
Debugging with GDB

The gnu Source-Level Debugger

Edition 4.12, for GDB version 4.16
January 1994

Richard M. Stallman and Cygnus Support

(Send bugs and comments on GDB to bug-gdb@prep.ai.mit.edu.)

Debugging with GDB

TEXinfo 2.122

doc@cygnus.com

Copyright c 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Published by the Free Software Foundation

59 Temple Place - Suite 330,

Boston, MA 02111-1307 USA

Printed copies are available for $20 each.

ISBN 1-882114-11-6

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided also that the entire resulting derived work is distributed under the

terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions.

Summary of GDB 1

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on \inside" another

program while it executes|or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch

bugs in the act:

� Start your program, specifying anything that might a�ect its behavior.

� Make your program stop on speci�ed conditions.

� Examine what has happened, when your program has stopped.

� Change things in your program, so you can experiment with correcting the e�ects of one bug

and go on to learn about another.

You can use GDB to debug programs written in C or C++. For more information, see Sec-

tion 9.4.1 [C and C++], page 91.

Support for Modula-2 and Chill is partial. For information on Modula-2, see Section 9.4.2

[Modula-2], page 96. There is no further documentation on Chill yet.

Debugging Pascal programs which use sets, subranges, �le variables, or nested functions does

not currently work. GDB does not support entering expressions, printing values, or similar features

using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it does not yet support

entering expressions, printing values, or similar features using Fortran syntax. It may be necessary

to refer to some variables with a trailing underscore.

Free software

GDB is free software, protected by the gnu General Public License (GPL). The GPL gives you

the freedom to copy or adapt a licensed program|but every person getting a copy also gets with

it the freedom to modify that copy (which means that they must get access to the source code),

and the freedom to distribute further copies. Typical software companies use copyrights to limit

your freedoms; the Free Software Foundation uses the GPL to preserve these freedoms.

2 Debugging with GDB

Fundamentally, the General Public License is a license which says that you have these freedoms

and that you cannot take these freedoms away from anyone else.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other gnu programs. Many

others have contributed to its development. This section attempts to credit major contributors.

One of the virtues of free software is that everyone is free to contribute to it; with regret, we cannot

actually acknowledge everyone here. The �le `ChangeLog' in the GDB distribution approximates a

blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends (or
enemies, to be evenhanded) have been unfairly omitted from this list, we would like to
add your names!

So that they may not regard their long labor as thankless, we particularly thank those who

shepherded GDB through major releases: Stan Shebs (release 4.14), Fred Fish (releases 4.13, 4.12,

4.11, 4.10, and 4.9), Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4), John

Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy

Smith (releases 3.2, 3.1, and 3.0). As major maintainer of GDB for some period, each contributed

signi�cantly to the structure, stability, and capabilities of the entire debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and Richard

Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the gnu C++ support in GDB, with signi�cant

additional contributions from Per Bothner. James Clark wrote the gnu C++ demangler. Early

work on C++ was by Peter TerMaat (who also did much general update work leading to release

3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-�le formats; BFD was a

joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support for

encapsulated COFF.

Summary of GDB 3

Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner,

Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete contributed

Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki

Hasei contributed Sony/News OS 3 support. David Johnson contributed Encore Umax support.

Jyrki Kuoppala contributed Altos 3068 support. Je� Law contributed HP PA and SOM support.

Keith Packard contributed NS32K support. Doug Rabson contributed Acorn Risc Machine sup-

port. Bob Rusk contributed Harris Nighthawk CX-UX support. Chris Smith contributed Convex

support (and Fortran debugging). Jonathan Stone contributed Pyramid support. Michael Tie-

mann contributed SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould

Powernode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry

support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several machine

instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote debug-

ging. Intel Corporation and Wind River Systems contributed remote debugging modules for their

products.

Brian Fox is the author of the readline libraries providing command-line editing and command

history.

Andrew Beers of SUNY Bu�alo wrote the language-switching code, the Modula-2 support, and

contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the command-

completion support to cover C++ overloaded symbols.

Hitachi America, Ltd. sponsored the support for Hitachi microprocessors.

Kung Hsu, Je� Law, and Rick Sladkey added support for hardware watchpoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable bug �xes

and cleanups throughout GDB.

4 Debugging with GDB

Chapter 1: A Sample GDB Session 5

1 A SampleGDBSession

You can use this manual at your leisure to read all about GDB. However, a handful of commands

are enough to get started using the debugger. This chapter illustrates those commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick out

from the surrounding output.

One of the preliminary versions of gnu m4 (a generic macro processor) exhibits the following

bug: sometimes, when we change its quote strings from the default, the commands used to capture

one macro de�nition within another stop working. In the following short m4 session, we de�ne a

macro foo which expands to 0000; we then use the m4 built-in defn to de�ne bar as the same

thing. However, when we change the open quote string to <QUOTE> and the close quote string to

<UNQUOTE>, the same procedure fails to de�ne a new synonym baz:

$ cd gnu/m4
$./m4
de�ne(foo,0000)

foo
0000
de�ne(bar,defn(`foo'))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

de�ne(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
C-d
m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.

$ gdb m4
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.

There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB 4.16, Copyright 1995 Free Software Foundation, Inc...
(gdb)

6 Debugging with GDB

GDB reads only enough symbol data to know where to �nd the rest when needed; as a result, the

�rst prompt comes up very quickly. We now tell GDB to use a narrower display width than usual,

so that examples �t in this manual.

(gdb) set width 70

We need to see how the m4 built-in changequote works. Having looked at the source, we know

the relevant subroutine is m4_changequote, so we set a breakpoint there with the GDB break

command.

(gdb) break m4 changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the run command, we start m4 running under GDB control; as long as control does not reach

the m4_changequote subroutine, the program runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
de�ne(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying infor-

mation about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879

879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s (step)

instead of next. step goes to the next line to be executed in any subroutine, so it steps into

set_quotes.

Chapter 1: A Sample GDB Session 7

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is called a

stack frame display. It shows a summary of the stack. We can use the backtrace command (which

can also be spelled bt), to see where we are in the stack as a whole: the backtrace command

displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)

at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)

at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The �rst two times, we can use `s'; the

next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s
0x3b5c 532 if (rquote != def_rquote)
(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
def_lquote : xstrdup(lq);
(gdb) n
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
: xstrdup(rq);

(gdb) n
538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables lquote and rquote to see

if they are in fact the new left and right quotes we speci�ed. We use the command p (print) to

see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"
(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

8 Debugging with GDB

lquote and rquote are indeed the new left and right quotes. To look at some context, we can

display ten lines of source surrounding the current line with the l (list) command.

(gdb) l
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
: xstrdup (lq);

536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
: xstrdup (rq);

537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 }
541
542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the values

of those variables.

(gdb) n
539 len_rquote = strlen(lquote);
(gdb) n
540 }
(gdb) p len lquote
$3 = 9
(gdb) p len rquote
$4 = 7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the lengths

of lquote and rquote respectively. We can set them to better values using the p command, since

it can print the value of any expression|and that expression can include subroutine calls and

assignments.

(gdb) p len lquote=strlen(lquote)
$5 = 7
(gdb) p len rquote=strlen(rquote)
$6 = 9

Is that enough to �x the problem of using the new quotes with the m4 built-in defn? We can allow

m4 to continue executing with the c (continue) command, and then try the example that caused

trouble initially:

(gdb) c

Chapter 1: A Sample GDB Session 9

Continuing.

de�ne(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

Success! The new quotes now work just as well as the default ones. The problem seems to have

been just the two typos de�ning the wrong lengths. We allow m4 exit by giving it an EOF as input:

C-d
Program exited normally.

The message `Program exited normally.' is from GDB; it indicates m4 has �nished executing. We

can end our GDB session with the GDB quit command.

(gdb) quit

10 Debugging with GDB

Chapter 2: Getting In and Out of GDB 11

2 Getting In andOut of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:

� type `gdb' to start GDB.

� type quit or C-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the

terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your debugging

environment at the outset.

The command-line options described here are designed to cover a variety of situations; in some

environments, some of these options may e�ectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable program:

gdb program

You can also start with both an executable program and a core �le speci�ed:

gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a running

process:

gdb program 1234

would attach GDB to process 1234 (unless you also have a �le named `1234'; GDB does check for

a core �le �rst).

12 Debugging with GDB

Taking advantage of the second command-line argument requires a fairly complete operating

system; when you use GDB as a remote debugger attached to a bare board, there may not be any

notion of \process", and there is often no way to get a core dump.

You can run gdb without printing the front material, which describes GDB's non-warranty, by

specifying -silent:

gdb -silent

You can further control how GDB starts up by using command-line options. GDB itself can remind

you of the options available.

Type

gdb -help

to display all available options and briey describe their use (`gdb -h' is a shorter equivalent).

All options and command line arguments you give are processed in sequential order. The order

makes a di�erence when the `-x' option is used.

2.1.1 Choosing �les

When GDB starts, it reads any arguments other than options as specifying an executable �le

and core �le (or process ID). This is the same as if the arguments were speci�ed by the `-se' and

`-c' options respectively. (GDB reads the �rst argument that does not have an associated option

ag as equivalent to the `-se' option followed by that argument; and the second argument that

does not have an associated option ag, if any, as equivalent to the `-c' option followed by that

argument.)

Many options have both long and short forms; both are shown in the following list. GDB also

recognizes the long forms if you truncate them, so long as enough of the option is present to be

unambiguous. (If you prefer, you can ag option arguments with `--' rather than `-', though we

illustrate the more usual convention.)

-symbols �le

-s �le Read symbol table from �le �le.

Chapter 2: Getting In and Out of GDB 13

-exec �le

-e �le Use �le �le as the executable �le to execute when appropriate, and for examining pure

data in conjunction with a core dump.

-se �le Read symbol table from �le �le and use it as the executable �le.

-core �le

-c �le Use �le �le as a core dump to examine.

-c number

Connect to process ID number, as with the attach command (unless there is a �le in

core-dump format named number, in which case `-c' speci�es that �le as a core dump

to read).

-command �le

-x �le Execute GDB commands from �le �le. See Section 15.3 [Command �les], page 153.

-directory directory

-d directory

Add directory to the path to search for source �les.

-m

-mapped Warning: this option depends on operating system facilities that are not supported on

all systems.

If memory-mapped �les are available on your system through the mmap system call, you

can use this option to have GDB write the symbols from your program into a reusable

�le in the current directory. If the program you are debugging is called `/tmp/fred',

the mapped symbol �le is `./fred.syms'. Future GDB debugging sessions notice the

presence of this �le, and can quickly map in symbol information from it, rather than

reading the symbol table from the executable program.

The `.syms' �le is speci�c to the host machine where GDB is run. It holds an exact

image of the internal GDB symbol table. It cannot be shared across multiple host

platforms.

-r

-readnow Read each symbol �le's entire symbol table immediately, rather than the default, which

is to read it incrementally as it is needed. This makes startup slower, but makes future

operations faster.

The -mapped and -readnow options are typically combined in order to build a `.syms' �le that

contains complete symbol information. (See Section 12.1 [Commands to specify �les], page 113, for

information

a `.syms' �le for future use is:

14 Debugging with GDB

gdb -batch -nx -mapped -readnow programname

2.1.2 Choosing modes

You can run GDB in various alternative modes|for example, in batch mode or quiet mode.

-nx

-n Do not execute commands from any initialization �les (normally called `.gdbinit').

Normally, the commands in these �les are executed after all the command options and

arguments have been processed. See Section 15.3 [Command �les], page 153.

-quiet

-q \Quiet". Do not print the introductory and copyright messages. These messages are

also suppressed in batch mode.

-batch Run in batch mode. Exit with status 0 after processing all the command �les speci�ed

with `-x' (and all commands from initialization �les, if not inhibited with `-n'). Exit

with nonzero status if an error occurs in executing the GDB commands in the command

�les.

Batch mode may be useful for running GDB as a �lter, for example to download and

run a program on another computer; in order to make this more useful, the message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control terminates)

is not issued when running in batch mode.

-cd directory

Run GDB using directory as its working directory, instead of the current directory.

-fullname

-f gnu Emacs sets this option when it runs GDB as a subprocess. It tells GDB to output

the full �le name and line number in a standard, recognizable fashion each time a stack

frame is displayed (which includes each time your program stops). This recognizable

format looks like two `\032' characters, followed by the �le name, line number and

character position separated by colons, and a newline. The Emacs-to-GDB interface

program uses the two `\032' characters as a signal to display the source code for the

frame.

-b bps Set the line speed (baud rate or bits per second) of any serial interface used by GDB

for remote debugging.

-tty device

Run using device for your program's standard input and output.

Chapter 2: Getting In and Out of GDB 15

2.2 Quitting GDB

quit To exit GDB, use the quit command (abbreviated q), or type an end-of-�le character

(usually C-d). If you do not supply expression, GDB will terminate normally; otherwise

it will terminate using the result of expression as the error code.

An interrupt (often C-c) does not exit from GDB, but rather terminates the action of any GDB

command that is in progress and returns to GDB command level. It is safe to type the interrupt

character at any time because GDB does not allow it to take e�ect until a time when it is safe.

If you have been using GDB to control an attached process or device, you can release it with

the detach command (see Section 4.7 [Debugging an already-running process], page 28).

2.3 Shell commands

If you need to execute occasional shell commands during your debugging session, there is no

need to leave or suspend GDB; you can just use the shell command.

shell command string

Invoke a the standard shell to execute command string. If it exists, the environment

variable SHELL determines which shell to run. Otherwise GDB uses /bin/sh.

The utility make is often needed in development environments. You do not have to use the

shell command for this purpose in GDB:

make make-args

Execute the make program with the speci�ed arguments. This is equivalent to `shell

make make-args'.

16 Debugging with GDB

Chapter 3: GDB Commands 17

3 GDBCommands

You can abbreviate a GDB command to the �rst few letters of the command name, if that

abbreviation is unambiguous; and you can repeat certain GDB commands by typing just RET. You

can also use the TAB key to get GDB to �ll out the rest of a word in a command (or to show you

the alternatives available, if there is more than one possibility).

3.1 Command syntax

A GDB command is a single line of input. There is no limit on how long it can be. It starts

with a command name, which is followed by arguments whose meaning depends on the command

name. For example, the command step accepts an argument which is the number of times to step,

as in `step 5'. You can also use the step command with no arguments. Some command names do

not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous. Other

possible command abbreviations are listed in the documentation for individual commands. In some

cases, even ambiguous abbreviations are allowed; for example, s is specially de�ned as equivalent to

step even though there are other commands whose names start with s. You can test abbreviations

by using them as arguments to the help command.

A blank line as input to GDB (typing just RET) means to repeat the previous command. Certain

commands (for example, run) will not repeat this way; these are commands whose unintentional

repetition might cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with RET, construct new arguments rather

than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in a way similar to the

common utility more (see Section 14.4 [Screen size], page 147). Since it is easy to press one RET

too many in this situation, GDB disables command repetition after any command that generates

this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful mainly in

command �les (see Section 15.3 [Command �les], page 153).

18 Debugging with GDB

3.2 Command completion

GDB can �ll in the rest of a word in a command for you, if there is only one possibility; it can

also show you what the valid possibilities are for the next word in a command, at any time. This

works for GDB commands, GDB subcommands, and the names of symbols in your program.

Press the TAB key whenever you want GDB to �ll out the rest of a word. If there is only one

possibility, GDB �lls in the word, and waits for you to �nish the command (or press RET to enter

it). For example, if you type

(gdb) info bre TAB

GDB �lls in the rest of the word `breakpoints', since that is the only info subcommand beginning

with `bre':

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints command, or backspace and

enter something else, if `breakpoints' does not look like the command you expected. (If you were

sure you wanted info breakpoints in the �rst place, you might as well just type RET immediately

after `info bre', to exploit command abbreviations rather than command completion).

If there is more than one possibility for the next word when you press TAB, GDB sounds a bell.

You can either supply more characters and try again, or just press TAB a second time; GDB displays

all the possible completions for that word. For example, you might want to set a breakpoint on

a subroutine whose name begins with `make_', but when you type b make_TAB GDB just sounds

the bell. Typing TAB again displays all the function names in your program that begin with those

characters, for example:

(gdb) b make_ TAB
GDB sounds bell; press TAB again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, GDB copies your partial input (`b make_' in the example)

so you can �nish the command.

Chapter 3: GDB Commands 19

If you just want to see the list of alternatives in the �rst place, you can press M-? rather than

pressing TAB twice. M-? means META ?. You can type this either by holding down a key designated

as the META shift on your keyboard (if there is one) while typing ?, or as ESC followed by ?.

Sometimes the string you need, while logically a \word", may contain parentheses or other

characters that GDB normally excludes from its notion of a word. To permit word completion to

work in this situation, you may enclose words in ' (single quote marks) in GDB commands.

The most likely situation where you might need this is in typing the name of a C++ function. This

is because C++ allows function overloading (multiple de�nitions of the same function, distinguished

by argument type). For example, when you want to set a breakpoint you may need to distinguish

whether you mean the version of name that takes an int parameter, name(int), or the version that

takes a float parameter, name(float). To use the word-completion facilities in this situation,

type a single quote ' at the beginning of the function name. This alerts GDB that it may need to

consider more information than usual when you press TAB or M-? to request word completion:

(gdb) b 'bubble(M-?
bubble(double,double) bubble(int,int)
(gdb) b 'bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this happens,

GDB inserts the quote for you (while completing as much as it can) if you do not type the quote

in the �rst place:

(gdb) b bub TAB
GDB alters your input line to the following, and rings a bell:

(gdb) b 'bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started typing

the argument list when you ask for completion on an overloaded symbol.

3.3 Getting help

You can always ask GDB itself for information on its commands, using the command help.

help

h You can use help (abbreviated h) with no arguments to display a short list of named

classes of commands:

20 Debugging with GDB

(gdb) help
List of classes of commands:

running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class Using one of the general help classes as an argument, you can get a list of the individual

commands in that class. For example, here is the help display for the class status:

(gdb) help status
Status inquiries.

List of commands:

show -- Generic command for showing things set
with "set"
info -- Generic command for printing status

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command

With a command name as help argument, GDB displays a short paragraph on how to

use that command.

complete args

The complete args command lists all the possible completions for the beginning of a

command. Use args to specify the beginning of the command you want completed. For

example:

complete i

results in:

info
inspect

Chapter 3: GDB Commands 21

ignore

This is intended for use by gnu Emacs.

In addition to help, you can use the GDB commands info and show to inquire about the state

of your program, or the state of GDB itself. Each command supports many topics of inquiry; this

manual introduces each of them in the appropriate context. The listings under info and under

show in the Index point to all the sub-commands. See [Index], page 185.

info This command (abbreviated i) is for describing the state of your program. For example,

you can list the arguments given to your program with info args, list the registers

currently in use with info registers, or list the breakpoints you have set with info

breakpoints. You can get a complete list of the info sub-commands with help info.

set You can assign the result of an expresson to an environment variable with set. For

example, you can set the GDB prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of GDB itself. You can change

most of the things you can show, by using the related command set; for example, you

can control what number system is used for displays with set radix, or simply inquire

which is currently in use with show radix.

To display all the settable parameters and their current values, you can use show with

no arguments; you may also use info set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are exceptional in lacking corre-

sponding set commands:

show version

Show what version of GDB is running. You should include this information in GDB

bug-reports. If multiple versions of GDB are in use at your site, you may occasion-

ally want to determine which version of GDB you are running; as GDB evolves, new

commands are introduced, and old ones may wither away. The version number is also

announced when you start GDB.

show copying

Display information about permission for copying GDB.

show warranty

Display the gnu \NO WARRANTY" statement.

22 Debugging with GDB

Chapter 4: Running Programs Under GDB 23

4 Running ProgramsUnderGDB

When you run a program under GDB, you must �rst generate debugging information when you

compile it. You may start GDB with its arguments, if any, in an environment of your choice. You

may redirect your program's input and output, debug an already running process, or kill a child

process.

4.1 Compiling for debugging

In order to debug a program e�ectively, you need to generate debugging information when you

compile it. This debugging information is stored in the object �le; it describes the data type of

each variable or function and the correspondence between source line numbers and addresses in the

executable code.

To request debugging information, specify the `-g' option when you run the compiler.

Many C compilers are unable to handle the `-g' and `-O' options together. Using those compilers,

you cannot generate optimized executables containing debugging information.

GCC, the gnu C compiler, supports `-g' with or without `-O', making it possible to debug

optimized code. We recommend that you always use `-g' whenever you compile a program. You

may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled with `-g -O', remember that the optimizer is rearranging

your code; the debugger shows you what is really there. Do not be too surprised when the execution

path does not exactly match your source �le! An extreme example: if you de�ne a variable, but

never use it, GDB never sees that variable|because the compiler optimizes it out of existence.

Some things do not work as well with `-g -O' as with just `-g', particularly on machines with

instruction scheduling. If in doubt, recompile with `-g' alone, and if this �xes the problem, please

report it to us as a bug (including a test case!).

Older versions of the gnu C compiler permitted a variant option `-gg' for debugging information.

GDB no longer supports this format; if your gnu C compiler has this option, do not use it.

