
GNU Readline Library

Edition 2.1, for Readline Library Version 2.1.
March 1996

Brian Fox, Free Software Foundation
Chet Ramey, Case Western Reserve University

This document describes the GNU Readline Library, a utility which aids in the consistency
of user interface across discrete programs that need to provide a command line interface.

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Copyright c 1989, 1991 Free Software Foundation, Inc.

Chapter 1: Command Line Editing 1

1 Command Line Editing

This chapter describes the basic features of the GNU command line editing interface.

1.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.

The text hC-ki is read as `Control-K' and describes the character produced when the hki

key is pressed while the Control key is depressed.

The text hM-ki is read as `Meta-K' and describes the character produced when the meta
key (if you have one) is depressed, and the hki key is pressed. If you do not have a meta key,
the identical keystroke can be generated by typing hESCi �rst, and then typing hki. Either
process is known as metafying the hki key.

The text hM-C-ki is read as `Meta-Control-k' and describes the character produced by
metafying hC-ki.

In addition, several keys have their own names. Speci�cally, hDELi, hESCi, hLFDi, hSPCi,
hRETi, and hTABi all stand for themselves when seen in this text, or in an init �le (see
Section 1.3 [Readline Init File], page 3).

1.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
�rst word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just �x your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satis�ed with the line, you simply press hRETURNi. You do not have to be at
the end of the line to press hRETURNi; the entire line is accepted regardless of the location
of the cursor within the line.

1.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice
your error until you have typed several other characters. In that case, you can type hC-bi to
move the cursor to the left, and then correct your mistake. Afterwards, you can move the
cursor to the right with hC-fi.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are `pushed over' to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are `pulled
back' to �ll in the blank space created by the removal of the text. A list of the basic bare
essentials for editing the text of an input line follows.

hC-bi Move back one character.

2 GNU Readline Library

hC-fi Move forward one character.

hDELi Delete the character to the left of the cursor.

hC-di Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

hC- i Undo the last thing that you did. You can undo all the way back to an empty
line.

1.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. For your convenience, many other commands have been added
in addition to hC-bi, hC-fi, hC-di, and hDELi. Here are some commands for moving more rapidly
about the line.

hC-ai Move to the start of the line.

hC-ei Move to the end of the line.

hM-fi Move forward a word.

hM-bi Move backward a word.

hC-li Clear the screen, reprinting the current line at the top.

Notice how hC-fi moves forward a character, while hM-fi moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

1.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking (re-inserting) it back into the line. If the description for a command
says that it `kills' text, then you can be sure that you can get the text back in a di�erent
(or the same) place later.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line speci�c; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.

hC-ki Kill the text from the current cursor position to the end of the line.

hM-di Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

hM-DELi Kill from the cursor the start of the previous word, or if between words, to the
start of the previous word.

hC-wi Kill from the cursor to the previous whitespace. This is di�erent than hM-DELi

because the word boundaries di�er.

Chapter 1: Command Line Editing 3

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill bu�er.

hC-yi Yank the most recently killed text back into the bu�er at the cursor.

hM-yi Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is hC-yi or hM-yi.

1.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is signi�cant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type M-- C-k.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the �rst `digit' you type is a minus sign (h-i), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you can
type the remainder of the digits, and then the command. For example, to give the hC-di

command an argument of 10, you could type `M-1 0 C-d'.

1.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history for lines con-
taining a speci�ed string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has �nished typing the search string. As each
character of the search string is typed, readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters
as needed to �nd the desired history entry. The Escape character is used to terminate
an incremental search. Control-J will also terminate the search. Control-G will abort an
incremental search and restore the original line. When the search is terminated, the history
entry containing the search string becomes the current line. To �nd other matching entries
in the history list, type Control-S or Control-R as appropriate. This will search backward
or forward in the history for the next entry matching the search string typed so far. Any
other key sequence bound to a readline command will terminate the search and execute that
command. For instance, a newline will terminate the search and accept the line, thereby
executing the command from the history list.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or part of the con-
tents of the current line.

1.3 Readline Init File

Although the Readline library comes with a set of emacs-like keybindings installed by
default, it is possible that you would like to use a di�erent set of keybindings. You can
customize programs that use Readline by putting commands in an inputrc �le in your

4 GNU Readline Library

home directory. The name of this �le is taken from the value of the environment variable
INPUTRC. If that variable is unset, the default is `~/.inputrc'.

When a program which uses the Readline library starts up, the init �le is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init �le, thus incorporating any changes
that you might have made to it.

1.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init �le. Blank lines are
ignored. Lines beginning with a `#' are comments. Lines beginning with a `$' indicate
conditional constructs (see Section 1.3.2 [Conditional Init Constructs], page 7). Other lines
denote variable settings and key bindings.

Variable Settings
You can change the state of a few variables in Readline by using the set com-
mand within the init �le. Here is how you would specify that you wish to use
vi line editing commands:

set editing-mode vi

Right now, there are only a few variables which can be set; so few, in fact, that
we just list them here:

bell-style

Controls what happens when Readline wants to ring the termi-
nal bell. If set to `none', Readline never rings the bell. If set to
`visible', Readline uses a visible bell if one is available. If set to
`audible' (the default), Readline attempts to ring the terminal's
bell.

comment-begin

The string to insert at the beginning of the line when the insert-
comment command is executed. The default value is "#".

completion-query-items

The number of possible completions that determines when the user
is asked whether he wants to see the list of possibilities. If the
number of possible completions is greater than this value, Readline
will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. The default limit is 100.

convert-meta

If set to `on', Readline will convert characters with the eigth bit set
to an ASCII key sequence by stripping the eigth bit and prepend-
ing an hESCi character, converting them to a meta-pre�xed key se-
quence. The default value is `on'.

disable-completion

If set to `On', readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is `off'.

Chapter 1: Command Line Editing 5

editing-mode

The editing-mode variable controls which editing mode you are
using. By default, Readline starts up in Emacs editing mode, where
the keystrokes are most similar to Emacs. This variable can be set
to either `emacs' or `vi'.

enable-keypad

When set to `on', readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is `off'.

expand-tilde

If set to `on', tilde expansion is performed when Readline attempts
word completion. The default is `off'.

horizontal-scroll-mode

This variable can be set to either `on' or `off'. Setting it to `on'
means that the text of the lines that you edit will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. By default, this
variable is set to `off'.

keymap Sets Readline's idea of the current keymap for key binding com-
mands. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-command, and vi-insert. vi is
equivalent to vi-command; emacs is equivalent to emacs-standard.
The default value is emacs. The value of the editing-mode variable
also a�ects the default keymap.

mark-directories

If set to `on', completed directory names have a slash appended.
The default is `on'.

mark-modified-lines

This variable, when set to `on', says to display an asterisk (`*') at
the start of history lines which have been modi�ed. This variable
is `off' by default.

input-meta

If set to `on', Readline will enable eight-bit input (it will not strip
the eighth bit from the characters it reads), regardless of what the
terminal claims it can support. The default value is `off'. The
name meta-flag is a synonym for this variable.

output-meta

If set to `on', Readline will display characters with the eighth bit
set directly rather than as a meta-pre�xed escape sequence. The
default is `off'.

show-all-if-ambiguous

This alters the default behavior of the completion functions. If set
to `on', words which have more than one possible completion cause

6 GNU Readline Library

the matches to be listed immediately instead of ringing the bell.
The default value is `off'.

visible-stats

If set to `on', a character denoting a �le's type is appended to the
�lename when listing possible completions. The default is `off'.

