
• • • • • •

Ajuba Solutions
Version 1.4

COPYRIGHT
Copyright © 1998-2000 Ajuba Solutions Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by any means
electronic or mechanical, including but not limited to photocopying or recording, for any
purpose other than the purchaser’s personal use, without the express written permission of
Ajuba Solutions Inc.

Ajuba Solutions Inc.
2593 Coast Avenue
Mountain View, CA 94043
U.S.A

http://www.ajubasolutions.com

TRADEMARKS
TclPro and Ajuba Solutions are trademarks of Ajuba Solutions Inc.
Other products and company names not owned by Ajuba Solutions Inc. that appear in this
manual may be trademarks of their respective owners.

ACKNOWLEDGEMENTS
Michael McLennan is the primary developer of [incr Tcl] and [incr Tk]. Jim Ingham and Lee
Bernhard handled the Macintosh and Windows ports of [incr Tcl] and [incr Tk]. Mark
Ulferts is the primary developer of [incr Widgets], with other contributions from Sue
Yockey, John Sigler, Bill Scott, Alfredo Jahn, Bret Schuhmacher, Tako Schotanus, and Kris
Raney. Mark Diekhans and Karl Lehenbauer are the primary developers of Extended Tcl
(TclX). Don Libes is the primary developer of Expect.

TclPro Wrapper incorporates compression code from the Info-ZIP group. There are no extra
charges or costs in TclPro due to the use of this code, and the original compression sources
are freely available from http://www.cdrom.com/pub/infozip or
ftp://ftp.cdrom.com/pub/infozip.

NOTE: TclPro is packaged on this CD using Info-ZIP’s compression utility. The installation
program uses UnZip to read zip files from the CD. Info-ZIP’s software (Zip, UnZip, and
related utilities) is free and can be obtained as source code or executables from Internet
WWW sites including http://www.cdrom.com/pub/infozip.

i

•
•
•
•
•
•

• • • • • •

Chapter 1 Introduction to TclPro . 1

About the TclPro Documentation . 2
For More Information . 3

TclPro Technical Support . 3
Finding Information about Tcl/Tk . 3
Tcl/Tk Training. 3
Related Documentation . 4

Chapter 2 Installing TclPro . 5

Installing TclPro from CD or the Web . 5
Installing TclPro from CD . 6
Installing TclPro from the Web . 6

Installing TclPro on Windows . 6
Installing TclPro on Unix . 7

Mounting the CD-ROM and Running the Installer 8
Installing TclPro . 9
Installing Ajuba Solutions License Server . 11

Changing TclPro License Information . 12
Installing Adobe Acrobat Reader . 13
Unmounting the CD-ROM . 14

Chapter 3 TclPro Interpreters and Extensions . 15

TclPro Interpreters . 15
Running the TclPro Interpreters on Unix . 15
Running the TclPro Interpreters on Windows . 16

Extensions Incorporated in TclPro . 16
[incr Tcl] . 17
Expect . 17

ii

•
•
•
•
•
•

Extended Tcl (TclX) . 18

Chapter 4 TclPro Debugger . 19

Overview of TclPro Debugger . 19
Supported Tcl Versions. 19
Starting TclPro Debugger . 20
The TclPro Debugger Main Window . 20

The Tool Bar. 22
The Stack Display. 22
The Variable Display . 23
The Code Display . 24
The Result Display . 25

Setting Preferences . 25
Appearance Preferences . 25
Window Preferences . 26
Startup and Exit Preferences . 27
Other Preferences . 29

Managing Projects . 30
Creating a New Project . 30
Opening an Existing Project . 32
Saving a Project . 33
Closing a Project . 33
Changing Project Settings. 33

Changing Project Application Settings. 33
Changing Project Instrumentation Settings 36
Changing Project Error Settings . 38

Setting Default Project Settings . 39
Opening a File . 40
Controlling your Application . 41

Running Code with TclPro Debugger. 41
Run to Cursor . 41
Stepping through Code . 42

Stepping In . 42
Stepping Out . 43
Stepping Over . 43
Stepping to Result. 44

Interrupting the Application . 44
Killing the Application . 45

 iii

•
•
•
•
•
•

Restarting the Application . 45
Quitting TclPro Debugger . 45

Using Breakpoints. 45
Line-based breakpoints . 45
Variable Breakpoints . 46
Manipulating Breakpoints . 46
Viewing Breakpoints in the Breakpoints Window 46

Navigating Code . 48
Going to a Specified Line . 48
Using the Find Utility . 49
Finding Procedures . 49
Using the Window Menu . 51

Displaying Code and Data . 51
Watching Variables . 51
Displaying Data . 52

Manipulating Data. 54
Error Handling . 54

Parsing Error Handling . 55
Runtime Error Handling . 55

About TclPro Instrumentation . 56
Debugging Remote, Embedded, and CGI Applications 57

Modifying a Tcl Script for Remote Debugging 57
Remote Debugging Procedures . 58
Creating a “Wrapper” Script for Remote Debugging 59
Modifying an Existing Script for Remote Debugging 59

Creating a Remote Debugging Project . 60
Launching your Remote Application . 60
Viewing Connection Status . 60

Using Custom Tcl Interpreters with TclPro Debugger 61

Chapter 5 TclPro Checker . 63

Supported Tcl Versions. 63
Using TclPro Checker. 64
One-Pass and Two-Pass Checking . 64
TclPro Checker Messages. 66

Controlling Feedback on Errors and Warnings 67
Parsing Errors . 67
Syntax Errors . 67

iv

•
•
•
•
•
•

Platform Portability Warnings . 67
Suggestion for Upgrading. 67
Performance Warnings . 68
Usage Warnings . 68

Warning and Error Flags. 68
Suppressing Specific Messages . 69

Examples of Output from TclPro Checker . 69
Specifying Verbose Feedback. 70

Specifying Quiet Feedback. 71
Specifying Use of Older Versions . 72
Error Checking . 72
Error and Warning Checking . 73
Checking for All Warnings and Errors . 73

Chapter 6 TclPro Compiler . 75

Supported Versions . 75
Overview . 75
Compiling Your Code . 76
Bytecode Files . 77

Prepending Prefix Text . 77
Changes in Behavior . 78

Example 1: Cloning Procedures . 79
 What Is and Isn’t Compiled . 80

Example 2: Procedures Used with Namespace. 81
Compiler Components. 81

Creating Package Indexes . 81
Distributing Bytecode Files . 82

Compilation Errors . 82

Chapter 7 TclPro Wrapper . 85

How the Internal File Archive Works in a Wrapped Application. 86
Wrapping an Application . 87

Wrapping Tcl Scripts and Data Files . 87
Specifying the Tcl Interpreter . 88
Specifying the Startup Tcl Script . 89
Passing Arguments to the Startup Tcl Script . 90
Specifying the Name of a Wrapped Application 90
Determining Path References in Wrapped Applications 90

 v

•
•
•
•
•
•

Specifying TclPro Wrapper Command Line Arguments Using Standard
Input . 92
Specifying Code to Execute at Application Startup 92
Wrapping Libraries and Packages . 92

Wrapping Libraries of Tcl Scripts . 93
Wrapping Binary Shared Libraries. 93
Wrapping Tcl Script Packages . 94
Wrapping Packages Containing Binary Shared Libraries 94

Specifying a Temporary Directory . 95
Getting Detailed Wrapping Feedback . 95

Static and Dynamic Linking with Wrapped Applications 95
Deciding Whether Static or Dynamic Linking is More Appropriate . . . 96
Creating and Distributing Dynamically-Linked Wrapped Applications 96

Wrapping Applications with a Custom Interpreter or Custom Initialization
Libraries . 99

Specifying a Custom Interpreter or Custom Initialization Files. 99
Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Standard Initialization Files 101
Creating a Statically-Linked Wrapped Application with a Standard
Interpreter and Custom Initialization Files. 101
Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Custom Initialization Files. 102
Creating a Dynamically-Linked Wrapped Application with a Custom
Interpreter . 103

Defining New -uses Options . 103
Preparing an Application for Wrapping . 105

Detecting When an Application Is Wrapped . 106
Modifying Custom Shells . 106
Changing File References. 106

Accessing Unwrapped Files . 106
Accessing Files from a Shared Directory. 107
Accessing Wrapped Files Relative to a Script’s Directory 107
Auto-Loading Wrapped Tcl Script Libraries 108

Changing the Windows Icon for a Wrapped Application. 108

Chapter 8 Creating Custom Interpreters with TclPro . 111

Overview of the TclPro Development Environment 111
Locations of the Libraries . 112

vi

•
•
•
•
•
•

Debug and Non-Debug Libraries for Windows 112
The Sample Application . 113

Creating Regular Tcl Interpreters . 113
Creating Statically-Linked Interpreters. 113

Statically Linking Windows Interpreters . 114
Statically Linking Unix Interpreters . 116

Creating Dynamically-Linked Interpreters . 116
Dynamically Linking Windows Interpreters 117
Dynamically Linking Unix Interpreters . 118

Creating Base Applications for TclPro Wrapper . 119
TclPro_Init . 120
Providing Your Own Main Program. 120
Using the Main Program from Tcl or Tk 8.3 . 120
The Application Initialization API . 121
Linking Windows Base Applications . 121
Linking Unix Base Applications. 122

Appendix A Ajuba Solutions License Server . 123

How Licensing Works. 123
How TclPro Applications Obtain Licenses. 123
How the License Server Manages Shared Network Licenses. 124
License Overdraft . 124

Ajuba Solutions License Server Installation . 125
Installing the Ajuba Solutions License Server Software 125
Setting the Initial Configuration . 125
Ajuba Solutions License Server Installed Files 126

Ajuba Solutions License Server Administration . 128
Managing Licenses . 128
Revoking Licenses . 128
Changing Email Notifications. 129
Setting Date Formats. 129
Viewing Reports . 129

Appendix B TclPro Checker Messages . 131

Error and Warning Types . 131
Parsing Errors . 131
Syntax Errors. 131
Platform Portability Warnings . 132

 vii

•
•
•
•
•
•

Performance Warnings . 132
Usage Warnings . 132

A Listing of the Messages. 132
TclPro Checker Message Descriptions in Detail . 137

Index. 159

viii

•
•
•
•
•
•

1

•
•
•
•
•
•

• • • • • •

The Ajuba Solutions TclPro™ development environment is a set of powerful
development tools and extended Tcl platform for professional Tcl developers.
TclPro 1.4 consists of:

Table 1 TclPro 1.4 Components

Component Description

TclPro Debugger Find bugs quickly with features including breakpoints, single-
stepping, stack and variable display, and variable-based
breakpoints.

TclPro Checker Scan your Tcl scripts to identify a variety of potential problems
including syntax errors, misuses of the Tcl and Tk built-in
commands, and potential performance and portability problems.
TclPro Checker also helps you to upgrade from older versions of
Tcl to the latest releases by locating potential compatibility
problems.

TclPro Compiler Translate your Tcl scripts into bytecode files so that you can
distribute your applications without providing access to the
original Tcl source code. TclPro Compiler protects your
intellectual property and prevents customers from modifying your
scripts.

TclPro Wrapper Create a single executable file containing everything needed to
run a Tcl application. TclPro Wrapper makes it easy to distribute
Tcl applications to your users and manage upgrades in Tcl
versions.

2 Chapter 1

•
•
•
•
•
•

TclPro supports the following platforms:

• Windows

• Solaris (SPARC)

• HP-UX

• Irix

• Linux (Intel/glibc2)

See the online release notes for specific operating system versions supported.

About the TclPro Documentation
TclPro documentation consists of the following:

• This guide in print, PDF, and HTML formats

• Tcl and Tk command and C API reference pages in WinHelp (Windows) and
HTML (Unix) formats

In this guide, Tcl commands, shell commands, and C functions appear in bold
format. Variables, file names, and URLs appear in italics.

When this guide provides instructions for selecting an item from a menu, it lists
the options you need to select separated by “|” characters, with the accelerator
keys underlined. For example, “select File | Open from the menubar” means that
you should click on the File menu in the application, then select the Open option
from that menu; alternatively, you could hold the <Alt> key while you type “fo”.

Tcl scripts, C programs, and computer output appear in a typewriter-style font.
Information that you type at a Tcl or shell prompt is in a bold typewriter-style
font. The following shows a simple example where you enter a Tcl command in
tclsh and see the results:

Tcl/Tk 8.3 The latest version of Tcl/Tk is pre-compiled and ready for use.

Bundled extensions Several popular Tcl extensions—[incr Tcl], [incr Tk], TclX, and
Expect—are pre-compiled for all of the TclPro supported
platforms. The TclPro tools have built-in support for all bundled
extensions.

Enhanced interpreters The protclsh and prowish Tcl interpreters include built-in
support for all bundled extensions and the Tcl bytecode files
produced by TclPro Compiler

Table 1 TclPro 1.4 Components

Component Description

Introduction to TclPro 3

•
•
•
•
•
•

% puts "2 + 2 = [expr 2 + 2]"
2 + 2 = 4

For More Information
This section lists sources of additional information about TclPro and Tcl/Tk.

TclPro Technical Support
Ajuba Solutions Inc. offers several levels of Technical Support. In addition to
phone & email support for qualified customers, we also have online FAQs, a
Known Bugs list, and other useful resources. For information on TclPro Technical
Support, please see the Ajuba Solutions Web site at
http://dev.ajubasolutions.com/support.

Finding Information about Tcl/Tk
The Tcl Resource Center provides an annotated index to Tcl-related Web sites to
help you find the information that you are seeking. See the Tcl Resource Center at
http://dev.ajubasolutions.com/resource.

The comp.lang.tcl newsgroup provides a forum for questions and answers about
Tcl. Announcements about Tcl extensions and applications are posted to the
comp.lang.tcl.announce newsgroup. This information is also available on the Web
at http://www.deja.com.

Tcl/Tk Training
Ajuba Solutions offers both public and on-site technical training courses for
novice and advanced Tcl/Tk developers interested in harnessing the power of
scripting.

• The introductory tutorials bring novice Tcl/Tk programmers the skills they
need to start creating exciting applications.

• The advanced courses improve your productivity, showing you how to create
network applications with improved graphical features, and how to use object-
oriented techniques with [incr Tcl].

Ajuba Solutions instructors also spend time showing you how to link Tcl with
your existing code base, and how to package your Tcl code in reusable libraries.

For the current training schedule and complete course descriptions, see the
training Web page at http://www.ajubasolutions.com/services/training

4 Chapter 1

•
•
•
•
•
•

Related Documentation
If you are new to Tcl/Tk, here are some programming guides that can help you get
started:

• Practical Programming in Tcl and Tk (Third Edition), by Brent Welch,
published by Prentice Hall, 2000.

• Graphic Applications for Tcl/Tk, by Eric F. Johnson, M&T Books, 1997.

• Effective Tcl/Tk Programming; Writing Better Programs with Tcl/Tk, by Mark
Harrison and Michael McLennan, published by Addison Wesley, 1998.

• Tcl/Tk for Real Programmers, by Clifton Flynt, published by Academic Press
Professional, 1998.

• Tcl/Tk for Programmers With Solved Exercises That Work With Unix and
Windows, by J. A. Zimmer, published by IEEE, 1998.

• Tcl and the Tk Toolkit, by John Ousterhout, published by Addison-Wesley,
1994.

• [incr Tkl/Tk] from the Ground Up, by Chad Smith, published by
Osborne/McGraw-Hill, 2000.

For a comprehensive list of books related to Tcl/Tk, browse the Tcl Resource
Center: http://dev.ajubasolutions.com/resource.

5

•
•
•
•
•
•

• • • • • •
This chapter describes how to install Ajuba Solutions TclPro on the following
supported platforms:

Note Ajuba Solutions believes that TclPro will work with other Linux distributions that
use glibc2, such as Caldera Linux. However, Ajuba Solutions does not support
these other Linux operating systems at this time.

Important If at any time you need to move any of the files or folders containing files in the
TclPro installation to a new location, you should uninstall and reinstall TclPro.

After installing, consult the README file in the TclPro installation directory for
more information about using TclPro.

Installing TclPro from CD or the Web
This section describes how to install TclPro from either a CD or the Ajuba
Solutions Web site, install the Adobe Acrobat Reader (if needed), and enter your
license information so you can run the TclPro applications.

Table 2 Supported Platforms

Operating System Architecture Version

Irix SGI (Mips) 6.3+

HP-UX HP (PARISC) 10.20+

Linux Intel Red Hat 6.0+ or SuSE 6.0+

Solaris Sun (Sparc) 2.5+

Windows Intel 95/98/NT 4.0/2000

6 Chapter 2

•
•
•
•
•
•

Installing TclPro from CD
The TclPro CD contains installer applications that make installing TclPro very
easy. All you need to do is run the setup.sh (or setup.exe on Windows) program
located at the top level of the CD-ROM. The installation program will guide you
through the various installation options. Please see below for platform-specific
details and additional instructions about installing from the CD-ROM.

Installing TclPro from the Web
You can obtain TclPro from the Ajuba Solutions Web site. To install TclPro from
the web, go to the TclPro download page at
http://www.ajubasolutions.com/tclpro/eval. Follow the instructions provided there
to download the TclPro distribution and install it on your system.

Installing TclPro on Windows

If you are upgrading from a prior version of TclPro (1.3 or earlier), you should
install and use the new version before uninstalling the prior version.

There is no need to upgrade the Ajuba Solutions License Server for TclPro 1.4. All
you need to do is install the new shared Network License keys for TclPro 1.4.

If you are installing on a Windows NT system, you must be the Administrator user,
or a user with Administrator privileges, to install TclPro.

1) Insert the TclPro CD-ROM into your system’s CD-ROM drive. The
installation program, setup.exe, automatically starts. If you have disabled
autoplay for CD-ROMs, you can run the install program manually.

2) Select whether or not to install Adobe Acrobat Reader 3.0. Adobe Acrobat
Reader 3.0 is required to view the online version of the TclPro User’s Guide.

3) Select an installation directory for TclPro 1.4. Do not install TclPro 1.4 in the
same directory as a previous version of TclPro. For example, if you already
have TclPro 1.3 installed in C:\Program Files\TclPro1.3, install TclPro 1.4 in
a separate directory such as C:\Program Files\TclPro1.4.

4) Select the TclPro components you want to install:

• Basic—Installs everything you need to run the TclPro tools, including
documentation, demos, libraries (for Tcl, Tk, and bundled extensions), and
the tools themselves. Deselect “Basic” only if you have previously
installed TclPro 1.4 and are running the installation program again only to
install additional components.

Installing TclPro 7

•
•
•
•
•
•

• C Development Libraries—Installs development libraries for Tcl, Tk,
and the bundled extensions, header files, and sample source files. Install
this component only if you want to develop custom Tcl interpreters or use
TclPro Wrapper with extensions not bundled with TclPro.

• The source components install the source files for Tcl, Tk, and the bundled
components. Install these components only if you need to customize the
Tcl/Tk core or bundled extensions.

5) The installer installs the components you select. Afterwards, it displays the
TclPro License Manager for you to enter your license information.

If you are using a Shared Network License, enter the host name and port of a
Ajuba Solutions License Server. If you do not know this information, please
contact your system administrator. If you are using a Named User License,
enter the license key and your name. You can find your license key:

• On your CD-ROM case

• On the packing list included with your TclPro shipment

• In an email sent to you after you purchased TclPro

If you enter a valid Named User License key, your TclPro applications run
using that license. Otherwise, your TclPro applications attempt to obtain a
Shared Network License from the Ajuba Solutions License Server you specify.

You can change your license information at a later time by running the TclPro
License Manager (select the Windows Start Menu | Programs | TclPro1.4 |
TclPro License Manager).

Installing TclPro on Unix
If you are upgrading from a prior version of TclPro (1.3 or earlier), you should
install and use the new version before uninstalling the prior version.

There is no need to upgrade the Ajuba Solutions License Server for TclPro 1.4. All
you need to do is install the new shared Network License keys for TclPro 1.4.

For Unix systems, you have the option of installing:

• A personal copy of TclPro

• A site copy of TclPro (This option requires Shared Network Licenses
administered by Ajuba Solutions License Server. You should install Ajuba
Solutions License Server before installing a site copy of TclPro.)

• Ajuba Solutions License Server, for administering Shared Network Licenses

• Adobe Acrobat Reader 3.0 (required to read the online version of the TclPro
User’s Guide)

8 Chapter 2

•
•
•
•
•
•

The following sections describe how to mount the CD-ROM on your system, run
the installer, install the options you want, and unmount the CD-ROM.

Important You must run the installation as the root user if you plan to install the Ajuba
Solutions License Server for administering Shared Network Licenses.
Furthermore, some UNIX systems restrict access to the CD-ROM drive to the root
user. If you experience difficulties in accessing your TclPro CD-ROM, consider
retrying the installation process as the root user. You must also have permission to
install to the directory that you select. For example, the default destination
directory, /opt/ajuba/TclPro1.4, is normally restricted to the root user. If you
choose to install to this path, you need to do so from the root account.

Mounting the CD-ROM and Running the Installer
Insert the TclPro CD-ROM into your CD-ROM drive. To access the CD-ROM on
HP-UX and Linux, you must mount the drive to a directory on your filesystem. Use
a command from the table below to mount the CD-ROM.

Run the TclPro installation program using the command shown in the table below.
By default, the installer displays a graphical user interface. To run a text-only
installation, include the -T argument when running the installer.

Table 3 Mounting the CD-ROM

Operating System Command to Mount CD-ROM

HP-UX mount -o cdcase /dev/dsk/c1t2d0 /cdrom
Ask your system administrator to verify the CD-ROM device.

Red Hat Linux mount -o exec,mode=0555 /mnt/cdrom

Suse Linux mount -o exec,mode=0555 /mnt/cdrom

Caldera Linux mount -o exec,mode=0555 /dev/scd0 /mnt/cdrom

Table 4 Commands to Start the Installer

Operating System Command to Start Installer

HP-UX /cdrom/setup.sh

Irix /CDROM/setup.sh

Red Hat Linux /mnt/cdrom/setup.sh

Installing TclPro 9

•
•
•
•
•
•

Installing TclPro
The TclPro CD-ROM allows you to install either a personal or a site copy of
TclPro. A personal copy of TclPro allows one named user to use TclPro. A site copy
of TclPro allows multiple users to use the same TclPro applications. A site copy
requires Shared Network Licenses administered by Ajuba Solutions License
Server.

Important Before you install a site copy of TclPro, you must install Ajuba Solutions License
Server, as described in “Installing Ajuba Solutions License Server” on page 11.

To install TclPro:

1) Mount the TclPro CD-ROM and run the installer as described in “Mounting the
CD-ROM and Running the Installer.”

2) The option to select depends on whether you want to install a personal or a site
copy of TclPro:

a) To install a personal copy of TclPro, select the “TclPro Version 1.4.0 for a
named user” option.

b) To install a site copy of TclPro, select the “TclPro Version 1.4.0 for shared
network users and Ajuba Solutions License Server” option, then select the
“TclPro Version 1.4.0” option.

3) Select an installation directory for TclPro 1.4. Do not install TclPro 1.4 in the
same directory as a previous version of TclPro. For example, if you already
have TclPro 1.3 installed in /opt/ajuba/TclPro1.3, install TclPro 1.4 in a
separate directory such as /opt/ajuba/TclPro1.4. Note that you must have
permission to install to the directory that you select.

4) Select the platform or platforms on which you want to install TclPro.

You can install TclPro on multiple Unix platforms in one target directory. Note
that each machine using TclPro from the same directory must mount that
directory in the same manner. For example, if you install in
/opt/ajuba/TclPro1.4 on one machine, other machines must mount that same
directory (or have access to it) using the same path.

Suse Linux /mnt/cdrom/setup.sh

Caldera Linux /mnt/cdrom/SETUP.SH or /mnt/cdrom/setup.sh

Solaris /cdrom/tclpro_1_4/setup.sh

Table 4 Commands to Start the Installer

Operating System Command to Start Installer

10 Chapter 2

•
•
•
•
•
•

5) Select the TclPro components you want to install:

• Basic—Installs everything you need to run the TclPro tools, including
documentation, demos, libraries (for Tcl, Tk, and bundled extensions), and
the tools themselves. Deselect “Basic” only if you have previously
installed TclPro 1.4 and are running the installation program again only to
install additional components.

• C Development Libraries—Installs development libraries for Tcl, Tk,
and the bundled extensions, header files, and sample source files. Install
this component only if you want to develop custom Tcl interpreters or use
TclPro Wrapper with extensions not bundled with TclPro.

• The other source components install the source files for Tcl, Tk, and the
bundled components. Install these components only if you need to
customize the Tcl/Tk core or bundled extensions.

6) The installer installs the components you select. Afterwards, it displays the
TclPro License Manager for you to enter your license information. The license
information required depends on whether you are installing a personal or a site
copy of TclPro:

a) For a personal copy of TclPro, if you are using a Shared Network License,
enter the host name and port of a Ajuba Solutions License Server. If you
do not know this information, please contact your system administrator. If
you are using a Named User License, enter the license key and your name.
You can find your license key:

• On your CD-ROM case

• On the packing list included with your TclPro shipment

• In an email sent to you after you purchased TclPro

If you enter a valid Named User License key, your TclPro applications run
using that license. Otherwise, your TclPro applications attempt to obtain a
Shared Network License from the Ajuba Solutions License Server you
specify.

You can change your license information at a later time by running the
TclPro License Manager:

% prolicense

b) For a site copy of TclPro, enter the host name and port of the default Ajuba
Solutions License Server for this TclPro installation. When users run any
of the TclPro applications from this site installation, they automatically use
the default Ajuba Solutions License Server. Users can run TclPro License
Manager to override the default on a personal basis, specifying either
another Ajuba Solutions License Server or a Named User License key.

Installing TclPro 11

•
•
•
•
•
•

You can change the default Ajuba Solutions License Server for this TclPro
installation at a later time by running the TclPro License Manager with the
-admin flag:

% prolicense -admin

7) Install other software from the CD-ROM as desired (for example, Adobe
Acrobat Reader), or unmount the CD-ROM as described in “Unmounting the
CD-ROM.”

Installing Ajuba Solutions License Server
Ajuba Solutions License Server manages Shared Network Licenses for the Ajuba
Solutions products in use at your site. You don’t need to install Ajuba Solutions
License Server and TclPro on the same system. Users of TclPro applications
accessing Shared Network Licenses require only TCP/IP connectivity to the
system running Ajuba Solutions License Server; file-sharing is not required.

To install Ajuba Solutions License Server:

1) Mount the TclPro CD-ROM and run the installer as described in “Mounting the
CD-ROM and Running the Installer.”

2) Select the “TclPro Version 1.4.0 for shared network users and Ajuba Solutions
License Server” option, then select the “Ajuba Solutions License Server
Version 1.4.0” option.

3) Enter a User ID and Group ID for Ajuba Solutions License Server. To help you
maintain system security, Ajuba Solutions License Server runs using these IDs
rather than running as root.

4) Enter a port number. Ajuba Solutions License Server uses this port for
communication with TclPro tools and for administration. The recommended
port is the default, 2577.

5) Enter a destination directory for Ajuba Solutions License Server. The installer
copies all the Ajuba Solutions License Server files into this directory except for
those files used by the system to automatically start and stop Ajuba Solutions
License Server. See Appendix A for more information about the files installed.

Note If you have a prior version of Ajuba Solutions License Server already installed,
install the release version in a different directory. After installing the release
version, see the sections on licensing and upgrading in the README file of
your new installation for information on how to uninstall the prior version and
update your licenses.

12 Chapter 2

•
•
•
•
•
•

6) Enter a log directory. Because log information can grow large over time, you
might like the log files to exist on a disk different from the one on which you
install the other Ajuba Solutions License Server files.

7) The installer installs Ajuba Solutions License Server. After installation, the
installer gives you the option of starting Ajuba Solutions License Server
immediately.

Note Using a standard init.d script, which is created during installation, your system
will stop and start Ajuba Solutions License Server automatically upon system
shutdown and reboot. Only in rare situations, should you need to start or stop
Ajuba Solutions License Server manually.

8) Install other software from the CD-ROM as desired (for example, Adobe
Acrobat Reader), or unmount the CD-ROM as described in “Unmounting the
CD-ROM.”

Important 9) After completing the installation, you must configure Ajuba Solutions License
Server through its Web browser interface. To display the Ajuba Solutions
License Server Web interface, launch a Web browser and open the following
URL:

http://hostname:port/

where hostname is the hostname of the system running Ajuba Solutions
License Server and port is the port number you assigned during installation.

The first time you connect to the Ajuba Solutions License Server Web
interface, the Set Initial Configuration page is displayed; it prompts for initial
configuration information, including Shared Network License keys. You can
find your license key:

• On your CD-ROM case

• On the packing list included with your TclPro shipment

• In an email sent to you after you purchased TclPro

See Appendix A for more information about configuring Ajuba Solutions
License Server.

Changing TclPro License Information
You need a license to use any TclPro application. The TclPro installer prompts you
for license information during installation. You can change your license
information afterwards by running the TclPro License Manager:

Installing TclPro 13

•
•
•
•
•
•

• On a Windows system, select TclPro License Manager from the Start menu or
run the prolicense.exe file, which is contained in the win32-ix86\bin
subdirectory of the TclPro installation directory.

• On a Unix system, to run the graphical version, run prolicense, which is
contained in the platform-specific bin subdirectory of the TclPro installation
directory (solaris-sparc/bin for Solaris, linux-ix86/bin for Linux, hpux-
parisc/bin for HP-UX, and irix-mips/bin for IRIX).

• On a Unix system, to run the command-line version, run prolicense.tty, which
is contained in the platform-specific bin subdirectory of the TclPro installation
directory (solaris-sparc/bin for Solaris, linux-ix86/bin for Linux, hpux-
parisc/bin for HP-UX, and irix-mips/bin for IRIX).

You must provide your name and a license key to TclPro License Manager. You can
find your license key:

• On your CD-ROM case

• On the packing list included with your TclPro shipment

• In an email sent to you after you purchased TclPro or download an evaluation
copy

If you do not have a valid license, you may purchase one from
http://www.ajubasolutions.com/buy or obtain a free 15-day evaluation license from
http://www.ajubasolutions.com/tclpro/eval.

Installing Adobe Acrobat Reader
Adobe Acrobat Reader 3.0 is required to view the online version of the TclPro
User’s Guide. To install Adobe Acrobat Reader:

1) Mount the TclPro CD-ROM and run the installer as described in “Mounting the
CD-ROM and Running the Installer.”

2) Select the “Adobe Acrobat Reader Version 3.02” option.

3) Select an installation directory for Adobe Acrobat Reader. Note that you must
have permission to install to the directory that you select.

4) Install other software from the CD-ROM as desired, or unmount the CD-ROM
as described in “Unmounting the CD-ROM.”

