TclPro™ User’s Guide

Ajuba Solutions
Version 1.4

COPYRIGHT
Copyright © 1998-2000 Ajuba Solutions Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this publication
may be reproduced, stored in aretrieval system, or transmitted in any form or by any means
electronic or mechanical, including but not limited to photocopying or recording, for any
purpose other than the purchaser’s personal use, without the express written permission of
Ajuba Solutions Inc.

Ajuba Solutions Inc.

2593 Coast Avenue
Mountain View, CA 94043
U.SA

http: //mww.aj ubasol utions.com

TRADEMARKS

TclPro and Ajuba Solutions are trademarks of Ajuba Solutions Inc.

Other products and company names not owned by Ajuba Solutions Inc. that appear in this
manual may be trademarks of their respective owners.

ACKNOWLEDGEMENTS

Michael McLennan isthe primary developer of [incr Tcl] and [incr Tk]. Jim Ingham and Lee
Bernhard handled the Macintosh and Windows ports of [incr Tcl] and [incr TK]. Mark
Ulfertsisthe primary developer of [incr Widgets], with other contributions from Sue
Yockey, John Sigler, Bill Scott, Alfredo Jahn, Bret Schuhmacher, Tako Schotanus, and Kris
Raney. Mark Diekhans and Karl Lehenbauer are the primary developers of Extended Tcl
(TclX). Don Libesisthe primary developer of Expect.

TclPro Wrapper incorporates compression code from the Info-ZIP group. There are no extra
charges or costsin TclPro due to the use of this code, and the original compression sources
are freely available from http://www.cdrom.com/pub/infozp or
ftp://ftp.cdrom.convpubl/infozip.

NOTE: TclProis packaged on this CD using Info-ZIP's compression utility. Theinstallation
program uses UnZip to read zip files from the CD. Info-ZIP's software (Zip, UnZip, and
related utilities) is free and can be obtained as source code or executables from Internet
WWW sitesincluding http://www.cdrom.com/pub/infozip.

Contents

Chapter 1

Chapter 2

Chapter 3

Introduction tO TCIPIO . ..ot 1
About the TclPro Documentation. 2
For MorelInformation. ... e 3
TclPro Technical SUPPOrt.o 3
Finding Information about Tcl/TK it 3
T/TKTraning.o e 3
Related Documentationt 4
Installing TCIProo 5
Installing TclProfromCD ortheWebt 5
Installing TclProfromCD ... 6
Installing TclProfromtheWeb 6
Installing TcIProon Windows 6
Installing TclProonUnixX e 7
Mounting the CD-ROM and Running theInstaller 8
Installing TClPro. ... 9
Installing Ajuba SolutionsLicenseServer 11
Changing TclPro License Information, 12
Installing Adobe Acrobat Reader i 13
UnmountingtheCD-ROM i 14
TclPro Interpreters and EXtENSIONSot 15
TclProlnterpreters 15
Running the TclPro InterpretersonUnix. 15
Running the TclPro Interpreterson Windows 16
Extensions Incorporated in TclPro 16
[incrTel] . .o 17

Extended Tcl (TCIX) e 18

Chapter4 TclPro Debugger. ... 19
Overview of TcIProDebugger ..., 19
Supported TCl VEISIONS. . ..ot 19
Starting TclProDebuggero oo 20
The TclPro Debugger MainWindowooovnn... 20
TheTool Bar.o e 22
TheStack Display. 22
TheVariableDisplayco i 23
TheCodeDisplay e 24
TheResultDisplay 25

Setting Preferences 25
Appearance PreferenCeso 25
Window Preferences.o 26
Startupand Exit Preferences. 27
Other Preferencest 29
Managing PrOjeCtS. oo 30
CreatingaNew Project. ...t 30
Openingan Existing Project. 32
SavingaProject 33
ClosngaProject. 33
Changing Project Settings. 33
Changing Project Application Settings. 33
Changing Project Instrumentation Settings 36
Changing Project Error Settings.t 38

Setting Default Project Settings oo 39
OpeningaFile. o e 40
Controlling your Applicationc.cco i 41
Running Code with TclProDebugger.t 41
RUNTOCUISOr ... 41
SteppingthroughCode. ... 42
StepPINg IN . oo 42
Stepping OUL.o 43
StEPPINg OVEr . .. 43
SteppingtoResult. 44
Interrupting the Application, 44
Killingthe Application. i, 45

Chapter 5

Restartingthe Application it 45

Quitting TclProDebugger e 45
USINg Breakpoints.ot 45
Line-based breakpoints. 45
Variable Breakpoints 46
Manipulating Breakpointst 46
Viewing Breakpointsin the Breakpoints Window. 46
Navigating Code.o 48
GoingtoaSpecifiedLine. ...t 48
Usingthe Find Utility. ... 49
Finding Procedures. 49
UsingtheWindow Menu ..., 51
DisplayingCodeandDataccoviiineiiiiiiineennn. 51
WatchingVariables 51
DisplayingDataot 52
ManipulatingData.coov i 54
ErrorHandling 54
ParsngError Handling. 55
RuntimeError Handling.o 55
About TclPro Instrumentation ...t 56
Debugging Remote, Embedded, and CGI Applications. 57
Modifying a Tcl Script for Remote Debugging 57
Remote Debugging Procedures 58
Creating a“Wrapper” Script for Remote Debugging 59
Modifying an Existing Script for Remote Debugging. 59
Creating a Remote Debugging Project.t 60
Launching your Remote Application.t 60
Viewing Connection Statusoo oo 60
Using Custom Tcl Interpreterswith TclProDebugger. 61
TclPro Checker. ... 63
Supported TCl VErSions. 63
Using TCIPro ChecKer. oot e 64
One-Passand Two-PassChecking 64
TcIProChecker MeSsages.o oo e 66
Controlling Feedback on Errorsand Warnings 67
ParSiNg EITOrS. . ..o e 67

SYNMAX ErrOrS 67

Chapter 6

Chapter 7

Platform Portability Warningsvuun.. 67

Suggestionfor Upgrading. 67
Performance Warnings., 68
UsageWarningsot et 63
Warningand Error Flags. 68
Suppressing SpecificMessageso 69
Examples of Output from TclProChecker 69
Specifying Verbose Feedback. 70
Specifying Quiet Feedback. o 71
SpecifyingUseof Older Versions, 72

Error Checking 72

Error and Warning Checkingt 73
Checking for All Warningsand Errors. 73

TclPro Compiler ... 75
SUPPOMEd VErSIONS. . ..ttt 75
OV IV BN . . e e e e e 75
Compiling Your Code.ot 76
Bytecode Files. 77
Prepending Prefix Text e 77
ChangesinBehavior 78
Example 1. Cloning Proceduresccoiiiiiieenn... 79
What Isand Isn'tCompiled 80
Example 2: Procedures Used with Namespace. 81
Compiler Components.vie e 81
Creating PackageIndexes. 81
Distributing Bytecode Files 82
CompilatioN EITOrSt e 82
TCIPIO WraP Pl e 85
How the Internal File Archive Worksin aWrapped Application. 86
Wrappingan Application ...t 87
Wrapping Tcl Scriptsand DataFiles 87
Specifyingthe Tcl Interpreter. 88
Specifying the Startup Tcl Script 89
Passing Arguments to the Startup Tcl Script 90
Specifying the Name of a Wrapped Application 90
Determining Path References in Wrapped Applications 90

Specifying TclPro Wrapper Command Line Arguments Using Standard

UL . o e 92
Specifying Code to Execute at Application Startup. 92
Wrapping LibrariesandPackagesccoovviin.... 92
Wrapping Librariesof Tcl Scripts.t 93
Wrapping Binary Shared Libraries. 93
Wrapping Tcl Script Packages. 9%
Wrapping Packages Containing Binary Shared Libraries 94
Specifyinga Temporary Directory 95
Getting Detailed Wrapping Feedback 95
Static and Dynamic Linking with Wrapped Applications 95

Deciding Whether Static or Dynamic Linking is More Appropriate. .. 96
Creating and Distributing Dynamically-Linked Wrapped Applications 96
Wrapping Applications with a Custom Interpreter or Custom Initialization

Liraries . . 99
Specifying a Custom Interpreter or Custom Initialization Files. 99
Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Standard Initiaization Files. 101
Creating a Statically-Linked Wrapped Application with a Standard
Interpreter and Custom Initialization Files. 101
Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Custom Initialization Files. 102
Creating a Dynamically-Linked Wrapped Application with a Custom
INterpreter. ... 103
Defining New -usesOptionscoiiiiiiiineinnennn. 103
Preparing an Application for Wrapping, 105
Detecting When an Application IsWrapped 106
Modifying Custom Shells. i 106
Changing FileReferences. 106
AccessingUnwrapped Files. 106
Accessing Filesfrom a Shared Directory. 107
Accessing Wrapped Files Relative to a Script’s Directory 107
Auto-Loading Wrapped Tcl Script Libraries................. 108
Changing the Windows Icon for aWrapped Application. 108
Chapter 8 Creating Custom Interpreterswith TclPro..................., 111
Overview of the TclPro Development Environment 111

Locationsof theLibraries. 112

Debug and Non-Debug Librariesfor Windows 112

The Sample Application. ... 113
Creating Regular Tcl Interpreters 113
Creating Statically-Linked Interpreters. 113
Statically Linking Windows Interpreters 114
Statically Linking Unix Interpreters., 116
Creating Dynamically-Linked Interpreters. 116
Dynamically Linking Windows Interpreters 117
Dynamically Linking Unix Interpreters. 118
Creating Base Applicationsfor TclProWrapper 119
TCPro INit ... 120
Providing Your OwnMainProgram.cooon. .. 120
Using the Main Program from Tclor Tk83 120
The Application Initidization APl ..., 121
Linking Windows Base Applications.ooovvo.... 121
Linking Unix Base Applications.ccoiiiieinn.... 122
Appendix A Ajuba Solutions LiCENSE SErVerc.viiii i, 123
How LicensingWorks. e 123
How TclPro Applications ObtainLicenses. 123
How the License Server Manages Shared Network Licenses. 124
LicenseOverdraft 124
Ajuba Solutions License Server Ingtallation. 125
Installing the Ajuba Solutions License Server Software 125
Setting the Initial Configuration., 125
Ajuba Solutions License Server Installed Files 126
Ajuba Solutions License Server Administration. 128
Managing LiCeNSeS.t 128
Revoking Licenses e 128
Changing Email Notifications., 129
Setting Date Formats.t 129
Viewing REPOMS.o 129
Appendix B TclPro Checker MeSSages vvv e e 131
Errorand Warning TYPeSo oot i 131
ParSINg Errorso 131
SYNtaX EITOrS. . ..o 131
Platform Portability Warnings oot 132

Vi

Performance Warnings.ot 132

UsageWarningS oot e 132

A Listingof theMessages.o v v 132

TclPro Checker Message DescriptionsinDetail 137

T 1= P 159

L] ..
o Vi

viii

Chapter 1

Introduction to TclPro

The Ajuba Solutions TclPro™ devel opment environment is a set of powerful
development tools and extended Tcl platform for professional Tcl developers.
TclPro 1.4 consists of:

Table1 TclPro 1.4 Components

Component

TclPro Debugger

TclPro Checker

TclPro Compiler

TclPro Wrapper

Description

Find bugs quickly with features including breakpoints, single-
stepping, stack and variable display, and variable-based
breakpoints.

Scan your Tcl scriptsto identify avariety of potential problems
including syntax errors, misuses of the Tcl and Tk built-in
commands, and potential performance and portability problems.
TclPro Checker also helps you to upgrade from older versions of
Tcl to the latest rel eases by locating potential compatibility
problems.

Translate your Tcl scriptsinto bytecode files so that you can
distribute your applications without providing accessto the
original Tcl source code. TclPro Compiler protects your
intellectual property and prevents customersfrom modifying your
scripts.

Create a single executabl e file containing everything needed to
run aTcl application. TclPro Wrapper makes it easy to distribute
Tcl applications to your users and manage upgradesin Tcl
versions.

Table1 TclPro 1.4 Components
Component Description
Tcl/Tk 8.3 The latest version of Tcl/Tk is pre-compiled and ready for use.

Bundled extensions Several popular Tcl extensions—[incr Tcl], [incr TK], TclX, and
Expect—are pre-compiled for all of the TclPro supported
platforms. The TclPro tools have built-in support for all bundlied
extensions.

Enhanced interpreters The protclsh and prowish Tcl interpretersinclude built-in
support for al bundled extensions and the Tcl bytecode files
produced by TclPro Compiler

TclPro supports the following platforms:

e Windows

e Solaris (SPARC)
e HP-UX

e Irix

e Linux (Intel/glibc2)
See the online release notes for specific operating system versions supported.

About the TcIPro Documentation

Chapter 1

TclPro documentation consists of the following:
e Thisguidein print, PDF, and HTML formats

e Tcl and Tk command and C API reference pages in WinHelp (Windows) and
HTML (Unix) formats

In this guide, Tcl commands, shell commands, and C functions appear in bold
format. Variables, file names, and URL s appear in italics.

When this guide provides instructions for selecting an item from amenu, it lists
the options you need to select separated by “|" characters, with the accel erator
keys underlined. For example, “select File | Open from the menubar” means that
you should click on the File menu in the application, then select the Open option
from that menu; alternatively, you could hold the <Alt> key while you type “fo”.

Tcl scripts, C programs, and computer output appear in atypewriter-style font.
Information that you type at a Tcl or shell prompt isin abold typewriter-style
font. The following shows a simple example where you enter a Tcl command in
tclsh and see the results:

% puts "2 + 2 = [expr 2 + 2]"
2+2=4

For More Information
This section lists sources of additional information about TclPro and Tcl/Tk.

TclPro Technical Support

Ajuba Solutions Inc. offers several levels of Technical Support. In addition to
phone & email support for qualified customers, we aso have online FAQs, a
Known Bugs list, and other useful resources. For information on TclPro Technical
Support, please see the Ajuba Solutions Web site at

http: //dev.ajubasol utions.convsupport.

Finding Information about Tcl/Tk

The Tcl Resource Center provides an annotated index to Tcl-related Web sites to
help you find the information that you are seeking. See the Tcl Resource Center at
http: //dev.ajubasol utions.com/resource.

The comp.lang.tcl newsgroup provides aforum for questions and answers about
Tcl. Announcements about Tcl extensions and applications are posted to the
comp.lang.tcl.announce newsgroup. Thisinformation is also available on the Web
at http://mww.deja.com.

Tcl/Tk Training

Ajuba Solutions offers both public and on-site technical training courses for

novice and advanced Tcl/Tk developers interested in harnessing the power of

scripting.

e Theintroductory tutorials bring novice Tcl/Tk programmers the skills they
need to start creating exciting applications.

e The advanced courses improve your productivity, showing you how to create
network applications with improved graphical features, and how to use object-
oriented techniques with [incr Tcl].

Ajuba Solutions instructors also spend time showing you how to link Tcl with
your existing code base, and how to package your Tcl code in reusable libraries.

For the current training schedule and compl ete course descriptions, see the
training Web page at http://www.ajubasol utions.com/services/training

Introduction to TclPro

4

+ Chapter1

Related Documentation

If you are new to Tcl/TKk, here are some programming guides that can help you get
started:

Practical Programming in Tcl and Tk (Third Edition), by Brent Welch,
published by Prentice Hall, 2000.

Graphic Applications for Tcl/Tk, by Eric F. Johnson, M& T Books, 1997.

Effective Tcl/Tk Programming; Writing Better Programswith Tcl/Tk, by Mark
Harrison and Michael McLennan, published by Addison Wesley, 1998.

Tcl/Tk for Real Programmers, by Clifton Flynt, published by Academic Press
Professional, 1998.

Tcl/Tk for Programmers With Solved Exercises That Work With Unix and
Windows, by J. A. Zimmer, published by IEEE, 1998.

Tcl and the Tk Toolkit, by John Ousterhout, published by Addison-Wesley,
1994,

[incr TKI/TK] from the Ground Up, by Chad Smith, published by
Osborne/McGraw-Hill, 2000.

For acomprehensive list of books related to Tcl/Tk, browse the Tcl Resource
Center: http://dev.ajubasol utions.convresource.

Chapter 2
Installing TclPro

This chapter describes how to install Ajuba Solutions TclPro on the following
supported platforms:

Table 2 Supported Platforms

Operating System Architecture Version

[rix SGI (Mips) 6.3+

HP-UX HP (PARISC) 10.20+

Linux Intel Red Hat 6.0+ or SUSE 6.0+
Solaris Sun (Sparc) 2.5+

Windows Intel 95/98/NT 4.0/2000

Note AjubaSolutions believesthat TclPro will work with other Linux distributions that
use glibc2, such as Caldera Linux. However, Ajuba Solutions does not support
these other Linux operating systems at thistime.

Important If at any time you need to move any of the files or folders containing filesin the
TclProinstallation to a new location, you should uninstall and reinstall TclPro.

After installing, consult the README file in the TclPro installation directory for
more information about using TclPro.

Installing TclPro from CD or the Web

This section describes how to install TclPro from either a CD or the Ajuba
Solutions Web site, install the Adobe Acrobat Reader (if needed), and enter your
license information so you can run the TclPro applications.

Installing TclPro from CD

The TclPro CD contains installer applications that make installing TclPro very
easy. All you need to do is run the setup.sh (or setup.exe on Windows) program
located at the top level of the CD-ROM. Theinstallation program will guide you
through the various installation options. Please see below for platform-specific
details and additional instructions about installing from the CD-ROM.

Installing TcIPro from the Web

You can obtain TclPro from the Ajuba Solutions Web site. To install TclPro from
the web, go to the TclPro download page at

http: //mww.aj ubasol utions.convtcl pro/eval. Follow the instructions provided there
to download the TclPro distribution and install it on your system.

Installing TcIPro on Windows

Chapter 2

If you are upgrading from aprior version of TclPro (1.3 or earlier), you should
install and use the new version before uninstalling the prior version.

Thereisno need to upgrade the Ajuba Solutions License Server for TclPro 1.4. All
you need to do isinstall the new shared Network License keys for TclPro 1.4.

If you areinstalling on aWindowsNT system, you must be the Administrator user,
or auser with Administrator privileges, to install TclPro.

1) Insert the TclPro CD-ROM into your system’s CD-ROM drive. The
installation program, setup.exe, automatically starts. If you have disabled
autoplay for CD-ROMSs, you can run the install program manually.

2) Select whether or not to install Adobe Acrobat Reader 3.0. Adobe Acrobat
Reader 3.0 is required to view the online version of the TclPro User’s Guide.

3) Select aninstallation directory for TclPro 1.4. Do not install TclPro 1.4 in the
same directory as a previous version of TclPro. For example, if you aready
have TclPro 1.3 installed in C:\Program Files\TclProl.3, install TclPro 1.4 in
a separate directory such as C:\Program Files\TclProl.4.

4) Select the TclPro components you want to install:

e Basic—Installs everything you need to run the TclPro tools, including
documentation, demos, libraries (for Tcl, Tk, and bundled extensions), and
the tools themselves. Deselect “Basic” only if you have previously
installed TclPro 1.4 and are running the install ation program again only to
install additional components.

e C Development Libraries—Installs development libraries for Tcl, Tk,
and the bundled extensions, header files, and sample source files. Install
this component only if you want to devel op custom Tcl interpreters or use
TclPro Wrapper with extensions not bundled with TclPro.

* Thesource componentsinstall the sourcefilesfor Tcl, Tk, and the bundled
components. Install these components only if you need to customize the
Tcl/Tk core or bundled extensions.

5) Theingaller installs the components you select. Afterwards, it displays the

TclPro License Manager for you to enter your license information.

If you are using a Shared Network License, enter the host name and port of a
Ajuba Solutions License Server. If you do not know thisinformation, please
contact your system administrator. If you are using a Named User License,
enter the license key and your name. You can find your license key:

* Onyour CD-ROM case
* Onthe packing list included with your TclPro shipment
* Inanemail sent to you after you purchased TclPro

If you enter avalid Named User License key, your TclPro applications run
using that license. Otherwise, your TclPro applications attempt to obtain a

Shared Network License from the Ajuba Sol utions License Server you specify.

You can change your licenseinformation at alater time by running the TclPro
License Manager (select the Windows Start Menu | Programs | TclProl.4 |
TclPro License Manager).

Installing TcIPro on Unix

If you are upgrading from a prior version of TclPro (1.3 or earlier), you should
install and use the new version before uninstalling the prior version.

There is no need to upgrade the Ajuba Solutions License Server for TclPro 1.4. All
you need to do isinstall the new shared Network License keys for TclPro 1.4.

For Unix systems, you have the option of installing:

A persona copy of TclPro

A site copy of TclPro (This option requires Shared Network Licenses
administered by Ajuba Solutions License Server. You should install Ajuba
Solutions License Server before installing a site copy of TclPro.)

Ajuba Solutions License Server, for administering Shared Network Licenses

Adobe Acrobat Reader 3.0 (required to read the online version of the TclPro
User’'s Guide)

Installing TclPro

Important

Chapter 2

The following sections describe how to mount the CD-ROM on your system, run
theinstaler, install the options you want, and unmount the CD-ROM.

You must run the installation as the root user if you plan to install the Ajuba
Solutions License Server for administering Shared Network Licenses.
Furthermore, some UNIX systems restrict access to the CD-ROM driveto the root
user. If you experience difficulties in accessing your TclPro CD-ROM, consider
retrying the installation process as the root user. You must also have permission to
install to the directory that you select. For example, the default destination
directory, /opt/ajuba/TclProl.4, is normally restricted to the root user. If you
chooseto install to this path, you need to do so from the root account.

Mounting the CD-ROM and Running the Installer

Insert the TclPro CD-ROM into your CD-ROM drive. To access the CD-ROM on
HP-UX and Linux, you must mount the driveto adirectory on your filesystem. Use
acommand from the table below to mount the CD-ROM.

Table 3 Mounting the CD-ROM
Operating System Command to Mount CD-ROM

HP-UX mount -0 cdcase /dev/dsk/c1t2d0 /cdrom
Ask your system administrator to verify the CD-ROM device.
Red Hat Linux mount -0 exec,mode=0555 /mnt/cdrom
Suse Linux mount -0 exec,mode=0555 /mnt/cdrom
CalderaLinux mount -0 exec,mode=0555 /dev/scd0 /mnt/cdrom

Run the TclPro installation program using the command shown in the table bel ow.
By default, the installer displays a graphical user interface. To run atext-only
installation, include the -T argument when running the installer.

Table 4 Commandsto Start the Installer

Operating System Command to Start Installer
HP-UX /cdrom/setup.sh

Irix /CDROM /setup.sh

Red Hat Linux /mnt/cdrom/setup.sh

Important

Table 4 Commandsto Start the Installer

Operating System Command to Start Installer

Suse Linux /mnt/cdrom/setup.sh

Caldera Linux /mnt/cdrom/SETUP.SH or /mnt/cdrom/setup.sh
Solaris /cdrom/tclpro_1 4/setup.sh

Installing TclPro

The TclPro CD-ROM allows you to install either a personal or a site copy of
TclPro. A personal copy of TclPro allows one named user to use Tcl Pro. A site copy
of TclPro allows multiple users to use the same TclPro applications. A site copy
requires Shared Network Licenses administered by Ajuba Solutions License
Server.

Before you install a site copy of TclPro, you must install Ajuba Solutions License
Server, as described in “Installing Ajuba Solutions License Server” on page 11.

Toinstall TclPro:

1)

2)

3)

4)

Mount the TclPro CD-ROM and run theinstaller asdescribed in“ Mounting the
CD-ROM and Running the Installer.”

The option to select depends on whether you want to install apersonal or asite
copy of TclPro:

a) Toinstall apersona copy of TclPro, select the “TclPro Version 1.4.0 for a
named user” option.

b) Toinstal asite copy of TclPro, select the“ TclPro Version 1.4.0 for shared
network users and Ajuba Solutions License Server” option, then select the
“TclPro Version 1.4.0” option.

Select an installation directory for TclPro 1.4. Do not install TclPro 1.4 in the
same directory as a previous version of TclPro. For example, if you already
have TclPro 1.3 installed in /opt/ajuba/TclProl.3, install TclPro 1.4ina
separate directory such as /opt/ajuba/TclProl.4. Note that you must have
permission to install to the directory that you select.

Select the platform or platforms on which you want to install TclPro.

You caninstall TclPro on multiple Unix platformsin onetarget directory. Note
that each machine using TclPro from the same directory must mount that
directory in the same manner. For example, if you install in
/opt/ajuba/TclProl.4 on one machine, other machines must mount that same
directory (or have access to it) using the same path.

Installing TclPro

10

Chapter 2

5) Select the TclPro components you want to install:

Basic—Installs everything you need to run the TclPro tools, including
documentation, demos, libraries (for Tcl, Tk, and bundled extensions), and
the tools themselves. Deselect “Basic” only if you have previously
installed TclPro 1.4 and are running the install ation program again only to
install additional components.

C Development Libraries—Installs development libraries for Tcl, Tk,
and the bundled extensions, header files, and sample source files. Install
this component only if you want to devel op custom Tcl interpreters or use
TclPro Wrapper with extensions not bundled with TclPro.

The other source components install the source files for Tcl, Tk, and the
bundled components. Install these components only if you need to
customize the Tcl/Tk core or bundled extensions.

6) Theinstaler installs the components you select. Afterwards, it displaysthe
TclPro License Manager for you to enter your license information. The license
information required depends on whether you areinstalling a personal or asite
copy of TclPro:

a)

b)

For apersonal copy of TclPro, if you are using a Shared Network License,
enter the host name and port of a Ajuba Solutions License Server. If you
do not know thisinformation, please contact your system administrator. |
you are using aNamed User License, enter the license key and your name.
You can find your license key:

* Onyour CD-ROM case
* Onthe packing list included with your TclPro shipment
* |nanemail sent to you after you purchased TclPro

If you enter avalid Named User License key, your TclPro applicationsrun
using that license. Otherwise, your TclPro applications attempt to obtain a
Shared Network License from the Ajuba Solutions License Server you
specify.
You can change your license information at a later time by running the
TclPro License Manager:

% prolicense
For asite copy of TclPro, enter the host name and port of the default Ajuba
Solutions License Server for this TclPro installation. When users run any
of the TclPro applicationsfrom thissiteinstallation, they automatically use
the default Ajuba Solutions License Server. Users can run TclPro License
Manager to override the default on a personal basis, specifying either
another Ajuba Solutions License Server or a Named User License key.

Note

You can change the default Ajuba Solutions License Server for this TclPro
installation at alater time by running the TclPro License Manager with the
-admin flag:
% prolicense -admin
7) Install other software from the CD-ROM as desired (for example, Adobe
Acrobat Reader), or unmount the CD-ROM as described in “Unmounting the
CD-ROM.”

Installing Ajuba Solutions License Server

Ajuba Solutions License Server manages Shared Network Licenses for the Ajuba
Solutions products in use at your site. You don’t need to install Ajuba Solutions
License Server and TclPro on the same system. Users of TclPro applications
accessing Shared Network Licenses require only TCP/IP connectivity to the
system running Ajuba Solutions License Server; file-sharing is not required.

Toinstall Ajuba Solutions License Server:

1) Mountthe TclPro CD-ROM and runtheinstaller as described in“ Mounting the
CD-ROM and Running the Installer.”

2) Selectthe*TclPro Version 1.4.0 for shared network users and Ajuba Solutions
License Server” option, then select the “ Ajuba Solutions License Server
Version 1.4.0" option.

3) Enter aUser ID and Group ID for Ajuba Solutions License Server. To helpyou
maintai n system security, Ajuba Solutions License Server runsusing these IDs
rather than running as root.

4) Enter aport number. Ajuba Solutions License Server uses this port for
communication with TclPro tools and for administration. The recommended
port is the default, 2577.

5) Enter adestination directory for Ajuba Solutions License Server. Theinstaller
copiesall the Ajuba SolutionsLicense Server filesinto thisdirectory except for
those files used by the system to automatically start and stop Ajuba Solutions

License Server. See Appendix A for moreinformation about thefilesinstalled.

If you haveaprior version of AjubaSolutionsLicense Server already installed,
install the release version in a different directory. After installing the release
version, see the sections on licensing and upgrading in the README file of
your new installation for information on how to uninstall the prior version and
update your licenses.

Installing TclPro

11

12

Note

Important

6)

7)

8)

Enter alog directory. Because log information can grow large over time, you
might like the log files to exist on adisk different from the one on which you
install the other Ajuba Solutions License Server files.

Theinstaller installs Ajuba Solutions License Server. After installation, the
installer gives you the option of starting Ajuba Solutions License Server
immediately.

Using astandard init.d script, which is created during installation, your system
will stop and start Ajuba Solutions License Server automatically upon system
shutdown and reboot. Only in rare situations, should you need to start or stop
Ajuba Solutions License Server manually.

Install other software from the CD-ROM as desired (for example, Adobe
Acrobat Reader), or unmount the CD-ROM as described in “Unmounting the
CD-ROM.”

After completing theinstallation, you must configure Ajuba Solutions License
Server through its Web browser interface. To display the Ajuba Solutions
License Server Web interface, launch a Web browser and open the following
URL:

http://host name: port/

where hostname is the hostname of the system running Ajuba Solutions
License Server and port is the port number you assigned during installation.
Thefirst time you connect to the Ajuba Solutions License Server Web
interface, the Set Initial Configuration page is displayed; it promptsfor initial
configuration information, including Shared Network License keys. You can
find your license key:

* Onyour CD-ROM case

* Onthe packing list included with your TclPro shipment

* Inanemail sent to you after you purchased TclPro

See Appendix A for more information about configuring Ajuba Solutions
License Server.

Changing TclPro License Information

You need alicenseto use any TclPro application. The TclProinstaller promptsyou
for license information during installation. You can change your license
information afterwards by running the TclPro License Manager:

Chapter 2

e OnaWindows system, select TclPro License Manager from the Start menu or
run the prolicense.exefile, which is contained in the win32-ix86\bin
subdirectory of the TclPro installation directory.

* OnaUnix system, to run the graphical version, run prolicense, whichis
contained in the platform-specific bin subdirectory of the TclPro installation
directory (solaris-sparc/bin for Solaris, linux-ix86/bin for Linux, hpux-
parisc/bin for HP-UX, and irix-mips/bin for IRIX).

e OnaUnix system, to run the command-line version, run prolicense.tty, which
is contained in the platform-specific bin subdirectory of the TclPro installation
directory (solaris-sparc/bin for Solaris, linux-ix86/bin for Linux, hpux-
parisc/bin for HP-UX, and irix-mips/bin for IRIX).

You must provide your name and alicense key to TclPro License Manager. You can
find your license key:

* Onyour CD-ROM case
* Onthe packing list included with your TclPro shipment

* Inanemail sent to you after you purchased TclPro or download an evaluation
copy

If you do not have avalid license, you may purchase one from
http: //mww.ajubasol utions.convbuy or obtain afree 15-day evaluation licensefrom
http: //www.aj ubasol utions.convtclpro/eval.

Installing Adobe Acrobat Reader

Adobe Acrobat Reader 3.0 isrequired to view the online version of the TclPro
User’s Guide. To install Adobe Acrobat Reader:

1) Mount the TclPro CD-ROM and runtheinstaller as described in“ Mounting the
CD-ROM and Running the Installer.”

2) Select the “Adobe Acrobat Reader Version 3.02" option.

3) Select aninstallation directory for Adobe Acrobat Reader. Note that you must
have permission to install to the directory that you select.