24 Debugging with GDB

4.2 Starting your program

run

r Use the run command to start your program under GDB. You must �rst specify the

program name (except on VxWorks) with an argument to GDB (see Chapter 2 [Getting

In and Out of GDB], page 11), or by using the file or exec-file command (see

Section 12.1 [Commands to specify �les], page 113).

If you are running your program in an execution environment that supports processes, run

creates an inferior process and makes that process run your program. (In environments without

processes, run jumps to the start of your program.)

The execution of a program is a�ected by certain information it receives from its superior. GDB

provides ways to specify this information, which you must do before starting your program. (You

can change it after starting your program, but such changes only a�ect your program the next time

you start it.) This information may be divided into four categories:

The arguments.

Specify the arguments to give your program as the arguments of the run command. If

a shell is available on your target, the shell is used to pass the arguments, so that you

may use normal conventions (such as wildcard expansion or variable substitution) in

describing the arguments. In Unix systems, you can control which shell is used with

the SHELL environment variable. See Section 4.3 [Your program's arguments], page 25.

The environment.

Your program normally inherits its environment from GDB, but you can use the GDB

commands set environment and unset environment to change parts of the environ-

ment that a�ect your program. See Section 4.4 [Your program's environment], page 25.

The working directory.

Your program inherits its working directory from GDB. You can set the GDB working

directory with the cd command in GDB. See Section 4.5 [Your program's working

directory], page 27.

The standard input and output.

Your program normally uses the same device for standard input and standard output

as GDB is using. You can redirect input and output in the run command line, or you

Chapter 4: Running Programs Under GDB 25

can use the tty command to set a di�erent device for your program. See Section 4.6

[Your program's input and output], page 27.

Warning: While input and output redirection work, you cannot use pipes to pass the

output of the program you are debugging to another program; if you attempt this,

GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See Chapter 5

[Stopping and continuing], page 35, for discussion of how to arrange for your program to stop.

Once your program has stopped, you may call functions in your program, using the print or call

commands. See Chapter 8 [Examining Data], page 65.

If the modi�cation time of your symbol �le has changed since the last time GDB read its symbols,

GDB discards its symbol table, and reads it again. When it does this, GDB tries to retain your

current breakpoints.

4.3 Your program's arguments

The arguments to your program can be speci�ed by the arguments of the run command. They

are passed to a shell, which expands wildcard characters and performs redirection of I/O, and

thence to your program. Your SHELL environment variable (if it exists) speci�es what shell GDB

uses. If you do not de�ne SHELL, GDB uses /bin/sh.

run with no arguments uses the same arguments used by the previous run, or those set by the

set args command.

set args Specify the arguments to be used the next time your program is run. If set args has

no arguments, run executes your program with no arguments. Once you have run your

program with arguments, using set args before the next run is the only way to run it

again without arguments.

show args Show the arguments to give your program when it is started.

4.4 Your program's environment

The environment consists of a set of environment variables and their values. Environment

variables conventionally record such things as your user name, your home directory, your terminal

26 Debugging with GDB

type, and your search path for programs to run. Usually you set up environment variables with the

shell and they are inherited by all the other programs you run. When debugging, it can be useful

to try running your program with a modi�ed environment without having to start GDB over again.

path directory

Add directory to the front of the PATH environment variable (the search path for exe-

cutables), for both GDB and your program. You may specify several directory names,

separated by `:' or whitespace. If directory is already in the path, it is moved to the

front, so it is searched sooner.

You can use the string `$cwd' to refer to whatever is the current working directory at

the time GDB searches the path. If you use `.' instead, it refers to the directory where

you executed the path command. GDB replaces `.' in the directory argument (with

the current path) before adding directory to the search path.

show paths

Display the list of search paths for executables (the PATH environment variable).

show environment [varname]

Print the value of environment variable varname to be given to your program when it

starts. If you do not supply varname, print the names and values of all environment

variables to be given to your program. You can abbreviate environment as env.

set environment varname [=] value

Set environment variable varname to value. The value changes for your program only,

not for GDB itself. value may be any string; the values of environment variables are just

strings, and any interpretation is supplied by your program itself. The value parameter

is optional; if it is eliminated, the variable is set to a null value.

For example, this command:

set env USER = foo

tells a Unix program, when subsequently run, that its user is named `foo'. (The spaces

around `=' are used for clarity here; they are not actually required.)

unset environment varname

Remove variable varname from the environment to be passed to your program. This

is di�erent from `set env varname ='; unset environment removes the variable from

the environment, rather than assigning it an empty value.

Warning: GDB runs your program using the shell indicated by your SHELL environment variable

if it exists (or /bin/sh if not). If your SHELL variable names a shell that runs an initialization �le|

such as `.cshrc' for C-shell, or `.bashrc' for BASH|any variables you set in that �le a�ect your

program. You may wish to move setting of environment variables to �les that are only run when

you sign on, such as `.login' or `.profile'.

Chapter 4: Running Programs Under GDB 27

4.5 Your program's working directory

Each time you start your program with run, it inherits its working directory from the current

working directory of GDB. The GDB working directory is initially whatever it inherited from its

parent process (typically the shell), but you can specify a new working directory in GDB with the

cd command.

The GDB working directory also serves as a default for the commands that specify �les for GDB

to operate on. See Section 12.1 [Commands to specify �les], page 113.

cd directory

Set the GDB working directory to directory.

pwd Print the GDB working directory.

4.6 Your program's input and output

By default, the program you run under GDB does input and output to the same terminal that

GDB uses. GDB switches the terminal to its own terminal modes to interact with you, but it

records the terminal modes your program was using and switches back to them when you continue

running your program.

info terminal

Displays information recorded by GDB about the terminal modes your program is

using.

You can redirect your program's input and/or output using shell redirection with the run com-

mand. For example,

run > outfile

starts your program, diverting its output to the �le `outfile'.

Another way to specify where your program should do input and output is with the tty com-

mand. This command accepts a �le name as argument, and causes this �le to be the default for

future run commands. It also resets the controlling terminal for the child process, for future run

commands. For example,

28 Debugging with GDB

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output on

the terminal `/dev/ttyb' and have that as their controlling terminal.

An explicit redirection in run overrides the tty command's e�ect on the input/output device,

but not its e�ect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input for your

program is a�ected. The input for GDB still comes from your terminal.

4.7 Debugging an already-running process

attach process-id

This command attaches to a running process|one that was started outside GDB.

(info files shows your active targets.) The command takes as argument a process

ID. The usual way to �nd out the process-id of a Unix process is with the ps utility,

or with the `jobs -l' shell command.

attach does not repeat if you press RET a second time after executing the command.

To use attach, your program must be running in an environment which supports processes; for

example, attach does not work for programs on bare-board targets that lack an operating system.

You must also have permission to send the process a signal.

When using attach, you should �rst use the file command to specify the program running in

the process and load its symbol table. See Section 12.1 [Commands to Specify Files], page 113.

The �rst thing GDB does after arranging to debug the speci�ed process is to stop it. You can

examine and modify an attached process with all the GDB commands that are ordinarily available

when you start processes with run. You can insert breakpoints; you can step and continue; you

can modify storage. If you would rather the process continue running, you may use the continue

command after attaching GDB to the process.

detach When you have �nished debugging the attached process, you can use the detach com-

mand to release it from GDB control. Detaching the process continues its execution.

After the detach command, that process and GDB become completely independent

Chapter 4: Running Programs Under GDB 29

once more, and you are ready to attach another process or start one with run. detach

does not repeat if you press RET again after executing the command.

If you exit GDB or use the run command while you have an attached process, you kill that

process. By default, GDB asks for con�rmation if you try to do either of these things; you can

control whether or not you need to con�rm by using the set confirm command (see Section 14.6

[Optional warnings and messages], page 149).

4.8 Killing the child process

kill Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process. GDB

ignores any core dump �le while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have break-

points set on it inside GDB. You can use the kill command in this situation to permit running

your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program, since on

many systems it is impossible to modify an executable �le while it is running in a process. In this

case, when you next type run, GDB notices that the �le has changed, and reads the symbol table

again (while trying to preserve your current breakpoint settings).

4.9 Additional process information

Some operating systems provide a facility called `/proc' that can be used to examine the image

of a running process using �le-system subroutines. If GDB is con�gured for an operating system

with this facility, the command info proc is available to report on several kinds of information

about the process running your program. info proc works only on SVR4 systems that support

procfs.

info proc Summarize available information about the process.

30 Debugging with GDB

info proc mappings

Report on the address ranges accessible in the program, with information on whether

your program may read, write, or execute each range.

info proc times

Starting time, user CPU time, and system CPU time for your program and its children.

info proc id

Report on the process IDs related to your program: its own process ID, the ID of its

parent, the process group ID, and the session ID.

info proc status

General information on the state of the process. If the process is stopped, this report

includes the reason for stopping, and any signal received.

info proc all

Show all the above information about the process.

4.10 Debugging programs with multiple threads

In some operating systems, a single program may have more than one thread of execution. The

precise semantics of threads di�er from one operating system to another, but in general the threads

of a single program are akin to multiple processes|except that they share one address space (that

is, they can all examine and modify the same variables). On the other hand, each thread has its

own registers and execution stack, and perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:

� automatic noti�cation of new threads

� `thread threadno', a command to switch among threads

� `info threads', a command to inquire about existing threads

� `thread apply [threadno] [all] args', a command to apply a command to a list of threads

� thread-speci�c breakpoints

Warning: These facilities are not yet available on every GDB con�guration where
the operating system supports threads. If your GDB does not support threads, these
commands have no e�ect. For example, a system without thread support shows no
output from `info threads', and always rejects the thread command, like this:

(gdb) info threads
(gdb) thread 1

Chapter 4: Running Programs Under GDB 31

Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your program runs|

but whenever GDB takes control, one thread in particular is always the focus of debugging. This

thread is called the current thread. Debugging commands show program information from the

perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system's identi�-

cation for the thread with a message in the form `[New systag]'. systag is a thread identi�er whose

form varies depending on the particular system. For example, on LynxOS, you might see

[New process 35 thread 27]

when GDB notices a new thread. In contrast, on an SGI system, the systag is simply something

like `process 368', with no further quali�er.

For debugging purposes, GDB associates its own thread number|always a single integer|with

each thread in your program.

info threads

Display a summary of all threads currently in your program. GDB displays for each

thread (in this order):

1. the thread number assigned by GDB

2. the target system's thread identi�er (systag)

3. the current stack frame summary for that thread

An asterisk `*' to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

thread threadno

Make thread number threadno the current thread. The command argument threadno

is the internal GDB thread number, as shown in the �rst �eld of the `info threads'

32 Debugging with GDB

display. GDB responds by displaying the system identi�er of the thread you selected,

and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the `[New . . .]' message, the form of the text after `Switching to' depends

on your system's conventions for identifying threads.

thread apply [threadno] [all] args

The thread apply command allows you to apply a command to one or more threads.

Specify the numbers of the threads that you want a�ected with the command argument

threadno. threadno is the internal GDB thread number, as shown in the �rst �eld of

the `info threads' display. To apply a command to all threads, use thread apply all

args.

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically selects

the thread where that breakpoint or signal happened. GDB alerts you to the context switch with

a message of the form `[Switching to systag]' to identify the thread.

See Section 5.4 [Stopping and starting multi-thread programs], page 52, for more information

about how GDB behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting watchpoints], page 39, for information about watchpoints in programs

with multiple threads.

4.11 Debugging programs with multiple processes

GDB has no special support for debugging programs which create additional processes using

the fork function. When a program forks, GDB will continue to debug the parent process and the

child process will run unimpeded. If you have set a breakpoint in any code which the child then

executes, the child will get a SIGTRAP signal which (unless it catches the signal) will cause it to

terminate.

However, if you want to debug the child process there is a workaround which isn't too painful.

Put a call to sleep in the code which the child process executes after the fork. It may be useful

to sleep only if a certain environment variable is set, or a certain �le exists, so that the delay need

not occur when you don't want to run GDB on the child. While the child is sleeping, use the ps

program to get its process ID. Then tell GDB (a new invocation of GDB if you are also debugging

Chapter 4: Running Programs Under GDB 33

the parent process) to attach to the child process (see Section 4.7 [Attach], page 28). From that

point on you can debug the child process just like any other process which you attached to.

34 Debugging with GDB

Chapter 5: Stopping and Continuing 35

5 Stopping andContinuing

The principal purposes of using a debugger are so that you can stop your program before it

terminates; or so that, if your program runs into trouble, you can investigate and �nd out why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a breakpoint,

or reaching a new line after a GDB command such as step. You may then examine and change

variables, set new breakpoints or remove old ones, and then continue execution. Usually, the

messages shown by GDB provide ample explanation of the status of your program|but you can

also explicitly request this information at any time.

info program

Display information about the status of your program: whether it is running or not,

what process it is, and why it stopped.

5.1 Breakpoints, watchpoints, and exceptions

A breakpoint makes your program stop whenever a certain point in the program is reached.

For each breakpoint, you can add conditions to control in �ner detail whether your program stops.

You can set breakpoints with the break command and its variants (see Section 5.1.1 [Setting

breakpoints], page 36), to specify the place where your program should stop by line number,

function name or exact address in the program. In languages with exception handling (such as gnu

C++), you can also set breakpoints where an exception is raised (see Section 5.1.3 [Breakpoints and

exceptions], page 40).

In SunOS 4.x, SVR4, and Alpha OSF/1 con�gurations, you can now set breakpoints in shared

libraries before the executable is run.

A watchpoint is a special breakpoint that stops your program when the value of an expression

changes. You must use a di�erent command to set watchpoints (see Section 5.1.2 [Setting watch-

points], page 39), but aside from that, you can manage a watchpoint like any other breakpoint:

you enable, disable, and delete both breakpoints and watchpoints using the same commands.

You can arrange to have values from your program displayed automatically whenever GDB stops

at a breakpoint. See Section 8.6 [Automatic display], page 72.

36 Debugging with GDB

GDB assigns a number to each breakpoint or watchpoint when you create it; these numbers are

successive integers starting with one. In many of the commands for controlling various features of

breakpoints you use the breakpoint number to say which breakpoint you want to change. Each

breakpoint may be enabled or disabled; if disabled, it has no e�ect on your program until you

enable it again.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger convenience vari-

able `$bpnum' records the number of the breakpoints you've set most recently; see Section 8.9

[Convenience variables], page 80, for a discussion of what you can do with convenience variables.

You have several ways to say where the breakpoint should go.

break function

Set a breakpoint at entry to function function. When using source languages that

permit overloading of symbols, such as C++, function may refer to more than one

possible place to break. See Section 5.1.8 [Breakpoint menus], page 47, for a discussion

of that situation.

break +o�set

break -o�set

Set a breakpoint some number of lines forward or back from the position at which

execution stopped in the currently selected frame.

break linenum

Set a breakpoint at line linenum in the current source �le. That �le is the last �le whose

source text was printed. This breakpoint stops your program just before it executes

any of the code on that line.

break �lename:linenum

Set a breakpoint at line linenum in source �le �lename.

break �lename:function

Set a breakpoint at entry to function function found in �le �lename. Specifying a

�le name as well as a function name is superuous except when multiple �les contain

similarly named functions.

break *address

Set a breakpoint at address address. You can use this to set breakpoints in parts of

your program which do not have debugging information or source �les.

Chapter 5: Stopping and Continuing 37

break When called without any arguments, break sets a breakpoint at the next instruction to

be executed in the selected stack frame (see Chapter 6 [Examining the Stack], page 53).

In any selected frame but the innermost, this makes your program stop as soon as

control returns to that frame. This is similar to the e�ect of a finish command

in the frame inside the selected frame|except that finish does not leave an active

breakpoint. If you use break without an argument in the innermost frame, GDB stops

the next time it reaches the current location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least one in-

struction has been executed. If it did not do this, you would be unable to proceed past

a breakpoint without �rst disabling the breakpoint. This rule applies whether or not

the breakpoint already existed when your program stopped.

break . . . if cond

Set a breakpoint with condition cond; evaluate the expression cond each time the

breakpoint is reached, and stop only if the value is nonzero|that is, if cond evaluates as

true. `. . .' stands for one of the possible arguments described above (or no argument)

specifying where to break. See Section 5.1.6 [Break conditions], page 43, for more

information on breakpoint conditions.

tbreak args

Set a breakpoint enabled only for one stop. args are the same as for the break com-

mand, and the breakpoint is set in the same way, but the breakpoint is automatically

deleted after the �rst time your program stops there. See Section 5.1.5 [Disabling

breakpoints], page 42.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break command and

the breakpoint is set in the same way, but the breakpoint requires hardware support

and some target hardware may not have this support. The main purpose of this is

EPROM/ROM code debugging, so you can set a breakpoint at an instruction without

changing the instruction. This can be used with the new trap-generation provided

by SPARClite DSU. DSU will generate traps when a program accesses some date or

instruction address that is assigned to the debug registers. However the hardware

breakpoint registers can only take two data breakpoints, and GDB will reject this

command if more than two are used. Delete or disable usused hardware breakpoints

before setting new ones. See Section 5.1.6 [Break conditions], page 43.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the same as

for the hbreak command and the breakpoint is set in the same way. However, like

the tbreak command, the breakpoint is automatically deleted after the �rst time your

program stops there. Also, like the hbreak command, the breakpoint requires hard-

38 Debugging with GDB

ware support and some target hardware may not have this support. See Section 5.1.5

[Disabling breakpoints], page 42. Also See Section 5.1.6 [Break conditions], page 43.

rbreak regex

Set breakpoints on all functions matching the regular expression regex. This command

sets an unconditional breakpoint on all matches, printing a list of all breakpoints it set.

Once these breakpoints are set, they are treated just like the breakpoints set with the

break command. You can delete them, disable them, or make them conditional the

same way as any other breakpoint.

When debugging C++ programs, rbreak is useful for setting breakpoints on overloaded

functions that are not members of any special classes.

info breakpoints [n]

info break [n]

info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not deleted, with the following

columns for each breakpoint:

Breakpoint Numbers

Type Breakpoint or watchpoint.

Disposition

Whether the breakpoint is marked to be disabled or deleted when hit.

Enabled or Disabled

Enabled breakpoints are marked with `y'. `n' marks breakpoints that are

not enabled.

Address Where the breakpoint is in your program, as a memory address

What Where the breakpoint is in the source for your program, as a �le and line

number.

If a breakpoint is conditional, info break shows the condition on the line following the

a�ected breakpoint; breakpoint commands, if any, are listed after that.

info break with a breakpoint number n as argument lists only that breakpoint. The

convenience variable $_ and the default examining-address for the x command are set to

the address of the last breakpoint listed (see Section 8.5 [Examining memory], page 70).

info break now displays a count of the number of times the breakpoint has been hit.

This is especially useful in conjunction with the ignore command. You can ignore a

large number of breakpoint hits, look at the breakpoint info to see how many times the

breakpoint was hit, and then run again, ignoring one less than that number. This will

get you quickly to the last hit of that breakpoint.

Chapter 5: Stopping and Continuing 39

GDB allows you to set any number of breakpoints at the same place in your program. There is

nothing silly or meaningless about this. When the breakpoints are conditional, this is even useful

(see Section 5.1.6 [Break conditions], page 43).

GDB itself sometimes sets breakpoints in your program for special purposes, such as proper

handling of longjmp (in C programs). These internal breakpoints are assigned negative numbers,

starting with -1; `info breakpoints' does not display them.

You can see these breakpoints with the GDB maintenance command `maint info breakpoints'.

maint info breakpoints

Using the same format as `info breakpoints', display both the breakpoints you've

set explicitly, and those GDB is using for internal purposes. Internal breakpoints are

shown with negative breakpoint numbers. The type column identi�es what kind of

breakpoint is shown:

breakpoint

Normal, explicitly set breakpoint.

watchpoint

Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly stepping through longjmp

calls.

longjmp resume

Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the GDB until command.

finish Temporary internal breakpoint used by the GDB finish command.

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes, without

having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly than other breakpoints,

but this can be well worth it to catch errors where you have no clue what part of your program is

the culprit.

40 Debugging with GDB

watch expr

Set a watchpoint for an expression. GDB will break when expr is written into by the

program and its value changes. This can be used with the new trap-generation provided

by SPARClite DSU. DSU will generate traps when a program accesses some date or

instruction address that is assigned to the debug registers. For the data addresses, DSU

facilitates the watch command. However the hardware breakpoint registers can only

take two data watchpoints, and both watchpoints must be the same kind. For example,

you can set two watchpoints with watch commands, two with rwatch commands, or

two with awatch commands, but you cannot set one watchpoint with one command and

the other with a di�erent command. {No value for \GBDN"} will reject the command

if you try to mix watchpoints. Delete or disable unused watchpoint commands before

setting new ones.

rwatch expr

Set a watchpoint that will break when watch args is read by the program. If you use

both watchpoints, both must be set with the rwatch command.

awatch expr

Set a watchpoint that will break when args is read and written into by the program.

If you use both watchpoints, both must be set with the awatch command.

info watchpoints

This command prints a list of watchpoints and breakpoints; it is the same as info

break.