14 Chapter 2

•
•
•
•
•
•

Unmounting the CD-ROM
After installing the desired software, unmount the CD-ROM using the command
shown in the table below. Note that you may need root access to invoke these
commands.

Table 5 Unmounting the CD-ROM

Operating System Command

HP-UX umount /cdrom

Irix eject

Linux umount /mnt/cdrom

Solaris eject

15

•
•
•
•
•
•

• • • • • •
In addition to various Tcl development applications, Ajuba Solutions TclPro is an
extended Tcl platform that includes several popular Tcl extensions and enhanced
Tcl interpreters.

TclPro Interpreters
The TclPro installation includes two enhanced Tcl interpreters, protclsh83 and
prowish83. These interpreters are identical to the standard tclsh and wish
interpreters that are part of the Tcl and Tk distributions except for three
improvements:

• protclsh83 and prowish83 are precompiled for all of the TclPro supported
platforms. You don’t need to compile them from source files.

• protclsh83 and prowish83 support all the extensions included with TclPro, as
discussed in “Extensions Incorporated in TclPro” on page 16.

• protclsh83 and prowish83 support an extension called tbcload. This
extension is required to run the bytecode files created by TclPro Compiler.

Running the TclPro Interpreters on Unix
To simplify running protclsh83 and prowish83 on Unix systems:

1. Add the TclPro bin directory to your PATH environment variable.

This is a platform-specific directory in the install area of TclPro where all the
executables are kept. It is solaris-sparc/bin for Solaris, linux-ix86/bin for
Linux, hpux-parisc/bin for HP-UX, and irix-mips/bin for IRIX. For example,
if TclPro was installed in /opt/TclPro, you should add /opt/TclPro/solaris-
sparc/bin to the PATH environment variable on Solaris platforms.

16 Chapter 3

•
•
•
•
•
•

2. If your scripts start with the following lines, they will be processed by
protclsh83 automatically:

#!/bin/sh
the next line restarts using protclsh83 \
exec protclsh83 "$0" "$@"

You can modify this line to include prowish83 or the interpreter of your choice.
See the manual pages for protclsh83 or prowish83 for more information.

Running the TclPro Interpreters on Windows
If you are using Windows, you do not need to modify your path; the TclPro
installer does this automatically. The TclPro installer also registers prowish83 to
handle files with the .tcl extension.

Extensions Incorporated in TclPro
TclPro incorporates several widely-used Tcl extensions with its distribution.
Beyond simply providing source code for the extensions, TclPro integrates the
extensions in several ways to make it easier for you to use the extensions in your
applications:

• Each extension is pre-compiled for all of the TclPro supported platforms.
You don’t need to compile them from source files. If you are writing a
custom interpreter, Chapter 8, “Creating Custom Interpreters with TclPro”
on page 111 describes the locations of the extension libraries and provides
information about linking with them.

• The enhanced TclPro interpreters, protclsh83 and prowish83, provide
built-in support for all incorporated extensions.

• TclPro Checker and TclPro Debugger understand all new commands and
control structures implemented by each extension.

• TclPro Wrapper provides built-in support for creating wrapped
applications that use the bundled extensions.

The following sections describe each of the extensions bundled with TclPro.

Important Each extension traditionally provided its own custom interpreter with built-in
support for that extension’s commands and control structures (for example, itclsh
or expect). With TclPro, support for these extensions is provided by the
protclsh83 and prowish83 interpreters. To use the features of a particular
extension, you must execute an appropriate package require command before

TclPro Interpreters and Extensions 17

•
•
•
•
•
•

using any of the commands or control structures of that extension. Table 6 lists the
necessary package require command for each supported extension.

[incr Tcl]
[incr Tcl] adds object-oriented programming support to Tcl. [incr Tcl] allows you
to create objects in Tcl scripts, which act as building blocks for an application.
Each object can contain its own data and procedures for manipulating the object.
Objects are organized into classes with identical characteristics, and classes can
inherit functionality from one another.

[incr Tcl] includes the [incr Widgets] library of more than 50 “mega-widgets,”
including a combo-box, a tabbed notebook, a calendar, and an HTML viewer.
These widgets work just like the usual Tk widgets, so you can use them even if
you don't know anything about object-oriented programming. [incr Tcl] also
comes with the [incr Tk] framework for creating your own mega-widget classes.

For more information about [incr Tcl], visit the web site http://www.tcltk.com/itcl.
You can also refer to the book [incr Tkl/Tk] from the Ground Up, by Chad Smith,
published by Osborne/McGraw-Hill, 2000.

Expect
Expect is a tool for automating interactive applications that have a command-line
interface. Expect makes it easy to automate repetitive tasks or to add a graphical
interface to an existing command-line tool.

For more information about Expect, visit the web site http://expect.nist.gov. You
can also refer to the book Exploring Expect: A Tcl-based Toolkit for Automating
Interactive Programs, by Don Libes, published by O'Reilly & Associates, 1994.

Table 6 Required Commands for Loading Supported TclPro Extensions

Extension Required Initialization Command

Expect package require Expect

[incr Tcl] package require Itcl

[incr Tk] package require Itk

[incr Widgets] package require Iwidgets

TclX package require Tclx

TkX package require Tkx

18 Chapter 3

•
•
•
•
•
•

Note Expect command names that “collide” with command names in the Tcl/Tk core
(for example, send) can confuse TclPro Checker when it checks an Expect script,
causing it to report syntax errors. To avoid this, use the exp_ prefix for all such
ambiguous commands (for example, use exp_send instead of send).

Extended Tcl (TclX)
Extended Tcl (TclX) provides additional support for systems programming tasks
and large application development. Features of TclX include:

• Enhanced file manipulation and scanning

• Additional list manipulation commands

• Additional math commands

• Additional string commands

• X/Open Portability Guide, Version 3 (XPG/3) message catalog support

• Extended Unix access

• A help facility

For more information about TclX, visit the web site http://www.neosoft.com/tclx.

19

•
•
•
•
•
•

• • • • • •
TclPro Debugger provides a variety of features that help you to find and fix bugs
in Tcl scripts quickly. These features include:

• Stepping functions for evaluating single Tcl commands or running to where
you have placed the cursor in the code

• Display of variable values for all accessible stack frames

• Full stack information and navigation around the stack and source code when
the application is stopped

• Line- and variable-based breakpoints

• An Eval Console in which you can enter code for the application to evaluate
dynamically when the application is stopped

• The ability to interrupt code to determine the execution status of the
application that you are debugging

• The ability to communicate with remote and embedded applications

Overview of TclPro Debugger
This section lists the platforms and Tcl versions that TclPro Debugger supports. It
then describes how to start TclPro Debugger and provides a tour of the TclPro
Debugger main window.

Supported Tcl Versions
TclPro Debugger can debug any Tcl/Tk script running in a Tcl version 7.6 and Tk
version 4.2 or later interpreter. This includes any extensions to those interpreters
that do not radically redefine any standard Tcl commands.

Important Renaming or radically redefining any standard Tcl commands may cause TclPro
Debugger to fail. An example of a radical redefinition of the proc command

20 Chapter 4

•
•
•
•
•
•

would be to redefine it to take four arguments instead of three. In particular, avoid
altering the Tcl commands listed below:

Starting TclPro Debugger
If you are running TclPro Debugger on a Windows system, select TclPro
Debugger from the Start menu or double-click the prodebug.exe icon. If you are
running Unix, add the release directory to your execution path, and enter
prodebug at the prompt.

The TclPro Debugger Main Window
Figure 1 shows the main window that TclPro Debugger displays when it starts.
The main window includes the following subregions:

• Tool bar

• Stack display

• Variable display

• Code display

• Result display

array break catch cd

close concat continue eof

error eval event exit

expr fconfigure file fileevent

flush for foreach gets

global if incr info

lappend lindex linsert list

llength lrange lreplace lsearch

namespace open proc puts

pwd read regexp regsub

rename return set string

switch trace unset uplevel

upvar variable vwait while

TclPro Debugger 21

•
•
•
•
•
•

Figure 1 TclPro Debugger Main Window

Stack Display Project Title Tool bar Variable
Breakpoint

Variable Breakpoint Status Bar An asterisk
indicates an

uninstrumented
application

File name and
line number

Variable
Display

Line Breakpoint

Result Display

Code Bar

Code
Display

22 Chapter 4

•
•
•
•
•
•

The main window, as shown in Figure 1, includes menus and a tool bar, in which
you run, step through, interrupt, kill, or restart your code. You can change the
appearance of TclPro Debugger by toggling the display of various elements of the
Main window:

Tool bar Select View | Toolbar from the menubar

Results display
Select View | Result from the menubar

Status bar Select View | Status from the menubar

Line numbers
Select View | Line Numbers from the menubar

The Tool Bar

Figure 2 shows the tool bar, with callouts identifying each of the buttons. The
function of each button is described in the following sections.

Figure 2 TclPro Debugger Tool Bar

When you hold your mouse over a tool bar button, a description of the
functionality of that button appears in the left side of the status bar.

The Stack Display

The Stack Display shows the most recent stack levels and highlights the current
location in your code when the application is stopped. If you select a stack level,
TclPro Debugger shows the code and variable values for that stack level in the
code display and the variable display. When the application encounters a
breakpoint, the last stack frame is automatically selected and highlighted in the
Stack Frame display. The call stack includes an entry for each distinct scope or
body of code. It displays stack frame information in this format: stack level, Tcl
command, and relevant arguments. Stack level 0 indicates the global level. Stack
level 1 indicates that a procedure is invoked from level 0; stack level 2 indicates
that a procedure is invoked from stack level 1, and so on.

Run

Step
In

Step
Over

Step
Out

Step to
Result

Restart
Stop

Breakpoint
Window

Eval
Console

Procedure
Window

Watch
Variable
Window

Run to
Cursor

Kill Refresh

TclPro Debugger 23

•
•
•
•
•
•

Note If your code is in an event loop when you click the Stop button, no code is shown
in the Code display and the top level in the stack frame displays “event.”

The following example shows a sample stack frame:

0 global
0 source myScriptFile
1 proc myProc arg1 arg2 arg3
2 namespace eval myNamespace
3 proc myproc3
0 uplevel
1 proc myproc3 args

In this example, the stack level is reset to 0 by the uplevel command; the uplevel
command can be called explicitly in your source code or implicitly by a callback.
As with any other procedure call, the namespace eval command creates a new
level.

You can navigate through the application by clicking on specific stack frames,
which affects both the Variable and Code displays. When you double-click any
part of a stack frame, the Code display scrolls to and highlights the current
command in that stack frame. For example, if you want to see the code that caused
a stack frame to be created, you can double-click the frame directly above the
frame in question. In addition to highlighting the current command, if the last
stack frame is selected, TclPro Debugger indicates the current command with a
yellow Run Arrow in the Code bar. TclPro Debugger also indicates the current
command with a green triangular History Arrow in the Code bar. When you click
a stack frame, the Variable display shows the variables in that stack frame. For
example: if you want to see global variables, you can double-click any Level 0
stack frame. If you click directly on an argument in a proc stack frame, the
Variable Window scrolls to and highlights the selected argument.

The Variable Display

The Variable display shows all of the existing variables in the highlighted stack
frame. The value of each variable is updated whenever the application is stopped.
The value for each array appears as an ellipsis (...). You can expand and contract
the display of the array by clicking the ellipsis. When an array is expanded, each
index is listed with its corresponding value. You can click to the left of the name
of the variable to set a variable breakpoint, which causes the application to stop
whenever the chosen variable is modified. See “Manipulating Breakpoints” on
page 46. Large variables are abbreviated in the Variable display. To see the
complete value, double-click the variable, and the Data Display window appears.
See “Displaying Data” on page 52.

24 Chapter 4

•
•
•
•
•
•

If the message “No variable info for this stack” appears in the Variable display, it
means that the stack level that is highlighted in the Stack display is hidden. Stack
levels are hidden as a result of calls to Tcl commands like vwait and uplevel.
When vwait is called, it creates a new stack, and all of the non-zero levels of the
old stack are hidden until the vwait call returns. When uplevel is called with the
absolute level for x, all of the levels of the old stack that are greater than x are
hidden until the uplevel call returns.

The Code Display

The Code display shows exactly one Tcl code source at a time. A code source is
either a file opened in the File menu, a file that has been sourced by the
application, or a chunk of code dynamically created at runtime by commands such
as eval. The Window menu lists all the open files, allowing you to select the file
you want to view. You can also select a code source to view from the Breakpoint
and Procedures windows. See “Using Breakpoints” on page 45 and “Finding
Procedures” on page 49.

When the application is stopped, an arrow or triangle appears in the code bar
indicating the current command with highlighted text. For example, in Figure 1 on
page 21, the portion of the code that is highlighted is code that is about to be
executed and it is also indicated by the yellow run arrow in the code bar. Code is
also highlighted if it is found using the Find command. See “Going to a Specified
Line” on page 48 for information on commands that you can use to move through
and search for specific portions of code.

The main window includes a status bar. The left portion of the status bar displays
the information about the state of the debugger session, or information about the
tool bar buttons if you place your cursor over a button. The center displays an
asterisk (“*”) if the current code source is uninstrumented; see “About TclPro
Instrumentation” on page 56. The right portion displays the current file name and
line number.

If you see the message “No Source Code...” in the Code display, there are two
possible reasons:

• If your application is in the event loop when you click the Stop button, TclPro
Debugger cannot display code because no code is being evaluated.

• TclPro Debugger cannot display code for the first stack level labeled “global”
because your application’s code is sourced by code internal to TclPro
Debugger.

TclPro Debugger 25

•
•
•
•
•
•

The Result Display

The Result display shows the result and completion code of the most recently
executed Tcl command. The Result display is not a scrolling window; TclPro
Debugger displays only as much of the result as can fit in the Result display. You
can double-click on the result to display it in the Data Display window (see
“Displaying Data” on page 52).

Note The performance of TclPro Debugger can decrease if your application produces
particularly long results (for example, reading a large file into a variable) and you
have the Result display visible. If you want to increase performance in cases like
this, toggle off the Result display by selecting View | Result from the menubar.

Setting Preferences
You can specify preferences to customize TclPro Debugger. To modify
Preferences, select Edit | Preferences from the menubar. Click the tabs to select
your preferences for Appearance, Windows, Instrumentation, and Startup and
Exit, and Other preferences.

Appearance Preferences
The Appearance Preference tab is shown in Figure 3.

Figure 3 The Appearance Preference Tab

You can choose the following Appearance preferences:

26 Chapter 4

•
•
•
•
•
•

Type The name of the font used to display code, stack frames, variables, etc.

Size The size of the font used to display code, stack frames, variables, etc.

Tip TclPro Debugger attempts to optimize your font and size preferences.
If you enter a font that is unavailable, TclPro Debugger finds a similar
font on your computer and substitutes it. Ajuba Solutions recommends
that you only use fixed-width fonts.

Note Small font sizes can cause misalignment of the symbols in the Code
Bar and their corresponding lines of code. If you experience problems,
increase the font size.

Highlight The color TclPro Debugger uses when it stops to highlight the next
command it will execute

Highlight On Error
The color TclPro Debugger uses to highlight a command in which it
finds an error

Highlight On Result
The color TclPro Debugger uses to highlight code it just executed after
a Step To Result

After changing the Appearance tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your
choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Window Preferences
The Windows Preference tab is shown in Figure 4.

TclPro Debugger 27

•
•
•
•
•
•

Figure 4 The Windows Preference Tab

You can modify the following Windows preferences:

Screen Buffer Size
The number of lines of output retained by the Eval console

History Buffer Size
The number of commands retained in the Eval console history buffer

Tab Size
The number of characters between each tab stop.

After changing the Windows tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your
choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Startup and Exit Preferences
The Startup & Exit Preference tab is shown in Figure 5.

28 Chapter 4

•
•
•
•
•
•

Figure 5 The Startup & Exit Preference Tab

The Startup preference controls TclPro Debugger’s behavior when you start the
debugger:

Reload the Previous Project on Startup
TclPro Debugger reloads the project you had open when you last
exited TclPro Debugger

The Exit preferences control TclPro Debugger’s behavior when you quit the
debugger:

On exit, ask if the application should be killed
TclPro Debugger prompts you to kill the application when you exit the
debugger

On exit, always kill the application
TclPro Debugger always kills the application when you exit the
debugger

On exit, always leave the application running
TclPro Debugger leaves the application running when you exit the
debugger

Warn Before Killing the Application
TclPro Debugger always prompts you when you are about to perform
an action that would kill the application

After changing the Startup & Exit tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your

TclPro Debugger 29

•
•
•
•
•
•

choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Other Preferences
The Other Preference tab is shown in Figure 6.

Figure 6 The Other Preference Tab

TclPro Debugger uses a Web browser to display the Ajuba Solutions Web site
when you click on the Ajuba Solutions URL in the About TclPro Debugger
window and to display online help on Unix systems.

You can select one of the following choices for your Web browser with TclPro:

Use default browser
TclPro Debugger uses the default browser on your system. (This
option isn’t available on Unix systems.)

Choose an alternate browser
On Windows, you see the pathname of your default browser. You can
enter the pathname of an alternate browser here.

On Unix, TclPro Debugger displays a drop-down list with default
command line arguments for launching Netscape and Internet
Explorer. For these options to work, the executable for the browser you
select must appear in one of the directories in your PATH environment
variable. Alternatively, you can enter the pathname of a browser,

30 Chapter 4

•
•
•
•
•
•

including any flags necessary so that TclPro Debugger can launch the
browser with a given URL (for example, /usr/local/bin/netscape
-no-about-splash)

Warn when moving invalid breakpoints
If you wish to see a warning message whenever you move invalid
breakpoints, put a check in this checkbox.

After changing the Other tab settings, click the OK button to save your choices
and close the Preferences window, the Cancel button to cancel your choices and
close the Preferences window, or the Apply button to apply your choices and keep
the Preferences window open.

Managing Projects
You can manage multiple projects with TclPro Debugger. TclPro Debugger saves
project information in files with the .tpj extension. Projects store a variety of
information about an application including:

• the name of the initial Tcl script

• the interpreter

• any command-line arguments you pass to the script

• the current working directory

• any line breakpoints you have set

• any variables in your watch list

By default, when TclPro Debugger starts, it automatically reloads the last project
you had open. You can change this behavior as described in “Startup and Exit
Preferences” on page 27.

Note You must have a project open to perform any debugging actions.

Creating a New Project
To create a new project:

1. Select File | New Project from the menubar. If you have a project already open,
TclPro Debugger prompts you to save that project.

TclPro Debugger then opens the Project window shown in Figure 7.

TclPro Debugger 31

•
•
•
•
•
•

Figure 7 The TclPro Debugger Project Window

2. Select Local Debugging to debug a Tcl script running normally on your
system. Select Remote Debugging only to debug a remote, embedded, or CGI
Tcl application. See “Debugging Remote, Embedded, and CGI Applications”
on page 57 for information on remote debugging.

3. In the Script field, type the path and name of the Tcl script to run, or click the
Browse button next to the field to locate the Tcl script.

4. (Optional) In the Script Arguments field, type any script arguments you want
to pass to the script when you run it under the debugger.

5. (Optional) In the Working Directory field, type the full path of the directory
that you want to use for the working directory inside the Tcl/Tk script. If you
don’t specify a working directory, TclPro Debugger uses the directory which
contains the Tcl script you are debugging.

6. In the Interpreter field, type the path and name of the Tcl interpreter or click
the Browse button next to the field to locate the interpreter. You can use any
Tcl interpreter, such as prowish83, protclsh83, or a custom Tcl shell. You can
also choose one from the drop-down list, which contains a list of Tcl
interpreters set by your project defaults.

Note TclPro Debugger works properly with most custom Tcl interpreters. However,
if your interpreter doesn't accept as its first command-line argument a Tcl script
to execute or if it doesn't pass subsequent command-line arguments to the

32 Chapter 4

•
•
•
•
•
•

script using the standard argc and argv Tcl variables, then you must take
special steps to use your interpreter with TclPro Debugger. See “Using Custom
Tcl Interpreters with TclPro Debugger” on page 61 for more information.

Tip If there are one or more interpreters you commonly use, you can change your
default project settings to include them in the Interpreter drop-down list:

a) Bring up the default project settings, as described in “Setting Default
Project Settings” on page 39.

b) Type the path and name of the Tcl interpreter or click the Browse button
next to the field to locate the first interpreter you want to appear in the
drop-down list.

c) Repeat b) for each interpreter that you want to add to the list.

d) Save your default project settings.

The interpreters you specify are now available for all new projects you create
afterwards.

7. The Instrumentation and Errors tabs allow you to fine tune TclPro Debugger’s
control over your application as you debug it. See “Changing Project Settings”
on page 33 for information on these tabs.

8. Click the OK button to apply your choices and close the Project window, the
Cancel button to cancel your choices and not open the new project, or the
Apply button to apply your choices and keep the Project window open.

Once you create your new project, TclPro Debugger displays the Tcl script file
you specified in the Code display of the main window. TclPro Debugger does not
run the script until you tell it to do so, as described in “Controlling your
Application” on page 41.

Opening an Existing Project
There are two ways that you can open an existing project in TclPro Debugger:

• Select File | Open Project from the menubar and select the project file you want
to open from the file browser displayed.

• Select File | Recent Projects and select the project file you want to open.

If you already have a project open, TclPro Debugger first asks you whether or not
you want to save that project before opening the project you select.

When you open an existing project, TclPro Debugger restores all of the project
settings and breakpoints in effect when you saved the project. TclPro Debugger
also displays the Tcl script file that you were viewing when you saved the project.

TclPro Debugger 33

•
•
•
•
•
•

Saving a Project
To save a project, select File | Save Project from the menubar. The first time you
save a project, specify the file name and location for your project. TclPro
Debugger saves your project settings and any breakpoints and any watch variables
you have set.

To save a project with a different name, elect File | SaveAs Project from the
menubar.

Closing a Project
To close a project, select File | Close Project from the menubar. If you made
changes, TclPro Debugger asks you whether or not you want to save the project
before closing it.

Closing a project closes the project file and clears all the TclPro Debugger
displays.

Changing Project Settings
To change the settings of the currently open project, select File | Project Settings
from the menubar. TclPro Debugger displays the Project window shown in
Figure 7 on page 31. From this window you can change the script, interpreter,
instrumentation, and error settings for the project as described in the sections
below.

Note Changes that you apply to your project settings while your application is running
don’t take effect until the next time you restart your application.

Changing Project Application Settings

The Application tab of the Project window lets you select basic application
settings such as the Tcl script to debug and the Tcl interpreter to use. The contents
of the Application tab depend on the Debugging Type option you select:

Local Debugging
Debug a Tcl script running normally on your system.

Remote Debugging
Debug a remote, embedded, or CGI Tcl application. See “Debugging
Remote, Embedded, and CGI Applications” on page 57 for
information on remote debugging.

If you select the Local Debugging option, the Application tab appears as shown in
Figure 8.

34 Chapter 4

•
•
•
•
•
•

Figure 8 The Project Application Settings Tab, Local Debugging

You can change the following Local Debugging settings for a project:

Script Type the pathname of the Tcl script to run, or click the Browse button
next to the field to locate the Tcl script. You can also select the script
from the drop-down list, which lists scripts that you have used recently
in this project.

Script Arguments
Type any script arguments you want to pass to the script when you run
it under the debugger. You can also select the arguments from the drop-
down list, which lists the arguments that you have specified recently
in this project.

Working Directory
Type the full path of the directory that you want to use for the working
directory inside the Tcl/Tk script. If you don’t specify a working
directory, TclPro Debugger uses the directory that contains the Tcl
script you are debugging. You can also select the working directory
from the drop-down list, which lists the working directories that you
have used recently in this project.

Interpreter Type the path and name of the Tcl interpreter or click the Browse
button next to the field to locate the interpreter. You can use any Tcl
interpreter, such as prowish83, protclsh83, or a custom Tcl shell. You
can also choose one from the drop-down list, which contains Tcl

TclPro Debugger 35

•
•
•
•
•
•

interpreters that have been installed in the standard locations on your
computer and any other Tcl interpreters that you have previously
specified for this project.

Note TclPro Debugger works properly with most custom Tcl interpreters.
However, if your interpreter doesn’t accept as its first command-line
argument a Tcl script to execute or if it doesn’t pass subsequent
command-line arguments to the script using the standard argc and argv
Tcl variables, then you must take special steps to use your interpreter
with TclPro Debugger. See “Using Custom Tcl Interpreters with
TclPro Debugger” on page 61 for more information.

If you select the Remote Debugging option, the Application tab appears as shown
in Figure 9.

Figure 9 The Project Application Settings Tab, Remote Debugging

The only application setting you can change when debugging remotely is the TCP
port that TclPro Debugger uses to communicate with the remote application. This
is the port that you need to pass to debugger_init when starting your debugging
session from a remote application. See “Debugging Remote, Embedded, and CGI
Applications” on page 57 for information on remote debugging.

Note Changes that you apply to your project settings (by clicking either the OK or
Apply button) while your application is running don't take effect until the next
time you restart your application.

36 Chapter 4

•
•
•
•
•
•

Changing Project Instrumentation Settings

The Instrumentation tab of the Project window, shown in Figure 10, lets you
select files and classes of procedures that TclPro Debugger should and should not
instrument. Instrumenting a file gives TclPro Debugger control over its execution,
and allows you to set breakpoints, single-step through the file, and perform other
debugging tasks. If a file is not instrumented, you can’t perform debugging tasks
while your application is executing the file (or procedures defined in that file). For
more information about instrumentation, see “About TclPro Instrumentation” on
page 56.

Some cases of when you would want to control which files are instrumented and
which files are not include:

• When you use a common Tcl script library for several projects in your
organization. In this case, you would most likely debug the library separately
and then instruct TclPro Debugger not to instrument the library when you later
debug individual projects that use that library.

• When you debug large applications. Instrumenting a script takes time and
slows the execution of your application. To minimize the overhead of
debugging, it is more efficient to instrument and debug portions of your
application separately.

Figure 10 The Project Instrumentation Settings Tab

TclPro Debugger 37

•
•
•
•
•
•

The top half of the Project Instrumentation dialog determines the files that TclPro
Debugger instruments. (By default, all files are instrumented.) The first list box
identifies a set of files to instrument, and the second list box identifies a subset of
exceptions that are not instrumented. File name patterns follow the string match
pattern conventions. (See the Tcl string command reference page for more
information on pattern syntax.) Whenever your application sources a script file,
TclPro Debugger compares the file name against the patterns you specify in this
dialog to determine whether or not to instrument it. For example, setting the
pattern “app*.tcl” in the first list box and “*GUI.tcl” in the second list box causes
TclPro Debugger to instrument files such as appMain.tcl and appStats.tcl, but not
instrument a file named appGUI.tcl.

To add a pattern to a list box, type the pattern in the String Match Pattern field and
then click the Add button next to the appropriate list box. To remove a pattern
from the list, click the file or pattern to highlight it, then click the Remove button.

Note If you delete all patterns in the first list box and then apply the setting (by clicking
either the OK or Apply button), TclPro Debugger automatically adds the pattern
“*” to the first list box. If TclPro Debugger didn’t do this, then you could
accidentally cause TclPro Debugger not to instrument any files, in which case you
couldn’t control your application with the debugger.

The lower half of the Project Instrumentation dialog provides finer control of the
instrumentation of procedures and control structures in a script file:

Instrument Dynamic Procs
Instrument procedures that you create dynamically. For example,
selecting this check box instruments procedures created by the eval
command.

Instrument Auto Loaded Scripts
Automatically instrument auto-loaded scripts. You might want to turn
this option off if you are using only standard Tcl extensions.

Instrument [incr Tcl]
Instrument all your [incr Tcl] classes and methods.

Instrument TclX
Instrument control structures in the TclX package, such as the loop
command.

Instrument Expect
Instrument the control structures in the Expect package, such as the
expect command.

38 Chapter 4

•
•
•
•
•
•

Note Changes that you apply to your project settings (by clicking either the OK or
Apply button) while your application is running don’t take effect until the next
time you restart your application.

Changing Project Error Settings

The Errors tab of the Project window, shown in Figure 11, lets you specify how
TclPro Debugger handles errors in your Tcl script:

Always Stop on Errors
TclPro Debugger notifies you each time it encounters an error in the
script (TclPro stops execution of your script even if your script catches
the error)

Only Stop on Uncaught Errors
TclPro Debugger notifies you only when it encounters an error not
caught by the script (TclPro stops execution of your script only if your
script does not catch the error)

Never Stop on Errors
TclPro Debugger does not notify you about any errors in the
application

Note For more information on how TclPro Debugger handles errors, see “Error
Handling” on page 54.

Note Changes that you apply to your project settings (by clicking either the OK or
Apply button) while your application is running don't take effect until the next
time you restart your application.

TclPro Debugger 39

•
•
•
•
•
•

Figure 11 The Project Errors Settings Tab

Setting Default Project Settings
You can change any of the default project settings so that new projects you create
have those settings. Changing the default project settings doesn’t affect any
existing projects you might have.

For example, if you commonly use a set of packages that you don’t want TclPro
Debugger to instrument, you could set those files in the default project settings.
Then, any new project you create would pick up those instrumentation settings by
default.

To set the default project settings:

1. If you have a project already open, select File | Close Project from the menubar
to close that project.

2. Select File | Default Project Settings from the menubar. (TclPro Debugger
displays this option only if you have no projects currently open.)

TclPro Debugger displays the Default Project Settings window. This window
has the same tabs and settings available as in the Project window.

40 Chapter 4

•
•
•
•
•
•

Figure 12 The Default Project Settings Window

3. Set the default project settings just as you set an individual project’s settings.
See “Changing Project Settings” on page 33 for a description of all project
settings.

4. After changing the default project settings, click the OK button to save your
choices and close the Default Project Settings window, the Cancel button to
cancel your choices and close the Default Project Settings window, or the
Apply button to apply your choices and keep the Default Project Settings
window open.

Opening a File
Opening a file in TclPro Debugger gives you the opportunity to create or check
existing line-based breakpoints in the file before the file is sourced in the
application. Breakpoints cause the application to stop before a line of code is
executed so that you can examine the state of the application that you are
debugging. See “Using Breakpoints” on page 45.

To open a file:

1. Select File | Open File from the menubar.

2. Type the full path and name of the file or browse and click the file that you want
to open.

TclPro Debugger 41

•
•
•
•
•
•

The file that you opened appears in TclPro Debugger. You can view it using the
scroll bars and menus.

Tip You can open a file at any time, even when an application is already running.
When you open a file, TclPro Debugger reloads the file if the file has not been
sourced by the running application or if no application is running. If the
application is running and has sourced the file, modifications to that file cannot be
seen in the Code display until that file is sourced again or the file is reopened after
the application is terminated.

Controlling your Application
This section describes how to use the basic features of TclPro Debugger.

