
GNU History Library

Edition 2.1, for History Library Version 2.1.
March 1996

Brian Fox, Free Software Foundation
Chet Ramey, Case Western Reserve University



This document describes the GNU History library, a programming tool that provides a
consistent user interface for recalling lines of previously typed input.

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Copyright c 1989, 1991 Free Software Foundation, Inc.



Chapter 1: Using History Interactively 1

1 Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user's
standpoint. It should be considered a user's guide. For information on using the GNU
History Library in your own programs, see Chapter 2 [Programming with GNU History],
page 3.

1.1 Interactive History Expansion

The History library provides a history expansion feature that is similar to the history
expansion provided by csh. This section describes the syntax used to manipulate the history
information.

History expansions introduce words from the history list into the input stream, making
it easy to repeat commands, insert the arguments to a previous command into the current
input line, or �x errors in previous commands quickly.

History expansion takes place in two parts. The �rst is to determine which line from
the previous history should be used during substitution. The second is to select portions of
that line for inclusion into the current one. The line selected from the previous history is
called the event, and the portions of that line that are acted upon are called words. Various
modi�ers are available to manipulate the selected words. The line is broken into words in
the same fashion that Bash does, so that several English (or Unix) words surrounded by
quotes are considered as one word. History expansions are introduced by the appearance
of the history expansion character, which is `!' by default.

1.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a space, tab, the end of
the line, h=i or h(i.

!n Refer to command line n.

!-n Refer to the command n lines back.

!! Refer to the previous command. This is a synonym for `!-1'.

!string Refer to the most recent command starting with string.

!?string[?]

Refer to the most recent command containing string. The trailing `?' may be
omitted if the string is followed immediately by a newline.

^string1^string2^

Quick Substitution. Repeat the last command, replacing string1 with string2.
Equivalent to !!:s/string1/string2/.

!# The entire command line typed so far.



2 GNU History Library

1.1.2 Word Designators

Word designators are used to select desired words from the event. A `:' separates the
event speci�cation from the word designator. It can be omitted if the word designator
begins with a `^', `$', `*', `-', or `%'. Words are numbered from the beginning of the line,
with the �rst word being denoted by 0 (zero). Words are inserted into the current line
separated by single spaces.

0 (zero) The 0th word. For many applications, this is the command word.

n The nth word.

^ The �rst argument; that is, word 1.

$ The last argument.

% The word matched by the most recent `?string?' search.

x-y A range of words; `-y ' abbreviates `0-y '.

* All of the words, except the 0th. This is a synonym for `1-$'. It is not an error
to use `*' if there is just one word in the event; the empty string is returned in
that case.

x* Abbreviates `x-$'

x- Abbreviates `x-$' like `x*', but omits the last word.

If a word designator is supplied without an event speci�cation, the previous command
is used as the event.

1.1.3 Modi�ers

After the optional word designator, you can add a sequence of one or more of the following
modi�ers, each preceded by a `:'.

h Remove a trailing pathname component, leaving only the head.

t Remove all leading pathname components, leaving the tail.

r Remove a trailing su�x of the form `.su�x', leaving the basename.

e Remove all but the trailing su�x.

p Print the new command but do not execute it.

s/old/new/

Substitute new for the �rst occurrence of old in the event line. Any delimiter
may be used in place of `/'. The delimiter may be quoted in old and new with a
single backslash. If `&' appears in new, it is replaced by old. A single backslash
will quote the `&'. The �nal delimiter is optional if it is the last character on
the input line.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. Used in conjunction
with `s', as in gs/old/new/, or with `&'.



Chapter 2: Programming with GNU History 3

2 Programming with GNU History

This chapter describes how to interface programs that you write with the GNU History
Library. It should be considered a technical guide. For information on the interactive use
of GNU History, see Chapter 1 [Using History Interactively], page 1.