Warning: in multi-thread programs, watchpoints have only limited usefulness. With
the current watchpoint implementation, GDB can only watch the value of an expression
in a single thread. If you are con�dent that the expression can only change due to the
current thread's activity (and if you are also con�dent that no other thread can become
current), then you can use watchpoints as usual. However, GDB may not notice when
a non-current thread's activity changes the expression.

5.1.3 Breakpoints and exceptions

Some languages, such as gnu C++, implement exception handling. You can use GDB to examine

what caused your program to raise an exception, and to list the exceptions your program is prepared

to handle at a given point in time.

catch exceptions

You can set breakpoints at active exception handlers by using the catch command.

exceptions is a list of names of exceptions to catch.

Chapter 5: Stopping and Continuing 41

You can use info catch to list active exception handlers. See Section 6.4 [Information about a

frame], page 56.

There are currently some limitations to exception handling in GDB:

� If you call a function interactively, GDB normally returns control to you when the function has

�nished executing. If the call raises an exception, however, the call may bypass the mechanism

that returns control to you and cause your program to simply continue running until it hits a

breakpoint, catches a signal that GDB is listening for, or exits.

� You cannot raise an exception interactively.

� You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to know exactly

where an exception is raised, it is better to stop before the exception handler is called, since that

way you can see the stack before any unwinding takes place. If you set a breakpoint in an exception

handler instead, it may not be easy to �nd out where the exception was raised.

To stop just before an exception handler is called, you need some knowledge of the imple-

mentation. In the case of gnu C++, exceptions are raised by calling a library function named

__raise_exception which has the following ANSI C interface:

/* addr is where the exception identifier is stored.
ID is the exception identifier. */

void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding takes place, set a breakpoint

on __raise_exception (see Section 5.1 [Breakpoints; watchpoints; and exceptions], page 35).

With a conditional breakpoint (see Section 5.1.6 [Break conditions], page 43) that depends on

the value of id, you can stop your program when a speci�c exception is raised. You can use multiple

conditional breakpoints to stop your program when any of a number of exceptions are raised.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint or watchpoint once it has done its job and you

no longer want your program to stop there. This is called deleting the breakpoint. A breakpoint

that has been deleted no longer exists; it is forgotten.

42 Debugging with GDB

With the clear command you can delete breakpoints according to where they are in your

program. With the delete command you can delete individual breakpoints or watchpoints by

specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores break-

points on the �rst instruction to be executed when you continue execution without changing the

execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected

stack frame (see Section 6.3 [Selecting a frame], page 55). When the innermost frame

is selected, this is a good way to delete a breakpoint where your program just stopped.

clear function

clear �lename:function

Delete any breakpoints set at entry to the function function.

clear linenum

clear �lename:linenum

Delete any breakpoints set at or within the code of the speci�ed line.

delete [breakpoints] [bnums. . .]

Delete the breakpoints or watchpoints of the numbers speci�ed as arguments. If no

argument is speci�ed, delete all breakpoints (GDB asks con�rmation, unless you have

set confirm off). You can abbreviate this command as d.

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefer to disable it. This makes the

breakpoint inoperative as if it had been deleted, but remembers the information on the breakpoint

so that you can enable it again later.

You disable and enable breakpoints and watchpoints with the enable and disable commands,

optionally specifying one or more breakpoint numbers as arguments. Use info break or info

watch to print a list of breakpoints or watchpoints if you do not know which numbers to use.

A breakpoint or watchpoint can have any of four di�erent states of enablement:

� Enabled. The breakpoint stops your program. A breakpoint set with the break command

starts out in this state.

� Disabled. The breakpoint has no e�ect on your program.

Chapter 5: Stopping and Continuing 43

� Enabled once. The breakpoint stops your program, but then becomes disabled. A breakpoint

set with the tbreak command starts out in this state.

� Enabled for deletion. The breakpoint stops your program, but immediately after it does so it

is deleted permanently.

You can use the following commands to enable or disable breakpoints and watchpoints:

disable [breakpoints] [bnums. . .]

Disable the speci�ed breakpoints|or all breakpoints, if none are listed. A disabled

breakpoint has no e�ect but is not forgotten. All options such as ignore-counts, con-

ditions and commands are remembered in case the breakpoint is enabled again later.

You may abbreviate disable as dis.

enable [breakpoints] [bnums. . .]

Enable the speci�ed breakpoints (or all de�ned breakpoints). They become e�ective

once again in stopping your program.

enable [breakpoints] once bnums. . .

Enable the speci�ed breakpoints temporarily. GDB disables any of these breakpoints

immediately after stopping your program.

enable [breakpoints] delete bnums. . .

Enable the speci�ed breakpoints to work once, then die. GDB deletes any of these

breakpoints as soon as your program stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting breakpoints], page 36),

breakpoints that you set are initially enabled; subsequently, they become disabled or enabled only

when you use one of the commands above. (The command until can set and delete a breakpoint

of its own, but it does not change the state of your other breakpoints; see Section 5.2 [Continuing

and stepping], page 47.)

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program reaches a speci�ed place. You

can also specify a condition for a breakpoint. A condition is just a Boolean expression in your

programming language (see Section 8.1 [Expressions], page 65). A breakpoint with a condition

evaluates the expression each time your program reaches it, and your program stops only if the

condition is true.

44 Debugging with GDB

This is the converse of using assertions for program validation; in that situation, you want to

stop when the assertion is violated|that is, when the condition is false. In C, if you want to

test an assertion expressed by the condition assert, you should set the condition `! assert' on the

appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint is

inspecting the value of an expression anyhow|but it might be simpler, say, to just set a watchpoint

on a variable name, and specify a condition that tests whether the new value is an interesting one.

Break conditions can have side e�ects, and may even call functions in your program. This

can be useful, for example, to activate functions that log program progress, or to use your own

print functions to format special data structures. The e�ects are completely predictable unless

there is another enabled breakpoint at the same address. (In that case, GDB might see the other

breakpoint �rst and stop your program without checking the condition of this one.) Note that

breakpoint commands are usually more convenient and exible for the purpose of performing side

e�ects when a breakpoint is reached (see Section 5.1.7 [Breakpoint command lists], page 45).

Break conditions can be speci�ed when a breakpoint is set, by using `if' in the arguments to

the break command. See Section 5.1.1 [Setting breakpoints], page 36. They can also be changed at

any time with the condition command. The watch command does not recognize the if keyword;

condition is the only way to impose a further condition on a watchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint or watchpoint number bnum.

After you set a condition, breakpoint bnum stops your program only if the value of

expression is true (nonzero, in C). When you use condition, GDB checks expression

immediately for syntactic correctness, and to determine whether symbols in it have

referents in the context of your breakpoint. GDB does not actually evaluate expression

at the time the condition command is given, however. See Section 8.1 [Expressions],

page 65.

condition bnum

Remove the condition from breakpoint number bnum. It becomes an ordinary uncon-

ditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been reached a

certain number of times. This is so useful that there is a special way to do it, using the ignore count

of the breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the

ignore count is zero, and therefore has no e�ect. But if your program reaches a breakpoint whose

ignore count is positive, then instead of stopping, it just decrements the ignore count by one and

Chapter 5: Stopping and Continuing 45

continues. As a result, if the ignore count value is n, the breakpoint does not stop the next n times

your program reaches it.

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The next count times the

breakpoint is reached, your program's execution does not stop; other than to decrement

the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a breakpoint, you

can specify an ignore count directly as an argument to continue, rather than using

ignore. See Section 5.2 [Continuing and stepping], page 47.

If a breakpoint has a positive ignore count and a condition, the condition is not checked.

Once the ignore count reaches zero, GDB resumes checking the condition.

You could achieve the e�ect of the ignore count with a condition such as `$foo-- <= 0'

using a debugger convenience variable that is decremented each time. See Section 8.9

[Convenience variables], page 80.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint) a series of commands to execute when your program

stops due to that breakpoint. For example, you might want to print the values of certain expressions,

or enable other breakpoints.

commands [bnum]

. . . command-list . . .

end Specify a list of commands for breakpoint number bnum. The commands themselves

appear on the following lines. Type a line containing just end to terminate the com-

mands.

To remove all commands from a breakpoint, type commands and follow it immediately

with end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint or watchpoint set (not

to the breakpoint most recently encountered).

Pressing RET as a means of repeating the last GDB command is disabled within a command-list.

You can use breakpoint commands to start your program up again. Simply use the continue

command, or step, or any other command that resumes execution.

46 Debugging with GDB

Any other commands in the command list, after a command that resumes execution, are ignored.

This is because any time you resume execution (even with a simple next or step), you may

encounter another breakpoint|which could have its own command list, leading to ambiguities

about which list to execute.

If the �rst command you specify in a command list is silent, the usual message about stopping

at a breakpoint is not printed. This may be desirable for breakpoints that are to print a speci�c

message and then continue. If none of the remaining commands print anything, you see no sign that

the breakpoint was reached. silent is meaningful only at the beginning of a breakpoint command

list.

The commands echo, output, and printf allow you to print precisely controlled output, and

are often useful in silent breakpoints. See Section 15.4 [Commands for controlled output], page 154.

For example, here is how you could use breakpoint commands to print the value of x at entry

to foo whenever x is positive.

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one bug so you can test for

another. Put a breakpoint just after the erroneous line of code, give it a condition to detect the

case in which something erroneous has been done, and give it commands to assign correct values

to any variables that need them. End with the continue command so that your program does not

stop, and start with the silent command so that no output is produced. Here is an example:

break 403
commands
silent
set x = y + 4
cont
end

Chapter 5: Stopping and Continuing 47

5.1.8 Breakpoint menus

Some programming languages (notably C++) permit a single function name to be de�ned several

times, for application in di�erent contexts. This is called overloading. When a function name is

overloaded, `break function' is not enough to tell GDB where you want a breakpoint. If you realize

this is a problem, you can use something like `break function(types)' to specify which particular

version of the function you want. Otherwise, GDB o�ers you a menu of numbered choices for

di�erent possible breakpoints, and waits for your selection with the prompt `>'. The �rst two

options are always `[0] cancel' and `[1] all'. Typing 1 sets a breakpoint at each de�nition of

function, and typing 0 aborts the break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the overloaded

symbol String::after. We choose three particular de�nitions of that function name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.

(gdb)

5.2 Continuing and stepping

Continuing means resuming program execution until your program completes normally. In

contrast, stepping means executing just one more \step" of your program, where \step" may mean

either one line of source code, or one machine instruction (depending on what particular command

you use). Either when continuing or when stepping, your program may stop even sooner, due to

a breakpoint or a signal. (If due to a signal, you may want to use handle, or use `signal 0' to

resume execution. See Section 5.3 [Signals], page 50.)

48 Debugging with GDB

continue [ignore-count]

c [ignore-count]

fg [ignore-count]

Resume program execution, at the address where your program last stopped; any

breakpoints set at that address are bypassed. The optional argument ignore-count

allows you to specify a further number of times to ignore a breakpoint at this location;

its e�ect is like that of ignore (see Section 5.1.6 [Break conditions], page 43).

The argument ignore-count is meaningful only when your program stopped due to a

breakpoint. At other times, the argument to continue is ignored.

The synonyms c and fg are provided purely for convenience, and have exactly the same

behavior as continue.

To resume execution at a di�erent place, you can use return (see Section 11.4 [Returning from

a function], page 109) to go back to the calling function; or jump (see Section 11.2 [Continuing at

a di�erent address], page 108) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;

watchpoints; and exceptions], page 35) at the beginning of the function or the section of your

program where a problem is believed to lie, run your program until it stops at that breakpoint, and

then step through the suspect area, examining the variables that are interesting, until you see the

problem happen.

step Continue running your program until control reaches a di�erent source line, then stop

it and return control to GDB. This command is abbreviated s.

Warning: If you use the step command while control is within a function
that was compiled without debugging information, execution proceeds until
control reaches a function that does have debugging information. Likewise,
it will not step into a function which is compiled without debugging infor-
mation. To step through functions without debugging information, use the
stepi command, described below.

The step command now only stops at the �rst instruction of a source line. This

prevents the multiple stops that used to occur in switch statements, for loops, etc.

step continues to stop if a function that has debugging information is called within

the line.

Also, the step command now only enters a subroutine if there is line number infor-

mation for the subroutine. Otherwise it acts like the next command. This avoids

problems when using cc -gl on MIPS machines. Previously, step entered subroutines

if there was any debugging information about the routine.

Chapter 5: Stopping and Continuing 49

step count

Continue running as in step, but do so count times. If a breakpoint is reached, or a

signal not related to stepping occurs before count steps, stepping stops right away.

next [count]

Continue to the next source line in the current (innermost) stack frame. This is similar

to step, but function calls that appear within the line of code are executed without

stopping. Execution stops when control reaches a di�erent line of code at the original

stack level that was executing when you gave the next command. This command is

abbreviated n.

An argument count is a repeat count, as for step.

The next command now only stops at the �rst instruction of a source line. This

prevents the multiple stops that used to occur in swtch statements, for loops, etc.

finish Continue running until just after function in the selected stack frame returns. Print

the returned value (if any).

Contrast this with the return command (see Section 11.4 [Returning from a function],

page 109).

u

until Continue running until a source line past the current line, in the current stack frame,

is reached. This command is used to avoid single stepping through a loop more than

once. It is like the next command, except that when until encounters a jump, it

automatically continues execution until the program counter is greater than the address

of the jump.

This means that when you reach the end of a loop after single stepping though it,

until makes your program continue execution until it exits the loop. In contrast, a

next command at the end of a loop simply steps back to the beginning of the loop,

which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

untilmay produce somewhat counterintuitive results if the order of machine code does

not match the order of the source lines. For example, in the following excerpt from

a debugging session, the f (frame) command shows that execution is stopped at line

206; yet when we use until, we get to line 195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution e�ciency, the compiler had generated code for

the loop closure test at the end, rather than the start, of the loop|even though the test

in a C for-loop is written before the body of the loop. The until command appeared

50 Debugging with GDB

to step back to the beginning of the loop when it advanced to this expression; however,

it has not really gone to an earlier statement|not in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and hence is

slower than until with an argument.

until location

u location Continue running your program until either the speci�ed location is reached, or the

current stack frame returns. location is any of the forms of argument acceptable to

break (see Section 5.1.1 [Setting breakpoints], page 36). This form of the command

uses breakpoints, and hence is quicker than until without an argument.

stepi

si Execute one machine instruction, then stop and return to the debugger.

It is often useful to do `display/i $pc' when stepping by machine instructions. This

makes GDB automatically display the next instruction to be executed, each time your

program stops. See Section 8.6 [Automatic display], page 72.

An argument is a repeat count, as in step.

nexti

ni Execute one machine instruction, but if it is a function call, proceed until the function

returns.

An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system de�nes

the possible kinds of signals, and gives each kind a name and a number. For example, in Unix

SIGINT is the signal a program gets when you type an interrupt (often C-c); SIGSEGV is the signal

a program gets from referencing a place in memory far away from all the areas in use; SIGALRM

occurs when the alarm clock timer goes o� (which happens only if your program has requested an

alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program. Others,

such as SIGSEGV, indicate errors; these signals are fatal (kill your program immediately) if the

program has not speci�ed in advance some other way to handle the signal. SIGINT does not

indicate an error in your program, but it is normally fatal so it can carry out the purpose of the

interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell GDB in

advance what to do for each kind of signal.

Chapter 5: Stopping and Continuing 51

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to interfere

with their role in the functioning of your program) but to stop your program immediately whenever

an error signal happens. You can change these settings with the handle command.

info signals

Print a table of all the kinds of signals and how GDB has been told to handle each one.

You can use this to see the signal numbers of all the de�ned types of signals.

info handle is the new alias for info signals.

handle signal keywords. . .

Change the way GDB handles signal signal. signal can be the number of a signal or its

name (with or without the `SIG' at the beginning). The keywords say what change to

make.

The keywords allowed by the handle command can be abbreviated. Their full names are:

nostop GDB should not stop your program when this signal happens. It may still print a

message telling you that the signal has come in.

stop GDB should stop your program when this signal happens. This implies the print

keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all. This implies the nostop

keyword as well.

pass GDB should allow your program to see this signal; your program can handle the signal,

or else it may terminate if the signal is fatal and not handled.

nopass GDB should not allow your program to see this signal.

When a signal stops your program, the signal is not visible until you continue. Your program

sees the signal then, if pass is in e�ect for the signal in question at that time. In other words, after

GDB reports a signal, you can use the handle command with pass or nopass to control whether

your program sees that signal when you continue.

You can also use the signal command to prevent your program from seeing a signal, or cause

it to see a signal it normally would not see, or to give it any signal at any time. For example, if

your program stopped due to some sort of memory reference error, you might store correct values

into the erroneous variables and continue, hoping to see more execution; but your program would

probably terminate immediately as a result of the fatal signal once it saw the signal. To prevent

this, you can continue with `signal 0'. See Section 11.3 [Giving your program a signal], page 109.

52 Debugging with GDB

5.4 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.10 [Debugging programs with multiple

threads], page 30), you can choose whether to set breakpoints on all threads, or on a particular

thread.

break linespec thread threadno

break linespec thread threadno if . . .

linespec speci�es source lines; there are several ways of writing them, but the e�ect is

always to specify some source line.

Use the quali�er `thread threadno' with a breakpoint command to specify that you

only want GDB to stop the program when a particular thread reaches this breakpoint.

threadno is one of the numeric thread identi�ers assigned by GDB, shown in the �rst

column of the `info threads' display.

If you do not specify `thread threadno' when you set a breakpoint, the breakpoint

applies to all threads of your program.

You can use the thread quali�er on conditional breakpoints as well; in this case, place

`thread threadno' before the breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop, not

just the current thread. This allows you to examine the overall state of the program, including

switching between threads, without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start executing. This is true even

when single-stepping with commands like step or next.

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling is up

to your debugging target's operating system (not controlled by GDB), other threads may execute

more than one statement while the current thread completes a single step. Moreover, in general

other threads stop in the middle of a statement, rather than at a clean statement boundary, when

the program stops.

You might even �nd your program stopped in another thread after continuing or even single-

stepping. This happens whenever some other thread runs into a breakpoint, a signal, or an exception

before the �rst thread completes whatever you requested.

Chapter 6: Examining the Stack 53

6 Examining the Stack

When your program has stopped, the �rst thing you need to know is where it stopped and how

it got there.

Each time your program performs a function call, information about the call is generated. That

information includes the location of the call in your program, the arguments of the call, and the

local variables of the function being called. The information is saved in a block of data called a

stack frame. The stack frames are allocated in a region of memory called the call stack.

When your program stops, the GDB commands for examining the stack allow you to see all of

this information.

One of the stack frames is selected by GDB and many GDB commands refer implicitly to the

selected frame. In particular, whenever you ask GDB for the value of a variable in your program,

the value is found in the selected frame. There are special GDB commands to select whichever

frame you are interested in. See Section 6.3 [Selecting a frame], page 55.

When your program stops, GDB automatically selects the currently executing frame and de-

scribes it briey, similar to the frame command (see Section 6.4 [Information about a frame],

page 56).

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short; each

frame is the data associated with one call to one function. The frame contains the arguments given

to the function, the function's local variables, and the address at which the function is executing.

When your program is started, the stack has only one frame, that of the function main. This

is called the initial frame or the outermost frame. Each time a function is called, a new frame

is made. Each time a function returns, the frame for that function invocation is eliminated. If a

function is recursive, there can be many frames for the same function. The frame for the function

in which execution is actually occurring is called the innermost frame. This is the most recently

created of all the stack frames that still exist.

Inside your program, stack frames are identi�ed by their addresses. A stack frame consists of

many bytes, each of which has its own address; each kind of computer has a convention for choosing

54 Debugging with GDB

one byte whose address serves as the address of the frame. Usually this address is kept in a register

called the frame pointer register while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost frame, one

for the frame that called it, and so on upward. These numbers do not really exist in your program;

they are assigned by GDB to give you a way of designating stack frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack frames.

(For example, the gcc option `-fomit-frame-pointer' generates functions without a frame.) This

is occasionally done with heavily used library functions to save the frame setup time. GDB has

limited facilities for dealing with these function invocations. If the innermost function invocation

has no stack frame, GDB nevertheless regards it as though it had a separate frame, which is

numbered zero as usual, allowing correct tracing of the function call chain. However, GDB has no

provision for frameless functions elsewhere in the stack.

frame args

The frame command allows you to move from one stack frame to another, and to print

the stack frame you select. args may be either the address of the frame of the stack

frame number. Without an argument, frame prints the current stack frame.

select-frame

The select-frame command allows you to move from one stack frame to another

without printing the frame. This is the silent version of frame.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per frame,

for many frames, starting with the currently executing frame (frame zero), followed by its caller

(frame one), and on up the stack.

backtrace

bt Print a backtrace of the entire stack: one line per frame for all frames in the stack.

You can stop the backtrace at any time by typing the system interrupt character,

normally C-c.

backtrace n

bt n Similar, but print only the innermost n frames.

backtrace -n

bt -n Similar, but print only the outermost n frames.

Chapter 6: Examining the Stack 55

The names where and info stack (abbreviated info s) are additional aliases for backtrace.