Running Code with TclPro Debugger
Click the Run button to run your code with TclPro Debugger, as shown in Figure 2
on page 22. When the application stops, TclPro Debugger indicates the line of
code that it is processing with an arrow and highlights the portion of the line that it
is about to execute.

Once the application is running, it stops at these events:

• At breakpoints. For information about breakpoints, see “Using Breakpoints”
on page 45.

• If an error is detected, TclPro Debugger stops on the line of code that generated
the error, and the code that caused the error is highlighted. See “Error
Handling” on page 54.

• If you click the Run to Cursor icon in the tool bar, the application runs to the
line where you placed your cursor.

Run to Cursor
The Run to Cursor icon in the tool bar, as shown in Figure 2 on page 22, enables
you to create a temporary breakpoint that is automatically removed the next time
TclPro Debugger stops. When your application is stopped, you can move the
cursor to the line of code where you want to stop, and press the Run To Cursor
button.

Note If the application stops for any reason, such as encountering another breakpoint or
reaching the line containing the cursor, the temporary breakpoint is removed. The
operation of the Run to Cursor feature is similar to those of line-based
breakpoints. If the cursor is not set, or if it is on a line that is either empty or

42 Chapter 4

•
•
•
•
•
•

contains only comments or curly braces, clicking the Run to Cursor button is
equivalent to clicking the Run button. The application stops just before evaluating
the first command on the line regardless of where you place the cursor on a line of
code.

Stepping through Code
TclPro Debugger offers four ways of stepping through your scripts: Step In, Step
Out, Step Over, and Step To Result. When your application is stopped, you can
step from the current command, indicated by the yellow run arrow in the code bar.
To use the stepping features, click the corresponding button on the tool bar when
your application is stopped. See Figure 2“TclPro Debugger Tool Bar” on page 22.

Note If the application stops for any reason, such as encountering an error or
breakpoint, after any of the Step buttons is pressed, the step is considered to be
completed.

Stepping In

The Step In feature provides the finest granularity at which you can stop and
inspect your application. Stepping in causes the application to stop just before
executing the next instrumented command. Stepping in is useful for following the
control flow of your application as it sources files, calls procedures, and evaluates
command substitutions.

For example, if your application is stopped on the command

myProc [incr x 5]

you can Step In and stop the application before it evaluates the subcommand
incr x 5. You can Step In again to stop the application on the first line of code in
the body of the myProc procedure.

The following list describes the rules of behavior for the Step In function:

• If the current command contains subcommands, the application stops just
before evaluating the first subcommand.

• If the current command is a call to an instrumented procedure, and all
subcommands, if any exist, have been evaluated, the application stops on the
first line of code in the body of the procedure.

• If the current command is a call to the source command, and all subcommands,
if any exist, have been evaluated, the application stops on the first line of code
in the sourced file.

TclPro Debugger 43

•
•
•
•
•
•

• If the current command is not a call to an instrumented procedure, and all
subcommands, if any exist, have been evaluated, the application stops on the
first instrumented command called by the current command.

• If the current command does not call any instrumented code, then the Step In
function behaves like the Step Over function.

Stepping Out

Stepping out causes the application to stop before executing the next command
after the current stack level or body of code returns. The Step Out feature is useful
for backing out of code you are no longer interested in inspecting. For example: if
you are stopped in the body of the myProc procedure in the following application

1 source someFile.tcl
2 myProc [incr x 5]
3 myNextProc $x

and you would like to progress to the myNextProc $x command, you can Step
Out of the myProc procedure, and then Step In the myNextProc procedure.

The following list describes the rules of behavior for the Step Out function:

• If the current command is in the body of a procedure, the application stops
before executing the next command after the procedure returns.

• If the current command is at the global level of a file that has been sourced, the
application stops before executing the next command after the code in the
sourced file is evaluated.

• If the current command is at the global level of the main script file, clicking the
Step Out button behaves like clicking Run button.

Stepping Over

Stepping over causes the application to stop just before executing the next
command after the current command in your application is fully executed. The
Step Over feature is useful for following the application as it progresses through a
body of code at the current stack level. For example, suppose you are stopped on
line 1 in the following application

1 source someFile.tcl
2 set x 1
3 myProc [incr x 5]
4 puts $x

If you Step Over the source command, the application stops at set x 1. If you
continue to click Step Over, myProc [incr x 5] becomes the new current
command, followed by puts $x.

44 Chapter 4

•
•
•
•
•
•

The following list describes the rules of behavior for the Step Over function:

• If the current command is a call to an instrumented procedure, the application
stops before the executing the next command after the procedure returns.

• If the current command is a call to the source command, the application stops
before the executing the next command after the code in the sourced file is
evaluated.

• If the current command is the last one at the current stack level or in the current
body of code, Step Over behaves like Step Out.

Stepping to Result

Stepping to Result executes the current command and stops execution. After using
Step to Result, TclPro Debugger highlights the command just executed and
displays the result and return code of that command in the Command Results
display of the debugger main window.

The Step to Result feature is useful for examining the results of nested commands.
For example, suppose you click Step In at line 3 in the following application:

1 source someFile.tcl
2 set x 1
3 myProc [incr x 5]
4 puts $x

If you click Step to Result, your application executes the subcommand and stops.
You can then examine the result of the subcommand before continuing. By
comparison, clicking Step In again at this point would execute the subcommand
[incr x 5] and immediately Step In to myProc, and clicking Step Over would
execute both the [incr x 5] subcommand and the call to myProc before stopping.

Interrupting the Application
Clicking the Stop button causes TclPro Debugger to interrupt the application
while it is running. You can interrupt the application at any time; when you
interrupt, an implicit breakpoint is added to the next command to be executed in
the script. The application stops as it would at any other breakpoint, and you can
then interact with the application.

Note If your code is in an event loop when you click the Stop button, no code is shown
in the Code display and the top level in the stack frame displays “event.”

Note If your application is executing uninstrumented Code or is in a long-running
command, TclPro Debugger may not be able to stop the application immediately.

TclPro Debugger 45

•
•
•
•
•
•

Killing the Application
Clicking the Kill button causes TclPro Debugger to end the application’s process.
When you kill the application that you are debugging, information about its state
is no longer available. You can then restart the application or launch another
application.

Note You cannot terminate remote applications using the Kill button. You can terminate
a remote application by interrupting the application and typing “exit” in the Eval
Console. See “Manipulating Data” on page 54.

Restarting the Application
Click the Restart button to terminate the current application and then restart the
same application. This is equivalent to killing the application and immediately
restarting it. When you restart an application, TclPro Debugger automatically
reloads the main script. This is useful if you have modified the script to fix a bug
and want to start the application over to test the change.

If you have modified files other than the main script and wish to set or change
breakpoints in those files, you can open them by selecting File | Open File from
the menubar rather than viewing the stale files from the Window menu.

Quitting TclPro Debugger
To quit TclPro Debugger, select File | Exit from the menubar or click the Close
button in the TclPro main window.

Using Breakpoints
A breakpoint causes the application to stop so that you can examine its state. You
can add breakpoints in an application at any time. Using breakpoints, you can
obtain information, such as variables and their values, the current call stack, and
valid procedure names. TclPro supports two types of breakpoints: line-based and
variable breakpoints.

Line-based breakpoints
Line-based breakpoints enable you to specify a line of code where the application
should stop. Line-based breakpoints cause TclPro Debugger to stop before
executing each command and subcommand on the specified line. Line-based
breakpoints are persistent across runs of the application and debugger sessions.

46 Chapter 4

•
•
•
•
•
•

TclPro Debugger does not stop at line-based breakpoints that are set in
uninstrumented lines of code, blank lines, comment lines, and lines that contain
only curly braces. However, variable breakpoints can be triggered if the variable is
modified in uninstrumented code. See “About TclPro Instrumentation” on page 56
for information.

Variable Breakpoints
Variable breakpoints cause the application to stop when the variable is modified.
Variable-based breakpoints are not stored in the application after you close it, or
when the variable is removed, unset, or goes out of scope, for example: a local
variable in a procedure goes out of scope when the procedure returns.

Note The Variable breakpoints track the unique location where the variable is stored in
memory rather than the name of the variable. You can not set a variable
breakpoint until the variable exists in the application.

Manipulating Breakpoints
You can create breakpoints in the main Debugger window, as shown in
Figure 1“TclPro Debugger Main Window” on page 21. To set a line-based
breakpoint, click the code bar in the left margin in the Code display. The line-
based breakpoint appears as a small stop sign, and causes the application to stop
just before the line is executed.

To create a Variable breakpoint, click the left margin in the Variable display
adjacent to the variable. The breakpoint appears as a large “V” in the Variable
display. The “V” also appears in the code bar of the Code display when the
variable breakpoint is triggered causing the application to stop. The variable
breakpoint triggers when the value of the variable changes. You can also create
breakpoints in the Breakpoint window; see Figure 13, “The Breakpoints
Window.”

To delete a breakpoint, click the breakpoint in the Code or Variable display.

Viewing Breakpoints in the Breakpoints Window
To display the Breakpoints window, click the “B” in the tool bar or by select
View | Breakpoints from the menubar. The Breakpoints window displays line-
based and variable breakpoints, as shown in Figure 13.

TclPro Debugger 47

•
•
•
•
•
•

Figure 13 The Breakpoints Window

The line-based breakpoints in Figure 13 indicate the file and line number where
the breakpoint has been set. To select a breakpoint, click the line to the right of the
breakpoint in the Breakpoint window to highlight it. You can delete, disable, and
enable breakpoints:

• To delete a breakpoint, select the line in the Breakpoint window and click the
Remove button.

• To disable a breakpoint, click the breakpoint in the Breakpoint window.

The disabled breakpoint is shown as a hollow stop sign for a line-based
breakpoint or hollow “V” for a variable-based breakpoint.

• To enable a disabled breakpoint, click it in the Breakpoint window.

Disabling and enabling breakpoints can be helpful when you want to keep all
of your breakpoints but may not want to use all of them at the same time.

Note You can select multiple breakpoints to be disabled or enabled by clicking the
breakpoints while pressing the <Ctrl> key.

You can perform the following actions on a selected breakpoint:

• Click the Show Code button to show the code at a Line-based breakpoint.

Clicking this button causes TclPro Debugger to display the code containing the
corresponding line in the Code display.

• Click the Remove button to remove a selected breakpoint.

You can click the Remove All button to remove all of the breakpoints.

The information for a variable breakpoint in the Breakpoint window, as shown in
Figure 13, appears in the form of two sets. The first set contains the variable name
followed by the absolute stack level at which the variable breakpoint was created.
The second set contains information regarding the most recent occasion in which

Variable Breakpoint
Disabled Variable

Disabled Line

Line Breakpoint

Breakpoint

Breakpoint

48 Chapter 4

•
•
•
•
•
•

the variable breakpoint was triggered. If the second set is empty, the variable
breakpoint has never been triggered. Otherwise, the second set contains the name
and stack level of the variable that triggered the variable breakpoint. In most
cases, the second set will not differ from the first set. However, when a variable is
aliased by the global and upvar commands, any instance of that variable can
trigger the variable breakpoint. The second set is helpful when you have an
aliasing bug in your code.

The following is an example of an aliased variable a whose variable breakpoint
gets triggered by a variable named x:

1 proc foo {} {
2 upvar #0 a x
3 set x 52
4 }
5 set a 50
6 puts "global var a is set"
7 set a 51
8 foo

If you stop this application on line 6, you can create a variable breakpoint for the
global variable a. If you open the Breakpoint window, you will see the following:

{a: 0} {: }

If you continue to run the application, the variable breakpoint is triggered on line
7, the following appears in the Breakpoint window:

{a: 0} {a: 0}

If you continue to run the application again, the variable breakpoint is triggered
once more on line 3, the following appears in the Breakpoint window:

{a: 0} {x: 1}

Navigating Code
TclPro Debugger provides utilities that help you can navigate to specific portions
of the code that you are debugging, including Procedures window, the Goto
command, the Find command, and the Window menu.

Going to a Specified Line
1. Select Edit | Goto Line from the menubar.

2. Type a line number in the text box.

3. Click the Goto Line button.

TclPro Debugger highlights the specified line.

TclPro Debugger 49

•
•
•
•
•
•

Tip You can also use the Goto What drop-down menu to move up or move down the
lines in your code from the insertion cursor. Select Move Up Lines or Move Down
Lines and type the number of lines that you want to move.

Using the Find Utility
1. Select Edit | Find from the menubar.

2. Type a code fragment or other string in the text box to locate that string. You
can choose among several find options:

• Select Match Whole Word only to find those strings that match the entire
string that you typed. This option looks for white space as a delimiter, for
example: if you searched for the string “sea” you would find all instances
of “sea” but would not find “seashore”.

• Select Match Case to find strings that match the case of the string that you
typed. For example, with Match Case selected, searching for the string
“sea” would not match “Sea”.

• Select Regular Expression to find strings that match the one you typed
using the search format for regular expressions; see the regexp manual
page for information. If you do not select this checkbox, it will perform
searches that match all characters exactly.

• Select Search All Open Documents to find matching strings in all files that
are currently open. The Window menu displays a list of all open files. If
you don’t select this options, TclPro Debugger searches only the current
file (the one shown in the Code display).

3. Click the Direction for the search: Up or Down (default).

4. Press the <Enter> key to start the Find process.

TclPro Debugger highlights the code that matches the string that you typed. If
the string is not found, the Code Display does not change. You can find
subsequent matching strings by clicking the Find again command or pressing
the <F3> key.

Finding Procedures
You can use the Procedures window, shown in Figure 14, to view the list of
procedures that have been defined in your application. To open the Procedures
window, click the “P” button in the tool bar in the main TclPro Debugger window,
or select View | Procedures from the menubar.

50 Chapter 4

•
•
•
•
•
•

Figure 14 The Procedures Window

To narrow down the list, you can type a pattern in the text box and click Search.
The default pattern is an asterisk (“*”) which lists all of the defined procedures in
the application. Pattern strings can be one or more characters and follow the
search conventions that are used with the Tcl glob command. The matches for the
string are shown in the body of the Procedures window. This is useful for finding
specific procedures if you have large applications with many procedures. For
example: if you type “tcl*” in the text box of the Procedures window shown in
Figure 14, tclLog, tclMacPkgSearch, and all other procedures beginning with
“tcl” are displayed in the display area of the Procedures window.

You can display both instrumented and uninstrumented procedures by selecting
Show Uninstrumented Procs. TclPro Debugger indicates that a procedure is
uninstrumented by listing the procedure preceded by an asterisk (“*”) in the
Procedures window. For more information about instrumentation, see “About
TclPro Instrumentation” on page 56.

When you select a procedure from the list, you can perform any of the following
actions on it:

Show Code
Display the code where the procedure is defined, or the body of the
procedure if the procedure is dynamically defined.

Instrument
Instrument a selected procedure.

Uninstrument
Uninstrument a selected procedure.

TclPro Debugger 51

•
•
•
•
•
•

Using the Window Menu
Select the Window menu to display all of the files that are open in TclPro
Debugger.

Displaying Code and Data
TclPro Debugger provides several windows in which you can display and monitor
specific aspects of the application that you are debugging. These include the
Watch Variable window, and the Data Display window. For information on the
Breakpoints window, see “Viewing Breakpoints in the Breakpoints Window” on
page 46.

Watching Variables
To open the Watch Variables window, click the “W” in the tool bar of the main
window Select View | Watch Variables from the menubar. The Watch Variables
window is shown in Figure 15 on page 51.

The Watch Variables window displays the variable names and their values at the
stack level that is highlighted in the stack display. The values in the Watch
Variables window are updated each time the application stops and also each time
you select a new stack level in the Stack display in the main window. If a variable
name is not defined at the selected stack level, then “<No Value>” appears instead
of a value.

Figure 15 The Watch Variables Window

To add a variable name to the Watch Variables window:

1. Type the variable name in the text box of the Watch Variables window.

2. Click Add or press the <Return> key.

52 Chapter 4

•
•
•
•
•
•

The variable name and the current value of the variable are displayed in the
large window.

You can remove a specific variable name by selecting the line, and clicking the
Remove button, or clicking Remove All to remove all the variables.

If you select a variable and click the Data Display button, the Data Display
window appears.

The Watch Variables window is useful for observing variables in different stack
levels that have the same name. For example: suppose the following script is
stopped just before executing line 10:

1 proc bar {x} {
2 puts $x
3 }
4
5 proc foo {y} {
6 baz [expr {$y + 3}]
7 }
8
9 set x 2
10 foo $x

The stack display is shown below:

0 global
0 source sample.tcl
1 proc foo y
2 proc bar x

If you are watching the variable named x, you will see the value change as you
select different stack levels. At level 2, x has the value 5. At level 1, x is not
defined, so “<No Value>” is displayed. At level 0, x has the value 2.

Displaying Data
To open the Data Display window, double-click a variable in the Variable display
in the main window or double-click a variable in the Watch Variable window, or
select View | Data Display from the menubar. The Data Display window is shown
in Figure 16 on page 53.

The Data Display allows you to see the full unabbreviated value of a variable,
which can be helpful if you are looking at long strings.

There are two ways to change which variable is displayed in the Watch Variable
window:

• Double-click a variable in either the Variable display or the Watch Variable
window.

TclPro Debugger 53

•
•
•
•
•
•

• Type the variable name in the text entry box and type <Return> or click the
Inspect button.

The variable is linked to the stack level that is highlighted in the Stack display at
the time the variable is entered in the Data Display window. Once the variable is
entered, changing the stack level in the Stack display will not affect the value of
the variable. The value that is displayed for the variable is updated each time the
application stops. If “<No Value>” appears, it means that either the variable was
unset or the stack level attached to the variable has returned. Like variable
breakpoints, a variable in the Data Display is associated with a location in
memory. Once “<No Value>” appears, the previous memory location is no longer
reserved for that particular variable, so “<No Value>” for the variable will
reappear.

Figure 16 The Data Display Window

Use the drop-down View As menu to select the format for the variables. TclPro
Debugger attempts to match the display to the variable type, for example, if the
variable is scalar, it will display with line wraps, and if it is an array, it will display
as an array. You can view the variable with the following formats:

Line wrap Wrap the line when it exceeds the length of the display window, which
is the default display for scalar variables.

Raw data Does not modify the display.

List TclPro Debugger treats the variable value as a Tcl list, extracts the
elements of the list, and displays each element on a separate line.

Array Each element is displayed as a separate item with a name and value.

Text box for changing

Display area

Drop-down menu
for choosing
display options

the variable to inspect

Stack level is linked
to the variable

54 Chapter 4

•
•
•
•
•
•

Note Ordered lists can be displayed as arrays.

Manipulating Data
To open the Eval console, click the “E” in the tool bar or select View | Eval
Console from the menubar. The Eval console is shown in Figure 17 on page 54.

Using the Eval console, you can invoke commands in an application any time that
the application is stopped. If you see something that is wrong or missing while
debugging a program, you can type the missing information in the Eval console
and it is immediately evaluated in the application.

Figure 17 The Eval Console

Using the Eval console, you can evaluate commands at any visible stack level.
You can also call procedures from the Eval Console. You can choose among the
available stack levels using the Stack Level drop-down arrow. Choosing the stack
level is useful for setting global variables at level 0 and for calling procedures at
various levels. When the Eval Console first appears, the default level is the
deepest level in the stack display.

Tip You can also change the stack level in the Eval console by typing <Ctrl+Plus> to
move to the next higher level stack frame or <Ctrl+Minus> to move to the next
lower stack frame.

Error Handling
TclPro Debugger detects all errors in the application including runtime and
parsing errors.

TclPro Debugger 55

•
•
•
•
•
•

Parsing Error Handling
A parsing error is an error that is caused by code that is not syntactically valid. An
example of a parsing error is a script that is missing a close brace. TclPro
Debugger detects parsing errors during instrumentation, whenever a file is
sourced or a procedure is created dynamically by the application.

When a parsing error occurs, TclPro Debugger cannot understand the script’s
control flow following the error, and cannot continue instrumenting the code.
TclPro Debugger displays a dialog box in which you choose to either quit the
application or continue the application with the partially instrumented script. If
you choose to continue debugging the partially instrumented script, the same error
appears as a runtime error if the code is executed. See “About TclPro
Instrumentation” on page 56 for details on the implications of continuing despite
the parsing error.

Runtime Error Handling
An example of a runtime error is an attempt to read a non-existent variable.
TclPro Debugger detects all runtime errors, including both those caught and those
not caught by a Tcl script. How TclPro Debugger handles runtime errors depends
on the Error settings that you specify for your project. (See “Changing Project
Error Settings” on page 38 for more information on specifying your project Error
settings.) If you have set:

Always Stop on Errors
TclPro Debugger notifies you each time it encounters an error in the
script.

Only Stop on Uncaught Errors
TclPro Debugger notifies you only when it encounters an error not
caught by the script.

Never Stop on Errors
TclPro Debugger does not notify you when it encounters errors in the
application. Your application handles errors in the same manner as it
would if it were not running under TclPro Debugger.

When TclPro Debugger detects a runtime error in accordance with the rules
above, it stops execution of your application and displays a dialog box such as the
one shown in Figure 18.

56 Chapter 4

•
•
•
•
•
•

Figure 18 The TclPro Debugger Tcl Error Dialog

You have the choice of either delivering the error or suppressing the error:

Deliver Error
The application continues and the error is handled in the normal
fashion for Tcl. Clicking this button is equivalent to having run the
script without any debugger interference.

Suppress Error
TclPro Debugger suppresses the error, and continues executing the
application. The behavior in this case is as if no error had occurred.
You can continue to run or step through the application.

While your application is stopped, you can examine your Tcl script, view and
change variable values, set breakpoints, and use all the other features of TclPro
Debugger. If you single-step or run your application without first selecting
whether to deliver or suppress the error, TclPro Debugger delivers the error if your
application catches it and suppresses it otherwise.

About TclPro Instrumentation
When you begin running an application, TclPro Debugger transparently processes
the specified Tcl/Tk script. It modifies the code to enable communication between
TclPro Debugger and the script. This process is known as instrumentation. TclPro
Debugger launches the application with the instrumented script in place of the
original script. Ajuba Solutions designed the instrumentation to be as unobtrusive
as possible. However, you can expect some slowdown in applications as a result
of the instrumentation.

You can specify which procedures to instrument in the Procedures window; see
“Finding Procedures” on page 49. You can also specify files and classes of
procedures to leave uninstrumented; see “Changing Project Instrumentation
Settings” on page 36. In addition to the files and procedures that you tell TclPro

TclPro Debugger 57

•
•
•
•
•
•

Debugger not to instrument, there are also some instances of dynamically created
code that TclPro Debugger cannot instrument. These include if statements with
computed bodies and callbacks from Tcl commands. When the application is
executing uninstrumented code, it cannot communicate with TclPro Debugger. If
you want to interrupt or to add a breakpoint to the script while uninstrumented
code is executing, the application cannot respond until it reaches the next
instrumented statement.

TclPro Debugger indicates that a procedure or file is uninstrumented by listing the
procedure or file name preceded by an asterisk (“*”) in the Procedures window,
Windows menu, and the Code display status bar.

Debugging Remote, Embedded, and CGI Applications
In some cases, TclPro Debugger can't directly launch your application. Some
examples where this is often true include CGI applications, embedded
applications, and applications that must run on a system other than your
debugging system.

For applications such as these, TclPro Debugger supports remote debugging. In
remote debugging sessions, your application starts as it normally would and then
establishes a special connection to TclPro Debugger. You can then use TclPro
Debugger to perform all debugging tasks as you would in a local debugging
session.

To debug a remote application, you must perform the following steps:

• Modify your Tcl script to work with TclPro Debugger.

• Create a remote debugging project in TclPro Debugger.

• Launch your application as you normally would. Your application establishes
a connection to TclPro Debugger and you can begin your debugging session.

The following sections describe how to perform these tasks.

Modifying a Tcl Script for Remote Debugging
For your application to establish and maintain communication with TclPro
Debugger, you must modify your application to source the prodebug.tcl file,
which is contained in the platform-specific bin subdirectory of your TclPro
installation (for example, C:\Program
Files\TclPro1.4\win32-ix86\bin\prodebug.tcl). Then, your script must call the
debugger_init procedure and, optionally, the debugger_eval and
debugger_break procedures. You can modify your script in one of two ways:

58 Chapter 4

•
•
•
•
•
•

create a new “wrapper” script that sources your existing script, or modify your
existing script.

Remote Debugging Procedures

The debugger_init procedure makes the initial connection with TclPro Debugger:

debugger_init ?host? ?port?

The host is the name of the machine on which TclPro Debugger is running. The
host defaults to “localhost.” The port is the TCP port that TclPro Debugger uses to
communicate with the application. The port defaults to 2576. The debugger_init
procedure contacts the debugger instance running on the specified host via the
specified port. The debugger_init procedure also automatically instruments any
Tcl scripts sourced by the script.

The debugger_init procedure returns 1 if it successfully connects to TclPro
Debugger; otherwise it returns 0. You must call debugger_init before calling
debugger_eval or debugger_break.

Note If your embedded application uses multiple subsequent interpreters, that is, it quits
and restarts a Tcl interpreter more than once, each main Tcl script is treated as an
individual application and must make a new connection with TclPro Debugger.

The debugger_eval procedure instruments Tcl code so TclPro Debugger can
control the application while script is evaluated:

debugger_eval ?-name name? ?--? script

You can wrap your whole script inside the debugger_eval block. Any scripts that
you source within a debugger_eval block are also instrumented.

Note The debugger_eval procedure behaves like the eval command if your application
is not currently connected to TclPro Debugger.

The optional debugger_eval -name switch associates the tag name with the
script. This causes TclPro Debugger to store breakpoint information as if the script
were sourced from a file named name. This is useful when debugging remote
applications or when evaluating blocks of dynamically-generated code that are
used multiple times. By creating a unique name for each block, you can set
breakpoints in the block that persist across invocations.

The optional -- switch marks the end of switches. The argument following this one
is treated as a script even if it starts with a “-”.

The debugger_break procedure causes your remote application to break in much
the same way as if it had encountered a breakpoint:

debugger_break ?message?

TclPro Debugger 59

•
•
•
•
•
•

The debugger_break procedure is useful for debugging dynamic code. The only
difference between the behavior of debugger_break and a line breakpoint is that
debugger_break evaluates the message argument, if it is present, before
breaking. When your script encounters a debugger_break procedure, TclPro
Debugger displays a dialog box. If the message argument is present and not
empty, TclPro Debugger displays the message string in the dialog box.

Note The debugger_break procedure has no effect if your application is not currently
connected to TclPro Debugger.

Creating a “Wrapper” Script for Remote Debugging

If you decide to create a new script, that script should source the prodebug.tcl file,
call debugger_init, and then source the file that was originally the main script of
your application. This new script becomes the main script of your application.
Your new main script may look like the following:

Set TclProDirectory to the platform-specific bin
subdirectory of your TclPro distribution.

set TclProDirectory "/usr/local/TclPro1.4/solaris-sparc/bin"
source [file join $TclProDirectory prodebug.tcl]

Assume the variables $host and $port respectively contain
the name of the machine on which TclPro Debugger is
running and the port on which it is listening.

debugger_init $host $port

Assume $myOriginalMainScript contains the path of your
original script.

source $myOriginalMainScript

Modifying an Existing Script for Remote Debugging

If you decide to modify your existing script, you must change it to source the
prodebug.tcl file and call the debugger_init procedure. Once debugger_init is
called, other files sourced by the script will automatically be instrumented. If you
want TclPro Debugger to instrument code in the file that calls debugger_init, the
code that you wish to instrument must be encapsulated in a call to the
debugger_eval procedure. See “About TclPro Instrumentation” on page 56 for
more details on instrumentation.

Your new main script may look like the following:

60 Chapter 4

•
•
•
•
•
•

Set TclProDirectory to the platform-specific bin
subdirectory of your TclPro distribution

set TclProDirectory "/usr/local/TclPro1.4/solaris-sparc/bin"
source [file join $TclProDirectory prodebug.tcl]

Assume the variables $host and $port respectively contain
the name of the machine on which TclPro Debugger is
running and the port on which it is listening.

debugger_init $host $port
debugger_eval {
... your code goes here ...
}

Creating a Remote Debugging Project
Before you begin debugging a remote application, you must create a remote
debugging project in TclPro Debugger. This causes TclPro Debugger to listen on a
specified port for your application to establish a connection.

To create a remote debugging project:

1. Create a new project as described in “Creating a New Project” on page 30.

2. Select the Remote Debugging option of the Project Application Settings Tab.
See “Changing Project Application Settings” on page 33.

3. Enter the port number you specified in the debugger_init procedure in the
Listen For Remote Connection On Port Number field. The default port is 2576.

Launching your Remote Application
After you have modified your application for remote debugging and created a
remote debugging project in TclPro Debugger, you can launch your remote
application for debugging.

Simply run your application as you would normally. Your application stops just
before it evaluates the first command in the debugger_eval script, or the first time
it sources a file, whichever comes first. TclPro Debugger displays your script in its
Main window, and you can begin debugging as you would a local application.

Viewing Connection Status
You can view the connection status while debugging by selecting View |
Connection Status from the menubar. TclPro Debugger displays the Connection
Status window shown in Figure 19.

TclPro Debugger 61

•
•
•
•
•
•

Figure 19 The Connection Status Window

The Connection Status Window displays the following information:

Project Type
Whether the project is local or remote.

Connection Status
Whether or not the application has established a connection to TclPro
Debugger.

Listening Port
The port number on which TclPro Debugger listens for a connection
from a remote application. You can set this port for remote debugging
in the Listen For Remote Connection On Port Number field of the
Project Application Settings Tab. See “Changing Project Application
Settings” on page 33. The default port is 2576.

Local Socket Info
The IP address and socket number on the system running TclPro
Debugger used for communication with a remote application. This is
created only after a connection is established.

Peer Socket Info
The IP address and socket number on the system running the remote
application used for communication with TclPro Debugger. This is
created only after a connection is established.

Using Custom Tcl Interpreters with TclPro Debugger
TclPro Debugger works properly with most custom Tcl interpreters. However, to
properly instrument and execute your application, TclPro Debugger must be able
to pass debugging information to your Tcl script as command-line arguments.

62 Chapter 4

•
•
•
•
•
•

Therefore, if your interpreter doesn’t accept as its first command-line argument a
Tcl script to execute or if it doesn’t pass subsequent command-line arguments to
the script using the standard argc and argv Tcl variables, then you must take
special steps to use your interpreter with TclPro Debugger.

First, you must create a special Tcl wrapper script. The listing below shows a
sample implementation of such a script for Unix systems. To use it, you must
either change the line setting the cmdPrefix variable, replacing “tclsh” with
whatever command you need to run your Tcl interpreter, or you must set your
PRODEBUG_TCLSH environment variable to contain that command.