4) Install other software from the CD-ROM asdesired, or unmount the CD-ROM
as described in “ Unmounting the CD-ROM.”

Installing TclPro

13

14

Chapter 2

Unmounting the CD-ROM

After installing the desired software, unmount the CD-ROM using the command
shown in the table below. Note that you may need root access to invoke these
commands.

Table 5 Unmounting the CD-ROM

Operating System Command
HP-UX umount /cdrom

[rix gect

Linux umount /mnt/cdrom
Solaris gject

Chapter 3
TclPro Interpreters and Extensions

In addition to various Tcl development applications, Ajuba Solutions TclProisan
extended Tcl platform that includes several popular Tcl extensions and enhanced
Tcl interpreters.

TclPro Interpreters

The TclPro installation includes two enhanced Tcl interpreters, protclsh83 and
prowish83. These interpreters are identical to the standard tclsh and wish
interpreters that are part of the Tcl and Tk distributions except for three
improvements:

protclsh83 and prowish83 are precompiled for all of the TclPro supported
platforms. You don’t need to compile them from source files.

protclsh83 and prowish83 support all the extensionsincluded with TclPro, as
discussed in “Extensions Incorporated in TclPro” on page 16.

protclsh83 and prowish83 support an extension called tbcload. This
extension isrequired to run the bytecode files created by TclPro Compiler.

Running the TclPro Interpreters on Unix
To simplify running protclsh83 and prowish83 on Unix systems:
1. Addthe TclPro bin directory to your PATH environment variable.

Thisis aplatform-specific directory in the install area of TclPro where al the
executables are kept. It is solaris-sparc/bin for Solaris, linux-ix86/bin for
Linux, hpux-parisc/bin for HP-UX, and irix-mips/bin for IRIX. For example,
if TclProwasinstalled in /opt/TclPro, you should add /opt/TclPro/solaris-
sparc/bin to the PATH environment variable on Solaris platforms.

. 15

16

2. If your scripts start with the following lines, they will be processed by
protclsh83 automatically:
#!/bin/ sh
the next line restarts using protclsh83 \
exec protclsh83 "$0" "$@
You can modify this line to include prowish83 or the interpreter of your choice.
See the manual pages for protclsh83 or prowish83 for more information.

Running the TclPro Interpreters on Windows

If you are using Windows, you do not need to modify your path; the TclPro
installer does this automatically. The TclPro installer also registers prowish83 to
handle files with the .tcl extension.

Extensions Incorporated in TclPro

Important

Chapter 3

TclPro incorporates several widely-used Tcl extensions with its distribution.
Beyond simply providing source code for the extensions, TclPro integrates the
extensionsin several waysto makeit easier for you to use the extensions in your
applications:

e Each extensionis pre-compiled for al of the TclPro supported platforms.
You don't need to compile them from source files. If you are writing a
custom interpreter, Chapter 8, “ Creating Custom I nterpreters with TclPro”
on page 111 describes the locations of the extension libraries and provides
information about linking with them.

* The enhanced TclPro interpreters, protclsh83 and prowish83, provide
built-in support for all incorporated extensions.

e TclPro Checker and TclPro Debugger understand all new commands and
control structures implemented by each extension.

e TclPro Wrapper provides built-in support for creating wrapped
applications that use the bundled extensions.

The following sections describe each of the extensions bundled with TclPro.

Each extension traditionally provided its own custom interpreter with built-in
support for that extension’s commands and control structures (for example, itclsh
or expect). With TclPro, support for these extensions is provided by the
protclsh83 and prowish83 interpreters. To use the features of a particular
extension, you must execute an appropriate package require command before

using any of the commands or control structures of that extension. Table 6 liststhe
necessary package require command for each supported extension.

Table 6 Required Commands for Loading Supported TclPro Extensions

Extension Required Initialization Command
Expect package require Expect

[incr Tcl] packagerequire I tcl

[incr TK] package require Itk

[incr Widgets] package require lwidgets

TclX package require Tclx

TkX package require Tkx

[incr Tcl]

[incr Tcl] adds object-oriented programming support to Tcl. [incr Tcl] allows you
to create objectsin Tcl scripts, which act as building blocks for an application.
Each object can contain its own data and procedures for manipulating the object.
Objects are organized into classes with identical characteristics, and classes can
inherit functionality from one another.

[incr Tcl] includes the [incr Widgets] library of more than 50 “mega-widgets,”
including a combo-box, a tabbed notebook, a calendar, and an HTML viewer.
These widgets work just like the usual Tk widgets, so you can use them even if
you don't know anything about object-oriented programming. [incr Tcl] also
comes with the [incr Tk] framework for creating your own mega-widget classes.

For more information about [incr Tcl], visit the web site http: //www.tcltk.convitcl.
You can aso refer to the book [incr Tkl/TK] fromthe Ground Up, by Chad Smith,
published by Osborne/McGraw-Hill, 2000.

Expect

Expect isatool for automating interactive applications that have a command-line
interface. Expect makes it easy to automate repetitive tasks or to add a graphical
interface to an existing command-line tool.

For more information about Expect, visit the web site http://expect.nist.gov. You
can also refer to the book Exploring Expect: A Tcl-based Toolkit for Automating
Interactive Programs, by Don Libes, published by O'Reilly & Associates, 1994.

TclPro Interpreters and Extensions

17

18

Note

Chapter 3

Expect command names that “collide” with command namesin the Tcl/Tk core
(for example, send) can confuse TclPro Checker when it checks an Expect script,
causing it to report syntax errors. To avoid this, use the exp__ prefix for all such
ambiguous commands (for example, use exp_send instead of send).

Extended Tcl (TclX)

Extended Tcl (TclX) provides additional support for systems programming tasks
and large application development. Features of TclX include:

Enhanced file manipulation and scanning

Additional list manipulation commands

Additional math commands

Additional string commands

X/Open Portability Guide, Version 3 (XPG/3) message catal og support
Extended Unix access

A help facility

For more information about TclX, visit the web site http: /mww.neosoft.convtclx.

Chapter 4
TclPro Debugger

TclPro Debugger provides avariety of features that help you to find and fix bugs
in Tcl scripts quickly. These featuresinclude:

* Stepping functions for evaluating single Tcl commands or running to where
you have placed the cursor in the code

* Display of variable values for all accessible stack frames

* Full stack information and navigation around the stack and source code when
the application is stopped

e Line and variable-based breakpoints

e AnEva Consolein which you can enter code for the application to evaluate
dynamically when the application is stopped

* Theability to interrupt code to determine the execution status of the
application that you are debugging

* The ability to communicate with remote and embedded applications

Overview of TclPro Debugger

Important

This section lists the platforms and Tcl versions that TclPro Debugger supports. It
then describes how to start TclPro Debugger and provides atour of the TclPro
Debugger main window.

Supported Tcl Versions

TclPro Debugger can debug any Tcl/Tk script runningin a Tcl version 7.6 and Tk
version 4.2 or later interpreter. Thisincludes any extensions to those interpreters
that do not radically redefine any standard Tcl commands.

Renaming or radically redefining any standard Tcl commands may cause TclPro
Debugger to fail. An example of aradical redefinition of the proc command

. 19

would be to redefine it to take four arguments instead of three. In particular, avoid
atering the Tcl commands listed below:

array break catch cd
close concat continue eof
error eva event exit
expr fconfigure file fileevent
flush for foreach gets
global if incr info
lappend lindex linsert list
[length Irange Ireplace Isearch
namespace open proc puts
pwd read regexp regsub
rename return set string
switch trace unset uplevel
upvar variable vwait while

Starting TclPro Debugger

If you are running TclPro Debugger on a Windows system, select TclPro
Debugger from the Start menu or double-click the prodebug.exe icon. If you are
running Unix, add the release directory to your execution path, and enter
prodebug at the prompt.

The TclPro Debugger Main Window

Figure 1 shows the main window that TclPro Debugger displays when it starts.
The main window includes the following subregions:

e Tool bar

e Stack display

e Variabledisplay
e Code display

* Result display

Chapter 4

Figure 1 TclPro Debugger Main Window

Stack Display Project Title Tool bar Variable Variable Code

File Edit

i TclPro Debugger: Fac
“iew Debug

Breakpoint Display Display

L T I I

Stack Frames “Wariakle I Yalle |
0 global L s p— 4
0 source fac.tcl ¥V result 4

Ll proc factorial result

Code Bar

13 # Tail-recursive implementation of the factorjial B
14 # Az a side-effect, the global value of "n" iE de
15 #
16
-- 17 proc factorial {result} {
18 global n
-- 19 if {%n <= 1} {
-- 20 return 5result
21 '
—% 2z et result [expr {5n * Sresult!}]
-- 23 incr n -1
o 24 return [factorial Sresult]
25}
Z2a
27 #
28 # Set max to the value of the command line argument. «|
ICode: QK Result: 4
|variab|e breakpoint | “Tl ...fdemosﬁiﬂcﬁac.tcl:EE
| |
Variable Breakpoint Status Bar Result Display An asterisk File name and
. . indicates an line number
Line Breakpoint uninstrumented
application

TclPro Debugger

21

22

Chapter 4

The main window, as shown in Figure 1, includes menus and atool bar, in which
you run, step through, interrupt, kill, or restart your code. You can change the
appearance of TclPro Debugger by toggling the display of various elements of the
Main window:

Tool bar Select View | Toolbar from the menubar

Results display
Select View | Result from the menubar

Statusbar Select View | Status from the menubar
Line numbers

Select View | Line Numbers from the menubar
The Tool Bar

Figure 2 shows the tool bar, with callouts identifying each of the buttons. The
function of each button is described in the following sections.

Figure 2 TclPro Debugger Tool Bar

Step Run to Restart Breakpoint Procedure
Over Cursor Stop \ Window Window
B W I e
Run— ¥ 7 " ofr 7up Tl s A i Watch
Variable
Step Step Stepto Kill Refresh Eval window

In Out Result Console

When you hold your mouse over atool bar button, a description of the
functionality of that button appearsin the left side of the status bar.

The Stack Display

The Stack Display shows the most recent stack levels and highlights the current
location in your code when the application is stopped. If you select a stack level,
TclPro Debugger shows the code and variable values for that stack level in the
code display and the variable display. When the application encounters a
breakpoint, the last stack frame is automatically selected and highlighted in the
Stack Frame display. The call stack includes an entry for each distinct scope or
body of code. It displays stack frame information in this format: stack level, Tcl
command, and relevant arguments. Stack level 0 indicates the global level. Stack
level 1 indicates that a procedureisinvoked from level O; stack level 2 indicates
that a procedure isinvoked from stack level 1, and so on.

Note

If your code isin an event loop when you click the Stop button, no code is shown
in the Code display and the top level in the stack frame displays “event.”

The following example shows a sample stack frame:

0 gl obal
source myScriptFile
proc myProc argl arg2 arg3
nanespace eval mnyNanespace
proc myproc3
upl evel
1 proc nyproc3 args
In this example, the stack level isreset to O by the uplevel command; the uplevel
command can be called explicitly in your source code or implicitly by a callback.
Aswith any other procedure call, the namespace eval command creates a new
level.

You can navigate through the application by clicking on specific stack frames,
which affects both the Variable and Code displays. When you double-click any
part of a stack frame, the Code display scrollsto and highlights the current
command in that stack frame. For example, if you want to see the code that caused
a stack frame to be created, you can double-click the frame directly above the
framein question. In addition to highlighting the current command, if the last
stack frame is selected, TclPro Debugger indicates the current command with a
yellow Run Arrow in the Code bar. TclPro Debugger also indicates the current
command with agreen triangular History Arrow in the Code bar. When you click
a stack frame, the Variable display shows the variablesin that stack frame. For
example: if you want to see global variables, you can double-click any Level 0
stack frame. If you click directly on an argument in a proc stack frame, the
Variable Window scrolls to and highlights the selected argument.

oSO wNEFE O

The Variable Display

The Variable display shows all of the existing variables in the highlighted stack
frame. The value of each variable is updated whenever the application is stopped.
The value for each array appears as an ellipsis(...). You can expand and contract
the display of the array by clicking the ellipsis. When an array is expanded, each
index is listed with its corresponding value. You can click to the left of the name
of the variable to set a variable breakpoint, which causes the application to stop
whenever the chosen variable is modified. See “Manipulating Breakpoints’ on
page 46. Large variables are abbreviated in the Variable display. To see the
complete value, double-click the variable, and the Data Display window appears.
See “Displaying Data’ on page 52.

TclPro Debugger

23

24

Chapter 4

If the message “No variable info for this stack” appears in the Variable display, it
means that the stack level that is highlighted in the Stack display is hidden. Stack
levels are hidden as aresult of callsto Tcl commands like vwait and uplevel.
When vwait is called, it creates anew stack, and all of the non-zero levels of the
old stack are hidden until the vwait call returns. When uplevel is called with the
absolute level for x, al of the levels of the old stack that are greater than x are
hidden until the uplevel cal returns.

The Code Display

The Code display shows exactly one Tcl code source at atime. A code sourceis
either afile opened in the File menu, afile that has been sourced by the
application, or achunk of code dynamically created at runtime by commands such
as eval. The Window menu lists all the open files, allowing you to select the file
you want to view. You can aso select a code source to view from the Breakpoint
and Procedures windows. See “Using Breakpoints’ on page 45 and “Finding
Procedures’ on page 49.

When the application is stopped, an arrow or triangle appears in the code bar
indicating the current command with highlighted text. For example, in Figure 1 on
page 21, the portion of the code that is highlighted is code that is about to be
executed and it is also indicated by the yellow run arrow in the code bar. Codeis
also highlighted if it isfound using the Find command. See “ Going to a Specified
Line” on page 48 for information on commands that you can use to move through
and search for specific portions of code.

The main window includes a status bar. The left portion of the status bar displays
the information about the state of the debugger session, or information about the
tool bar buttonsif you place your cursor over a button. The center displaysan
asterisk (“*”) if the current code source is uninstrumented; see “ About TclPro
Instrumentation” on page 56. The right portion displays the current file name and
line number.

If you see the message “No Source Code...” in the Code display, there are two
possible reasons:

e If your application isin the event loop when you click the Stop button, TclPro
Debugger cannot display code because no code is being evaluated.

* TclPro Debugger cannot display code for thefirst stack level labeled “global”
because your application’s code is sourced by codeinternal to TclPro
Debugger.

Note

The Result Display

The Result display shows the result and completion code of the most recently
executed Tcl command. The Result display is not a scrolling window; TclPro
Debugger displays only as much of the result as can fit in the Result display. You
can double-click on the result to display it in the Data Display window (see
“Displaying Data’ on page 52).

The performance of TclPro Debugger can decrease if your application produces
particularly long results (for example, reading alarge fileinto avariable) and you
have the Result display visible. If you want to increase performance in cases like
this, toggle off the Result display by selecting View | Result from the menubar.

Setting Preferences

You can specify preferences to customize TclPro Debugger. To modify
Preferences, select Edit | Preferences from the menubar. Click the tabsto select
your preferences for Appearance, Windows, Instrumentation, and Startup and
Exit, and Other preferences.

Appearance Preferences
The Appearance Preference tab is shown in Figure 3.

Figure 3 The Appearance Preference Tab

Preferences

fppearance | Windawsl Startup & Exit | Dtherl

— Font

Type IEnurierNew d Size |1EI v|

— Colors

Highlight | Highlight Cir E rrar - Highlight On Fesult |

(1] I Cancel Apply

You can choose the following Appearance preferences:

TclPro Debugger

25

26

Tip

Note

Chapter 4

Type The name of the font used to display code, stack frames, variables, etc.
Size The size of the font used to display code, stack frames, variables, etc.

TclPro Debugger attempts to optimize your font and size preferences.
If you enter afont that is unavailable, TclPro Debugger findsasimilar
font on your computer and substitutesit. Ajuba Sol utions recommends
that you only use fixed-width fonts.

Small font sizes can cause misalignment of the symbolsin the Code
Bar and their corresponding lines of code. If you experience problems,
increase the font size.

Highlight The color TclPro Debugger uses when it stops to highlight the next
command it will execute

Highlight On Error
The color TclPro Debugger uses to highlight acommand in which it
finds an error

Highlight On Result
Thecolor TclPro Debugger usesto highlight codeit just executed after
a Step To Result

After changing the Appearance tab settings, click the OK button to save your

choices and close the Preferences window, the Cancel button to cancel your

choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Window Preferences
The Windows Preference tab is shown in Figure 4.

Figure 4 The Windows Preference Tab

Preferences

.-’-'«ppealancel Winduwsl Startup & E:-:itl Dtherl

— Ewal Conzole

Screen Buffer Size I 300 Hiztary Buffer Size I B4

— Code Window

Tab Size I a

k. I Cancel Apply

You can modify the following Windows preferences:

Screen Buffer Size
The number of lines of output retained by the Eval console

History Buffer Size
The number of commands retained in the Eval console history buffer

Tab Size
The number of characters between each tab stop.

After changing the Windows tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your
choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Startup and Exit Preferences
The Startup & Exit Preferencetab is shown in Figure 5.

TclPro Debugger

27

28

Chapter 4

Figure 5 The Startup & Exit Preference Tab

Freferences

Appearancel Windows | Startup & E:-:itl Other |

— Startup

¥ Feload the previous project on startup,

— Exit
& On exit, ask if the application should be kiled. ¥ “wam before kiling the application.
' On exit, always kil the application,

' On exit, always leave the application mwinning.

Ok, Cancel Apply

The Startup preference controls TclPro Debugger’s behavior when you start the
debugger:

Reload the Previous Project on Startup
TclPro Debugger reloads the project you had open when you last
exited TclPro Debugger

The Exit preferences control TclPro Debugger’s behavior when you quit the
debugger:

On exit, ask if the application should be killed
TclPro Debugger promptsyou to kill the application when you exit the
debugger

On exit, always kill the application
TclPro Debugger always kills the application when you exit the
debugger

On exit, always leave the application running
TclPro Debugger leaves the application running when you exit the
debugger

Warn Before Killing the Application
TclPro Debugger always prompts you when you are about to perform
an action that would kill the application

After changing the Startup & Exit tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your

choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Other Preferences
The Other Preferencetab is shown in Figure 6.
Figure 6 The Other Preference Tab

Freferences

Appearancel Windows | Startup & EHitI Other |

— Browser

&' Use default brovwser.

" Choose an altemative browser,

Cormmand Lire:

 wharnings

¥ warn when moving invalid breakpaints.

0K Cancel Apply

TclPro Debugger uses a Web browser to display the Ajuba Solutions Web site
when you click on the Ajuba Solutions URL in the About TclPro Debugger
window and to display online help on Unix systems.

You can select one of the following choices for your Web browser with TclPro:

Use default browser
TclPro Debugger uses the default browser on your system. (This
option isn't available on Unix systems.)

Choose an alternate browser

On Windows, you see the pathname of your default browser. You can

enter the pathname of an aternate browser here.

On Unix, TclPro Debugger displays a drop-down list with default
command line arguments for launching Netscape and I nternet

Explorer. For these optionsto work, the executablefor the browser you
select must appear in one of the directoriesin your PATH environment

variable. Alternatively, you can enter the pathname of a browser,

TclPro Debugger

29

30

including any flags necessary so that TclPro Debugger can launch the
browser with a given URL (for example, /usr/local/bin/netscape
-no-about-splash)

Warn when moving invalid breakpoints
If you wish to see a warning message whenever you move invalid
breakpoints, put a check in this checkbox.

After changing the Other tab settings, click the OK button to save your choices
and close the Preferences window, the Cancel button to cancel your choices and
close the Preferences window, or the Apply button to apply your choices and keep
the Preferences window open.

Managing Projects

Note

Chapter 4

You can manage multiple projects with TclPro Debugger. TclPro Debugger saves
project information in files with the .tpj extension. Projects store a variety of
information about an application including:

e thename of theinitia Tcl script

e theinterpreter

e any command-line arguments you pass to the script
* the current working directory

e any line breakpoints you have set

e any variablesin your watch list

By default, when TclPro Debugger starts, it automatically reloads the last project
you had open. You can change this behavior as described in “ Startup and Exit
Preferences’” on page 27.

You must have a project open to perform any debugging actions.

Creating a New Project
To create a new project:

1. Select File| New Project from the menubar. If you have a project already open,
TclPro Debugger prompts you to save that project.

TclPro Debugger then opens the Project window shown in Figure 7.

Note

Figure 7 The TclPro Debugger Project Window

Application I Instrumentation I Ermors I

— Debugging Type
& Local Debugging ' Remote Debugging

— Local Debugging
Script:

' LI Browse |

Script Arguments:
| 5l
working Directory:
| 5l

Interpreter:

I LI Browse |

QK I Cancel | Apply |

Select Local Debugging to debug a Tcl script running normally on your
system. Select Remote Debugging only to debug a remote, embedded, or CGlI
Tcl application. See “ Debugging Remote, Embedded, and CGI Applications’
on page 57 for information on remote debugging.

In the Script field, type the path and name of the Tcl script to run, or click the
Browse button next to the field to locate the Tcl script.

(Optional) In the Script Arguments field, type any script arguments you want
to pass to the script when you run it under the debugger.

(Optional) In the Working Directory field, type the full path of the directory
that you want to use for the working directory inside the Tcl/Tk script. If you
don't specify aworking directory, TclPro Debugger uses the directory which
contains the Tcl script you are debugging.

In the Interpreter field, type the path and name of the Tcl interpreter or click
the Browse button next to the field to locate the interpreter. You can use any
Tcl interpreter, such as prowish83, protclsh83, or acustom Tcl shell. You can
also choose one from the drop-down list, which contains alist of Tcl
interpreters set by your project defaults.

TclPro Debugger works properly with most custom Tcl interpreters. However,
if your interpreter doesn't accept asitsfirst command-lineargument aTcl script
to execute or if it doesn't pass subsequent command-line arguments to the

TclPro Debugger

31

32

Tip

Chapter 4

script using the standard argc and argv Tcl variables, then you must take
specia stepsto useyour interpreter with TclPro Debugger. See* Using Custom
Tcl Interpreters with TclPro Debugger” on page 61 for more information.

If there are one or more interpreters you commonly use, you can change your
default project settings to include them in the Interpreter drop-down list:

a) Bring up the default project settings, as described in “ Setting Default
Project Settings’ on page 39.

b) Type the path and name of the Tcl interpreter or click the Browse button
next to the field to locate the first interpreter you want to appear in the
drop-down list.

¢) Repeat b) for each interpreter that you want to add to the list.

d) Saveyour default project settings.

The interpreters you specify are now available for al new projects you create
afterwards.

7. Thelnstrumentation and Errorstabs allow you to fine tune TclPro Debugger’s
control over your application asyou debug it. See* Changing Project Settings”
on page 33 for information on these tabs.

8. Click the OK button to apply your choices and close the Project window, the
Cancel button to cancel your choices and not open the new project, or the
Apply button to apply your choices and keep the Project window open.

Once you create your new project, TclPro Debugger displays the Tcl script file
you specified in the Code display of the main window. TclPro Debugger does not
run the script until you tell it to do so, as described in “ Controlling your
Application” on page 41.

Opening an Existing Project
There are two ways that you can open an existing project in TclPro Debugger:

* Select File| Open Project from the menubar and select the project file you want
to open from the file browser displayed.

* Sdlect File | Recent Projects and select the project file you want to open.

If you already have a project open, TclPro Debugger first asks you whether or not
you want to save that project before opening the project you select.

When you open an existing project, TclPro Debugger restores all of the project
settings and breakpoints in effect when you saved the project. TclPro Debugger
aso displays the Tcl script file that you were viewing when you saved the project.

Note

Saving a Project

To save aproject, select File | Save Project from the menubar. The first time you
save a project, specify the file name and location for your project. TclPro
Debugger saves your project settings and any breakpoints and any watch variables
you have set.

To save a project with a different name, elect File | SaveAs Project from the
menubar.

Closing a Project

To close a project, select File | Close Project from the menubar. If you made
changes, TclPro Debugger asks you whether or not you want to save the project
before closing it.

Closing a project closes the project file and clears all the TclPro Debugger
displays.

Changing Project Settings

To change the settings of the currently open project, select File | Project Settings
from the menubar. TclPro Debugger displays the Project window shown in
Figure 7 on page 31. From this window you can change the script, interpreter,
instrumentation, and error settings for the project as described in the sections
below.

Changes that you apply to your project settings while your application is running
don't take effect until the next time you restart your application.

Changing Project Application Settings

The Application tab of the Project window lets you select basic application
settings such as the Tcl script to debug and the Tcl interpreter to use. The contents
of the Application tab depend on the Debugging Type option you select:

Local Debugging
Debug a Tcl script running normally on your system.
Remote Debugging
Debug aremote, embedded, or CGI Tcl application. See “Debugging

Remote, Embedded, and CGI Applications’ on page 57 for
information on remote debugging.

If you select the Local Debugging option, the Application tab appears as shownin
Figure 8.

TclPro Debugger

33

34

Chapter 4

Figure 8 The Project Application Settings Tab, Local Debugging

Application I Instrumentation I Ermors I

— Debugging Type
& Local Debugging ' Remote Debugging

— Local Debugging
Script:

IEI:.-"F'rogram Filez/TclPral.4/demos/fac. tel LI Browse |
Script Arguments:

i <]

working Directory:

[/]

Interpreter:

IEI:.-"F'rogram Filez/T clPral. 4/win32-ix86/bin/protclsh83. exe LI Browse |

QK I Cancel | Apply |

You can change the following Local Debugging settings for a project:

Script Type the pathname of the Tcl script to run, or click the Browse button
next to the field to locate the Tcl script. You can also select the script
from the drop-down list, which lists scriptsthat you have used recently
in this project.

Script Arguments
Type any script arguments you want to passto the script when you run
it under the debugger. You can al so sel ect the arguments from the drop-
down list, which lists the arguments that you have specified recently
in this project.

Working Directory
Typethefull path of the directory that you want to use for the working
directory inside the Tcl/Tk script. If you don’t specify aworking
directory, TclPro Debugger uses the directory that contains the Tcl
script you are debugging. You can also select the working directory
from the drop-down list, which lists the working directories that you
have used recently in this project.

Interpreter Type the path and name of the Tcl interpreter or click the Browse
button next to the field to locate the interpreter. You can use any Tcl
interpreter, such as prowish83, protclsh83, or acustom Tcl shell. You
can also choose one from the drop-down list, which contains Tcl

Note

Note

interpreters that have been installed in the standard locations on your
computer and any other Tcl interpretersthat you have previously
specified for this project.

TclPro Debugger works properly with most custom Tcl interpreters.
However, if your interpreter doesn't accept asits first command-line
argument a Tcl script to execute or if it doesn't pass subsequent
command-line argumentsto the script using the standard argc and argv
Tcl variables, then you must take special steps to use your interpreter
with TclPro Debugger. See “Using Custom Tcl Interpreters with
TclPro Debugger” on page 61 for more information.

If you select the Remote Debugging option, the Application tab appears as shown
in Figure 9.

Figure 9 The Project Application Settings Tab, Remote Debugging

Froject: Fac

Application | Instrumentation | Errars |

— Debugging Type
¢ Local Debugging & Femote Debugging

— Port
Listen far remote connection on port number: I 2574

oK | Cancel | Apply |

The only application setting you can change when debugging remotely isthe TCP
port that TclPro Debugger uses to communicate with the remote application. This
isthe port that you need to pass to debugger _init when starting your debugging
session from aremote application. See “ Debugging Remote, Embedded, and CGlI
Applications’ on page 57 for information on remote debugging.

Changes that you apply to your project settings (by clicking either the OK or
Apply button) while your application is running don't take effect until the next
time you restart your application.

TclPro Debugger

35

36

Chapter 4

Changing Project Instrumentation Settings

The Instrumentation tab of the Project window, shown in Figure 10, lets you
select files and classes of procedures that TclPro Debugger should and should not
instrument. Instrumenting afile gives TclPro Debugger control over its execution,
and allows you to set breakpoints, single-step through the file, and perform other
debugging tasks. If afileisnot instrumented, you can't perform debugging tasks
whileyour application is executing the file (or procedures defined in that file). For
more information about instrumentation, see “ About TclPro Instrumentation” on

page 56.

Some cases of when you would want to control which files are instrumented and
which files are not include:

e When you use acommon Tcl script library for several projectsin your
organization. In this case, you would most likely debug the library separately
and then instruct TclPro Debugger not to instrument the library when you later
debug individual projectsthat use that library.

* When you debug large applications. Instrumenting a script takes time and
slows the execution of your application. To minimize the overhead of
debugging, it is more efficient to instrument and debug portions of your
application separately.

Figure 10 The Project Instrumentation Settings Tab

Application | Instrumentation | Errars |

— Choose which files to instrument
String Match Pattern:l

Instrument all files with paths matching these patterns:

* el j Add

Except for files with paths matching these patterns:

*GUILtc] - Add
= Remaove
— Options
V' Instrument dynamic procs. IV Instrurnent Incr Tcl.

™ Instrument auto loaded scripts. IV Instrurnent Tl

¥ Instrument Expect.

oK | Cancel Apply

Note

The top half of the Project Instrumentation dialog determines the files that TclPro
Debugger instruments. (By default, al files are instrumented.) The first list box
identifies a set of filesto instrument, and the second list box identifies a subset of
exceptions that are not instrumented. File name patterns follow the string match
pattern conventions. (See the Tcl string command reference page for more
information on pattern syntax.) Whenever your application sources a script file,
TclPro Debugger compares the file name against the patterns you specify in this
dialog to determine whether or not to instrument it. For example, setting the
pattern “app*.tcl” in the first list box and “*GUI.tcl” in the second list box causes
TclPro Debugger to instrument files such as appMain.tcl and appSats.tcl, but not
instrument afile named appGUI .tcl.

To add a pattern to alist box, type the pattern in the String Match Pattern field and
then click the Add button next to the appropriate list box. To remove a pattern

from thelist, click the file or pattern to highlight it, then click the Remove button.

If you delete all patternsin thefirst list box and then apply the setting (by clicking
either the OK or Apply button), TclPro Debugger automatically adds the pattern
“*" to thefirst list box. If TclPro Debugger didn’t do this, then you could
accidentally cause TclPro Debugger not to instrument any files, in which case you
couldn’t control your application with the debugger.

The lower half of the Project Instrumentation dialog provides finer control of the
instrumentation of procedures and control structuresin ascript file:

Instrument Dynamic Procs
Instrument procedures that you create dynamically. For example,
selecting this check box instruments procedures created by the eval
command.

Instrument Auto Loaded Scripts
Automatically instrument auto-loaded scripts. You might want to turn
this option off if you are using only standard Tcl extensions.
Instrument [incr Tcl]
Instrument all your [incr Tcl] classes and methods.
Instrument TclX
Instrument control structuresin the TclX package, such asthe loop
command.
Instrument Expect

Instrument the contral structures in the Expect package, such asthe
expect command.

TclPro Debugger

37

38

Note

Note

Note

Chapter 4

Changes that you apply to your project settings (by clicking either the OK or
Apply button) while your application is running don't take effect until the next
time you restart your application.

Changing Project Error Settings

The Errors tab of the Project window, shown in Figure 11, lets you specify how
TclPro Debugger handles errorsin your Tcl script:

Always Stop on Errors
TclPro Debugger notifies you each time it encounters an error in the
script (TclPro stops execution of your script evenif your script catches
the error)

Only Stop on Uncaught Errors
TclPro Debugger notifies you only when it encounters an error not
caught by the script (TclPro stops execution of your script only if your
script does not catch the error)

Never Stop on Errors
TclPro Debugger does not notify you about any errorsin the
application

For more information on how TclPro Debugger handles errors, see “Error
Handling” on page 54.

