DAT which

defines the pointing model for each telescope. If this file is changed, make sure that it is changed in both

[TPOINT.CODE] and [TPOINT.CODE.RELEASE].

TPOINT is a Starlink product and is documented in Starlink User Note 100.

4.8 COCO

Both the source code and the executable image are in [STARLINK.UTILITY.COCO]. If you need to

rebuild it, execute the command:

@[STARLINK.UTILITY.COCO]CREATE

COCO is a Starlink product and is documented in the Starlink User Notes.

4.9 CAMAC Interface Routines, device driver and USSAST

The CAMAC package was provided by Hytec. The Interface routines are provided as an object library

ESONE_SUBS.OLB; the device driver is the executable SYS$PCI_1386_DRIVER.EXE. These files are

stored in [HYTEC.PCI_Vn] together with a command file PCI_1386_DRIVER.LOAD which loads the

driver.

Hytec also provided the utility USSAST which sends an AST to another process. The Macro source file is

USSAST.MAR, and the build procedure is BUILD_USSAST.COM. The TCS build procedure copies the

executable into SHARE_DIR:USSAST_SHARE.EXE and installs it as a shareable image. All USSAST

files are stored in [HYTEC.USSAST].

TCS-GEN-1 Issue 2.0 TCS Build and Release Procedures

– 22 –

5. TCS ALPHA MACHINE ASSIGMENTS (AT MAY 2024)

5.1 WHT

5.1.1 WHT Operational Alpha LPAS5

The Alphastation lpas5.ing.iac.es is used to run the operational VMS TCS at the WHT. In normal

operation the TCS is started from the Observing Support Assistant workstation osadisplay1.ing.iac.es. An

icon (labelled lpas5) on the desktop can be used to start the session. Alternatively use the command

telnet lpas5

It’s also possible to start the TCS session from other workstations, such as that used for the observing

system: whticsdisplay1 (and it’s spare: whticdisplay2).

Lpas5 resides in the WHT Computer room.

5.1.2 INT Operational Alpha LPAS2

The Alphastation lpas3.ing.iac.es is used to run the operational VMS TCS at the INT. In normal operation

the TCS is started from the observer’s workstation inticsdisplay.ing.iac.es. An icon (labelled TCS) on the

desktop can be used to start the session. Alternatively use the command

telnet lpas2

Lpas2 resides in the INT CLIP centre.

5.1.3 TCS Development Alpha LPAS3

The Alphastation lpas3.ing.iac.es is used for software development. Connect using command

telnet lpas3

lpas3 can run the INT TCS in a simulation mode without connection to CAMAC.

Lpas3 can also run the WHT TCS in a simulation mode without communication to a bridge computer. As

noted in 3.4.2

However, in many cases, it’s more useful to run the TCS configured to communicate with a development

bridge computer and a PLC running in simulation mode. This is described in

Running+the+TCS+Simulation+System+with+the+Spare+Beckhoff+PLC

https://ingconfluence.ing.iac.es:8444/confluence/display/TR/Running+the+TCS+Simulation+System+with+the+Spare+Beckhoff+PLC