Key Bindings
The syntax for controlling key bindings in the init �le is simple. First you have
to know the name of the command that you want to change. The following
pages contain tables of the command name, the default keybinding, and a short
description of what the command does.

Once you know the name of the command, simply place the name of the key
you wish to bind the command to, a colon, and then the name of the command
on a line in the init �le. The name of the key can be expressed in di�erent
ways, depending on which is most comfortable for you.

keyname: function-name or macro

keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example, `C-u' is bound to the function universal-

argument, and `C-o' is bound to run the macro expressed on the
right hand side (that is, to insert the text `> output' into the line).

"keyseq": function-name or macro

keyseq di�ers from keyname above in that strings denoting an en-
tire key sequence can be speci�ed, by placing the key sequence in
double quotes. Some GNU Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, `C-u' is bound to the function universal-

argument (just as it was in the �rst example), `C-x C-r' is bound
to the function re-read-init-file, and `ESC [1 1 ~' is bound to
insert the text `Function Key 1'. The following escape sequences
are available when specifying key sequences:

\C- control pre�x

\M- meta pre�x

\e an escape character

\\ backslash

\" h"i

Chapter 1: Command Line Editing 7

\' h'i

When entering the text of a macro, single or double quotes should
be used to indicate a macro de�nition. Unquoted text is assumed
to be a function name. Backslash will quote any character in the
macro text, including `"' and `''. For example, the following bind-
ing will make `C-x \' insert a single `\' into the line:

"\C-x\\": "\\"

1.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features
of the C preprocessor which allows key bindings and variable settings to be performed as
the result of tests. There are three parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test
extends to the end of the line; no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Readline
is in emacs or vi mode. This may be used in conjunction with the
`set keymap' command, for instance, to set bindings in the emacs-
standard and emacs-ctlx keymaps only if Readline is starting out
in emacs mode.

term The term= form may be used to include terminal-speci�c key bind-
ings, perhaps to bind the key sequences output by the terminal's
function keys. The word on the right side of the `=' is tested against
the full name of the terminal and the portion of the terminal name
before the �rst `-'. This allows sun to match both sun and sun-cmd,
for instance.

application

The application construct is used to include application-speci�c set-
tings. Each program using the Readline library sets the application
name, and you can test for it. This could be used to bind key se-
quences to functions useful for a speci�c program. For instance, the
following command adds a key sequence that quotes the current or
previous word in Bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

$endif This command, as you saw in the previous example, terminates an $if com-
mand.

$else Commands in this branch of the $if directive are executed if the test fails.

8 GNU Readline Library

1.3.3 Sample Init File

Here is an example of an inputrc �le. This illustrates key binding, variable assignment,
and conditional syntax.

Chapter 1: Command Line Editing 9

This file controls the behaviour of line input editing for
programs that use the Gnu Readline library. Existing programs
include FTP, Bash, and Gdb.
#
You can re-read the inputrc file with C-x C-r.
Lines beginning with '#' are comments.
#
Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h: backward-kill-word Text after the function name is ignored

#
Arrow keys in keypad mode
#
#"\M-OD" backward-char
#"\M-OC" forward-char
#"\M-OA" previous-history
#"\M-OB" next-history
#
Arrow keys in ANSI mode
#
"\M-[D" backward-char
"\M-[C" forward-char
"\M-[A" previous-history
"\M-[B" next-history
#
Arrow keys in 8 bit keypad mode
#
#"\M-\C-OD" backward-char
#"\M-\C-OC" forward-char
#"\M-\C-OA" previous-history
#"\M-\C-OB" next-history
#
Arrow keys in 8 bit ANSI mode
#
#"\M-\C-[D" backward-char
#"\M-\C-[C" forward-char
#"\M-\C-[A" previous-history
#"\M-\C-[B" next-history

C-q: quoted-insert

$endif

10 GNU Readline Library

An old-style binding. This happens to be the default.
TAB: complete

Macros that are convenient for shell interaction
$if Bash
edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
prepare to type a quoted word -- insert open and close double quotes
and move to just after the open quote
"\C-x\"": "\"\"\C-b"
insert a backslash (testing backslash escapes in sequences and macros)
"\C-x\\": "\\"
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line
Edit variable on current line.
"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif

use a visible bell if one is available
set bell-style visible

don't strip characters to 7 bits when reading
set input-meta on

allow iso-latin1 characters to be inserted rather than converted to
prefix-meta sequences
set convert-meta off

display characters with the eighth bit set directly rather than
as meta-prefixed characters
set output-meta on

if there are more than 150 possible completions for a word, ask the
user if he wants to see all of them
set completion-query-items 150

For FTP
$if Ftp
"\C-xg": "get \M-?"
"\C-xt": "put \M-?"
"\M-.": yank-last-arg
$endif

Chapter 1: Command Line Editing 11

1.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences.

1.4.1 Commands For Moving

beginning-of-line (C-a)

Move to the start of the current line.

end-of-line (C-e)

Move to the end of the line.

forward-char (C-f)

Move forward a character.

backward-char (C-b)

Move back a character.

forward-word (M-f)

Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)

Move back to the start of this, or the previous, word. Words are composed of
letters and digits.

clear-screen (C-l)

Clear the screen and redraw the current line, leaving the current line at the top
of the screen.

redraw-current-line ()

Refresh the current line. By default, this is unbound.

1.4.2 Commands For Manipulating The History

accept-line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add
it to the history list. If this line was a history line, then restore the history line
to its original state.

previous-history (C-p)

Move `up' through the history list.

next-history (C-n)

Move `down' through the history list.

beginning-of-history (M-<)

Move to the �rst line in the history.

end-of-history (M->)

Move to the end of the input history, i.e., the line you are entering.

12 GNU Readline Library

reverse-search-history (C-r)

Search backward starting at the current line and moving `up' through the his-
tory as necessary. This is an incremental search.

forward-search-history (C-s)

Search forward starting at the current line and moving `down' through the the
history as necessary. This is an incremental search.

non-incremental-reverse-search-history (M-p)

Search backward starting at the current line and moving `up' through the his-
tory as necessary using a non-incremental search for a string supplied by the
user.

non-incremental-forward-search-history (M-n)

Search forward starting at the current line and moving `down' through the the
history as necessary using a non-incremental search for a string supplied by the
user.

history-search-forward ()

Search forward through the history for the string of characters between the
start of the current line and the current cursor position (the `point'). This is a
non-incremental search. By default, this command is unbound.

history-search-backward ()

Search backward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

yank-nth-arg (M-C-y)

Insert the �rst argument to the previous command (usually the second word on
the previous line). With an argument n, insert the nth word from the previous
command (the words in the previous command begin with word 0). A negative
argument inserts the nth word from the end of the previous command.

yank-last-arg (M-., M-_)

Insert last argument to the previous command (the last word of the previous
history entry). With an argument, behave exactly like yank-nth-arg.

1.4.3 Commands For Changing Text

delete-char (C-d)

Delete the character under the cursor. If the cursor is at the beginning of the
line, there are no characters in the line, and the last character typed was not
C-d, then return EOF.

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric arg says to kill the characters
instead of deleting them.

quoted-insert (C-q, C-v)

Add the next character that you type to the line verbatim. This is how to insert
key sequences like hC-qi, for example.