Changes that you apply to your project settings (by clicking either the OK or
Apply button) while your application is running don't take effect until the next
time you restart your application.

Figure 11 The Project Errors Settings Tab

Froject Fac

Application | Instrurnentation | Errars |

Errors

 Ahways stop on errors.
& Only stop on uncaught errars.

€ Mever stap on errars.

0] | Cancel Apply

Setting Default Project Settings

You can change any of the default project settings so that new projects you create
have those settings. Changing the default project settings doesn’t affect any
existing projects you might have.

For example, if you commonly use a set of packages that you don’'t want TclPro
Debugger to instrument, you could set those files in the default project settings.
Then, any new project you create would pick up those instrumentation settings by
default.

To set the default project settings.

1. If youhaveaproject already open, select File| Close Project from the menubar
to close that project.

2. Sdlect File | Default Project Settings from the menubar. (TclPro Debugger
displays this option only if you have no projects currently open.)

TclPro Debugger displays the Default Project Settings window. This window
has the same tabs and settings available as in the Project window.

TclPro Debugger

39

Figure 12 The Default Project Settings Window

Application I Instrumentation I Ermors I

— Debugging Type
& Local Debugging ' Remote Debugging

— Local Debugging
Script:

I LI Browse |

Script Arguments:

| B
working Directory:

] B
Interpreter:

IEI:.-"F'rogram Filez/T clPral. 4/win32-ix86/bin/protclsh83. exe LI Browse |

QK I Cancel | Apply |

3. Set the default project settings just as you set an individual project’s settings.
See “Changing Project Settings’ on page 33 for a description of all project
settings.

4. After changing the default project settings, click the OK button to save your
choices and close the Default Project Settings window, the Cancel button to
cancel your choices and close the Default Project Settings window, or the
Apply button to apply your choices and keep the Default Project Settings
window open.

Opening a File

Opening afilein TclPro Debugger gives you the opportunity to create or check
existing line-based breakpoints in the file before the file is sourced in the
application. Breakpoints cause the application to stop before aline of codeis
executed so that you can examine the state of the application that you are
debugging. See “Using Breakpoints’ on page 45.

To open afile:
1. Select File | Open File from the menubar.

2. Typethefull path and name of thefile or browse and click thefilethat you want
to open.

Chapter 4

Tip

Thefilethat you opened appearsin TclPro Debugger. You canview it using the
scroll bars and menus.

You can open afile at any time, even when an application is aready running.
When you open afile, TclPro Debugger reloads the file if the file has not been
sourced by the running application or if no application is running. If the
application is running and has sourced the file, modificationsto that file cannot be
seen in the Code display until that file is sourced again or thefile isreopened after
the application is terminated.

Controlling your Application

Note

This section describes how to use the basic features of TclPro Debugger.

Running Code with TclPro Debugger

Click the Run button to run your code with TclPro Debugger, as shown in Figure 2
on page 22. When the application stops, TclPro Debugger indicates the line of
codethat it is processing with an arrow and highlights the portion of theline that it
is about to execute.

Once the application is running, it stops at these events.

* At breakpoints. For information about breakpoints, see “Using Breakpoints”
on page 45.

* If anerrorisdetected, TclPro Debugger stops ontheline of codethat generated
the error, and the code that caused the error is highlighted. See “Error
Handling” on page 54.

* If you click the Run to Cursor icon in the tool bar, the application runs to the
line where you placed your cursor.

Run to Cursor

The Run to Cursor icon in the tool bar, as shown in Figure 2 on page 22, enables
you to create atemporary breakpoint that is automatically removed the next time
TclPro Debugger stops. When your application is stopped, you can move the
cursor to the line of code where you want to stop, and press the Run To Cursor
button.

If the application stops for any reason, such as encountering another breakpoint or
reaching the line containing the cursor, the temporary breakpoint is removed. The
operation of the Run to Cursor feature is similar to those of line-based
breakpoints. If the cursor isnot set, or if it ison alinethat is either empty or

TclPro Debugger

41

42

Note

Chapter 4

contains only comments or curly braces, clicking the Run to Cursor button is
equivalent to clicking the Run button. The application stops just before evaluating
the first command on the line regardless of where you place the cursor on aline of
code.

Stepping through Code

TclPro Debugger offers four ways of stepping through your scripts: Step In, Step
Out, Step Over, and Step To Result. When your application is stopped, you can
step from the current command, indicated by the yellow run arrow in the code bar.
To use the stepping features, click the corresponding button on the tool bar when
your application is stopped. See Figure 2“TclPro Debugger Tool Bar” on page 22.

If the application stops for any reason, such as encountering an error or
breakpoint, after any of the Step buttons is pressed, the step is considered to be
completed.

Stepping In

The Step In feature provides the finest granularity at which you can stop and
inspect your application. Stepping in causes the application to stop just before
executing the next instrumented command. Stepping in isuseful for following the
control flow of your application asit sourcesfiles, calls procedures, and eval uates
command substitutions.

For example, if your application is stopped on the command
myProc [incr x 5]
you can Step In and stop the application before it evaluates the subcommand

incr x 5. You can Step In again to stop the application on thefirst line of code in
the body of the myProc procedure.

The following list describes the rules of behavior for the Step In function:

e |f the current command contains subcommands, the application stops just
before eva uating the first subcommand.

* If the current command isacall to an instrumented procedure, and all
subcommands, if any exist, have been evaluated, the application stops on the
first line of code in the body of the procedure.

¢ |f thecurrent commandisacal to the sour ce command, and all subcommands,
if any exist, have been eval uated, the application stops on thefirst line of code
in the sourced file.

e If the current command is not a call to an instrumented procedure, and all
subcommands, if any exist, have been evaluated, the application stops on the
first instrumented command called by the current command.

* If the current command does not call any instrumented code, then the Step In
function behaves like the Sep Over function.

Stepping Out

Stepping out causes the application to stop before executing the next command
after the current stack level or body of code returns. The Step Out feature is useful
for backing out of code you are no longer interested in inspecting. For example: if
you are stopped in the body of the myProc procedure in the following application

1 source soneFile.tcl

2 nyProc [incr x 5]

3 nyNext Proc $x
and you would like to progress to the myNextProc $x command, you can Step
Out of the myPrac procedure, and then Step In the myNextProc procedure.

Thefollowing list describes the rules of behavior for the Step Out function:

e |f the current command isin the body of a procedure, the application stops
before executing the next command after the procedure returns.

* If thecurrent command isat the global level of afilethat has been sourced, the
application stops before executing the next command after the code in the
sourced fileis evaluated.

* If thecurrent command isat the global level of the main script file, clicking the
Step Out button behaves like clicking Run button.

Stepping Over

Stepping over causes the application to stop just before executing the next
command after the current command in your application is fully executed. The
Step Over feature is useful for following the application asit progresses through a
body of code at the current stack level. For example, suppose you are stopped on
line 1 in the following application

1 source soneFile.tcl

2 set x 1

3 nyProc [incr x 5]

4 puts $x
If you Step Over the sour ce command, the application stops at set x 1. If you
continue to click Step Over, myProc [incr x 5] becomes the new current
command, followed by puts $x.

TclPro Debugger 43

44

Note

Note

Chapter 4

The following list describes the rules of behavior for the Step Over function:

* If the current command is a call to an instrumented procedure, the application
stops before the executing the next command after the procedure returns.

* If the current command isacall to the source command, the application stops
before the executing the next command after the code in the sourced fileis
evaluated.

e |f thecurrent command isthelast one at the current stack level or inthe current
body of code, Step Over behaves like Step Out.

Stepping to Result

Stepping to Result executes the current command and stops execution. After using
Step to Result, TclPro Debugger highlights the command just executed and
displays the result and return code of that command in the Command Results
display of the debugger main window.

The Step to Result featureis useful for examining the results of nested commands.
For example, suppose you click Step In at line 3 in the following application:

1 source soneFile.tcl

2 set x 1

3 myProc [incr x 5]

4 puts $x
If you click Step to Result, your application executes the subcommand and stops.
You can then examine the result of the subcommand before continuing. By
comparison, clicking Step In again at this point would execute the subcommand
[incr x 5] and immediately Step In to myProc, and clicking Step Over would
execute both the [incr x 5] subcommand and the call to myProc before stopping.

Interrupting the Application

Clicking the Stop button causes TclPro Debugger to interrupt the application
whileit isrunning. You can interrupt the application at any time; when you
interrupt, an implicit breakpoint is added to the next command to be executed in
the script. The application stops asit would at any other breakpoint, and you can
then interact with the application.

If your codeisin an event loop when you click the Stop button, no code is shown
in the Code display and the top level in the stack frame displays “ event.”

If your application is executing uninstrumented Code or isin along-running
command, TclPro Debugger may not be able to stop the application immediately.

Killing the Application

Clicking the Kill button causes TclPro Debugger to end the application’s process.
When you kill the application that you are debugging, information about its state
isno longer available. You can then restart the application or launch another
application.

Note You cannot terminate remote applications using the Kill button. You can terminate
aremote application by interrupting the application and typing “exit” in the Eval
Console. See “Manipulating Data” on page 54.

Restarting the Application

Click the Restart button to terminate the current application and then restart the
same application. Thisis equivaent to killing the application and immediately
restarting it. When you restart an application, TclPro Debugger automatically

rel oads the main script. Thisis useful if you have modified the script to fix a bug
and want to start the application over to test the change.

If you have modified files other than the main script and wish to set or change
breakpoints in those files, you can open them by selecting File | Open File from
the menubar rather than viewing the stale files from the Window menu.

Quitting TclPro Debugger

To quit TclPro Debugger, select File | Exit from the menubar or click the Close
button in the TclPro main window.

Using Breakpoints

A breakpoint causes the application to stop so that you can examine its state. You
can add breakpoints in an application at any time. Using breakpoints, you can
obtain information, such as variables and their values, the current call stack, and
valid procedure names. TclPro supports two types of breakpoints: line-based and
variable breakpoints.

Line-based breakpoints

Line-based breakpoints enable you to specify aline of code where the application
should stop. Line-based breakpoints cause TclPro Debugger to stop before
executing each command and subcommand on the specified line. Line-based
breakpoints are persistent across runs of the application and debugger sessions.

TclProDebugger o 45

46

Note

Chapter 4

TclPro Debugger does not stop at line-based breakpoints that are set in
uninstrumented lines of code, blank lines, comment lines, and lines that contain
only curly braces. However, variabl e breakpoints can betriggered if the variableis
modified in uninstrumented code. See “About TclPro Instrumentation” on page 56
for information.

Variable Breakpoints

Variable breakpoints cause the application to stop when the variable is modified.
Variable-based breakpoints are not stored in the application after you close it, or
when the variable is removed, unset, or goes out of scope, for example: alocal
variable in a procedure goes out of scope when the procedure returns.

The Variable breakpoints track the unique location where the variable is stored in
memory rather than the name of the variable. You can not set avariable
breakpoint until the variable existsin the application.

Manipulating Breakpoints

You can create breakpoints in the main Debugger window, as shown in

Figure 1“ TclPro Debugger Main Window” on page 21. To set aline-based
breakpoint, click the code bar in the left margin in the Code display. The line-
based breakpoint appears as a small stop sign, and causes the application to stop
just before the line is executed.

To create a Variable breakpoint, click the left margin in the Variable display
adjacent to the variable. The breakpoint appearsasalarge“V” in the Variable
display. The “V” also appears in the code bar of the Code display when the
variable breakpoint is triggered causing the application to stop. The variable
breakpoint triggers when the value of the variable changes. You can also create
breakpoints in the Breakpoint window; see Figure 13, “ The Breakpoints
Window.”

To delete a breakpoint, click the breakpoint in the Code or Variable display.

Viewing Breakpoints in the Breakpoints Window

To display the Breakpoints window, click the “B” in the tool bar or by select
View | Breakpoints from the menubar. The Breakpoints window displays line-
based and variable breakpoints, as shown in Figure 13.

Note

Figure 13 The Breakpoints Window

Disabled Line
Breakpoint

Line Breakpoint

Variable Breakpoint

Disabled Variable
Breakpoint

Breakpoints

Breakpaints:

0 hig.tcl: 25

® higeUI.tcl:
¥ {color: 0}
W o{env: 0}

16

Show Code

Femowve

Femowve All

Close

i

The line-based breakpoints in Figure 13 indicate the file and line number where
the breakpoint has been set. To select a breakpoint, click the lineto theright of the
breakpoint in the Breakpoint window to highlight it. You can delete, disable, and
enable breakpoints:

To delete a breakpoint, select the line in the Breakpoint window and click the
Remove button.

To disable a breakpoint, click the breakpoint in the Breakpoint window.

The disabled breakpoint is shown as a hollow stop sign for aline-based
breakpoint or hollow “V” for a variable-based breakpoint.

To enable a disabled breakpoint, click it in the Breakpoint window.

Disabling and enabling breakpoints can be helpful when you want to keep all
of your breakpoints but may not want to use all of them at the same time.

You can select multiple breakpoints to be disabled or enabled by clicking the
breakpoints while pressing the <Ctrl> key.

You can perform the following actions on a selected breakpoint:

Click the Show Caode button to show the code at a Line-based breakpoint.

Clicking thisbutton causes Tcl Pro Debugger to display the code containing the
corresponding line in the Code display.

Click the Remove button to remove a selected breakpoint.

You can click the Remove All button to remove all of the breakpoints.

The information for a variable breakpoint in the Breakpoint window, as shown in
Figure 13, appearsin the form of two sets. Thefirst set contains the variable name
followed by the absolute stack level at which the variable breakpoint was created.
The second set contains information regarding the most recent occasion in which

TclPro Debugger 47

48

the variable breakpoint was triggered. If the second set is empty, the variable
breakpoint has never been triggered. Otherwise, the second set contains the name
and stack level of the variable that triggered the variable breakpoint. In most
cases, the second set will not differ from the first set. However, when avariableis
aliased by the global and upvar commands, any instance of that variable can
trigger the variable breakpoint. The second set is helpful when you have an
aliasing bug in your code.

Thefollowing is an example of an aliased variable a whose variable breakpoint
getstriggered by avariable named x:

1 proc foo {} {
2 upvar #0 a X
set x 52

set a 50

puts "global var a is set"
set a 51

8 foo

If you stop this application on line 6, you can create a variable breakpoint for the

global variable a. If you open the Breakpoint window, you will see the following:
{a: 0} {: }

If you continue to run the application, the variable breakpoint is triggered on line

7, the following appearsin the Breakpoint window:

{a: 0} {a: 0}
If you continue to run the application again, the variable breakpoint is triggered
once more on line 3, the following appears in the Breakpoint window:

{a: 0} {x: 1}

3
4}
5
6

~

Navigating Code

Chapter 4

TclPro Debugger provides utilities that help you can navigate to specific portions
of the code that you are debugging, including Procedures window, the Goto
command, the Find command, and the Window menu.

Going to a Specified Line
1. Select Edit | Goto Line from the menubar.
2. Typealine number in the text box.
3. Click the Goto Line button.
TclPro Debugger highlights the specified line.

Tip

You can also use the Goto What drop-down menu to move up or move down the
linesin your code from the insertion cursor. Select Move Up Linesor Move Down
Lines and type the number of lines that you want to move.

Using the Find Utility
1. Select Edit | Find from the menubar.

2. Typeacode fragment or other string in the text box to locate that string. You
can choose among several find options:

Select Match Whole Word only to find those strings that match the entire
string that you typed. This option looks for white space as a delimiter, for
example: if you searched for the string “sea” you would find all instances
of “sea’ but would not find “ seashore’.

Select Match Caseto find strings that match the case of the string that you
typed. For example, with Match Case selected, searching for the string
“sed’” would not match “Sed’.

Select Regular Expression to find strings that match the one you typed
using the search format for regular expressions; see the regexp manual
page for information. If you do not select this checkbox, it will perform
searches that match all characters exactly.

Select Search All Open Documentsto find matching stringsin al filesthat
are currently open. The Window menu displays alist of all open files. If
you don’t select this options, TclPro Debugger searches only the current
file (the one shown in the Code display).

3. Click the Direction for the search: Up or Down (default).
4. Pressthe <Enter> key to start the Find process.

TclPro Debugger highlights the code that matches the string that you typed. If
the string is not found, the Code Display does not change. You can find
subsequent matching strings by clicking the Find again command or pressing
the <F3> key.

Finding Procedures

You can use the Procedures window, shown in Figure 14, to view the list of
procedures that have been defined in your application. To open the Procedures
window, click the“P” button in the tool bar in the main TclPro Debugger window,
or select View | Procedures from the menubar.

TclPro Debugger

49

50

Chapter 4

Figure 14 The Procedures Window

Frocedures

Fattern: |* Search |

W Show Uninstrumented Procs.

[create pegs and holes - Show Code |
* debugger break

|

* debugger_eval Instrument |
#*

debugger init

find_new:moves Unmmmmeml
initialize board

move_peq Close

|

*means the procedure is uninstrurmented

To narrow down the list, you can type a pattern in the text box and click Search.
The default pattern is an asterisk (“*”) which lists all of the defined proceduresin
the application. Pattern strings can be one or more characters and follow the
search conventions that are used with the Tcl glob command. The matches for the
string are shown in the body of the Procedures window. Thisis useful for finding
specific procedures if you have large applications with many procedures. For
example: if you type “tcl*” in the text box of the Procedures window shown in
Figure 14, tclL og, tclMacPkgSearch, and all other procedures beginning with
“tcl” are displayed in the display area of the Procedures window.

You can display both instrumented and uninstrumented procedures by selecting
Show Uninstrumented Pracs. TclPro Debugger indicates that a procedureis
uninstrumented by listing the procedure preceded by an asterisk (“*”) in the
Procedures window. For more information about instrumentation, see “ About
TclPro Instrumentation” on page 56.

When you select a procedure from the list, you can perform any of the following
actionsonit:
Show Code
Display the code where the procedure is defined, or the body of the
procedure if the procedure is dynamically defined.
I nstrument
Instrument a selected procedure.
Uninstrument
Uninstrument a selected procedure.

Using the Window Menu

Select the Window menu to display al of the filesthat are open in TclPro
Debugger.

Displaying Code and Data

TclPro Debugger provides severa windows in which you can display and monitor
specific aspects of the application that you are debugging. These include the
Watch Variable window, and the Data Display window. For information on the
Breakpoints window, see “Viewing Breakpoints in the Breakpoints Window” on

page 46.

Watching Variables

To open the Watch Variables window, click the “W” in the tool bar of the main
window Select View | Watch Variables from the menubar. The Watch Variables
window is shown in Figure 15 on page 51.

The Watch Variables window displays the variable names and their values at the
stack level that is highlighted in the stack display. The valuesin the Watch
Variables window are updated each time the application stops and also each time
you select anew stack level in the Stack display in the main window. If avariable
nameis not defined at the selected stack level, then “<No Value>" appearsinstead
of avalue.

Figure 15 The Watch Variables Window

YWatch Wariables

Variable: | Add

Yariable I Yalue | Data Display
b4 157
v 186 Remaove

Femowve All

dIAS

Close

To add a variable name to the Watch Variables window:
1. Typethe variable name in the text box of the Watch Variables window.
2. Click Add or press the <Return> key.

TclPro Debugger

51

52

Chapter 4

The variable name and the current value of the variable are displayed in the
large window.

You can remove aspecific variable name by selecting the line, and clicking the
Remove button, or clicking Remove All to remove all the variables.

If you select avariable and click the Data Display button, the Data Display
window appears.

The Watch Variables window is useful for observing variables in different stack
levels that have the same name. For example: suppose the following script is
stopped just before executing line 10:

1 proc bar {x} {
2 puts $x
31}
4
5 proc foo {y} {
6 baz [expr {$y + 3}]
7}
8
9 set x 2
10 foo $x
The stack display is shown below:
0 gl obal

0 source sanple.tcl

1 proc fooy

2 proc bar x
If you are watching the variable named X, you will see the value change as you
select different stack levels. At level 2, x hasthe value 5. At level 1, xis not
defined, so “<No Vaue>" isdisplayed. At level 0, x has the value 2.

Displaying Data

To open the Data Display window, double-click avariable in the Variable display
in the main window or double-click avariable in the Watch Variable window, or
select View | Data Display from the menubar. The Data Display window is shown
in Figure 16 on page 53.

The Data Display allows you to see the full unabbreviated value of avariable,
which can be helpful if you are looking at long strings.

There are two ways to change which variable is displayed in the Watch Variable
window:

* Double-click avariable in either the Variable display or the Watch Variable
window.

* Typethe variable name in the text entry box and type <Return> or click the
Inspect button.

The variable is linked to the stack level that is highlighted in the Stack display at
the time the variable is entered in the Data Display window. Once the variableis
entered, changing the stack level in the Stack display will not affect the value of
the variable. The value that is displayed for the variable is updated each time the
application stops. If “<No Value>" appears, it means that either the variable was
unset or the stack level attached to the variable has returned. Like variable
breakpoints, a variable in the Data Display is associated with alocation in
memory. Once “<No Value>" appears, the previous memory location is no longer
reserved for that particular variable, so “<No Value>" for the variable will
reappear.

Figure 16 The Data Display Window

. Jata Display
Text box for changing | Lkeelml ey
the variable to inspect Yarahle: Iresult Display | Clase |
Stack level is linked
to the variable _“ariahle Mame: result Stack Lewel 1
Drop-down menu
for choosing Wiew As: [Line Wrap _v'J
display options

4 il
Display area

-
1 |»

Use the drop-down View As menu to select the format for the variables. TclPro
Debugger attempts to match the display to the variable type, for example, if the
variableisscalar, it will display with linewraps, and if it isan array, it will display
as an array. You can view the variable with the following formats:

Linewrap Wrapthelinewhen it exceedsthelength of the display window, which
isthe default display for scalar variables.

Raw data Does not modify the display.

List TclPro Debugger treats the variable value asa Tcl list, extracts the
elements of the list, and displays each element on a separate line.
Array Each element is displayed as a separate item with a name and value.

TclPro Debugger

53

54

Note

Ordered lists can be displayed as arrays.

Manipulating Data

Tip

To open the Eval console, click the“E” in the tool bar or select View | Eval
Console from the menubar. The Eval consoleis shown in Figure 17 on page 54.

Using the Eval console, you can invoke commands in an application any time that
the application is stopped. If you see something that is wrong or missing while
debugging a program, you can type the missing information in the Eval console
and it isimmediately evaluated in the application.

Figure 17 The Eva Console

Ewal Console
Stack Level: ID 'l Close |
1% fac 6 =

720

2 % zet iter 1
1

3%

-

Using the Eval console, you can evaluate commands at any visible stack level.
You can aso call procedures from the Eval Console. You can choose among the
available stack levels using the Stack Level drop-down arrow. Choosing the stack
level isuseful for setting global variables at level 0 and for calling procedures at
various levels. When the Eval Console first appears, the default level isthe
deepest level in the stack display.

You can also change the stack level in the Eval console by typing <Ctrl+Plus> to
move to the next higher level stack frame or <Ctrl+Minus> to move to the next
lower stack frame.

Error Handling

Chapter 4

TclPro Debugger detects all errorsin the application including runtime and
parsing errors.

Parsing Error Handling

A parsing error isan error that is caused by code that is not syntactically valid. An
example of aparsing error is a script that is missing a close brace. TclPro
Debugger detects parsing errors during instrumentation, whenever afileis
sourced or a procedure is created dynamically by the application.

When a parsing error occurs, TclPro Debugger cannot understand the script’s
control flow following the error, and cannot continue instrumenting the code.
TclPro Debugger displays a dialog box in which you choose to either quit the
application or continue the application with the partially instrumented script. If
you choose to continue debugging the partially instrumented script, the same error
appears as aruntime error if the code is executed. See “ About TclPro
Instrumentation” on page 56 for details on the implications of continuing despite
the parsing error.

Runtime Error Handling

An example of aruntime error is an attempt to read a non-existent variable.
TclPro Debugger detects al runtime errors, including both those caught and those
not caught by a Tcl script. How TclPro Debugger handles runtime errors depends
on the Error settings that you specify for your project. (See “Changing Project
Error Settings’ on page 38 for more information on specifying your project Error
settings.) If you have set:

Always Stop on Errors
TclPro Debugger notifies you each time it encounters an error in the
script.

Only Stop on Uncaught Errors
TclPro Debugger notifies you only when it encounters an error not
caught by the script.

Never Stop on Errors
TclPro Debugger does not notify you when it encounters errorsin the
application. Your application handles errorsin the same manner asiit
would if it were not running under TclPro Debugger.

When TclPro Debugger detects a runtime error in accordance with the rules
above, it stops execution of your application and displays adialog box such asthe
one shown in Figure 18.

TclPro Debugger

55

56

Figure 18 The TclPro Debugger Tcl Error Dialog

An error occurred while running the script.
This error may not be caught by the application and will
probably terminate the scriptunless itis suppressed.

invalid command name "newMessage"
while executing

"newMessage Sw "Smove to undo,

$jumped coords""

Deliver Errar | | Suppress Error I

You have the choice of either delivering the error or suppressing the error:

Déliver Error
The application continues and the error is handled in the normal
fashion for Tcl. Clicking this button is equivalent to having run the
script without any debugger interference.

Suppress Error
TclPro Debugger suppresses the error, and continues executing the
application. The behavior in thiscaseisasif no error had occurred.
You can continue to run or step through the application.

While your application is stopped, you can examine your Tcl script, view and
change variable values, set breakpoints, and use al the other features of TclPro
Debugger. If you single-step or run your application without first selecting
whether to deliver or suppressthe error, TclPro Debugger deliversthe error if your
application catches it and suppresses it otherwise.

About TclPro Instrumentation

Chapter 4

When you begin running an application, TclPro Debugger transparently processes
the specified Tcl/Tk script. It modifies the code to enable communication between
TclPro Debugger and the script. This processis known as instrumentation. TclPro
Debugger launches the application with the instrumented script in place of the
original script. Ajuba Solutions designed the instrumentation to be as unobtrusive
as possible. However, you can expect some slowdown in applications as a result
of the instrumentation.

You can specify which procedures to instrument in the Procedures window; see
“Finding Procedures’ on page 49. You can aso specify files and classes of
procedures to leave uninstrumented; see “Changing Project I nstrumentation
Settings’” on page 36. In addition to the files and procedures that you tell TclPro

Debugger not to instrument, there are also some instances of dynamically created
code that TclPro Debugger cannot instrument. These include if statements with
computed bodies and callbacks from Tcl commands. When the application is
executing uninstrumented code, it cannot communicate with TclPro Debugger. If
you want to interrupt or to add a breakpoint to the script while uninstrumented
code is executing, the application cannot respond until it reaches the next
instrumented statement.

TclPro Debugger indicates that a procedure or fileis uninstrumented by listing the
procedure or file name preceded by an asterisk (“*”) in the Procedures window,
Windows menu, and the Code display status bar.

Debugging Remote, Embedded, and CGI Applications

In some cases, TclPro Debugger can't directly launch your application. Some
examples where thisis often true include CGI applications, embedded
applications, and applications that must run on a system other than your
debugging system.

For applications such as these, TclPro Debugger supports remote debugging. In
remote debugging sessions, your application starts asit normally would and then
establishes a special connection to TclPro Debugger. You can then use TclPro
Debugger to perform all debugging tasks as you would in alocal debugging
session.

To debug a remote application, you must perform the following steps.

* Maodify your Tcl script to work with TclPro Debugger.

* Create aremote debugging project in TclPro Debugger.

e Launch your application as you normally would. Your application establishes
a connection to TclPro Debugger and you can begin your debugging session.

The following sections describe how to perform these tasks.

Modifying a Tcl Script for Remote Debugging

For your application to establish and maintain communication with TclPro
Debugger, you must modify your application to sour ce the prodebug.tcl file,
which is contained in the platform-specific bin subdirectory of your TclPro
installation (for example, C:\Program

Files\Tcl Prol.4\win32-ix86\bin\prodebug.tcl). Then, your script must call the
debugger_init procedure and, optionally, the debugger _eval and
debugger_break procedures. You can modify your script in one of two ways:

TclProDebugger ¢

57

58

Note

Note

Chapter 4

create anew “wrapper” script that sources your existing script, or modify your
existing script.

Remote Debugging Procedures

The debugger _init procedure makestheinitial connection with TclPro Debugger:
debugger _init ?host? ?port?
The host is the name of the machine on which TclPro Debugger is running. The
host defaultsto “localhost.” The port isthe TCP port that TclPro Debugger usesto
communicate with the application. The port defaults to 2576. The debugger _init
procedure contacts the debugger instance running on the specified host viathe
specified port. The debugger _init procedure also automatically instruments any
Tcl scripts sourced by the script.

The debugger _init procedure returns 1 if it successfully connects to TclPro
Debugger; otherwiseit returns 0. You must call debugger _init before calling
debugger _eval or debugger break.

If your embedded application uses multiple subsequent interpreters, that is, it quits
and restarts a Tcl interpreter more than once, each main Tcl script is treated as an
individual application and must make a new connection with TclPro Debugger.

The debugger _eval procedure instruments Tcl code so TclPro Debugger can
control the application while script is evaluated:

debugger _eval ?-nane nane? ?--? script

You can wrap your whole script inside the debugger _eval block. Any scripts that
you sour ce within adebugger _eval block are also instrumented.

The debugger _eval procedure behaves like the eval command if your application
isnot currently connected to TclPro Debugger.

The optional debugger _eval -name switch associates the tag name with the
script. This causes TclPro Debugger to store breakpoint information asif the script
were sourced from afile named name. Thisis useful when debugging remote
applications or when evaluating blocks of dynamically-generated code that are
used multiple times. By creating a unique name for each block, you can set
breakpoints in the block that persist across invocations.

The optional -- switch marksthe end of switches. The argument following thisone
istreated as ascript eveniif it startswith a“-".

Thedebugger _break procedure causes your remote application to break in much
the same way asiif it had encountered a breakpoint:

debugger _break ?nessage?

Note

The debugger break procedure is useful for debugging dynamic code. The only
difference between the behavior of debugger _break and aline breakpoint is that
debugger_break evauates the message argument, if it is present, before
breaking. When your script encounters adebugger _break procedure, TclPro
Debugger displays a dialog box. If the message argument is present and not
empty, TclPro Debugger displays the message string in the dialog box.

The debugger _break procedure has no effect if your application is not currently
connected to TclPro Debugger.

Creating a “Wrapper” Script for Remote Debugging

If you decideto create anew script, that script should sour ce the prodebug.tcl file,
call debugger_init, and then sour ce the file that was originally the main script of
your application. This new script becomes the main script of your application.
Your new main script may look like the following:

Set TclProDirectory to the platformspecific bin
subdirectory of your TclPro distribution.

set TclProDirectory "/usr/local/Tcl Prol. 4/sol ari s-sparc/bin"
source [file join $Tcl ProDirectory prodebug.tcl]

Assume the variabl es $host and $port respectively contain
the name of the nachine on which Tcl Pro Debugger is
running and the port on which it is listening.

debugger _init $host $port

Assunme $nyOrigi nal Mai nScri pt contains the path of your
original script.

source $nyOri gi nal Mai nScri pt

Modifying an Existing Script for Remote Debugging

If you decide to modify your existing script, you must change it to source the
prodebug.tcl file and call the debugger _init procedure. Once debugger _init is
called, other files sourced by the script will automatically be instrumented. If you
want TclPro Debugger to instrument code in the file that calls debugger _init, the
code that you wish to instrument must be encapsulated in acall to the
debugger_eval procedure. See “ About TclPro Instrumentation” on page 56 for
more details on instrumentation.