Each line in the backtrace shows the frame number and the function name. The program counter

value is also shown|unless you use set print address off. The backtrace also shows the source

�le name and line number, as well as the arguments to the function. The program counter value is

omitted if it is at the beginning of the code for that line number.

Here is an example of a backtrace. It was made with the command `bt 3', so it shows the

innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71

(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that your

program has stopped at the beginning of the code for line 993 of builtin.c.

6.3 Selecting a frame

Most commands for examining the stack and other data in your program work on whichever

stack frame is selected at the moment. Here are the commands for selecting a stack frame; all of

them �nish by printing a brief description of the stack frame just selected.

frame n

f n Select frame number n. Recall that frame zero is the innermost (currently executing)

frame, frame one is the frame that called the innermost one, and so on. The highest-

numbered frame is the one for main.

frame addr

f addr Select the frame at address addr. This is useful mainly if the chaining of stack frames

has been damaged by a bug, making it impossible for GDB to assign numbers properly

to all frames. In addition, this can be useful when your program has multiple stacks

and switches between them.

On the SPARC architecture, frame needs two addresses to select an arbitrary frame:

a frame pointer and a stack pointer.

56 Debugging with GDB

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer and a

program counter.

On the 29k architecture, it needs three addresses: a register stack pointer, a program

counter, and a memory stack pointer.

up n Move n frames up the stack. For positive numbers n, this advances toward the outer-

most frame, to higher frame numbers, to frames that have existed longer. n defaults

to one.

down n Move n frames down the stack. For positive numbers n, this advances toward the

innermost frame, to lower frame numbers, to frames that were created more recently.

n defaults to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame. The �rst line

shows the frame number, the function name, the arguments, and the source �le and line number

of execution in that frame. The second line shows the text of that source line.

For example:

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10

10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints ten lines centered on the

point of execution in the frame. See Section 7.1 [Printing source lines], page 59.

up-silently n

down-silently n

These two commands are variants of up and down, respectively; they di�er in that they

do their work silently, without causing display of the new frame. They are intended

primarily for use in GDB command scripts, where the output might be unnecessary

and distracting.

6.4 Information about a frame

There are several other commands to print information about the selected stack frame.

frame

Chapter 6: Examining the Stack 57

f When used without any argument, this command does not change which frame is

selected, but prints a brief description of the currently selected stack frame. It can be

abbreviated f. With an argument, this command is used to select a stack frame. See

Section 6.3 [Selecting a frame], page 55.

info frame

info f This command prints a verbose description of the selected stack frame, including:

� the address of the frame

� the address of the next frame down (called by this frame)

� the address of the next frame up (caller of this frame)

� the language in which the source code corresponding to this frame is written

� the address of the frame's arguments

� the program counter saved in it (the address of execution in the caller frame)

� which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made the

stack format fail to �t the usual conventions.

info frame addr

info f addr

Print a verbose description of the frame at address addr, without selecting that frame.

The selected frame remains unchanged by this command. This requires the same

kind of address (more than one for some architectures) that you specify in the frame

command. See Section 6.3 [Selecting a frame], page 55.

info args Print the arguments of the selected frame, each on a separate line.

info locals

Print the local variables of the selected frame, each on a separate line. These are all

variables (declared either static or automatic) accessible at the point of execution of

the selected frame.

info catch

Print a list of all the exception handlers that are active in the current stack frame at the

current point of execution. To see other exception handlers, visit the associated frame

(using the up, down, or frame commands); then type info catch. See Section 5.1.3

[Breakpoints and exceptions], page 40.

6.5 MIPS machines and the function stack

MIPS based computers use an unusual stack frame, which sometimes requires GDB to search

backward in the object code to �nd the beginning of a function.

58 Debugging with GDB

To improve response time (especially for embedded applications, where GDB may be restricted

to a slow serial line for this search) you may want to limit the size of this search, using one of these

commands:

set heuristic-fence-post limit

Restrict GDB to examining at most limit bytes in its search for the beginning of a

function. A value of 0 (the default) means there is no limit. However, except for 0, the

larger the limit the more bytes heuristic-fence-post must search and therefore the

longer it takes to run.

show heuristic-fence-post

Display the current limit.

These commands are available only when GDB is con�gured for debugging programs on MIPS

processors.

Chapter 7: Examining Source Files 59

7 Examining Source Files

GDB can print parts of your program's source, since the debugging information recorded in

the program tells GDB what source �les were used to build it. When your program stops, GDB

spontaneously prints the line where it stopped. Likewise, when you select a stack frame (see

Section 6.3 [Selecting a frame], page 55), GDB prints the line where execution in that frame has

stopped. You can print other portions of source �les by explicit command.

If you use GDB through its gnu Emacs interface, you may prefer to use Emacs facilities to view

source; see Chapter 16 [Using GDB under gnu Emacs], page 157.

7.1 Printing source lines

To print lines from a source �le, use the list command (abbreviated l). By default, ten lines

are printed. There are several ways to specify what part of the �le you want to print.

Here are the forms of the list command most commonly used:

list linenum

Print lines centered around line number linenum in the current source �le.

list function

Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a list command, this

prints lines following the last lines printed; however, if the last line printed was a

solitary line printed as part of displaying a stack frame (see Chapter 6 [Examining the

Stack], page 53), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the list command. You can

change this using set listsize:

set listsize count

Make the list command display count source lines (unless the list argument explicitly

speci�es some other number).

60 Debugging with GDB

show listsize

Display the number of lines that list prints.

Repeating a list command with RET discards the argument, so it is equivalent to typing just

list. This is more useful than listing the same lines again. An exception is made for an argument

of `-'; that argument is preserved in repetition so that each repetition moves up in the source �le.

In general, the list command expects you to supply zero, one or two linespecs. Linespecs

specify source lines; there are several ways of writing them but the e�ect is always to specify some

source line. Here is a complete description of the possible arguments for list:

list linespec

Print lines centered around the line speci�ed by linespec.

list �rst,last

Print lines from �rst to last. Both arguments are linespecs.

list ,last Print lines ending with last.

list �rst,

Print lines starting with �rst.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line|all the kinds of linespec.

number Speci�es line number of the current source �le. When a list command has two

linespecs, this refers to the same source �le as the �rst linespec.

+o�set Speci�es the line o�set lines after the last line printed. When used as the second

linespec in a list command that has two, this speci�es the line o�set lines down from

the �rst linespec.

-o�set Speci�es the line o�set lines before the last line printed.

�lename:number

Speci�es line number in the source �le �lename.

function Speci�es the line that begins the body of the function function. For example: in C,

this is the line with the open brace.

Chapter 7: Examining Source Files 61

�lename:function

Speci�es the line of the open-brace that begins the body of the function function in

the �le �lename. You only need the �le name with a function name to avoid ambiguity

when there are identically named functions in di�erent source �les.

*address Speci�es the line containing the program address address. address may be any expres-

sion.

7.2 Searching source �les

There are two commands for searching through the current source �le for a regular expression.

forward-search regexp

search regexp

The command `forward-search regexp' checks each line, starting with the one follow-

ing the last line listed, for a match for regexp. It lists the line that is found. You can

use the synonym `search regexp' or abbreviate the command name as fo.

reverse-search regexp

The command `reverse-search regexp' checks each line, starting with the one before

the last line listed and going backward, for a match for regexp. It lists the line that is

found. You can abbreviate this command as rev.

7.3 Specifying source directories

Executable programs sometimes do not record the directories of the source �les from which they

were compiled, just the names. Even when they do, the directories could be moved between the

compilation and your debugging session. GDB has a list of directories to search for source �les;

this is called the source path. Each time GDB wants a source �le, it tries all the directories in the

list, in the order they are present in the list, until it �nds a �le with the desired name. Note that

the executable search path is not used for this purpose. Neither is the current working directory,

unless it happens to be in the source path.

If GDB cannot �nd a source �le in the source path, and the object program records a directory,

GDB tries that directory too. If the source path is empty, and there is no record of the compilation

directory, GDB looks in the current directory as a last resort.

62 Debugging with GDB

Whenever you reset or rearrange the source path, GDB clears out any information it has cached

about where source �les are found and where each line is in the �le.

When you start GDB, its source path is empty. To add other directories, use the directory

command.

directory dirname . . .

dir dirname . . .

Add directory dirname to the front of the source path. Several directory names may

be given to this command, separated by `:' or whitespace. You may specify a directory

that is already in the source path; this moves it forward, so GDB searches it sooner.

You can use the string `$cdir' to refer to the compilation directory (if one is recorded),

and `$cwd' to refer to the current working directory. `$cwd' is not the same as `.'|the

former tracks the current working directory as it changes during your GDB session,

while the latter is immediately expanded to the current directory at the time you add

an entry to the source path.

directory

Reset the source path to empty again. This requires con�rmation.

show directories

Print the source path: show which directories it contains.

If your source path is cluttered with directories that are no longer of interest, GDB may some-

times cause confusion by �nding the wrong versions of source. You can correct the situation as

follows:

1. Use directory with no argument to reset the source path to empty.

2. Use directory with suitable arguments to reinstall the directories you want in the source

path. You can add all the directories in one command.

7.4 Source and machine code

You can use the command info line to map source lines to program addresses (and vice versa),

and the command disassemble to display a range of addresses as machine instructions. When

run under gnu Emacs mode, the info line command now causes the arrow to point to the line

speci�ed. Also, info line prints addresses in symbolic form as well as hex.

Chapter 7: Examining Source Files 63

info line linespec

Print the starting and ending addresses of the compiled code for source line linespec.

You can specify source lines in any of the ways understood by the list command (see

Section 7.1 [Printing source lines], page 59).

For example, we can use info line to discover the location of the object code for the �rst line

of function m4_changequote:

(gdb) info line m4_changecom
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a particular

address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting address of

the line, so that `x/i' is su�cient to begin examining the machine code (see Section 8.5 [Examining

memory], page 70). Also, this address is saved as the value of the convenience variable $_ (see

Section 8.9 [Convenience variables], page 80).

disassemble

This specialized command dumps a range of memory as machine instructions. The

default memory range is the function surrounding the program counter of the selected

frame. A single argument to this command is a program counter value; GDB dumps

the function surrounding this value. Two arguments specify a range of addresses (�rst

inclusive, second exclusive) to dump.

We can use disassemble to inspect the object code range shown in the last info line example

(the example shows SPARC machine instructions):

(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: b 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>

64 Debugging with GDB

0x6400 <builtin_init+5368>: nop
End of assembler dump.

Chapter 8: Examining Data 65

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated p),

or its synonym inspect. It evaluates and prints the value of an expression of the language your

program is written in (see Chapter 9 [Using GDB with Di�erent Languages], page 85).

print exp

print /f exp

exp is an expression (in the source language). By default the value of exp is printed in

a format appropriate to its data type; you can choose a di�erent format by specifying

`/f ', where f is a letter specifying the format; see Section 8.4 [Output formats], page 69.

print

print /f If you omit exp, GDB displays the last value again (from the value history ; see Sec-

tion 8.8 [Value history], page 79). This allows you to conveniently inspect the same

value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in memory

at a speci�ed address and prints it in a speci�ed format. See Section 8.5 [Examining memory],

page 70.

If you are interested in information about types, or about how the �elds of a struct or class are

declared, use the ptype exp command rather than print. See Chapter 10 [Examining the Symbol

Table], page 103.

8.1 Expressions

print and many other GDB commands accept an expression and compute its value. Any kind

of constant, variable or operator de�ned by the programming language you are using is valid in an

expression in GDB. This includes conditional expressions, function calls, casts and string constants.

It unfortunately does not include symbols de�ned by preprocessor #define commands.

GDB now supports array constants in expressions input by the user. The syntax is {element,

element. . .}. For example, you can now use the command print {1, 2, 3} to build up an array in

memory that is malloc'd in the target program.

66 Debugging with GDB

Because C is so widespread, most of the expressions shown in examples in this manual are in

C. See Chapter 9 [Using GDB with Di�erent Languages], page 85, for information on how to use

expressions in other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of your

programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a number into

a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

@ `@' is a binary operator for treating parts of memory as arrays. See Section 8.3 [Arti�cial

arrays], page 68, for more information.

:: `::' allows you to specify a variable in terms of the �le or function where it is de�ned.

See Section 8.2 [Program variables], page 66.

{type} addr

Refers to an object of type type stored at address addr in memory. addr may be any

expression whose value is an integer or pointer (but parentheses are required around

binary operators, just as in a cast). This construct is allowed regardless of what kind

of data is normally supposed to reside at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.3 [Selecting a

frame], page 55); they must be either:

� global (or static)

or

� visible according to the scope rules of the programming language from the point of execution

in that frame

Chapter 8: Examining Data 67

This means that in the function

foo (a)
int a;

{
bar (a);
{
int b = test ();
bar (b);

}
}

you can examine and use the variable a whenever your program is executing within the function

foo, but you can only use or examine the variable b while your program is executing inside the

block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single source �le

even if the current execution point is not in this �le. But it is possible to have more than one such

variable or function with the same name (in di�erent source �les). If that happens, referring to

that name has unpredictable e�ects. If you wish, you can specify a static variable in a particular

function or �le, using the colon-colon notation:

�le::variable
function::variable

Here �le or function is the name of the context for the static variable. In the case of �le names,

you can use quotes to make sure GDB parses the �le name as a single word|for example, to print

a global value of x de�ned in `f2.c':

(gdb) p 'f2.c'::x

This use of `::' is very rarely in conict with the very similar use of the same notation in C++.

GDB also supports use of the C++ scope resolution operator in GDB expressions.

Warning: Occasionally, a local variable may appear to have the wrong value at certain
points in a function|just after entry to a new scope, and just before exit.

You may see this problem when you are stepping by machine instructions. This is because,

on most machines, it takes more than one instruction to set up a stack frame (including local

variable de�nitions); if you are stepping by machine instructions, variables may appear to have the

68 Debugging with GDB

wrong values until the stack frame is completely built. On exit, it usually also takes more than

one machine instruction to destroy a stack frame; after you begin stepping through that group of

instructions, local variable de�nitions may be gone.

8.3 Arti�cial arrays

It is often useful to print out several successive objects of the same type in memory; a section of

an array, or an array of dynamically determined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an arti�cial array, using the

binary operator `@'. The left operand of `@' should be the �rst element of the desired array and be

an individual object. The right operand should be the desired length of the array. The result is an

array value whose elements are all of the type of the left argument. The �rst element is actually

the left argument; the second element comes from bytes of memory immediately following those

that hold the �rst element, and so on. Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of `@' must reside in memory. Array values made with `@' in this way behave just

like other arrays in terms of subscripting, and are coerced to pointers when used in expressions.

Arti�cial arrays most often appear in expressions via the value history (see Section 8.8 [Value

history], page 79), after printing one out.

Another way to create an arti�cial array is to use a cast. This re-interprets a value as if it were

an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in `(type)[])value') gdb calculates the

size to �ll the value (as `sizeof(value)/sizeof(type)':

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Chapter 8: Examining Data 69

Sometimes the arti�cial array mechanism is not quite enough; in moderately complex data

structures, the elements of interest may not actually be adjacent|for example, if you are interested

in the values of pointers in an array. One useful work-around in this situation is to use a convenience

variable (see Section 8.9 [Convenience variables], page 80) as a counter in an expression that prints

the �rst interesting value, and then repeat that expression via RET. For instance, suppose you have

an array dtab of pointers to structures, and you are interested in the values of a �eld fv in each

structure. Here is an example of what you might type:

set $i = 0
p dtab[$i++]->fv
RET
RET
. . .

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes this is not what you

want. For example, you might want to print a number in hex, or a pointer in decimal. Or you

might want to view data in memory at a certain address as a character string or as an instruction.

To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed. This is done

by starting the arguments of the print command with a slash and a format letter. The format

letters supported are:

x Regard the bits of the value as an integer, and print the integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter `t' stands for \two".1

a Print as an address, both absolute in hexadecimal and as an o�set from the

nearest preceding symbol. You can use this format used to discover where (in what

function) an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

1 `b' cannot be used because these format letters are also used with the x command, where `b'

stands for \byte"; see Section 8.5 [Examining memory], page 70.

70 Debugging with GDB

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a oating point number and print using typical oating

point syntax.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 82), type

p/x $pc

Note that no space is required before the slash; this is because command names in GDB cannot

contain a slash.

To reprint the last value in the value history with a di�erent format, you can use the print

command with just a format and no expression. For example, `p/x' reprints the last value in hex.

8.5 Examining memory

You can use the command x (for \examine") to examine memory in any of several formats,

independently of your program's data types.

x/nfu addr

x addr

x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how to

format it; addr is an expression giving the address where you want to start displaying memory. If

you use defaults for nfu, you need not type the slash `/'. Several commands set convenient defaults

for addr.

n, the repeat count

The repeat count is a decimal integer; the default is 1. It speci�es how much memory

(counting by units u) to display.

f, the display format

The display format is one of the formats used by print, `s' (null-terminated string),

or `i' (machine instruction). The default is `x' (hexadecimal) initially. The default

changes each time you use either x or print.

Chapter 8: Examining Data 71

u, the unit size

The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the next

time you use x. (For the `s' and `i' formats, the unit size is ignored and is normally

not written.)

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The expression

need not have a pointer value (though it may); it is always interpreted as an integer ad-

dress of a byte of memory. See Section 8.1 [Expressions], page 65, for more information

on expressions. The default for addr is usually just after the last address examined|

but several other commands also set the default address: info breakpoints (to the

address of the last breakpoint listed), info line (to the starting address of a line), and

print (if you use it to display a value from memory).

For example, `x/3uh 0x54320' is a request to display three halfwords (h) of memory, formatted

as unsigned decimal integers (`u'), starting at address 0x54320. `x/4xw $sp' prints the four words

(`w') of memory above the stack pointer (here, `$sp'; see Section 8.10 [Registers], page 82) in

hexadecimal (`x').

Since the letters indicating unit sizes are all distinct from the letters specifying output formats,

you do not have to remember whether unit size or format comes �rst; either order works. The

output speci�cations `4xw' and `4wx' mean exactly the same thing. (However, the count n must

come �rst; `wx4' does not work.)

Even though the unit size u is ignored for the formats `s' and `i', you might still want to use a

count n; for example, `3i' speci�es that you want to see three machine instructions, including any

operands. The command disassemble gives an alternative way of inspecting machine instructions;

see Section 7.4 [Source and machine code], page 62.

All the defaults for the arguments to x are designed to make it easy to continue scanning

memory with minimal speci�cations each time you use x. For example, after you have inspected

three machine instructions with `x/3i addr', you can inspect the next seven with just `x/7'. If you

use RET to repeat the x command, the repeat count n is used again; the other arguments default

as for successive uses of x.

72 Debugging with GDB

The addresses and contents printed by the x command are not saved in the value history because

there is often too much of them and they would get in the way. Instead, GDB makes these values

available for subsequent use in expressions as values of the convenience variables $_ and $__. After

an x command, the last address examined is available for use in expressions in the convenience

variable $_. The contents of that address, as examined, are available in the convenience variable

$__.

If the x command has a repeat count, the address and contents saved are from the last memory

unit printed; this is not the same as the last address printed if several units were printed on the

last line of output.

8.6 Automatic display

If you �nd that you want to print the value of an expression frequently (to see how it changes),

you might want to add it to the automatic display list so that GDB prints its value each time your

program stops. Each expression added to the list is given a number to identify it; to remove an

expression from the list, you specify that number. The automatic display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values. As with displays you request

manually using x or print, you can specify the output format you prefer; in fact, display decides

whether to use print or x depending on how elaborate your format speci�cation is|it uses x if you

specify a unit size, or one of the two formats (`i' and `s') that are only supported by x; otherwise

it uses print.

display exp

Add the expression exp to the list of expressions to display each time your program

stops. See Section 8.1 [Expressions], page 65.

display does not repeat if you press RET again after using it.

display/fmt exp

For fmt specifying only a display format and not a size or count, add the expression

exp to the auto-display list but arrange to display it each time in the speci�ed format

fmt. See Section 8.4 [Output formats], page 69.

Chapter 8: Examining Data 73

display/fmt addr

For fmt `i' or `s', or including a unit-size or a number of units, add the expression addr

as a memory address to be examined each time your program stops. Examining means

in e�ect doing `x/fmt addr'. See Section 8.5 [Examining memory], page 70.

For example, `display/i $pc' can be helpful, to see the machine instruction about to be exe-

cuted each time execution stops (`$pc' is a common name for the program counter; see Section 8.10

[Registers], page 82).

undisplay dnums. . .

delete display dnums. . .

Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press RET after using it. (Otherwise you would just

get the error `No display number . . .'.)

disable display dnums. . .

Disable the display of item numbers dnums. A disabled display item is not printed

automatically, but is not forgotten. It may be enabled again later.

enable display dnums. . .

Enable display of item numbers dnums. It becomes e�ective once again in auto display

of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when your

program stops.

info display

Print the list of expressions previously set up to display automatically, each one with

its item number, but without showing the values. This includes disabled expressions,

which are marked as such. It also includes expressions which would not be displayed

right now because they refer to automatic variables not currently available.