Chapter 1: Command Line Editing 13

tab-insert (M-TAB)

Insert a tab character.

self-insert (a, b, A, 1, !, ...)

Insert yourself.

transpose-chars (C-t)

Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the line,
then this transposes the last two characters of the line. Negative argumentss
don't work.

transpose-words (M-t)

Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

upcase-word (M-u)

Uppercase the current (or following) word. With a negative argument, do the
previous word, but do not move the cursor.

downcase-word (M-l)

Lowercase the current (or following) word. With a negative argument, do the
previous word, but do not move the cursor.

capitalize-word (M-c)

Capitalize the current (or following) word. With a negative argument, do the
previous word, but do not move the cursor.

1.4.4 Killing And Yanking

kill-line (C-k)

Kill the text from the current cursor position to the end of the line.

backward-kill-line (C-x Rubout)

Kill backward to the beginning of the line.

unix-line-discard (C-u)

Kill backward from the cursor to the beginning of the current line. Save the
killed text on the kill-ring.

kill-whole-line ()

Kill all characters on the current line, no matter where the cursor is. By default,
this is unbound.

kill-word (M-d)

Kill from the cursor to the end of the current word, or if between words, to the
end of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-DEL)

Kill the word behind the cursor. Word boundaries are the same as backward-
word.

14 GNU Readline Library

unix-word-rubout (C-w)

Kill the word behind the cursor, using white space as a word boundary. The
killed text is saved on the kill-ring.

delete-horizontal-space ()

Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()

Kill the text between the point and the mark (saved cursor position. This text
is referred to as the region. By default, this command is unbound.

copy-region-as-kill ()

Copy the text in the region to the kill bu�er, so you can yank it right away. By
default, this command is unbound.

copy-backward-word ()

Copy the word before point to the kill bu�er. By default, this command is
unbound.

copy-forward-word ()

Copy the word following point to the kill bu�er. By default, this command is
unbound.

yank (C-y)

Yank the top of the kill ring into the bu�er at the current cursor position.

yank-pop (M-y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

1.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument.
hM{i starts a negative argument.

universal-argument ()

Each time this is executed, the argument count is multiplied by four. The
argument count is initially one, so executing this function the �rst time makes
the argument count four. By default, this is not bound to a key.

1.4.6 Letting Readline Type For You

complete (TAB)

Attempt to do completion on the text before the cursor. This is application-
speci�c. Generally, if you are typing a �lename argument, you can do �lename
completion; if you are typing a command, you can do command completion, if
you are typing in a symbol to GDB, you can do symbol name completion, if
you are typing in a variable to Bash, you can do variable name completion, and
so on.

Chapter 1: Command Line Editing 15

possible-completions (M-?)

List the possible completions of the text before the cursor.

insert-completions (M-*)

Insert all completions of the text before point that would have been generated
by possible-completions.

1.4.7 Keyboard Macros

start-kbd-macro (C-x ()

Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))

Stop saving the characters typed into the current keyboard macro and save the
de�nition.

call-last-kbd-macro (C-x e)

Re-execute the last keyboard macro de�ned, by making the characters in the
macro appear as if typed at the keyboard.

1.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)

Read in the contents of the inputrc �le, and incorporate any bindings or variable
assignments found there.

abort (C-g)

Abort the current editing command and ring the terminal's bell (subject to the
setting of bell-style).

do-uppercase-version (M-a, M-b, M-x, : : :)

If the meta�ed character x is lowercase, run the command that is bound to the
corresponding uppercase character.

prefix-meta (ESC)

Make the next character that you type be meta�ed. This is for people without
a meta key. Typing `ESC f' is equivalent to typing `M-f'.

undo (C-_, C-x C-u)

Incremental undo, separately remembered for each line.

revert-line (M-r)

Undo all changes made to this line. This is like typing the undo command
enough times to get back to the beginning.

tilde-expand (M-~)

Perform tilde expansion on the current word.

set-mark (C-@)

Set the mark to the current point. If a numeric argument is supplied, the mark
is set to that position.

16 GNU Readline Library

exchange-point-and-mark (C-x C-x)

Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])

A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

character-search-backward (M-C-])

A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

insert-comment (M-#)

The value of the comment-begin variable is inserted at the beginning of the
current line, and the line is accepted as if a newline had been typed.

dump-functions ()

Print all of the functions and their key bindings to the readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc �le. This command is unbound by default.

dump-variables ()

Print all of the settable variables and their values to the readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc �le. This command is unbound by default.

dump-macros ()

Print all of the readline key sequences bound to macros and the strings they
ouput. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc �le. This command is unbound by
default.

1.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as speci�ed in
the POSIX 1003.2 standard.

In order to switch interactively between emacs and vi editing modes, use the command
M-C-j (toggle-editing-mode). The Readline default is emacs mode.

When you enter a line in vi mode, you are already placed in `insertion' mode, as if you
had typed an `i'. Pressing hESCi switches you into `command' mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
`k' and subsequent lines with `j', and so forth.

Chapter 2: Programming with GNU Readline 17

2 Programming with GNU Readline

This chapter describes the interface between the GNU Readline Library and other pro-
grams. If you are a programmer, and you wish to include the features found in GNU
Readline such as completion, line editing, and interactive history manipulation in your own
programs, this section is for you.

2.1 Basic Behavior

Many programs provide a command line interface, such as mail, ftp, and sh. For such
programs, the default behaviour of Readline is su�cient. This section describes how to use
Readline in the simplest way possible, perhaps to replace calls in your code to gets() or
fgets ().

The function readline () prints a prompt and then reads and returns a single line of
text from the user. The line readline returns is allocated with malloc (); you should free

() the line when you are done with it. The declaration for readline in ANSI C is

char *readline (char *prompt);

So, one might say

char *line = readline ("Enter a line: ");

in order to read a line of text from the user. The line returned has the �nal newline removed,
so only the text remains.

If readline encounters an EOF while reading the line, and the line is empty at that
point, then (char *)NULL is returned. Otherwise, the line is ended just as if a newline had
been typed.

If you want the user to be able to get at the line later, (with hC-pi for example), you must
call add_history () to save the line away in a history list of such lines.

add_history (line);

For full details on the GNU History Library, see the associated manual.

It is preferable to avoid saving empty lines on the history list, since users rarely have a
burning need to reuse a blank line. Here is a function which usefully replaces the standard
gets () library function, and has the advantage of no static bu�er to overow:

/* A static variable for holding the line. */
static char *line_read = (char *)NULL;

/* Read a string, and return a pointer to it. Returns NULL on EOF. */
char *
rl_gets ()
{
/* If the buffer has already been allocated, return the memory

to the free pool. */
if (line_read)

{
free (line_read);
line_read = (char *)NULL;

18 GNU Readline Library

}

/* Get a line from the user. */
line_read = readline ("");

/* If the line has any text in it, save it on the history. */
if (line_read && *line_read)

add_history (line_read);

return (line_read);
}

This function gives the user the default behaviour of hTABi completion: completion on �le
names. If you do not want Readline to complete on �lenames, you can change the binding
of the hTABi key with rl_bind_key ().

int rl_bind_key (int key, int (*function)());

rl_bind_key () takes two arguments: key is the character that you want to bind, and
function is the address of the function to call when key is pressed. Binding hTABi to rl_

insert () makes hTABi insert itself. rl_bind_key () returns non-zero if key is not a valid
ASCII character code (between 0 and 255).