Your new main script may look like the following:

TclPro Debugger 59

60

Chapter 4

Set TclProDirectory to the platformspecific bin
subdirectory of your TclPro distribution

set TclProDirectory "/usr/local/Tcl Prol. 4/sol ari s-sparc/bin"
source [file join $Tcl ProDirectory prodebug.tcl]

Assume the variabl es $host and $port respectively contain
the nanme of the nmachine on which Tcl Pro Debugger is
running and the port on which it is listening

debugger _init $host $port
debugger _eval {
... your code goes here ...

}

Creating a Remote Debugging Project
Before you begin debugging a remote application, you must create a remote

debugging project in TclPro Debugger. This causes TclPro Debugger to listen on a

specified port for your application to establish a connection.
To create a remote debugging project:

1
2.

Create anew project as described in “ Creating a New Project” on page 30.

Select the Remote Debugging option of the Project Application Settings Tab.

See " Changing Project Application Settings’ on page 33.
Enter the port number you specified in the debugger _init procedure in the

Listen For Remote Connection On Port Number field. The default port is 2576.

Launching your Remote Application

After you have modified your application for remote debugging and created a
remote debugging project in TclPro Debugger, you can launch your remote
application for debugging.

Simply run your application as you would normally. Your application stops just

before it evaluates the first command in the debugger _eval script, or thefirst time
it sources afile, whichever comesfirst. TclPro Debugger displaysyour scriptinits

Main window, and you can begin debugging as you would alocal application.

Viewing Connection Status

You can view the connection status while debugging by selecting View |
Connection Status from the menubar. TclPro Debugger displays the Connection
Status window shown in Figure 19.

Figure 19 The Connection Status Window

Connection Status

Status of connection to debugged application.

Frojecttype: Remote
Connect status: Connected
Listening port: nfa
Local socketinfo: 127.0.0.1 localhost 2576
Feer socketinfo: 127.0.0.1 localhost 2614

The Connection Status Window displays the following information:

Project Type
Whether the project islocal or remote.

Connection Status
Whether or not the application has established a connection to TclPro
Debugger.

Listening Port
The port number on which TclPro Debugger listens for a connection
from aremote application. You can set this port for remote debugging
in the Listen For Remote Connection On Port Number field of the
Project Application Settings Tab. See “ Changing Project Application
Settings’ on page 33. The default port is 2576.

Local Socket Info
The | P address and socket number on the system running TclPro
Debugger used for communication with aremote application. Thisis
created only after a connection is established.

Peer Socket Info
The IP address and socket number on the system running the remote
application used for communication with TclPro Debugger. Thisis
created only after a connection is established.

Using Custom Tcl Interpreters with TclPro Debugger

TclPro Debugger works properly with most custom Tcl interpreters. However, to
properly instrument and execute your application, TclPro Debugger must be able
to pass debugging information to your Tcl script as command-line arguments.

TclPro Debugger

61

Therefore, if your interpreter doesn't accept asits first command-line argument a
Tcl script to execute or if it doesn't pass subsequent command-line arguments to
the script using the standard argc and argv Tcl variables, then you must take
specia steps to use your interpreter with TclPro Debugger.

First, you must create a special Tcl wrapper script. The listing below shows a
sample implementation of such a script for Unix systems. To useit, you must
either change the line setting the cdPrefix variable, replacing “tclsh” with
whatever command you need to run your Tcl interpreter, or you must set your
PRODEBUG_TCLSH environment variable to contain that command.

#!/ bin/ sh

#\
exec protclsh83 $0 ${1+"$@}

if {$argc < 1} {
puts stderr "wong # args: |ocation of appLaunch.tcl is required"

}

if {[info exists env(PRODEBUG TCLSH)]} {
set cnmdPrefix "$env(PRODEBUG TCLSH) "
} else {
set cmdPrefix "tclsh"

}

set custonfcriptName "/tnp/launchScript.[pid]"
set appLaunchPath [lindex $argv 0]

set f [open $custonScri pt Namre w
puts $f "

file delete -force $custonScri pt Nane
set argv0 [list $appLaunchPat h]

set argv [list [lIrange $argv 1 end]]
set argc \[llength \$argv\]

source \$argv0

cl ose $f

catch {
eval exec $crmdPrefix [list $custonScript Name 2>@tderr >@tdout <@t din]

}
Then, to debug your application select the wrapper script as your interpreter (that
is, type the path and name of the wrapper script in the Interpreter field of the
Project Application Settings Tab). Specify the script and any script arguments for
your application in the Project Application Settings Tab as normal.

Chapter 4

Chapter 5
TclPro Checker

TclPro Checker helpsyou find errorsin a Tcl script quickly before you run the
script. Using TclPro Checker can help you find problems in new scripts, in scripts
from older versions of Tcl/Tk, or in scripts that you have ported from another
operating system. You can use TclPro Checker to assess the quality of abody of
Tcl code or to quickly examine large Tcl files. TclPro Checker also warns about
potential incompatibilities to help you upgrade applications to the latest rel eases
of Tcl, Tk, and [incr Tcl].

Supported Tcl Versions

By default, TclPro Checker verifies scripts written for Tcl version 8.3. You can use
TclPro Checker with the packages and versions of Tcl, Tk, and [incr Tcl] listed in
Table 7.

Table 7 Packages and Version Numbers

Tcl Tk [incr Tcl] Expect TclX
7.3 3.6 15 n/a n/a
74 4.0 2.0 n/a n/a
75 4.1 21 n/a n/a
7.6 4.2 2.2 na/ na/
8.0 8.0 3.0 5.28 8.0
8.1 8.1 n/a 5.29 or 5.30 8.1
8.2 8.2 31 531 8.2

8.3 (default) 8.3 3.2 5.32 8.3

63

Note Expect command names that “collide” with command namesin the Tcl/Tk core
(for example, send) can confuse TclPro Checker when it checks an Expect script,
causing it to report syntax errors. To avoid this, use the exp__ prefix for all such
ambiguous commands (for example, use exp_send instead of send).

Using TclPro Checker

To check afile using TclPro Checker, type the procheck command with afile
name, for example:

procheck foo.tcl

If your code contains errors or warnings, TclPro Checker provides feedback by
default that looks similar to this

Figure 20 Example of TclPro Checker Feedback

Product information Version information

Tcl PLo Checker -- Version 1.4.0

Copyright (C) Ajuba Solutions Inc. 1998-2000 Al rights reserved.
foo.tcl

foo.tcl:24 (nonLiteral Expr) expression is not a literal value|
expr %n * $result

Error indicator MessagelD Explanation

File name and line number

You can specify multiple file names on the same line, for example:
procheck fool.tcl foo2.tcl

To check al thefilesin adirectory, use the asterisk (“*”) with the .tcl file
extension, for example:

procheck *.tcl
If you don’'t specify any files, procheck expects input from standard input.

For other examples of output, see “ Examples of Output from TclPro Checker” on
page 69.

One-Pass and Two-Pass Checking

By default, TclPro Checker performs a two-pass scan of your scripts. The first
pass accumulates information about user-defined procedures and user-defined
[incr Tcl] classes. Thisinformation includes:

* the number of arguments for procedure definitions and [incr Tcl] constructor
definitions

64 Chapter 5

Note

* the scope of procedures (namespace, protection level)

* redefinition of procedures using the Tcl rename command
e imports and exports of namespace procedures

* class structures of inherited [incr Tcl] classes

The second pass uses this information to provide warnings and error messages
concerning the usage of the user-defined procedures, including:

* caling a procedure with the wrong number of arguments
e caling an[incr Tcl] class constructor with the wrong number of arguments

* redefining existing procedures, by either the rename command or by defining
aprocedure or class with and identical name

e caling [incr Tcl] class procedures out of scope

e caling class procedures with invalid permissions (private or protected)
TclPro Checker properly handles all variations of user-defined proceduresin
namespaces.

TclPro Checker does not currently check the following:

* variable usage (for example, attempting to use the value of an undefined
variable or attempting to perform math operations on alist variable)

e [incr Tcl] class methods
e argument types passed to user-defined procedures
* redefinition of built-in Tcl, Tk, or [incr Tcl] commands

Also, if you define a procedure multiple times, TclPro Checker generates a usage
error when calling that procedure only if the call fails to match any of procedure
definitions. Because of the dynamic nature of procedure definition and
redefinition, TclPro Checker can't determine which argument list is currently
valid for the given procedure call.

TclPro Checker does not automatically scan scripts that are sourced by your script.
Therefore, you must include on the procheck command line all files that define
user procedures and classes used by your script.

For a quicker but less comprehensive check of your scripts, you can use the
procheck -onepass option to force TclPro Checker to perform a one-pass scan of
your scripts. A one-pass scan does not check for any of the potential errors or
misuses of user-defined procedures and [incr Tcl] classes described above.

You can aso use the procheck -verbose option to get alist of all commands used
by the scripts you specify that are not defined in that collection of scripts. If you

TclPro Checker

65

66

don’t include the -ver bose option, TclPro Checker doesn’'t warn you about
undefined procedures.

TclPro Checker Messages

Chapter 5

TclPro Checker examines your code and displays a message describing each error
or potential mistake that it detects. Depending on the type of script that you are
checking, you may want to limit the types of problems that it reports rather than
see the entire output from TclPro Checker.

Each message generated by TclPro Checker lists the file and the line number
where the error or warning occurred, a messagel D, a description of the error or
warning, and an error indicator, which isa caret (“") that indicates the code
fragment in which the error occurred. The messagel D is the word in parentheses
just after the file and line number information. It provides information about the
type of problem that generated the error or warning, which are listed below. Using
TclPro Checker you can specify types of errors and warning that you want to
suppress, which alows you to focus to more strategic errors or warnings. TclPro
Checker provides suggestions, when possible, on waysto fix the problems that it
indicates in the error or warning text. In the example in Figure 21, Checker
indicates that there is amissing close brace.

Figure 21 Anatomy of a TclPro Checker Message

Filename and line _
number with error ~ MessagelD Error or warning text

Ifoo_tcl 1163 | I(pars;e) ' |parseerror: missing close brace

proc checkWord { tokens index {
N

L=

Error indicator

You can limit output in the following ways:

e Limiting errors and warnings by type: an error is either a parsing or syntax
error, and warnings indicate possible problems with platform portability,
upgrade, performance, or usage issues. Warnings indicate code fragments
where there may be an error, but the code fragment may be appropriate in its
context.

* Specifying groups of messages to suppress, for example, you might want to
suppress messages related to usage warnings.

Controlling Feedback on Errors and Warnings
Messages are grouped into two types of errors and four types of warnings.

Parsing Errors

TclPro Checker generates a parsing error when it encounters commands that
cannot be parsed by the Tcl parser, such as amissing curly brace or badly formed
list. For example: the following code generates a parsing error becauseit is
missing a quote at the end of the puts statement:

proc foo {} {
puts "hello

}
In cases like this, TclPro Checker attempts to move past the procedure where the
parsing error was found, and continue to check additional commands after the
parsing error.

Syntax Errors

TclPro Checker generates a syntax error when it encounters any errors that will
cause your script to fail, such as the wrong number of arguments or invalid types
or options. For example, the following code generates a syntax error is because
the wrong number of arguments are supplied:

set x 3 45

Only commands defined in Tcl, Tk, or [incr Tcl] are checked for syntax errors.

Platform Portability Warnings

TclPro Checker generates warnings when acommand is used that may be
nonportable between various platforms.

set file [open $dir/$file r]
In this example, thefilejoin command should be used so that the correct directory
and file separator is used, that is, “\” on Windows and “/” on Unix.

Suggestion for Upgrading
Upgrade warnings indicate features that have changed in alater version.

nanespace foo {
variabl e bar 0

}
When [incr Tcl] was upgraded to 3.0, it inherited the Tcl namespace command.
The syntax of defining a namespace has changed from older versions of [incr Tcl]
because of this. With earlier versions of [incr Tcl], correct usage was;

TclPro Checker 67

68

Chapter 5

nanespace foo {body}
With [incr Tcl] 3.0 and later, correct usage is shown below:

nanespace eval foo {body}

Performance Warnings

TclPro Checker generates a warning when a performance-optimization
opportunity is detected. For example: if your code included:

set x [expr $x * $y]
it would generate a performance warning because performance isimproved with
curly braces, as shown below:

set x [expr {$x * $y}]

Usage Warnings

TclPro Checker generates a warning when a command is used in amanner that is
possibly incorrect but is still syntactically legal. For example, theincr command
expects a value and not a reference below:

i ncr $counter

Warning and Error Flags

You can control which types of errors and warnings are listed by TclPro Checker
by specifying one of the -W flags on the TclPro Checker command line. Table 8
shows the flags that control the level of messages for warning and errors.

Table 8 TclPro Checker Warning and Error Flags

Flag Description

-W1 Display parsing and syntax errors.

-W2 Display parsing and syntax errors, and usage warnings.

-W3 Display parsing and syntax errors, portability warnings, upgrade

warnings, performance warnings, and usage warnings.

-Wall Displays all messages and errors. Thisis the default.

As an example, the first time you check your script you might want to display
only errors but not warnings. You might first run TclPro Checker with the -W 1
flag, which only displays parsing and syntax errors, but does not display any
warnings. After examining the output from running with the -W 1 flag and fixing

any errors that were reported, you might run with the -W2 flag to see a variety of
additional warnings.

Suppressing Specific Messages

Each warning or error message has an associated messagel D. You can filter out
the display specific warnings or errors by specifying -suppress to prevent that
type of messagel D from being displayed. You might want to filter out certain
messages because they point out items that do not apply to the script that you are
checking, for example: if you are porting a script to only one platform, you do not
care whether your script has portability issues.

In the following example, the messagelD is * nonPortCmd”:

foo:tcl:53 (nonPortCnd) use of non-portable command

registry val ues $key
N

You can suppress this type of message by specifying -suppress nonPortCmd on
the command line, for example:
Appendi x B, “.”procheck -suppress nonPortcnd foo.tcl
Tip You can suppress multiple messagel D types at the same time by specifying

-suppr ess with the multiple instances of messagel Ds in quotation marks, for
example:

procheck -suppress "nonLiteral Expr badOption" foo.tcl

You can also specify -suppress with the messagel D for each instance of the
message | D that you want to filter, for example:

procheck -suppress nonLiteral Expr -suppress badOption foo.tcl
For acomplete list of all the messagel Ds, see Appendix B, “ TclPro Checker
Messages.”

Examples of Output from TclPro Checker

To provide examples of TclPro Checker output, here is the sample script, foo.tcl,
that is checked in the examples that follow:

TclPro Checker 69

70

set $y 3
set x [expr $y + 5]
set Xy z

if {$x > 6}
{

}

puts out "world"

proc foo {args bar} {
puts "hello, world"

}

proc p {{a 0} b} {
puts -nonew "hell o"
}

Specifying Verbose Feedback

You can specify the -verbose argument when you run TclPro Checker. When you
specify -verbose, TclPro Checker displays the error information in three lines and
the version and summary information when TclPro Checker exits, for example:
procheck -verbose foo.tcl
The feedback from the command line with -ver bose specified looks similar to
this:
Tcl Pro Checker -- Version 1.4.0

Copyright (C) A uba Solutions Inc. 1998-2000. Al rights reserved.
This product is registered to: Sinking Ships, Ltd.

scanni ng: /hone/ kenj/test/foo.tcl
checki ng: /hone/ kenj/test/foo.tcl
foo.tcl:1 (warnVarRef) variable reference used where vari abl e nane expected

set $y 3
N

foo.tcl:2 (warnExpr) use curly braces to avoid double substitution
expr $y + 5
N

foo.tcl:3 (numArgs) wong # args
set Xy z
N

foo.tcl:5 (noScript) mssing a script after "if"
if {$x > 6}
A

foo.tcl:6 (warnUndef Proc) undefined procedure:
puts out "world"

Chapter 5

N

foo.tcl:10 (argAfterArgs) argunment specified after "args"”

proc foo {args bar} {
N

foo.tcl:14 (nonDef AfterDef) non-default arg specified after default
proc p {{a 0} b} {

Packages Checked | Version

tcl 8.3
tk 8.3
expect 5.32
[incr Tcl] 3.2
tcl X 8.3

Nunber of Errors: 4
Nunmber of Warnings: 3

Commands that were call ed but never defined:

puts out "world"

Specifying Quiet Feedback

You can specify the -quiet argument when you run TclPro Checker. When you
specify -quiet, TclPro Checker displays the basic error information on one line
with the messagel D, instead of the three-line output that includes the code body
and the error indicator, for example:

procheck -quiet foo.tcl
The output with the -quiet argument appears as follows:

Tcl Pro Checker -- Version 1.4.0
Copyright (C) A uba Solutions Inc. 1998-2000. Al rights reserved.
This product is registered to: Sinking Ships, Ltd.

foo.tcl:1 (warnVarRef) variable reference used where variabl e nane expected
foo.tcl:2 (warnExpr) use curly braces to avoid double substitution
foo.tcl:3 (numArgs) wong # args

foo.tcl:5 (noScript) mssing a script after "if"

foo.tcl:6 (warnUndef Proc) undefined procedure:

puts out "world"

foo.tcl:10 (argAfterArgs) argunent specified after "args"
foo.tcl:14 (nonDef AfterDef) non-default arg specified after default

TclPro Checker

72

Note

Chapter 5

Specifying Use of Older Versions

You can run TclPro Checker and specify -use with an older version of Tcl or Tk.
To check for older versions of any package, use the -use option and specify the
version to check. For example, to check afile written for Tcl7.5 and Tk4.1, enter:
procheck -use "tcl7.5" -use "tk4.1" foo.tcl
Valid -use arguments are package names followed by a version number.
Supported package names are “tcl”, “tk”, “expect”, “incrTcl”, and “tcIX”. Table
7" Packages and Version Numbers’ on page 63, lists the versions supported for
each package. If you do not specify aversion for a package, TclPro Checker uses
the version compatible with the Tcl version you select.

Tk, [incr Tcl], TclX, and Expect are checked only if you explicitly specify them on
the command line with -use option.

When you specify older versions of Tcl and any extension (including Tk), the
versions of Tcl and any specified extension must be compatible, aslisted in Table
7. The following example includes incompatible versions and should not be used:

procheck -use "tcl7.5" -use "tk4.0" foo.tcl
The correct version pair is:
procheck -use "tcl7.5" -use "tk4.1" foo.tcl

Error Checking

The command line in following example requests -W 1 error checking, which
includes only parsing and syntax errors:

procheck -W foo.tcl
The feedback from the command line with -W1 specified looks similar to this:

Tcl Pro Checker -- Version 1.4.0
Copyright (C Ajuba Solutions Inc. 1998-2000. Al rights
reserved.

foo.tcl

foo.tcl:5 (numArgs) wong # args
set Xy z

N

foo.tcl:7 (noScript) mssing a script
if {$x > 6}
A

Error and Warning Checking

The command line in following example requests -W2 error checking, which
includes parsing errors, syntax errors, upgrade warnings, and performance
warnings.

procheck -W2 foo.tcl
The feedback from the command line with -W 2 specified looks similar to this:

Tcl Pro Checker -- Version 1.4.0
Copyright (C Ajuba Solutions Inc. 1998-2000. Al rights reserved.
This product is registered to: Sinking Ships, Ltd.

scanni ng: /hone/ kenj/test/foo.tcl
checking: /hone/kenj/test/foo.tcl
foo.tcl:3 (numArgs) wong # args
set Xy z

A

foo.tcl:5 (noScript) mssing a script after "if"
if {$x > 6}
N

foo.tcl:10 (argAfterArgs) argunent specified after "args”
proc foo {args bar} {

N

foo.tcl:14 (nonDef AfterDef) non-default arg specified after default
proc p {{a 0} b} {
N

Checking for All Warnings and Errors

The command line in following example requests -W 3 error checking, which
includes parsing errors, syntax errors, upgrade, portability, and performance
warnings.

procheck -WB foo.tcl
The feedback from the command line with -W 3 specified looks similar to this:

Tcl Pro Checker -- Version 1.4.0
Copyright (C) A uba Solutions Inc. 1998-2000. Al rights reserved.
This product is registered to: Sinking Ships, Ltd.

scanni ng: /hone/ kenj/test/foo.tcl
checki ng: /hone/ kenj/test/foo.tcl
foo.tcl:1 (warnVarRef) variable reference used where vari abl e nane expected
set $y 3
N

foo.tcl:2 (warnExpr) use curly braces to avoid double substitution
expr $y + 5
N

foo.tcl:3 (numArgs) wong # args

TclPro Checker

73

74

set Xy z
AN

foo.tcl:5 (noScript) mssing a script after "if"

if {$x > 6}

foo.tcl:6 (warnUndef Proc) undefined procedure:

puts out "world"

{

AN

foo.tcl:10 (argAfterArgs) argunent specified after "args"

proc foo {args bar} {

foo.tcl:14 (nonDef AfterDef) non-default
proc p {{a 0} b} {
N

Chapter 5

arg specified after default

Chapter 6
TclPro Compiler

Traditionally Tcl code has been distributed in source form. This had the advantage
of being simple to use and allowing users to customize the code, but it had some
disadvantages: you can't keep proprietary information secret and it may be harder
to support users if they modify the code. TclPro Compiler eliminates these
disadvantages by trandlating the Tcl scripts into bytecode format. You can
distribute bytecode files to usersto protect your intellectual property and simplify
support.

Supported Versions

Overview

You must use Tcl/Tk 8.2 or later to load programs compiled with TclPro Compiler
14.

TclPro Compiler 1.4 generates bytecode filesin version 1.3 format (to support Tcl
8.2 or later). These new bytecode files require version 1.3 of the tbcload package.
Thetbcload 1.3 package supports the following bytecode file formats:

* 1.3 (generated by TclPro Compiler 1.3 and 1.4)
e 1.0.1 (generated by TclPro Compiler 1.2)

Thetbcload 1.3 package does not support version 1.0 bytecode files (generated
by TclPro Compiler 1.0). See“ Distributing Bytecode Files’ on page 82 for more
information on the tbcload package.

Tcl code was traditionally interpreted on an as-needed basis. Before Tcl Version
8.0, the Tcl core did not include an internal compiler. Tcl Version 8.0 included a
compiler; however, this compiler was internal to the interpreter, and compiled
scripts could not be saved for later use. TclPro Compiler lets you compile scripts
independently of execution, then store them so you can load and execute the
bytecode file when you want to.

75

76

When you use TclPro Compiler, the bytecode fileis stored as Tcl byte codes with
the default extension .tbc. For example: if you compile the script foo.tcl with
TclPro Compiler, the bytecode file is stored as foo.tbc. When you want to use the
bytecode file, you can source it without spending the time to recompile foo.tcl.

You can distribute a bytecode file; this allows you to avoid shipping the Tcl source
code, thus keeping your code secure. Bytecode files can also be used with TclPro
Wrapper to create bundled applications that don’t require special installation; see
Chapter 7, “ TclPro Wrapper.”

Compiling Your Code

Note

Chapter 6

TclPro Compiler compiles Tcl files, and after compiling, creates an output file
with the .tbc extension. To compile a Tcl script, enter:

C.> proconp fil enane.tcl
This command creates the output file filename.tbc.
You can specify multiple file names on the command line; the bytecode files will
have the same names as the input file with extension .tbc. You can also use
wildcard specificationsin the file names following the glob conventions. For
example: to compile all .tcl filesin C:\dir1, type:

C.> proconp c:\dir1*. tcl
When afileis compiled, the output fileis placed in the same directory as the input
file, with the same name, and extension .tbc.

To rename afile while compiling it, use the -out flag to create asingle file with a
custom name. You specify the command in the form: procomp -out newfilename
oldfilename, for example: to rename foo.tcl to bar.tst, you would type:

C.> proconp -out bar.tst foo.tcl
The -out flag can also specify adirectory, for example: the following command:
C.> proconp -out c:\dir2 c:\dirl*.tcl

generates the set of files with the same name with the .tbc extension, but the files
areplaced in C\:dir2.

You can only specify asingle input if the -out flag does not specify adirectory.

You can also force TclPro Compiler to overwrite all output files that already exist
using the -for ce flag. This flag deletes the output file before running TclPro
Compiler to ensure that the compilation does not fail because of permission
errors. Because TclPro Compiler creates the output file with the same permissions
astheinput file, the .thc file generated from aread-only .tcl file is also read-only.
As aresult, recompiling aread-only file will fail unless you specify the -force

flag.

Bytecode Files

TclPro Compiler creates an internal representation of the Tcl script using the Tcl
bytecode compiler that is built into the Tcl core. It performs additional
computations, and then emits a representation of the bytecode file to the output
file. The output fileitself isasimple Tcl script that loads the bytecode run-time
package, tbcload, and then invokes a command in that package to load and run
the bytecode files.

Bytecode filesarejust Tcl scripts. Thisallowsyou to use bytecodes anywhere you
would use Tcl scripts. For example: you can sour ce bytecode files. You can store
a.thc script in aTcl variable, for example, by reading the .thc file or reading it
from a socket and then execute it using the eval command. You can use the .thc
scriptsto drive protclsh83 or prowish83.

Prepending Prefix Text

Because the bytecode file isa Tcl script, there might be situations where you
might want to add some specialized setup code at the start of the script. For
example, if you want to directly execute a script file under Unix it should start
with the following lines:

#!/ bin/sh

the next line restarts using protclsh83 \

exec protclsh83 "$0" "$@
See the manual page for protclsh83 for more information. By default, TclPro
Compiler preserves everything from the start of the file to the first non-blank or
non-comment line. Therefore in this example, TclPro Compiler adds these three
lines to the top of the script it generates.

TclPro Compiler

77

You can override this default behavior with the -prefix option. controls which
prefix string is prepended to the output file. Table 9 lists the -prefix options
available.

Table 9 TclPro Compiler -prefix options

Type Function
none Do not add a prefix string.
auto Extract the prefix from the input file;

everything from the start of thefile to the first
non-comment line is prepended to the output
file. (Default)

tag Extract the prefix from the input file;
everything from the start of the file to the first
occurrence of acomment line starting with the
text “Tcl::Compiler::Include’ is prepended to
the output file.

filename Extract the prefix text from a specified file.

See the procomp.1 manual page for more information.

Changes in Behavior

There are few differences between the behavior of bytecode files and Tcl scripts
that are not compiled. This section explains these differences.

TclPro Compiler has the following limitations:
e Only those procedures that are defined at the top level can be compiled.

* Theinfobody command on compiled procedures does not provide meaningful
information; see “Example 1. Cloning Procedures’ on page 79

However, these limitation do not prevent the affected procedures from being
compiled at runtime. The contents of the bytecode file are a representation of the
internal structures of the compiled Tcl script, without the source code. Procedures
defined in the source file are compiled and their internal structures are also stored
without source code. Thus, compiled procedure bodies cannot be read or accessed
through the info body command. As a conseguence, you cannot depend on being
able to read procedure bodies in the bytecode, as shown in Example 1.

The command info body on a compiled procedure cannot return the actual body
of the procedure because that information is not available. Instead, it returnsa
fabricated script containing:

Chapter 6

* A comment, which identifies this body of code as belonging to a compiled
procedure.

* Anerror command: thisisused asan aidein detecting unsupported uses of info
body, as shown in Example 1.

Example 1: Cloning Procedures

Scriptsthat use the bodies of proceduresin computationswill not work properly if
the procedures have been compiled. For example, the script below usesinfo body
to extract the body of one procedure and use it to create another procedure that is
identical.

#clone. tcl - -
proc len {a} {
return [string I ength $a]
}
proc lenl {a} [info body |en]
puts "[len {abc}] + [lenl {nonkey}]"

Thetwo callsto proc create two procedures, len and lenl, with identical bodies.
If you run the clone.tcl file, you get this output:

C. > protclsh83 clone.tc
3+6

Bytecode files, however, do not contain any sources for compiled procedure
bodies, and info body returns a standard value.

If you run the clone.tbc file, you get this output:

C. > protcl sh83 clone.thc

called a copy of a conpiled script

whi | e executing

"error "called a copy of a conpiled script""
(procedure "lenl" line 2)

i nvoked fromwthin

"# Conpiled -- no source code avail able
error "called a copy of a conpiled script"”
i nvoked fromw thin

"t bcl oad: : bceval {

Tcl Pro ByteCode 1 0 1.3 8.2

6 049 1200280666 -1-1

49

| QE<! (H&s!/ HW! ' E' <! *Ki <!/’ vpv1f As! +EE<! 208X! Of A9v4u8X! 1’ 8X! z
6=t - Owm+. .. "

(file "clone.tbc" line 17)

Note that the call to len1 resulted in an error being thrown; this error comes from
the script returned by the info body len command. The script throws the error

TclPro Compiler

79

80

rather than failing silently to help you to detect unsupported uses of info body
command. If you need to use the body of a procedure in a computation, do not
compile that procedure.

What Is and Isn’t Compiled

Chapter 6

TclPro Compiler will compile most of the Tcl codein your applications, but it
can’'t compile absolutely every Tcl command. Where TclPro Compiler cannot
compile acommand it leavesit in text form where it will be compiled at runtime
when the command is invoked. Your bytecode files will still execute correctly
even if some commands aren’t compiled, but uncompiled commands mean that
part of your source is more easily accessible to your users. This section discusses
what TclPro Compiler can and cannot compile.

When it compiles a script, TclPro Compiler divides the script up into its
component Tcl commands and compiles each one. If TclPro Compiler can
determine that the argument to acommand is a Tcl script, then it compiles that
script also. However, if TclPro Compiler can’t determine that an argument isa
script, then it leaves that argument as a string. For example, TclPro Compiler can
identify all the Tcl scripts used as arguments to standard Tcl commands, such as
the bodies of if, while, and proc commands. However, in the following script
TclPro Compiler can't tell that the argument to the dol10 procedure is a script:
proc dol0 {script} {
for {set i 1} {$i <= 10} {incr i} {
eval $script
}
}
dol0 {puts "hello"}
In general, if you write a procedure that takes a script as an argument, TclPro
Compiler can't tell that the argument is a script, rather than, say, an ordinary string
value, so it can't compile that argument. Again, the bytecode file will behave
correctly; the unknown argument will be compiled when it is actually executed.

TclPro Compiler has these limitations:

e [incr Tcl] codeis not compiled.

* Bodies of dynamically created procedures cannot be compiled.

* Procedures within the scope of namespace eval are not compiled

The following example illustrates the constraints with procedures and
namespaces.

Example 2: Procedures Used with Namespace

TclPro Compiler does not currently understand the namespace eval command
enough to know that arguments to namespace eval form a Tcl script, so that
nothing that follows namespace eval is compiled, including procedures.

Example 2 shows two procedures: a procedure defined inside a namespace eval
construct and one defined outside it. In this example, namespace eval prevents
procedure bodies from being compiled.

Exanple2.tcl --
nanespace eval sanple {
nanmespace export not_conpil ed conpiled

proc not_conpiled {al a2} {
return [list $al $a2]
}
}
proc sanple::conpiled {al a2} {
puts "hell o"

}

Compiler Components

Important

TclPro Compiler is made up of two components:

* TclPro Compiler generates abytecodefilefrom aTcl script containing internal
structures. See “Creating Package Indexes’ on page 81.

* Theruntime loader, tbcload, takes the bytecode file, loads the bytecodes into
an interpreter, and executes them. See “ Distributing Bytecode Files” on
page 82.