If a display expression refers to local variables, then it does not make sense outside the lexical

context for which it was set up. Such an expression is disabled when execution enters a context

where one of its variables is not de�ned. For example, if you give the command display last_

char while inside a function with an argument last_char, GDB displays this argument while

your program continues to stop inside that function. When it stops elsewhere|where there is

no variable last_char|the display is disabled automatically. The next time your program stops

where last_char is meaningful, you can enable the display expression once again.

74 Debugging with GDB

8.7 Print settings

GDB provides the following ways to control how arrays, structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address

set print address on

GDB prints memory addresses showing the location of stack traces, structure values,

pointer values, breakpoints, and so forth, even when it also displays the contents of

those addresses. The default is on. For example, this is what a stack frame display

looks like with set print address on:

(gdb) f

#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530

530 if (lquote != def_lquote)

set print address off

Do not print addresses when displaying their contents. For example, this is the same

stack frame displayed with set print address off:

(gdb) set print addr off

(gdb) f

#0 set_quotes (lq="<<", rq=">>") at input.c:530

530 if (lquote != def_lquote)

You can use `set print address off' to eliminate all machine dependent displays from

the GDB interface. For example, with print address off, you should get the same

text for backtraces on all machines|whether or not they involve pointer arguments.

show print address

Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus an

o�set. If that symbol does not uniquely identify the address (for example, it is a name whose scope

is a single source �le), you may need to clarify. One way to do this is with info line, for example

`info line *0x4537'. Alternately, you can set GDB to print the source �le and line number when

it prints a symbolic address:

set print symbol-filename on

Tell GDB to print the source �le name and line number of a symbol in the symbolic

form of an address.

Chapter 8: Examining Data 75

set print symbol-filename off

Do not print source �le name and line number of a symbol. This is the default.

show print symbol-filename

Show whether or not GDB will print the source �le name and line number of a symbol

in the symbolic form of an address.

Another situation where it is helpful to show symbol �lenames and line numbers is when disas-

sembling code; GDB shows you the line number and source �le that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is reasonably

close to the closest earlier symbol:

set print max-symbolic-offset max-o�set

Tell GDB to only display the symbolic form of an address if the o�set between the

closest earlier symbol and the address is less than max-o�set. The default is 0, which

tells GDB to always print the symbolic form of an address if any symbol precedes it.

show print max-symbolic-offset

Ask how large the maximum o�set is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try `set print symbol-filename

on'. Then you can determine the name and source �le location of the variable where it points,

using `p/a pointer'. This interprets the address in symbolic form. For example, here GDB shows

that a variable ptt points at another variable t, de�ned in `hi2.c':

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, `p/a' does not show the symbol
name and �lename of the referent, even with the appropriate set print options turned
on.

Other settings control how di�erent kinds of objects are printed:

set print array

set print array on

Pretty print arrays. This format is more convenient to read, but uses more space. The

default is o�.

76 Debugging with GDB

set print array off

Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for displaying arrays.

set print elements number-of-elements

Set a limit on how many elements of an array GDB will print. If GDB is printing a

large array, it stops printing after it has printed the number of elements set by the set

print elements command. This limit also applies to the display of strings. Setting

number-of-elements to zero means that the printing is unlimited.

show print elements

Display the number of elements of a large array that GDB will print. If the number is

0, then the printing is unlimited.

set print null-stop

Cause GDB to stop printing the characters of an array when the �rst NULL is en-

countered. This is useful when large arrays actually contain only short strings.

set print pretty on

Cause GDB to print structures in an indented format with one member per line, like

this:

$1 = {

next = 0x0,

flags = {

sweet = 1,

sour = 1

},

meat = 0x54 "Pork"

}

set print pretty off

Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \

meat = 0x54 "Pork"}

This is the default format.

show print pretty

Show which format GDB is using to print structures.

set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, GDB displays any eight-bit

characters (in strings or character values) using the notation \nnn. This setting is best

if you are working in English (ascii) and you use the high-order bit of characters as a

marker or \meta" bit.

Chapter 8: Examining Data 77

set print sevenbit-strings off

Print full eight-bit characters. This allows the use of more international character sets,

and is the default.

show print sevenbit-strings

Show whether or not GDB is printing only seven-bit characters.

set print union on

Tell GDB to print unions which are contained in structures. This is the default setting.

set print union off

Tell GDB not to print unions which are contained in structures.

show print union

Ask GDB whether or not it will print unions which are contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_forms;

struct thing {
Species it;
union {

Tree_forms tree;
Bug_forms bug;

} form;
};

struct thing foo = {Tree, {Acorn}};

with set print union on in e�ect `p foo' would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in e�ect it would print

$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on

Print C++ names in their source form rather than in the encoded (\mangled") form

passed to the assembler and linker for type-safe linkage. The default is `on'.

show print demangle

Show whether C++ names are printed in mangled or demangled form.

78 Debugging with GDB

set print asm-demangle

set print asm-demangle on

Print C++ names in their source form rather than their mangled form, even in assembler

code printouts such as instruction disassemblies. The default is o�.

show print asm-demangle

Show whether C++ names in assembly listings are printed in mangled or demangled

form.

set demangle-style style

Choose among several encoding schemes used by di�erent compilers to represent C++

names. The choices for style are currently:

auto Allow GDB to choose a decoding style by inspecting your program.

gnu Decode based on the gnu C++ compiler (g++) encoding algorithm. This is

the default.

lucid Decode based on the Lucid C++ compiler (lcc) encoding algorithm.

arm Decode using the algorithm in the C++ Annotated Reference Manual.

Warning: this setting alone is not su�cient to allow debugging cfront-

generated executables. GDB would require further enhancement to permit

that.

foo Show the list of formats.

show demangle-style

Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on

When displaying a pointer to an object, identify the actual (derived) type of the object

rather than the declared type, using the virtual function table.

set print object off

Display only the declared type of objects, without reference to the virtual function

table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.

set print static-members

set print static-members on

Print static members when displaying a C++ object. The default is on.

set print static-members off

Do not print static members when displaying a C++ object.

Chapter 8: Examining Data 79

show print static-members

Show whether C++ static members are printed, or not.

set print vtbl

set print vtbl on

Pretty print C++ virtual function tables. The default is o�.

set print vtbl off

Do not pretty print C++ virtual function tables.

show print vtbl

Show whether C++ virtual function tables are pretty printed, or not.

8.8 Value history

Values printed by the print command are saved in the GDB value history. This allows you to

refer to them in other expressions. Values are kept until the symbol table is re-read or discarded

(for example with the file or symbol-file commands). When the symbol table changes, the value

history is discarded, since the values may contain pointers back to the types de�ned in the symbol

table.

The values printed are given history numbers by which you can refer to them. These are

successive integers starting with one. print shows you the history number assigned to a value by

printing `$num = ' before the value; here num is the history number.

To refer to any previous value, use `$' followed by the value's history number. The way print

labels its output is designed to remind you of this. Just $ refers to the most recent value in the

history, and $$ refers to the value before that. $$n refers to the nth value from the end; $$2 is the

value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see the contents

of the structure. It su�ces to type

p *$

If you have a chain of structures where the component next points to the next one, you can

print the contents of the next one with this:

p *$.next

80 Debugging with GDB

You can print successive links in the chain by repeating this command|which you can do by just

typing RET.

Note that the history records values, not expressions. If the value of x is 4 and you type these

commands:

print x
set x=5

then the value recorded in the value history by the print command remains 4 even though the

value of x has changed.

show values

Print the last ten values in the value history, with their item numbers. This is like `p

$$9' repeated ten times, except that show values does not change the history.

show values n

Print ten history values centered on history item number n.

show values +

Print ten history values just after the values last printed. If no more values are available,

show values + produces no display.

Pressing RET to repeat show values n has exactly the same e�ect as `show values +'.

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to hold on to a value and

refer to it later. These variables exist entirely within GDB; they are not part of your program, and

setting a convenience variable has no direct e�ect on further execution of your program. That is

why you can use them freely.

Convenience variables are pre�xed with `$'. Any name preceded by `$' can be used for a conve-

nience variable, unless it is one of the prede�ned machine-speci�c register names (see Section 8.10

[Registers], page 82). (Value history references, in contrast, are numbers preceded by `$'. See

Section 8.8 [Value history], page 79.)

You can save a value in a convenience variable with an assignment expression, just as you would

set a variable in your program. For example:

Chapter 8: Examining Data 81

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the �rst time creates it, but its value is void until you assign

a new value. You can alter the value with another assignment at any time.

Convenience variables have no �xed types. You can assign a convenience variable any type of

value, including structures and arrays, even if that variable already has a value of a di�erent type.

The convenience variable, when used as an expression, has the type of its current value.

show convenience

Print a list of convenience variables used so far, and their values. Abbreviated show

con.

One of the ways to use a convenience variable is as a counter to be incremented or a pointer to

be advanced. For example, to print a �eld from successive elements of an array of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to be

useful.

$_ The variable $_ is automatically set by the x command to the last address examined

(see Section 8.5 [Examining memory], page 70). Other commands which provide a

default address for x to examine also set $_ to that address; these commands include

info line and info breakpoint. The type of $_ is void * except when set by the x

command, in which case it is a pointer to the type of $__.

$__ The variable $__ is automatically set by the x command to the value found in the

last address examined. Its type is chosen to match the format in which the data was

printed.

$_exitcode

The variable $_exitcode is automatically set to the exit code when the program being

debugged terminates.

82 Debugging with GDB

8.10 Registers

You can refer to machine register contents, in expressions, as variables with names starting with

`$'. The names of registers are di�erent for each machine; use info registers to see the names

used on your machine.

info registers

Print the names and values of all registers except oating-point registers (in the selected

stack frame).

info all-registers

Print the names and values of all registers, including oating-point registers.

info registers regname . . .

Print the relativized value of each speci�ed register regname. As discussed in detail

below, register values are normally relative to the selected stack frame. regname may

be any register name valid on the machine you are using, with or without the initial

`$'.

GDB has four \standard" register names that are available (in expressions) on most machines|

whenever they do not conict with an architecture's canonical mnemonics for registers. The register

names $pc and $sp are used for the program counter register and the stack pointer. $fp is used

for a register that contains a pointer to the current stack frame, and $ps is used for a register that

contains the processor status. For example, you could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with

x/i $pc

or add four to the stack pointer2 with

set $sp += 4

2 This is a way of removing one word from the stack, on machines where stacks grow downward in

memory (most machines, nowadays). This assumes that the innermost stack frame is selected;

setting $sp is not allowed when other stack frames are selected. To pop entire frames o�

the stack, regardless of machine architecture, use return; see Section 11.4 [Returning from a

function], page 109.

Chapter 8: Examining Data 83

Whenever possible, these four standard register names are available on your machine even though

the machine has di�erent canonical mnemonics, so long as there is no conict. The info registers

command shows the canonical names. For example, on the SPARC, info registers displays the

processor status register as $psr but you can also refer to it as $ps.

GDB always considers the contents of an ordinary register as an integer when the register is

examined in this way. Some machines have special registers which can hold nothing but oating

point; these registers are considered to have oating point values. There is no way to refer to the

contents of an ordinary register as oating point value (although you can print it as a oating point

value with `print/f $regname').

Some registers have distinct \raw" and \virtual" data formats. This means that the data

format in which the register contents are saved by the operating system is not the same one that

your program normally sees. For example, the registers of the 68881 oating point coprocessor

are always saved in \extended" (raw) format, but all C programs expect to work with \double"

(virtual) format. In such cases, GDB normally works with the virtual format only (the format that

makes sense for your program), but the info registers command prints the data in both formats.

Normally, register values are relative to the selected stack frame (see Section 6.3 [Selecting a

frame], page 55). This means that you get the value that the register would contain if all stack

frames farther in were exited and their saved registers restored. In order to see the true contents

of hardware registers, you must select the innermost frame (with `frame 0').

However, GDB must deduce where registers are saved, from the machine code generated by your

compiler. If some registers are not saved, or if GDB is unable to locate the saved registers, the

selected stack frame makes no di�erence.

set rstack_high_address address

On AMD 29000 family processors, registers are saved in a separate \register stack".

There is no way for GDB to determine the extent of this stack. Normally, GDB just

assumes that the stack is \large enough". This may result in GDB referencing memory

locations that do not exist. If necessary, you can get around this problem by specifying

the ending address of the register stack with the set rstack_high_address command.

The argument should be an address, which you probably want to precede with `0x' to

specify in hexadecimal.

show rstack_high_address

Display the current limit of the register stack, on AMD 29000 family processors.

84 Debugging with GDB

8.11 Floating point hardware

Depending on the con�guration, GDB may be able to give you more information about the

status of the oating point hardware.

info float

Display hardware-dependent information about the oating point unit. The exact

contents and layout vary depending on the oating point chip. Currently, `info float'

is supported on the ARM and x86 machines.

Chapter 9: Using GDB with Di�erent Languages 85

9 Using GDBwithDi�erent Languages

Although programming languages generally have common aspects, they are rarely expressed in

the same manner. For instance, in ANSI C, dereferencing a pointer p is accomplished by *p, but

in Modula-2, it is accomplished by p^. Values can also be represented (and displayed) di�erently.

Hex numbers in C appear as `0x1ae', while in Modula-2 they appear as `1AEH'.

Language-speci�c information is built into GDB for some languages, allowing you to express

operations like the above in your program's native language, and allowing GDB to output values

in a manner consistent with the syntax of your program's native language. The language you use

to build expressions is called the working language.

9.1 Switching between source languages

There are two ways to control the working language|either have GDB set it automatically,

or select it manually yourself. You can use the set language command for either purpose. On

startup, GDB defaults to setting the language automatically. The working language is used to

determine how expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source �le that GDB knows about has its own working

language. For some object �le formats, the compiler might indicate which language a particular

source �le is in. However, most of the time GDB infers the language from the name of the �le.

The language of a source �le controls whether C++ names are demangled|this way backtrace

can show each frame appropriately for its own language. There is no way to set the language of a

source �le from within GDB.

This is most commonly a problem when you use a program, such as cfront or f2c, that generates

C but is written in another language. In that case, make the program use #line directives in its C

output; that way GDB will know the correct language of the source code of the original program,

and will display that source code, not the generated C code.

9.1.1 List of �lename extensions and languages

If a source �le name ends in one of the following extensions, then GDB infers that its language

is the one indicated.

86 Debugging with GDB

`.mod' Modula-2 source �le

`.c' C source �le

`.C'

`.cc'

`.cxx'

`.cpp'

`.cp'

`.c++' C++ source �le

`.ch'

`.c186'

`.c286' CHILL source �le.

`.s'

`.S' Assembler source �le. This actually behaves almost like C, but GDB does not skip

over function prologues when stepping.

9.1.2 Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the same way

in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command `set language

lang ', where lang is the name of a language, such as c or modula-2. For a list of the supported

languages, type `set language'.

Setting the language manually prevents GDB from updating the working language automatically.

This can lead to confusion if you try to debug a program when the working language is not the same

as the source language, when an expression is acceptable to both languages|but means di�erent

things. For instance, if the current source �le were written in C, and GDB was parsing Modula-2,

a command such as:

print a = b + c

might not have the e�ect you intended. In C, this means to add b and c and place the result in a.

The result printed would be the value of a. In Modula-2, this means to compare a to the result of

b+c, yielding a BOOLEAN value.

Chapter 9: Using GDB with Di�erent Languages 87

9.1.3 Having GDB infer the source language

To have GDB set the working language automatically, use `set language local' or `set

language auto'. GDB then infers the working language. That is, when your program stops in

a frame (usually by encountering a breakpoint), GDB sets the working language to the language

recorded for the function in that frame. If the language for a frame is unknown (that is, if the

function or block corresponding to the frame was de�ned in a source �le that does not have a

recognized extension), the current working language is not changed, and GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source lan-

guage. However, program modules and libraries written in one source language can be used by a

main program written in a di�erent source language. Using `set language auto' in this case frees

you from having to set the working language manually.

9.2 Displaying the language

The following commands help you �nd out which language is the working language, and also

what language source �les were written in.

show language

Display the current working language. This is the language you can use with commands

such as print to build and compute expressions that may involve variables in your

program.

info frame

Display the source language for this frame. This language becomes the working lan-

guage if you use an identi�er from this frame. See Section 6.4 [Information about a

frame], page 56, to identify the other information listed here.

info source

Display the source language of this source �le. See Chapter 10 [Examining the Symbol

Table], page 103, to identify the other information listed here.

9.3 Type and range checking

Warning: In this release, the GDB commands for type and range checking are included,
but they do not yet have any e�ect. This section documents the intended facilities.

88 Debugging with GDB

Some languages are designed to guard you against making seemingly common errors through a

series of compile- and run-time checks. These include checking the type of arguments to functions

and operators, and making sure mathematical overows are caught at run time. Checks such

as these help to ensure a program's correctness once it has been compiled by eliminating type

mismatches, and providing active checks for range errors when your program is running.

GDB can check for conditions like the above if you wish. Although GDB does not check the

statements in your program, it can check expressions entered directly into GDB for evaluation via

the print command, for example. As with the working language, GDB can also decide whether or

not to check automatically based on your program's source language. See Section 9.4 [Supported

languages], page 90, for the default settings of supported languages.

9.3.1 An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that the arguments to operators

and functions have to be of the correct type, otherwise an error occurs. These checks prevent type

mismatch errors from ever causing any run-time problems. For example,

1 + 2) 3
but

error 1 + 2.3

The second example fails because the CARDINAL 1 is not type-compatible with the REAL 2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to skip

checking; to treat any mismatches as errors and abandon the expression; or to only issue warnings

when type mismatches occur, but evaluate the expression anyway. When you choose the last of

these, GDB evaluates expressions like the second example above, but also issues a warning.

Even if you turn type checking o�, there may be other reasons related to type that prevent GDB

from evaluating an expression. For instance, GDB does not know how to add an int and a struct

foo. These particular type errors have nothing to do with the language in use, and usually arise

from expressions, such as the one described above, which make little sense to evaluate anyway.

Each language de�nes to what degree it is strict about type. For instance, both Modula-2

and C require the arguments to arithmetical operators to be numbers. In C, enumerated types

and pointers can be represented as numbers, so that they are valid arguments to mathematical

operators. See Section 9.4 [Supported languages], page 90, for further details on speci�c languages.

Chapter 9: Using GDB with Di�erent Languages 89

GDB provides some additional commands for controlling the type checker:

set check type auto

Set type checking on or o� based on the current working language. See Section 9.4

[Supported languages], page 90, for the default settings for each language.

set check type on

set check type off

Set type checking on or o�, overriding the default setting for the current working

language. Issue a warning if the setting does not match the language default. If any

type mismatches occur in evaluating an expression while typechecking is on, GDB

prints a message and aborts evaluation of the expression.

set check type warn

Cause the type checker to issue warnings, but to always attempt to evaluate the expres-

sion. Evaluating the expression may still be impossible for other reasons. For example,

GDB cannot add numbers and structures.

show type Show the current setting of the type checker, and whether or not GDB is setting it

automatically.

9.3.2 An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the bounds of a type; this is

enforced with run-time checks. Such range checking is meant to ensure program correctness by

making sure computations do not overow, or indices on an array element access do not exceed the

bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat range errors in one of

three ways: ignore them, always treat them as errors and abandon the expression, or issue warnings

but evaluate the expression anyway.

A range error can result from numerical overow, from exceeding an array index bound, or

when you type a constant that is not a member of any type. Some languages, however, do not treat

overows as an error. In many implementations of C, mathematical overow causes the result to

\wrap around" to lower values|for example, if m is the largest integer value, and s is the smallest,

then

m + 1) s

90 Debugging with GDB

This, too, is speci�c to individual languages, and in some cases speci�c to individual compilers or

machines. See Section 9.4 [Supported languages], page 90, for further details on speci�c languages.

GDB provides some additional commands for controlling the range checker:

set check range auto

Set range checking on or o� based on the current working language. See Section 9.4

[Supported languages], page 90, for the default settings for each language.

set check range on

set check range off

Set range checking on or o�, overriding the default setting for the current working

language. A warning is issued if the setting does not match the language default. If

a range error occurs, then a message is printed and evaluation of the expression is

aborted.

set check range warn

Output messages when the GDB range checker detects a range error, but attempt

to evaluate the expression anyway. Evaluating the expression may still be impossible

for other reasons, such as accessing memory that the process does not own (a typical

example from many Unix systems).

show range

Show the current setting of the range checker, and whether or not it is being set

automatically by GDB.

9.4 Supported languages

GDB 4 supports C, C++, and Modula-2. Some GDB features may be used in expressions

regardless of the language you use: the GDB @ and :: operators, and the `{type}addr' construct

(see Section 8.1 [Expressions], page 65) can be used with the constructs of any supported language.

The following sections detail to what degree each source language is supported by GDB. These

sections are not meant to be language tutorials or references, but serve only as a reference guide to

what the GDB expression parser accepts, and what input and output formats should look like for

di�erent languages. There are many good books written on each of these languages; please look to

these for a language reference or tutorial.

Chapter 9: Using GDB with Di�erent Languages 91

9.4.1 C and C++

Since C and C++ are so closely related, many features of GDB apply to both languages. When-

ever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the gnu C++ compiler and GDB.