Thus, to disable the default hTABi behavior, the following su�ces:

rl_bind_key ('\t', rl_insert);

This code should be executed once at the start of your program; you might write a func-
tion called initialize_readline () which performs this and other desired initializations,
such as installing custom completers (see Section 2.5 [Custom Completers], page 28).

2.2 Custom Functions

Readline provides many functions for manipulating the text of the line, but it isn't possi-
ble to anticipate the needs of all programs. This section describes the various functions and
variables de�ned within the Readline library which allow a user program to add customized
functionality to Readline.

2.2.1 The Function Type

For readabilty, we declare a new type of object, called Function. A Function is a C
function which returns an int. The type declaration for Function is:

typedef int Function ();

The reason for declaring this new type is to make it easier to write code describing
pointers to C functions. Let us say we had a variable called func which was a pointer to a
function. Instead of the classic C declaration

int (*)()func;

we may write

Function *func;

Similarly, there are

Chapter 2: Programming with GNU Readline 19

typedef void VFunction ();
typedef char *CPFunction (); and
typedef char **CPPFunction ();

for functions returning no value, pointer to char, and pointer to pointer to char, re-
spectively.

2.2.2 Writing a New Function

In order to write new functions for Readline, you need to know the calling conventions
for keyboard-invoked functions, and the names of the variables that describe the current
state of the line read so far.

The calling sequence for a command foo looks like

foo (int count, int key)

where count is the numeric argument (or 1 if defaulted) and key is the key that invoked
this function.

It is completely up to the function as to what should be done with the numeric argument.
Some functions use it as a repeat count, some as a ag, and others to choose alternate
behavior (refreshing the current line as opposed to refreshing the screen, for example).
Some choose to ignore it. In general, if a function uses the numeric argument as a repeat
count, it should be able to do something useful with both negative and positive arguments.
At the very least, it should be aware that it can be passed a negative argument.

2.3 Readline Variables

These variables are available to function writers.

Variablechar * rl line bu�er
This is the line gathered so far. You are welcome to modify the contents of the
line, but see Section 2.4.5 [Allowing Undoing], page 23.

Variableint rl point
The o�set of the current cursor position in rl_line_buffer (the point).

Variableint rl end
The number of characters present in rl_line_buffer. When rl_point is at
the end of the line, rl_point and rl_end are equal.

Variableint rl mark
The mark (saved position) in the current line. If set, the mark and point de�ne
a region.

Variableint rl done
Setting this to a non-zero value causes Readline to return the current line
immediately.

Variableint rl pending input
Setting this to a value makes it the next keystroke read. This is a way to stu�
a single character into the input stream.

20 GNU Readline Library

Variablechar * rl prompt
The prompt Readline uses. This is set from the argument to readline (), and
should not be assigned to directly.

Variablechar * rl library version
The version number of this revision of the library.

Variablechar * rl terminal name
The terminal type, used for initialization.

Variablechar * rl readline name
This variable is set to a unique name by each application using Readline. The
value allows conditional parsing of the inputrc �le (see Section 1.3.2 [Conditional
Init Constructs], page 7).

VariableFILE * rl instream
The stdio stream from which Readline reads input.

VariableFILE * rl outstream
The stdio stream to which Readline performs output.

VariableFunction * rl startup hook
If non-zero, this is the address of a function to call just before readline prints
the �rst prompt.

VariableFunction * rl event hook
If non-zero, this is the address of a function to call periodically when readline
is waiting for terminal input.

VariableFunction * rl getc function
If non-zero, readline will call indirectly through this pointer to get a character
from the input stream. By default, it is set to rl_getc, the default readline
character input function (see Section 2.4.8 [Utility Functions], page 25).

VariableFunction * rl redisplay function
If non-zero, readline will call indirectly through this pointer to update the
display with the current contents of the editing bu�er. By default, it is set
to rl_redisplay, the default readline redisplay function (see Section 2.4.6
[Redisplay], page 24).

VariableKeymap rl executing keymap
This variable is set to the keymap (see Section 2.4.2 [Keymaps], page 21) in
which the currently executing readline function was found.

VariableKeymap rl binding keymap
This variable is set to the keymap (see Section 2.4.2 [Keymaps], page 21) in
which the last key binding occurred.

Chapter 2: Programming with GNU Readline 21

2.4 Readline Convenience Functions

2.4.1 Naming a Function

The user can dynamically change the bindings of keys while using Readline. This is
done by representing the function with a descriptive name. The user is able to type the
descriptive name when referring to the function. Thus, in an init �le, one might �nd

Meta-Rubout: backward-kill-word

This binds the keystroke hMeta-Rubouti to the function descriptively named backward-

kill-word. You, as the programmer, should bind the functions you write to descriptive
names as well. Readline provides a function for doing that:

Functionint rl add defun (char *name, Function *function, int key)
Add name to the list of named functions. Make function be the function that
gets called. If key is not -1, then bind it to function using rl_bind_key ().

Using this function alone is su�cient for most applications. It is the recommended way
to add a few functions to the default functions that Readline has built in. If you need to do
something other than adding a function to Readline, you may need to use the underlying
functions described below.

2.4.2 Selecting a Keymap

Key bindings take place on a keymap. The keymap is the association between the keys
that the user types and the functions that get run. You can make your own keymaps, copy
existing keymaps, and tell Readline which keymap to use.

FunctionKeymap rl make bare keymap ()
Returns a new, empty keymap. The space for the keymap is allocated with
malloc (); you should free () it when you are done.

FunctionKeymap rl copy keymap (Keymap map)
Return a new keymap which is a copy of map.

FunctionKeymap rl make keymap ()
Return a new keymap with the printing characters bound to rl insert, the low-
ercase Meta characters bound to run their equivalents, and the Meta digits
bound to produce numeric arguments.

Functionvoid rl discard keymap (Keymap keymap)
Free the storage associated with keymap.

Readline has several internal keymaps. These functions allow you to change which
keymap is active.

FunctionKeymap rl get keymap ()
Returns the currently active keymap.

22 GNU Readline Library

Functionvoid rl set keymap (Keymap keymap)
Makes keymap the currently active keymap.

FunctionKeymap rl get keymap by name (char *name)
Return the keymap matching name. name is one which would be supplied in a
set keymap inputrc line (see Section 1.3 [Readline Init File], page 3).

2.4.3 Binding Keys

You associate keys with functions through the keymap. Readline has several inter-
nal keymaps: emacs_standard_keymap, emacs_meta_keymap, emacs_ctlx_keymap, vi_
movement_keymap, and vi_insertion_keymap. emacs_standard_keymap is the default,
and the examples in this manual assume that.

These functions manage key bindings.

Functionint rl bind key (int key, Function *function)
Binds key to function in the currently active keymap. Returns non-zero in the
case of an invalid key.

Functionint rl bind key in map (int key, Function *function,

Keymap map)
Bind key to function in map. Returns non-zero in the case of an invalid key.

Functionint rl unbind key (int key)
Bind key to the null function in the currently active keymap. Returns non-zero
in case of error.

Functionint rl unbind key in map (int key, Keymap map)
Bind key to the null function in map. Returns non-zero in case of error.