#!/bin/sh
#\
exec protclsh83 $0 ${1+"$@"}

if {$argc < 1} {
puts stderr "wrong # args: location of appLaunch.tcl is required"

}

if {[info exists env(PRODEBUG_TCLSH)]} {
set cmdPrefix "$env(PRODEBUG_TCLSH)"

} else {
set cmdPrefix "tclsh"

}

set customScriptName "/tmp/launchScript.[pid]"
set appLaunchPath [lindex $argv 0]

set f [open $customScriptName w]
puts $f "
file delete -force $customScriptName
set argv0 [list $appLaunchPath]
set argv [list [lrange $argv 1 end]]
set argc \[llength \$argv\]
source \$argv0
"
close $f

catch {
eval exec $cmdPrefix [list $customScriptName 2>@stderr >@stdout <@stdin]

}

Then, to debug your application select the wrapper script as your interpreter (that
is, type the path and name of the wrapper script in the Interpreter field of the
Project Application Settings Tab). Specify the script and any script arguments for
your application in the Project Application Settings Tab as normal.

63

•
•
•
•
•
•

• • • • • •
TclPro Checker helps you find errors in a Tcl script quickly before you run the
script. Using TclPro Checker can help you find problems in new scripts, in scripts
from older versions of Tcl/Tk, or in scripts that you have ported from another
operating system. You can use TclPro Checker to assess the quality of a body of
Tcl code or to quickly examine large Tcl files. TclPro Checker also warns about
potential incompatibilities to help you upgrade applications to the latest releases
of Tcl, Tk, and [incr Tcl].

Supported Tcl Versions
By default, TclPro Checker verifies scripts written for Tcl version 8.3. You can use
TclPro Checker with the packages and versions of Tcl, Tk, and [incr Tcl] listed in
Table 7.

Table 7 Packages and Version Numbers

Tcl Tk [incr Tcl] Expect TclX

7.3 3.6 1.5 n/a n/a

7.4 4.0 2.0 n/a n/a

7.5 4.1 2.1 n/a n/a

7.6 4.2 2.2 na/ na/

8.0 8.0 3.0 5.28 8.0

8.1 8.1 n/a 5.29 or 5.30 8.1

8.2 8.2 3.1 5.31 8.2

8.3 (default) 8.3 3.2 5.32 8.3

64 Chapter 5

•
•
•
•
•
•

Note Expect command names that “collide” with command names in the Tcl/Tk core
(for example, send) can confuse TclPro Checker when it checks an Expect script,
causing it to report syntax errors. To avoid this, use the exp_ prefix for all such
ambiguous commands (for example, use exp_send instead of send).

Using TclPro Checker
To check a file using TclPro Checker, type the procheck command with a file
name, for example:

procheck foo.tcl

If your code contains errors or warnings, TclPro Checker provides feedback by
default that looks similar to this

Figure 20 Example of TclPro Checker Feedback

You can specify multiple file names on the same line, for example:

procheck foo1.tcl foo2.tcl

To check all the files in a directory, use the asterisk (“*”) with the .tcl file
extension, for example:

procheck *.tcl

If you don’t specify any files, procheck expects input from standard input.

For other examples of output, see “Examples of Output from TclPro Checker” on
page 69.

One-Pass and Two-Pass Checking
By default, TclPro Checker performs a two-pass scan of your scripts. The first
pass accumulates information about user-defined procedures and user-defined
[incr Tcl] classes. This information includes:

• the number of arguments for procedure definitions and [incr Tcl] constructor
definitions

TclPro Checker -- Version 1.4.0
Copyright (C) Ajuba Solutions Inc. 1998-2000 All rights reserved.
foo.tcl
foo.tcl:24 (nonLiteralExpr) expression is not a literal value
expr $n * $result

^

Version informationProduct information

Error indicator MessageID Explanation

File name and line number

TclPro Checker 65

•
•
•
•
•
•

• the scope of procedures (namespace, protection level)

• redefinition of procedures using the Tcl rename command

• imports and exports of namespace procedures

• class structures of inherited [incr Tcl] classes

The second pass uses this information to provide warnings and error messages
concerning the usage of the user-defined procedures, including:

• calling a procedure with the wrong number of arguments

• calling an [incr Tcl] class constructor with the wrong number of arguments

• redefining existing procedures, by either the rename command or by defining
a procedure or class with and identical name

• calling [incr Tcl] class procedures out of scope

• calling class procedures with invalid permissions (private or protected)

TclPro Checker properly handles all variations of user-defined procedures in
namespaces.

Note TclPro Checker does not currently check the following:

• variable usage (for example, attempting to use the value of an undefined
variable or attempting to perform math operations on a list variable)

• [incr Tcl] class methods

• argument types passed to user-defined procedures

• redefinition of built-in Tcl, Tk, or [incr Tcl] commands

Also, if you define a procedure multiple times, TclPro Checker generates a usage
error when calling that procedure only if the call fails to match any of procedure
definitions. Because of the dynamic nature of procedure definition and
redefinition, TclPro Checker can’t determine which argument list is currently
valid for the given procedure call.

TclPro Checker does not automatically scan scripts that are sourced by your script.
Therefore, you must include on the procheck command line all files that define
user procedures and classes used by your script.

For a quicker but less comprehensive check of your scripts, you can use the
procheck -onepass option to force TclPro Checker to perform a one-pass scan of
your scripts. A one-pass scan does not check for any of the potential errors or
misuses of user-defined procedures and [incr Tcl] classes described above.

You can also use the procheck -verbose option to get a list of all commands used
by the scripts you specify that are not defined in that collection of scripts. If you

66 Chapter 5

•
•
•
•
•
•

don’t include the -verbose option, TclPro Checker doesn’t warn you about
undefined procedures.

TclPro Checker Messages
TclPro Checker examines your code and displays a message describing each error
or potential mistake that it detects. Depending on the type of script that you are
checking, you may want to limit the types of problems that it reports rather than
see the entire output from TclPro Checker.

Each message generated by TclPro Checker lists the file and the line number
where the error or warning occurred, a messageID, a description of the error or
warning, and an error indicator, which is a caret (“^”) that indicates the code
fragment in which the error occurred. The messageID is the word in parentheses
just after the file and line number information. It provides information about the
type of problem that generated the error or warning, which are listed below. Using
TclPro Checker you can specify types of errors and warning that you want to
suppress, which allows you to focus to more strategic errors or warnings. TclPro
Checker provides suggestions, when possible, on ways to fix the problems that it
indicates in the error or warning text. In the example in Figure 21, Checker
indicates that there is a missing close brace.

Figure 21 Anatomy of a TclPro Checker Message

You can limit output in the following ways:

• Limiting errors and warnings by type: an error is either a parsing or syntax
error, and warnings indicate possible problems with platform portability,
upgrade, performance, or usage issues. Warnings indicate code fragments
where there may be an error, but the code fragment may be appropriate in its
context.

• Specifying groups of messages to suppress, for example, you might want to
suppress messages related to usage warnings.

proc checkWord {tokens index {

Error indicator

 Filename and line
number with error MessageID Error or warning text

 :163

^

(parse) parse error: missing close bracefoo.tcl

TclPro Checker 67

•
•
•
•
•
•

Controlling Feedback on Errors and Warnings
Messages are grouped into two types of errors and four types of warnings.

Parsing Errors

TclPro Checker generates a parsing error when it encounters commands that
cannot be parsed by the Tcl parser, such as a missing curly brace or badly formed
list. For example: the following code generates a parsing error because it is
missing a quote at the end of the puts statement:

proc foo {} {
puts "hello

}

In cases like this, TclPro Checker attempts to move past the procedure where the
parsing error was found, and continue to check additional commands after the
parsing error.

Syntax Errors

TclPro Checker generates a syntax error when it encounters any errors that will
cause your script to fail, such as the wrong number of arguments or invalid types
or options. For example, the following code generates a syntax error is because
the wrong number of arguments are supplied:

set x 3 45

Only commands defined in Tcl, Tk, or [incr Tcl] are checked for syntax errors.

Platform Portability Warnings

TclPro Checker generates warnings when a command is used that may be
nonportable between various platforms.

set file [open $dir/$file r]

In this example, the file join command should be used so that the correct directory
and file separator is used, that is, “\” on Windows and “/” on Unix.

Suggestion for Upgrading

Upgrade warnings indicate features that have changed in a later version.

namespace foo {
variable bar 0

}

When [incr Tcl] was upgraded to 3.0, it inherited the Tcl namespace command.
The syntax of defining a namespace has changed from older versions of [incr Tcl]
because of this. With earlier versions of [incr Tcl], correct usage was:

68 Chapter 5

•
•
•
•
•
•

namespace foo {body}

With [incr Tcl] 3.0 and later, correct usage is shown below:

namespace eval foo {body}

Performance Warnings

TclPro Checker generates a warning when a performance-optimization
opportunity is detected. For example: if your code included:

set x [expr $x * $y]

it would generate a performance warning because performance is improved with
curly braces, as shown below:

set x [expr {$x * $y}]

Usage Warnings

TclPro Checker generates a warning when a command is used in a manner that is
possibly incorrect but is still syntactically legal. For example, the incr command
expects a value and not a reference below:

incr $counter

Warning and Error Flags
You can control which types of errors and warnings are listed by TclPro Checker
by specifying one of the -W flags on the TclPro Checker command line. Table 8
shows the flags that control the level of messages for warning and errors.

As an example, the first time you check your script you might want to display
only errors but not warnings. You might first run TclPro Checker with the -W1
flag, which only displays parsing and syntax errors, but does not display any
warnings. After examining the output from running with the -W1 flag and fixing

Table 8 TclPro Checker Warning and Error Flags

Flag Description

-W1 Display parsing and syntax errors.

-W2 Display parsing and syntax errors, and usage warnings.

-W3 Display parsing and syntax errors, portability warnings, upgrade
warnings, performance warnings, and usage warnings.

-Wall Displays all messages and errors. This is the default.

TclPro Checker 69

•
•
•
•
•
•

any errors that were reported, you might run with the -W2 flag to see a variety of
additional warnings.

Suppressing Specific Messages
Each warning or error message has an associated messageID. You can filter out
the display specific warnings or errors by specifying -suppress to prevent that
type of messageID from being displayed. You might want to filter out certain
messages because they point out items that do not apply to the script that you are
checking, for example: if you are porting a script to only one platform, you do not
care whether your script has portability issues.

In the following example, the messageID is “nonPortCmd”:

foo:tcl:53 (nonPortCmd) use of non-portable command
registry values $key
^

You can suppress this type of message by specifying -suppress nonPortCmd on
the command line, for example:

Appendix B, “.”procheck -suppress nonPortcmd foo.tcl

Tip You can suppress multiple messageID types at the same time by specifying
-suppress with the multiple instances of messageIDs in quotation marks, for
example:

procheck -suppress "nonLiteralExpr badOption" foo.tcl

You can also specify -suppress with the messageID for each instance of the
message ID that you want to filter, for example:

procheck -suppress nonLiteralExpr -suppress badOption foo.tcl

For a complete list of all the messageIDs, see Appendix B, “TclPro Checker
Messages.”

Examples of Output from TclPro Checker
To provide examples of TclPro Checker output, here is the sample script, foo.tcl,
that is checked in the examples that follow:

70 Chapter 5

•
•
•
•
•
•

set $y 3
set x [expr $y + 5]
set x y z

if {$x > 6}
{

puts out "world"
}

proc foo {args bar} {
puts "hello, world"

}

proc p {{a 0} b} {
puts -nonew "hello"

}

Specifying Verbose Feedback
You can specify the -verbose argument when you run TclPro Checker. When you
specify -verbose, TclPro Checker displays the error information in three lines and
the version and summary information when TclPro Checker exits, for example:

procheck -verbose foo.tcl

The feedback from the command line with -verbose specified looks similar to
this:

TclPro Checker -- Version 1.4.0
Copyright (C) Ajuba Solutions Inc. 1998-2000. All rights reserved.
This product is registered to: Sinking Ships, Ltd.

scanning: /home/kenj/test/foo.tcl
checking: /home/kenj/test/foo.tcl
foo.tcl:1 (warnVarRef) variable reference used where variable name expected
set $y 3

^
foo.tcl:2 (warnExpr) use curly braces to avoid double substitution
expr $y + 5

^
foo.tcl:3 (numArgs) wrong # args
set x y z
^
foo.tcl:5 (noScript) missing a script after "if"
if {$x > 6}

^
foo.tcl:6 (warnUndefProc) undefined procedure:

puts out "world"

{

TclPro Checker 71

•
•
•
•
•
•

^
foo.tcl:10 (argAfterArgs) argument specified after "args"
proc foo {args bar} {
^
foo.tcl:14 (nonDefAfterDef) non-default arg specified after default
proc p {{a 0} b} {

^

Packages Checked	Version
tcl 8.3
tk 8.3
expect 5.32
[incr Tcl] 3.2
tclX 8.3

Number of Errors: 4
Number of Warnings: 3

Commands that were called but never defined:
--

puts out "world"

Specifying Quiet Feedback

You can specify the -quiet argument when you run TclPro Checker. When you
specify -quiet, TclPro Checker displays the basic error information on one line
with the messageID, instead of the three-line output that includes the code body
and the error indicator, for example:

procheck -quiet foo.tcl

The output with the -quiet argument appears as follows:

TclPro Checker -- Version 1.4.0
Copyright (C) Ajuba Solutions Inc. 1998-2000. All rights reserved.
This product is registered to: Sinking Ships, Ltd.

foo.tcl:1 (warnVarRef) variable reference used where variable name expected
foo.tcl:2 (warnExpr) use curly braces to avoid double substitution
foo.tcl:3 (numArgs) wrong # args
foo.tcl:5 (noScript) missing a script after "if"
foo.tcl:6 (warnUndefProc) undefined procedure:

puts out "world"

foo.tcl:10 (argAfterArgs) argument specified after "args"
foo.tcl:14 (nonDefAfterDef) non-default arg specified after default

72 Chapter 5

•
•
•
•
•
•

Specifying Use of Older Versions

You can run TclPro Checker and specify -use with an older version of Tcl or Tk.
To check for older versions of any package, use the -use option and specify the
version to check. For example, to check a file written for Tcl7.5 and Tk4.1, enter:

procheck -use "tcl7.5" -use "tk4.1" foo.tcl

Valid -use arguments are package names followed by a version number.
Supported package names are “tcl”, “tk”, “expect”, “incrTcl”, and “tclX”. Table
7“Packages and Version Numbers” on page 63, lists the versions supported for
each package. If you do not specify a version for a package, TclPro Checker uses
the version compatible with the Tcl version you select.

Note Tk, [incr Tcl], TclX, and Expect are checked only if you explicitly specify them on
the command line with -use option.

When you specify older versions of Tcl and any extension (including Tk), the
versions of Tcl and any specified extension must be compatible, as listed in Table
7. The following example includes incompatible versions and should not be used:

procheck -use "tcl7.5" -use "tk4.0" foo.tcl

The correct version pair is:

procheck -use "tcl7.5" -use "tk4.1" foo.tcl

Error Checking

The command line in following example requests -W1 error checking, which
includes only parsing and syntax errors:

procheck -W1 foo.tcl

The feedback from the command line with -W1 specified looks similar to this:

TclPro Checker -- Version 1.4.0
Copyright (C) Ajuba Solutions Inc. 1998-2000. All rights
reserved.

foo.tcl
foo.tcl:5 (numArgs) wrong # args
set x y z
^
foo.tcl:7 (noScript) missing a script
if {$x > 6}
^

TclPro Checker 73

•
•
•
•
•
•

Error and Warning Checking

The command line in following example requests -W2 error checking, which
includes parsing errors, syntax errors, upgrade warnings, and performance
warnings.

procheck -W2 foo.tcl

The feedback from the command line with -W2 specified looks similar to this:

TclPro Checker -- Version 1.4.0
Copyright (C) Ajuba Solutions Inc. 1998-2000. All rights reserved.
This product is registered to: Sinking Ships, Ltd.

scanning: /home/kenj/test/foo.tcl
checking: /home/kenj/test/foo.tcl
foo.tcl:3 (numArgs) wrong # args
set x y z
^
foo.tcl:5 (noScript) missing a script after "if"
if {$x > 6}

^
foo.tcl:10 (argAfterArgs) argument specified after "args"
proc foo {args bar} {

^
foo.tcl:14 (nonDefAfterDef) non-default arg specified after default
proc p {{a 0} b} {

^

Checking for All Warnings and Errors

The command line in following example requests -W3 error checking, which
includes parsing errors, syntax errors, upgrade, portability, and performance
warnings.

procheck -W3 foo.tcl

The feedback from the command line with -W3 specified looks similar to this:

TclPro Checker -- Version 1.4.0
Copyright (C) Ajuba Solutions Inc. 1998-2000. All rights reserved.
This product is registered to: Sinking Ships, Ltd.

scanning: /home/kenj/test/foo.tcl
checking: /home/kenj/test/foo.tcl
foo.tcl:1 (warnVarRef) variable reference used where variable name expected
set $y 3

^
foo.tcl:2 (warnExpr) use curly braces to avoid double substitution
expr $y + 5

^
foo.tcl:3 (numArgs) wrong # args

74 Chapter 5

•
•
•
•
•
•

set x y z
^
foo.tcl:5 (noScript) missing a script after "if"
if {$x > 6}

^
foo.tcl:6 (warnUndefProc) undefined procedure:

puts out "world"

{
^
foo.tcl:10 (argAfterArgs) argument specified after "args"
proc foo {args bar} {

^
foo.tcl:14 (nonDefAfterDef) non-default arg specified after default
proc p {{a 0} b} {

^

75

•
•
•
•
•
•

• • • • • •
Traditionally Tcl code has been distributed in source form. This had the advantage
of being simple to use and allowing users to customize the code, but it had some
disadvantages: you can’t keep proprietary information secret and it may be harder
to support users if they modify the code. TclPro Compiler eliminates these
disadvantages by translating the Tcl scripts into bytecode format. You can
distribute bytecode files to users to protect your intellectual property and simplify
support.

Supported Versions
You must use Tcl/Tk 8.2 or later to load programs compiled with TclPro Compiler
1.4.

TclPro Compiler 1.4 generates bytecode files in version 1.3 format (to support Tcl
8.2 or later). These new bytecode files require version 1.3 of the tbcload package.
The tbcload 1.3 package supports the following bytecode file formats:

• 1.3 (generated by TclPro Compiler 1.3 and 1.4)

• 1.0.1 (generated by TclPro Compiler 1.2)

The tbcload 1.3 package does not support version 1.0 bytecode files (generated
by TclPro Compiler 1.0). See “Distributing Bytecode Files” on page 82 for more
information on the tbcload package.

Overview
Tcl code was traditionally interpreted on an as-needed basis. Before Tcl Version
8.0, the Tcl core did not include an internal compiler. Tcl Version 8.0 included a
compiler; however, this compiler was internal to the interpreter, and compiled
scripts could not be saved for later use. TclPro Compiler lets you compile scripts
independently of execution, then store them so you can load and execute the
bytecode file when you want to.

76 Chapter 6

•
•
•
•
•
•

When you use TclPro Compiler, the bytecode file is stored as Tcl byte codes with
the default extension .tbc. For example: if you compile the script foo.tcl with
TclPro Compiler, the bytecode file is stored as foo.tbc. When you want to use the
bytecode file, you can source it without spending the time to recompile foo.tcl.

You can distribute a bytecode file; this allows you to avoid shipping the Tcl source
code, thus keeping your code secure. Bytecode files can also be used with TclPro
Wrapper to create bundled applications that don’t require special installation; see
Chapter 7, “TclPro Wrapper.”

Compiling Your Code
TclPro Compiler compiles Tcl files, and after compiling, creates an output file
with the .tbc extension. To compile a Tcl script, enter:

C:> procomp filename.tcl

This command creates the output file filename.tbc.

You can specify multiple file names on the command line; the bytecode files will
have the same names as the input file with extension .tbc. You can also use
wildcard specifications in the file names following the glob conventions. For
example: to compile all .tcl files in C:\dir1, type:

C:> procomp c:\dir1*.tcl

When a file is compiled, the output file is placed in the same directory as the input
file, with the same name, and extension .tbc.

To rename a file while compiling it, use the -out flag to create a single file with a
custom name. You specify the command in the form: procomp -out newfilename
oldfilename, for example: to rename foo.tcl to bar.tst, you would type:

C:> procomp -out bar.tst foo.tcl

The -out flag can also specify a directory, for example: the following command:

C:> procomp -out c:\dir2 c:\dir1*.tcl

generates the set of files with the same name with the .tbc extension, but the files
are placed in C\:dir2.

Note You can only specify a single input if the -out flag does not specify a directory.

You can also force TclPro Compiler to overwrite all output files that already exist
using the -force flag. This flag deletes the output file before running TclPro
Compiler to ensure that the compilation does not fail because of permission
errors. Because TclPro Compiler creates the output file with the same permissions
as the input file, the .tbc file generated from a read-only .tcl file is also read-only.
As a result, recompiling a read-only file will fail unless you specify the -force
flag.

TclPro Compiler 77

•
•
•
•
•
•

Bytecode Files
TclPro Compiler creates an internal representation of the Tcl script using the Tcl
bytecode compiler that is built into the Tcl core. It performs additional
computations, and then emits a representation of the bytecode file to the output
file. The output file itself is a simple Tcl script that loads the bytecode run-time
package, tbcload, and then invokes a command in that package to load and run
the bytecode files.

Bytecode files are just Tcl scripts. This allows you to use bytecodes anywhere you
would use Tcl scripts. For example: you can source bytecode files. You can store
a .tbc script in a Tcl variable, for example, by reading the .tbc file or reading it
from a socket and then execute it using the eval command. You can use the .tbc
scripts to drive protclsh83 or prowish83.

Prepending Prefix Text
Because the bytecode file is a Tcl script, there might be situations where you
might want to add some specialized setup code at the start of the script. For
example, if you want to directly execute a script file under Unix it should start
with the following lines:

#!/bin/sh
the next line restarts using protclsh83 \
exec protclsh83 "$0" "$@"

See the manual page for protclsh83 for more information. By default, TclPro
Compiler preserves everything from the start of the file to the first non-blank or
non-comment line. Therefore in this example, TclPro Compiler adds these three
lines to the top of the script it generates.

78 Chapter 6

•
•
•
•
•
•

You can override this default behavior with the -prefix option. controls which
prefix string is prepended to the output file. Table 9 lists the -prefix options
available.

See the procomp.1 manual page for more information.

Changes in Behavior
There are few differences between the behavior of bytecode files and Tcl scripts
that are not compiled. This section explains these differences.

TclPro Compiler has the following limitations:

• Only those procedures that are defined at the top level can be compiled.

• The info body command on compiled procedures does not provide meaningful
information; see “Example 1: Cloning Procedures” on page 79

However, these limitation do not prevent the affected procedures from being
compiled at runtime. The contents of the bytecode file are a representation of the
internal structures of the compiled Tcl script, without the source code. Procedures
defined in the source file are compiled and their internal structures are also stored
without source code. Thus, compiled procedure bodies cannot be read or accessed
through the info body command. As a consequence, you cannot depend on being
able to read procedure bodies in the bytecode, as shown in Example 1.

The command info body on a compiled procedure cannot return the actual body
of the procedure because that information is not available. Instead, it returns a
fabricated script containing:

Table 9 TclPro Compiler -prefix options

Type Function

none Do not add a prefix string.

auto Extract the prefix from the input file;
everything from the start of the file to the first
non-comment line is prepended to the output
file. (Default)

tag Extract the prefix from the input file;
everything from the start of the file to the first
occurrence of a comment line starting with the
text “Tcl::Compiler::Include” is prepended to
the output file.

filename Extract the prefix text from a specified file.

TclPro Compiler 79

•
•
•
•
•
•

• A comment, which identifies this body of code as belonging to a compiled
procedure.

• An error command: this is used as an aide in detecting unsupported uses of info
body, as shown in Example 1.

Example 1: Cloning Procedures
Scripts that use the bodies of procedures in computations will not work properly if
the procedures have been compiled. For example, the script below uses info body
to extract the body of one procedure and use it to create another procedure that is
identical.

#clone.tcl--
proc len {a} {

return [string length $a]
}
proc len1 {a} [info body len]
puts "[len {abc}] + [len1 {monkey}]"

The two calls to proc create two procedures, len and len1, with identical bodies.

If you run the clone.tcl file, you get this output:

C:> protclsh83 clone.tcl
3 + 6

Bytecode files, however, do not contain any sources for compiled procedure
bodies, and info body returns a standard value.

If you run the clone.tbc file, you get this output:

C:> protclsh83 clone.tbc
called a copy of a compiled script
while executing
"error "called a copy of a compiled script""
(procedure "len1" line 2)
invoked from within
"# Compiled -- no source code available
error "called a copy of a compiled script""
invoked from within
"tbcload::bceval {
TclPro ByteCode 1 0 1.3 8.2
6 0 49 12 0 0 28 0 6 6 6 -1 -1
49
/QE<!(H&s!/HW<!’E’<!*Ki<!/’vpv1fAs!+EE<!2o8X!0fA9v4u8X!1’8X!z
6=t-Ow+..."
(file "clone.tbc" line 17)

Note that the call to len1 resulted in an error being thrown; this error comes from
the script returned by the info body len command. The script throws the error

80 Chapter 6

•
•
•
•
•
•

rather than failing silently to help you to detect unsupported uses of info body
command. If you need to use the body of a procedure in a computation, do not
compile that procedure.

 What Is and Isn’t Compiled
TclPro Compiler will compile most of the Tcl code in your applications, but it
can’t compile absolutely every Tcl command. Where TclPro Compiler cannot
compile a command it leaves it in text form where it will be compiled at runtime
when the command is invoked. Your bytecode files will still execute correctly
even if some commands aren’t compiled, but uncompiled commands mean that
part of your source is more easily accessible to your users. This section discusses
what TclPro Compiler can and cannot compile.

When it compiles a script, TclPro Compiler divides the script up into its
component Tcl commands and compiles each one. If TclPro Compiler can
determine that the argument to a command is a Tcl script, then it compiles that
script also. However, if TclPro Compiler can’t determine that an argument is a
script, then it leaves that argument as a string. For example, TclPro Compiler can
identify all the Tcl scripts used as arguments to standard Tcl commands, such as
the bodies of if, while, and proc commands. However, in the following script
TclPro Compiler can’t tell that the argument to the do10 procedure is a script:

proc do10 {script} {
for {set i 1} {$i <= 10} {incr i} {

eval $script
}

}
do10 {puts "hello"}

In general, if you write a procedure that takes a script as an argument, TclPro
Compiler can’t tell that the argument is a script, rather than, say, an ordinary string
value, so it can’t compile that argument. Again, the bytecode file will behave
correctly; the unknown argument will be compiled when it is actually executed.

TclPro Compiler has these limitations:

• [incr Tcl] code is not compiled.

• Bodies of dynamically created procedures cannot be compiled.

• Procedures within the scope of namespace eval are not compiled

The following example illustrates the constraints with procedures and
namespaces.

TclPro Compiler 81

•
•
•
•
•
•

Example 2: Procedures Used with Namespace
TclPro Compiler does not currently understand the namespace eval command
enough to know that arguments to namespace eval form a Tcl script, so that
nothing that follows namespace eval is compiled, including procedures.

Example 2 shows two procedures: a procedure defined inside a namespace eval
construct and one defined outside it. In this example, namespace eval prevents
procedure bodies from being compiled.

Example2.tcl--
namespace eval sample {

namespace export not_compiled compiled

proc not_compiled {a1 a2} {
return [list $a1 $a2]

}
}
proc sample::compiled {a1 a2} {
puts "hello"
}

Compiler Components
TclPro Compiler is made up of two components:

• TclPro Compiler generates a bytecode file from a Tcl script containing internal
structures. See “Creating Package Indexes” on page 81.

• The runtime loader, tbcload, takes the bytecode file, loads the bytecodes into
an interpreter, and executes them. See “Distributing Bytecode Files” on
page 82.

Creating Package Indexes
After you compile Tcl package scripts into .tbc files, you can use the
pkg_mkIndex command to create package index files for your .tbc files. After
creating the index files, users of your package will transparently load your
bytecode files instead of the original script. Creating package index files for .tbc
files requires the pkg_mkIndex -load tbcload option:

C:> pkg_mkIndex -load tbcload $dir *.tbc

Important You must use Tcl 8.0.5 or later to create package index files for your .tbc files.

82 Chapter 6

•
•
•
•
•
•

Distributing Bytecode Files
Compiled .tbc files execute a package require tbcload command. The tbcload
package must be accessible via standard package loading mechanisms in order for
the .tbc file to be interpreted successfully.

Because the protclsh83 and prowish83 interpreters include the tbcload package,
tbcload is found automatically when the .tbc files are processed by these
interpreters. There might be situations where you are unable to or do not want to
use the prowish83 or protclsh83 interpreters, for example: if you are creating
your own Tcl/Tk extensions, or if prowish83 or protclsh83 are too large to
distribute to your customers.

The tbcload package is available as a shared library (such as a .dll on Windows
and .so on Solaris) and as a static library. The shared library exports the two
package initialization procedures: Tbcload_Init and Tbcload_SafeInit, which
are required by the Tcl load command. You can use the shared library as you
would any other Tcl package:

• Use pkg_mkIndex to create a package index file.

• Make sure that the shared library and index file are placed in a directory
accessible to the package load mechanism.

If you follow the above guidelines, you can ship your bytecode files and the
tbcload shared library to customers. See “Supported Versions” on page 75 for
information on compatible versions of Tcl/Tk, tbcload, and the bytecode files.

If you are building you own extensions, you can either use tbcload as a
dynamically loaded Tcl package as described above, or you can add it to your
application as a static package. In the latter case, your Tcl_AppInit procedure
must contain the following code:

#include <proTbcLoad.h>

if (Tbcload_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}
Tcl_StaticPackage(interp, "tbcload", Tbcload_Init,
Tbcload_SafeInit);

Compilation Errors
TclPro Compiler provides an added check that your code is syntactically correct.
A benefit of compiling procedure bodies in advance is that some syntax errors are
caught at compilation rather than at runtime. Because Tcl procedures in standard
Tcl code are compiled on an as-needed basis, errors are not caught until you run

TclPro Compiler 83

•
•
•
•
•
•

the procedures. TclPro Compiler informs you of errors that are caught when it
compiles the file.

This example shows an error message from a compilation. The file contains
syntactically incorrect Tcl code.

Sample for a bad file (fail.tcl):
note the missing close-brace
set msg {

If you run this code in an interpreter, you see the following error message:

% protclsh83.exe fail.tcl
missing close-brace

while compiling
"set msg { ..."

(file "fail.tcl" line 15)

If you compile, you get this output:

compilation of "fail.tcl" failed: missing close-brace

TclPro Compiler saves the error generated by the compilation. In this example,
TclPro Compiler displays the string “missing close-brace” and displays the error
message. You will need to fix syntax errors like this one before TclPro Compiler
can compile the script. For help in tracking down errors, see Chapter 5, “TclPro
Checker.”