Creating Package Indexes

After you compile Tcl package scriptsinto .tbc files, you can use the
pkg_mklndex command to create package index files for your .thc files. After
creating the index files, users of your package will transparently load your
bytecode files instead of the original script. Creating package index files for .tbc
files requires the pkg_mkIndex -load tbcload option:

C:. > pkg_nkl ndex -1oad tbcload $dir *.tbc

You must use Tcl 8.0.5 or later to create package index files for your .thc files.

TclPro Compiler

81

82

Distributing Bytecode Files

Compiled .thc files execute a package require tbcload command. The tbcload
package must be accessible via standard package |oading mechanismsin order for
the .thc file to be interpreted successfully.

Because the protclsh83 and prowish83 interpreters include the tbcload package,
tbcload is found automatically when the .thc files are processed by these
interpreters. There might be situations where you are unable to or do not want to
use the prowish83 or protclsh83 interpreters, for example: if you are creating
your own Tcl/Tk extensions, or if prowish83 or protclsh83 are too large to
distribute to your customers.

The tbcload package is available as a shared library (such asa .dIl on Windows
and .so on Solaris) and as a static library. The shared library exports the two
package initialization procedures: Thcload_|nit and Thcload_Safel nit, which
are required by the Tcl load command. You can use the shared library as you
would any other Tcl package:

e Use pkg_mklndex to create a package index file.

e Make surethat the shared library and index file are placed in adirectory
accessible to the package load mechanism.

If you follow the above guidelines, you can ship your bytecode files and the
tbcload shared library to customers. See “ Supported Versions’ on page 75 for
information on compatible versions of Tcl/Tk, tbcload, and the bytecode files.

If you are building you own extensions, you can either use tbcload asa
dynamically loaded Tcl package as described above, or you can add it to your
application as a static package. In the latter case, your Tcl_Applnit procedure
must contain the following code:

#i ncl ude <proTbcLoad. h>

if (Tbcload_lnit(interp) == TCL_ERROR) {
return TCL_ERROR;
}
Tcl _StaticPackage(interp, "tbcload", Tbcload_Init,
Tbhcl oad_Safelnit);

Compilation Errors

Chapter 6

TclPro Compiler provides an added check that your code is syntactically correct.
A benefit of compiling procedure bodiesin advance is that some syntax errors are
caught at compilation rather than at runtime. Because Tcl proceduresin standard
Tcl code are compiled on an as-needed basis, errors are not caught until you run

the procedures. TclPro Compiler informs you of errorsthat are caught when it
compilesthefile.

This example shows an error message from a compilation. The file contains
syntactically incorrect Tcl code.
Sanmple for a bad file (fail.tcl):

note the m ssing cl ose-brace
set msg {

If you run this code in an interpreter, you see the following error message:

% protcl sh83. exe fail.tcl
m ssing cl ose-brace
whil e conpiling
"set meg { ..."
(file "fail.tcl" line 15)
If you compile, you get this output:
conpilation of "fail.tcl" failed: mssing close-brace

TclPro Compiler saves the error generated by the compilation. In this example,
TclPro Compiler displays the string “missing close-brace” and displays the error
message. You will need to fix syntax errors like this one before TclPro Compiler
can compile the script. For help in tracking down errors, see Chapter 5, “ TclPro
Checker.”

TclPro Compiler

84

Chapter 6

Chapter 7
TclPro Wrapper

An application that you write in Tcl can consist of many components, such as:

One or more Tcl scripts

Either a standard or a custom Tcl interpreter

The standard Tcl libraries and support files (for example, init.tcl)
Optionally, the standard Tk libraries and support files

Optionally, one or more extensions implemented as libraries of Tcl scripts
Optionally, additional data files such as bitmaps

Traditionally, if you wanted to distribute an application that you wrote in Tcl, you
would need to make sure that al of the files listed above that your application
used were installed on your target system. You would also need to make sure that
the system was configured properly so that your application could find al of the
filesit needed.

TclPro Wrapper can greatly simplify the process of distributing an application that
you writein Tcl. TclPro Wrapper isatool that collectsall of thefiles needed to run
a Tcl application—such as Tcl scripts, graphics and other datafiles, Tcl
extensions, a Tcl interpreter, and the standard Tcl and Tk libraries—into asingle
executable file, which is called awrapped application. A user can then install this
file anywhere on their system and execute it without needing to install any other
packages or otherwise configure their system.

You invoke TclPro Wrapper using the prowrap command from the command
line. For example, the following command creates an executable named
myApp.exe that contains a wish interpreter, the standard Tcl and Tk libraries, the
Tcl scripts myApp.tcl and help.tcl, and several GIF images from a subdirectory
named images:

C.> prowap -out nyApp.exe nyApp.tcl help.tcl images*.gif

Executing the resulting myApp.exe file is equivalent to entering:

C. > wish nyApp.tcl

85

86

How the Internal File Archive Works in a Wrapped Application

Note

Important

Chapter 7

Theinternal file archive of awrapped application contains all Tcl scripts and data
filesthat you specify when you wrap an application. TclPro Wrapper incorporates
special support into the wrapped application that allows Tcl scriptsin the wrapped
application to access filesin the internal file archive just asif they were stored
individually on disk. In other words, your Tcl scriptsin awrapped application can
execute standard Tcl commands such as sour ce and open to accessfilesin the
internal file archive.

Thefilesin the internal file archive are read-only.

Whether your Tcl script attempts to access afile from the internal file archive or
from disk is determined by the following rules:

* If you attempt to access afile using an absolute pathname (for example,
/user/kate/images/widget.gif), then your Tcl script always looks for the file on
your disk.

* If you attempt to access afile using arelative pathname (for example,
images/widget2.gif), then your Tcl script first looks for the file in the internal
filearchive. If it finds afile in the archive with the exact relative pathname
specified, then it uses that file; otherwise, it looks for the file on your disk.

By default, files that you specify in your prowrap command with relative
pathnames retain that pathname in the archive. Files that you specify with

absol ute pathnames are stripped of their drive and root directory characters. You
can also modify this behavior by using the prowrap -relativeto argument. See
“Determining Path Referencesin Wrapped Applications’ on page 90 for
information on how pathnames for filesin the internal archive of awrapped
application are determined.

Theinterna file archiveisn’t afull-fledged filesystem. Instead, the files are stored
in the equivalent of aflat table. This has several important implications for
accessing filesin the archive:

e The current working directory of your Tcl script has no relevance to the
pathname you should use to access afile in the archive. For example, if there
isafilein the archive that you wrapped with the relative pathname
interface/main.tcl, then the two source commands in the following code
fragment both access that same file in the archive:
cd /tnp
source interface/ main.tcl
This accesses the sanme file as above in a wapped application

cd /usr/local/bin
source interface/ min.tcl

e TheTcl glob command doesn’'t match any filesin the archive. For example, if
you wrap the files images/cardl.gif and images/card2.gif, the glob pattern
“images/*.gif” failsto match either of these files. If you have an application
that depends on the glob command to produce arbitrary lists of wrapped files,
you need to rewriteit to use explicit lists of wrappedfiles. If you useavariable
to contain the file list, one technique you can use is to set the value of the
variable when you wrap the application using the prowr ap -code option. The
following example uses the Unix back-quote command evaluation and shell
filename expansion techniquesto set the variable imagel.ist to contain alist of
filesin the wrapped images directory:

% prow ap nmyApp.tcl images/*.gif \
-code "set inmgeList [list ‘echo inmages/*.gif']"

* If you attempt to access afile on disk using arelative pathname, and there
happens to be afile in the archive with the same pathname, your Tcl script
accesses the filein the archive rather than the file on the disk. Thisisreferred
to asfile shadowing.

* |If you attempt to access afilein the archive and afile with that pathname does
not exist, then your Tcl script attemptsto accessthefileon disk. Thisisreferred
to asfall-through.

“Changing File References’ on page 106 provides guidelines for writing your
applications so that they use wrapped files and unwrapped files properly.

Wrapping an Application

This section describes how to wrap your application.

Wrapping Tcl Scripts and Data Files

To wrap one or more Tcl scripts and any associated data files (for example,
bitmaps), simply list al the files as arguments to the prowrap command. For
example, suppose you have an application consisting of asingle script file,
app.tcl. Towrap it, enter:

C. > prow ap app.tcl

This creates awrapped application called prowrapout.exe on Windows systems or
prowrapout on Unix systems. When you run the wrapped application, it uses wish
to execute your app.tcl script. In other words, running the wrapped application in
this case is the same as executing:

C.> w sh app.tcl

TclProWrapper

88

Important

Chapter 7

By default, prowrap includesin your wrapped application a customized wish Tcl
interpreter with built-in support for the [incr Tcl], [incr TK], [incr Widgets], TclX,
and Expect (Unix systems only) extensions. “ Specifying the Tcl Interpreter” on
page 88 describes how you can specify adifferent Tcl interpreter

If your application has several script files, just include them on the prowrap
command line. For example, if app.tcl sources the files utils.tcl and help.tcl from
the aux subdirectory, you can wrap them with the following command:

C.> prowap app.tcl aux\utils.tcl aux\help.tcl

By default, your wrapped application sourcesthefirst file you list in the prowrap
command. So in this example, when you execute your wrapped application, it
sources app.tcl. You can change this behavior with the -startup option, as
described in “ Specifying the Startup Tcl Script” on page 89.

You can use wildcard charactersin your file names to specify multiple files. On
Unix systems, the shell you use (that is, sh, csh, etc.) handles wildcard expansion.
On Windows systems, prowr ap uses Tcl’s glob command to handle wildcard
expansion. (Seethe Tcl glob reference page for details of its operation.) So, in the
above example, if utils.tcl and help.tcl were the only .tcl filesin the aux
subdirectory, you could accomplish the same effect as above with the following
command:

C. > prowap app.tcl aux*.tcl
Thefilesthat you wrap are stored in the wrapped application’s internal file

archive. For information on how pathnames are handled for wrapped files, see
Table 11" Resolving File Pathnames When Wrapping an Application” on page 91.

Specifying the Tcl Interpreter

By default, prowrap includes the wish Tcl interpreter, the [incr Tcl], [incr TK],
[incr Widget], TclX, and Expect (Unix only) extensions, and all of the binary
libraries and library script files needed by wish and the extensions. The wrapped
application is statically linked with al of the appropriate libraries, so it is not
dependent on any other files; you can distribute it as a stand-alone application.

You can specify adifferent interpreter or different extension options with the
-uses flag. For example, the following command includes the tclsh interpreter
(with no extensions) and all of the binary libraries and library script files needed
by tclsh:

C.> prowap -uses tclsh app.tcl libl.tcl lib2. tcl

The -usesflag is a convenience to simplify the use of certain standard
configurations. Different -uses options provide predetermined sets of Tcl
interpreters, extensions, and library files needed by the interpreter and extensions.

TclPro Wrapper then automatically includes al of those files with your wrapped
application. Table 10 lists the values of -uses for which TclPro Wrapper has built-
in support.

Table 10 Predefined -uses Options

Option Description
bigwish Includes the wish Tcl interpreter, the [incr Tcl], [incr TK],
(default) [incr Widget], TclX, and Expect (Unix only) extensions, and al of the

library script files needed by wish and the extensions. Produces a
statically-linked application.

bigtclsh Includesthetclsh Tcl interpreter, the[incr Tcl], TclX, and Expect (Unix
only) extensions, and all of the library script files needed by tclsh and
the extensions. Produces a statically-linked application.

wish Includesthe wish interpreter (with no extensions) and all of the Tcl and
TK library script files. Produces a statically-linked application.

tclsh Includes the tclsh interpreter (with no extensions) and all of the Tcl
library script files. Produces a statically-linked application.

wish-dynamic Includesthe wish interpreter (with no built-in extensions), but not the
Tcl or Tk library or library script files. Produces a dynamically-linked
wrapped application, as discussed in “ Creating and Distributing
Dynamically-Linked Wrapped Applications’ on page 96.

tclsh-dynamic Includes the tclsh interpreter (with no built-in extensions), but not the
Tcl library or library script files. Produces a dynamically-linked
wrapped application, as discussed in “ Creating and Distributing
Dynamically-Linked Wrapped Applications’ on page 96.

In addition to the options listed in Table 10, you can also define new
configurations of your own with their own -uses values. See “ Defining New -uses
Options’ on page 103 for details.

Specifying the Startup Tcl Script

By default, your wrapped application sourcesthefirst file you list in the prowrap
command. You can use the -startup option to specify a different file to source
when your application starts. This can be very helpful if you use wildcard
characters to specify files to wrap. For example, consider the case of wrapping
three Tcl scripts, display.tcl, help.tcl, and main.tcl, all in the same directory, and
wanting to source main.tcl when you start your application. You could accomplish
thiswith:

TclProWrapper

89

90

Note

Chapter 7

C.> prowap -startup main.tcl *.tcl

You can create awrapped application that displays an interactive Tcl shell by
specifying the empty string (*”) as the -startup argument. Upon startup, the
application doesn’t sour ce any files automatically. Users can then access through
the Tcl shell any additional files that you wrap with the application. For example:

C.> prowap -uses tclsh -startup "" fool.tcl foo2.tcl foo3.tcl

A user could then run the wrapped application and sour ce fool.tcl, foo2.tcl, or
foo3.tcl from the Tcl shell as desired.

Passing Arguments to the Startup Tcl Script

With the prowrap -ar guments option, you can specify additional argumentsto
your wrapped application that are treated just as if they were submitted to your
unwrapped application on the command line. The arguments appear in the Tcl
argv variable. The arguments you specify are inserted before any command-line
arguments entered by the end user when they execute your wrapped application.

You must provide the arguments as a single argument on the prowrap command
line; use proper quoting conventions of your command shell to accomplish this.
For example, the following passes the arguments -height 50 -width 20 to the
main.tcl script:

c:>prowap main.tcl ing*.gif -argunents "-hei ght 50 -wi dth 20"

Specifying the Name of a Wrapped Application

The default name of the wrapped application produced by prowrap is prowrapout
on Unix or prowrapout.exe on Windows. You can use the -out option to specify a
different name for the application. For example, the following creates a wrapped
application with the name myapp.exe:

C. > prowap nyapp.tcl utils.tcl -out nyapp.exe

On Windows systems, prowr ap automatically adds the .exe extension if you omit
it from the application name.

Determining Path References in Wrapped Applications

Asdiscussed in “How the Internal File Archive Worksin a Wrapped Application”
on page 86, you must use relative pathnames to access files stored in the internal
archive of awrapped application. The proper pathname to use to access afile from
the archive depends on your prowrap command arguments.

By default, files that you specify in your prowrap command with relative
pathnames retain that pathname in the archive. Files that you specify with

absol ute pathnames are stripped of their drive and root directory characters. For
example, consider in the following:

C. > prowap nyApp.tcl D:\tcl\common\utils.tcl
To source D:\tcl\common\utils.tcl from within your wrapped application, you
would need to use a command such as:

source [file join tcl conmmon utils.tcl]

You can also change the resulting pathname for awrapped file with the -relativeto
directory option to prowrap. The -relativeto flag instructs TclPro Wrapper to
wrap al file name patterns that follow relative to the directory you specify. Asan
example, consider the following:

C.> prowrap nyApp.tcl -relativeto D:\tcl\comon \

D:\tcl\common\utils.tcl

In this case, the resulting pathname for D:\tcl\common\utils.tcl from within your
wrapped application isssimply utils.tcl.

Table 11 summarizes how wrapped file pathnames are determined.

Table 11 Resolving File Pathnames When Wrapping an Application

Path Type Using Resulting Wrapped File Example
-relativeto Pathname
flag?
Relative No Thegivenrelative pathname (including images/icon.gif and ../lib/control .tcl
any “.” or “.."” relative pathname remain the same
references)
Relative Yes The pathname of thefilerelativetothe images/icon.gif with -relativeto
-relativeto directory images becomes icon.gif
.Jlib/control.tcl with -relativeto ../lib
becomes controal..tcl
Absolute No The full pathname of the filewithout /usr/local/tcl/lib/common.tcl becomes
the root directory usr/local/tcl/lib/common.tcl
Absolute Yes The pathname of thefilerelativeto the /usr/local/tcl/lib/common.tcl with
-relativeto directory -relativeto /usr/local/tcl becomes
lib/common.tcl

TclProWrapper 91

92

Chapter 7

Specifying TclPro Wrapper Command Line Arguments Using
Standard Input

Many command shells have alimit to the number of charactersthey accept as
input. Although thisisrarely a problem when wrapping just afew Tcl scripts, you
might exceed thislimit if you use wildcard expansion and wrap |ots of datafilesor
Tcl packages.

To get around this limitation, prowrap allows you to specify arguments from
standard input using the -@ option. Arguments from standard input are processed
after al other arguments on the prowrap command line.

Specifying Code to Execute at Application Startup

The -code option alows you to provide Tcl code that your application executes
when it starts. The application executes the code early in the application
initialization sequence, before Tcl_Init or any other package initialization
procedures are invoked. You can specify multiple -code options, in which case
TclPro Wrapper arranges for the application to execute these scripts in the order
that they appear on the prowrap command line.

One common use for the -code option isto set the auto_path variable to handle
Tcl script libraries wrapped with your applications. For example, the following
prowrap command wraps an application with alibrary in the
/usr/local/lib/common directory and setsthe auto_path variable so that the library
is loaded properly on execution:

% prowrap nyscript.tcl -relativeto /usr/local \

fusr/local/lib/common/*.tcl /usr/local/lib/comon/tcl!|ndex \
-code "l append auto_path |ib/comobn" -out nyscript

Wrapping Libraries and Packages

Often, your application will use various Tcl libraries and packages. This section
describes how to wrap libraries and packages with your application.

In this section, alibrary refersto either:

* A collection of Tcl scripts contained in adirectory that also contains atclindex
file generated by the auto_mkindex command

* A binary shared library that an application can load using the load command

In this book, a package refers to a collection of Tcl scripts or binary shared
librariesin a directory that also contains a pkglndex.tcl file generated by the
pkg_mkIndex command.

Note

Important

You don't need to take any special stepsto wrap applications that use the Tcl
extensions bundled with TclPro (for example, [incr tcl]) if you specify the
appropriate built-in prowr ap -uses option. See“ Specifying the Tcl Interpreter” on
page 88 for more information.

Wrapping Libraries of Tcl Scripts

You must take specia steps to auto-load Tcl script libraries that you wrap with
your application. For example, if alibrary consists of the files help.tcl and
display.tcl, and they and the tclindex file are stored in /usr/local/lib/common, an
unwrapped Tcl script that used this library would contain the following command
to auto-load the library:

| append auto_path /usr/local/lib/comon

This command would fail to auto-load your library in awrapped application
because of the absolute pathname. You can correct this problem in one of two
ways:
* Changeyour applicationto test if it isexecuting as awrapped application, and
then set the auto_path variable appropriately:
if {[info exists tcl_platforn(isWapped)]} {
| append auto_path |ib/conmmon

} else {
| append auto_path /usr/local/lib/comon

}
Then wrap your application as follows (remember to wrap the tclindex filein
addition to the Tcl script files):
% prow ap nyscript.tcl -relativeto /usr/local \
fusr/local/lib/comon/*.tcl /usr/local/lib/conmon/tcllndex

* Settheauto_path variable using the -code option of the prowrap command.
The -code option executes the Tcl code that you provide before executing the
Tcl scripts of your application. Thus, the following prowrap command
accomplishes the same results as above (remember to wrap the tclindex filein
addition to the Tcl script files):
% prowrap nyscript.tcl -relativeto /usr/local \

/fusr/local/lib/comon/*.tcl /usr/local/lib/comon/tcll|ndex \
-code "l append auto_path |ib/comon"

Wrapping Binary Shared Libraries

Wrapped applicationsthat load shared libraries must use adynamically-linked Tcl
interpreter such astclsh-dynamic or wish-dynamic. If you use a statically-linked
Tcl interpreter such astclsh or wish, you will receive an error stating that the load
command is not supported when executing the wrapped application. For more

TclProWrapper

93

94

Important

Important

+ Chapter7

information on selecting a Tcl interpreter for your wrapped application, see
“Specifying the Tcl Interpreter” on page 88.

You can’'t wrap binary shared libraries. There are two options for creating a
wrapped application that uses a binary shared libraries:

e Create acustom Tcl interpreter that links a static version of the library.

TclPro Wrapper requires specially-written Tcl interpreters to work with
wrapped applications. Any custom interpreters that you use must follow the
guidelines described in “ Creating Base Applications for TclPro Wrapper” on
page 119.

* Wrap your application (without the binary shared library) with a dynamically-
linked Tcl interpreter such as tclsh-dynamic or wish-dynamic. Then include
thebinary shared library in your distribution that you provideto customers. See
“Creating and Distributing Dynamically-Linked Wrapped Applications’ on
page 96 for details.

Wrapping Tcl Script Packages

Packages that consist entirely of Tcl scripts don’t need any specia handling when
wrapping. TclPro Wrapper understands pkglndex.tcl files and automatically adds
wrapped directories to your application’s tcl_pkgPath variable if they contain
pkglndex.tcl files.

For example, if you have a package stored in /usr/local/lib/common and you have
generated a pkglndex.tcl filein that directory using the pkg_mkIndex command,
you can wrap the package automatically with a prowrap command such as.

% prow ap nyscript.tcl -relativeto /usr/local \
lusr/local/lib/comon/*.tcl -0 myscript

Wrapping Packages Containing Binary Shared Libraries

You can’t wrap packages that contain binary shared libraries. There are two
options for creating a wrapped application that uses packages with binary shared
libraries:

* Create acustom Tcl interpreter that links a static version of the package.

TclPro Wrapper requires specially-written Tcl interpreters to work with
wrapped applications. Any custom interpreters that you use must follow the
guidelines described in “Creating Base Applications for TclPro Wrapper” on
page 119.

* Wrap your application (without the packages) with a dynamically-linked Tcl
interpreter such as tclsh-dynamic or wish-dynamic. Then include the
packagesin your distribution that you provide to customers. See* Creating and
Distributing Dynamically-Linked Wrapped Applications’ on page 96 for
details.

Specifying a Temporary Directory

The prowrap -temp argument allows you to specify a directory that TclPro
Wrapper uses to temporarily hold files created during the wrapping process. By
default, TclPro Wrapper uses the directory given by either TEMP, TMP, or
TMPDIR environment variables, which are checked in that order. On Unix, the
directory falls through to the /tmp directory if no environment variable exists.

For example, the following uses C:\Temp as a temporary directory for wrapping
on aWindows system:

% prowap -tenp C:\Tenp fool.tcl foo2.tcl

Getting Detailed Wrapping Feedback

You can get TclPro Wrapper to give you more detailed information about what it
is doing and which filesit is wrapping by specifying the prowrap -verbose
option.

Static and Dynamic Linking with Wrapped Applications

TclPro Wrapper allows you to create either statically-linked or dynamically-linked
wrapped applications:

* A statically-linked application copies all the code it needs from librarieswhen
you compileit. Once you compile the application, you no longer need the
libraries to be able to run the application.

* A dynamically-linked application contains mechanismsfor loading the code it
needs from libraries as needed while the application is running. The
application requires the libraries to be present while it runs so that it can
dynamically load and execute thelibrary code. On Windows, theselibrariesare
usually referred to as DLLs (Dynamic Link Libraries). On Unix systems, they
are often called shared libraries, because several application can use them at
the same time.

TclProWrapper o

95

96

Important

+ Chapter7

Deciding Whether Static or Dynamic Linking is More
Appropriate

In general, Ajuba Solutions recommends that you create statically-linked wrapped
applications. A statically-linked application is usually simpler to distribute and
maintain. It contains your scripts and datafiles, a Tcl interpreter, and everything
€lse needed to run the application. On the other hand, if you distribute a
dynamically-linked application, you must be sure that the target system has the
Tcl (and Tk, if needed) libraries and library script files (such asinit.tcl) properly
installed and configured. If your application uses Tcl extensions (such as

[incr Tcl]), then those extensions must also be installed and configured on your
target system. Furthermore, if a user accidentally deletes a shared library, or
another software package installs an incompatible version of one, your
dynamically-linked application will no longer work on that system.

Because of system limitations, statically-linked wrapped applications can’t load
shared libraries. Therefore, if you need to load shared libraries (or auto-load
packages that contain binary shared libraries), you must either create a
dynamically-linked wrapped application or create a custom Tcl interpreter that
links a static version of the library.

You aso might consider distributing dynamically-linked wrapped applications.
However, for adynamically-linked wrapped application to work, your target
systems must have all needed libraries installed and configured properly.
Dynamically-linked applications are smaller than statically-linked ones, which
can be beneficial if you plan to distribute several wrapped applications.

Creating and Distributing Dynamically-Linked Wrapped
Applications

To create a dynamically-linked wrapped application, wrap your application with
either the -uses tclsh-dynamic option (to use the tclsh interpreter) or -uses
wish-dynamic option (to use the wish interpreter).

For a Windows application, if your target system has the same version of TclPro
installed and your application doesn’'t use any extensions other than those bundled
with TclPro, you can simply copy your application to the target system. You can
run the application from anywhere on the target system.

For aUnix application, if your target system has the same version of TclPro
installed in exactly the same directory as on your development system and your
application doesn’'t use any extensions other than those bundled with TclPro, you
can simply copy your application to the target system. You can run the application
from anywhere on the target system. Although the requirementsin this case are

restrictive, it is actually fairly common for a company to make the TclPro
installation available on a shared directory of afile server. If al users mount the
TclProinstallation in the same location on their systems, they all effectively have
the same TclPro configuration.
For all other cases, you must create a specia distribution to install on your target
system that contains your application and all binary libraries and library script
files required by your system. (The rest of this section refers to this distribution
directory as $DIST.) You must copy these files from the TclPro installation
directory. (Therest of this section refers to this directory as $TclPro).
Your resulting distribution tree should have the following structure:

$DI ST/

-1ib/

I

I

|---tcl 8.3/

| ---tk8.3/ (optional)
|---itcl 3.2/ (optional)
|---itk3.2/ (optional)

| ---iwidgets2.2.0/ (optional)
| ---iwidgets3.0.0/ (optional)
|---tcl X8.3/ (optional)

| ---tkX8.3/ (optional)

--$platform

I
|---1Tib/ (Unix only)

I I

| |---*.s0 (or *.sl on HP-UX)
I
|

---bin/
I

| ---wrapped application(s)
|---*.dll (Wndows only)

The following steps describe how to create this distribution directory:

1. Create adynamically-linked wrapped application with prowrap. The -uses
tclsh-dynamic and -uses wish-dynamic options automatically handle setting
the appropriate valuesof thetcl _libraryandtk library variables, aswell asany
similar library variables for the extensions bundled with TclPro, so that your
application can find the script libraries. If you use any additional extensions
with your application, you must include a -code option to your prowrap
command setting any similar library variables for those extensions. You can
use the following example as a template:

-code "set tcl _library [file join [file dir [info nameofexec]] lib tcl8.3]"

TclProWrapper

97

98

Chapter 7

You would need to replace “tcl_library” and “tcl8.3” with values appropriate
for your extension.

Create a distribution directory with whatever name you want.
Create the directory $DIST/lib.

Copy the entire contents of $TclPro/lib to $DIST/lib. Optionally, you can omit
from $DIST/lib any extensions your application doesn’'t use (for example,
don’t copy $TclPro/lib/tcIX8.3 and its contentsif your application doesn’t use
TclX).

If your application uses any additional extensions (beyond those bundled with
TclPro) which have directories and files residing in the Tcl script library
directory (thelib subdirectory of the Tcl installation directory), then copy those
directories and files to $DIST/lib.

Create the directory $DIST/$platform, where $platformis the platform-
specific subdirectory as used by TclPro. Table 12 lists the appropriate
subdirectory names (for example, win32-ix86 for Windows systems).

Table 12 Platform-Specific TclPro Subdirectories

Platform TclPro Platform Subdirectory
HP-UX hpux-parisc
IRIX/Mips irix-mips
Linux/x86 linux-ix86
Solaris/SPARC solaris-sparc
Windows 95/NT(x86) win32-ix86
6. Create the directory $DIST/$platfornvbin.
7. Copy or move your dynamically-linked wrapped application to
$DIST/$platform/bin.
8. For Unix distributions:

a) Createthe directory $DIST/$platformvlib.

b) Copy al shared libraries from $TclPro/$platfornvlib to
$DIST/$platformylib (for example, copy $TclPro/solaris-sparc/lib/*.so to
$DIST/solaris-sparc/lib). Optionally, you can omit from
$DIST/$platfornvlib any extensions your application doesn’t use (for
example, don’t copy $TclPro/$platformvlib/libtclX8.3.s0 if your
application doesn’t use TclX).

Tip

c) If your application uses any additional extensions (beyond those bundled
with TclPro) which have shared libraries, or if your application uses any
other shared libraries, then copy those libraries to $DI ST/$platfornvlib.

9. For Windows distributions:

a) Copy al shared libraries from $TclPro\win32-ix86\bin to
$DIST\Win32-ix86\bin (for example, copy $TclPro\win32-ix86\bin*.dll to
$DIST\win32-ix86\bin). Optionally, you can omit from
$DIST\Win32-ix86\bin any extensions your application doesn’t use (for
example, don’t copy $Tcl Pro\win32-ix86\bin\tclx83.dll if your application
doesn't use TclX).

b) If your application uses any additional extensions (beyond those bundled
with TclPro) which have shared libraries, or if your application uses any
other shared libraries, then copy those libraries to $DIST\win32-ix86\bin.

10. Use whatever installation method you want to copy the entire $DIST
distribution tree to your target systems. You can install the distribution
anywhere you like on the target system; however, users can't move the
wrapped application from the distribution tree’s bin directory.

If you want to distribute more than one dynamically-linked wrapped application,
you canincludeall of those applicationsin $DIST/$platformvbin. If you do this, be
sure to include all of the extensions and libraries needed by all of your
applications.

Wrapping Applications with a Custom Interpreter or Custom
Initialization Libraries

Important

You can wrap an application with a Tcl interpreter other than those supported by
the built-in prowrap -uses options. You can also wrap an application that uses a
custom Tcl initialization library (that is, init.tcl). You can specify custom
interpreters on either an as-needed basis or, if you frequently use the same
interpreter, you can create your own custom -uses option.

Only specially-written Tcl interpreters work with wrapped applications. The built-
in prowr ap -uses options automatically use supported Tcl interpreters. However,
any custom interpreters that you use must follow the guidelines described in
“Creating Base Applications for TclPro Wrapper” on page 119.

Specifying a Custom Interpreter or Custom Initialization Files

The prowr ap -executable option specifies a Tcl interpreter to wrap with your
application. If you include both the -uses and -executable options when

TclProWrapper o

99

100

Important

Important

Note

Chapter 7

wrapping, TclPro Wrapper automatically wraps al the initialization library files
required for the standard interpreter (for example, init.tcl), but includes the
custom interpreter you specify rather than the standard interpreter.

The prowr ap -tcllibrary option specifies where the wrapped application can find
the Tcl initialization library files at thetime that it isrun (rather than at the time
you wrap the application). In other words, it sets the value of the Tcl tcl_library
variable used by your application during itsinitialization. You don’t need to
include the prowrap -tcllibrary option if your application uses the standard
initialization files and you wrap the application using a built-in -uses option. The
built-in -uses options automatically wrap the standard initialization files and sets
the tcl_library variable appropriately.