Functionint rl generic bind (int type, char *keyseq, char *data,

Keymap map)
Bind the key sequence represented by the string keyseq to the arbitrary pointer
data. type says what kind of data is pointed to by data; this can be a function
(ISFUNC), a macro (ISMACR), or a keymap (ISKMAP). This makes new keymaps
as necessary. The initial keymap in which to do bindings is map.

Functionint rl parse and bind (char *line)
Parse line as if it had been read from the inputrc �le and perform any key
bindings and variable assignments found (see Section 1.3 [Readline Init File],
page 3).

Functionint rl read init �le (char *filename)
Read keybindings and variable assignments from �lename (see Section 1.3
[Readline Init File], page 3).

Chapter 2: Programming with GNU Readline 23

2.4.4 Associating Function Names and Bindings

These functions allow you to �nd out what keys invoke named functions and the functions
invoked by a particular key sequence.

FunctionFunction * rl named function (char *name)
Return the function with name name.

FunctionFunction * rl function of keyseq (char *keyseq, Keymap

map, int *type)
Return the function invoked by keyseq in keymap map. If map is NULL, the
current keymap is used. If type is not NULL, the type of the object is returned
in it (one of ISFUNC, ISKMAP, or ISMACR).

Functionchar ** rl invoking keyseqs (Function *function)
Return an array of strings representing the key sequences used to invoke func-

tion in the current keymap.

Functionchar ** rl invoking keyseqs in map (Function *function,

Keymap map)
Return an array of strings representing the key sequences used to invoke func-

tion in the keymap map.

Functionvoid rl function dumper (int readable)
Print the readline function names and the key sequences currently bound to
them to rl_outstream. If readable is non-zero, the list is formatted in such a
way that it can be made part of an inputrc �le and re-read.

Functionvoid rl list funmap names ()
Print the names of all bindable Readline functions to rl_outstream.

2.4.5 Allowing Undoing

Supporting the undo command is a painless thing, and makes your functions much more
useful. It is certainly easy to try something if you know you can undo it. I could use an
undo function for the stock market.

If your function simply inserts text once, or deletes text once, and uses rl_insert_text
() or rl_delete_text () to do it, then undoing is already done for you automatically.

If you do multiple insertions or multiple deletions, or any combination of these operations,
you should group them together into one operation. This is done with rl_begin_undo_

group () and rl_end_undo_group ().

The types of events that can be undone are:

enum undo_code { UNDO_DELETE, UNDO_INSERT, UNDO_BEGIN, UNDO_END };

Notice that UNDO_DELETE means to insert some text, and UNDO_INSERT means to delete
some text. That is, the undo code tells undo what to undo, not how to undo it. UNDO_BEGIN
and UNDO_END are tags added by rl_begin_undo_group () and rl_end_undo_group ().

24 GNU Readline Library

Functionint rl begin undo group ()
Begins saving undo information in a group construct. The undo information
usually comes from calls to rl_insert_text () and rl_delete_text (), but
could be the result of calls to rl_add_undo ().

Functionint rl end undo group ()
Closes the current undo group started with rl_begin_undo_group (). There
should be one call to rl_end_undo_group () for each call to rl_begin_undo_

group ().

Functionvoid rl add undo (enum undo_code what, int start, int end,

char *text)
Remember how to undo an event (according to what). The a�ected text runs
from start to end, and encompasses text.

Functionvoid free undo list ()
Free the existing undo list.

Functionint rl do undo ()
Undo the �rst thing on the undo list. Returns 0 if there was nothing to undo,
non-zero if something was undone.

Finally, if you neither insert nor delete text, but directly modify the existing text (e.g.,
change its case), call rl_modifying () once, just before you modify the text. You must
supply the indices of the text range that you are going to modify.

Functionint rl modifying (int start, int end)
Tell Readline to save the text between start and end as a single undo unit. It
is assumed that you will subsequently modify that text.

2.4.6 Redisplay

Functionint rl redisplay ()
Change what's displayed on the screen to reect the current contents of rl_
line_buffer.

Functionint rl forced update display ()
Force the line to be updated and redisplayed, whether or not Readline thinks
the screen display is correct.

Functionint rl on new line ()
Tell the update routines that we have moved onto a new (empty) line, usually
after ouputting a newline.

Functionint rl reset line state ()
Reset the display state to a clean state and redisplay the current line starting
on a new line.

Chapter 2: Programming with GNU Readline 25

Functionint rl message (va_alist)
The arguments are a string as would be supplied to printf. The resulting
string is displayed in the echo area. The echo area is also used to display
numeric arguments and search strings.

Functionint rl clear message ()
Clear the message in the echo area.

2.4.7 Modifying Text

Functionint rl insert text (char *text)
Insert text into the line at the current cursor position.

Functionint rl delete text (int start, int end)
Delete the text between start and end in the current line.

Functionchar * rl copy text (int start, int end)
Return a copy of the text between start and end in the current line.

Functionint rl kill text (int start, int end)
Copy the text between start and end in the current line to the kill ring, ap-
pending or prepending to the last kill if the last command was a kill command.
The text is deleted. If start is less than end, the text is appended, otherwise
prepended. If the last command was not a kill, a new kill ring slot is used.

2.4.8 Utility Functions

Functionint rl read key ()
Return the next character available. This handles input inserted into the input
stream via pending input (see Section 2.3 [Readline Variables], page 19) and
rl_stuff_char (), macros, and characters read from the keyboard.

Functionint rl getc (FILE *)
Return the next character available from the keyboard.

Functionint rl stu� char (int c)
Insert c into the Readline input stream. It will be "read" before Readline
attempts to read characters from the terminal with rl_read_key ().

Functionint rl initialize ()
Initialize or re-initialize Readline's internal state.

Functionint rl reset terminal (char *terminal_name)
Reinitialize Readline's idea of the terminal settings using terminal name as the
terminal type (e.g., vt100).

Functionint alphabetic (int c)
Return 1 if c is an alphabetic character.

26 GNU Readline Library

Functionint numeric (int c)
Return 1 if c is a numeric character.

Functionint ding ()
Ring the terminal bell, obeying the setting of bell-style.

The following are implemented as macros, de�ned in chartypes.h.

Functionint uppercase p (int c)
Return 1 if c is an uppercase alphabetic character.

Functionint lowercase p (int c)
Return 1 if c is a lowercase alphabetic character.

Functionint digit p (int c)
Return 1 if c is a numeric character.

Functionint to upper (int c)
If c is a lowercase alphabetic character, return the corresponding uppercase
character.

Functionint to lower (int c)
If c is an uppercase alphabetic character, return the corresponding lowercase
character.

Functionint digit value (int c)
If c is a number, return the value it represents.

2.4.9 Alternate Interface

An alternate interface is available to plain readline(). Some applications need to
interleave keyboard I/O with �le, device, or window system I/O, typically by using a main
loop to select() on various �le descriptors. To accomodate this need, readline can also be
invoked as a `callback' function from an event loop. There are functions available to make
this easy.

Functionvoid rl callback handler install (char *prompt, Vfunction

*lhandler)
Set up the terminal for readline I/O and display the initial expanded value of
prompt. Save the value of lhandler to use as a callback when a complete line
of input has been entered.

Functionvoid rl callback read char ()
Whenever an application determines that keyboard input is available, it should
call rl_callback_read_char(), which will read the next character from the
current input source. If that character completes the line, rl_callback_

read_char will invoke the lhandler function saved by rl_callback_handler_

install to process the line. EOF is indicated by calling lhandler with a NULL

line.