Therefore, to debug your C++ code e�ectively, you must compile your C++ programs with the gnu

C++ compiler, g++.

For best results when debugging C++ programs, use the stabs debugging format. You can select

that format explicitly with the g++ command-line options `-gstabs' or `-gstabs+'. See section

\Options for Debugging Your Program or gnu CC" in Using gnu CC , for more information.

9.4.1.1 C and C++ operators

Operators must be de�ned on values of speci�c types. For instance, + is de�ned on numbers,

but not on structures. Operators are often de�ned on groups of types.

For the purposes of C and C++, the following de�nitions hold:

� Integral types include int with any of its storage-class speci�ers; char; and enum.

� Floating-point types include float and double.

� Pointer types include all types de�ned as (type *).

� Scalar types include all of the above.

The following operators are supported. They are listed here in order of increasing precedence:

, The comma or sequencing operator. Expressions in a comma-separated list are evalu-

ated from left to right, with the result of the entire expression being the last expression

evaluated.

= Assignment. The value of an assignment expression is the value assigned. De�ned on

scalar types.

op= Used in an expression of the form a op= b, and translated to a = a op b. op= and =

have the same precendence. op is any one of the operators |, ^, &, <<, >>, +, -, *, /, %.

?: The ternary operator. a ? b : c can be thought of as: if a then b else c. a should be

of an integral type.

92 Debugging with GDB

|| Logical or. De�ned on integral types.

&& Logical and. De�ned on integral types.

| Bitwise or. De�ned on integral types.

^ Bitwise exclusive-or. De�ned on integral types.

& Bitwise and. De�ned on integral types.

==, != Equality and inequality. De�ned on scalar types. The value of these expressions is 0

for false and non-zero for true.

<, >, <=, >=

Less than, greater than, less than or equal, greater than or equal. De�ned on scalar

types. The value of these expressions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. De�ned on integral types.

@ The GDB \arti�cial array" operator (see Section 8.1 [Expressions], page 65).

+, - Addition and subtraction. De�ned on integral types, oating-point types and pointer

types.

*, /, % Multiplication, division, and modulus. Multiplication and division are de�ned on inte-

gral and oating-point types. Modulus is de�ned on integral types.

++, -- Increment and decrement. When appearing before a variable, the operation is per-

formed before the variable is used in an expression; when appearing after it, the vari-

able's value is used before the operation takes place.

* Pointer dereferencing. De�ned on pointer types. Same precedence as ++.

& Address operator. De�ned on variables. Same precedence as ++.

For debugging C++, GDB implements a use of `&' beyond what is allowed in the C++

language itself: you can use `&(&ref)' (or, if you prefer, simply `&&ref ') to examine the

address where a C++ reference variable (declared with `&ref ') is stored.

- Negative. De�ned on integral and oating-point types. Same precedence as ++.

! Logical negation. De�ned on integral types. Same precedence as ++.

~ Bitwise complement operator. De�ned on integral types. Same precedence as ++.

., -> Structure member, and pointer-to-structure member. For convenience, GDB regards

the two as equivalent, choosing whether to dereference a pointer based on the stored

type information. De�ned on struct and union data.

[] Array indexing. a[i] is de�ned as *(a+i). Same precedence as ->.

() Function parameter list. Same precedence as ->.

:: C++ scope resolution operator. De�ned on struct, union, and class types.

Chapter 9: Using GDB with Di�erent Languages 93

:: Doubled colons also represent the GDB scope operator (see Section 8.1 [Expressions],

page 65). Same precedence as ::, above.

9.4.1.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways:

� Integer constants are a sequence of digits. Octal constants are speci�ed by a leading `0' (i.e.

zero), and hexadecimal constants by a leading `0x' or `0X'. Constants may also end with a

letter `l', specifying that the constant should be treated as a long value.

� Floating point constants are a sequence of digits, followed by a decimal point, followed by

a sequence of digits, and optionally followed by an exponent. An exponent is of the form:

`e[[+]|-]nnn', where nnn is another sequence of digits. The `+' is optional for positive exponents.

� Enumerated constants consist of enumerated identi�ers, or their integral equivalents.

� Character constants are a single character surrounded by single quotes ('), or a number|the

ordinal value of the corresponding character (usually its ASCII value). Within quotes, the

single character may be represented by a letter or by escape sequences, which are of the form

`\nnn', where nnn is the octal representation of the character's ordinal value; or of the form

`\x', where `x' is a prede�ned special character|for example, `\n' for newline.

� String constants are a sequence of character constants surrounded by double quotes (").

� Pointer constants are an integral value. You can also write pointers to constants using the C

operator `&'.

� Array constants are comma-separated lists surrounded by braces `{' and `}'; for example,

`{1,2,3}' is a three-element array of integers, `{{1,2}, {3,4}, {5,6}}' is a three-by-two

array, and `{&"hi", &"there", &"fred"}' is a three-element array of pointers.

9.4.1.3 C++ expressions

GDB expression handling has a number of extensions to interpret a signi�cant subset of C++

expressions.

Warning: GDB can only debug C++ code if you compile with the gnu C++ compiler.
Moreover, C++ debugging depends on the use of additional debugging information in
the symbol table, and thus requires special support. GDB has this support only with
the stabs debug format. In particular, if your compiler generates a.out, MIPS ecoff,
RS/6000 xcoff, or elf with stabs extensions to the symbol table, these facilities are all
available. (With gnu CC, you can use the `-gstabs' option to request stabs debugging

94 Debugging with GDB

extensions explicitly.) Where the object code format is standard coff or dwarf in
elf, on the other hand, most of the C++ support in GDB does not work.

1. Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame), your expressions have the

same namespace available as the member function; that is, GDB allows implicit references to

the class instance pointer this following the same rules as C++.

3. You can call overloaded functions; GDB resolves the function call to the right de�nition, with

one restriction|you must use arguments of the type required by the function that you want to

call. GDB does not perform conversions requiring constructors or user-de�ned type operators.

4. GDB understands variables declared as C++ references; you can use them in expressions just

as you do in C++ source|they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference variables are

not displayed (unlike other variables); this avoids clutter, since references are often used for

large structures. The address of a reference variable is always shown, unless you have speci�ed

`set print address off'.

5. GDB supports the C++ name resolution operator ::|your expressions can use it just as

expressions in your program do. Since one scope may be de�ned in another, you can use ::

repeatedly if necessary, for example in an expression like `scope1::scope2::name'. GDB also

allows resolving name scope by reference to source �les, in both C and C++ debugging (see

Section 8.2 [Program variables], page 66).

9.4.1.4 C and C++ defaults

If you allow GDB to set type and range checking automatically, they both default to off

whenever the working language changes to C or C++. This happens regardless of whether you or

GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source �les whose names end

with `.c', `.C', or `.cc', and when GDB enters code compiled from one of these �les, it sets the

working language to C or C++. See Section 9.1.3 [Having GDB infer the source language], page 87,

for further details.

Chapter 9: Using GDB with Di�erent Languages 95

9.4.1.5 C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking is not used. However, if you

turn type checking on, GDB considers two variables type equivalent if:

� The two variables are structured and have the same structure, union, or enumerated tag.

� The two variables have the same type name, or types that have been declared equivalent

through typedef.

Range checking, if turned on, is done on mathematical operations. Array indices are not checked,

since they are often used to index a pointer that is not itself an array.

9.4.1.6 GDB and C

The set print union and show print union commands apply to the union type. When set to

`on', any union that is inside a struct or class is also printed. Otherwise, it appears as `{...}'.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a memory

allocation function. See Section 8.1 [Expressions], page 65.

9.4.1.7 GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed speci�cally for

use with C++. Here is a summary:

breakpoint menus

When you want a breakpoint in a function whose name is overloaded, GDB break-

point menus help you specify which function de�nition you want. See Section 5.1.8

[Breakpoint menus], page 47.

rbreak regex

Setting breakpoints using regular expressions is helpful for setting breakpoints on over-

loaded functions that are not members of any special classes. See Section 5.1.1 [Setting

breakpoints], page 36.

96 Debugging with GDB

catch exceptions

info catch

Debug C++ exception handling using these commands. See Section 5.1.3 [Breakpoints

and exceptions], page 40.

ptype typename

Print inheritance relationships as well as other information for type typename. See

Chapter 10 [Examining the Symbol Table], page 103.

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle

Control whether C++ symbols display in their source form, both when displaying code

as C++ source and when displaying disassemblies. See Section 8.7 [Print settings],

page 74.

set print object

show print object

Choose whether to print derived (actual) or declared types of objects. See Section 8.7

[Print settings], page 74.

set print vtbl

show print vtbl

Control the format for printing virtual function tables. See Section 8.7 [Print settings],

page 74.

Overloaded symbol names

You can specify a particular de�nition of an overloaded symbol, using the same notation

that is used to declare such symbols in C++: type symbol(types) rather than just

symbol. You can also use the GDB command-line word completion facilities to list

the available choices, or to �nish the type list for you. See Section 3.2 [Command

completion], page 18, for details on how to do this.

9.4.2 Modula-2

The extensions made to GDB to support Modula-2 only support output from the gnu Modula-

2 compiler (which is currently being developed). Other Modula-2 compilers are not currently

supported, and attempting to debug executables produced by them is most likely to give an error

as GDB reads in the executable's symbol table.

Chapter 9: Using GDB with Di�erent Languages 97

9.4.2.1 Operators

Operators must be de�ned on values of speci�c types. For instance, + is de�ned on numbers, but

not on structures. Operators are often de�ned on groups of types. For the purposes of Modula-2,

the following de�nitions hold:

� Integral types consist of INTEGER, CARDINAL, and their subranges.

� Character types consist of CHAR and its subranges.

� Floating-point types consist of REAL.

� Pointer types consist of anything declared as POINTER TO type.

� Scalar types consist of all of the above.

� Set types consist of SET and BITSET types.

� Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing precedence:

, Function argument or array index separator.

:= Assignment. The value of var := value is value.

<, > Less than, greater than on integral, oating-point, or enumerated types.

<=, >= Less than, greater than, less than or equal to, greater than or equal to on integral,

oating-point and enumerated types, or set inclusion on set types. Same precedence

as <.

=, <>, # Equality and two ways of expressing inequality, valid on scalar types. Same precedence

as <. In GDB scripts, only <> is available for inequality, since # conicts with the script

comment character.

IN Set membership. De�ned on set types and the types of their members. Same precedence

as <.

OR Boolean disjunction. De�ned on boolean types.

AND, & Boolean conjuction. De�ned on boolean types.

@ The GDB \arti�cial array" operator (see Section 8.1 [Expressions], page 65).

+, - Addition and subtraction on integral and oating-point types, or union and di�erence

on set types.

* Multiplication on integral and oating-point types, or set intersection on set types.

/ Division on oating-point types, or symmetric set di�erence on set types. Same prece-

dence as *.

98 Debugging with GDB

DIV, MOD Integer division and remainder. De�ned on integral types. Same precedence as *.

- Negative. De�ned on INTEGER and REAL data.

^ Pointer dereferencing. De�ned on pointer types.

NOT Boolean negation. De�ned on boolean types. Same precedence as ^.

. RECORD �eld selector. De�ned on RECORD data. Same precedence as ^.

[] Array indexing. De�ned on ARRAY data. Same precedence as ^.

() Procedure argument list. De�ned on PROCEDURE objects. Same precedence as ^.

::, . GDB and Modula-2 scope operators.

Warning: Sets and their operations are not yet supported, so GDB treats the use of
the operator IN, or the use of operators +, -, *, /, =, , <>, #, <=, and >= on sets as an
error.

9.4.2.2 Built-in functions and procedures

Modula-2 also makes available several built-in procedures and functions. In describing these,

the following metavariables are used:

a represents an ARRAY variable.

c represents a CHAR constant or variable.

i represents a variable or constant of integral type.

m represents an identi�er that belongs to a set. Generally used in the same function with

the metavariable s. The type of s should be SET OF mtype (where mtype is the type of

m).

n represents a variable or constant of integral or oating-point type.

r represents a variable or constant of oating-point type.

t represents a type.

v represents a variable.

x represents a variable or constant of one of many types. See the explanation of the

function for details.

All Modula-2 built-in procedures also return a result, described below.

Chapter 9: Using GDB with Di�erent Languages 99

ABS(n) Returns the absolute value of n.

CAP(c) If c is a lower case letter, it returns its upper case equivalent, otherwise it returns its

argument

CHR(i) Returns the character whose ordinal value is i.

DEC(v) Decrements the value in the variable v. Returns the new value.

DEC(v,i) Decrements the value in the variable v by i. Returns the new value.

EXCL(m,s)

Removes the element m from the set s. Returns the new set.

FLOAT(i) Returns the oating point equivalent of the integer i.

HIGH(a) Returns the index of the last member of a.

INC(v) Increments the value in the variable v. Returns the new value.

INC(v,i) Increments the value in the variable v by i. Returns the new value.

INCL(m,s)

Adds the element m to the set s if it is not already there. Returns the new set.

MAX(t) Returns the maximum value of the type t.

MIN(t) Returns the minimum value of the type t.

ODD(i) Returns boolean TRUE if i is an odd number.

ORD(x) Returns the ordinal value of its argument. For example, the ordinal value of a character

is its ASCII value (on machines supporting the ASCII character set). x must be of an

ordered type, which include integral, character and enumerated types.

SIZE(x) Returns the size of its argument. x can be a variable or a type.

TRUNC(r) Returns the integral part of r.

VAL(t,i) Returns the member of the type t whose ordinal value is i.

Warning: Sets and their operations are not yet supported, so GDB treats the use of
procedures INCL and EXCL as an error.

9.4.2.3 Constants

GDB allows you to express the constants of Modula-2 in the following ways:

100 Debugging with GDB

� Integer constants are simply a sequence of digits. When used in an expression, a constant is

interpreted to be type-compatible with the rest of the expression. Hexadecimal integers are

speci�ed by a trailing `H', and octal integers by a trailing `B'.

� Floating point constants appear as a sequence of digits, followed by a decimal point and another

sequence of digits. An optional exponent can then be speci�ed, in the form `E[+|-]nnn', where

`[+|-]nnn' is the desired exponent. All of the digits of the oating point constant must be valid

decimal (base 10) digits.

� Character constants consist of a single character enclosed by a pair of like quotes, either single

(') or double ("). They may also be expressed by their ordinal value (their ASCII value,

usually) followed by a `C'.

� String constants consist of a sequence of characters enclosed by a pair of like quotes, either

single (') or double ("). Escape sequences in the style of C are also allowed. See Section 9.4.1.2

[C and C++ constants], page 93, for a brief explanation of escape sequences.

� Enumerated constants consist of an enumerated identi�er.

� Boolean constants consist of the identi�ers TRUE and FALSE.

� Pointer constants consist of integral values only.

� Set constants are not yet supported.

9.4.2.4 Modula-2 defaults

If type and range checking are set automatically by GDB, they both default to on whenever the

working language changes to Modula-2. This happens regardless of whether you, or GDB, selected

the working language.

If you allow GDB to set the language automatically, then entering code compiled from a �le

whose name ends with `.mod' sets the working language to Modula-2. See Section 9.1.3 [Having

GDB set the language automatically], page 87, for further details.

9.4.2.5 Deviations from standard Modula-2

A few changes have been made to make Modula-2 programs easier to debug. This is done

primarily via loosening its type strictness:

� Unlike in standard Modula-2, pointer constants can be formed by integers. This allows you

to modify pointer variables during debugging. (In standard Modula-2, the actual address

Chapter 9: Using GDB with Di�erent Languages 101

contained in a pointer variable is hidden from you; it can only be modi�ed through direct

assignment to another pointer variable or expression that returned a pointer.)

� C escape sequences can be used in strings and characters to represent non-printable characters.

GDB prints out strings with these escape sequences embedded. Single non-printable characters

are printed using the `CHR(nnn)' format.

� The assignment operator (:=) returns the value of its right-hand argument.

� All built-in procedures both modify and return their argument.

9.4.2.6 Modula-2 type and range checks

Warning: in this release, GDB does not yet perform type or range checking.

GDB considers two Modula-2 variables type equivalent if:

� They are of types that have been declared equivalent via a TYPE t1 = t2 statement

� They have been declared on the same line. (Note: This is true of the gnu Modula-2 compiler,

but it may not be true of other compilers.)

As long as type checking is enabled, any attempt to combine variables whose types are not

equivalent is an error.

Range checking is done on all mathematical operations, assignment, array index bounds, and

all built-in functions and procedures.

9.4.2.7 The scope operators :: and .

There are a few subtle di�erences between the Modula-2 scope operator (.) and the GDB scope

operator (::). The two have similar syntax:

module . id
scope :: id

where scope is the name of a module or a procedure, module the name of a module, and id is any

declared identi�er within your program, except another module.

102 Debugging with GDB

Using the :: operator makes GDB search the scope speci�ed by scope for the identi�er id. If

it is not found in the speci�ed scope, then GDB searches all scopes enclosing the one speci�ed by

scope.

Using the . operator makes GDB search the current scope for the identi�er speci�ed by id that

was imported from the de�nition module speci�ed by module. With this operator, it is an error

if the identi�er id was not imported from de�nition module module, or if id is not an identi�er in

module.

9.4.2.8 GDB and Modula-2

Some GDB commands have little use when debugging Modula-2 programs. Five subcommands

of set print and show print apply speci�cally to C and C++: `vtbl', `demangle', `asm-demangle',

`object', and `union'. The �rst four apply to C++, and the last to the C union type, which has

no direct analogue in Modula-2.

The @ operator (see Section 8.1 [Expressions], page 65), while available while using any language,

is not useful with Modula-2. Its intent is to aid the debugging of dynamic arrays, which cannot

be created in Modula-2 as they can in C or C++. However, because an address can be speci�ed

by an integral constant, the construct `{type}adrexp' is still useful. (see Section 8.1 [Expressions],

page 65)

In GDB scripts, the Modula-2 inequality operator # is interpreted as the beginning of a comment.

Use <> instead.

Chapter 10: Examining the Symbol Table 103

10 Examining the Symbol Table

The commands described in this section allow you to inquire about the symbols (names of

variables, functions and types) de�ned in your program. This information is inherent in the text

of your program and does not change as your program executes. GDB �nds it in your program's

symbol table, in the �le indicated when you started GDB (see Section 2.1.1 [Choosing �les], page 12),

or by one of the �le-management commands (see Section 12.1 [Commands to specify �les], page 113).

Occasionally, you may need to refer to symbols that contain unusual characters, which GDB

ordinarily treats as word delimiters. The most frequent case is in referring to static variables in

other source �les (see Section 8.2 [Program variables], page 66). File names are recorded in object

�les as debugging symbols, but GDB would ordinarily parse a typical �le name, like `foo.c', as

the three words `foo' `.' `c'. To allow GDB to recognize `foo.c' as a single symbol, enclose it in

single quotes; for example,

p 'foo.c'::x

looks up the value of x in the scope of the �le `foo.c'.

info address symbol

Describe where the data for symbol is stored. For a register variable, this says which

register it is kept in. For a non-register local variable, this prints the stack-frame o�set

at which the variable is always stored.

Note the contrast with `print &symbol', which does not work at all for a register vari-

able, and for a stack local variable prints the exact address of the current instantiation

of the variable.

whatis exp

Print the data type of expression exp. exp is not actually evaluated, and any side-

e�ecting operations (such as assignments or function calls) inside it do not take place.

See Section 8.1 [Expressions], page 65.

whatis Print the data type of $, the last value in the value history.

ptype typename

Print a description of data type typename. typename may be the name of a type,

or for C code it may have the form `class class-name', `struct struct-tag ', `union

union-tag ' or `enum enum-tag '.

ptype exp

104 Debugging with GDB

ptype Print a description of the type of expression exp. ptype di�ers from whatis by printing

a detailed description, instead of just the name of the type.

For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:

(gdb) whatis v

type = struct complex

(gdb) ptype v

type = struct complex {

double real;

double imag;

}

As with whatis, using ptype without an argument refers to the type of $, the last

value in the value history.

info types regexp

info types

Print a brief description of all types whose name matches regexp (or all types in your

program, if you supply no argument). Each complete typename is matched as though

it were a complete line; thus, `i type value' gives information on all types in your

program whose name includes the string value, but `i type ^value$' gives information

only on types whose complete name is value.

This command di�ers from ptype in two ways: �rst, like whatis, it does not print a

detailed description; second, it lists all source �les where a type is de�ned.

info source

Show the name of the current source �le|that is, the source �le for the function

containing the current point of execution|and the language it was written in.

info sources

Print the names of all source �les in your program for which there is debugging infor-

mation, organized into two lists: �les whose symbols have already been read, and �les

whose symbols will be read when needed.

info functions

Print the names and data types of all de�ned functions.

info functions regexp

Print the names and data types of all de�ned functions whose names contain a match

for regular expression regexp. Thus, `info fun step' �nds all functions whose names

include step; `info fun ^step' �nds those whose names start with step.

Chapter 10: Examining the Symbol Table 105

info variables

Print the names and data types of all variables that are declared outside of functions

(i.e., excluding local variables).

info variables regexp

Print the names and data types of all variables (except for local variables) whose names

contain a match for regular expression regexp.