84 Chapter 6

•
•
•
•
•
•

85

•
•
•
•
•
•

• • • • • •
An application that you write in Tcl can consist of many components, such as:

• One or more Tcl scripts

• Either a standard or a custom Tcl interpreter

• The standard Tcl libraries and support files (for example, init.tcl)

• Optionally, the standard Tk libraries and support files

• Optionally, one or more extensions implemented as libraries of Tcl scripts

• Optionally, additional data files such as bitmaps

Traditionally, if you wanted to distribute an application that you wrote in Tcl, you
would need to make sure that all of the files listed above that your application
used were installed on your target system. You would also need to make sure that
the system was configured properly so that your application could find all of the
files it needed.

TclPro Wrapper can greatly simplify the process of distributing an application that
you write in Tcl. TclPro Wrapper is a tool that collects all of the files needed to run
a Tcl application—such as Tcl scripts, graphics and other data files, Tcl
extensions, a Tcl interpreter, and the standard Tcl and Tk libraries—into a single
executable file, which is called a wrapped application. A user can then install this
file anywhere on their system and execute it without needing to install any other
packages or otherwise configure their system.

You invoke TclPro Wrapper using the prowrap command from the command
line. For example, the following command creates an executable named
myApp.exe that contains a wish interpreter, the standard Tcl and Tk libraries, the
Tcl scripts myApp.tcl and help.tcl, and several GIF images from a subdirectory
named images:

C:> prowrap -out myApp.exe myApp.tcl help.tcl images*.gif

Executing the resulting myApp.exe file is equivalent to entering:

C:> wish myApp.tcl

86 Chapter 7

•
•
•
•
•
•

How the Internal File Archive Works in a Wrapped Application
The internal file archive of a wrapped application contains all Tcl scripts and data
files that you specify when you wrap an application. TclPro Wrapper incorporates
special support into the wrapped application that allows Tcl scripts in the wrapped
application to access files in the internal file archive just as if they were stored
individually on disk. In other words, your Tcl scripts in a wrapped application can
execute standard Tcl commands such as source and open to access files in the
internal file archive.

Note The files in the internal file archive are read-only.

Whether your Tcl script attempts to access a file from the internal file archive or
from disk is determined by the following rules:

• If you attempt to access a file using an absolute pathname (for example,
/user/kate/images/widget.gif), then your Tcl script always looks for the file on
your disk.

• If you attempt to access a file using a relative pathname (for example,
images/widget2.gif), then your Tcl script first looks for the file in the internal
file archive. If it finds a file in the archive with the exact relative pathname
specified, then it uses that file; otherwise, it looks for the file on your disk.

By default, files that you specify in your prowrap command with relative
pathnames retain that pathname in the archive. Files that you specify with
absolute pathnames are stripped of their drive and root directory characters. You
can also modify this behavior by using the prowrap -relativeto argument. See
“Determining Path References in Wrapped Applications” on page 90 for
information on how pathnames for files in the internal archive of a wrapped
application are determined.

Important The internal file archive isn’t a full-fledged filesystem. Instead, the files are stored
in the equivalent of a flat table. This has several important implications for
accessing files in the archive:

• The current working directory of your Tcl script has no relevance to the
pathname you should use to access a file in the archive. For example, if there
is a file in the archive that you wrapped with the relative pathname
interface/main.tcl, then the two source commands in the following code
fragment both access that same file in the archive:

cd /tmp
source interface/main.tcl
This accesses the same file as above in a wrapped application
cd /usr/local/bin
source interface/main.tcl

TclPro Wrapper 87

•
•
•
•
•
•

• The Tcl glob command doesn’t match any files in the archive. For example, if
you wrap the files images/card1.gif and images/card2.gif, the glob pattern
“images/*.gif” fails to match either of these files. If you have an application
that depends on the glob command to produce arbitrary lists of wrapped files,
you need to rewrite it to use explicit lists of wrapped files. If you use a variable
to contain the file list, one technique you can use is to set the value of the
variable when you wrap the application using the prowrap -code option. The
following example uses the Unix back-quote command evaluation and shell
filename expansion techniques to set the variable imageList to contain a list of
files in the wrapped images directory:

% prowrap myApp.tcl images/*.gif \

-code "set imageList [list ‘echo images/*.gif‘]"

• If you attempt to access a file on disk using a relative pathname, and there
happens to be a file in the archive with the same pathname, your Tcl script
accesses the file in the archive rather than the file on the disk. This is referred
to as file shadowing.

• If you attempt to access a file in the archive and a file with that pathname does
not exist, then your Tcl script attempts to access the file on disk. This is referred
to as fall-through.

“Changing File References” on page 106 provides guidelines for writing your
applications so that they use wrapped files and unwrapped files properly.

Wrapping an Application
This section describes how to wrap your application.

Wrapping Tcl Scripts and Data Files
To wrap one or more Tcl scripts and any associated data files (for example,
bitmaps), simply list all the files as arguments to the prowrap command. For
example, suppose you have an application consisting of a single script file,
app.tcl. To wrap it, enter:

C:> prowrap app.tcl

This creates a wrapped application called prowrapout.exe on Windows systems or
prowrapout on Unix systems. When you run the wrapped application, it uses wish
to execute your app.tcl script. In other words, running the wrapped application in
this case is the same as executing:

C:> wish app.tcl

88 Chapter 7

•
•
•
•
•
•

By default, prowrap includes in your wrapped application a customized wish Tcl
interpreter with built-in support for the [incr Tcl], [incr Tk], [incr Widgets], TclX,
and Expect (Unix systems only) extensions. “Specifying the Tcl Interpreter” on
page 88 describes how you can specify a different Tcl interpreter

If your application has several script files, just include them on the prowrap
command line. For example, if app.tcl sources the files utils.tcl and help.tcl from
the aux subdirectory, you can wrap them with the following command:

C:> prowrap app.tcl aux\utils.tcl aux\help.tcl

Important By default, your wrapped application sources the first file you list in the prowrap
command. So in this example, when you execute your wrapped application, it
sources app.tcl. You can change this behavior with the -startup option, as
described in “Specifying the Startup Tcl Script” on page 89.

You can use wildcard characters in your file names to specify multiple files. On
Unix systems, the shell you use (that is, sh, csh, etc.) handles wildcard expansion.
On Windows systems, prowrap uses Tcl’s glob command to handle wildcard
expansion. (See the Tcl glob reference page for details of its operation.) So, in the
above example, if utils.tcl and help.tcl were the only .tcl files in the aux
subdirectory, you could accomplish the same effect as above with the following
command:

C:> prowrap app.tcl aux*.tcl

The files that you wrap are stored in the wrapped application’s internal file
archive. For information on how pathnames are handled for wrapped files, see
Table 11“Resolving File Pathnames When Wrapping an Application” on page 91.

Specifying the Tcl Interpreter
By default, prowrap includes the wish Tcl interpreter, the [incr Tcl], [incr Tk],
[incr Widget], TclX, and Expect (Unix only) extensions, and all of the binary
libraries and library script files needed by wish and the extensions. The wrapped
application is statically linked with all of the appropriate libraries, so it is not
dependent on any other files; you can distribute it as a stand-alone application.

You can specify a different interpreter or different extension options with the
-uses flag. For example, the following command includes the tclsh interpreter
(with no extensions) and all of the binary libraries and library script files needed
by tclsh:

C:> prowrap -uses tclsh app.tcl lib1.tcl lib2.tcl

The -uses flag is a convenience to simplify the use of certain standard
configurations. Different -uses options provide predetermined sets of Tcl
interpreters, extensions, and library files needed by the interpreter and extensions.

TclPro Wrapper 89

•
•
•
•
•
•

TclPro Wrapper then automatically includes all of those files with your wrapped
application. Table 10 lists the values of -uses for which TclPro Wrapper has built-
in support.

In addition to the options listed in Table 10, you can also define new
configurations of your own with their own -uses values. See “Defining New -uses
Options” on page 103 for details.

Specifying the Startup Tcl Script
By default, your wrapped application sources the first file you list in the prowrap
command. You can use the -startup option to specify a different file to source
when your application starts. This can be very helpful if you use wildcard
characters to specify files to wrap. For example, consider the case of wrapping
three Tcl scripts, display.tcl, help.tcl, and main.tcl, all in the same directory, and
wanting to source main.tcl when you start your application. You could accomplish
this with:

Table 10 Predefined -uses Options

Option Description

bigwish
(default)

Includes the wish Tcl interpreter, the [incr Tcl], [incr Tk],
[incr Widget], TclX, and Expect (Unix only) extensions, and all of the
library script files needed by wish and the extensions. Produces a
statically-linked application.

bigtclsh Includes the tclsh Tcl interpreter, the [incr Tcl], TclX, and Expect (Unix
only) extensions, and all of the library script files needed by tclsh and
the extensions. Produces a statically-linked application.

wish Includes the wish interpreter (with no extensions) and all of the Tcl and
Tk library script files. Produces a statically-linked application.

tclsh Includes the tclsh interpreter (with no extensions) and all of the Tcl
library script files. Produces a statically-linked application.

wish-dynamic Includes the wish interpreter (with no built-in extensions), but not the
Tcl or Tk library or library script files. Produces a dynamically-linked
wrapped application, as discussed in “Creating and Distributing
Dynamically-Linked Wrapped Applications” on page 96.

tclsh-dynamic Includes the tclsh interpreter (with no built-in extensions), but not the
Tcl library or library script files. Produces a dynamically-linked
wrapped application, as discussed in “Creating and Distributing
Dynamically-Linked Wrapped Applications” on page 96.

90 Chapter 7

•
•
•
•
•
•

C:> prowrap -startup main.tcl *.tcl

You can create a wrapped application that displays an interactive Tcl shell by
specifying the empty string (“”) as the -startup argument. Upon startup, the
application doesn’t source any files automatically. Users can then access through
the Tcl shell any additional files that you wrap with the application. For example:

C:> prowrap -uses tclsh -startup "" foo1.tcl foo2.tcl foo3.tcl

A user could then run the wrapped application and source foo1.tcl, foo2.tcl, or
foo3.tcl from the Tcl shell as desired.

Passing Arguments to the Startup Tcl Script
With the prowrap -arguments option, you can specify additional arguments to
your wrapped application that are treated just as if they were submitted to your
unwrapped application on the command line. The arguments appear in the Tcl
argv variable. The arguments you specify are inserted before any command-line
arguments entered by the end user when they execute your wrapped application.

You must provide the arguments as a single argument on the prowrap command
line; use proper quoting conventions of your command shell to accomplish this.
For example, the following passes the arguments -height 50 -width 20 to the
main.tcl script:

c:> prowrap main.tcl img*.gif -arguments "-height 50 -width 20"

Specifying the Name of a Wrapped Application
The default name of the wrapped application produced by prowrap is prowrapout
on Unix or prowrapout.exe on Windows. You can use the -out option to specify a
different name for the application. For example, the following creates a wrapped
application with the name myapp.exe:

C:> prowrap myapp.tcl utils.tcl -out myapp.exe

Note On Windows systems, prowrap automatically adds the .exe extension if you omit
it from the application name.

Determining Path References in Wrapped Applications
As discussed in “How the Internal File Archive Works in a Wrapped Application”
on page 86, you must use relative pathnames to access files stored in the internal
archive of a wrapped application. The proper pathname to use to access a file from
the archive depends on your prowrap command arguments.

By default, files that you specify in your prowrap command with relative
pathnames retain that pathname in the archive. Files that you specify with

TclPro Wrapper 91

•
•
•
•
•
•

absolute pathnames are stripped of their drive and root directory characters. For
example, consider in the following:

C:> prowrap myApp.tcl D:\tcl\common\utils.tcl

To source D:\tcl\common\utils.tcl from within your wrapped application, you
would need to use a command such as:

source [file join tcl common utils.tcl]

You can also change the resulting pathname for a wrapped file with the -relativeto
directory option to prowrap. The -relativeto flag instructs TclPro Wrapper to
wrap all file name patterns that follow relative to the directory you specify. As an
example, consider the following:

C:> prowrap myApp.tcl -relativeto D:\tcl\common \
D:\tcl\common\utils.tcl

In this case, the resulting pathname for D:\tcl\common\utils.tcl from within your
wrapped application is simply utils.tcl.

Table 11 summarizes how wrapped file pathnames are determined.

Table 11 Resolving File Pathnames When Wrapping an Application

Path Type Using
-relativeto
flag?

Resulting Wrapped File
Pathname

Example

Relative No The given relative pathname (including
any “.” or “..” relative pathname
references)

images/icon.gif and ../lib/control.tcl
remain the same

Relative Yes The pathname of the file relative to the
-relativeto directory

images/icon.gif with -relativeto
images becomes icon.gif

../lib/control.tcl with -relativeto ../lib
becomes control.tcl

Absolute No The full pathname of the file without
the root directory

/usr/local/tcl/lib/common.tcl becomes
usr/local/tcl/lib/common.tcl

Absolute Yes The pathname of the file relative to the
-relativeto directory

/usr/local/tcl/lib/common.tcl with
-relativeto /usr/local/tcl becomes
lib/common.tcl

92 Chapter 7

•
•
•
•
•
•

Specifying TclPro Wrapper Command Line Arguments Using
Standard Input
Many command shells have a limit to the number of characters they accept as
input. Although this is rarely a problem when wrapping just a few Tcl scripts, you
might exceed this limit if you use wildcard expansion and wrap lots of data files or
Tcl packages.

To get around this limitation, prowrap allows you to specify arguments from
standard input using the -@ option. Arguments from standard input are processed
after all other arguments on the prowrap command line.

Specifying Code to Execute at Application Startup
The -code option allows you to provide Tcl code that your application executes
when it starts. The application executes the code early in the application
initialization sequence, before Tcl_Init or any other package initialization
procedures are invoked. You can specify multiple -code options, in which case
TclPro Wrapper arranges for the application to execute these scripts in the order
that they appear on the prowrap command line.

One common use for the -code option is to set the auto_path variable to handle
Tcl script libraries wrapped with your applications. For example, the following
prowrap command wraps an application with a library in the
/usr/local/lib/common directory and sets the auto_path variable so that the library
is loaded properly on execution:

% prowrap myscript.tcl -relativeto /usr/local \
/usr/local/lib/common/*.tcl /usr/local/lib/common/tclIndex \
-code "lappend auto_path lib/common" -out myscript

Wrapping Libraries and Packages
Often, your application will use various Tcl libraries and packages. This section
describes how to wrap libraries and packages with your application.

In this section, a library refers to either:

• A collection of Tcl scripts contained in a directory that also contains a tclIndex
file generated by the auto_mkindex command

• A binary shared library that an application can load using the load command

In this book, a package refers to a collection of Tcl scripts or binary shared
libraries in a directory that also contains a pkgIndex.tcl file generated by the
pkg_mkIndex command.

TclPro Wrapper 93

•
•
•
•
•
•

Note You don’t need to take any special steps to wrap applications that use the Tcl
extensions bundled with TclPro (for example, [incr tcl]) if you specify the
appropriate built-in prowrap -uses option. See “Specifying the Tcl Interpreter” on
page 88 for more information.

Wrapping Libraries of Tcl Scripts

You must take special steps to auto-load Tcl script libraries that you wrap with
your application. For example, if a library consists of the files help.tcl and
display.tcl, and they and the tclIndex file are stored in /usr/local/lib/common, an
unwrapped Tcl script that used this library would contain the following command
to auto-load the library:

lappend auto_path /usr/local/lib/common

This command would fail to auto-load your library in a wrapped application
because of the absolute pathname. You can correct this problem in one of two
ways:

• Change your application to test if it is executing as a wrapped application, and
then set the auto_path variable appropriately:

if {[info exists tcl_platform(isWrapped)]} {
lappend auto_path lib/common

} else {
lappend auto_path /usr/local/lib/common

}

Then wrap your application as follows (remember to wrap the tclIndex file in
addition to the Tcl script files):

% prowrap myscript.tcl -relativeto /usr/local \
/usr/local/lib/common/*.tcl /usr/local/lib/common/tclIndex

• Set the auto_path variable using the -code option of the prowrap command.
The -code option executes the Tcl code that you provide before executing the
Tcl scripts of your application. Thus, the following prowrap command
accomplishes the same results as above (remember to wrap the tclIndex file in
addition to the Tcl script files):

% prowrap myscript.tcl -relativeto /usr/local \
/usr/local/lib/common/*.tcl /usr/local/lib/common/tclIndex \
-code "lappend auto_path lib/common"

Wrapping Binary Shared Libraries

Important Wrapped applications that load shared libraries must use a dynamically-linked Tcl
interpreter such as tclsh-dynamic or wish-dynamic. If you use a statically-linked
Tcl interpreter such as tclsh or wish, you will receive an error stating that the load
command is not supported when executing the wrapped application. For more

94 Chapter 7

•
•
•
•
•
•

information on selecting a Tcl interpreter for your wrapped application, see
“Specifying the Tcl Interpreter” on page 88.

You can’t wrap binary shared libraries. There are two options for creating a
wrapped application that uses a binary shared libraries:

• Create a custom Tcl interpreter that links a static version of the library.

Important TclPro Wrapper requires specially-written Tcl interpreters to work with
wrapped applications. Any custom interpreters that you use must follow the
guidelines described in “Creating Base Applications for TclPro Wrapper” on
page 119.

• Wrap your application (without the binary shared library) with a dynamically-
linked Tcl interpreter such as tclsh-dynamic or wish-dynamic. Then include
the binary shared library in your distribution that you provide to customers. See
“Creating and Distributing Dynamically-Linked Wrapped Applications” on
page 96 for details.

Wrapping Tcl Script Packages

Packages that consist entirely of Tcl scripts don’t need any special handling when
wrapping. TclPro Wrapper understands pkgIndex.tcl files and automatically adds
wrapped directories to your application’s tcl_pkgPath variable if they contain
pkgIndex.tcl files.

For example, if you have a package stored in /usr/local/lib/common and you have
generated a pkgIndex.tcl file in that directory using the pkg_mkIndex command,
you can wrap the package automatically with a prowrap command such as:

% prowrap myscript.tcl -relativeto /usr/local \
/usr/local/lib/common/*.tcl -o myscript

Wrapping Packages Containing Binary Shared Libraries

You can’t wrap packages that contain binary shared libraries. There are two
options for creating a wrapped application that uses packages with binary shared
libraries:

• Create a custom Tcl interpreter that links a static version of the package.

Important TclPro Wrapper requires specially-written Tcl interpreters to work with
wrapped applications. Any custom interpreters that you use must follow the
guidelines described in “Creating Base Applications for TclPro Wrapper” on
page 119.

TclPro Wrapper 95

•
•
•
•
•
•

• Wrap your application (without the packages) with a dynamically-linked Tcl
interpreter such as tclsh-dynamic or wish-dynamic. Then include the
packages in your distribution that you provide to customers. See “Creating and
Distributing Dynamically-Linked Wrapped Applications” on page 96 for
details.

Specifying a Temporary Directory
The prowrap -temp argument allows you to specify a directory that TclPro
Wrapper uses to temporarily hold files created during the wrapping process. By
default, TclPro Wrapper uses the directory given by either TEMP, TMP, or
TMPDIR environment variables, which are checked in that order. On Unix, the
directory falls through to the /tmp directory if no environment variable exists.

For example, the following uses C:\Temp as a temporary directory for wrapping
on a Windows system:

% prowrap -temp C:\Temp foo1.tcl foo2.tcl

Getting Detailed Wrapping Feedback
You can get TclPro Wrapper to give you more detailed information about what it
is doing and which files it is wrapping by specifying the prowrap -verbose
option.

Static and Dynamic Linking with Wrapped Applications
TclPro Wrapper allows you to create either statically-linked or dynamically-linked
wrapped applications:

• A statically-linked application copies all the code it needs from libraries when
you compile it. Once you compile the application, you no longer need the
libraries to be able to run the application.

• A dynamically-linked application contains mechanisms for loading the code it
needs from libraries as needed while the application is running. The
application requires the libraries to be present while it runs so that it can
dynamically load and execute the library code. On Windows, these libraries are
usually referred to as DLLs (Dynamic Link Libraries). On Unix systems, they
are often called shared libraries, because several application can use them at
the same time.

96 Chapter 7

•
•
•
•
•
•

Deciding Whether Static or Dynamic Linking is More
Appropriate
In general, Ajuba Solutions recommends that you create statically-linked wrapped
applications. A statically-linked application is usually simpler to distribute and
maintain. It contains your scripts and data files, a Tcl interpreter, and everything
else needed to run the application. On the other hand, if you distribute a
dynamically-linked application, you must be sure that the target system has the
Tcl (and Tk, if needed) libraries and library script files (such as init.tcl) properly
installed and configured. If your application uses Tcl extensions (such as
[incr Tcl]), then those extensions must also be installed and configured on your
target system. Furthermore, if a user accidentally deletes a shared library, or
another software package installs an incompatible version of one, your
dynamically-linked application will no longer work on that system.

Important Because of system limitations, statically-linked wrapped applications can’t load
shared libraries. Therefore, if you need to load shared libraries (or auto-load
packages that contain binary shared libraries), you must either create a
dynamically-linked wrapped application or create a custom Tcl interpreter that
links a static version of the library.

You also might consider distributing dynamically-linked wrapped applications.
However, for a dynamically-linked wrapped application to work, your target
systems must have all needed libraries installed and configured properly.
Dynamically-linked applications are smaller than statically-linked ones, which
can be beneficial if you plan to distribute several wrapped applications.

Creating and Distributing Dynamically-Linked Wrapped
Applications
To create a dynamically-linked wrapped application, wrap your application with
either the -uses tclsh-dynamic option (to use the tclsh interpreter) or -uses
wish-dynamic option (to use the wish interpreter).

For a Windows application, if your target system has the same version of TclPro
installed and your application doesn’t use any extensions other than those bundled
with TclPro, you can simply copy your application to the target system. You can
run the application from anywhere on the target system.

For a Unix application, if your target system has the same version of TclPro
installed in exactly the same directory as on your development system and your
application doesn’t use any extensions other than those bundled with TclPro, you
can simply copy your application to the target system. You can run the application
from anywhere on the target system. Although the requirements in this case are

TclPro Wrapper 97

•
•
•
•
•
•

restrictive, it is actually fairly common for a company to make the TclPro
installation available on a shared directory of a file server. If all users mount the
TclPro installation in the same location on their systems, they all effectively have
the same TclPro configuration.

For all other cases, you must create a special distribution to install on your target
system that contains your application and all binary libraries and library script
files required by your system. (The rest of this section refers to this distribution
directory as $DIST.) You must copy these files from the TclPro installation
directory. (The rest of this section refers to this directory as $TclPro).

Your resulting distribution tree should have the following structure:

$DIST/
|
|---lib/
| |
| |---tcl8.3/
| |---tk8.3/ (optional)
| |---itcl3.2/ (optional)
| |---itk3.2/ (optional)
| |---iwidgets2.2.0/ (optional)
| |---iwidgets3.0.0/ (optional)
| |---tclX8.3/ (optional)
| |---tkX8.3/ (optional)
|
|---$platform/

|
|---lib/ (Unix only)
| |
| |---*.so (or *.sl on HP-UX)
|
|---bin/

|
|---wrapped application(s)
|---*.dll (Windows only)

The following steps describe how to create this distribution directory:

1. Create a dynamically-linked wrapped application with prowrap. The -uses
tclsh-dynamic and -uses wish-dynamic options automatically handle setting
the appropriate values of the tcl_library and tk_library variables, as well as any
similar library variables for the extensions bundled with TclPro, so that your
application can find the script libraries. If you use any additional extensions
with your application, you must include a -code option to your prowrap
command setting any similar library variables for those extensions. You can
use the following example as a template:

-code "set tcl_library [file join [file dir [info nameofexec]] lib tcl8.3]"

98 Chapter 7

•
•
•
•
•
•

You would need to replace “tcl_library” and “tcl8.3” with values appropriate
for your extension.

1. Create a distribution directory with whatever name you want.

2. Create the directory $DIST/lib.

3. Copy the entire contents of $TclPro/lib to $DIST/lib. Optionally, you can omit
from $DIST/lib any extensions your application doesn’t use (for example,
don’t copy $TclPro/lib/tclX8.3 and its contents if your application doesn’t use
TclX).

4. If your application uses any additional extensions (beyond those bundled with
TclPro) which have directories and files residing in the Tcl script library
directory (the lib subdirectory of the Tcl installation directory), then copy those
directories and files to $DIST/lib.

5. Create the directory $DIST/$platform, where $platform is the platform-
specific subdirectory as used by TclPro. Table 12 lists the appropriate
subdirectory names (for example, win32-ix86 for Windows systems).

6. Create the directory $DIST/$platform/bin.

7. Copy or move your dynamically-linked wrapped application to
$DIST/$platform/bin.

8. For Unix distributions:

a) Create the directory $DIST/$platform/lib.

b) Copy all shared libraries from $TclPro/$platform/lib to
$DIST/$platform/lib (for example, copy $TclPro/solaris-sparc/lib/*.so to
$DIST/solaris-sparc/lib). Optionally, you can omit from
$DIST/$platform/lib any extensions your application doesn’t use (for
example, don’t copy $TclPro/$platform/lib/libtclX8.3.so if your
application doesn’t use TclX).

Table 12 Platform-Specific TclPro Subdirectories

Platform TclPro Platform Subdirectory

HP-UX hpux-parisc

IRIX/Mips irix-mips

Linux/x86 linux-ix86

Solaris/SPARC solaris-sparc

Windows 95/NT(x86) win32-ix86

TclPro Wrapper 99

•
•
•
•
•
•

c) If your application uses any additional extensions (beyond those bundled
with TclPro) which have shared libraries, or if your application uses any
other shared libraries, then copy those libraries to $DIST/$platform/lib.

9. For Windows distributions:

a) Copy all shared libraries from $TclPro\win32-ix86\bin to
$DIST\win32-ix86\bin (for example, copy $TclPro\win32-ix86\bin*.dll to
$DIST\win32-ix86\bin). Optionally, you can omit from
$DIST\win32-ix86\bin any extensions your application doesn’t use (for
example, don’t copy $TclPro\win32-ix86\bin\tclx83.dll if your application
doesn’t use TclX).

b) If your application uses any additional extensions (beyond those bundled
with TclPro) which have shared libraries, or if your application uses any
other shared libraries, then copy those libraries to $DIST\win32-ix86\bin.

10. Use whatever installation method you want to copy the entire $DIST
distribution tree to your target systems. You can install the distribution
anywhere you like on the target system; however, users can’t move the
wrapped application from the distribution tree’s bin directory.

Tip If you want to distribute more than one dynamically-linked wrapped application,
you can include all of those applications in $DIST/$platform/bin. If you do this, be
sure to include all of the extensions and libraries needed by all of your
applications.

Wrapping Applications with a Custom Interpreter or Custom
Initialization Libraries

You can wrap an application with a Tcl interpreter other than those supported by
the built-in prowrap -uses options. You can also wrap an application that uses a
custom Tcl initialization library (that is, init.tcl). You can specify custom
interpreters on either an as-needed basis or, if you frequently use the same
interpreter, you can create your own custom -uses option.

Important Only specially-written Tcl interpreters work with wrapped applications. The built-
in prowrap -uses options automatically use supported Tcl interpreters. However,
any custom interpreters that you use must follow the guidelines described in
“Creating Base Applications for TclPro Wrapper” on page 119.

Specifying a Custom Interpreter or Custom Initialization Files
The prowrap -executable option specifies a Tcl interpreter to wrap with your
application. If you include both the -uses and -executable options when

100 Chapter 7

•
•
•
•
•
•

wrapping, TclPro Wrapper automatically wraps all the initialization library files
required for the standard interpreter (for example, init.tcl), but includes the
custom interpreter you specify rather than the standard interpreter.

The prowrap -tcllibrary option specifies where the wrapped application can find
the Tcl initialization library files at the time that it is run (rather than at the time
you wrap the application). In other words, it sets the value of the Tcl tcl_library
variable used by your application during its initialization. You don’t need to
include the prowrap -tcllibrary option if your application uses the standard
initialization files and you wrap the application using a built-in -uses option. The
built-in -uses options automatically wrap the standard initialization files and sets
the tcl_library variable appropriately.

Important As with any other file reference in a wrapped application, the prowrap
-tcllibrary value you specify can refer to either a file on the disk or a file in the
internal file archive. In other words, if you provide an absolute pathname, your
application looks for the initialization files on the disk when it runs. On the other
hand, if you specify a relative pathname, your application first looks in its internal
file archive for the initialization files, and looks on the disk only if the files don’t
exist in the archive. For more information on file access in a wrapped application,
see “How the Internal File Archive Works in a Wrapped Application” on page 86.

Important Always use the prowrap -tcllibrary option to set the value of the Tcl tcl_library
variable rather than setting it using a prowrap -code option. Your application
needs the correct value of the Tcl tcl_library variable during the initialization of
the Tcl interpreter (primarily to find the character encoding files). Code that you
include with the -code option is executed after initialization of the core Tcl
interpreter.

Note The prowrap -tcllibrary option does not set the value of the Tcl tk_library
variable or any other similar variable used by a Tcl package. Use the prowrap
-code option to set these variables if you don’t use a built-in -uses option.

The proper combination of -uses, -executable, and -tcllibrary options depends
on:

• Whether you are creating a statically- or dynamically-linked application

• Whether or not you use a custom interpreter

• Whether or not you use custom initialization files

Obviously, if you use a standard interpreter and standard initialization file, you
can simply use the built-in -uses options as described in “Specifying the Tcl
Interpreter” on page 88. The other cases are described in the following sections.

TclPro Wrapper 101

•
•
•
•
•
•

Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Standard Initialization Files

When creating a statically-linked wrapped application with a custom interpreter
and the standard Tcl initialization files, your prowrap command line must include
the following:

• One of the standard -uses options

• An -executable option specifying the custom interpreter

For example, the following wraps an application with a custom interpreter,
myWish, that is based on the standard wish interpreter:

% prowrap -uses wish -executable /usr/local/bin/myWish \
-out myApp myApp.tcl img/*.gif

Creating a Statically-Linked Wrapped Application with a
Standard Interpreter and Custom Initialization Files

When creating a statically-linked wrapped application with a standard interpreter
and custom Tcl initialization files, your prowrap command line must include the
following:

• One of the standard -uses options

• All of your custom Tcl initialization files

• A -tcllibrary option specifying the location of the initialization files in the
wrapped application’s file archive

• Any -code options required to initialize other Tcl configuration variables such
as tk_library

For example, the following wraps an application with the standard wish
interpreter and a set of initialization files contained in the directory
/usr/local/siteTcl/lib:

% prowrap -uses wish -out myApp myApp.tcl img/*.gif \
/usr/local/siteTcl/lib/tcl8.3/*.tcl \
/usr/local/siteTcl/lib/tcl8.3/tclIndex \
/usr/local/siteTcl/lib/tcl8.3/encoding/*.enc \
/usr/local/siteTcl/lib/tk8.3/*.tcl \
/usr/local/siteTcl/lib/tk8.3/tclIndex \
-tcllibrary usr/local/siteTcl/lib/tcl8.3 \
-code "set tk_library usr/local/siteTcl/lib/tk8.3"

Note Both the -tcllibrary and -code options omit the initial “/” when specifying the
pathnames for the tcl_library and tk_library variables. This is because TclPro
Wrapper strips the initial “/” from absolute pathnames when wrapping files, and
therefore the wrapped initialization files have relative pathnames in the archive

102 Chapter 7

•
•
•
•
•
•

(for example, “usr/local/siteTcl/lib/tcl8.3/init.tcl”). See “How the Internal File
Archive Works in a Wrapped Application” on page 86 for more information.

Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Custom Initialization Files

When creating a statically-linked wrapped application with a custom interpreter
and custom Tcl initialization files, you are basically overriding all TclPro Wrapper
defaults and wrapping your application “from scratch.” In this case, your
prowrap command line must include the following:

• The -uses "" option to prevent TclPro Wrapper from using any built-in -uses
configuration

• A -executable option specifying the custom interpreter

• All of your custom Tcl initialization files

• A -tcllibrary option specifying the location of the initialization files in the
wrapped application’s file archive

• Any -code options required to initialize other Tcl configuration variables such
as tk_library

For example, the following wraps an application with a custom interpreter,
myWish, that is based on the standard wish interpreter and a set of initialization
files contained in the directory /usr/local/siteTcl/lib:

% prowrap -uses "" -executable /usr/local/bin/myWish \
-out myApp myApp.tcl img/*.gif \
/usr/local/siteTcl/lib/tcl8.3/*.tcl \
/usr/local/siteTcl/lib/tcl8.3/tclIndex \
/usr/local/siteTcl/lib/tcl8.3/encoding/*.enc \
/usr/local/siteTcl/lib/tk8.3/*.tcl \
/usr/local/siteTcl/lib/tk8.3/tclIndex \
-tcllibrary usr/local/siteTcl/lib/tcl8.3 \
-code "set tk_library usr/local/siteTcl/lib/tk8.3"

Note Both the -tcllibrary and -code options omit the initial “/” when specifying the
pathnames for the tcl_library and tk_library variables. This is because TclPro
Wrapper strips the initial “/” from absolute pathnames when wrapping files, and
therefore the wrapped initialization files have relative pathnames in the archive
(for example, “usr/local/siteTcl/lib/tcl8.3/init.tcl”). See “How the Internal File
Archive Works in a Wrapped Application” on page 86 for more information.

TclPro Wrapper 103

•
•
•
•
•
•

Creating a Dynamically-Linked Wrapped Application with a
Custom Interpreter

When creating a dynamically-linked wrapped application, your application
depends on all shared libraries and library script files (for example, init.tcl)
already being installed and configured on your target system. The built-in -uses
tclsh-dynamic and -uses wish-dynamic options automatically handle setting the
appropriate values of the tcl_library and tk_library variables, as well as any
similar library variables for the extensions bundled with TclPro. But when you
want to use a custom dynamically-linked interpreter, you must set these values
yourself when wrapping the application. In this case, your prowrap command
line must include the following:

• The -uses "" option to prevent TclPro Wrapper from using any built-in -uses
configuration

• A -executable option specifying the custom interpreter

• A -tcllibrary option specifying the location of the initialization files on your
target system

• Any -code options required to initialize other Tcl configuration variables such
as tk_library

Furthermore, you must configure your target systems as discussed in “Creating
and Distributing Dynamically-Linked Wrapped Applications” on page 96
(including creating a distribution directory as described in that section, if
necessary).

For example, the following wraps an application with a custom dynamically-
linked interpreter, myWish, that is based on the standard wish interpreter. The
example assumes that you create a distribution directory for your application as
described in “Creating and Distributing Dynamically-Linked Wrapped
Applications” on page 96:

% prowrap -uses "" -executable /usr/local/bin/myWish \
-out myApp myApp.tcl img/*.gif -tcllibrary ../../lib/tcl8.3 \
-code "set tk_library [file join [file dir [info nameofexec]] lib tk8.3] "

Defining New -uses Options
TclPro Wrapper recognizes files with the .uses extension as providing additional
-uses configurations. For example, a file new.uses directory defines a
configuration named “new” that you can use as a -uses option.

When you specify a -uses option, TclPro Wrapper checks to see if it is a built-in
configuration first. If not, if looks for a .uses file with the proper name in the

104 Chapter 7

•
•
•
•
•
•

lib/prowrapuses directory of the TclPro installation (that is, lib/prowrapuses
should be at the same level as the lib/tcl8.3 directory). If TclPro Wrapper doesn’t
find the proper file there, it finally checks the directory from which you execute
prowrap.

You can also specify an absolute or relative path as an argument to the -uses
option. For example, specifying -uses C:\Tcl\Wrapper\custom causes TclPro
Wrapper to use the configuration file C:\Tcl\Wrapper\custom.uses.

The lib/prowrapuses directory of the TclPro installation contains Tcl scripts
showing the definitions of the built-in -uses options. You can use these files as
templates for creating your own -uses configurations.

Note Modifying these files does not change the behavior of the built-in -uses
configurations; they are only sample files. To use them, you can copy them,
rename them, and modify them as needed.

TclPro Wrapper evaluates the contents of a .uses file when it prepares to wrap an
application with that configuration. The .uses file must contain a Tcl script that
returns a Tcl list providing additional TclPro Wrapper command-line arguments.
These arguments should typically specify the following:

• an -executable option specifying a Tcl or interpreter

• if this option produces statically-wrapped applications, all initialization and
support files required by the interpreter (for example, the contents of the Tcl
and Tk lib directories and their subdirectories)

• a -tcllibrary option specifying the location Tcl initialization library files (that
is, the value of the Tcl tcl_library variable)

• if the option includes a Tk interpreter, a -code option setting the value of the
tk_library variable

• if this option provides built-in support for additional Tcl libraries or packages,
the script and index files for these packages as discussed in “Wrapping
Libraries and Packages” on page 92

• optionally, one or more -code options to perform any other required
initialization of a wrapped application (for example, setting any required
values for an included package)

• optionally, any other desired script or data files

Important As with any other file reference in a wrapped application, the file references you
provide to the -tcllibrary and -code options can refer to either a file on the disk or
a file in the internal file archive. In other words, if you provide an absolute
pathname, your application looks for the initialization files on the disk when it
runs. On the other hand, if you specify a relative pathname, your application first

TclPro Wrapper 105

•
•
•
•
•
•

looks in its internal file archive for the initialization files, and looks on the disk
only if the files don’t exist in the archive. Also remember that TclPro Wrapper
strips the initial “/” from absolute pathnames when wrapping files, and therefore
wrapped initialization files have relative pathnames in the archive. For more
information on file access in a wrapped application, see “How the Internal File
Archive Works in a Wrapped Application” on page 86.

For example, suppose you create a custom, statically-linked Tcl interpreter with
the name siteTclsh1.0 and place it in the directory /usr/local/tcl/site1.0/bin. In
addition to the standard Tcl script library files, located in /usr/local/tcl/lib/tcl8.3,
your custom interpreter requires the custom initialization and support files site.tcl,
siteApp.tcl, and help.txt, which you place in the directory /usr/local/tcl/site1.0/lib.
Your custom interpreter uses a custom Tcl variable, site_library, to locate its
initialization and support files. To define this interpreter and support files as a
custom -uses option named “siteTclsh”, create the file siteTclsh.uses and place it
in the lib/prowrapuses directory. The siteTclsh.uses file would contain:

siteTclsh.uses
return [list \

-executable /usr/local/tcl/site1.0/bin/siteTclsh1.0 \
-relativeto /usr/local/tcl \
/usr/local/tcl/lib/tcl8.3/*.tcl \
/usr/local/tcl/lib/tcl8.3/tclIndex \
/usr/local/tcl/lib/tcl8.3/encoding/*.enc \
/usr/local/tcl/site1.0/lib/site.tcl \
/usr/local/tcl/site1.0/lib/siteApp.tcl \
/usr/local/tcl/site1.0/lib/help.txt \
-tcllibrary lib/tcl8.3 \
-code "set site_library [file join site1.0 lib]"]

You could then wrap applications using this custom shell by specifying the -uses
siteTclsh option. For example, the following TclPro Wrapper command would
create a wrapped application based on siteTclsh1.0 with file1.tcl as the startup
script:

% prowrap -uses siteTclsh file1.tcl file2.tcl

Preparing an Application for Wrapping
There are minor differences in the way an application runs when it is wrapped
versus when it runs unwrapped. However, it is relatively easy to modify your
application so that you can test it in unwrapped form, then wrap the same files for
distribution. This section shows you how to change your application to ensure that
it works properly both unwrapped and wrapped.

106 Chapter 7

•
•
•
•
•
•

Detecting When an Application Is Wrapped
Because there are minor differences in the behavior of unwrapped and wrapped
applications, you need to be able to detect whether your application is wrapped or
not. TclPro Wrapper automatically creates the variable tcl_platform(isWrapped)
when it wraps your application, so your application simply needs to test for the
existence of this variable to determine whether or not it is wrapped. The following
code fragment demonstrates how to use tcl_platform(isWrapped):

if {[info exists tcl_platform(isWrapped)]} {
Application is wrapped

} else {
Application is not wrapped

}

Modifying Custom Shells
TclPro Wrapper requires specially-written Tcl interpreters to work with wrapped
applications. The predefined prowrap -uses options (described in “Specifying the
Tcl Interpreter” on page 88) automatically use appropriate interpreters. However,
if you want your application to use a custom interpreter, you use must write that
interpreter following the guidelines in “Creating Base Applications for TclPro
Wrapper” on page 119.

Changing File References
Writing an application to work properly both unwrapped and wrapped can be
tricky when it comes to file access. You want to prevent accidental fall-through
and file shadowing, as discussed in “How the Internal File Archive Works in a
Wrapped Application” on page 86. The key points to keep in mind are:

• All files in the internal archive of a wrapped application have relative
pathnames

• If you use the -relativeto option when wrapping a file, the pathname of a file
in the internal archive is different from its corresponding unwrapped pathname
(see “Determining Path References in Wrapped Applications” on page 90)

• A wrapped application always searches for a file in its internal file archive
before searching the disk whenever it encounters a relative pathname to a file

Accessing Unwrapped Files

If your wrapped application attempts to access unwrapped files using relative
pathnames, it runs the risk of accidentally accessing a file in the internal archive
instead (that is, file shadowing). To ensure that your application always accesses

TclPro Wrapper 107

•
•
•
•
•
•

unwrapped files when desired, you should always use absolute pathnames in a
wrapped application.

In particular, you should be careful in how your application handles cases where a
user can enter a file name. If a user enters a relative pathname for a file, you
should convert it to an absolute pathname. For example, if the variable path
contains a relative file name, you can create an absolute file name by appending it
to the current working directory:

set path [file join [pwd] $path]

Accessing Files from a Shared Directory

Files shared by multiple applications or projects are typically put in a shared
directory, often on a file server. An application myscript.tcl might then access
those files as follows:

set shared {Z:\tcl\common}
source [file join $shared help.tcl]
source [file join $shared display.tcl]

Unfortunately, because of the absolute pathname, the code above no longer works
if you wrap the files in the shared directory with the application.

However, you can easily modify this code to work either unwrapped or wrapped
by testing to see whether the application is wrapped and modifying the value of
shared appropriately. For example:

if {[info exist tcl_platform(isWrapped)]} {
set shared common

} else {
set shared {Z:\tcl\common}

}
source [file join $shared help.tcl]
source [file join $shared display.tcl]

You would then need to wrap the shared files using the -relativeto flag as in the
following example:

C:> prowrap myscript.tcl -relativeto Z:\tcl Z:\tcl\common*.tcl

Accessing Wrapped Files Relative to a Script’s Directory

A common trick to avoid hard-wiring pathnames into scripts is to figure out where
the script is located with the info script command and then accessing files relative
to the script’s directory. For example:

set home [file dirname [info script]]
source [file join $home help.tcl]
source [file join $home display.tcl]

108 Chapter 7

•
•
•
•
•
•

Auto-Loading Wrapped Tcl Script Libraries

You must take special steps to auto-load Tcl script libraries that you wrap with
your application. “Wrapping Libraries of Tcl Scripts” on page 93 describes the
changes you need to make to your application.

Changing the Windows Icon for a Wrapped Application
On Windows, a wrapped application receives the same icon as that of the Tcl
interpreter that you wrap with the application. You can use a commercial or
shareware icon manager to change the icon. You can also use Microsoft Visual
C++ 5.0 or later on a Windows NT system to change the icon. (However,
Microsoft Visual C++ on a Windows 95/98 system does not provide this feature.)

Important You should always change the icon of the Tcl interpreter before wrapping rather
than attempting to change the icon of the final wrapped application executable.
The wrapped application executable contains a Zip-formatted archive of the
wrapped script and data files appended to the base interpreter. When a program
attempts to change the icon of a wrapped application, it can become confused by
the appended Zip archive and overwrite or destroy information contained in the
archive.

The standard set of Tcl interpreters used by TclPro Wrapper to create wrapped
applications are stored in the win32-ix86\lib subdirectory of your TclPro
installation (for example, C:\Program Files\TclPro1.4\win32-ix86\lib). The name
of each file and its corresponding prowrap -uses option is shown in Table 13.

Important Always create a backup of any interpreter before attempting to change its icon. If
you accidentally damage an interpreter and don’t have a backup, you will have to
reinstall TclPro to restore the interpreter.

Table 13 Tcl Interpreters Corresponding to prowrap -uses Options

Interpreter File Name Corresponding prowrap -uses Option

wrapbigwish83s.in -uses bigwish (default)

wrapbigtclsh83s.in -uses bigtclsh

wrapwish83s.in -uses wish

wraptclsh83s.in -uses tclsh

wrapwish83.in -uses wish-dynamic

wraptclsh83.in -uses tclsh-dynamic

TclPro Wrapper 109

•
•
•
•
•
•

If you change the icon for one of these interpreters, then all wrapped applications
that you create using that interpreter inherit that icon. Another option is to create a
copy of an interpreter, change the icon for that interpreter, and then use the
prowrap -executable option so that TclPro Wrapper uses that interpreter when
creating your wrapped application.

For example, if you have created a copy of the wish interpreter named mywish.in
with a customized icon, you could use it when wrapping an application as follows:

C:> prowrap -uses wish -executable C:\Program
Files\TclPro1.4\win32-ix86\lib\mywish.in myApp.tcl

As mentioned earlier, you can use a commercial or shareware icon manager to
change the icon. You can also use Microsoft Visual C++ 5.0 or later on a Windows
NT system by performing the following steps:

1. Close any open workspaces.

2. Open the wrapped application in Visual C++.

3. Select File | Open from the menubar and browse for the wrapped application
executable.

4. Select File of Type: Executable.

5. Select Open as: Resources. A window appears with the executable’s resources
and the name of the application in the title bar.

6. Click the icon folder to display the application’s default icon.

7. Open the icon resource.

8. A window appears with the application icon.

9. Draw or paste your application icon.

10. Save the executable with your changes. Select File | Save from the menubar.

11. Create a shortcut on your Windows desktop to see your change.

110 Chapter 7

•
•
•
•
•
•

111

•
•
•
•
•
•

• • • • • •
This chapter describes how to create both regular Tcl interpreters and Tcl
interpreters that you can use with the TclPro Wrapper. In general, you create Tcl
interpreters with TclPro just as you would with the free Tcl distribution. However,
TclPro makes it easier to build custom Tcl interpreters by providing precompiled
libraries for Tcl, Tk, and all bundled extensions on each platform supported by
TclPro. TclPro also provides libraries that support the tbcload extension, which is
required to read the bytecode files created by TclPro Compiler, and the TclPro
Wrapper library, which you need to create interpreters (that is, base applications)
for use by TclPro Wrapper.

Important The development libraries and other files described in this chapter are part of the
TclPro “C Development Libraries” installation component. You must install the
TclPro “C Development Libraries” component if you want to use these files to
create custom Tcl interpreters.

Remember, there is often no need for you to create a custom Tcl interpreter. If all
you want to do is to incorporate a new extension, it is usually easier to use the
built-in load and package facilities of Tcl. Also remember that protclsh or
prowish already have built-in support for the extensions bundled with TclPro.

Note This chapter assumes that you are already familiar with writing custom Tcl
interpreters; therefore, it concentrates on describing the unique features of
building a custom Tcl interpreter with the TclPro distribution. For detailed
instructions on writing a custom Tcl interpreter, consult the references listed in
“For More Information” on page 3.

Overview of the TclPro Development Environment
This section provides general information about the TclPro development
environment including the location of the libraries and sample files, and special
comments about the compilation options of the Windows libraries.

112 Chapter 8

•
•
•
•
•
•

Locations of the Libraries
All of the precompiled libraries shipped with TclPro are located in subdirectories
of the TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 14.

For example, if you install TclPro in C:\Program Files\TclPro1.4, the static and
export Windows libraries are in C:\Program Files\TclPro1.4\win32-ix86\lib.

Debug and Non-Debug Libraries for Windows
TclPro includes both debug and non-debug versions of all Windows libraries
shipped. If you compile your application with debug options, you should be
certain to link with libraries compiled with compatible debug options so that you
can properly debug your extensions.

The Windows libraries shipped with TclPro are compiled with Visual C++ with
the following compilation flags:

/MD Dynamic library, no debug

/MDd Dynamic library with debug

/MT Static library, no debug

/MTd Static library with debug

You should compile and link all components of your application with consistent
compilation settings. To set these compilation flags in a Visual C++ Developer
Studio project, display the Project Settings dialog, select the C/C++ tab, and select
the Code Generation category. The compilation flags mentioned above correspond
to the following Use Run-time Library selections:

Table 14 Locations of TclPro Libraries Relative to the Installation Directory

Platform Library Subdirectory

HP-UX hpux-parisc/lib

IRIX/Mips irix-mips/lib

Linux/x86 linux-ix86/lib

Solaris/SPARC solaris-sparc/lib

Windows 95/NT(x86) win32-ix86\lib (static and export libraries)
win32-ix86\bin (dynamic libraries)

Creating Custom Interpreters with TclPro 113

•
•
•
•
•
•

/MD Multithreaded DLL

/MDd Debug Multithreaded DLL

/MT Multithreaded

/MTd Debug Multithreaded

The Sample Application
The TclPro “C Development Libraries” component installs a sample application
in the demos/sampleApp subdirectory of the TclPro installation directory (for
example, C:\Program Files\TclPro1.4\demos\sampleApp). Refer to the README
file in that directory for a description of its contents.

The directory includes a Makefile for creating statically- and dynamically-linked
versions of a sample interpreter and wrapped application. The applications
demonstrate many of the topics discussed in this chapter. You might find the
Makefile and the source files it compiles useful templates for creating your own
custom interpreter.

Creating Regular Tcl Interpreters
You write Tcl interpreters with the TclPro development environment just as you
would with the free Tcl distribution. Simply implement Tcl_AppInit to perform
whatever initialization your application requires, and call Tcl_Main or Tk_Main
from your main program. Then compile your program and link with either the
static or dynamic libraries as appropriate.

Important TclPro Wrapper requires specially-written Tcl interpreters to work with wrapped
applications. Any custom interpreters that you use with TclPro Wrapper must
follow the guidelines described in “Creating Base Applications for TclPro
Wrapper” on page 119.

Creating Statically-Linked Interpreters
When writing a statically-linked interpreter, you must explicitly initialize all
extensions that are statically linked with your application. Typically, this consists
of adding code to your application’s Tcl_AppInit procedure calling the
extension’s Init procedure and then calling TclStaticPackage to register the
extension as a statically-linked package. Then at compilation, you must link your
application with static versions of every library that your application needs.

For example, the main source file for a Tcl application that is statically linked with
tbcload and [incr Tcl] contains code similar to the following that shown below.

114 Chapter 8

•
•
•
•
•
•

You would then need to link this application with the tbcload and [incr Tcl]
libraries in addition to the Tcl library.

#include "tcl.h"
.
.
.
static int MyAppInit(Tcl_Interp *interp);
int
main(argc, argv)

int argc; /* Number of command-line arguments. */
char **argv; /* Values of command-line arguments. */

{
Tcl_Main(argc, argv, MyAppInit);

return 0; /* Needed only to prevent compiler warning. */
}
static int
MyAppInit(interp)

Tcl_Interp *interp; /* Interpreter for application. */
{

if (Tcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}
if (Tbcload_Init(interp) == TCL_ERROR) {

return TCL_ERROR;
}
Tcl_StaticPackage(interp, "tbcload", Tbcload_Init,

Tbcload_SafeInit);
if (Itcl_Init(interp) == TCL_ERROR) {

return TCL_ERROR;
}
Tcl_StaticPackage(interp, "Itcl", Itcl_Init, Itcl_SafeInit);

.

.

.
return TCL_OK;

}

Statically Linking Windows Interpreters

To create a statically-linked Tcl application under Windows, you link your
application with the static version of the Tcl library and, if needed, the Tk library.
You also must link with all other Tcl extension libraries used by your application,
and any other application-specific libraries your application might use (for
example, custom driver software for interacting with a special peripheral device).

Creating Custom Interpreters with TclPro 115

•
•
•
•
•
•

The TclPro static Windows libraries are located in the win32-ix86\lib subdirectory
of the TclPro installation directory. Table 15 lists the static libraries shipped with
TclPro.

Note that TclPro uses the convention of ending a static library with the letter “s”;
this makes it easy to distinguish .lib files that are export libraries for a dynamic
library from corresponding static libraries. For example, Tcl83.lib is the export
library for Tcl83.dll, whereas Tcl83s.lib is the Tcl static library. Note also that the
“d” convention is used as well, so that Tcl83sd.lib is a static library built with
debug options. The “d” libraries were all built with the /MTd flag, the others with
/MT.

If you use the “d” libraries, link your application with LIBCMTD.LIB; otherwise
link it with LIBCMT.LIB.

Table 15 Windows Libraries for Static Linking

Library Description

Tcl83s.lib Tcl static library without debugging symbols

Tcl83sd.lib Tcl static library with debugging symbols

Tk83s.lib Tk static library without debugging symbols

Tk83sd.lib Tk static library with debugging symbols

tbcload13s.lib tbcload static library without debugging symbols

tbcload13sd.lib tbcload static library with debugging symbols

itcl32s.lib [incr Tcl] static library without debugging symbols

itcl32sd.lib [incr Tcl] static library with debugging symbols

itk32s.lib [incr Tk] static library without debugging symbols

itk32sd.lib [incr Tk] static library with debugging symbols

tclx83s.lib TclX without debugging symbols

tclx83sd.lib TclX with debugging symbols

tkx83s.lib TkX without debugging symbols

tkx83sd.lib TkX with debugging symbols

116 Chapter 8

•
•
•
•
•
•

Statically Linking Unix Interpreters

To create a statically-linked Tcl application under Unix, you link your application
with the static version of the Tcl library and, if needed, the Tk library. You also
must link with all other Tcl extension libraries used by your application, and any
other application-specific libraries your application might use (for example,
custom driver software for interacting with a special peripheral device). Unlike
Windows, there are no separate debug and non-debug libraries.

All of the Unix libraries shipped with TclPro are located in subdirectories of the
TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 14 on page 112. Table 16 lists the static
libraries shipped for Unix systems.

Note The IRIX libraries are compiled with the -n32 flag.

Note that many of the static libraries end with the letter “s”; this is especially
useful in that it eliminates some ambiguities in the interpretation of -l linker flags.
For example, -ltbcload13 refers to the shared library implementation of tbcload,
whereas -ltbcload13s refers to the static version. If the “s” convention were not
used, the -l flag for either would be -ltbcload13, and which one of the two
libraries is used for the linking would depend on the resolution rules currently
active in the linker.

Creating Dynamically-Linked Interpreters
Aside from implementing either Tcl_AppInit or Tk_AppInit as appropriate and
calling Tcl_Main or Tk_Main from your main program, there are no special

Table 16 Unix Libraries for Static Linking

Unix Library Description

libtcl8.3.a Tcl static library

libtk8.3.a Tk static library

libtbcload13s.a tbcload static library

libitcl32s.a [incr Tcl] static library

libitk32s.a [incr Tk] static library

libtclx8.3.a TclX static library

libtkx8.3.a TkX static library

libexpect5.32.a Expect static library

Creating Custom Interpreters with TclPro 117

•
•
•
•
•
•

requirements for writing a dynamically-linked interpreter. Because your
application automatically loads extension libraries as needed, you don’t need to
register them with Tcl_StaticPackage or initialize them with their corresponding
Init procedures.

Dynamically Linking Windows Interpreters

To create a dynamically-linked Tcl application under Windows, you link your
application with export libraries, which have a .lib extension. At run-time, your
application loads the dynamic library corresponding to that export library, which
has the same name as the export library but a .dll extension. You don’t need the
.lib file at run-time.

You link your application with the appropriate Tcl library and, if needed, the
appropriate Tk library. You don’t need to link with any other Tcl extension
libraries; your application loads the dynamic libraries for any other extensions as
needed at run-time. You must also link with any other application-specific
libraries your application might use (for example, custom driver software for
interacting with a special peripheral device).

The TclPro Windows libraries are located in subdirectories of win32-ix86 in the
TclPro installation directory. Table 17 lists the dynamic libraries shipped and their
corresponding locations.

Table 17 Windows Libraries for Dynamic Linking

Dynamic Library Export Library Description

bin\Tcl83.dll lib\Tcl83.lib Tcl without debugging symbols

bin\Tcl83d.dll lib\Tcl83d.lib Tcl with debugging symbols

bin\Tk83.dll lib\Tk83.lib Tk without debugging symbols

bin\Tk83d.dll lib\Tk83d.lib Tk with debugging symbols

bin\tbcload13.dll lib\tbcload13.lib tbcload without debugging symbols

bin\tbcload13d.dll lib\tbcload13d.lib tbcload with debugging symbols

bin\itcl32.dll lib\itcl32.lib [incr Tcl] without debugging symbols

bin\itcl32d.dll lib\itcl32d.lib [incr Tcl] with debugging symbols

bin\itk32.dll lib\itk32.lib [incr Tk] without debugging symbols

bin\itk32d.dll lib\itk32d.lib [incr Tk] with debugging symbols

bin\tclx83.dll lib\tclx83.lib TclX without debugging symbols

118 Chapter 8

•
•
•
•
•
•

Note that TclPro uses the convention of ending the name of a library that was built
with debugging options with the letter “d.” For example, Tcl83d.dll is the Tcl DLL
built with debugging turned on and Tcl83d.lib is its export library. The “d”
libraries were all built with the /MDd flag, the others with /MD.

If you use the debug libraries, also link your application with MSVCRTD.LIB;
otherwise link it with MSVCRT.LIB.

Dynamically Linking Unix Interpreters

To create a dynamically-linked Tcl application under Unix, you link your
application directly with the appropriate shared libraries. Unlike Windows, there
are no export libraries, and you don’t need separate debug and non-debug
libraries.

You link your application with the appropriate Tcl library and, if needed, the
appropriate Tk library. You don’t need to link with any other Tcl extension
libraries; your application loads the dynamic libraries for any other extensions as
needed at run-time. You must also link with any other application-specific
libraries your application might use.

All of the Unix libraries shipped with TclPro are located in subdirectories of the
TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 14 on page 112. Table 18 lists the shared
libraries shipped for Unix systems.

bin\tclx83d.dll lib\tclx83d.lib TclX with debugging symbols

bin\tkx83.dll lib\tkx83.lib TkX without debugging symbols

bin\tkx83d.dll lib\tkx83d.lib TkX with debugging symbols

Table 18 Unix Libraries for Dynamic Linking

Unix Library Description

libtcl8.3.so
(libtcl8.3.sl on HP-UX)

Tcl shared library

libtk8.3.so
(libtk8.3.sl on HP-UX)

Tk shared library

libtbcload13.so
(libtbcload13.sl on HP-UX)

tbcload shared library

Table 17 Windows Libraries for Dynamic Linking (Continued)

Dynamic Library Export Library Description

Creating Custom Interpreters with TclPro 119

•
•
•
•
•
•

Note The IRIX libraries are compiled with the -n32 flag.

Creating Base Applications for TclPro Wrapper
This section describes how to create a Tcl interpreter that you can use with TclPro
Wrapper, otherwise known as a base application. Base applications require
special support for accessing files from the wrapped application’s internal file
archive.

Note You can also use a base application as a regular Tcl interpreter for an unwrapped
applications.

In general, writing a base application is the same as writing a regular Tcl
interpreter. Typically, the only changes you have to make are:

• Include proWrap.h in your application (proWrap.h is located in the include
subdirectory of the TclPro installation directory)

• Call Pro_WrapTclMain or Pro_WrapTkMain from your application instead
of Tcl_Main or Tk_Main

• Link your application with the appropriate TclPro Wrapper library

Other than these changes, you write your base application as you would a regular
interpreter and link it with all other libraries you would typically need to link with
(for example, Tcl83s.lib, tbcload13s.lib, itcl32s.lib, etc.). See the appropriate
section of “Creating Regular Tcl Interpreters” for detailed instructions.

Note File access functions in the Tcl and Tk C libraries (for example,
Tcl_OpenFileChannel and Tk_GetBitmap) access files in the internal archive of

libitcl32.so
(libitcl32.sl on HP-UX)

[incr Tcl] shared library

libitk32.so
(libitk32.sl on HP-UX)

[incr Tk] shared library

libtclx8.3.so
(libtclx8.3.sl on HP-UX)

TclX shared library

libtkx8.3.so
(libtkx8.3.sl on HP-UX)

TkX shared library

libexpect5.32.so
(libexpect5.32.sl on HP-UX)

Expect shared library

Table 18 Unix Libraries for Dynamic Linking (Continued)

Unix Library Description

120 Chapter 8

•
•
•
•
•
•

a wrapped application in the same manner as file access procedures in Tcl scripts
(for example, source and open). See “How the Internal File Archive Works in a
Wrapped Application” on page 86 for more information on the internal file
archive of a wrapped application.

TclPro_Init
TclPro 1.4 adds a new API, TclPro_Init, which is implemented by the wrapper
library (wrapper14x.lib or libwrapper1.4s.a). This function initializes the TclPro
Wrapper runtime system and turns a regular Tcl/Tk shell into a “wrapper input”,
the executable that knows how to find files that have been wrapped up. If a
modified shell is used without anything wrapped up, it behaves like a regular
Tcl/Tk shell.