2.1 Introduction to History

Many programs read input from the user a line at a time. The GNU History library
is able to keep track of those lines, associate arbitrary data with each line, and utilize
information from previous lines in composing new ones.

The programmer using the History library has available functions for remembering lines
on a history list, associating arbitrary data with a line, removing lines from the list, searching
through the list for a line containing an arbitrary text string, and referencing any line in
the list directly. In addition, a history expansion function is available which provides for a
consistent user interface across di�erent programs.

The user using programs written with the History library has the bene�t of a consistent
user interface with a set of well-known commands for manipulating the text of previous
lines and using that text in new commands. The basic history manipulation commands are
similar to the history substitution provided by csh.

If the programmer desires, he can use the Readline library, which includes some history
manipulation by default, and has the added advantage of command line editing.

2.2 History Storage

The history list is an array of history entries. A history entry is declared as follows:

typedef struct _hist_entry {
char *line;
char *data;

} HIST_ENTRY;

The history list itself might therefore be declared as

HIST_ENTRY **the_history_list;

The state of the History library is encapsulated into a single structure:

/* A structure used to pass the current state of the history stuff around. */
typedef struct _hist_state {
HIST_ENTRY **entries; /* Pointer to the entries themselves. */
int offset; /* The location pointer within this array. */
int length; /* Number of elements within this array. */
int size; /* Number of slots allocated to this array. */
int flags;

} HISTORY_STATE;

If the ags member includes HS_STIFLED, the history has been stied.



4 GNU History Library

2.3 History Functions

This section describes the calling sequence for the various functions present in GNU
History.

2.3.1 Initializing History and State Management

This section describes functions used to initialize and manage the state of the History
library when you want to use the history functions in your program.

Functionvoid using history ()
Begin a session in which the history functions might be used. This initializes
the interactive variables.

FunctionHISTORY_STATE * history get history state ()
Return a structure describing the current state of the input history.

Functionvoid history set history state (HISTORY_STATE *state)
Set the state of the history list according to state.

2.3.2 History List Management

These functions manage individual entries on the history list, or set parameters managing
the list itself.

Functionvoid add history (char *string)
Place string at the end of the history list. The associated data �eld (if any) is
set to NULL.

FunctionHIST_ENTRY * remove history (int which)
Remove history entry at o�set which from the history. The removed element is
returned so you can free the line, data, and containing structure.

FunctionHIST_ENTRY * replace history entry (int which, char

*line, char *data)
Make the history entry at o�set which have line and data. This returns the old
entry so you can dispose of the data. In the case of an invalid which, a NULL

pointer is returned.

Functionvoid clear history ()
Clear the history list by deleting all the entries.

Functionvoid stie history (int max)
Stie the history list, remembering only the last max entries.

Functionint unstie history ()
Stop stiing the history. This returns the previous amount the history was
stied. The value is positive if the history was stied, negative if it wasn't.

Functionint history is stied ()
Returns non-zero if the history is stied, zero if it is not.



Chapter 2: Programming with GNU History 5

2.3.3 Information About the History List

These functions return information about the entire history list or individual list entries.

FunctionHIST_ENTRY ** history list ()
Return a NULL terminated array of HIST_ENTRY which is the current input
history. Element 0 of this list is the beginning of time. If there is no history,
return NULL.

Functionint where history ()
Returns the o�set of the current history element.

FunctionHIST_ENTRY * current history ()
Return the history entry at the current position, as determined by where_

history (). If there is no entry there, return a NULL pointer.

FunctionHIST_ENTRY * history get (int offset)
Return the history entry at position o�set, starting from history_base. If
there is no entry there, or if o�set is greater than the history length, return a
NULL pointer.

Functionint history total bytes ()
Return the number of bytes that the primary history entries are using. This
function returns the sum of the lengths of all the lines in the history.

2.3.4 Moving Around the History List

These functions allow the current index into the history list to be set or changed.