Chapter 2: Programming with GNU Readline 27

Functionvoid rl callback handler remove ()
Restore the terminal to its initial state and remove the line handler. This may
be called from within a callback as well as independently.

2.4.10 An Example

Here is a function which changes lowercase characters to their uppercase equivalents,
and uppercase characters to lowercase. If this function was bound to `M-c', then typing
`M-c' would change the case of the character under point. Typing `M-1 0 M-c' would change
the case of the following 10 characters, leaving the cursor on the last character changed.

/* Invert the case of the COUNT following characters. */
int
invert_case_line (count, key)

int count, key;
{
register int start, end, i;

start = rl_point;

if (rl_point >= rl_end)
return (0);

if (count < 0)
{
direction = -1;
count = -count;

}
else

direction = 1;

/* Find the end of the range to modify. */
end = start + (count * direction);

/* Force it to be within range. */
if (end > rl_end)

end = rl_end;
else if (end < 0)

end = 0;

if (start == end)
return (0);

if (start > end)
{
int temp = start;
start = end;
end = temp;

}

28 GNU Readline Library

/* Tell readline that we are modifying the line, so it will save
the undo information. */

rl_modifying (start, end);

for (i = start; i != end; i++)
{
if (uppercase_p (rl_line_buffer[i]))

rl_line_buffer[i] = to_lower (rl_line_buffer[i]);
else if (lowercase_p (rl_line_buffer[i]))

rl_line_buffer[i] = to_upper (rl_line_buffer[i]);
}

/* Move point to on top of the last character changed. */
rl_point = (direction == 1) ? end - 1 : start;
return (0);

}

2.5 Custom Completers

Typically, a program that reads commands from the user has a way of disambiguating
commands and data. If your program is one of these, then it can provide completion for
commands, data, or both. The following sections describe how your program and Readline
cooperate to provide this service.

2.5.1 How Completing Works

In order to complete some text, the full list of possible completions must be available.
That is, it is not possible to accurately expand a partial word without knowing all of the
possible words which make sense in that context. The Readline library provides the user
interface to completion, and two of the most common completion functions: �lename and
username. For completing other types of text, you must write your own completion function.
This section describes exactly what such functions must do, and provides an example.

There are three major functions used to perform completion:

1. The user-interface function rl_complete (). This function is called with the same
arguments as other Readline functions intended for interactive use: count and invok-

ing key. It isolates the word to be completed and calls completion_matches () to
generate a list of possible completions. It then either lists the possible completions,
inserts the possible completions, or actually performs the completion, depending on
which behavior is desired.

2. The internal function completion_matches () uses your generator function to generate
the list of possible matches, and then returns the array of these matches. You should
place the address of your generator function in rl_completion_entry_function.

3. The generator function is called repeatedly from completion_matches (), returning
a string each time. The arguments to the generator function are text and state. text

is the partial word to be completed. state is zero the �rst time the function is called,
allowing the generator to perform any necessary initialization, and a positive non-zero

Chapter 2: Programming with GNU Readline 29

integer for each subsequent call. When the generator function returns (char *)NULL

this signals completion_matches () that there are no more possibilities left. Usually
the generator function computes the list of possible completions when state is zero,
and returns them one at a time on subsequent calls. Each string the generator function
returns as a match must be allocated with malloc(); Readline frees the strings when
it has �nished with them.

Functionint rl complete (int ignore, int invoking_key)
Complete the word at or before point. You have supplied the function that
does the initial simple matching selection algorithm (see completion_matches
()). The default is to do �lename completion.

VariableFunction * rl completion entry function
This is a pointer to the generator function for completion_matches (). If
the value of rl_completion_entry_function is (Function *)NULL then the
default �lename generator function, filename_entry_function (), is used.

2.5.2 Completion Functions

Here is the complete list of callable completion functions present in Readline.

Functionint rl complete internal (int what_to_do)
Complete the word at or before point. what to do says what to do with the
completion. A value of `?' means list the possible completions. `TAB' means
do standard completion. `*' means insert all of the possible completions. `!'
means to display all of the possible completions, if there is more than one, as
well as performing partial completion.

Functionint rl complete (int ignore, int invoking_key)
Complete the word at or before point. You have supplied the function that
does the initial simple matching selection algorithm (see completion_matches
() and rl_completion_entry_function). The default is to do �lename com-
pletion. This calls rl_complete_internal () with an argument depending on
invoking key.

Functionint rl possible completions (int count, int invoking_key))
List the possible completions. See description of rl_complete (). This calls
rl_complete_internal () with an argument of `?'.

Functionint rl insert completions (int count, int invoking_key))
Insert the list of possible completions into the line, deleting the partially-
completed word. See description of rl_complete (). This calls rl_complete_
internal () with an argument of `*'.

Functionchar ** completion matches (char *text, CPFunction

*entry_func)
Returns an array of (char *) which is a list of completions for text. If there are
no completions, returns (char **)NULL. The �rst entry in the returned array

30 GNU Readline Library

is the substitution for text. The remaining entries are the possible completions.
The array is terminated with a NULL pointer.

entry func is a function of two args, and returns a (char *). The �rst argument
is text. The second is a state argument; it is zero on the �rst call, and non-zero
on subsequent calls. entry func returns a NULL pointer to the caller when there
are no more matches.

Functionchar * �lename completion function (char *text, int

state)
A generator function for �lename completion in the general case. Note that
completion in Bash is a little di�erent because of all the pathnames that must
be followed when looking up completions for a command. The Bash source is
a useful reference for writing custom completion functions.

Functionchar * username completion function (char *text, int

state)
A completion generator for usernames. text contains a partial username pre-
ceded by a random character (usually `~'). As with all completion generators,
state is zero on the �rst call and non-zero for subsequent calls.

2.5.3 Completion Variables

VariableFunction * rl completion entry function
A pointer to the generator function for completion_matches (). NULL means
to use filename_entry_function (), the default �lename completer.

VariableCPPFunction * rl attempted completion function
A pointer to an alternative function to create matches. The function is called
with text, start, and end. start and end are indices in rl_line_buffer saying
what the boundaries of text are. If this function exists and returns NULL,
or if this variable is set to NULL, then rl_complete () will call the value of
rl_completion_entry_function to generate matches, otherwise the array of
strings returned will be used.

VariableCPFunction * rl �lename quoting function
A pointer to a function that will quote a �lename in an application- speci�c
fashion. This is called if �lename completion is being attempted and one of
the characters in rl_filename_quote_characters appears in a completed �le-
name. The function is called with text, match type, and quote pointer. The
text is the �lename to be quoted. The match type is either SINGLE_MATCH, if
there is only one completion match, or MULT_MATCH. Some functions use this
to decide whether or not to insert a closing quote character. The quote pointer

is a pointer to any opening quote character the user typed. Some functions
choose to reset this character.

VariableCPFunction * rl �lename dequoting function
A pointer to a function that will remove application-speci�c quoting characters
from a �lename before completion is attempted, so those characters do not

Chapter 2: Programming with GNU Readline 31

interfere with matching the text against names in the �lesystem. It is called
with text, the text of the word to be dequoted, and quote char, which is the
quoting character that delimits the �lename (usually `'' or `"'). If quote char

is zero, the �lename was not in an embedded string.