Some systems allow individual object �les that make up your program to be replaced

without stopping and restarting your program. For example, in VxWorks you can

simply recompile a defective object �le and keep on running. If you are running on one

of these systems, you can allow GDB to reload the symbols for automatically relinked

modules:

set symbol-reloading on

Replace symbol de�nitions for the corresponding source �le when an object

�le with a particular name is seen again.

set symbol-reloading off

Do not replace symbol de�nitions when re-encountering object �les of the

same name. This is the default state; if you are not running on a system

that permits automatically relinking modules, you should leave symbol-

reloading o�, since otherwise GDB may discard symbols when linking

large programs, that may contain several modules (from di�erent directo-

ries or libraries) with the same name.

show symbol-reloading

Show the current on or off setting.

maint print symbols �lename

maint print psymbols �lename

maint print msymbols �lename

Write a dump of debugging symbol data into the �le �lename. These commands are

used to debug the GDB symbol-reading code. Only symbols with debugging data are

included. If you use `maint print symbols', GDB includes all the symbols for which

it has already collected full details: that is, �lename reects symbols for only those

�les whose symbols GDB has read. You can use the command info sources to �nd

out which �les these are. If you use `maint print psymbols' instead, the dump shows

information about symbols that GDB only knows partially|that is, symbols de�ned

in �les that GDB has skimmed, but not yet read completely. Finally, `maint print

msymbols' dumps just the minimal symbol information required for each object �le

from which GDB has read some symbols. See Section 12.1 [Commands to specify �les],

page 113, for a discussion of how GDB reads symbols (in the description of symbol-

file).

106 Debugging with GDB

Chapter 11: Altering Execution 107

11 Altering Execution

Once you think you have found an error in your program, you might want to �nd out for certain

whether correcting the apparent error would lead to correct results in the rest of the run. You can

�nd the answer by experiment, using the GDB features for altering execution of the program.

For example, you can store new values into variables or memory locations, give your program a

signal, restart it at a di�erent address, or even return prematurely from a function.

11.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression. See Section 8.1 [Expressions],

page 65. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment expression (which

is 4). See Chapter 9 [Using GDB with Di�erent Languages], page 85, for more information on

operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command instead

of the print command. set is really the same as print except that the expression's value is not

printed and is not put in the value history (see Section 8.8 [Value history], page 79). The expression

is evaluated only for its e�ects.

If the beginning of the argument string of the set command appears identical to a set sub-

command, use the set variable command instead of just set. This command is identical to set

except for its lack of subcommands. For example, if your program has a variable width, you get

an error if you try to set a new value with just `set width=13', because GDB has the command

set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

108 Debugging with GDB

The invalid expression, of course, is `=47'. In order to actually set the program's variable width,

use

(gdb) set var width=47

GDB allows more implicit conversions in assignments than C; you can freely store an integer

value into a pointer variable or vice versa, and you can convert any structure to any other structure

that is the same length or shorter.

To store values into arbitrary places in memory, use the `{. . .}' construct to generate a value

of speci�ed type at a speci�ed address (see Section 8.1 [Expressions], page 65). For example,

{int}0x83040 refers to memory location 0x83040 as an integer (which implies a certain size and

representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2 Continuing at a di�erent address

Ordinarily, when you continue your program, you do so at the place where it stopped, with

the continue command. You can instead continue at an address of your own choosing, with the

following commands:

jump linespec

Resume execution at line linespec. Execution stops again immediately if there is a

breakpoint there. See Section 7.1 [Printing source lines], page 59, for a description of

the di�erent forms of linespec.

The jump command does not change the current stack frame, or the stack pointer, or

the contents of any memory location or any register other than the program counter.

If line linespec is in a di�erent function from the one currently executing, the results

may be bizarre if the two functions expect di�erent patterns of arguments or of local

variables. For this reason, the jump command requests con�rmation if the speci�ed line

is not in the function currently executing. However, even bizarre results are predictable

if you are well acquainted with the machine-language code of your program.

jump *address

Resume execution at the instruction at address address.

Chapter 11: Altering Execution 109

You can get much the same e�ect as the jump command by storing a new value into the register

$pc. The di�erence is that this does not start your program running; it only changes the address

of where it will run when you continue. For example,

set $pc = 0x485

makes the next continue command or stepping command execute at address 0x485, rather than

at the address where your program stopped. See Section 5.2 [Continuing and stepping], page 47.

The most common occasion to use the jump command is to back up{ perhaps with more break-

points set{over a portion of a program that has already executed, in order to examine its execution

in more detail.

11.3 Giving your program a signal

signal signal

Resume execution where your program stopped, but immediately give it the signal

signal. signal can be the name or the number of a signal. For example, on many

systems signal 2 and signal SIGINT are both ways of sending an interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal. This is useful

when your program stopped on account of a signal and would ordinary see the signal

when resumed with the continue command; `signal 0' causes it to resume without a

signal.

signal does not repeat when you press RET a second time after executing the command.

Invoking the signal command is not the same as invoking the kill utility from the shell.

Sending a signal with kill causes GDB to decide what to do with the signal depending on the

signal handling tables (see Section 5.3 [Signals], page 50). The signal command passes the signal

directly to your program.

11.4 Returning from a function

return

return expression

You can cancel execution of a function call with the return command. If you give an

expression argument, its value is used as the function's return value.

110 Debugging with GDB

When you use return, GDB discards the selected stack frame (and all frames within it). You

can think of this as making the discarded frame return prematurely. If you wish to specify a value

to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 6.3 [Selecting a frame], page 55), and any other

frames inside of it, leaving its caller as the innermost remaining frame. That frame becomes selected.

The speci�ed value is stored in the registers used for returning values of functions.

The return command does not resume execution; it leaves the program stopped in the state that

would exist if the function had just returned. In contrast, the finish command (see Section 5.2

[Continuing and stepping], page 47) resumes execution until the selected stack frame returns nat-

urally.

11.5 Calling program functions

call expr Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function from your

program, but without cluttering the output with void returned values. If the result is not void, it

is printed and saved in the value history.

A new user-controlled variable, call scratch address, speci�es the location of a scratch area to

be used when GDB calls a function in the target. This is necessary because the usual method of

putting the scratch area on the stack does not work in systems that have separate instruction and

data spaces.

11.6 Patching programs

By default, GDB opens the �le containing your program's executable code (or the core�le)

read-only. This prevents accidental alterations to machine code; but it also prevents you from

intentionally patching your program's binary.

If you'd like to be able to patch the binary, you can specify that explicitly with the set write

command. For example, you might want to turn on internal debugging ags, or even to make

emergency repairs.

Chapter 11: Altering Execution 111

set write on

set write off

If you specify `set write on', GDB opens executable and core �les for both reading

and writing; if you specify `set write off' (the default), GDB opens them read-only.

If you have already loaded a �le, you must load it again (using the exec-file or

core-file command) after changing set write, for your new setting to take e�ect.

show write

Display whether executable �les and core �les are opened for writing as well as reading.

112 Debugging with GDB

Chapter 12: GDB Files 113

12 GDBFiles

GDB needs to know the �le name of the program to be debugged, both in order to read its

symbol table and in order to start your program. To debug a core dump of a previous run, you

must also tell GDB the name of the core dump �le.

12.1 Commands to specify �les

You may want to specify executable and core dump �le names. The usual way to do this is at

start-up time, using the arguments to GDB's start-up commands (see Chapter 2 [Getting In and

Out of GDB], page 11).

Occasionally it is necessary to change to a di�erent �le during a GDB session. Or you may run

GDB and forget to specify a �le you want to use. In these situations the GDB commands to specify

new �les are useful.

file �lename

Use �lename as the program to be debugged. It is read for its symbols and for the

contents of pure memory. It is also the program executed when you use the run

command. If you do not specify a directory and the �le is not found in the GDB

working directory, GDB uses the environment variable PATH as a list of directories to

search, just as the shell does when looking for a program to run. You can change the

value of this variable, for both GDB and your program, using the path command.

On systems with memory-mapped �les, an auxiliary �le `�lename.syms' may hold

symbol table information for �lename. If so, GDB maps in the symbol table from

`�lename.syms', starting up more quickly. See the descriptions of the �le options

`-mapped' and `-readnow' (available on the command line, and with the commands

file, symbol-file, or add-symbol-file, described below), for more information.

file file with no argument makes GDB discard any information it has on both executable

�le and the symbol table.

exec-file [�lename]

Specify that the program to be run (but not the symbol table) is found in �lename.

GDB searches the environment variable PATH if necessary to locate your program.

Omitting �lename means to discard information on the executable �le.

114 Debugging with GDB

symbol-file [�lename]

Read symbol table information from �le �lename. PATH is searched when necessary.

Use the file command to get both symbol table and program to run from the same

�le.

symbol-file with no argument clears out GDB information on your program's symbol

table.

The symbol-file command causes GDB to forget the contents of its convenience

variables, the value history, and all breakpoints and auto-display expressions. This is

because they may contain pointers to the internal data recording symbols and data

types, which are part of the old symbol table data being discarded inside GDB.

symbol-file does not repeat if you press RET again after executing it once.

When GDB is con�gured for a particular environment, it understands debugging infor-

mation in whatever format is the standard generated for that environment; you may

use either a gnu compiler, or other compilers that adhere to the local conventions.

Best results are usually obtained from gnu compilers; for example, using gcc you can

generate debugging information for optimized code.

On some kinds of object �les, the symbol-file command does not normally read the

symbol table in full right away. Instead, it scans the symbol table quickly to �nd which

source �les and which symbols are present. The details are read later, one source �le

at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster. For

the most part, it is invisible except for occasional pauses while the symbol table details

for a particular source �le are being read. (The set verbose command can turn these

pauses into messages if desired. See Section 14.6 [Optional warnings and messages],

page 149.)

We have not implemented the two-stage strategy for COFF yet. When the symbol

table is stored in COFF format, symbol-file reads the symbol table data in full right

away.

symbol-file �lename [-readnow] [-mapped]

file �lename [-readnow] [-mapped]

You can override the GDB two-stage strategy for reading symbol tables by using the

`-readnow' option with any of the commands that load symbol table information, if

you want to be sure GDB has the entire symbol table available.

If memory-mapped �les are available on your system through the mmap system call, you

can use another option, `-mapped', to cause GDB to write the symbols for your program

into a reusable �le. Future GDB debugging sessions map in symbol information from

this auxiliary symbol �le (if the program has not changed), rather than spending time

reading the symbol table from the executable program. Using the `-mapped' option has

the same e�ect as starting GDB with the `-mapped' command-line option.

Chapter 12: GDB Files 115

You can use both options together, to make sure the auxiliary symbol �le has all the

symbol information for your program.

The auxiliary symbol �le for a program called myprog is called `myprog.syms'. Once

this �le exists (so long as it is newer than the corresponding executable), GDB always

attempts to use it when you debugmyprog ; no special options or commands are needed.

The `.syms' �le is speci�c to the host machine where you run GDB. It holds an exact

image of the internal GDB symbol table. It cannot be shared across multiple host

platforms.

core-file [�lename]

Specify the whereabouts of a core dump �le to be used as the \contents of memory".

Traditionally, core �les contain only some parts of the address space of the process that

generated them; GDB can access the executable �le itself for other parts.

core-file with no argument speci�es that no core �le is to be used.

Note that the core �le is ignored when your program is actually running under GDB.

So, if you have been running your program and you wish to debug a core �le instead,

you must kill the subprocess in which the program is running. To do this, use the kill

command (see Section 4.8 [Killing the child process], page 29).

load �lename

Depending on what remote debugging facilities are con�gured into GDB, the load

command may be available. Where it exists, it is meant to make �lename (an exe-

cutable) available for debugging on the remote system|by downloading, or dynamic

linking, for example. load also records the �lename symbol table in GDB, like the

add-symbol-file command.

If your GDB does not have a load command, attempting to execute it gets the error

message \You can't do that when your target is . . ."

The �le is loaded at whatever address is speci�ed in the executable. For some object

�le formats, you can specify the load address when you link the program; for other

formats, like a.out, the object �le format speci�es a �xed address.

On VxWorks, load links �lename dynamically on the current target system as well as

adding its symbols in GDB.

With the Nindy interface to an Intel 960 board, load downloads �lename to the 960

as well as adding its symbols in GDB.

When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board (see Sec-

tion 13.4.7 [GDB and Hitachi Microprocessors], page 140), the load command down-

loads your program to the Hitachi board and also opens it as the current executable

target for GDB on your host (like the file command).

load does not repeat if you press RET again after using it.

116 Debugging with GDB

add-symbol-file �lename address

add-symbol-file �lename address [-readnow] [-mapped]

The add-symbol-file command reads additional symbol table information from the

�le �lename. You would use this command when �lename has been dynamically loaded

(by some other means) into the program that is running. address should be the memory

address at which the �le has been loaded; GDB cannot �gure this out for itself. You

can specify address as an expression.

The symbol table of the �le �lename is added to the symbol table originally read with

the symbol-file command. You can use the add-symbol-file command any number

of times; the new symbol data thus read keeps adding to the old. To discard all old

symbol data instead, use the symbol-file command.

add-symbol-file does not repeat if you press RET after using it.

You can use the `-mapped' and `-readnow' options just as with the symbol-file com-

mand, to change how GDB manages the symbol table information for �lename.

add-shared-symbol-file

The add-shared-symbol-file command can be used only under Harris' CXUX op-

erating system for the Motorola 88k. GDB automatically looks for shared libraries,

however if GDB does not �nd yours, you can run add-shared-symbol-file. It takes

no arguments.

section The section command changes the base address of section SECTION of the exec �le

to ADDR. This can be used if the exec �le does not contain section addresses, (such as

in the a.out format), or when the addresses speci�ed in the �le itself are wrong. Each

section must be changed separately. The \info �les" command lists all the sections and

their addresses.

info files

info target

info files and info target are synonymous; both print the current target (see Chap-

ter 13 [Specifying a Debugging Target], page 119), including the names of the executable

and core dump �les currently in use by GDB, and the �les from which symbols were

loaded. The command help target lists all possible targets rather than current ones.

All �le-specifying commands allow both absolute and relative �le names as arguments. GDB

always converts the �le name to an absolute �le name and remembers it that way.

GDB supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries. GDB automatically

loads symbol de�nitions from shared libraries when you use the run command, or when you examine

a core �le. (Before you issue the run command, GDB does not understand references to a function

in a shared library, however|unless you are debugging a core �le).

Chapter 12: GDB Files 117

info share

info sharedlibrary

Print the names of the shared libraries which are currently loaded.

sharedlibrary regex

share regex

Load shared object library symbols for �les matching a Unix regular expression. As

with �les loaded automatically, it only loads shared libraries required by your program

for a core �le or after typing run. If regex is omitted all shared libraries required by

your program are loaded.

12.2 Errors reading symbol �les

While reading a symbol �le, GDB occasionally encounters problems, such as symbol types it

does not recognize, or known bugs in compiler output. By default, GDB does not notify you of

such problems, since they are relatively common and primarily of interest to people debugging

compilers. If you are interested in seeing information about ill-constructed symbol tables, you can

either ask GDB to print only one message about each such type of problem, no matter how many

times the problem occurs; or you can ask GDB to print more messages, to see how many times

the problems occur, with the set complaints command (see Section 14.6 [Optional warnings and

messages], page 149).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin and end (such as at the start

of a function or a block of statements). This error indicates that an inner scope block

is not fully contained in its outer scope blocks.

GDB circumvents the problem by treating the inner block as if it had the same scope

as the outer block. In the error message, symbol may be shown as \(don't know)" if

the outer block is not a function.

block at address out of order

The symbol information for symbol scope blocks should occur in order of increasing

addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in the source

�le whose symbols it is reading. (You can often determine what source �le is a�ected

by specifying set verbose on. See Section 14.6 [Optional warnings and messages],

page 149.)

118 Debugging with GDB

bad block start address patched

The symbol information for a symbol scope block has a start address smaller than the

address of the preceding source line. This is known to occur in the SunOS 4.1.1 (and

earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting on the

previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which is larger than the size

of the string table.

GDB circumvents the problem by considering the symbol to have the name foo, which

may cause other problems if many symbols end up with this name.

unknown symbol type 0xnn

The symbol information contains new data types that GDB does not yet know how to

read. 0xnn is the symbol type of the misunderstood information, in hexadecimal.

GDB circumvents the error by ignoring this symbol information. This usually allows

you to debug your program, though certain symbols are not accessible. If you encounter

such a problem and feel like debugging it, you can debug gdb with itself, breakpoint

on complain, then go up to the function read_dbx_symtab and examine *bufp to see

the symbol.

stub type has NULL name

GDB could not �nd the full de�nition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got. . .

The symbol information for a C++ member function is missing some information that

recent versions of the compiler should have output for it.

info mismatch between compiler and debugger

GDB could not parse a type speci�cation output by the compiler.

Chapter 13: Specifying a Debugging Target 119

13 Specifying a DebuggingTarget

A target is the execution environment occupied by your program. Often, GDB runs in the

same host environment as your program; in that case, the debugging target is speci�ed as a side

e�ect when you use the file or core commands. When you need more exibility|for example,

running GDB on a physically separate host, or controlling a standalone system over a serial port or

a realtime system over a TCP/IP connection|you can use the target command to specify one of

the target types con�gured for GDB (see Section 13.3 [Commands for managing targets], page 122).

13.1 Active targets

There are three classes of targets: processes, core �les, and executable �les. GDB can work

concurrently on up to three active targets, one in each class. This allows you to (for example) start

a process and inspect its activity without abandoning your work on a core �le.

For example, if you execute `gdb a.out', then the executable �le a.out is the only active target.

If you designate a core �le as well|presumably from a prior run that crashed and coredumped|

then GDB has two active targets and uses them in tandem, looking �rst in the core�le target, then

in the executable �le, to satisfy requests for memory addresses. (Typically, these two classes of

target are complementary, since core �les contain only a program's read-write memory|variables

and so on|plus machine status, while executable �les contain only the program text and initialized

data.)

When you type run, your executable �le becomes an active process target as well. When a

process target is active, all GDB commands requesting memory addresses refer to that target;

addresses in an active core �le or executable �le target are obscured while the process target is

active.

Use the core-file and exec-file commands to select a new core �le or executable target

(see Section 12.1 [Commands to specify �les], page 113). To specify as a target a process that is

already running, use the attach command (see Section 4.7 [Debugging an already-running process],

page 28).

13.2 Commands for managing targets

120 Debugging with GDB

target type parameters

Connects the GDB host environment to a target machine or process. A target is

typically a protocol for talking to debugging facilities. You use the argument type to

specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include things

like device names or host names to connect with, process numbers, and baud rates.

The target command does not repeat if you press RET again after executing the com-

mand.

help target

Displays the names of all targets available. To display targets currently selected,

use either info target or info files (see Section 12.1 [Commands to specify �les],

page 113).

help target name

Describe a particular target, including any parameters necessary to select it.

set gnutarget args

GDBuses its own library BFD to read your �les. GDB knows whether it is reading an

executable, a core, or a .o �le, however you can specify the �le format with the set

gnutarget command. Unlike most target commands, with gnutarget the target

refers to a program, not a machine.

Warning: To specify a �le format with set gnutarget, you must know the actual BFD

name.

See Section 12.1 [Commands to specify �les], page 113.

show gnutarget

Use the show gnutarget command to display what �le format gnutarget is set to

read. If you have not set gnutarget, GDB will determine the �le format for each �le

automatically and show gnutarget displays The current BDF target is "auto".

Here are some common targets (available, or not, depending on the GDB con�guration):

target exec program

An executable �le. `target exec program' is the same as `exec-file program'.

target core �lename

A core dump �le. `target core �lename' is the same as `core-file �lename'.

target remote dev

Remote serial target in GDB-speci�c protocol. The argument dev speci�es what serial

device to use for the connection (e.g. `/dev/ttya'). See Section 13.4 [Remote debug-

ging], page 122. target remote now supports the load command. This is only useful

Chapter 13: Specifying a Debugging Target 121

if you have some other way of getting the stub to the target system, and you can put

it somewhere in memory where it won't get clobbered by the download.

target sim

CPU simulator. See Section 13.4.9 [Simulated CPU Target], page 143.

target udi keyword

Remote AMD29K target, using the AMD UDI protocol. The keyword argument spec-

i�es which 29K board or simulator to use. See Section 13.4.3 [The UDI protocol for

AMD29K], page 133.

target amd-eb dev speed PROG

Remote PC-resident AMD EB29K board, attached over serial lines. dev is the serial

device, as for target remote; speed allows you to specify the linespeed; and PROG

is the name of the program to be debugged, as it appears to DOS on the PC. See

Section 13.4.4 [The EBMON protocol for AMD29K], page 133.

target hms dev

A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host. Use

special commands device and speed to control the serial line and the communications

speed used. See Section 13.4.7 [GDB and Hitachi Microprocessors], page 140.

target nindy devicename

An Intel 960 board controlled by a Nindy Monitor. devicename is the name of the

serial device to use for the connection, e.g. `/dev/ttya'. See Section 13.4.2 [GDB with

a remote i960 (Nindy)], page 132.

target st2000 dev speed

A Tandem ST2000 phone switch, running Tandem's STDBUG protocol. dev is the

name of the device attached to the ST2000 serial line; speed is the communication line

speed. The arguments are not used if GDB is con�gured to connect to the ST2000

using TCP or Telnet. See Section 13.4.5 [GDB with a Tandem ST2000], page 137.

target vxworks machinename

A VxWorks system, attached via TCP/IP. The argument machinename is the tar-

get system's machine name or IP address. See Section 13.4.6 [GDB and VxWorks],

page 137.

target cpu32bug dev

CPU32BUG monitor, running on a CPU32 (M68K) board.

target op50n dev

OP50N monitor, running on an OKI HPPA board.

target w89k dev

W89K monitor, running on a Winbond HPPA board.