Aswith any other file reference in awrapped application, the prowrap
-tcllibrary value you specify can refer to either afile onthe disk or afilein the
interna file archive. In other words, if you provide an absolute pathname, your
application looks for the initialization files on the disk when it runs. On the other
hand, if you specify arelative pathname, your application first looksin itsinterna
filearchive for the initialization files, and looks on the disk only if the files don’t
exist in the archive. For more information on file access in awrapped application,
see “How the Internal File Archive Worksin a Wrapped Application” on page 86.

Always use the prowr ap -tcllibrary option to set the value of the Tcl tcl_library
variable rather than setting it using a prowr ap -code option. Your application
needs the correct value of the Tcl tcl_library variable during the initialization of
the Tcl interpreter (primarily to find the character encoding files). Code that you
include with the -code option is executed after initialization of the core Tcl
interpreter.

The prowrap -tcllibrary option does not set the value of the Tcl tk_library
variable or any other similar variable used by a Tcl package. Use the prowr ap
-code option to set these variablesif you don’t use a built-in -uses option.

The proper combination of -uses, -executable, and -tcllibrary options depends
on:

* Whether you are creating a statically- or dynamically-linked application
* Whether or not you use a custom interpreter
* Whether or not you use custom initialization files

Obvioudly, if you use a standard interpreter and standard initialization file, you
can simply use the built-in -uses options as described in “ Specifying the Tcl
Interpreter” on page 88. The other cases are described in the following sections.

Note

Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Standard Initialization Files

When creating a statically-linked wrapped application with a custom interpreter
and the standard Tcl initialization files, your prowr ap command line must include
the following:

* One of the standard -uses options
* An-executable option specifying the custom interpreter

For example, the following wraps an application with a custom interpreter,
myWish, that is based on the standard wish interpreter:

% prow ap -uses w sh -executable /usr/local/bin/myWsh \
-out nyApp nyApp.tcl img/*.gif

Creating a Statically-Linked Wrapped Application with a
Standard Interpreter and Custom Initialization Files

When creating a statically-linked wrapped application with a standard interpreter
and custom Tcl initialization files, your prowrap command line must include the
following:

* One of the standard -uses options
* All of your custom Tcl initialization files

* A -tcllibrary option specifying the location of the initialization filesin the
wrapped application’sfile archive

* Any -code options required to initialize other Tcl configuration variables such
astk library

For example, the following wraps an application with the standard wish
interpreter and a set of initialization files contained in the directory
{usr/local/siteTcl/lib:
% prow ap -uses W sh -out nyApp nyApp.tcl ing/*.gif \
lfusr/local/siteTcl/lib/tcl8.3/*.tcl \
lusr/local/siteTcl/lib/tcl8.3/tcllndex \
lusr/local/siteTcl/lib/tcl8.3/encoding/*.enc \
/usr/local/siteTcl/lib/tk8.3/*.tcl \
lfusr/local/siteTcl/lib/tk8.3/tcllndex \
-tcllibrary usr/local/siteTcl/lib/tcl8.3\
-code "set tk_library usr/local/siteTcl/lib/tk8.3"

Both the -tcllibrary and -code options omit the initial “/” when specifying the
pathnames for the tcl_library and tk_library variables. Thisis because TclPro
Wrapper stripstheinitial “/” from absol ute pathnames when wrapping files, and
therefore the wrapped initialization files have relative pathnames in the archive

TclProWrapper

101

102

Note

Chapter 7

(for example, “usr/local/siteTcl/lib/tcl8.3/init.tcl”). See “How the Internal File
Archive Works in a Wrapped Application” on page 86 for more information.

Creating a Statically-Linked Wrapped Application with a Custom
Interpreter and Custom Initialization Files

When creating a statically-linked wrapped application with a custom interpreter
and custom Tcl initialization files, you are basically overriding all TclPro Wrapper
defaults and wrapping your application “from scratch.” In this case, your
prowrap command line must include the following:

e The-uses"" option to prevent TclPro Wrapper from using any built-in -uses
configuration

* A -executable option specifying the custom interpreter
* All of your custom Tcl initialization files

* A -tcllibrary option specifying the location of the initialization filesin the
wrapped application’s file archive

* Any -code options required to initialize other Tcl configuration variables such
astk library

For example, the following wraps an application with a custom interpreter,
myWish, that is based on the standard wish interpreter and a set of initialization
files contained in the directory /usr/local/siteTcl/lib:

% prow ap -uses "" -executable /usr/local/bin/myWsh \
-out nyApp nmyApp.tcl ing/*.gif \
lfusr/local/siteTcl/lib/tcl8.3/*.tcl \
lusr/local/siteTcl/lib/tcl8.3/tcllndex \
lusr/local/siteTcl/lib/tcl8.3/encoding/*.enc \
/usr/local/siteTcl/lib/tk8.3/*.tcl \
lusr/local/siteTcl/lib/tk8.3/tcllndex \

-tcllibrary usr/local/siteTcl/lib/tcl8.3\

-code "set tk_library usr/local/siteTcl/lib/tk8.3"

Both the -tcllibrary and -code options omit the initial “/” when specifying the
pathnames for the tcl_library and tk_library variables. Thisis because TclPro
Wrapper stripstheinitial “/” from absol ute pathnames when wrapping files, and
therefore the wrapped initialization files have relative pathnames in the archive
(for example, “usr/local/siteTcl/lib/tcl8.3/init.tcl”). See “How the Internal File
Archive Works in a Wrapped Application” on page 86 for more information.

Creating a Dynamically-Linked Wrapped Application with a
Custom Interpreter

When creating a dynamically-linked wrapped application, your application
depends on al shared libraries and library script files (for example, init.tcl)
aready being installed and configured on your target system. The built-in -uses
tclsh-dynamic and -uses wish-dynamic options automatically handle setting the
appropriate values of the tcl_library and tk_library variables, as well as any
similar library variables for the extensions bundled with TclPro. But when you
want to use a custom dynamically-linked interpreter, you must set these values
yourself when wrapping the application. In this case, your prowrap command
line must include the following:

nn

e The-uses
configuration

option to prevent TclPro Wrapper from using any built-in -uses

* A -executable option specifying the custom interpreter

* A -tcllibrary option specifying the location of the initialization files on your
target system

* Any -code options required to initialize other Tcl configuration variables such
astk_library

Furthermore, you must configure your target systems as discussed in “ Creating
and Distributing Dynamically-Linked Wrapped Applications” on page 96
(including creating a distribution directory as described in that section, if
necessary).

For example, the following wraps an application with a custom dynamically-
linked interpreter, myWish, that is based on the standard wish interpreter. The
example assumes that you create a distribution directory for your application as
described in “Creating and Distributing Dynamically-Linked Wrapped
Applications” on page 96:

% prow ap -uses "" -executable /usr/local/bin/nyWsh \
-out nyApp nyApp.tcl ing/*.gif -tcllibrary ../../lib/tcl8.3\
-code "set tk_library [file join [file dir [info naneofexec]] lib tk8.3] "

Defining New -uses Options

TclPro Wrapper recognizes files with the .uses extension as providing additional
-uses configurations. For example, afile new.uses directory defines a
configuration named “new” that you can use as a -uses option.

When you specify a-uses option, TclPro Wrapper checksto seeif it isabuilt-in
configuration first. If not, if looks for a .uses file with the proper name in the

TclProWrapper 103

104

Note

Important

Chapter 7

lib/prowrapuses directory of the TclPro installation (that is, lib/prowrapuses
should be at the same level as the lib/tcl8.3 directory). If TclPro Wrapper doesn’t
find the proper file there, it finally checks the directory from which you execute
prowr ap.

You can also specify an absolute or relative path as an argument to the -uses
option. For example, specifying -uses C:\Tcl\Wrapper\custom causes TclPro
Wrapper to use the configuration file C:\Tcl\Wrapper\custom.uses.

The lib/prowrapuses directory of the TclPro installation contains Tcl scripts
showing the definitions of the built-in -uses options. You can use these files as
templates for creating your own -uses configurations.

Modifying these files does not change the behavior of the built-in -uses
configurations; they are only sample files. To use them, you can copy them,
rename them, and maodify them as needed.

TclPro Wrapper evaluates the contents of a .uses file when it prepares to wrap an
application with that configuration. The .uses file must contain a Tcl script that
returns a Tcl list providing additional TclPro Wrapper command-line arguments.
These arguments should typically specify the following:

* an-executable option specifying a Tcl or interpreter

* f this option produces statically-wrapped applications, all initialization and
support files required by the interpreter (for example, the contents of the Tcl
and Tk lib directories and their subdirectories)

* a-tcllibrary option specifying the location Tcl initialization library files (that
is, the value of the Tcl tcl_library variable)

e if the option includes a Tk interpreter, a -code option setting the value of the
tk_library variable

* if thisoption provides built-in support for additional Tcl libraries or packages,
the script and index files for these packages as discussed in “Wrapping
Libraries and Packages’ on page 92

* optionally, one or more -code options to perform any other required
initialization of awrapped application (for example, setting any required
values for an included package)

* optionally, any other desired script or datafiles

Aswith any other file reference in awrapped application, the file references you
provideto the -tcllibrary and -code options can refer to either afile onthe disk or
afileintheinternal file archive. In other words, if you provide an absolute
pathname, your application looks for the initialization files on the disk when it
runs. On the other hand, if you specify arelative pathname, your application first

looksin itsinternal file archive for theinitiaization files, and looks on the disk
only if thefilesdon’t exist in the archive. Also remember that TclPro Wrapper
strips the initial “/” from absolute pathnames when wrapping files, and therefore
wrapped initialization files have relative pathnames in the archive. For more
information on file access in awrapped application, see “How the Interna File
Archive Works in a Wrapped Application” on page 86.

For example, suppose you create a custom, statically-linked Tcl interpreter with
the name siteTclsh1.0 and place it in the directory /usr/local/tcl/sitel.0/bin. In
addition to the standard Tcl script library files, located in /usr/local/tcl/lib/tcl 8.3,
your custom interpreter requires the custom initialization and support files site.tcl,
siteApp.tcl, and help.txt, which you place in the directory /usr/local/tcl/sitel.0/lib.
Your custom interpreter uses a custom Tcl variable, site_library, to locate its
initialization and support files. To define this interpreter and support filesasa
custom -uses option named “siteTclsh”, create the file siteTclsh.uses and place it
in the lib/prowrapuses directory. The siteTclsh.uses file would contain:
siteTcl sh. uses
return [list \
-executable /usr/local/tcl/sitel.0/bin/siteTclshl.0 \
-relativeto /usr/local/tcl \
Jusr/local/tcl/lib/tcl8.3/*.tcl \
/usr/local/tcl/lib/tcl8.3/tcllIndex \
Jusr/local/tcl/lib/tcl8.3/encoding/*.enc \
/usr/local/tcl/sitel.O0/lib/site.tcl \
/usr/local/tcl/sitel.O0/lib/siteApp.tcl \
lusr/local/tcl/sitel.0/lib/help.txt \
-tcllibrary lib/tcl 8.3\
-code "set site_library [file join sitel.0 lib]"]
You could then wrap applications using this custom shell by specifying the -uses
siteTclsh option. For example, the following TclPro Wrapper command would
create awrapped application based on siteTclshl.0 with filel.tcl as the startup
script:
% prow ap -uses siteTclsh filel.tcl file2.tcl

Preparing an Application for Wrapping

There are minor differences in the way an application runs when it is wrapped
versus when it runs unwrapped. However, it isrelatively easy to modify your
application so that you can test it in unwrapped form, then wrap the same files for
distribution. This section shows you how to change your application to ensure that
it works properly both unwrapped and wrapped.

TclProWrapper 105

106 ¢

Chapter 7

Detecting When an Application Is Wrapped

Because there are minor differences in the behavior of unwrapped and wrapped
applications, you need to be able to detect whether your application is wrapped or
not. TclPro Wrapper automatically creates the variable tcl_platform(iswtapped)
when it wraps your application, so your application simply needs to test for the
existence of thisvariable to determine whether or not it iswrapped. The following
code fragment demonstrates how to use tcl_platform(isWapped):
if {[info exists tcl_platforn(isWapped)]} {
Application is wapped

} else {
Application is not wapped

}

Modifying Custom Shells

TclPro Wrapper requires specially-written Tcl interpreters to work with wrapped
applications. The predefined prowr ap -uses options (described in “ Specifying the
Tcl Interpreter” on page 88) automatically use appropriate interpreters. However,
if you want your application to use a custom interpreter, you use must write that
interpreter following the guidelinesin “ Creating Base Applications for TclPro
Wrapper” on page 119.

Changing File References

Writing an application to work properly both unwrapped and wrapped can be
tricky when it comes to file access. You want to prevent accidental fall-through
and file shadowing, as discussed in “How the Internal File Archive Worksin a
Wrapped Application” on page 86. The key points to keep in mind are:

* All filesintheinterna archive of awrapped application have relative
pathnames

* If you usethe -relativeto option when wrapping afile, the pathname of afile
intheinterna archiveisdifferent fromits corresponding unwrapped pathname
(see “Determining Path References in Wrapped Applications’ on page 90)

* A wrapped application always searches for afileinitsinternal file archive
before searching the disk whenever it encounters arelative pathname to afile

Accessing Unwrapped Files

If your wrapped application attempts to access unwrapped files using relative
pathnames, it runs the risk of accidentally accessing afile in the internal archive
instead (that is, file shadowing). To ensure that your application always accesses

unwrapped files when desired, you should always use absolute pathnamesin a
wrapped application.

In particular, you should be careful in how your application handles cases where a
user can enter afile name. If auser enters arelative pathname for afile, you
should convert it to an absolute pathname. For example, if the variable path
contains arelative file name, you can create an absol ute file name by appending it
to the current working directory:

set path [file join [pwd] $path]

Accessing Files from a Shared Directory

Files shared by multiple applications or projects are typically put in a shared
directory, often on afile server. An application myscript.tcl might then access
those files as follows:

set shared {Z:\tcl\conmon}

source [file join $shared help.tcl]

source [file join $shared display.tcl]
Unfortunately, because of the absolute pathname, the code above no longer works
if you wrap the files in the shared directory with the application.

However, you can easily modify this code to work either unwrapped or wrapped
by testing to see whether the application is wrapped and modifying the value of
shared appropriately. For example:
if {[info exist tcl_platfornm(isWapped)]} {
set shared conmon

} else {
set shared {Z:\tcl\comon}

}

source [file join $shared help.tcl]
source [file join $shared display.tcl]

You would then need to wrap the shared files using the -relativeto flag asin the
following example:

C.> prowap nyscript.tcl -relativeto Z:\tcl Z:\tcl\comon*.tcl

Accessing Wrapped Files Relative to a Script’s Directory

A common trick to avoid hard-wiring pathnames into scriptsisto figure out where
the script islocated with theinfo script command and then accessing filesrelative
to the script’s directory. For example:

set hone [file dirnane [info script]]

source [file join $hone help.tcl]
source [file join $hone display.tcl]

TclProWrapper

107

108

Auto-Loading Wrapped Tcl Script Libraries

You must take specia steps to auto-load Tcl script libraries that you wrap with
your application. “Wrapping Libraries of Tcl Scripts’ on page 93 describes the
changes you need to make to your application.

Changing the Windows Icon for a Wrapped Application

Important

Important

Chapter 7

On Windows, awrapped application receives the same icon as that of the Tcl
interpreter that you wrap with the application. You can use a commercial or
shareware icon manager to change theicon. You can also use Microsoft Visual
C++ 5.0 or later on aWindows NT system to change the icon. (However,
Microsoft Visual C++ on a Windows 95/98 system does not provide this feature.)

You should always change the icon of the Tcl interpreter before wrapping rather
than attempting to change the icon of the final wrapped application executable.
The wrapped application executable contains a Zip-formatted archive of the
wrapped script and data files appended to the base interpreter. When a program
attempts to change the icon of awrapped application, it can become confused by
the appended Zip archive and overwrite or destroy information contained in the
archive.

The standard set of Tcl interpreters used by TclPro Wrapper to create wrapped
applications are stored in the win32-ix86\lib subdirectory of your TclPro
installation (for example, C:\Program Files\TclProl.4\win32-ix86\lib). The name
of each file and its corresponding prowr ap -uses option is shown in Table 13.

Table 13 Tcl Interpreters Corresponding to prowr ap -uses Options

Interpreter File Name Corresponding prowrap -uses Option
wrapbigwish83s.in -uses bigwish (default)

wrapbigtclsh83s.in -uses bigtclsh

wrapwish83s.in -uses wish

wraptclsh83s.in -usestclsh

wrapwish83.in -uses wish-dynamic

wraptclsh83.in -usestclsh-dynamic

Always create a backup of any interpreter before attempting to change itsicon. If
you accidentally damage an interpreter and don’'t have a backup, you will have to
reinstall TclPro to restore the interpreter.

If you change the icon for one of these interpreters, then all wrapped applications
that you create using that interpreter inherit that icon. Another option isto createa
copy of an interpreter, change the icon for that interpreter, and then use the
prowr ap -executable option so that TclPro Wrapper uses that interpreter when
creating your wrapped application.

For example, if you have created a copy of the wish interpreter named mywish.in
with a customized icon, you could use it when wrapping an application asfollows:

C.> prowap -uses w sh -executable C \Program
Fil es\ Tcl Prol. 4\wi n32-i x86\ i b\ mywi sh.in myApp. tcl

As mentioned earlier, you can use acommercial or shareware icon manager to
changetheicon. You can also use Microsoft Visual C++ 5.0 or later on aWindows
NT system by performing the following steps:

1. Close any open workspaces.
2. Open the wrapped application in Visual C++.

3. Sdlect File | Open from the menubar and browse for the wrapped application
executable.

4. Select File of Type: Executable.

Select Open as: Resources. A window appears with the executable’s resources
and the name of the application in the title bar.

Click theicon folder to display the application’s default icon.
Open the icon resource.

o

A window appears with the application icon.

Draw or paste your application icon.

10. Save the executable with your changes. Select File | Save from the menubar.
11. Create a shortcut on your Windows desktop to see your change.

© © N o

TclProWrapper

109

110 Chapter 7

Chapter 8
Creating Custom Interpreters with TclPro

This chapter describes how to create both regular Tcl interpreters and Tcl
interpreters that you can use with the TclPro Wrapper. In general, you create Tcl
interpreterswith TclPro just as you would with the free Tcl distribution. However,
TclPro makesit easier to build custom Tcl interpreters by providing precompiled
librariesfor Tcl, Tk, and al bundled extensions on each platform supported by
TclPro. TclPro aso provides libraries that support the tbcload extension, whichis
required to read the bytecode files created by TclPro Compiler, and the TclPro
Wrapper library, which you need to create interpreters (that is, base applications)
for use by TclPro Wrapper.

Important The development libraries and other files described in this chapter are part of the
TclPro “ C Development Libraries’ installation component. You must install the
TclPro “C Development Libraries’ component if you want to use these filesto
create custom Tcl interpreters.

Remember, there is often no need for you to create a custom Tcl interpreter. If all
you want to do isto incorporate a new extension, it is usually easier to use the
built-in load and package facilities of Tcl. Also remember that protclsh or
prowish already have built-in support for the extensions bundled with TclPro.

Note This chapter assumes that you are already familiar with writing custom Tcl
interpreters; therefore, it concentrates on describing the unique features of
building a custom Tcl interpreter with the TclPro distribution. For detailed
instructions on writing a custom Tcl interpreter, consult the referenceslisted in
“For More Information” on page 3.

Overview of the TclPro Development Environment

This section provides general information about the TclPro development
environment including the location of the libraries and sample files, and special
comments about the compilation options of the Windows libraries.

111

112

Chapter 8

Locations of the Libraries

All of the precompiled libraries shipped with TclPro are located in subdirectories
of the TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 14.

Table 14 Locations of TclPro Libraries Relative to the Installation Directory

Platform Library Subdirectory

HP-UX hpux-parisc/lib

IRIX/Mips irix-mipg/lib

Linux/x86 linux-ix86/lib

Solaris/SPARC solaris-sparc/lib

Windows 95/NT(x86) win32-ix86\lib (static and export libraries)

win32-ix86\bin (dynamic libraries)

For example, if you install TclProin C:\Program Files\TclProl.4, the static and
export Windows libraries are in C:\Program Files\TclProl.4\win32-ix86\lib.

Debug and Non-Debug Libraries for Windows

TclPro includes both debug and non-debug versions of all Windows libraries
shipped. If you compile your application with debug options, you should be
certain to link with libraries compiled with compatible debug options so that you
can properly debug your extensions.

The Windows libraries shipped with TclPro are compiled with Visual C++ with
the following compilation flags:

/IMD Dynamic library, no debug
/MDd Dynamic library with debug
IMT Static library, no debug

IMTd Static library with debug

You should compile and link all components of your application with consistent
compilation settings. To set these compilation flagsin a Visual C++ Developer
Studio project, display the Project Settings dialog, select the C/C++ tab, and select
the Code Generation category. The compilation flags mentioned above correspond
to the following Use Run-time Library selections:

IMD Multithreaded DLL
/MDd Debug Multithreaded DLL
IMT Multithreaded

IMTd Debug Multithreaded

The Sample Application

The TclPro “C Development Libraries’ component installs a sample application
in the demos/sampleApp subdirectory of the TclPro installation directory (for
example, C:\Program Files\Tcl Prol.4\demos\sampleApp). Refer to the README
filein that directory for a description of its contents.

The directory includes a Makefile for creating statically- and dynamically-linked
versions of a sampleinterpreter and wrapped application. The applications
demonstrate many of the topics discussed in this chapter. You might find the
Makefile and the source files it compiles useful templates for creating your own
custom interpreter.

Creating Regular Tcl Interpreters

Important

You write Tcl interpreters with the TclPro development environment just as you
would with the free Tcl distribution. Simply implement Tcl_Appl nit to perform
whatever initialization your application requires, and call Tcl_Main or Tk_Main
from your main program. Then compile your program and link with either the
static or dynamic libraries as appropriate.

TclPro Wrapper requires specially-written Tcl interpreters to work with wrapped
applications. Any custom interpreters that you use with TclPro Wrapper must
follow the guidelines described in “Creating Base Applications for TclPro
Wrapper” on page 119.

Creating Statically-Linked Interpreters

When writing a statically-linked interpreter, you must explicitly initialize all
extensions that are statically linked with your application. Typically, this consists
of adding code to your application’s Tcl_Applnit procedure calling the
extension’s I nit procedure and then calling TclStaticPackage to register the
extension as a statically-linked package. Then at compilation, you must link your
application with static versions of every library that your application needs.

For example, the main sourcefilefor aTcl application that is statically linked with
tbcload and [incr Tcl] contains code similar to the following that shown below.

Creating Custom Interpreters with TclPro

113

114

Chapter 8

You would then need to link this application with the tbcload and [incr Tcl]
librariesin addition to the Tcl library.

#include "tcl.h"

static int MApplnit(Tcl Interp *interp);

i nt

mai n(argc, argv)
int argc; /* Nunber of command-Iline argunents. */
char **argv; /* Values of conmmand-|ine argunents. */

{

Tcl _Main(argc, argv, MyApplnit);

return O; /* Needed only to prevent conpiler warning. */
}
static int

MyAppl ni t (i nterp)

Tcl Interp *interp; /* Interpreter for application. */

{
if (Tel_Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}
if (Tbcload_lnit(interp) == TCL_ERROR) {
return TCL_ERROR;
}
Tcl _StaticPackage(interp, "tbcload", Tbhcload_Init,
Tbcl oad_Safelnit);
if (ltcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}
Tcl _StaticPackage(interp, "lItcl", Itcl _Init, Itcl_Safelnit);
return TCL_CK;
}

Statically Linking Windows Interpreters

To create a statically-linked Tcl application under Windows, you link your
application with the static version of the Tcl library and, if needed, the Tk library.
You aso must link with all other Tcl extension libraries used by your application,
and any other application-specific libraries your application might use (for
example, custom driver software for interacting with a special periphera device).

The TclPro static Windows libraries are located in the win32-ix86\lib subdirectory
of the TclPro installation directory. Table 15 lists the static libraries shipped with

TclPro.

Table 15 Windows Libraries for Static Linking

Library
Tcl83slib
Tcl83sd.lib
Tk83s.lib
Tk83sd.lib
tbcload13s.lib
tbcload13sd.lib
itcl32slib
itc!32sd.lib
itk32s.lib
itk32sd.lib
tcIx83s.lib
tcIx83sd.lib
tkx83s.lib
tkx83sd.lib

Description

Tcl static library without debugging symbols

Tcl static library with debugging symbols

Tk static library without debugging symbols

Tk static library with debugging symbols

tbcload static library without debugging symbols
tbcload static library with debugging symbols
[incr Tcl] static library without debugging symbols
[incr Tcl] static library with debugging symbols
[incr TK] static library without debugging symbols
[incr TK] static library with debugging symbols
TelX without debugging symbols

TclX with debugging symbols

TkX without debugging symbols

TkX with debugging symbols

Note that TclPro uses the convention of ending a static library with the letter “s”;
this makes it easy to distinguish .lib files that are export libraries for a dynamic
library from corresponding static libraries. For example, Tcl83.1ib is the export
library for Tcl83.dll, whereas Tcl83s.lib is the Tcl static library. Note also that the
“d” convention is used as well, so that Tcl83sd.lib isa static library built with
debug options. The“d” librarieswere al built with the /M Td flag, the others with

IMT.

If you usethe“d” libraries, link your application with LIBCMTD.LIB; otherwise

link it with LIBCMT.LIB.

Creating Custom Interpreters with TclPro

115

116

Note

Chapter 8

Statically Linking Unix Interpreters

To create a statically-linked Tcl application under Unix, you link your application
with the static version of the Tcl library and, if needed, the Tk library. You also
must link with all other Tcl extension libraries used by your application, and any
other application-specific libraries your application might use (for example,
custom driver software for interacting with a special peripheral device). Unlike
Windows, there are no separate debug and non-debug libraries.

All of the Unix libraries shipped with TclPro are located in subdirectories of the
TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 14 on page 112. Table 16 lists the static
libraries shipped for Unix systems.

Table 16 Unix Librariesfor Static Linking

Unix Library Description
libtcl8.3.a Tcl static library
libtk8.3.a Tk static library
libtbcload13s.a thcload static library
libitcl32s.a [incr Tcl] static library
libitk32s.a [incr TK] static library
libtcIx8.3.a TclX static library
libtkx8.3.a TkX static library
libexpect5.32.a Expect static library

TheIRIX libraries are compiled with the -n32 flag.

Note that many of the static libraries end with the letter “s”; thisis especially
useful inthat it eliminates some ambiguitiesin theinterpretation of -l linker flags.
For example, -Itbcload13 refers to the shared library implementation of tbcload,
wheresas -ltbcload13s refers to the static version. If the“s” convention were not
used, the -| flag for either would be -Itbcload13, and which one of the two
librariesis used for the linking would depend on the resolution rules currently
activein the linker.

Creating Dynamically-Linked Interpreters

Aside from implementing either Tcl_Applnit or TK_Applnit as appropriate and
caling Tcl_Main or Tk_Main from your main program, there are no special

requirements for writing a dynamically-linked interpreter. Because your
application automatically loads extension libraries as needed, you don’'t need to

register them with Tcl_StaticPackage or initialize them with their corresponding

I nit procedures.

Dynamically Linking Windows Interpreters

To create adynamically-linked Tcl application under Windows, you link your
application with export libraries, which have a .lib extension. At run-time, your

application loads the dynamic library corresponding to that export library, which

has the same name as the export library but a .dll extension. You don’'t need the

lib file at run-time.

You link your application with the appropriate Tcl library and, if needed, the
appropriate Tk library. You don’t need to link with any other Tcl extension

libraries; your application loads the dynamic libraries for any other extensions as

needed at run-time. You must also link with any other application-specific
libraries your application might use (for example, custom driver software for
interacting with a special peripheral device).

The TclPro Windows libraries are located in subdirectories of win32-ix86 in the
TclPro installation directory. Table 17 lists the dynamic libraries shipped and their

corresponding locations.

Table 17 Windows Libraries for Dynamic Linking

Dynamic Library Export Library

bin\Tcl83.dlI
bin\Tcl83d.dlI
bin\Tk83.dlI
bin\Tk83d.dl|
bin\tbcload13.dll
bin\tbcload13d.dll
bin\itcl32.dll
bin\itcl32d.dll
bin\itk32.dlI
bin\itk32d.dll
bin\tcIx83.dl

lib\Tcl83.lib
lib\Tcl83d.lib
lib\Tk83.lib
[ib\Tk83d.lib
lib\tbcload13.lib
lib\tbcload13d.lib
lib\itcl32.lib
lib\itcl32d.lib
lib\itk32.lib
lib\itk32d.lib
lib\tcIx83.lib

Description

Tcl without debugging symbols

Tcl with debugging symbols

Tk without debugging symbols

Tk with debugging symbols

thcload without debugging symbols
theload with debugging symbols
[incr Tcl] without debugging symbols
[incr Tcl] with debugging symbols
[incr Tk] without debugging symbols
[incr Tk] with debugging symbols
TclX without debugging symbols

Creating Custom Interpreters with TclPro

117

118

Chapter 8

Table 17 Windows Libraries for Dynamic Linking (Continued)

Dynamic Library Export Library Description

bin\tcIx83d.dll lib\tcIx83d.lib TclX with debugging symbols
bin\tkx83.dl lib\tkx83.lib TkX without debugging symbols
bin\tkx83d.dl| lib\tkx83d.lib TkX with debugging symbols

Note that TclPro usesthe convention of ending the name of alibrary that was built
with debugging options with the letter “d.” For example, Tcl83d.dll isthe Tcl DLL
built with debugging turned on and Tcl83d.lib isits export library. The “d”
libraries were al built with the /M Dd flag, the others with /M D.

If you use the debug libraries, also link your application with MSVCRTD.LIB;
otherwise link it with MSVCRT.LIB.

Dynamically Linking Unix Interpreters

To create adynamically-linked Tcl application under Unix, you link your
application directly with the appropriate shared libraries. Unlike Windows, there
are no export libraries, and you don’t need separate debug and non-debug
libraries.

You link your application with the appropriate Tcl library and, if needed, the
appropriate Tk library. You don't need to link with any other Tcl extension
libraries; your application loads the dynamic libraries for any other extensions as
needed at run-time. You must also link with any other application-specific
libraries your application might use.

All of the Unix libraries shipped with TclPro are located in subdirectories of the
TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 14 on page 112. Table 18 lists the shared
libraries shipped for Unix systems.

Table 18 Unix Librariesfor Dynamic Linking
Unix Library Description

libtcl8.3.s0 Tcl shared library
(libtcl8.3.9 on HP-UX)

libtk8.3.50 Tk shared library
(libtk8.3.9 on HP-UX)

libtbcload13.s0 thcload shared library
(libtbcload13.9 on HP-UX)

Note

Table 18 Unix Libraries for Dynamic Linking (Continued)
Unix Library Description

libitcl32.s0 [incr Tcl] shared library
(libitcl32.9 on HP-UX)

libitk32.s0 [incr TK] shared library
(libitk32.9 on HP-UX)

libtclx8.3.s0 TclX shared library
(libtcIx8.3.9 on HP-UX)

libtkx8.3.s0 TkX shared library
(libtkx8.3.sl on HP-UX)

libexpect5.32.s0 Expect shared library
(libexpect5.32.9 on HP-UX)

TheIRIX libraries are compiled with the -n32 flag.

Creating Base Applications for TclPro Wrapper

Note

Note

This section describes how to create a Tcl interpreter that you can use with TclPro
Wrapper, otherwise known as a base application. Base applications require
specia support for accessing files from the wrapped application’sinterna file
archive.