VariableFunction * rl char is quoted p
A pointer to a function to call that determines whether or not a speci�c char-
acter in the line bu�er is quoted, according to whatever quoting mechanism the
program calling readline uses. The function is called with two arguments: text,
the text of the line, and index, the index of the character in the line. It is used to
decide whether a character found in rl_completer_word_break_characters

should be used to break words for the completer.

Variableint rl completion query items
Up to this many items will be displayed in response to a possible-completions
call. After that, we ask the user if she is sure she wants to see them all. The
default value is 100.

Variablechar * rl basic word break characters
The basic list of characters that signal a break between words for the completer
routine. The default value of this variable is the characters which break words
for completion in Bash, i.e., " \t\n\"\\'`@$><=;|&{(".

Variablechar * rl basic quote characters
List of quote characters which can cause a word break.

Variablechar * rl completer word break characters
The list of characters that signal a break between words for rl_complete_

internal (). The default list is the value of rl_basic_word_break_characters.

Variablechar * rl completer quote characters
List of characters which can be used to quote a substring of the line. Completion
occurs on the entire substring, and within the substring rl_completer_word_

break_characters are treated as any other character, unless they also appear
within this list.

Variablechar * rl �lename quote characters
A list of characters that cause a �lename to be quoted by the completer when
they appear in a completed �lename. The default is empty.

Variablechar * rl special pre�xes
The list of characters that are word break characters, but should be left in text

when it is passed to the completion function. Programs can use this to help
determine what kind of completing to do. For instance, Bash sets this variable
to "$@" so that it can complete shell variables and hostnames.

Variableint rl completion append character
When a single completion alternative matches at the end of the command line,
this character is appended to the inserted completion text. The default is a

32 GNU Readline Library

space character (` '). Setting this to the null character (`\0') prevents anything
being appended automatically. This can be changed in custom completion
functions to provide the \most sensible word separator character" according to
an application-speci�c command line syntax speci�cation.

Variableint rl ignore completion duplicates
If non-zero, then disallow duplicates in the matches. Default is 1.

Variableint rl �lename completion desired
Non-zero means that the results of the matches are to be treated as �lenames.
This is always zero on entry, and can only be changed within a completion entry
generator function. If it is set to a non-zero value, directory names have a slash
appended and Readline attempts to quote completed �lenames if they contain
any embedded word break characters.

Variableint rl �lename quoting desired
Non-zero means that the results of the matches are to be quoted using double
quotes (or an application-speci�c quoting mechanism) if the completed �lename
contains any characters in rl_filename_quote_chars. This is always non-zero
on entry, and can only be changed within a completion entry generator function.
The quoting is e�ected via a call to the function pointed to by rl_filename_

quoting_function.

Variableint rl inhibit completion
If this variable is non-zero, completion is inhibited. The completion character
will be inserted as any other bound to self-insert.

VariableFunction * rl ignore some completions function
This function, if de�ned, is called by the completer when real �lename comple-
tion is done, after all the matching names have been generated. It is passed
a NULL terminated array of matches. The �rst element (matches[0]) is the
maximal substring common to all matches. This function can re-arrange the
list of matches as required, but each element deleted from the array must be
freed.

VariableFunction * rl directory completion hook
This function, if de�ned, is allowed to modify the directory portion of �lenames
Readline completes. It is called with the address of a string (the current direc-
tory name) as an argument. It could be used to expand symbolic links or shell
variables in pathnames.

2.5.4 A Short Completion Example

Here is a small application demonstrating the use of the GNU Readline library. It is called
fileman, and the source code resides in `examples/fileman.c'. This sample application
provides completion of command names, line editing features, and access to the history list.

Chapter 2: Programming with GNU Readline 33

/* fileman.c -- A tiny application which demonstrates how to use the
GNU Readline library. This application interactively allows users
to manipulate files and their modes. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/errno.h>

#include <readline/readline.h>
#include <readline/history.h>

extern char *getwd ();
extern char *xmalloc ();

/* The names of functions that actually do the manipulation. */
int com_list (), com_view (), com_rename (), com_stat (), com_pwd ();
int com_delete (), com_help (), com_cd (), com_quit ();

/* A structure which contains information on the commands this program
can understand. */

typedef struct {
char *name; /* User printable name of the function. */
Function *func; /* Function to call to do the job. */
char *doc; /* Documentation for this function. */

} COMMAND;

COMMAND commands[] = {
{ "cd", com_cd, "Change to directory DIR" },
{ "delete", com_delete, "Delete FILE" },
{ "help", com_help, "Display this text" },
{ "?", com_help, "Synonym for `help'" },
{ "list", com_list, "List files in DIR" },
{ "ls", com_list, "Synonym for `list'" },
{ "pwd", com_pwd, "Print the current working directory" },
{ "quit", com_quit, "Quit using Fileman" },
{ "rename", com_rename, "Rename FILE to NEWNAME" },
{ "stat", com_stat, "Print out statistics on FILE" },
{ "view", com_view, "View the contents of FILE" },
{ (char *)NULL, (Function *)NULL, (char *)NULL }

};

/* Forward declarations. */
char *stripwhite ();
COMMAND *find_command ();

34 GNU Readline Library

/* The name of this program, as taken from argv[0]. */
char *progname;

/* When non-zero, this global means the user is done using this program. */
int done;

char *
dupstr (s)

int s;
{
char *r;

r = xmalloc (strlen (s) + 1);
strcpy (r, s);
return (r);

}

main (argc, argv)
int argc;
char **argv;

{
char *line, *s;

progname = argv[0];

initialize_readline (); /* Bind our completer. */

/* Loop reading and executing lines until the user quits. */
for (; done == 0;)
{
line = readline ("FileMan: ");

if (!line)
break;

/* Remove leading and trailing whitespace from the line.
Then, if there is anything left, add it to the history list
and execute it. */

s = stripwhite (line);

if (*s)
{
add_history (s);
execute_line (s);

}

free (line);
}

Chapter 2: Programming with GNU Readline 35

exit (0);
}

/* Execute a command line. */
int
execute_line (line)

char *line;
{
register int i;
COMMAND *command;
char *word;

/* Isolate the command word. */
i = 0;
while (line[i] && whitespace (line[i]))
i++;

word = line + i;

while (line[i] && !whitespace (line[i]))
i++;

if (line[i])
line[i++] = '\0';

command = find_command (word);

if (!command)
{
fprintf (stderr, "%s: No such command for FileMan.\n", word);
return (-1);

}

/* Get argument to command, if any. */
while (whitespace (line[i]))

i++;

word = line + i;

/* Call the function. */
return ((*(command->func)) (word));

}

/* Look up NAME as the name of a command, and return a pointer to that
command. Return a NULL pointer if NAME isn't a command name. */

COMMAND *
find_command (name)

char *name;
{

36 GNU Readline Library

register int i;

for (i = 0; commands[i].name; i++)
if (strcmp (name, commands[i].name) == 0)
return (&commands[i]);

return ((COMMAND *)NULL);
}

/* Strip whitespace from the start and end of STRING. Return a pointer
into STRING. */

char *
stripwhite (string)

char *string;
{
register char *s, *t;

for (s = string; whitespace (*s); s++)
;

if (*s == 0)
return (s);

t = s + strlen (s) - 1;
while (t > s && whitespace (*t))
t--;

*++t = '\0';

return s;
}

/* ** */
/* */
/* Interface to Readline Completion */
/* */
/* ** */

char *command_generator ();
char **fileman_completion ();