Functionint history set pos (int pos)
Set the position in the history list to pos, an absolute index into the list.

FunctionHIST_ENTRY * previous history ()
Back up the current history o�set to the previous history entry, and return a
pointer to that entry. If there is no previous entry, return a NULL pointer.

FunctionHIST_ENTRY * next history ()
Move the current history o�set forward to the next history entry, and return
the a pointer to that entry. If there is no next entry, return a NULL pointer.

2.3.5 Searching the History List

These functions allow searching of the history list for entries containing a speci�c string.
Searching may be performed both forward and backward from the current history position.
The search may be anchored, meaning that the string must match at the beginning of the
history entry.

Functionint history search (char *string, int direction)
Search the history for string, starting at the current history o�set. If direction
< 0, then the search is through previous entries, else through subsequent. If



6 GNU History Library

string is found, then the current history index is set to that history entry, and
the value returned is the o�set in the line of the entry where string was found.
Otherwise, nothing is changed, and a -1 is returned.

Functionint history search pre�x (char *string, int direction)
Search the history for string, starting at the current history o�set. The search
is anchored: matching lines must begin with string. If direction < 0, then the
search is through previous entries, else through subsequent. If string is found,
then the current history index is set to that entry, and the return value is 0.
Otherwise, nothing is changed, and a -1 is returned.

Functionint history search pos (char *string, int direction, int

pos)
Search for string in the history list, starting at pos, an absolute index into the
list. If direction is negative, the search proceeds backward from pos, otherwise
forward. Returns the absolute index of the history element where string was
found, or -1 otherwise.

2.3.6 Managing the History File

The History library can read the history from and write it to a �le. This section docu-
ments the functions for managing a history �le.

Functionint read history (char *filename)
Add the contents of �lename to the history list, a line at a time. If �lename is
NULL, then read from `~/.history'. Returns 0 if successful, or errno if not.

Functionint read history range (char *filename, int from, int to)
Read a range of lines from �lename, adding them to the history list. Start
reading at line from and end at to. If from is zero, start at the beginning. If to
is less than from, then read until the end of the �le. If �lename is NULL, then
read from `~/.history'. Returns 0 if successful, or errno if not.

Functionint write history (char *filename)
Write the current history to �lename, overwriting �lename if necessary. If
�lename is NULL, then write the history list to `~/.history'. Values returned
are as in read_history ().

Functionint append history (int nelements, char *filename)
Append the last nelements of the history list to �lename.

Functionint history truncate �le (char *filename, int nlines)
Truncate the history �le �lename, leaving only the last nlines lines.

2.3.7 History Expansion

These functions implement csh-like history expansion.



Chapter 2: Programming with GNU History 7

Functionint history expand (char *string, char **output)
Expand string, placing the result into output, a pointer to a string (see Sec-
tion 1.1 [History Interaction], page 1). Returns:

0 If no expansions took place (or, if the only change in the text was
the de-slashifying of the history expansion character);

1 if expansions did take place;

-1 if there was an error in expansion;

2 if the returned line should only be displayed, but not executed, as
with the :p modi�er (see Section 1.1.3 [Modi�ers], page 2).

If an error ocurred in expansion, then output contains a descriptive error mes-
sage.

Functionchar * history arg extract (int first, int last, char

*string)
Extract a string segment consisting of the �rst through last arguments present
in string. Arguments are broken up as in Bash.

Functionchar * get history event (char *string, int *cindex, int

qchar)
Returns the text of the history event beginning at string + *cindex. *cindex is
modi�ed to point to after the event speci�er. At function entry, cindex points
to the index into string where the history event speci�cation begins. qchar is
a character that is allowed to end the event speci�cation in addition to the
\normal" terminating characters.

Functionchar ** history tokenize (char *string)
Return an array of tokens parsed out of string, much as the shell might. The
tokens are split on white space and on the characters ()<>;&|$, and shell
quoting conventions are obeyed.