The source code for TclPro_Init is in src/tclpro1.4/proInit.c, but you shouldn’t
have to compile this source file. Just use the precompiled version in the wrapper
library. The source is just for your reference, especially if you created custom
shells using earlier versions of TclPro.

Providing Your Own Main Program
If you are providing your own main program routine and embedding Tcl into your
application, then you are probably using Tcl_Main or Tk_Main to initialize Tcl
or Tk. You can easily adapt your main program so it works with TclPro Wrapper
simply by calling TclPro_Init before you call Tcl_Main or Tk_Main. If you are
calling the lower level Tcl_CreateInterp API directly, then you still just need to
call TclPro_Init before you call any other Tcl APIs.

The Pro_WrapTclMain and Pro_WrapTkMain APIs are just 2-line functions
that call TclPro_Init before calling Tcl_Main or Tk_Main. These APIs remain
for compatibility with previous releases of TclPro.

Using the Main Program from Tcl or Tk 8.3
The standard main programs distributed with Tcl/Tk 8.3 now contain a compile-
time hook that can be used to call the TclPro_Init function. These main programs
are implemented by these files

• src/tcl8.3/unix/tclAppInit.c

• src/tcl8.3/win/tclAppInit.c

• src/tk8.3/unix/tkAppInit.c

• src/tk8.3/win/winMain.c

Creating Custom Interpreters with TclPro 121

•
•
•
•
•
•

If you define the TCL_LOCAL_MAIN_HOOK macro when compiling
src/tcl8.3/unix/tclAppInit.c (or src/tcl8.3/win/tclAppInit.c) then that function is
called from the main() program before the Tcl interpreter is created. The
TclPro_Init API is designed to be called at this hook point.

The arrangement with Tk is similar. If you define the
TK_LOCAL_MAIN_HOOK macro when compiling src/tk8.3/unix/tkAppInit.c
(or src/tk8.3/win/winMain.c) then that function is called from the main() program
before the Tcl interpreter is created.

The standard main() programs distributed with Tcl/Tk 8.3 have a second
configuration hook that is used to define the application initialization procedure
called after the Tcl interpreter has been created. This is commonly known as
Tcl_AppInit, and this procedure is passed as a parameter to Tcl_Main or
Tk_Main. By default, Tcl and Tk have their own Tcl_AppInit and Tk_AppInit
functions. However, if you define the TCL_LOCAL_APP_INIT (or
TK_LOCAL_APP_INIT) macros while compiling Tcl (or Tk), then the standard
main programs will call your application init function.

The Application Initialization API
Tcl_Main and Tk_Main take a callback procedure that completes the
initialization of the Tcl interpreter. This is where you can add your own Tcl
commands or initialize other Tcl extensions you want to include in your
application.

The src/tclpro1.4/sampleAppInit.c file shows the application initialization
procedure for the TclPro wrapper shells. If you want to create a variation on the
“bigwish” wrapper shell, for example, you can start with sampleAppInit.c and add
more extension initialization calls to it. For the complete custom shell recipe, you
will need the Tcl or Tk source distribution in order to use its tclAppInit.c or
tkAppInit.c files that implement the main program.

Linking Windows Base Applications
The TclPro Wrapper libraries are available in only static versions. However, you
must use different versions of the library depending on whether you are creating a
statically- or dynamically-linked base application.

The Windows TclPro Wrapper libraries are located in the win32-ix86\lib
subdirectory of the TclPro installation directory. Table 19 lists the Windows
TclPro Wrapper libraries shipped with TclPro.

122 Chapter 8

•
•
•
•
•
•

The TclPro distribution ships two types of static libraries for creating base
applications: a static library compiled with /MT and one compiled with /MD.
These files are in the win32-ix86/lib directory.

The convention is used that names of the libraries for use with dynamically-linked
base applications end with the letter “x”. Use the “s” libraries to create statically-
linked base applications.

If you link against the “x” library, link against MSVCRT.LIB; if you link against
the “xd” library, link against MSVCRTD.LIB. If you link against the “s” library,
link against LIBCMT.LIB; if you link against the “sd” library, link against
LIBCMTD.LIB.

Linking Unix Base Applications
On Unix systems, there is only one version of the TclPro Wrapper library, which is
named libwrapper14.a. The library is contained in the platform-specific library
directory, as shown in Table 14 on page 112. (For example, the Linux library is
linux-ix86/lib/libwrapper14.a.)

Table 19 Windows TclPro Wrapper Libraries

Library Name Description

wrapper14x.lib TclPro Wrapper library for dynamically-linked base applications
(compiled with /MD)

wrapper14xd.lib TclPro Wrapper library for dynamically-linked base applications,
debug version (compiled with /MDd)

wrapper14s.lib TclPro Wrapper library for statically-linked base applications
(compiled with /MT)

wrapper14sd.lib TclPro Wrapper library for statically-linked base applications,
debug version (compiled with /MTd)

123

•
•
•
•
•
•

• • • • • •
Ajuba Solutions License Server manages Shared Network Licenses for the Ajuba
Solutions products in use at your site. A Shared Network License can replace
several Named User License keys, provide easy TclPro access to a larger number
of developers, and eliminate the need for users to manage and install their own
license keys. Ajuba Solutions License Server also maintains records about the
usage of TclPro products for your reference.

How Licensing Works
All Ajuba Solutions products require a license to run. Ajuba Solutions sells both
Named User Licenses and Shared Network Licenses. A Named User License
allows one specific person to use TclPro. Shared Network Licenses allow anyone
at your site to use the TclPro applications, as long as the number of concurrent
TclPro users doesn’t exceed the number of Shared Network Licenses that you
purchase.

This section describe how TclPro applications determine which license to use and
how the Ajuba Solutions License Server manages Shared Network Licenses.

How TclPro Applications Obtain Licenses
When a user runs a TclPro application, it attempts to obtain a license. The
procedure it follows depends on whether the user has installed a local copy of
TclPro or is using a shared copy from a server.

If the user has a local copy of TclPro, he or she must have entered license
information, either during installation or afterwards by running the TclPro License
Manager, as described in “Changing TclPro License Information” on page 12. In
this case, the application attempts to obtain a license in the following order of
precedence:

1. If the user entered a valid permanent Named User License, the application uses
that license.

124 Appendix A

•
•
•
•
•
•

2. If the user entered a hostname and port of a Ajuba Solutions License Server,
the application attempts to obtain a Shared Network License from that server.

If the user is using a shared copy of TclPro from a server, he or she can either use
the default Ajuba Solutions License Server for that shared installation (which is
set by the site administrator when he or she installs that copy of TclPro), or he or
she can run the TclPro License Manager to override that default. In this case, the
TclPro application attempts to obtain a license in the following order of
precedence:

1. If the user ran TclPro License Manager and entered a valid permanent Named
User License, the application uses that license.

2. If the user ran TclPro License Manager and entered a hostname and port of a
Ajuba Solutions License Server, the application attempts to obtain a Shared
Network License from that server.

3. Otherwise, the application attempts to obtain a Shared Network License from
the default Ajuba Solutions License Server for that installation.

How the License Server Manages Shared Network Licenses
Ajuba Solutions License Server allows a maximum number of concurrent users
equal to the number of Shared Network Licenses that you purchase. For example,
if you have purchased 10 Shared Network Licenses, then up to 10 users can use
TclPro applications at the same time. A user is determined by their user account.
The same user account on different hosts counts as only one user. A single user
using more than one TclPro application at the same time also counts as only one
user.

License Overdraft
Ajuba Solutions includes a generous “overdraft” policy with Ajuba Solutions
License Server that allows you to exceed your concurrent user limit in emergency
situations. This policy accommodates occasions where you temporarily need
additional licenses before you have had time to purchase them.

When Ajuba Solutions License Server receives a request for a license in excess of
the number of licenses you have purchased, Ajuba Solutions License Server
records an “overdraft day.” Multiple overdraft instances on a single day count as
only one overdraft day.

For the first 10 overdraft days that occur, Ajuba Solutions License Server
continues to issue “overdraft licenses,” which allow the TclPro applications
causing the overdraft to continue to run. After 10 overdraft days, the Ajuba

Ajuba Solutions License Server 125

•
•
•
•
•
•

Solutions License Server no longer issues overdraft licenses and strictly enforces
the concurrent user limit.

When a TclPro application causes an overdraft, it displays a warning message to
the user. Ajuba Solutions License Server also notifies the site administrator by
email. The Ajuba Solutions License Server daily and weekly reports include the
number of licenses in use and the number of overdraft occurrences. See “Viewing
Reports” on page 129 for more information on reporting.

Ajuba Solutions License Server Installation
Ajuba Solutions License Server runs on Unix systems only. You should install
Ajuba Solutions License Server on a reliable server that is accessible by all TclPro
users. You don’t have to install Ajuba Solutions License Server and TclPro on the
same system.

Typically, the server starts Ajuba Solutions License Server automatically using a
standard init.d script, which is created automatically during installation. You
rarely should need to start or stop Ajuba Solutions License Server manually.

Installing the Ajuba Solutions License Server Software
You can install Ajuba Solutions License Server from either the TclPro CD or the
Unix installation download available from the Ajuba Solutions Web site
(http://dev.ajubasolutions.com/tclpro). Run setup.sh and select the Ajuba
Solutions License Server option.

Important Log in as the root user to install Ajuba Solutions License Server.

The installation program prompts you for a port number for the Ajuba Solutions
License Server. Although you can select any free port on your system, Ajuba
Solutions recommends that you select the default value of port 2577.

Setting the Initial Configuration
After installing Ajuba Solutions License Server, you must configure it through its
Web browser interface. To display the Ajuba Solutions License Server Web
interface, launch a Web browser and open the following URL:

http://hostname:port/

hostname is the hostname of the system running Ajuba Solutions License Sever.
port is the port number you assigned during installation.

126 Appendix A

•
•
•
•
•
•

The first time you connect to the Ajuba Solutions License Server Web interface, it
displays the Set Initial Configuration page that prompts for initial configuration
information:

Your Company Name
Your company name appears on the main page of the Web interface.
This name is also displayed by programs that get licenses from this
server.

Administrative Name and Password
Access to the administrative pages are password protected. On the Set
Initial Configuration page you choose the name and password for the
first administrator account. You can define other name/password pairs
or change existing one from the Change Passwords page
(/admin/password.tml).

Email Contact Address
Ajuba Solutions License Server send email messages to the site
administrator that contain usage reports as well as problem
notifications. You can add more email addresses and tune what events
trigger email later using the Email page (/admin/email.tml).

OK to Email Ajuba Solutions
Ajuba Solutions License Server send email messages to Ajuba
Solutions for problem notification. You change this setting later using
the Email page (/admin/email.tml).

After you configure Ajuba Solutions License Server, opening
http://<hostname>:<port> displays the Ajuba Solutions License Server Home
page. From that page, you can administer server settings, manage license keys,
and generate reports. See “Ajuba Solutions License Server Administration” on
page 128 for more information.

Note You can reset Ajuba Solutions License Server and delete all configuration
information except the license keys you have installed (but including
administrator names and passwords) by executing prolserver -reset. After
resetting Ajuba Solutions License Server, it displays the Set Initial Configuration
page the next time you open its Web interface.

Ajuba Solutions License Server Installed Files
The installation program installs the following files (<installDir> is the
installation directory you specify during installation):

Ajuba Solutions License Server 127

•
•
•
•
•
•

/etc/init.d/prolserver
The shell script that starts Ajuba Solutions License Server when the
system boots. You can use run this script with the start or stop
argument to start or stop Ajuba Solutions License Server manually.
The exact location of this file depends on your operating system (for
example, /etc/init.d, /etc/rc.d/init.d, or /sbin/init.d). The peer
directories rc2.d and rc0.d contain symbolic links to this file, which
your system uses to start Ajuba Solutions License Server during boot
and halt it during shutdown.

<installDir>/prolserver.boot
This script is created only if you do not install Ajuba Solutions License
Server as root. This is a copy of the script that needs to be installed
under /etc/init.d in order to automatically launch Ajuba Solutions
License Server when the system boots. The exact location depends on
the operating system.

<installDir>/prolserver
The Ajuba Solutions License Server application program.

<installDir>/prolserver.conf
The main configuration file. This file stores the installation settings for
Ajuba Solutions License Server. Consult the prolserver man page for
information about the setting for this file. Changes to this file take
place when you restart Ajuba Solutions License Server.

<installDir>/prolserver.state
This is a state checkpoint file. This file is tamper-resistent so you
should not edit this file. Doing so causes you to lose state about active
licenses, administrator passwords, and notification email addresses.

<installDir>/prolserver.pid
This file records the process ID of Ajuba Solutions License Server so
it can be shutdown.

/var/log/prolserver.<port>.log
This is the log file for the server. <port> is the port number assigned
to this Ajuba Solutions License Server. This file keeps weekly, daily,
and current usage statistics. It is compacted automatically so it should
not get too large. Each day at midnight the records about the current
usage are collected into one daily record, and each week records about
daily usage are collected into one weekly record. You can change the
location of this file by editing the prolserver.conf file. Consult the
prolserver man page for details.

128 Appendix A

•
•
•
•
•
•

/etc/INSTALL.LOG
A log of the Ajuba Solutions License Server installation.

Ajuba Solutions License Server Administration
You manage Ajuba Solutions License Server using a Web browser interface. To
display the Ajuba Solutions License Server home page, launch a Web browser and
open the following URL:

http://hostname:port/

hostname is the hostname of the system running Ajuba Solutions License Sever.
port is the port number you assigned during installation.

The Ajuba Solutions License Server Web interface provides several pages for
administering server settings, managing license keys, and generating reports.
Access to administrative pages is password protected using the Basic
Authentication scheme supported by all browsers. When you initially configure
your Ajuba Solutions License Server, you specify the name and password for the
first administrator account. You can define other name/password pairs or change
existing ones from the Change Passwords page (/admin/password.tml).

Each page contains documentation describing the information displayed and the
actions you can perform. Therefore, this guide provides only an overview of the
Web interface. Consult the Web interface for more detailed information.

Managing Licenses
Shared Network Licenses are distributed as encoded keys. You can add, upgrade,
and delete Shared Network License keys from the Manage Licenses page
(/admin/license.tml). This page also displays the license keys currently installed.

License keys are specific to a TclPro release (for example, 1.3). When new
releases appear, Update Service customers should contact Ajuba Solutions to
verify your eligibility for the upgrade.

Revoking Licenses
In some circumstances you may need to revoke a license in use by one user so that
another user can obtain the license. For example, a user may have gone on
vacation while leaving TclPro Debugger running. The Revoke Active Licenses
page (/admin/revoke.tml) allows you to revoke individual licenses in use.

Ajuba Solutions License Server 129

•
•
•
•
•
•

Changing Email Notifications
The license server can generate email notifications when various events occur.
The Email page (/admin/email.tml) allows you to specify which users get email in
response to which kind of events.

Setting Date Formats
The Date Format page (/admin/dateformat.tml) allows you to specify the date
format to use when Ajuba Solutions License Server generates reports.

Viewing Reports
Ajuba Solutions License Server generates a variety of reports about usage of
TclPro tools. There is a daily view and a weekly view. Both views list the TclPro
applications and the number of times they have been used each day (or week). The
reports also list system events such as Overdraft conditions and License Denied.
Either of these events indicate that your site may not be configured with enough
Shared Network Licenses.

All reports are available from the License Reports page (/reports/index.tml).

130 Appendix A

•
•
•
•
•
•

131

•
•
•
•
•
•

• • • • • •

Error and Warning Types
TclPro Checker messages are grouped into two types of errors and three types of
warnings: parsing errors and syntax errors, platform portability warnings,
performance warnings, and usage warnings.

Parsing Errors
The TclPro Checker generates a parsing error when it encounters commands that
can’t be parsed by the Tcl parser, such as a missing curly brace or badly formed
list. For example: the following code generates a parsing error because it is
missing a quote at the end of the puts statement:

proc foo {} {
puts "hello

}

In cases like this, the tool attempts to move past the procedure where the parsing
error was found, and continue to check additional commands after the parsing
error.

Syntax Errors
The TclPro Checker generates a syntax error when it encounters any errors that
will cause your script to fail, such as the wrong number of arguments or invalid
types or options. For example, the following code generates a syntax error
because the wrong number of arguments are supplied:

set x 3 45

Only commands defined in Tcl, Tk, or [incr Tcl] are checked for syntax errors.

132 Appendix B

•
•
•
•
•
•

Platform Portability Warnings
The TclPro Checker generates warnings when a command is used that may be
nonportable between various platforms.

set file [open $dir/$file r]

In this example, the file join command should be used so that the correct directory
and file separator is used, that is, “\” on Windows and “/” on Unix.

Performance Warnings
The TclPro Checker generates a warning when a performance-optimization
opportunity is detected. For example: if your code included:

set x [expr $x * $y]

it would generate a performance warning because performance is improved with
curly braces, as shown below:

set x [expr {$x * $y}]

Usage Warnings
The TclPro Checker generates a warning when a command is used in a manner
that is possibly incorrect but is still syntactically legal. For example, the incr
command expects a reference and not a value below:

incr $counter

A Listing of the Messages
Table 16 lists the messages that the TclPro Checker can produce.

Table 20 TclPro Checker Messages

Message ID Message Type Explanation

argAfterArgs Error Argument specified after “args”

argsNotDefault Error “args” cannot be defaulted

badBoolean Error Invalid Boolean value

badByteNum Error Invalid number, should be between 0 and 255

badColorFormat Error Invalid color name

TclPro Checker Messages 133

•
•
•
•
•
•

badColormap Error Invalid colormap “colormap”: must be “new” or a window
name

badCursor Error Invalid cursor spec

badEvent Error Invalid event type or keysym

badFloat Error Invalid floating-point value

badGeometry Error Invalid geometry specifier

badGridMaster Error Cannot determine master window

badGridRel Error Must specify window before shortcut

badIndex Error Invalid index: should be integer or “end”

badInt Error Invalid integer

badKey Error Invalid keyword “key” must be: words

badLevel Error Invalid level

badLIndex Error Invalid infants: should be integer, “len” or “end”

badList Error Invalid list: error-info

badMemberName Error Missing class specifier for body declaration

badMode Error Access mode must include either RDONLY, WRONLY, or
RDWR

badOption Error Invalid option “option” must be: options

badPalette Error Invalid palette specification

badPixel Error Invalid pixel value

badPriority Error Invalid priority keyword or value

badProfileOpt Error Option “option” not valid when turning off profiling

badResource Error Invalid resource name

badScreen Error Invalid screen value

badSticky Error Invalid stickiness value: should be one or more of n, s, w,
or e

Table 20 TclPro Checker Messages (Continued)

Message ID Message Type Explanation

134 Appendix B

•
•
•
•
•
•

badSwitch Error Invalid switch: “switch”

badTab Error Invalid tab list

badTabJust Error Invalid tab justification “tab-item”: must be left right center
or numeric

badTlibFile Error The filename must have a “.tlib” suffix

badTraceOp Error Bad operation operation should be one or more of r, w, or u

badVersion Error Invalid version number

badVirtual Error Virtual event is badly formed

badVisual Error Invalid visual

badVisualDepth Error Invalid visual depth

badWholeNum Error Bad value “value”: must be a non-negative integer

classNumArgs Error Wrong # args for class constructor: className

classOnly Error Command “command” only defined in class body

errBadBrktExp Error The bracket expression is missing a close bracket

mismatchOptions Error The specified options cannot be used in tandem

noEvent Error No events specified in binding

noExpr Error Missing an expression

noScript Error Missing a script after “control”

noSwitchArg Error Missing argument for switch switch

noVirtual Error Virtual event not allowed in definition of another virtual
event

nonDefAfterDef Error Non-default arg specified after default

nonPortBitmap Non-Portable Warning Use of non-portable bitmap

nonPortChannel Non-Portable Warning Use of a non-portable file descriptor, use “file” instead

nonPortCmd Non-Portable Warning Non-portable command

nonPortColor Non-Portable Warning Non-portable color name

Table 20 TclPro Checker Messages (Continued)

Message ID Message Type Explanation

TclPro Checker Messages 135

•
•
•
•
•
•

nonPortCursor Non-Portable Warning Non-portable cursor usage

nonPortFile Non-Portable Warning Use of non-portable file name, use “file join”

nonPortKeysym Non-Portable Warning Use of non-portable keysym

nonPortOption Non-Portable Warning Use of non-portable option

nonPortVar Non-Portable Warning Use of non-portable variable

nsOnly Error Command “command” only defined in namespace body

nsOrClassOnly Error Command “command” only defined in class or namespace
body

numArgs Error Wrong # args

numListElts Error Invalid number of list elements

obsoleteCmd Error Deprecated usage, use “command” instead

optionRequired Error Expected option1, got “option2”

parse Error Parse error: error-info

procNumArgs Error Wrong # args for the user-defined proc: procName.

procOutScope Error Proc only defined in class className

procProtected Error Calling protectionLevel proc: procName

serverAndPort Error Option -myport is not valid for server sockets

socketAsync Error Cannot use -server option and -async option

socketServer Error Cannot use -async option for server sockets

tooManyFieldArg Error Too many fields in argument specifier

warnAmbiguous Usage Warning Ambiguous switch, use delimiter to avoid conflicts

warnDeprecated Upgrade Warning Deprecated usage, use “command” instead

warnEscapeCharacter Upgrade Warning “\<char>” is a valid escape sequence in later versions of
Tcl.

warnExportPat Warning Export patterns should not be qualified

warnExpr Performance Warning Use curly braces to avoid double substitution

Table 20 TclPro Checker Messages (Continued)

Message ID Message Type Explanation

136 Appendix B

•
•
•
•
•
•

warnExtraClose Usage Warning Unmatched closing character

warnIfKeyword Warning Deprecated usage, use else or elseif

warnNamespacePat Warning glob chars in wrong portion of pattern

warnNotSpecial Upgrade Warning “\<char>” has no meaning. Did you mean “\\<char>” or
“<char>”?

warnPattern Warning Possible unexpected substitution in pattern

warnQuoteChar Upgrade Warning “\” in bracket expressions are treated as quotes

warnRedefine Usage Warning userProc1 redefines userProc2 in file fileName on line
lineNum

warnReserved Upgrade Warning Keyword is reserved for use in version

warnUndefProc Warning The procedure was called but was never defined

warnUnsupported Error Unsupported command, option or variable: use command

warnVarRef Warning Variable reference used where variable name expected

warnY2K Warning %y generates a year without a century. Consider using %Y
to avoid Y2K errors

winAlpha Error Window name cannot begin with a capital letter

winBeginDot Error Window name must begin with “.”

winNotNull Error Window name cannot be an empty string

Table 20 TclPro Checker Messages (Continued)

Message ID Message Type Explanation

TclPro Checker Messages 137

•
•
•
•
•
•

TclPro Checker Message Descriptions in Detail
This section provides detailed descriptions of the code checker messages.

argAfterArgs
Message String: Argument specified after “args”

Category: Error

Explanation: An argument has been specified after the args keyword in a
procedure argument list. The args argument is treated like a normal parameter and
does not collect the remaining parameters into a single list.

argsNotDefault
Message String: “args” cannot be defaulted

Category: Error

Explanation: The args keyword cannot be initialized to contain a default value.
Although the Tcl interpreter does not complain about this usage, the default value
is ignored.

badBoolean
Message String: Invalid Boolean value

Category: Error

Explanation: The command expects the string to specify a Boolean value. The
string can be “1”, “0”, “true”, “false”, “yes”, “no”, “on”, or “off” in any unique
abbreviation and case.

badByteNum
Message String: Invalid number, should be between 0 and 255

Category: Error

Explanation: The type should be a integer between 0 and 255.

badColorFormat
Message String: Invalid color name

Category: Error

138 Appendix B

•
•
•
•
•
•

Explanation: The command expects the string to specify a color value. The string
can be any of the following forms:

• colorname

• #RGB

• #RRGGBB

• #RRRGGGBBB

• #RRRRGGGGBBBB

colorname can be any of the valid textual names for a color defined in the server’s
color database file, such as “red” or “Bisque”. If the color name is not a Tcl
defined color, a warning is flagged stating that the color may not be portable
across all platforms; see nonPortColor. The RGB characters represent
hexadecimal digits that specify the red, green, and blue intensities of the color.

badColormap
Message String: Invalid colormap “colormap”: must be “new” or a window name

Category: Error

Explanation: The command expects the string to specify a colormap to use. If the
string is “new”, a new colormap is created. Otherwise, the string should be a valid
window path name.

 badCursor
Message String: Invalid cursor spec

Category: Error

Explanation: The command expects the string to specify a cursor to use. The
string can take any of the following forms:

• “”

• name

• name fgColor

• @sourceFile fgColor

• name fgColor bgColor

• @sourceFile maskFile fgColor bgColor

TclPro Checker Messages 139

•
•
•
•
•
•

If the name form is used, and the name of the cursor is not defined on all
platforms, a warning is flagged stating that the cursor is not portable; see
nonPortCursor. None of the forms that specify a color or multiple files are
portable across all systems; they are flagged as being non-portable; see
nonPortCmd.

badEvent
Message String: Invalid event type or keysym

Category: Error

Explanation: The command expects the string to specify an event type. If the
string is not composed of a valid event and one or more related modifiers, an error
is reported.

badFloat
Message String: Invalid floating-point value

Category: Error

Explanation: The command expects the string to consist of a floating-point
number, which is: white space; a sign; a sequence of digits; a decimal point; a
sequence of digits; the letter “e”; and a signed decimal exponent. Any of the fields
may be omitted, except that the digits either before or after the decimal point must
be present and if the “e” is present then it must be followed by the exponent
number.

badGeometry
Message String: Invalid geometry specifier

Category: Error

Explanation: The command expects the string to specify a geometry value. The
string must have one of the following forms:

• WxH

• ±Xx±Y

• WxH±Xx±Y

• where the width (W) and height (H) values are positive integers, and the X (X)
and Y (Y) coordinates are positive or negative integers.

140 Appendix B

•
•
•
•
•
•

badGridMaster
Message String: Cannot determine master window

Category: Error

Explanation: The grid command flags an error if a valid window name was never
specified in the command.

badGridRel
Message String: Must specify window before shortcut

Category: Error

Explanation: When using the relative placement shortcuts in the grid command
(that is, “-”, “x”, or “^”) an error is reported if the span column shortcut (“-”) is
used immediately after one of the other shortcuts.

badIndex
Message String: Invalid index: should be integer or end

Category: Error

Explanation: The command expects the string to specify an index value. The
string can be an integer or “end” or “end-some integer”.

badInt
Message String: Invalid integer

Category: Error

Explanation: The command expects the string to specify an integer value. The
string can be optionally signed and optionally preceded by white space. If the first
two characters of the string are “0x” then string is expected to be in hexadecimal
form; if the first character of string is “0” then the string is expected to be in octal
form; otherwise, the string is expected to be in decimal form.

badKey
Message String: Invalid keyword: “key” must be: options

Category: Error

Explanation: The command expects the key string to be a key that matches one of
the strings in the options list.

TclPro Checker Messages 141

•
•
•
•
•
•

badLevel
Message String: Invalid level

Category: Error

Explanation: The command expects the string to be an integer or a “#” character
followed by an integer.

badLIndex
Message String: Invalid index: should be integer, “len” or “end”

Category: Error

Explanation: The command expects the string to specify an index value. The
string can be an integer, “len”, or “end” or “end-some integer”.

badList
Message String: Invalid list: error-info

Category: Error

Explanation: The command expects the string to be a valid Tcl list. The reason
the string is not a valid Tcl list is displayed in the message associated with the
error.

badMemberName
Message String: Invalid list: error-info

Category: Error

Explanation: The command expects the string to be a valid Tcl list. The reason
the string is not a valid Tcl list is displayed in the message associated with the
error.

badMemberName
Message String: Missing class specifier for body declaration

Category: Error

Explanation: An [incr Tcl] member name was not correctly qualified. When
defining the body for a class procedure, class method, or class variable, it is
necessary to reference the procedure or variable with the fully qualified name.

142 Appendix B

•
•
•
•
•
•

badMode
Message String: Access mode must include either RDONLY, WRONLY, or
RDWR

Category: Error

Explanation: When specifying access modes for a Tcl channel, at least one of the
three read-write access modes (RDONLY, WRONLY, or RDWR) must be
specified with optional modifiers (APPEND, CREAT, EXCL, NOCTTY,
NONBLOCK or TRUNC).

badOption
Message String: Invalid option “option” must be: options

Category: Error

Explanation: The command expects the option string to be an option that matches
one of the strings in options.

badPalette
Message String: Invalid palette spec

Category: Error

Explanation: The command expects the string to be a valid palette specification.
The palette string may be either a single decimal number, specifying the number
of shades of gray to use, or three decimal numbers separated by slashes (“/”),
specifying the number of shades of red, green and blue to use, respectively.

badPixel
Message String: Invalid pixel value

Category: Error

Explanation: The command expects the string to specify a pixel value. The string
must be an integer pixel or floating-point millimeter, optionally followed by one
of the following characters: “c”, “i”, “m”, or “p”.

badPriority
Message String: Invalid priority keyword or value

Category: Error

TclPro Checker Messages 143

•
•
•
•
•
•

Explanation: The command expects the string to specify a priority value. The
string must contain one of the following values: “widgetDefault”, “startupFile”,
“userDefault”, “interactive”, or an integer between 0 and 100.

badProfileOpt
Message String: Option option not valid when turning off profiling

Category: Error

Explanation: Using the TclX profiling tools, option is not valid. Most likely the
option is valid only when turning on profiling.

badResource
Message String: Invalid resource name

Category: Error

Explanation: The command expects the string to specify a resource value. If the
string length is not four characters, an error is flagged.

badScreen
Message String: Invalid screen value

Category: Error

Explanation: The command expects the string to specify a screen value. The
string must have the following form:

• ?name?:display?.screen?

where name is any string and display and screen are integers.

badSticky
Message String: Invalid stickiness value: should be one or more of nswe

Category: Error

Explanation: The grid command expects the string to specify valid sticky
coordinates. The string can contain any combination of the following characters:
“n”, “s”, “e”. or “w”.

badSwitch
Message String: Invalid switch: “switch”

144 Appendix B

•
•
•
•
•
•

Category: Error

Explanation: The command expects the string to be a switch that matches one of
the strings in list of switch options.

badTab
Message String: Invalid tab list

Category: Error

Explanation: The command expects a list of strings that define tab stops. If the
Tcl interpreter cannot parse the list, an error is flagged. The tab list must consist of
a list of screen distances giving the positions of the tab stops. Each position can
optionally be followed in the next list element by one of the keywords “left”,
“right”, “center”, or “numeric”, which specifies how to justify text relative to the
tab stop.

badTabJust
Message String: Invalid tab justification “tab-item”: must be left right center or
numeric

Category: Error

Explanation: The command expects the justification string to be one of the
following: “left”, “right”, “center”, or “numeric”.

badTlibFile
Message String: The filename must have a “.tlib” suffix

Category: Error

Explanation: The command expected a filename with a .tlib suffix. The word
should be changed to match the pattern filename.tlib.

badTraceOp
Message String: Invalid operation “op”: should be one or more of rwu

Category: Error

Explanation: The command expects the trace operation string to be one or more
of the following characters: “r”, “w”, or “u”.