You can also use a base application as aregular Tcl interpreter for an unwrapped
applications.

In general, writing a base application is the same as writing aregular Tcl
interpreter. Typically, the only changes you have to make are;

* Include prowrap.h in your application (prowrap.h is located in the include
subdirectory of the TclPro installation directory)

e CalPro WrapTclMain or Pro WrapTkMain from your application instead
of Tcl_Main or Tk_Main

e Link your application with the appropriate TclPro Wrapper library

Other than these changes, you write your base application as you would aregular
interpreter and link it with all other libraries you would typically need to link with
(for example, Tcl83s.lib, thcload13s.lib, itcl32s.lib, etc.). See the appropriate
section of “Creating Regular Tcl Interpreters’ for detailed instructions.

File access functionsin the Tcl and Tk C libraries (for example,
Tcl_OpenFileChannel and Tk_GetBitmap) accessfilesin theinternal archive of

Creating Custom Interpreters with TclPro

119

120

Chapter 8

awrapped application in the same manner as file access proceduresin Tcl scripts
(for example, sour ce and open). See “How the Internal File Archive Worksin a
Wrapped Application” on page 86 for more information on the internal file
archive of awrapped application.

TclPro_Init

TclPro 1.4 adds anew API, TclPro_Init, which isimplemented by the wrapper
library (wrapper14x.lib or libwrapper1.4s.a). This function initializes the TclPro
Wrapper runtime system and turns aregular Tcl/Tk shell into a“wrapper input”,
the executable that knows how to find files that have been wrapped up. If a
modified shell is used without anything wrapped up, it behaves like aregular
Tcl/Tk shell.

The source code for TclPro_Init isin src/tclprol.4/prolnit.c, but you shouldn’t
have to compile this source file. Just use the precompiled version in the wrapper
library. The sourceisjust for your reference, especialy if you created custom
shells using earlier versions of TclPro.

Providing Your Own Main Program

If you are providing your own main program routine and embedding Tcl into your
application, then you are probably using Tcl_Main or Tk_Main to initialize Tcl
or Tk. You can easily adapt your main program so it works with TclPro Wrapper
simply by calling TclPro_Init beforeyou cal Tcl_Main or Tk_Main. If you are
calling the lower level Tcl_Createl nterp API directly, then you still just need to
cal TclPro_Init before you call any other Tcl APIs.

ThePro WrapTclMain and Pro WrapTkMain APIs are just 2-line functions
that call TclPro_Init before calling Tcl_Main or Tk_Main. These APIsremain
for compatibility with previous releases of TclPro.

Using the Main Program from Tcl or Tk 8.3

The standard main programs distributed with Tcl/Tk 8.3 now contain a compile-
time hook that can be used to call the TclPro_I nit function. These main programs
are implemented by these files

e src/tcl8.3/unix/tcl Applnit.c
e src/tcl8.3/win/tcl Applnit.c
e src/tk8.3/unix/tkApplnit.c

* src/tk8.3/win/winMain.c

If you definethe TCL_LOCAL_MAIN_HOOK macro when compiling
src/tel8.3/unix/tcl Applnit.c (or src/tcl8.3/win/tcl Applnit.c) then that function is
called from the main() program before the Tcl interpreter is created. The
TclPro_Init API isdesigned to be called at this hook point.

The arrangement with Tk is similar. If you define the
TK_LOCAL_MAIN_HOOK macro when compiling src/tk8.3/unix/tkApplnit.c
(or src/tk8.3/win/winMain.c) then that function is called from the main() program
before the Tcl interpreter is created.

The standard main() programs distributed with Tcl/Tk 8.3 have a second
configuration hook that is used to define the application initialization procedure
called after the Tcl interpreter has been created. Thisis commonly known as
Tcl_Applnit, and this procedure is passed as a parameter to Tcl_Main or
Tk_Main. By default, Tcl and Tk have their own Tcl_Applnit and Tk_Applnit
functions. However, if you definethe TCL_LOCAL_APP_INIT (or
TK_LOCAL_APP_INIT) macros while compiling Tcl (or Tk), then the standard
main programs will call your application init function.

The Application Initialization API

Tcl_Main and Tk_Main take a callback procedure that completes the
initialization of the Tcl interpreter. Thisiswhere you can add your own Tcl
commands or initialize other Tcl extensions you want to include in your
application.

The src/tclprol.4/sampleApplnit.c file shows the application initialization
procedure for the TclPro wrapper shells. If you want to create a variation on the
“higwish” wrapper shell, for example, you can start with sampleAppl nit.c and add
more extension initialization callsto it. For the complete custom shell recipe, you
will need the Tcl or Tk source distribution in order to use its tcl Applnit.c or
tkApplnit.c files that implement the main program.

Linking Windows Base Applications

The TclPro Wrapper libraries are available in only static versions. However, you
must use different versions of the library depending on whether you are creating a
statically- or dynamically-linked base application.

The Windows TclPro Wrapper libraries are located in the win32-ix86\lib
subdirectory of the TclPro installation directory. Table 19 lists the Windows
TclPro Wrapper libraries shipped with TclPro.

Creating Custom Interpreters with TclPro

121

122

Chapter 8

The TclPro distribution ships two types of static libraries for creating base
applications: a static library compiled with /M T and one compiled with /M D.
Thesefiles are in the win32-ix86/lib directory.

Table 19 Windows TclPro Wrapper Libraries
Library Name Description

wrapper 14x.lib TclPro Wrapper library for dynamically-linked base applications
(compiled with /M D)

wrapper14xd.lib TclPro Wrapper library for dynamically-linked base applications,
debug version (compiled with /M Dd)

wrapper14s.lib TclPro Wrapper library for statically-linked base applications
(compiled with /M T)

wrapper 14sd.lib TclPro Wrapper library for statically-linked base applications,
debug version (compiled with /M Td)

The convention is used that names of the librariesfor use with dynamically-linked
base applications end with the letter “x”. Usethe “s’ libraries to create statically-
linked base applications.

If you link against the “x” library, link against MSVCRT.LIB; if you link against
the“xd” library, link against MSVCRTD.LIB. If you link against the “s” library,
link against LIBCMT.LIB; if you link against the “sd” library, link against
LIBCMTD.LIB.

Linking Unix Base Applications

On Unix systems, thereisonly one version of the TclPro Wrapper library, whichis
named libwrapper14.a. The library is contained in the platform-specific library
directory, as shown in Table 14 on page 112. (For example, the Linux library is
linux-ix86/lib/libwrapper14.a.)

Appendix A
Ajuba Solutions License Server

Ajuba Solutions License Server manages Shared Network Licenses for the Ajuba
Solutions products in use at your site. A Shared Network License can replace
several Named User License keys, provide easy TclPro accessto alarger number
of developers, and eliminate the need for users to manage and install their own
license keys. Ajuba Solutions License Server also maintains records about the
usage of TclPro products for your reference.

How Licensing Works

All Ajuba Solutions products require a license to run. Ajuba Solutions sells both
Named User Licenses and Shared Network Licenses. A Named User License
allows one specific person to use TclPro. Shared Network Licenses allow anyone
at your siteto use the TclPro applications, as long as the number of concurrent
TclPro users doesn't exceed the number of Shared Network Licenses that you
purchase.

This section describe how TclPro applications determine which license to use and
how the Ajuba Solutions License Server manages Shared Network Licenses.

How TclPro Applications Obtain Licenses

When a user runs a TclPro application, it attemptsto obtain alicense. The
procedure it follows depends on whether the user hasinstalled aloca copy of
TclPro or isusing a shared copy from a server.

If the user has alocal copy of TclPro, he or she must have entered license
information, either during installation or afterwards by running the TclPro License
Manager, as described in “ Changing TclPro License Information” on page 12. In
this case, the application attempts to obtain alicense in the following order of
precedence:

1. Iftheuser entered avalid permanent Named User License, the application uses
that license.

123

124

Appendix A

2. If the user entered a hostname and port of a Ajuba Solutions License Server,
the application attempts to obtain a Shared Network License from that server.

If the user is using a shared copy of TclPro from a server, he or she can either use
the default Ajuba Solutions License Server for that shared installation (whichis
set by the site administrator when he or she installs that copy of TclPro), or he or
she can run the TclPro License Manager to override that default. In this case, the
TclPro application attempts to obtain alicense in the following order of
precedence:

1. If theuser ran TclPro License Manager and entered avalid permanent Named
User License, the application uses that license.

2. If the user ran TclPro License Manager and entered a hostname and port of a
Ajuba Solutions License Server, the application attempts to obtain a Shared
Network License from that server.

3. Otherwise, the application attempts to obtain a Shared Network License from
the default Ajuba Solutions License Server for that installation.

How the License Server Manages Shared Network Licenses

Ajuba Solutions License Server allows a maximum number of concurrent users
equal to the number of Shared Network Licenses that you purchase. For example,
if you have purchased 10 Shared Network Licenses, then up to 10 users can use
TclPro applications at the same time. A user is determined by their user account.
The same user account on different hosts counts as only one user. A single user
using more than one TclPro application at the same time also counts as only one
user.

License Overdraft

Ajuba Solutions includes a generous “ overdraft” policy with Ajuba Solutions
License Server that allows you to exceed your concurrent user limit in emergency
situations. This policy accommodates occasions where you temporarily need
additional licenses before you have had time to purchase them.

When Ajuba Solutions License Server receives areguest for alicensein excess of
the number of licenses you have purchased, Ajuba Solutions License Server
records an “overdraft day.” Multiple overdraft instances on asingle day count as
only one overdraft day.

For the first 10 overdraft days that occur, Ajuba Solutions License Server
continues to issue “overdraft licenses,” which allow the TclPro applications
causing the overdraft to continue to run. After 10 overdraft days, the Ajuba

Solutions License Server no longer issues overdraft licenses and strictly enforces
the concurrent user limit.

When a TclPro application causes an overdraft, it displays a warning message to
the user. Ajuba Solutions License Server also notifies the site administrator by
email. The Ajuba Solutions License Server daily and weekly reports include the
number of licenses in use and the number of overdraft occurrences. See “Viewing
Reports’ on page 129 for more information on reporting.

Ajuba Solutions License Server Installation

Important

Ajuba Solutions License Server runs on Unix systems only. You should install
Ajuba Solutions License Server on areliable server that is accessible by all TclPro
users. You don't haveto install Ajuba Solutions License Server and TclPro on the
same system.

Typically, the server starts Ajuba Solutions License Server automatically using a
standard init.d script, which is created automatically during installation. You
rarely should need to start or stop Ajuba Solutions License Server manually.

Installing the Ajuba Solutions License Server Software

You can install Ajuba Solutions License Server from either the TclPro CD or the
Unix installation download available from the Ajuba Solutions Web site
(http://dev.ajubasol utions.convtclpro). Run setup.sh and select the Ajuba
Solutions License Server option.

Log in asthe root user to install Ajuba Solutions License Server.

The installation program prompts you for a port number for the Ajuba Solutions
License Server. Although you can select any free port on your system, Ajuba
Solutions recommends that you select the default value of port 2577.

Setting the Initial Configuration

After installing Ajuba Solutions License Server, you must configure it through its
Web browser interface. To display the Ajuba Solutions License Server Web
interface, launch a Web browser and open the following URL.:

http://host nane: port/

hosthame is the hostname of the system running Ajuba Solutions License Sever.
port is the port number you assigned during installation.

Ajuba Solutions License Server

125

126

Note

Appendix A

Thefirst time you connect to the Ajuba Solutions License Server Web interface, it
displaysthe Set Initial Configuration page that prompts for initial configuration
information:

Your Company Name
Your company name appears on the main page of the Web interface.
This name is also displayed by programs that get licenses from this
Server.

Administrative Name and Password
Access to the administrative pages are password protected. On the Set
Initial Configuration page you choose the name and password for the
first administrator account. You can define other name/password pairs
or change existing one from the Change Passwords page
(/admin/password.tml).

Email Contact Address
Ajuba Solutions License Server send email messagesto the site
administrator that contain usage reports as well as problem
notifications. You can add more email addresses and tune what events
trigger email later using the Email page (/admin/email.tml).

OK to Email Ajuba Solutions
Ajuba Solutions License Server send email messagesto Ajuba
Solutions for problem notification. You change this setting later using
the Email page (/admin/email.tml).

After you configure Ajuba Solutions License Server, opening
http://<hostname>: <port> displays the Ajuba Solutions License Server Home
page. From that page, you can administer server settings, manage license keys,
and generate reports. See “ Ajuba Solutions License Server Administration” on
page 128 for more information.

You can reset Ajuba Solutions License Server and delete all configuration
information except the license keys you have installed (but including
administrator names and passwords) by executing prolserver -reset. After
resetting Ajuba Solutions License Server, it displays the Set Initial Configuration
page the next time you open its Web interface.

Ajuba Solutions License Server Installed Files

The installation program installs the following files (<instalIDir> isthe
installation directory you specify during installation):

[etc/init.d/prolserver
The shell script that starts Ajuba Solutions License Server when the
system boots. You can use run this script with the start or stop
argument to start or stop Ajuba Solutions License Server manualy.
The exact location of this file depends on your operating system (for
example, /etc/init.d, /etc/re.d/init.d, or /shin/init.d). The peer
directories rc2.d and rc0.d contain symbolic links to thisfile, which
your system uses to start Ajuba Solutions License Server during boot
and halt it during shutdown.

<installDir>/prol server.boot
Thisscriptiscreated only if you do notinstall AjubaSolutionsLicense
Server asroot. Thisisacopy of the script that needs to be installed
under /etc/init.d in order to automatically launch Ajuba Solutions
License Server when the system boots. The exact location depends on
the operating system.

<instalIDir>/prolserver
The Ajuba Solutions License Server application program.

<instalIDir>/prolserver.conf
Themain configurationfile. Thisfile storestheinstallation settingsfor
Ajuba Solutions License Server. Consult the prolser ver man page for
information about the setting for this file. Changes to thisfile take
place when you restart Ajuba Solutions License Server.

<installDir>/prolserver.state
Thisis astate checkpoint file. Thisfileistamper-resistent so you
should not edit thisfile. Doing so causes you to | ose state about active
licenses, administrator passwords, and notification email addresses.

<installDir>/prolserver.pid
Thisfile recordsthe process ID of Ajuba Solutions License Server so
it can be shutdown.

Ivar/log/prolserver.<port>.log
Thisisthelog file for the server. <port> isthe port number assigned
to this Ajuba Solutions License Server. Thisfile keeps weekly, daily,
and current usage statistics. It is compacted automatically so it should
not get too large. Each day at midnight the records about the current
usage are collected into one daily record, and each week records about
daily usage are collected into one weekly record. You can change the
location of thisfile by editing the prolserver.conf file. Consult the
prolserver man page for details.

Ajuba Solutions License Server

127

128

/etc/INSTALL.LOG
A log of the Ajuba Solutions License Server installation.

Ajuba Solutions License Server Administration

Appendix A

You manage Ajuba Solutions License Server using a Web browser interface. To
display the Ajuba Solutions License Server home page, launch a Web browser and
open the following URL:

http://host nane: port/

hostname is the hostname of the system running Ajuba Solutions License Sever.
port is the port number you assigned during installation.

The Ajuba Solutions License Server Web interface provides several pages for
administering server settings, managing license keys, and generating reports.
Access to administrative pagesis password protected using the Basic
Authentication scheme supported by all browsers. When you initially configure
your Ajuba Solutions License Server, you specify the name and password for the
first administrator account. You can define other name/password pairs or change
existing ones from the Change Passwords page (/admin/password.tml).

Each page contains documentation describing the information displayed and the
actions you can perform. Therefore, this guide provides only an overview of the
Web interface. Consult the Web interface for more detailed information.

Managing Licenses

Shared Network Licenses are distributed as encoded keys. You can add, upgrade,
and delete Shared Network License keys from the Manage Licenses page
(/admin/license.tml). This page aso displays the license keys currently installed.

License keys are specific to a TclPro release (for example, 1.3). When new
rel eases appear, Update Service customers should contact Ajuba Solutions to
verify your eligibility for the upgrade.

Revoking Licenses

In some circumstances you may need to revoke alicensein use by one user so that
another user can obtain the license. For example, auser may have gone on
vacation while leaving TclPro Debugger running. The Revoke Active Licenses
page (/admin/revoke.tml) allows you to revoke individual licensesin use.

Changing Email Notifications

The license server can generate email notifications when various events occur.
The Email page (/fadmin/email.tml) allows you to specify which users get email in
response to which kind of events.

Setting Date Formats

The Date Format page (/admin/datefor mat.tml) allows you to specify the date
format to use when Ajuba Solutions License Server generates reports.

Viewing Reports

Ajuba Solutions License Server generates a variety of reports about usage of
TclPro tools. Thereisadaily view and aweekly view. Both views list the TclPro
applications and the number of times they have been used each day (or week). The
reports also list system events such as Overdraft conditions and License Denied.
Either of these eventsindicate that your site may not be configured with enough
Shared Network Licenses.

All reports are available from the License Reports page (/reports/index.tml).

Ajuba Solutions License Server

129

130 Appendix A

Appendix B
TclPro Checker Messages

Error and Warning Types

TclPro Checker messages are grouped into two types of errors and three types of
warnings. parsing errors and syntax errors, platform portability warnings,
performance warnings, and usage warnings.

Parsing Errors

The TclPro Checker generates a parsing error when it encounters commands that
can't be parsed by the Tcl parser, such asamissing curly brace or badly formed
list. For example: the following code generates a parsing error becauseit is
missing a quote at the end of the puts statement:

proc foo {} {
puts "hello

}

In cases like this, the tool attempts to move past the procedure where the parsing
error was found, and continue to check additional commands after the parsing
error.

Syntax Errors

The TclPro Checker generates a syntax error when it encounters any errors that
will cause your script to fail, such as the wrong number of arguments or invalid
types or options. For example, the following code generates a syntax error
because the wrong number of arguments are supplied:

set x 3 45

Only commands defined in Tcl, Tk, or [incr Tcl] are checked for syntax errors.

131

132

Platform Portability Warnings

The TclPro Checker generates warnings when a command is used that may be
nonportable between various platforms.

set file [open $dir/$file r]

In this example, thefilejoin command should be used so that the correct directory
and file separator is used, that is, “\" on Windows and “/” on Unix.

Performance Warnings

The TclPro Checker generates a warning when a performance-optimization
opportunity is detected. For example: if your code included:

set x [expr $x * $y]

it would generate a performance warning because performance isimproved with
curly braces, as shown below:

set x [expr {$x * $y}]

Usage Warnings

The TclPro Checker generates a warning when acommand is used in a manner
that is possibly incorrect but is still syntactically legal. For example, theincr
command expects a reference and not a value below:

i ncr $counter

A Listing of the Messages

Table 16 lists the messages that the TclPro Checker can produce.

Table 20 TclPro Checker Messages

Message ID
argAfterArgs
argsNotDefault
badBoolean
badByteNum
badCol orFormat

Appendix B

Message Type Explanation

Error Argument specified after “args”

Error “args’ cannot be defaulted

Error Invalid Boolean value

Error Invalid number, should be between 0 and 255
Error Invalid color name

Table 20 TclPro Checker Messages (Continued)

Message ID

badColormap

badCursor
badEvent
badFloat
badGeometry
badGridMaster
badGridRel
badindex
badint

badK ey

badL evel

badL Index
badList
badMemberName
badMode

badOption
badPalette
badPixel
badPriority
badProfileOpt
badResource
badScreen
badSticky

Message Type

Error

Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error

Error

Error
Error
Error
Error
Error
Error
Error

Error

Explanation

Invalid colormap “colormap”: must be “new” or awindow
name

Invalid cursor spec

Invalid event type or keysym

Invalid floating-point value

Invalid geometry specifier

Cannot determine master window

Must specify window before shortcut
Invalid index: should be integer or “end”
Invalid integer

Invalid keyword “key” must be: words
Invalid level

Invalid infants: should be integer, “len” or “end”
Invalid list: error-info

Missing class specifier for body declaration

Access mode must include either RDONLY, WRONLY, or
RDWR

Invalid option “option” must be: options

Invalid palette specification

Invalid pixel value

Invalid priority keyword or value

Option “option” not valid when turning off profiling
Invalid resource name

Invalid screen value

Invalid stickiness value: should be one or more of n, s, w,
ore

TclPro Checker Messages 133

Table 20 TclPro Checker Messages (Continued)

Message ID Message Type Explanation

badSwitch Error Invalid switch: “switch”

badTab Error Invalid tab list

badTabJust Error Invalid tabjustification “tab-item”: must beleft right center
or numeric

badTlibFile Error The filename must have a“.tlib” suffix

badTraceOp Error Bad operation operation should be one or more of r, w, or u

badVersion Error Invalid version number

badVirtual Error Virtual event is badly formed

badVisual Error Invalid visual

badVisual Depth Error Invalid visual depth

badwholeNum Error Bad value “value”: must be a non-negative integer

classNumArgs Error Wrong # args for class constructor: className

classOnly Error Command “command” only defined in class body

errBadBrktExp Error The bracket expression is missing a close bracket

mismatchOptions Error The specified options cannot be used in tandem

noEvent Error No events specified in binding

noExpr Error Missing an expression

noScript Error Missing a script after “control”

noSwitchArg Error Missing argument for switch switch

noVirtual Error Virtual event not allowed in definition of another virtual
event

nonDefAfterDef Error Non-default arg specified after default

nonPortBitmap Non-Portable Warning Use of non-portable bitmap

nonPortChannel Non-Portable Warning Use of a non-portable file descriptor, use “file” instead

nonPortCmd Non-Portable Warning Non-portable command

nonPortColor Non-Portable Warning Non-portable color name

134 Appendix B

Table 20 TclPro Checker Messages (Continued)

Message ID
nonPortCursor
nonPortFile
nonPortKeysym
nonPortOption
nonPortVar
nsOnly
nsOrClassOnly

numArgs
numListElts
obsoleteCmd
optionRequired
parse
procNumArgs
procOutScope
procProtected
serverAndPort
socketAsync
socketServer
tooManyFieldArg
warnAmbiguous
warnDeprecated

warnEscapeCharacter

warnExportPat

warnExpr

Message Type
Non-Portable Warning
Non-Portable Warning
Non-Portable Warning
Non-Portable Warning
Non-Portable Warning
Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Usage Warning
Upgrade Warning
Upgrade Warning

Warning

Performance Warning Use curly braces to avoid double substitution

Explanation

Non-portable cursor usage

Use of non-portable file name, use “file join”

Use of non-portable keysym

Use of non-portable option

Use of non-portable variable

Command “command” only defined in namespace body

Command “command” only defined in class or namespace

body
Wrong # args

Invalid number of list elements
Deprecated usage, use “command” instead
Expected optionl, got “option2”

Parse error: error-info

Wrong # args for the user-defined proc: procName.
Proc only defined in class className

Calling protectionLevel proc: procName

Option -myport is not valid for server sockets
Cannot use -server option and -async option
Cannot use -async option for server sockets

Too many fields in argument specifier

Ambiguous switch, use delimiter to avoid conflicts
Deprecated usage, use “command” instead

“\<char>" isavalid escape sequence in later versions of

Tcl.

Export patterns should not be qualified

TclPro Checker Messages

135

136

Table 20 TclPro Checker Messages (Continued)

Message ID
warnExtraClose

warnlfKeyword

warnNamespacePat

warnNotSpecial

warnPattern
warnQuoteChar

warnRedefine

warnReserved
warnUndefProc
warnUnsupported
warnVarRef

warnY 2K

winAlpha
winBeginDot

winNotNull

Appendix B

Message Type
Usage Warning
Warning

Warning

Upgrade Warning

Warning
Upgrade Warning
Usage Warning

Upgrade Warning
Warning

Error

Warning

Warning

Error
Error

Error

Explanation

Unmatched closing character
Deprecated usage, use else or elseif
glob charsin wrong portion of pattern

“\<char>" has no meaning. Did you mean “\\<char>" or
“<char>"?

Possible unexpected substitution in pattern
“\" in bracket expressions are treated as quotes

user Procl redefines user Proc2 in file fileName on line
lineNum

Keyword isreserved for use in version

The procedure was called but was never defined
Unsupported command, option or variable: use command
Variable reference used where variable name expected

%y generates ayear without a century. Consider using %Y
toavoid Y2K errors

Window name cannot begin with a capital letter
Window name must begin with “.”

Window name cannot be an empty string

TclPro Checker Message Descriptions in Detail
This section provides detailed descriptions of the code checker messages.

argAfterArgs
M essage String: Argument specified after “args’
Category: Error

Explanation: An argument has been specified after the args keyword in a
procedure argument list. The ar gs argument istreated like anormal parameter and
does not collect the remaining parametersinto asinglelist.

argsNotDefault
Message Sring: “args’ cannot be defaulted
Category: Error

Explanation: The args keyword cannot be initialized to contain a default value.
Although the Tcl interpreter does not complain about this usage, the default value
isignored.

badBoolean
Message Sring: Invalid Boolean value
Category: Error

Explanation: The command expects the string to specify a Boolean value. The
string canbe“1”, “0”, “true’, “false”, “yes’, “no”, “on”, or “off” in any unique
abbreviation and case.

badByteNum
M essage String: Invalid number, should be between 0 and 255
Category: Error
Explanation: The type should be ainteger between 0 and 255.

badColorFormat
Message Sring: Invalid color name
Category: Error

TclPro Checker Messages o 137

138

Appendix B

Explanation: The command expects the string to specify acolor value. The string
can be any of the following forms:

e colorname

e #RGB

* #RRGGBB

* #RRRGGGBBB

* #RRRRGGGGBBBB

colorname can be any of the valid textual names for a color defined in the server’s
color database file, such as“red” or “Bisque”. If the color nameisnot a Tcl
defined color, awarning is flagged stating that the color may not be portable
across all platforms; see nonPortColor. The RGB characters represent
hexadecimal digits that specify the red, green, and blue intensities of the color.

badColormap
M essage Sring: Invalid colormap “colormap”: must be“new” or awindow name
Category: Error

Explanation: The command expects the string to specify a colormap to use. If the
string is“new”, anew colormap is created. Otherwise, the string should be avalid
window path name.

badCursor
Message String: Invalid cursor spec
Category: Error

Explanation: The command expects the string to specify a cursor to use. The
string can take any of the following forms:

* name
* namefgColor

e @sourceFilefgColor

¢ namefgColor bgColor

* @sourceFile maskFile fgColor bgColor

If the name form is used, and the name of the cursor is not defined on all
platforms, awarning is flagged stating that the cursor is not portable; see
nonPortCursor. None of the forms that specify a color or multiple files are
portable across all systems; they are flagged as being non-portable; see
nonPortCmd.

badEvent
M essage Sring: Invalid event type or keysym
Category: Error

Explanation: The command expects the string to specify an event type. If the
string is not composed of avalid event and one or more related modifiers, an error
is reported.

badFloat
Message Sring: Invalid floating-point value
Category: Error

Explanation: The command expects the string to consist of a floating-point
number, which is: white space; a sign; a sequence of digits; adecimal point; a
sequence of digits; the letter “€”; and asigned decimal exponent. Any of the fields
may be omitted, except that the digits either before or after the decimal point must
be present and if the “€” is present then it must be followed by the exponent
number.

badGeometry
Message Sring: Invalid geometry specifier
Category: Error

Explanation: The command expects the string to specify a geometry value. The
string must have one of the following forms:

« WxH
o EXxEY
o WKHEXXEY

* wherethewidth (W) and height (H) values are positive integers, and the X (X)
and Y (Y) coordinates are positive or negative integers.

TclPro Checker Messages

139

140

Appendix B

badGridMaster
Message Sring: Cannot determine master window
Category: Error

Explanation: The grid command flags an error if avalid window name was never
specified in the command.

badGridRel

M essage String: Must specify window before shortcut

Category: Error

Explanation: When using the relative placement shortcutsin the grid command

(that is, “-", “x", or “A") an error isreported if the span column shortcut (“-") is
used immediately after one of the other shortcuts.

badindex
Message Sring: Invalid index: should be integer or end
Category: Error

Explanation: The command expects the string to specify an index value. The
string can be an integer or “end” or “end-some integer”.

badint
M essage Sring: Invalid integer
Category: Error

Explanation: The command expects the string to specify an integer value. The
string can be optionally signed and optionally preceded by white space. If thefirst
two characters of the string are “0x” then string is expected to be in hexadecimal
form; if the first character of stringis“0” then the string is expected to be in octal
form; otherwise, the string is expected to be in decimal form.

badKey
Message Sring: Invalid keyword: “key” must be: options
Category: Error

Explanation: The command expects the key string to be akey that matches one of
the strings in the options list.

badLevel
Message Sring: Invalid level
Category: Error

Explanation: The command expects the string to be an integer or a“#” character
followed by an integer.

badLIndex
Message Sring: Invalid index: should be integer, “len” or “end”
Category: Error

Explanation: The command expects the string to specify an index value. The
string can be an integer, “len”, or “end” or “end-some integer”.

badList
Message Sring: Invalid list: error-info
Category: Error

Explanation: The command expects the string to be avalid Tcl list. The reason
the string is not avalid Tcl list is displayed in the message associated with the
error.

badMemberName
Message Sring: Invalid list: error-info
Category: Error

Explanation: The command expects the string to be avalid Tcl list. The reason
the string is not avalid Tcl list is displayed in the message associated with the
error.

badMemberName
Message Sring: Missing class specifier for body declaration
Category: Error

Explanation: An [incr Tcl] member name was not correctly qualified. When
defining the body for a class procedure, class method, or classvariable, it is
necessary to reference the procedure or variable with the fully qualified name.

TclPro Checker Messages 141

142

Appendix B

badMode

Message Sring: Access mode must include either RDONLY, WRONLY, or
RDWR

Category: Error

Explanation: When specifying access modes for a Tcl channel, at least one of the
three read-write access modes (RDONLY, WRONLY, or RDWR) must be
specified with optional modifiers (APPEND, CREAT, EXCL, NOCTTY,
NONBLOCK or TRUNC).

badOption
M essage String: Invalid option “option” must be: options
Category: Error

Explanation: The command expects the option string to be an option that matches
one of the stringsin options.

badPalette
Message Sring: Invalid palette spec
Category: Error

Explanation: The command expects the string to be avalid pal ette specification.
The palette string may be either a single decimal number, specifying the number
of shades of gray to use, or three decimal numbers separated by slashes (“/"),
specifying the number of shades of red, green and blue to use, respectively.

badPixel
Message Sring: Invalid pixel value
Category: Error

Explanation: The command expects the string to specify apixel value. The string
must be an integer pixel or floating-point millimeter, optionally followed by one

of the following characters: “c”, “i”, “m”, or “p”.

badPriority
M essage String: Invalid priority keyword or value
Category: Error

Explanation: The command expects the string to specify apriority value. The
string must contain one of the following values: “widgetDefault”, “ startupFile”,

“userDefault”, “interactive’, or an integer between 0 and 100.

badProfileOpt
Message Sring: Option option not valid when turning off profiling
Category: Error

Explanation: Using the TclX profiling tools, option is not valid. Most likely the
option isvalid only when turning on profiling.

badResource
Message Sring: Invalid resource name
Category: Error

Explanation: The command expects the string to specify aresource value. If the
string length is not four characters, an error is flagged.

badScreen
M essage String: Invalid screen value
Category: Error

Explanation: The command expects the string to specify a screen vaue. The
string must have the following form:

e ?name?.display?.screen?
where name is any string and display and screen are integers.

badSticky
Message Sring: Invalid stickiness value: should be one or more of nswe

Category: Error

Explanation: The grid command expects the string to specify valid sticky
coordinates. The string can contain any combination of the following characters:
“n”,"s, e or fw.

badSwitch
M essage Sring: Invalid switch: “switch”

TclPro Checker Messages 143

144

Appendix B

Category: Error

Explanation: The command expects the string to be a switch that matches one of
the stringsin list of switch options.

badTab
Message String: Invalid tab list
Category: Error

Explanation: The command expects alist of strings that define tab stops. If the
Tcl interpreter cannot parsethelist, an error isflagged. Thetab list must consist of
alist of screen distances giving the positions of the tab stops. Each position can
optionally be followed in the next list element by one of the keywords “left”,
“right”, “center”, or “numeric”, which specifies how to justify text relative to the
tab stop.

badTabJust

Message Sring: Invalid tab justification “tab-item”: must be left right center or
numeric

Category: Error
Explanation: The command expects the justification string to be one of the

following: “left”, “right”, “center”, or “numeric”.

badTlibFile
Message Sring: The filename must have a“ tlib” suffix
Category: Error

Explanation: The command expected a filename with a .tlib suffix. The word
should be changed to match the pattern filename.tlib.

badTraceOp
Message Sring: Invalid operation “op”: should be one or more of rwu

Category: Error

Explanation: The command expects the trace operation string to be one or more

of the following characters: “r”, “w”, or “u”.

badVersion
Message Sring: Invalid version number
Category: Error

Explanation: The command expects alist of strings that specifies a package
version. A valid package version string is any number of integers separated by

periods (“."), for example, “1.2.3".

badVirtual
Message Sring: Virtua event is badly formed
Category: Error

Explanation: The command expects the string to specify avirtual event. The
string must have the following form:

o <<word>>

where word is any non-empty string.

badVisual
Message Sring: Invalid visua
Category: Error

Explanation: The command expects the string to specify avisual. The string can
have the following form:

e classdepth

e default

* windowName
* number

e best 2depth?