2.4 History Variables

This section describes the externally visible variables exported by the GNU History
Library.

Variableint history base
The logical o�set of the �rst entry in the history list.

Variableint history length
The number of entries currently stored in the history list.

Variableint max input history
The maximum number of history entries. This must be changed using stifle_
history ().

Variablechar history expansion char
The character that starts a history event. The default is `!'.



8 GNU History Library

Variablechar history subst char
The character that invokes word substitution if found at the start of a line. The
default is `^'.

Variablechar history comment char
During tokenization, if this character is seen as the �rst character of a word,
then it and all subsequent characters up to a newline are ignored, suppressing
history expansion for the remainder of the line. This is disabled by default.

Variablechar * history no expand chars
The list of characters which inhibit history expansion if found immediately
following history expansion char. The default is whitespace and `='.

Variablechar * history search delimiter chars
The list of additional characters which can delimit a history search string, in
addition to whitespace, `:' and `?' in the case of a substring search. The default
is empty.

Variableint history quotes inhibit expansion
If non-zero, single-quoted words are not scanned for the history expansion char-
acter. The default value is 0.

2.5 History Programming Example

The following program demonstrates simple use of the GNU History Library.

main ()
{
char line[1024], *t;
int len, done = 0;

line[0] = 0;

using_history ();
while (!done)
{
printf ("history$ ");
fflush (stdout);
t = fgets (line, sizeof (line) - 1, stdin);
if (t && *t)

{
len = strlen (t);
if (t[len - 1] == '\n')

t[len - 1] = '\0';
}

if (!t)
strcpy (line, "quit");



Chapter 2: Programming with GNU History 9

if (line[0])
{
char *expansion;
int result;

result = history_expand (line, &expansion);
if (result)

fprintf (stderr, "%s\n", expansion);

if (result < 0 || result == 2)
{
free (expansion);
continue;

}

add_history (expansion);
strncpy (line, expansion, sizeof (line) - 1);
free (expansion);

}

if (strcmp (line, "quit") == 0)
done = 1;

else if (strcmp (line, "save") == 0)
write_history ("history_file");

else if (strcmp (line, "read") == 0)
read_history ("history_file");

else if (strcmp (line, "list") == 0)
{
register HIST_ENTRY **the_list;
register int i;

the_list = history_list ();
if (the_list)

for (i = 0; the_list[i]; i++)
printf ("%d: %s\n", i + history_base, the_list[i]->line);

}
else if (strncmp (line, "delete", 6) == 0)
{
int which;
if ((sscanf (line + 6, "%d", &which)) == 1)

{
HIST_ENTRY *entry = remove_history (which);
if (!entry)

fprintf (stderr, "No such entry %d\n", which);
else

{
free (entry->line);
free (entry);



10 GNU History Library

}
}

else
{
fprintf (stderr, "non-numeric arg given to `delete'\n");

}
}

}
}



Appendix A: Concept Index 11

Appendix A Concept Index

(Index is nonexistent)



12 GNU History Library



Appendix B: Function and Variable Index 13

Appendix B Function and Variable Index

(Index is nonexistent)



14 GNU History Library



i

Table of Contents

1 Using History Interactively . . . . . . . . . . . . . . . . . 1

1.1 Interactive History Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Event Designators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Word Designators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Modi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Programming with GNU History . . . . . . . . . . . 3

2.1 Introduction to History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 History Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 History Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Initializing History and State Management . . . . . . . 4
2.3.2 History List Management . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.3 Information About the History List . . . . . . . . . . . . . . 5
2.3.4 Moving Around the History List . . . . . . . . . . . . . . . . . 5
2.3.5 Searching the History List . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.6 Managing the History File . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.7 History Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 History Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 History Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Appendix A Concept Index . . . . . . . . . . . . . . . . . 11

Appendix B Function and Variable Index . . . . 13



ii GNU History Library