/* Tell the GNU Readline library how to complete. We want to try to complete
on command names if this is the first word in the line, or on filenames
if not. */

initialize_readline ()
{
/* Allow conditional parsing of the ~/.inputrc file. */
rl_readline_name = "FileMan";

Chapter 2: Programming with GNU Readline 37

/* Tell the completer that we want a crack first. */
rl_attempted_completion_function = (CPPFunction *)fileman_completion;

}

/* Attempt to complete on the contents of TEXT. START and END bound the
region of rl_line_buffer that contains the word to complete. TEXT is
the word to complete. We can use the entire contents of rl_line_buffer
in case we want to do some simple parsing. Return the array of matches,
or NULL if there aren't any. */

char **
fileman_completion (text, start, end)

char *text;
int start, end;

{
char **matches;

matches = (char **)NULL;

/* If this word is at the start of the line, then it is a command
to complete. Otherwise it is the name of a file in the current
directory. */

if (start == 0)
matches = completion_matches (text, command_generator);

return (matches);
}

/* Generator function for command completion. STATE lets us know whether
to start from scratch; without any state (i.e. STATE == 0), then we
start at the top of the list. */

char *
command_generator (text, state)

char *text;
int state;

{
static int list_index, len;
char *name;

/* If this is a new word to complete, initialize now. This includes
saving the length of TEXT for efficiency, and initializing the index
variable to 0. */

if (!state)
{
list_index = 0;
len = strlen (text);

}

/* Return the next name which partially matches from the command list. */

38 GNU Readline Library

while (name = commands[list_index].name)
{
list_index++;

if (strncmp (name, text, len) == 0)
return (dupstr(name));

}

/* If no names matched, then return NULL. */
return ((char *)NULL);

}

/* ** */
/* */
/* FileMan Commands */
/* */
/* ** */

/* String to pass to system (). This is for the LIST, VIEW and RENAME
commands. */

static char syscom[1024];

/* List the file(s) named in arg. */
com_list (arg)

char *arg;
{
if (!arg)

arg = "";

sprintf (syscom, "ls -FClg %s", arg);
return (system (syscom));

}

com_view (arg)
char *arg;

{
if (!valid_argument ("view", arg))

return 1;

sprintf (syscom, "more %s", arg);
return (system (syscom));

}

com_rename (arg)
char *arg;

{
too_dangerous ("rename");
return (1);

Chapter 2: Programming with GNU Readline 39

}

com_stat (arg)
char *arg;

{
struct stat finfo;

if (!valid_argument ("stat", arg))
return (1);

if (stat (arg, &finfo) == -1)
{
perror (arg);
return (1);

}

printf ("Statistics for `%s':\n", arg);

printf ("%s has %d link%s, and is %d byte%s in length.\n", arg,
finfo.st_nlink,
(finfo.st_nlink == 1) ? "" : "s",
finfo.st_size,
(finfo.st_size == 1) ? "" : "s");

printf ("Inode Last Change at: %s", ctime (&finfo.st_ctime));
printf (" Last access at: %s", ctime (&finfo.st_atime));
printf (" Last modified at: %s", ctime (&finfo.st_mtime));
return (0);

}

com_delete (arg)
char *arg;

{
too_dangerous ("delete");
return (1);

}

/* Print out help for ARG, or for all of the commands if ARG is
not present. */

com_help (arg)
char *arg;

{
register int i;
int printed = 0;

for (i = 0; commands[i].name; i++)
{
if (!*arg || (strcmp (arg, commands[i].name) == 0))

{

40 GNU Readline Library

printf ("%s\t\t%s.\n", commands[i].name, commands[i].doc);
printed++;

}
}

if (!printed)
{
printf ("No commands match `%s'. Possibilties are:\n", arg);

for (i = 0; commands[i].name; i++)
{
/* Print in six columns. */
if (printed == 6)

{
printed = 0;
printf ("\n");

}

printf ("%s\t", commands[i].name);
printed++;

}

if (printed)
printf ("\n");

}
return (0);

}

/* Change to the directory ARG. */
com_cd (arg)

char *arg;
{
if (chdir (arg) == -1)
{
perror (arg);
return 1;

}

com_pwd ("");
return (0);

}

/* Print out the current working directory. */
com_pwd (ignore)

char *ignore;
{
char dir[1024], *s;

Chapter 2: Programming with GNU Readline 41

s = getwd (dir);
if (s == 0)

{
printf ("Error getting pwd: %s\n", dir);
return 1;

}

printf ("Current directory is %s\n", dir);
return 0;

}

/* The user wishes to quit using this program. Just set DONE non-zero. */
com_quit (arg)

char *arg;
{
done = 1;
return (0);

}

/* Function which tells you that you can't do this. */
too_dangerous (caller)

char *caller;
{
fprintf (stderr,

"%s: Too dangerous for me to distribute. Write it yourself.\n",
caller);

}

/* Return non-zero if ARG is a valid argument for CALLER, else print
an error message and return zero. */

int
valid_argument (caller, arg)

char *caller, *arg;
{
if (!arg || !*arg)

{
fprintf (stderr, "%s: Argument required.\n", caller);
return (0);

}

return (1);
}

42 GNU Readline Library

Concept Index 43

Concept Index

(Index is nonexistent)

44 GNU Readline Library

Function and Variable Index 45

Function and Variable Index

(Index is nonexistent)

46 GNU Readline Library

i

Table of Contents

1 Command Line Editing . 1

1.1 Introduction to Line Editing . 1
1.2 Readline Interaction . 1

1.2.1 Readline Bare Essentials . 1
1.2.2 Readline Movement Commands 2
1.2.3 Readline Killing Commands . 2
1.2.4 Readline Arguments . 3
1.2.5 Searching for Commands in the History 3

1.3 Readline Init File . 3
1.3.1 Readline Init File Syntax . 4
1.3.2 Conditional Init Constructs . 7
1.3.3 Sample Init File . 8

1.4 Bindable Readline Commands . 11
1.4.1 Commands For Moving . 11
1.4.2 Commands For Manipulating The History 11
1.4.3 Commands For Changing Text 12
1.4.4 Killing And Yanking . 13
1.4.5 Specifying Numeric Arguments 14
1.4.6 Letting Readline Type For You 14
1.4.7 Keyboard Macros . 15
1.4.8 Some Miscellaneous Commands 15

1.5 Readline vi Mode . 16

2 Programming with GNU Readline 17

2.1 Basic Behavior . 17
2.2 Custom Functions . 18

2.2.1 The Function Type . 18
2.2.2 Writing a New Function . 19

2.3 Readline Variables . 19
2.4 Readline Convenience Functions . 21

2.4.1 Naming a Function . 21
2.4.2 Selecting a Keymap . 21
2.4.3 Binding Keys . 22
2.4.4 Associating Function Names and Bindings 23
2.4.5 Allowing Undoing . 23
2.4.6 Redisplay . 24
2.4.7 Modifying Text . 25
2.4.8 Utility Functions . 25
2.4.9 Alternate Interface . 26
2.4.10 An Example . 27

2.5 Custom Completers . 28
2.5.1 How Completing Works . 28

ii GNU Readline Library

2.5.2 Completion Functions . 29
2.5.3 Completion Variables . 30
2.5.4 A Short Completion Example 32

Concept Index . 43

Function and Variable Index 45