TclPro Checker Messages 145

•
•
•
•
•
•

badVersion
Message String: Invalid version number

Category: Error

Explanation: The command expects a list of strings that specifies a package
version. A valid package version string is any number of integers separated by
periods (“.”), for example, “1.2.3”.

badVirtual
Message String: Virtual event is badly formed

Category: Error

Explanation: The command expects the string to specify a virtual event. The
string must have the following form:

• <<word>>

where word is any non-empty string.

badVisual
Message String: Invalid visual

Category: Error

Explanation: The command expects the string to specify a visual. The string can
have the following form:

• class depth

• default

• windowName

• number

• best ?depth?

The class string must be one of “directcolor”, “grayscale”, “pseudocolor”,
“staticcolor”, “staticgray”, or “truecolor”, or any unique abbreviation. The depth
value must be a valid integer.

badVisualDepth
Message String: Invalid visual depth

Category: Error

146 Appendix B

•
•
•
•
•
•

Explanation: If the depth specified by a visual string is not a valid integer, then
this error is flagged.

badWholeNum
Message String: Invalid value “value”: must be a non-negative integer

Category: Error

Explanation: The command expects the string to specify a whole value. The
string can be any non-negative integer.

classNumArgs
Message String: Wrong # args for class constructor: className.

Category: Error

Explanation: The wrong number of arguments are being used to instantiate the
[incr Tcl] class className. Compare the number of arguments used to instantiate
the class to the number of arguments in the constructor defined by className.

classOnly
Message String: Command “command” only defined in class body

Category: Error

Explanation: The specified command is only valid in the context of an [incr Tcl]
class body.

errBadBrktExp
Message String: The bracket expression is missing a close bracket

Category: Error

Explanation: The bracket expression is missing a close bracket. Common errors
of this type are caused when the closing bracket is interpreted as a character to
match on. For example [] and [^] will generate this error because the close bracket
is interpreted as a character to match, or not match, respectively. The correct
expressions would be: []] and [^]].

mismatchOptions
Message String: The specified options cannot be used in tandem

Category: Error

TclPro Checker Messages 147

•
•
•
•
•
•

Explanation: Two or more options were specified that cannot be used at the same
time. The command should be re-written to use only one of the switches. This
commonly occurs when an overloaded command performs completely different
operations based on the switches.

noEvent
Message String: No events specified in binding

Category: Error

Explanation: The command expects an event but could not find one while
parsing the command line.

noExpr
Message String: Missing an expression

Category: Error

Explanation: Similar to the numArgs message. The TclPro Checker flags this
error message when an expression is missing in an if statement.

noScript
Message String: Missing a script after control

Category: Error

Explanation: Similar to the numArgs message. The TclPro Checker flags this
error message when a script is missing in an if statement.

noSwitchArg
Message String: Missing argument for switch switch

Category: Error

Explanation: The command was called with a switch that expected an argument.
If no argument was given for the switch, this error is flagged.

noVirtual
Message String: Virtual event not allowed in definition of another virtual event

Category: Error

148 Appendix B

•
•
•
•
•
•

Explanation: Virtual events are not allowed in event sequences. If a virtual event
(any event that begins with “<<” and ends with “>>”) is found, then this message
is flagged.

nonDefAfterDef
Message String: Non-default arg specified after default

Category: Error

Explanation: A non-defaulted argument has been specified after a defaulted
argument in a procedure argument list. Although the Tcl interpreter does not
complain about this usage, the default values are ignored.

nonPortBitmap
Message String: Use of non-portable bitmap

Category: Non-Portable Warning

Explanation: A bitmap was specified that is not supported on all platforms.

nonPortChannel
Message String: Use of non-portable file descriptor, use “file” instead

Category: Non-Portable Warning

Explanation: A channel was specified that is not supported on all platforms. In
most cases, this is when “file0”, “file1”, or “file2” is used instead of “stdin”,
“stdout”, or “stderr”.

nonPortCmd
Message String: Use of non-portable command

Category: Non-Portable Warning

Explanation: A command was specified that is not supported on all platforms.

nonPortColor
Message String: Non-portable color name

Category: Non-Portable Warning

Explanation: A color was specified that is not supported on all platforms.

TclPro Checker Messages 149

•
•
•
•
•
•

nonPortCursor
Message String: Non-portable cursor usage

Category: Non-Portable Warning

Explanation: A cursor was specified that is not supported on all platforms.

nonPortFile
Message String: Use of non-portable file name, use file join

Category: Non-Portable Warning

Explanation: A file name was specified that is not supported on all platforms.
This warning is flagged, then the string is a combination of words, variables, or
commands separated by system-specific file separators (for example,
“$dir\$file”). Use the file join command to add the system-specific file separators
(for example, “[file join $dir $file]”).

nonPortKeysym
Message String: Use of non-portable keysym

Category: Non-Portable Warning

Explanation: A keysym was specified that is not supported on all platforms.

nonPortOption
Message String: Use of non-portable option

Category: Non-Portable Warning

Explanation: An option was specified that is not supported on all platforms.
Generally, the option has no effect on the systems that do not support this option.

nonPortVar
Message String: Use of non-portable variable

Category: Non-Portable Warning

Explanation: A variable was used that is not supported on all platforms. In most
cases, this is when the tcl_precision variable is used.

nsOnly
Message String: Command “command” only defined in namespace body

150 Appendix B

•
•
•
•
•
•

Category: Error

Explanation: The specified command is only valid in the context of an [incr Tcl]
namespace body.

nsOrClassOnly
Message String: Command command only defined in class or namespace body

Category: Error

Explanation: The specified command is only valid in the context of an [incr Tcl]
class or namespace body.

numArgs
Message String: Wrong # args

Category: Error

Explanation: An incorrect number of arguments were specified for a command.
Due to the dynamic nature of Tcl, this error might be flagged unnecessarily. For
example, if the command is called within an eval body with variables that will
expand to be multiple arguments. The TclPro Checker sees only the one argument,
but this may expand to match the required number of arguments when the
command is evaluated.

numListElts
Message String: Invalid number of list elements

Category: Error

Explanation: An incorrect number of list elements were specified.

obsoleteCmd
Message String: Deprecated usage, use “command” instead

Category: Error

Explanation: The specified command, option or variable does not exist and is no
longer supported in the version of the system you are checking. Use the suggested
alternative command, option, or variable to upgrade the script.

optionRequired
Message String: Expected option1, got “option2”

TclPro Checker Messages 151

•
•
•
•
•
•

Category: Error

Explanation: A specific option was expected, but the following option was
found.

parse
Message String: Parse error: error-info

Category: Error

Explanation: The TclPro Checker could not parse the script completely due to a
parsing error. The reason for the parsing error is displayed in the message
associated with the error.

procNumArgs
Message String: Wrong # args for user-defined proc: procName

Category: Error

Explanation: You are using the wrong number of arguments to call the Tcl
procedure procName. Compare the number of arguments used to call the
procedure to the number of arguments in the definition of procName.

procOutScope
Message String: Proc only defined in class className

Category: Error

Explanation: An [incr Tcl] class procedure is being called from the wrong scope,
or is improperly qualified. This commonly occurs when calling inherited
procedures.

procProtected
Message String: Calling protectionLevel proc: procName

Category: Error

Explanation: You are calling an inaccessible procedure with a protection level of
protectionLevel. This error is flagged when the procedure being called does not
have permission to call this procedure.

serverAndPort
Message String: Option -myport is not valid for server sockets

152 Appendix B

•
•
•
•
•
•

Category: Error

Explanation: The socket command specified the -server option and the -myport
option on the same command line. These are conflicting options and cannot be
used together.

socketAsync
Message String: Cannot use -server option and -async option

Category: Error

Explanation: The socket command specified the -server option and the -async
option on the same command line. These are conflicting options and cannot be
used together.

socketServer
Message String: Cannot use -async option for server sockets

Category: Error

Explanation: The socket command specified the -async option and the -server
option on the same command line. These are conflicting options and cannot be
used together.

tooManyFieldArg
Message String: Too many fields in argument specifier

Category: Error

Explanation: A defaulted procedure argument has been specified with multiple
values. An argument can have only one default value. If the value is to be a list,
quotes or curly braces must be used.

warnAmbiguous
Message String: Ambiguous switch, use delimiter to avoid conflicts

Category: Usage Warning

Explanation: The word being checked starts with a “-” but does not match any of
the known switches. Use delimiter to explicitly declare the end of the switch
pattern.

TclPro Checker Messages 153

•
•
•
•
•
•

warnDeprecated
Message String: Deprecated usage, use “command” instead

Category: Upgrade Warning

Explanation: The specified command, option or variable does not exist and is no
longer supported in the version of the system you are checking. Use the suggested
alternative command, option or variable to upgrade the script.

warnEscapeCharacter
Message String: “\<char>” is a valid escape sequence in later versions of Tcl.

Category Upgrade Warning

Explanation: The new regular expression package introduced in Tcl 8.1 added
many new special character sequences, called “escape characters.” When
upgrading to 8.1 or later, the escape characters will change the semantics of the
expression. To maintain the behavior of previous versions of Tcl, add another
backslash before the character. (This warning is displayed only if you specify the
-use option with Tcl 8.0 or earlier.)

warnExportPat
Message String: Export patterns should not be qualified

Category: Warning

Explanation: Each export pattern can contain glob-style special characters, but it
must not include any namespace qualifiers. That is, the pattern can only specify
commands in the current (exporting) namespace.

warnExpr
Message String: Use curly braces to avoid double substitution

Category: Performance Warning

Explanation: The expr command performs two levels of substitution on all
expressions that are not inside curly braces. To avoid the second substitution, and
to improve the performance of the command, place the expression inside curly
braces.

Note There are cases where the second level of substitution is required and this
warning will not apply. The TclPro Checker does not discern between these cases.

154 Appendix B

•
•
•
•
•
•

warnExtraClose
Message String: Unmatched closing character

Category: Usage Warning

Explanation: A close bracket or close brace without a matching open bracket or
open brace was detected. This frequently indicates an error introduced when a
sub-command or script is deleted without deleting the final close brace or bracket.

warnIfKeyword
Message String: Deprecated usage, use else or elseif

Category: Warning

Explanation: When using the if command, it is legal to omit the else and elseif
keywords. However, omission of these keywords tends to produce error-prone
code; thus, a warning is flagged.

warnNamespacePat
Message String: glob chars in wrong portion of pattern

Category: Warning

Explanation: Each namespace pattern is qualified with the name of an exporting
namespace and may have glob-style special characters in the command name at
the end of the qualified name. The warning is flagged if glob characters appears in
a namespace name.

warnNotSpecial
Message String: “\<char>” has no meaning. Did you mean “\\<char>” or
“<char>”?

Category: Upgrade Warning

Explanation: The backslash character is used to quote special characters in an
expression so their literal value can be used. The character following the
backslash in this expression has no affect on the character. Consider simplifying
the expression.

warnPattern
Message String: Possible unexpected substitution in pattern

Category: Warning

TclPro Checker Messages 155

•
•
•
•
•
•

Explanation: Glob patterns use brackets to specify a list of characters to match. If
brackets are used and the word is not properly quoted, Tcl will interpret this as a
sub-command to be evaluated, rather than a pattern. This warning is flagged to
avoid possible usage errors of this nature.

warnQuoteChar
Message String: “\” in bracket expressions are treated as quotes

Category: Upgrade Warning

Explanation: The new regular expression package introduced in Tcl 8.1 changed
the semantics of the backslash character inside of bracket expressions. Previously
they were treated as literal characters. Now they are treated as a quote character.
To maintain the behavior of previous versions of Tcl, add another backslash
before the existing backslash (for example, [*-\] becomes [*-\\]). (This warning is
displayed only if you specify the -use option with Tcl 8.0 or earlier.)

warnRedefine
Message String: userProc1 redefines userProc2 in file fileName on line lineNum

Category: Usage Warning

Explanation: A procedure or class is being defined, imported, inherited, or
renamed into a scope where a procedure or class of the same name already exists.

warnReserved
Message String: Keyword is reserved for use in version

Category: Upgrade Warning

Explanation: When checking scripts using older versions of Tcl, Tk or [incr Tcl],
this warning is flagged if a command is used that does not exist in the systems that
you are checking against, but does exist in later versions. This warning helps to
prevent scripts from defining commands that will eventually collide with later
versions.

warnUndefProc
Message String: The procedure was called but was never defined

Category: Warning

156 Appendix B

•
•
•
•
•
•

Explanation: The procedure was not defined in any of the files that were
specified on the command line of the current invocation of the TclPro Checker.
The procedure may get defined dynamically or in a file that was not specified on
the TclPro Checker command line. This warning is triggered only for the first use
of the undefined procedure in the files being checked.

warnUnsupported
Message String: Unsupported command, option or variable: use command

Category: Error

Explanation: The specified command, option or variable still exists but is no
longer supported. Use the suggested alternative command, option, or variable to
upgrade the script.

warnVarRef
Message String: Variable reference used where variable name expected

Category: Warning

Explanation: Some commands expect a variable name for an argument, for
example, incr. If the argument is a variable reference, this warning is flagged to
report possible usage errors.

warnY2K
Message String: %y generates a year without a century. consider using %Y to
avoid Y2K errors.

Category: Warning

Explanation: To avoid possible Y2K errors, use the “%Y” field descriptor to
generate years with centuries (for example, “1999” instead of “99”).

winAlpha
Message String: Window name cannot begin with a capital letter

Category: Error

Explanation: The window name for any Tcl widget cannot begin with a capital
letter.

TclPro Checker Messages 157

•
•
•
•
•
•

winBeginDot
Message String: Window name must begin with “.”

Category: Error

Explanation: The path name for any Tcl widget must begin with a period (“.”)

winNotNull
Message String: Window name cannot be an empty string

Category: Error

Explanation: A window name or path cannot be an empty string.

158 Appendix B

•
•
•
•
•
•

159

•
•
•
•
•
•

• • • • • •

A
accessing unwrapped files 106
accessing wrapped files relative to a

script’s directory 107
additional Tcl/Tk resources 3
administration, Scriptics License Server

128
all warnings and errors, TclPro Checker

displaying 73
appearance preferences 25
Application Initialization API 121
application settings, TclPro Debugger

projects 33
applications, TclPro Debugger

controlling 41
debugging remote 57
interrupting 44
killing 45
launching remote 60
restarting 45

applications, wrapping 87
arguments, passing to startup Tcl script in

wrapped applications 90
arguments, passing to TclPro Wrapper

using standard input 92

B
base applications (TclPro Wrapper) 111,

119
creating 119
linking Unix 122
linking Windows 121

binary shared libraries in wrapped
applications 93

breakpoints window, TclPro Debugger
46, 47

breakpoints, TclPro Debugger
line-based 45
manipulating 46
using 45
variable 46

browser preference tab, TclPro Debugger
29

bundled extensions, TclPro 16
bytecode files 77
bytecode files, TclPro Compiler 77

distributing 81, 82

C
checking Tcl scripts

one-pass 64
previous Tcl/Tk versions, using 72
TclPro Checker error and warning

checking 73
TclPro Checker error checking 72
two-pass 64

classes, [incr Tcl] 17
closing projects, TclPro Debugger 33
code display, TclPro Debugger 24
compilation errors, TclPro Compiler 82
compiling Tcl scripts, TclPro Compiler

76
connection status window, TclPro

Debugger 61
custom Tcl interpreters

160 Index

•
•
•
•
•
•

creating 111
dynamically-linked, creating 116
statically-linked, creating 113
TclPro Debugger, using with 61
TclPro Wrapper, modifying for 106
TclPro Wrapper, using with 99
wrapped applications, using with 99

D
data display window, TclPro Debugger

53
date formats, Scriptics License Server

setting 129
debug and non-debug Windows libraries

112
default project settings window, TclPro

Debugger 40
detecting wrapped application status 106
displaying all warnings and errors, TclPro

Checker 73
displaying code, TclPro Debugger 51
displaying data, TclPro Debugger 52
distributing bytecode files 81, 82
distributing bytecode files, TclPro

Compiler 82
DLLs 95

[incr Tcl] 117
[incr Tk] 117
tbcload 82, 117
Tcl 117
TclPro 117
TclX 117
Tk 117
TkX 118

documentation
Tcl 4
TclPro, about 2

dynamic link libraries
see DLLs 117

dynamic linking
Unix libraries for 118
Unix Tcl interpreters 118
Windows libraries for 117
Windows Tcl interpreters 117

dynamically created procedures, TclPro

Compiler 80
dynamically-linked wrapped applications

96
statically-linked, vs. 95

E
email notifications, Scriptics License

Server 129
error

syntax 131
error checking, TclPro Checker 72, 73
error flags, TclPro Checker 68
error handling, TclPro Debugger 54

parsing 55
runtime 55

error settings, TclPro Debugger project
38

errors, parsing 67
errors, TclPro Checker displaying all

warnings and 73
errors, TclPro Compiler 82
eval console, TclPro Debugger 54
exit preferences 28
exit preferences, TclPro Debugger 27
Expect 17

libraries 116, 119
export libraries, Windows 117
export vs. static, Windows libraries 115
extended Tcl (TclX) 18
extensions

bundled with TclPro 16
TclPro interpreters and 15

F
fall-through 87
file shadowing 87
find utility, TclPro Debugger 49

G
goto command 48

H
history buffer size 27

Index 161

•
•
•
•
•
•

I
[incr Tcl] 17

libraries 116, 117, 119
TclPro Compiler, code not compiled

80
[incr Tk]

libraries 115, 116, 117, 119
installing

Scriptics License Server 125
TclPro 5

instrumentation settings, TclPro
Debugger projects 36

instrumentation, TclPro Debugger 56
interrupting applications, TclPro

Debugger 44

K
killing applications, TclPro Debugger 45

L
launching remote applications, TclPro

Debugger 60
LIBCMTD.LIB 115, 122
LIBCMT.LIB 115, 122
libraries

auto-loading wrapped Tcl script
libraries 108

debug and non-debug, Windows 112
dynamic linking, Unix 118
dynamic linking, Windows 117
Expect 116, 119
[incr Tcl] 116, 117, 119
[incr Tk] 115, 116, 117, 119
locations 112
static linking, Unix 116
static linking, Windows 115
tbcload 82, 115, 116, 117, 118
Tcl 115, 116, 117, 118
TclPro Wrapper 122
TclX 115, 116, 117, 119
Tk 115, 116, 117, 118
TkX 115, 116, 118, 119
Unix 82
Windows DLLs 82, 117

Windows export 117
Windows static vs. export 115
Windows TclPro Wrapper 122
wrapped applications and binary

shared libraries 93, 94
wrapped applications Tcl script

libraries 93
licenses

overdraft policy 124
policy 123
TclPro applications 123

licenses,
managing 128

line-based breakpoints, TclPro Debugger
45

linking
Unix base applications 122
Unix Tcl interpreters, dynamic 118
Unix Tcl interpreters, static 116
Windows base applications 121
Windows Tcl interpreters, dynamic

117
Windows Tcl interpreters, static 114

M
main programs

custom 120
standard 120

main window, TclPro Debugger 20
MSVCRTD.LIB 118, 122
MSVCRT.LIB 118, 122

N
Named User Licenses 123

O
objects, [incr Tcl] 17
one-pass script checking 64
Opening 40
other preferences 29
overdraft, Scriptics License Server and

licenses 124
overview

TclPro 1
TclPro development environment

162 Index

•
•
•
•
•
•

111

P
package indexes, bytecode files and 81
parsing

errors
locating 131

parsing errors 55
TclPro Checker 67
TclPro Debugger 55

path environment variable 15
pkgindex.tcl files

TclPro Wrapper 94
previous Tcl/Tk versions, TclPro Checker

checking Tcl scripts with 72
procedures window, TclPro Debugger 50
prodebug.tcl file 57, 59
project application settings tab, TclPro

Debugger
local debugging 34
remote debugging 35

project settings, TclPro Debugger 33
application 33
error 38
instrumentation 36
setting default 39

project window, TclPro Debugger 31
projects, TclPro Debugger

closing 33
creating new 30
managing 30
opening 32
remote debugging, creating projects

60
saving 33
.tpj files 30

proWrap.h 119
prowrapout 87, 90
prowrapout.exe 87, 90
prowrapuses directory 104

R
remote debugging 57

creating remote projects 60
launching applications 60

modifying Tcl scripts for 57, 59
overview 57
Tcl procedures 58
TclPro Debugger project application

settings tab 35
result display, TclPro Debugger 25
revoking licenses, Scriptics License

Server 128
run to cursor, TclPro Debugger 41
runtime error 55
runtime error handling, TclPro Debugger

55

S
Scriptics License Server 123

administration 128
changing email notifications 129
installed files 126
installing 125
license overdraft 124
licensing policy 123
managing licenses 128
revoking licenses 128
setting date formats 129
setting initial configuration 125
Shared Network Licenses

management 124
viewing reports 129

setting date formats, Scriptics License
Server 129

shared libraries 95
Shared Network Licenses 123

management of (Scriptics License
Server) 124

stack display, TclPro Debugger 22
startup & exit preference tab, TclPro

Debugger 28
static linking

Unix libraries 116
Unix Tcl interpreters 116
Windows libraries 115
Windows Tcl interpreters 114

static vs. export, Windows libraries 115
statically linked applications 113
statically-linked and dynamically-linked

Index 163

•
•
•
•
•
•

wrapped applications, TclPro Wrapper
95, 96

stepping, TclPro Debugger 42
step in 42
step out 43
step over 43
step to result 44

supported Tcl versions
TclPro Checker 63
TclPro Compiler 75
TclPro Debugger 19

suppressing specific messages, TclPro
Checker 69

syntax errors 131
checking for 67
TclPro Compiler and 82

T
.tbc files 76

package index files, warning 81
tbcload 82

libraries 82, 115, 116, 117, 118
Tcl

libraries 115, 116, 117, 118
Tcl error dialog, TclPro Debugger 56
.tcl files

Windows, running on 16
Tcl interpreters

creating custom 111, 113
creating custom statically-linked 113
creating custom, dynamically-linked

116
custom with TclPro Debugger 61
custom with TclPro Wrapper 99, 106
dynamically linking, Unix 118
dynamically linking, Windows 117
example code 113
statically linking, Unix 116
statically linking, Windows 114
TclPro 15
wrapped applications, specifying for

88
wrapped applications, using custom

99
Tcl/Tk resources 3

documentation 4
newsgroups 3
programming guides 4
Tcl Resource Center 3
training 3
Web 3

Tcl/Tk versions, TclPro Checker
checking Tcl scripts with previous 72

Tcl_Main 113
tcl_platform(isWrapped) variable 106
tclIndex files

TclPro Wrapper 93
TclPro

bundled extensions 16
installing 5

TclPro Checker 63, 64
controlling feedback 67
displaying all warnings and errors 73
error and warning checking 73
error checking 72
example output 69
message structure 66
one-pass vs. two-pass checking 64
packages and version numbers 63
parsing errors 131
performance warnings 68, 132
platform portability warnings 67,

132
previous Tcl/Tk versions, checking

with 72
quiet feedback 71
supported Tcl versions 63
suppressing specific messages 69
syntax errors 67, 131
upgrade suggestions for Tcl scripts

67
usage warnings 68, 132
verbose feedback 70
warning and error flags 68

TclPro Checker messages 66
argAfterArgs 137
argsNotDefault 137
badBoolean 137
badByteNum 137
badColorFormat 137

164 Index

•
•
•
•
•
•

badColormap 138
badCursor 138
badEvent 139
badFloat 139
badGeometry 139
badGridMaster 140
badGridRel 140
badIndex 140
badInt 140
badKey 140
badLevel 141
badLIndex 141
badList 141
badMemberName 141
badMode 142
badOption 142
badPalette 142
badPixel 142
badPriority 142
badProfileOpt 143
badResource 143
badScreen 143
badSticky 143
badSwitch 143
badTab 144
badTabJust 144
badTlibFile 144
badTraceOp 144
badVersion 145
badVirtual 145
badVisual 145
badVisualDepth 145
badWholeNum 146
classNumArgs 146
classOnly 146
mismatchOptions 146
noEvent 147
noExpr 147
nonDefAfterDef 148
nonPortBitmap 148
nonPortChannel 148
nonPortCmd 148
nonPortColor 148
nonPortCursor 149
nonPortFile 149

nonPortKeysym 149
nonPortVar 149
noScript 147
noSwitchArg 147
noVirtual 147
nsOnly 149
nsOrClassOnly 150
numArgs 150
numListElts 150
obsoleteCmd 150
optionRequired 150
parse 151
procNumArgs 151
procOutScope 151
procProtected 151
serverAndPort 151
socketAsync 152
socketServer 152
tooManyFieldArg 152
warnAmbiguous 152
warnDeprecated 153
warnEscapeCharacter 153
warnExportPat 153
warnExpr 153
warnExtraClose 154
warnIfKeyword 154
warnNamespacePat 154
warnNotSpecial 154
warnPattern 154
warnQuoteChar 155
warnRedefine 155
warnReserved 155
warnUndefProc 155
warnUnsupported 156
warnVarRef 156
warnY2K 156
winAlpha 156
winBeginDot 157
winNotNull 157

TclPro Compiler 75
bytecode files 77
changes in Tcl script behavior 78
compilation errors 82
compilation overview 80
compiling Tcl scripts 76

Index 165

•
•
•
•
•
•

components 81
creating package indexes 81
distributing bytecode files 81, 82
overview 75
-prefix options 78
prepending prefix text 77
supported Tcl versions 75

TclPro components 1
TclPro Debugger 19

appearance preference tab 25
breakpoints window 46, 47
closing projects 33
code display 24
controlling applications 41
creating new projects 30
creating remote debugging projects

60
custom Tcl interpreters, using with

61
data display window 53
debugging remote applications 57
default project settings window 40
displaying code and data 51
displaying data 52
error handling 54
eval console 54
find utility 49
finding procedures 49
going to lines 48
instrumentation 56
interrupting applications 44
killing applications 45
launching remote applications 60
line-based breakpoints 45
main window 20, 21
managing projects 30
manipulating breakpoints 46
manipulating data 54
modifying existing Tcl scripts for

remote debugging 59
modifying Tcl scripts for remote

debugging 57
navigating code 48
opening existing projects 32
opening files 40

other preference tab 29
overview 19
parsing error handling 55
procedures window 50
prodebug.tcl file 57, 59
project application settings 33
project application settings tab local

debugging 34
project application settings tab

remote debugging 35
project errors settings tab 39
project instrumentation settings tab

36
project settings 33
project window 31
quitting 45
remote debugging procedures 58
restarting applications 45
result display 25
run to cursor 41
running code 41
runtime error handling 55
saving projects 33
setting default project settings 39
setting preferences 25
stack display 22
starting 20
startup & exit preference tab 28
step in 42
step out 43
step over 43
step to result 44
stepping 42
supported Tcl versions 19
Tcl error dialog 56
tool bar 22
.tpj files 30
using breakpoints 45
variable breakpoints 46
variable display 23
watch variables window 51
watching variables 51
window menu 51
window preferences 26
windows preference tab 27

166 Index

•
•
•
•
•
•

wrapper script for remote debugging
59

TclPro Debugger connection status
window 61

TclPro documentation 2
TclPro interpreters 15

extensions, and 15
Unix, running on 15
Windows, running on 16

TclPro libraries, locations of 112
TclPro overview 1
TclPro Wrapper 85

accessing unwrapped files 106
accessing wrapped files relative to a

script’s directory 107
auto-loading wrapped Tcl script

libraries 108
base applications, creating 119
binary shared libraries in wrapped

applications 93
changing Tcl script file references

106
changing wrapped applications

Windows icons 108
command line arguments using

standard input 92
default application name 90
detailed feedback 95
dynamically-linked wrapped

applications 96
executing code at startup of wrapped

applications 92
file archive in wrapped applications

86
files in wrapped applications 87
libraries 122
libraries, Windows 122
modifying custom Tcl interpreters

106
naming wrapped applications 90
packages with binary shared libraries

in wrapped applications 94
passing arguments to startup Tcl

script in wrapped applications 90
pkgindex.tcl files 94

predefined -uses options 89
preparing Tcl scripts for wrapped

applications 105
prowrapuses directory 104
resolving file pathnames in wrapped

applications 91
startup Tcl script for wrapped

applications 89
statically-linked and dynamically-

linked wrapped applications 95, 96
Tcl interpreter wrapped applications

88
Tcl script libraries in wrapped

applications 93
Tcl script packages in wrapped

applications 94
tclIndex files 93
temporary directory 95
-uses options, creating 103
using custom Tcl interpreters 99
wrapping applications 87
wrapping shared directories 107

TclPro_Init 120
TclX 18

libraries 115, 116, 117, 119
technical support 3
Tk

libraries 115, 116, 117, 118
Tk_Main 113
TkX

libraries 115, 116, 118, 119
.tpj files 30
training 3
two-pass script checking 64

U
Unix dynamically linked applications 118
Unix libraries

dynamic linking 118
static linking 116

Unix Tcl interpreters
dynamically linking 118
statically linking 116

Unix, running TclPro interpreters on 15
upgrade suggestions, TclPro Checker Tcl

Index 167

•
•
•
•
•
•

script 67
usage warnings 68
.uses files 103

contents 104
lib/prowrapuses directory 103

-uses options
creating 103
predefined 89

V
variable breakpoints, TclPro Debugger

45, 46
variable display, TclPro Debugger 23

W
watch variables window, TclPro

Debugger 51
window menu, TclPro Debugger 51
window preferences, TclPro Debugger 26
Windows dynamically linked

applications 117
Windows icons, changing for wrapped

applications 108
Windows libraries

debug and non-debug 112
dynamic linking 117
static linking 115

Windows preference tab, TclPro
Debugger 27

Windows Tcl interpreters
dynamically linking 117
statically linking 114

wrapped applications 85
auto-loading Tcl script libraries 108
binary shared libraries in 93
default name 90
detecting status 106
dynamically-linked 96
executing code at startup of 92
file archive in 86
files in 87
files relative to a script’s directory,

accessing 107
naming 90
packages with binary shared libraries

in 94
passing arguments to startup Tcl

script in 90
path references to files in archive 90
preparing Tcl scripts for 105
resolving file pathnames in 91
shared directories 107
startup Tcl script for 89
statically-linked and dynamically-

linked 95, 96
Tcl interpreter 88
Tcl script libraries in 93
Tcl script packages in 94
using custom Tcl interpreters with 99
Windows icons, changing 108

168 Index

•
•
•
•
•
•