The class string must be one of “directcolor”, “grayscale”, “ pseudocolor”,
“staticcolor”, “staticgray”, or “truecolor”, or any unique abbreviation. The depth
value must be avalid integer.

badVisualDepth
Message Sring: Invalid visual depth
Category: Error

TclPro Checker Messages 145

146

Appendix B

Explanation: If the depth specified by avisual string is not avalid integer, then
this error is flagged.

badWholeNum
Message String: Invalid value “value”: must be a non-negative integer
Category: Error

Explanation: The command expects the string to specify awhole value. The
string can be any non-negative integer.

classNumArgs
Message Sring: Wrong # args for class constructor: className.
Category: Error

Explanation: The wrong number of arguments are being used to instantiate the
[incr Tcl] class className. Compare the number of arguments used to instantiate
the class to the number of arguments in the constructor defined by className.

classOnly
M essage Sring: Command “command” only defined in class body
Category: Error

Explanation: The specified command is only valid in the context of an [incr Tcl]
class body.

errBadBrktExp
Message Sring: The bracket expression is missing a close bracket
Category: Error

Explanation: The bracket expression is missing a close bracket. Common errors
of thistype are caused when the closing bracket isinterpreted as a character to
match on. For example [] and [*] will generate this error because the close bracket
isinterpreted as a character to match, or not match, respectively. The correct
expressions would be: []] and [M]].

mismatchOptions
Message Sring: The specified options cannot be used in tandem

Category: Error

Explanation: Two or more options were specified that cannot be used at the same
time. The command should be re-written to use only one of the switches. This
commonly occurs when an overloaded command performs completely different
operations based on the switches.

noEvent
Message Sring: No events specified in binding
Category: Error

Explanation: The command expects an event but could not find one while
parsing the command line.

NoEXpr
M essage String: Missing an expression
Category: Error

Explanation: Similar to the numArgs message. The TclPro Checker flags this
error message when an expression ismissing in an if statement.

noScript
Message Sring: Missing a script after control
Category: Error

Explanation: Similar to the numArgs message. The TclPro Checker flags this
error message when ascript ismissing in an if statement.

noSwitchArg
Message Sring: Missing argument for switch switch
Category: Error

Explanation: The command was called with a switch that expected an argument.
If no argument was given for the switch, this error is flagged.

noVirtual
M essage String: Virtual event not allowed in definition of another virtual event
Category: Error

TclPro Checker Messages

147

148

Appendix B

Explanation: Virtual events are not allowed in event sequences. If avirtual event
(any event that begins with “<<” and ends with “>>") is found, then this message
isflagged.

nonDefAfterDef
Message Sring: Non-default arg specified after default
Category: Error

Explanation: A non-defaulted argument has been specified after a defaulted
argument in a procedure argument list. Although the Tcl interpreter does not
complain about this usage, the default values are ignored.

nonPortBitmap

M essage String: Use of non-portable bitmap

Category: Non-Portable Warning

Explanation: A bitmap was specified that is not supported on al platforms.

nonPortChannel
M essage String: Use of non-portable file descriptor, use “file” instead
Category: Non-Portable Warning

Explanation: A channel was specified that is not supported on al platforms. In
most cases, thisiswhen “file0”, “filel”, or “file2” is used instead of “stdin”,
“stdout”, or “stderr”.

nonPortCmd

Message Sring: Use of non-portable command

Category: Non-Portable Warning

Explanation: A command was specified that is not supported on all platforms.

nonPortColor

M essage Sring: Non-portable color name

Category: Non-Portable Warning

Explanation: A color was specified that is not supported on all platforms.

nonPortCursor

M essage Sring: Non-portable cursor usage

Category: Non-Portable Warning

Explanation: A cursor was specified that is not supported on all platforms.

nonPortFile
Message Sring: Use of non-portable file name, usefile join
Category: Non-Portable Warning

Explanation: A file name was specified that is not supported on all platforms.
Thiswarning is flagged, then the string is a combination of words, variables, or
commands separated by system-specific file separators (for example,
“$dinsfile’). Usethefilejoin command to add the system-specific file separators
(for example, “[filejoin $dir $file]”).

nonPortKeysym

M essage String: Use of non-portable keysym

Category: Non-Portable Warning

Explanation: A keysym was specified that is not supported on all platforms.

nonPortOption
M essage String: Use of non-portable option
Category: Non-Portable Warning

Explanation: An option was specified that is not supported on all platforms.
Generally, the option has no effect on the systems that do not support this option.

nonPortVar
Message Sring: Use of non-portable variable
Category: Non-Portable Warning

Explanation: A variable was used that is not supported on al platforms. In most
cases, thisiswhen the tcl_precision variable is used.

nsOnly
Message Sring: Command “command” only defined in hamespace body

TclPro Checker Messages

149

150

Appendix B

Category: Error

Explanation: The specified command is only valid in the context of an [incr Tcl]
namespace body.

nsOrClassOnly
Message Sring: Command command only defined in class or namespace body
Category: Error

Explanation: The specified command is only valid in the context of an [incr Tcl]
class or namespace body.

numArgs
Message Sring: Wrong # args
Category: Error

Explanation: Anincorrect number of arguments were specified for acommand.
Due to the dynamic nature of Tcl, this error might be flagged unnecessarily. For
example, if the command is called within an eval body with variables that will
expand to be multiple arguments. The TclPro Checker sees only the one argument,
but this may expand to match the required number of arguments when the
command is evaluated.

numListElts

Message String: Invalid number of list elements

Category: Error

Explanation: An incorrect number of list elements were specified.

obsoleteCmd
M essage String: Deprecated usage, use “command” instead
Category: Error

Explanation: The specified command, option or variable does not exist and is no
longer supported in the version of the system you are checking. Use the suggested
alternative command, option, or variable to upgrade the script.

optionRequired
Message Sring: Expected optionl, got “option2”

Category: Error

Explanation: A specific option was expected, but the following option was
found.

parse
Message Sring: Parse error: error-info
Category: Error

Explanation: The TclPro Checker could not parse the script completely dueto a
parsing error. The reason for the parsing error is displayed in the message
associated with the error.

procNumArgs
Message Sring: Wrong # args for user-defined proc: procName
Category: Error

Explanation: You are using the wrong number of argumentsto call the Tcl
procedure procName. Compare the number of arguments used to call the
procedure to the number of arguments in the definition of procName.

procOutScope
Message Sring: Proc only defined in class className

Category: Error

Explanation: An [incr Tcl] class procedure is being called from the wrong scope,
or isimproperly qualified. This commonly occurs when calling inherited
procedures.

procProtected
M essage String: Calling protectionLevel proc: procName
Category: Error

Explanation: You are calling an inaccessible procedure with a protection level of
protectionLevel. This error is flagged when the procedure being called does not
have permission to call this procedure.

serverAndPort
Message Sring: Option -myport is not valid for server sockets

TclPro Checker Messages

151

Category: Error

Explanation: The socket command specified the -server option and the -myport
option on the same command line. These are conflicting options and cannot be
used together.

socketAsync
Message Sring: Cannot use -server option and -async option
Category: Error

Explanation: The socket command specified the -server option and the -async
option on the same command line. These are conflicting options and cannot be
used together.

socketServer
M essage String: Cannot use -async option for server sockets
Category: Error

Explanation: The socket command specified the -async option and the -ser ver
option on the same command line. These are conflicting options and cannot be
used together.

tooManyFieldArg
Message Sring: Too many fields in argument specifier
Category: Error

Explanation: A defaulted procedure argument has been specified with multiple
values. An argument can have only one default value. If the valueisto be alist,
guotes or curly braces must be used.

warnAmbiguous
Message Sring: Ambiguous switch, use delimiter to avoid conflicts
Category: Usage Warning

Explanation: The word being checked startswith a“-" but does not match any of
the known switches. Use delimiter to explicitly declare the end of the switch
pattern.

152 Appendix B

warnDeprecated

Message Sring: Deprecated usage, use “command” instead

Category: Upgrade Warning

Explanation: The specified command, option or variable does not exist and is no

longer supported in the version of the system you are checking. Use the suggested
aternative command, option or variable to upgrade the script.

warnEscapeCharacter
Message Sring: “\<char>" isavalid escape sequencein later versions of Tcl.
Category Upgrade Warning

Explanation: The new regular expression package introduced in Tcl 8.1 added
many new special character sequences, called “ escape characters.” When
upgrading to 8.1 or later, the escape characters will change the semantics of the
expression. To maintain the behavior of previous versions of Tcl, add another
backslash before the character. (This warning is displayed only if you specify the
-use option with Tcl 8.0 or earlier.)

warnExportPat
Message Sring: Export patterns should not be qualified
Category: Warning

Explanation: Each export pattern can contain glob-style specia characters, but it
must not include any namespace qualifiers. That is, the pattern can only specify
commands in the current (exporting) namespace.

warnexpr
Message Sring: Use curly bracesto avoid double substitution
Category: Performance Warning

Explanation: The expr command performs two levels of substitution on all
expressions that are not inside curly braces. To avoid the second substitution, and
to improve the performance of the command, place the expression inside curly
braces.

Note There are cases where the second level of substitution isrequired and this

warning will not apply. The TclPro Checker does not discern between these cases.

TclPro Checker Messages

153

154

Appendix B

warnExtraClose
Message Sring: Unmatched closing character
Category: Usage Warning

Explanation: A close bracket or close brace without a matching open bracket or
open brace was detected. This frequently indicates an error introduced when a
sub-command or script is deleted without deleting the final close brace or bracket.

warnlfKeyword
Message Sring: Deprecated usage, use else or elseif
Category: Warning

Explanation: When using the if command, it islegal to omit the else and el seif
keywords. However, omission of these keywords tends to produce error-prone
code; thus, awarning is flagged.

warnNamespacePat
M essage String: glob charsin wrong portion of pattern
Category: Warning

Explanation: Each namespace pattern is qualified with the name of an exporting
namespace and may have glob-style special characters in the command name at
the end of the qualified name. The warning isflagged if glob characters appearsin
anamespace name.

warnNotSpecial

M essage String: “\<char>" has no meaning. Did you mean “\\<char>" or
“<char>"?

Category: Upgrade Warning

Explanation: The backslash character is used to quote special charactersin an
expression so their literal value can be used. The character following the
backdlash in this expression has no affect on the character. Consider simplifying
the expression.

warnPattern
Message Sring: Possible unexpected substitution in pattern
Category: Warning

Explanation: Glob patterns use brackets to specify alist of charactersto match. If
brackets are used and the word is not properly quoted, Tcl will interpret thisas a
sub-command to be evaluated, rather than a pattern. This warning is flagged to
avoid possible usage errors of this nature.

warnQuoteChar
Message Sring: “\” in bracket expressions are treated as quotes
Category: Upgrade Warning

Explanation: The new regular expression package introduced in Tcl 8.1 changed
the semantics of the backslash character inside of bracket expressions. Previously
they were treated as literal characters. Now they are treated as a quote character.
To maintain the behavior of previous versions of Tcl, add another backslash
before the existing backslash (for example, [*-\] becomes [*-\\]). (Thiswarningis
displayed only if you specify the -use option with Tcl 8.0 or earlier.)

warnRedefine
Message Sring: userProcl redefines userProc2 in file fileName on line lineNum
Category: Usage Warning

Explanation: A procedure or classis being defined, imported, inherited, or
renamed into a scope where a procedure or class of the same name aready exists.

warnReserved
Message Sring: Keyword is reserved for use in version
Category: Upgrade Warning

Explanation: When checking scripts using older versions of Tcl, Tk or [incr Tcl],
thiswarning isflagged if acommand is used that does not exist in the systems that
you are checking against, but does exist in later versions. Thiswarning helpsto
prevent scripts from defining commands that will eventually collide with later
versions.

warnUndefProc
M essage String: The procedure was called but was never defined

Category: Warning

TclPro Checker Messages

155

156

Appendix B

Explanation: The procedure was not defined in any of the files that were
specified on the command line of the current invocation of the TclPro Checker.
The procedure may get defined dynamically or in afile that was not specified on
the TclPro Checker command line. Thiswarning istriggered only for the first use
of the undefined procedure in the files being checked.

warnUnsupported
M essage String: Unsupported command, option or variable: use command
Category: Error

Explanation: The specified command, option or variable still exists but isno
longer supported. Use the suggested alternative command, option, or variable to
upgrade the script.

warnVarRef
Message Sring: Variable reference used where variable name expected
Category: Warning

Explanation: Some commands expect a variable name for an argument, for
example, incr. If the argument is a variable reference, thiswarning is flagged to
report possible usage errors.

warnY2K

Message Sring: %y generates ayear without a century. consider using %Y to
avoid Y2K errors.

Category: Warning

Explanation: To avoid possible Y 2K errors, use the “%Y” field descriptor to
generate years with centuries (for example, “1999” instead of “99").

winAlpha
M essage String: Window name cannot begin with a capital letter
Category: Error

Explanation: The window name for any Tcl widget cannot begin with a capital
letter.

winBeginDot

M essage Sring: Window name must begin with “.”

Category: Error

Explanation: The path name for any Tcl widget must begin with a period (“.”)

winNotNull
M essage Sring: Window name cannot be an empty string
Category: Error

Explanation: A window name or path cannot be an empty string.

TclPro Checker Messages 157

158 Appendix B

Index

A

accessing unwrapped files 106
accessing wrapped filesrelative to a
script’s directory 107
additional Tcl/Tk resources 3
administration, Scriptics License Server
128
all warnings and errors, TclPro Checker
displaying 73
appearance preferences 25
Application Initialization APl 121
application settings, TclPro Debugger
projects 33
applications, TclPro Debugger
controlling 41
debugging remote 57
interrupting 44
killing 45
launching remote 60
restarting 45
applications, wrapping 87
arguments, passing to startup Tcl scriptin
wrapped applications 90
arguments, passing to TclPro Wrapper
using standard input 92

B

base applications (TclPro Wrapper) 111,
119
creating 119
linking Unix 122
linking Windows 121

binary shared libraries in wrapped
applications 93
breakpoints window, TclPro Debugger
46, 47
breakpoints, TclPro Debugger
line-based 45
manipulating 46
using 45
variable 46
browser preferencetab, TclPro Debugger
29
bundled extensions, TclPro 16
bytecode files 77
bytecode files, TclPro Compiler 77
distributing 81, 82

C

checking Tcl scripts
one-pass 64
previous Tcl/Tk versions, using 72
TclPro Checker error and warning
checking 73
TclPro Checker error checking 72
two-pass 64
classes, [incr Tcl] 17
closing projects, TclPro Debugger 33
code display, TclPro Debugger 24
compilation errors, TclPro Compiler 82
compiling Tcl scripts, TclPro Compiler
76
connection status window, TclPro
Debugger 61
custom Tcl interpreters

159

160

Index

creating 111

dynamically-linked, creating 116
statically-linked, creating 113
TclPro Debugger, using with 61
TclPro Wrapper, modifying for 106
TclPro Wrapper, using with 99
wrapped applications, using with 99

D

data display window, TclPro Debugger
53
date formats, Scriptics License Server
Setting 129
debug and non-debug Windows libraries
112
default project settings window, TclPro
Debugger 40
detecting wrapped application status 106
displaying all warningsand errors, TclPro
Checker 73
displaying code, TclPro Debugger 51
displaying data, TclPro Debugger 52
distributing bytecode files 81, 82
distributing bytecode files, TclPro
Compiler 82
DLLs 95
[incr Tcl] 117
[incr TK] 117
tbcload 82, 117
Tcl 117
TclPro 117
TclX 117
Tk 117
TkX 118
documentation
Tcl 4
TclPro, about 2
dynamic link libraries
seeDLLs 117
dynamic linking
Unix librariesfor 118
Unix Tcl interpreters 118
Windows libraries for 117
Windows Tcl interpreters 117
dynamically created procedures, TclPro

Compiler 80
dynamically-linked wrapped applications
96
statically-linked, vs. 95

E

email notifications, Scriptics License
Server 129
error
syntax 131
error checking, TclPro Checker 72, 73
error flags, TclPro Checker 68
error handling, TclPro Debugger 54
parsing 55
runtime 55
error settings, TclPro Debugger project
38
errors, parsing 67
errors, TclPro Checker displaying all
warningsand 73
errors, TclPro Compiler 82
eva console, TclPro Debugger 54
exit preferences 28
exit preferences, TclPro Debugger 27
Expect 17
libraries 116, 119
export libraries, Windows 117
export vs. static, Windows libraries 115
extended Tcl (TclX) 18
extensions
bundled with TclPro 16
TclPro interpreters and 15

F

fall-through 87
file shadowing 87
find utility, TclPro Debugger 49

G

goto command 48

H
history buffer size 27

[incr Tcl] 17
libraries 116, 117, 119
TclPro Compiler, code not compiled
80
[incr TK]
libraries 115, 116, 117, 119
installing
Scriptics License Server 125
TclPro 5
instrumentation settings, TclPro
Debugger projects 36
instrumentation, TclPro Debugger 56
interrupting applications, TclPro
Debugger 44

K
killing applications, TclPro Debugger 45

L

launching remote applications, TclPro
Debugger 60
LIBCMTD.LIB 115, 122
LIBCMT.LIB 115, 122
libraries
auto-loading wrapped Tcl script
libraries 108
debug and non-debug, Windows 112
dynamic linking, Unix 118
dynamic linking, Windows 117
Expect 116, 119
[incr Tcl] 116, 117, 119
[incr TK] 115, 116, 117, 119
locations 112
static linking, Unix 116
static linking, Windows 115
tbcload 82, 115, 116, 117, 118
Tcl 115, 116, 117, 118
TclPro Wrapper 122
TclX 115, 116, 117, 119
Tk 115, 116, 117, 118
TkX 115, 116, 118, 119
Unix 82
Windows DLLs 82, 117

Windows export 117
Windows static vs. export 115
Windows TclPro Wrapper 122
wrapped applications and binary
shared libraries 93, 94
wrapped applications Tcl script
libraries 93
licenses
overdraft policy 124
policy 123
TclPro applications 123
licenses,
managing 128
line-based breakpoints, TclPro Debugger
45
linking
Unix base applications 122
Unix Tcl interpreters, dynamic 118
Unix Tcl interpreters, static 116
Windows base applications 121
Windows Tcl interpreters, dynamic
117
Windows Tcl interpreters, static 114

M
main programs

custom 120

standard 120
main window, TclPro Debugger 20
MSVCRTD.LIB 118, 122
MSVCRT.LIB 118, 122

N

Named User Licenses 123

O

objects, [incr Tcl] 17
one-pass script checking 64
Opening 40
other preferences 29
overdraft, Scriptics License Server and
licenses 124
overview
TclPro 1
TclPro development environment

Index 161

162

Index

111

P

package indexes, bytecode files and 81
parsing

errors

locating 131

parsing errors 55

TclPro Checker 67

TclPro Debugger 55
path environment variable 15
pkgindex.tcl files

TclPro Wrapper 94
previous Tcl/Tk versions, TclPro Checker

checking Tcl scriptswith 72
procedures window, TclPro Debugger 50
prodebug.tcl file 57, 59
project application settings tab, TclPro
Debugger

local debugging 34

remote debugging 35
project settings, TclPro Debugger 33

application 33

error 38

instrumentation 36

setting default 39
project window, TclPro Debugger 31
projects, TclPro Debugger

closing 33

creating new 30

managing 30

opening 32

remote debugging, creating projects

60

saving 33

pj files 30
proWrap.h 119
prowrapout 87, 90
prowrapout.exe 87, 90
prowrapuses directory 104

R

remote debugging 57
creating remote projects 60
launching applications 60

modifying Tcl scriptsfor 57, 59
overview 57
Tcl procedures 58
TclPro Debugger project application
settings tab 35
result display, TclPro Debugger 25
revoking licenses, Scriptics License
Server 128
run to cursor, TclPro Debugger 41
runtime error 55
runtime error handling, TclPro Debugger
55

S

Scriptics License Server 123
administration 128
changing email notifications 129
installed files 126
installing 125
license overdraft 124
licensing policy 123
managing licenses 128
revoking licenses 128
setting date formats 129
setting initial configuration 125
Shared Network Licenses
management 124
viewing reports 129
setting date formats, Scriptics License
Server 129
shared libraries 95
Shared Network Licenses 123
management of (Scriptics License
Server) 124
stack display, TclPro Debugger 22
startup & exit preferencetab, TclPro
Debugger 28
static linking
Unix libraries 116
Unix Tcl interpreters 116
Windows libraries 115
Windows Tcl interpreters 114
static vs. export, Windows libraries 115
statically linked applications 113
statically-linked and dynamically-linked

wrapped applications, TclPro Wrapper
95, 96
stepping, TclPro Debugger 42
stepin 42
step out 43
step over 43
step to result 44
supported Tcl versions
TclPro Checker 63
TclPro Compiler 75
TclPro Debugger 19
suppressing specific messages, TclPro
Checker 69
syntax errors 131
checking for 67
TclPro Compiler and 82

T

tbcfiles 76
package index files, warning 81
tbcload 82
libraries 82, 115, 116, 117, 118
Tcl
libraries 115, 116, 117, 118
Tcl error dialog, TclPro Debugger 56
el files
Windows, running on 16
Tcl interpreters
creating custom 111, 113
creating custom statically-linked 113
creating custom, dynamically-linked
116
custom with TclPro Debugger 61
custom with TclPro Wrapper 99, 106
dynamically linking, Unix 118
dynamically linking, Windows 117
example code 113
statically linking, Unix 116
statically linking, Windows 114
TclPro 15
wrapped applications, specifying for
88
wrapped applications, using custom
99
Tcl/Tk resources 3

documentation 4
newsgroups 3
programming guides 4
Tcl Resource Center 3
training 3
Web 3
Tcl/Tk versions, TclPro Checker
checking Tcl scripts with previous 72
Tcl_Main 113
tcl_platform(isWrapped) variable 106
tclindex files
TclPro Wrapper 93
TclPro
bundled extensions 16
installing 5
TclPro Checker 63, 64
controlling feedback 67
displaying all warnings and errors 73
error and warning checking 73
error checking 72
example output 69
message structure 66
one-pass vs. two-pass checking 64
packages and version numbers 63
parsing errors 131
performance warnings 68, 132
platform portability warnings 67,
132
previous Tcl/Tk versions, checking
with 72
quiet feedback 71
supported Tcl versions 63
suppressing specific messages 69
syntax errors 67, 131
upgrade suggestions for Tcl scripts
67
usage warnings 68, 132
verbose feedback 70
warning and error flags 68
TclPro Checker messages 66
argAfterArgs 137
argsNotDefault 137
badBoolean 137
badByteNum 137
badColorFormat 137

Index

163

164

Index

badColormap 138
badCursor 138
badEvent 139
badFloat 139
badGeometry 139
badGridMaster 140
badGridRel 140
badlndex 140
badint 140

badK ey 140
badLevel 141

badlL Index 141
badlList 141
badMemberName 141
badMode 142
badOption 142
badPalette 142
badPixel 142
badPriority 142
badProfileOpt 143
badResource 143
badScreen 143
badSticky 143
badSwitch 143
badTab 144
badTabJust 144
badTlibFile 144
badTraceOp 144
badVersion 145
badVirtual 145
badVisual 145
badVisualDepth 145
badWholeNum 146
classNumArgs 146
classOnly 146
mismatchOptions 146
noEvent 147
noExpr 147
nonDefAfterDef 148
nonPortBitmap 148
nonPortChannel 148
nonPortCmd 148
nonPortColor 148
nonPortCursor 149
nonPortFile 149

nonPortKeysym 149
nonPortVar 149
noScript 147
noSwitchArg 147
noVirtual 147

nsOnly 149
nsOrClassOnly 150
numArgs 150
numListElts 150
obsoleteCmd 150
optionRequired 150
parse 151
procNumArgs 151
procOutScope 151
procProtected 151
serverAndPort 151
socketAsync 152
socketServer 152
tooManyFieldArg 152
warnAmbiguous 152
warnDeprecated 153
warnEscapeCharacter 153
warnExportPat 153
warnExpr 153
warnExtraClose 154
warnlfKeyword 154
warnNamespacePat 154
warnNotSpecia 154
warnPattern 154
warnQuoteChar 155
warnRedefine 155
warnReserved 155
warnUndefProc 155
warnUnsupported 156
warnVarRef 156
warnY 2K 156
winAlpha 156
winBeginDot 157
winNotNull 157

TclPro Compiler 75

bytecode files 77

changesin Tcl script behavior 78

compilation errors 82
compilation overview 80
compiling Tcl scripts 76

components 81

creating package indexes 81

distributing bytecode files 81, 82

overview 75

-prefix options 78

prepending prefix text 77

supported Tcl versions 75

TclPro components 1
TclPro Debugger 19

appearance preference tab 25

breakpoints window 46, 47

closing projects 33

code display 24

controlling applications 41

creating new projects 30

creating remote debugging projects
60

custom Tcl interpreters, using with
61

data display window 53

debugging remote applications 57

default project settings window 40

displaying code and data 51

displaying data 52

error handling 54

eval console 54

find utility 49

finding procedures 49

going to lines 48

instrumentation 56

interrupting applications 44

killing applications 45

launching remote applications 60

line-based breakpoints 45

main window 20, 21

managing projects 30

manipulating breakpoints 46

manipulating data 54

modifying existing Tcl scripts for
remote debugging 59

modifying Tcl scripts for remote
debugging 57

navigating code 48

opening existing projects 32

opening files 40

other preference tab 29

overview 19

parsing error handling 55

procedures window 50

prodebug.tcl file 57, 59

project application settings 33

project application settings tab local
debugging 34

project application settings tab
remote debugging 35

project errors settings tab 39

project instrumentation settings tab
36

project settings 33

project window 31

quitting 45

remote debugging procedures 58

restarting applications 45

result display 25

run to cursor 41

running code 41

runtime error handling 55

saving projects 33

setting default project settings 39

setting preferences 25

stack display 22

starting 20

startup & exit preference tab 28

stepin 42

step out 43

step over 43

step to result 44

stepping 42

supported Tcl versions 19

Tcl error dialog 56

tool bar 22

tpj files 30

using breakpoints 45

variable breakpoints 46

variable display 23

watch variables window 51

watching variables 51

window menu 51

window preferences 26

windows preference tab 27

Index 165

166

Index

wrapper script for remote debugging
59
TclPro Debugger connection status
window 61
TclPro documentation 2
TclPro interpreters 15
extensions, and 15
Unix, running on 15
Windows, running on 16
TclPro libraries, locations of 112
TclPro overview 1
TclPro Wrapper 85
accessing unwrapped files 106
accessing wrapped filesrelative to a
script’ s directory 107
auto-loading wrapped Tcl script
libraries 108
base applications, creating 119
binary shared librariesin wrapped
applications 93
changing Tcl script file references
106
changing wrapped applications
Windows icons 108
command line arguments using
standard input 92
default application name 90
detailed feedback 95
dynamically-linked wrapped
applications 96
executing code at startup of wrapped
applications 92
file archive in wrapped applications
86
filesin wrapped applications 87
libraries 122
libraries, Windows 122
modifying custom Tcl interpreters
106
naming wrapped applications 90
packageswith binary shared libraries
in wrapped applications 94
passing arguments to startup Tcl
script in wrapped applications 90
pkgindex.tcl files 94

predefined -uses options 89
preparing Tcl scripts for wrapped
applications 105
prowrapuses directory 104
resolving file pathnames in wrapped
applications 91
startup Tcl script for wrapped
applications 89
statically-linked and dynamically-
linked wrapped applications 95, 96
Tcl interpreter wrapped applications
88
Tcl script libraries in wrapped
applications 93
Tcl script packages in wrapped
applications 94
tclindex files 93
temporary directory 95
-uses options, creating 103
using custom Tcl interpreters 99
wrapping applications 87
wrapping shared directories 107
TclPro_Init 120
TclX 18
libraries 115, 116, 117, 119
technical support 3
Tk
libraries 115, 116, 117, 118
Tk_Main 113
TkX
libraries 115, 116, 118, 119
.tpj files 30
training 3
two-pass script checking 64

U

Unix dynamically linked applications 118
Unix libraries

dynamic linking 118

static linking 116
Unix Tcl interpreters

dynamically linking 118

statically linking 116
Unix, running TclPro interpreters on 15
upgrade suggestions, TclPro Checker Tcl

script 67
usage warnings 68
.usesfiles 103
contents 104
lib/prowrapuses directory 103
-uses options
creating 103
predefined 89

Vv

variable breakpoints, TclPro Debugger
45, 46
variable display, TclPro Debugger 23

w

watch variables window, TclPro
Debugger 51
window menu, TclPro Debugger 51
window preferences, TclPro Debugger 26
Windows dynamically linked
applications 117
Windows icons, changing for wrapped
applications 108
Windows libraries
debug and non-debug 112
dynamic linking 117
static linking 115
Windows preference tab, TclPro
Debugger 27
Windows Tcl interpreters
dynamically linking 117
statically linking 114
wrapped applications 85
auto-loading Tcl script libraries 108
binary shared librariesin 93
default name 90
detecting status 106
dynamically-linked 96
executing code at startup of 92
filearchivein 86
filesin 87
filesrelative to a script’ s directory,
accessing 107
naming 90
packageswith binary shared libraries

in 94
passing arguments to startup Tcl
scriptin 90
path referencesto filesin archive 90
preparing Tcl scriptsfor 105
resolving file pathnamesin 91
shared directories 107
startup Tcl script for 89
statically-linked and dynamically-
linked 95, 96
Tcl interpreter 88
Tcl script librariesin 93
Tcl script packagesin 94
using custom Tcl interpreterswith 99
Windows icons, changing 108

Index

167

Index

168