122 Debugging with GDB

target est dev

EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev

ROM 68K monitor, running on an IDP board.

target array dev

Array Tech LSI33K RAID controller board.

target sparclite dev

Fujitsu sparclite boards, used only for the purpose of loading. You must use an addi-

tional command to debug the program. For example: target remote dev using GDB

standard remote protocol.

Di�erent targets are available on di�erent con�gurations of GDB; your con�guration may have

more or fewer targets.

13.3 Choosing target byte order

You can now choose which byte order to use with a target system. Use the set endian big and

set endian little commands. Use the set endian auto command to instruct GDB to use the

byte order associated with the executable. You can see the current setting for byte order with the

show endian command.

Warning: Currently, only embedded MIPS con�gurations support dynamic selection of target

byte order.

13.4 Remote debugging

If you are trying to debug a program running on a machine that cannot run GDB in the usual

way, it is often useful to use remote debugging. For example, you might use remote debugging on

an operating system kernel, or on a small system which does not have a general purpose operating

system powerful enough to run a full-featured debugger.

Some con�gurations of GDB have special serial or TCP/IP interfaces to make this work with

particular debugging targets. In addition, GDB comes with a generic serial protocol (speci�c to

GDB, but not speci�c to any particular target system) which you can use if you write the remote

stubs|the code that runs on the remote system to communicate with GDB.

Chapter 13: Specifying a Debugging Target 123

Other remote targets may be available in your con�guration of GDB; use help target to list

them.

13.4.1 The GDB remote serial protocol

To debug a program running on another machine (the debugging target machine), you must

�rst arrange for all the usual prerequisites for the program to run by itself. For example, for a C

program, you need:

1. A startup routine to set up the C runtime environment; these usually have a name like `crt0'.

The startup routine may be supplied by your hardware supplier, or you may have to write

your own.

2. You probably need a C subroutine library to support your program's subroutine calls, notably

managing input and output.

3. A way of getting your program to the other machine|for example, a download program. These

are often supplied by the hardware manufacturer, but you may have to write your own from

hardware documentation.

The next step is to arrange for your program to use a serial port to communicate with the

machine where GDB is running (the host machine). In general terms, the scheme looks like this:

On the host,

GDB already understands how to use this protocol; when everything else is set up, you

can simply use the `target remote' command (see Chapter 13 [Specifying a Debugging

Target], page 119).

On the target,

you must link with your program a few special-purpose subroutines that implement the

GDB remote serial protocol. The �le containing these subroutines is called a debugging

stub.

On certain remote targets, you can use an auxiliary program gdbserver instead of

linking a stub into your program. See Section 13.4.1.5 [Using the gdbserver program],

page 129, for details.

The debugging stub is speci�c to the architecture of the remote machine; for example, use

`sparc-stub.c' to debug programs on sparc boards.

These working remote stubs are distributed with GDB:

124 Debugging with GDB

sparc-stub.c

For sparc architectures.

m68k-stub.c

For Motorola 680x0 architectures.

i386-stub.c

For Intel 386 and compatible architectures.

The `README' �le in the GDB distribution may list other recently added stubs.

13.4.1.1 What the stub can do for you

The debugging stub for your architecture supplies these three subroutines:

set_debug_traps

This routine arranges for handle_exception to run when your program stops. You

must call this subroutine explicitly near the beginning of your program.

handle_exception

This is the central workhorse, but your program never calls it explicitly|the setup

code arranges for handle_exception to run when a trap is triggered.

handle_exception takes control when your program stops during execution (for exam-

ple, on a breakpoint), and mediates communications with GDB on the host machine.

This is where the communications protocol is implemented; handle_exception acts

as the GDB representative on the target machine; it begins by sending summary in-

formation on the state of your program, then continues to execute, retrieving and

transmitting any information GDB needs, until you execute a GDB command that

makes your program resume; at that point, handle_exception returns control to your

own code on the target machine.

breakpoint

Use this auxiliary subroutine to make your program contain a breakpoint. Depending

on the particular situation, this may be the only way for GDB to get control. For

instance, if your target machine has some sort of interrupt button, you won't need

to call this; pressing the interrupt button transfers control to handle_exception|in

e�ect, to GDB. On some machines, simply receiving characters on the serial port may

also trigger a trap; again, in that situation, you don't need to call breakpoint from

your own program|simply running `target remote' from the host GDB session gets

control.

Chapter 13: Specifying a Debugging Target 125

Call breakpoint if none of these is true, or if you simply want to make certain your

program stops at a predetermined point for the start of your debugging session.

13.4.1.2 What you must do for the stub

The debugging stubs that come with GDB are set up for a particular chip architecture, but they

have no information about the rest of your debugging target machine.

First of all you need to tell the stub how to communicate with the serial port.

int getDebugChar()

Write this subroutine to read a single character from the serial port. It may be identical

to getchar for your target system; a di�erent name is used to allow you to distinguish

the two if you wish.

void putDebugChar(int)

Write this subroutine to write a single character to the serial port. It may be identical

to putchar for your target system; a di�erent name is used to allow you to distinguish

the two if you wish.

If you want GDB to be able to stop your program while it is running, you need to use an

interrupt-driven serial driver, and arrange for it to stop when it receives a ^C (`\003', the control-C

character). That is the character which GDB uses to tell the remote system to stop.

Getting the debugging target to return the proper status to GDB probably requires changes to

the standard stub; one quick and dirty way is to just execute a breakpoint instruction (the \dirty"

part is that GDB reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are:

void exceptionHandler (int exception_number, void *exception_address)

Write this function to install exception address in the exception handling tables. You

need to do this because the stub does not have any way of knowing what the exception

handling tables on your target system are like (for example, the processor's table might

be in rom, containing entries which point to a table in ram). exception number is the

exception number which should be changed; its meaning is architecture-dependent

(for example, di�erent numbers might represent divide by zero, misaligned access, etc).

When this exception occurs, control should be transferred directly to exception address,

126 Debugging with GDB

and the processor state (stack, registers, and so on) should be just as it is when

a processor exception occurs. So if you want to use a jump instruction to reach

exception address, it should be a simple jump, not a jump to subroutine.

For the 386, exception address should be installed as an interrupt gate so that interrupts

are masked while the handler runs. The gate should be at privilege level 0 (the most

privileged level). The sparc and 68k stubs are able to mask interrup themselves

without help from exceptionHandler.

void flush_i_cache()

(sparc and sparclite only) Write this subroutine to ush the instruction cache, if any,

on your target machine. If there is no instruction cache, this subroutine may be a

no-op.

On target machines that have instruction caches, GDB requires this function to make

certain that the state of your program is stable.

You must also make sure this library routine is available:

void *memset(void *, int, int)

This is the standard library function memset that sets an area of memory to a known

value. If you have one of the free versions of libc.a, memset can be found there;

otherwise, you must either obtain it from your hardware manufacturer, or write your

own.

If you do not use the GNU C compiler, you may need other standard library subroutines as well;

this varies from one stub to another, but in general the stubs are likely to use any of the common

library subroutines which gcc generates as inline code.

13.4.1.3 Putting it all together

In summary, when your program is ready to debug, you must follow these steps.

1. Make sure you have the supporting low-level routines (see Section 13.4.1.2 [What you must do

for the stub], page 125):

getDebugChar, putDebugChar,
flush_i_cache, memset, exceptionHandler.

2. Insert these lines near the top of your program:

set_debug_traps();
breakpoint();

Chapter 13: Specifying a Debugging Target 127

3. For the 680x0 stub only, you need to provide a variable called exceptionHook. Normally you

just use:

void (*exceptionHook)() = 0;

but if before calling set_debug_traps, you set it to point to a function in your program,

that function is called when GDB continues after stopping on a trap (for example, bus error).

The function indicated by exceptionHook is called with one parameter: an int which is the

exception number.

4. Compile and link together: your program, the GDB debugging stub for your target architec-

ture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the GDB host, and

identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means the man-

ufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and specify as an executable �le the

program that is running in the remote machine. This tells GDB how to �nd your program's

symbols and the contents of its pure text.

Then establish communication using the target remote command. Its argument speci�es how

to communicate with the target machine|either via a devicename attached to a direct serial

line, or a TCP port (usually to a terminal server which in turn has a serial line to the target).

For example, to use a serial line connected to the device named `/dev/ttyb':

target remote /dev/ttyb

To use a TCP connection, use an argument of the form host:port. For example, to connect

to port 2828 on a terminal server named manyfarms:

target remote manyfarms:2828

Now you can use all the usual commands to examine and change data and to step and continue

the remote program.

To resume the remote program and stop debugging it, use the detach command.

Whenever GDB is waiting for the remote program, if you type the interrupt character (often

C-C), GDB attempts to stop the program. This may or may not succeed, depending in part on the

hardware and the serial drivers the remote system uses. If you type the interrupt character once

again, GDB displays this prompt:

Interrupted while waiting for the program.
Give up (and stop debugging it)? (y or n)

128 Debugging with GDB

If you type y, GDB abandons the remote debugging session. (If you decide you want to try

again later, you can use `target remote' again to connect once more.) If you type n, GDB goes

back to waiting.

13.4.1.4 Communication protocol

The stub �les provided with GDB implement the target side of the communication protocol,

and the GDB side is implemented in the GDB source �le `remote.c'. Normally, you can simply

allow these subroutines to communicate, and ignore the details. (If you're implementing your own

stub �le, you can still ignore the details: start with one of the existing stub �les. `sparc-stub.c'

is the best organized, and therefore the easiest to read.)

However, there may be occasions when you need to know something about the protocol|for

example, if there is only one serial port to your target machine, you might want your program to

do something special if it recognizes a packet meant for GDB.

All GDB commands and responses (other than acknowledgements, which are single characters)

are sent as a packet which includes a checksum. A packet is introduced with the character `$', and

ends with the character `#' followed by a two-digit checksum:

$packet info#checksum

checksum is computed as the modulo 256 sum of the packet info characters.

When either the host or the target machine receives a packet, the �rst response expected is an

acknowledgement: a single character, either `+' (to indicate the package was received correctly) or

`-' (to request retransmission).

The host (GDB) sends commands, and the target (the debugging stub incorporated in your

program) sends data in response. The target also sends data when your program stops.

Command packets are distinguished by their �rst character, which identi�es the kind of com-

mand.

These are some of the commands currently supported (for a complete list of commands, look in

`gdb/remote.c.'):

Chapter 13: Specifying a Debugging Target 129

g Requests the values of CPU registers.

G Sets the values of CPU registers.

maddr,count

Read count bytes at location addr.

Maddr,count:. . .

Write count bytes at location addr.

c

caddr Resume execution at the current address (or at addr if supplied).

s

saddr Step the target program for one instruction, from either the current program counter

or from addr if supplied.

k Kill the target program.

? Report the most recent signal. To allow you to take advantage of the GDB signal

handling commands, one of the functions of the debugging stub is to report CPU traps

as the corresponding POSIX signal values.

T Allows the remote stub to send only the registers that GDB needs to make a quick

decision about single-stepping or conditional breakpoints. This eliminates the need to

fetch the entire register set for each instruction being stepped through.

The GDB remote serial protocol now implements a write-through cache for registers.

GDB only re-reads the registers if the target has run.

If you have trouble with the serial connection, you can use the command set remotedebug.

This makes GDB report on all packets sent back and forth across the serial line to the remote

machine. The packet-debugging information is printed on the GDB standard output stream. set

remotedebug off turns it o�, and show remotedebug shows you its current state.

13.4.1.5 Using the gdbserver program

gdbserver is a control program for Unix-like systems, which allows you to connect your program

with a remote GDB via target remote|but without linking in the usual debugging stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires essentially

the same operating-system facilities that GDB itself does. In fact, a system that can run gdbserver

to connect to a remote GDB could also run GDB locally! gdbserver is sometimes useful neverthe-

less, because it is a much smaller program than GDB itself. It is also easier to port than all of GDB,

so you may be able to get started more quickly on a new system by using gdbserver. Finally, if

130 Debugging with GDB

you develop code for real-time systems, you may �nd that the tradeo�s involved in real-time oper-

ation make it more convenient to do as much development work as possible on another system, for

example by cross-compiling. You can use gdbserver to make a similar choice for debugging.

GDB and gdbserver communicate via either a serial line or a TCP connection, using the

standard GDB remote serial protocol.

On the target machine,

you need to have a copy of the program you want to debug. gdbserver does not need

your program's symbol table, so you can strip the program if necessary to save space.

GDB on the host system does all the symbol handling.

To use the server, you must tell it how to communicate with GDB; the name of your

program; and the arguments for your program. The syntax is:

target> gdbserver comm program [args . . .]

comm is either a device name (to use a serial line) or a TCP hostname and portnumber.

For example, to debug Emacs with the argument `foo.txt' and communicate with

GDB over the serial port `/dev/com1':

target> gdbserver /dev/com1 emacs foo.txt

gdbserver waits passively for the host GDB to communicate with it.

To use a TCP connection instead of a serial line:

target> gdbserver host:2345 emacs foo.txt

The only di�erence from the previous example is the �rst argument, specifying that

you are communicating with the host GDB via TCP. The `host:2345' argument means

that gdbserver is to expect a TCP connection from machine `host' to local TCP port

2345. (Currently, the `host' part is ignored.) You can choose any number you want

for the port number as long as it does not conict with any TCP ports already in use

on the target system (for example, 23 is reserved for telnet).1 You must use the same

port number with the host GDB target remote command.

On the GDB host machine,

you need an unstripped copy of your program, since GDB needs symbols and debugging

information. Start up GDB as usual, using the name of the local copy of your program

as the �rst argument. (You may also need the `--baud' option if the serial line is

running at anything other than 9600 bps.) After that, use target remote to establish

communications with gdbserver. Its argument is either a device name (usually a

serial device, like `/dev/ttyb'), or a TCP port descriptor in the form host:PORT. For

example:

1 If you choose a port number that conicts with another service, gdbserver prints an error

message and exits.

Chapter 13: Specifying a Debugging Target 131

(gdb) target remote /dev/ttyb

communicates with the server via serial line `/dev/ttyb', and

(gdb) target remote the-target:2345

communicates via a TCP connection to port 2345 on host `the-target'. For TCP

connections, you must start up gdbserver prior to using the target remote command.

Otherwise you may get an error whose text depends on the host system, but which

usually looks something like `Connection refused'.

13.4.1.6 Using the gdbserve.nlm program

gdbserve.nlm is a control program for NetWare systems, which allows you to connect your

program with a remote GDB via target remote.

GDB and gdbserve.nlm communicate via a serial line, using the standard GDB remote serial

protocol.

On the target machine,

you need to have a copy of the program you want to debug. gdbserve.nlm does not

need your program's symbol table, so you can strip the program if necessary to save

space. GDB on the host system does all the symbol handling.

To use the server, you must tell it how to communicate with GDB; the name of your

program; and the arguments for your program. The syntax is:

load gdbserve [BOARD=board] [PORT=port]
[BAUD=baud] program [args . . .]

board and port specify the serial line; baud speci�es the baud rate used by the con-

nection. port and node default to 0, baud defaults to 9600 bps.

For example, to debug Emacs with the argument `foo.txt'and communicate with GDB

over serial port number 2 or board 1 using a 19200 bps connection:

load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt

On the GDB host machine,

you need an unstripped copy of your program, since GDB needs symbols and debugging

information. Start up GDB as usual, using the name of the local copy of your program

as the �rst argument. (You may also need the `--baud' option if the serial line is

running at anything other than 9600 bps. After that, use target remote to establish

communications with gdbserve.nlm. Its argument is a device name (usually a serial

device, like `/dev/ttyb'). For example:

(gdb) target remote /dev/ttyb

communications with the server via serial line `/dev/ttyb'.

132 Debugging with GDB

13.4.2 GDB with a remote i960 (Nindy)

Nindy is a ROM Monitor program for Intel 960 target systems. When GDB is con�gured to

control a remote Intel 960 using Nindy, you can tell GDB how to connect to the 960 in several

ways:

� Through command line options specifying serial port, version of the Nindy protocol, and

communications speed;

� By responding to a prompt on startup;

� By using the target command at any point during your GDB session. See Section 13.3

[Commands for managing targets], page 122.

13.4.2.1 Startup with Nindy

If you simply start gdb without using any command-line options, you are prompted for what

serial port to use, before you reach the ordinary GDB prompt:

Attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever su�x (after `/dev/tty') identi�es the serial port you want

to use. You can, if you choose, simply start up with no Nindy connection by responding to the

prompt with an empty line. If you do this and later wish to attach to Nindy, use target (see

Section 13.3 [Commands for managing targets], page 122).

13.4.2.2 Options for Nindy

These are the startup options for beginning your GDB session with a Nindy-960 board attached:

-r port Specify the serial port name of a serial interface to be used to connect to the target

system. This option is only available when GDB is con�gured for the Intel 960 target

architecture. You may specify port as any of: a full pathname (e.g. `-r /dev/ttya'),

a device name in `/dev' (e.g. `-r ttya'), or simply the unique su�x for a speci�c tty

(e.g. `-r a').

-O (An uppercase letter \O", not a zero.) Specify that GDB should use the \old" Nindy

monitor protocol to connect to the target system. This option is only available when

GDB is con�gured for the Intel 960 target architecture.

Chapter 13: Specifying a Debugging Target 133

Warning: if you specify `-O', but are actually trying to connect to a target
system that expects the newer protocol, the connection fails, appearing to
be a speed mismatch. GDB repeatedly attempts to reconnect at several
di�erent line speeds. You can abort this process with an interrupt.

-brk Specify that GDB should �rst send a BREAK signal to the target system, in an attempt

to reset it, before connecting to a Nindy target.

Warning: Many target systems do not have the hardware that this requires;
it only works with a few boards.

The standard `-b' option controls the line speed used on the serial port.

13.4.2.3 Nindy reset command

reset For a Nindy target, this command sends a \break" to the remote target system;

this is only useful if the target has been equipped with a circuit to perform a hard reset

(or some other interesting action) when a break is detected.

13.4.3 The UDI protocol for AMD29K

GDB supports AMD's UDI (\Universal Debugger Interface") protocol for debugging the a29k

processor family. To use this con�guration with AMD targets running the MiniMON monitor, you

need the program MONTIP, available from AMD at no charge. You can also use GDB with the

UDI-conformant a29k simulator program ISSTIP, also available from AMD.

target udi keyword

Select the UDI interface to a remote a29k board or simulator, where keyword is an

entry in the AMD con�guration �le `udi_soc'. This �le contains keyword entries which

specify parameters used to connect to a29k targets. If the `udi_soc' �le is not in your

working directory, you must set the environment variable `UDICONF' to its pathname.

13.4.4 The EBMON protocol for AMD29K

AMD distributes a 29K development board meant to �t in a PC, together with a DOS-hosted

monitor program called EBMON. As a shorthand term, this development system is called the

\EB29K". To use GDB from a Unix system to run programs on the EB29K board, you must

�rst connect a serial cable between the PC (which hosts the EB29K board) and a serial port on the

134 Debugging with GDB

Unix system. In the following, we assume you've hooked the cable between the PC's `COM1' port

and `/dev/ttya' on the Unix system.

13.4.4.1 Communications setup

The next step is to set up the PC's port, by doing something like this in DOS on the PC:

C:\> MODE com1:9600,n,8,1,none

This example|run on an MS DOS 4.0 system|sets the PC port to 9600 bps, no parity, eight data

bits, one stop bit, and no \retry" action; you must match the communications parameters when

establishing the Unix end of the connection as well.

To give control of the PC to the Unix side of the serial line, type the following at the DOS

console:

C:\> CTTY com1

(Later, if you wish to return control to the DOS console, you can use the command CTTY con|but

you must send it over the device that had control, in our example over the `COM1' serial line).

From the Unix host, use a communications program such as tip or cu to communicate with the

PC; for example,

cu -s 9600 -l /dev/ttya

The cu options shown specify, respectively, the linespeed and the serial port to use. If you use tip

instead, your command line may look something like the following:

tip -9600 /dev/ttya

Your system may require a di�erent name where we show `/dev/ttya' as the argument to tip. The

communications parameters, including which port to use, are associated with the tip argument in

the \remote" descriptions �le|normally the system table `/etc/remote'.

Using the tip or cu connection, change the DOS working directory to the directory containing a

copy of your 29K program, then start the PC program EBMON (an EB29K control program supplied

Chapter 13: Specifying a Debugging Target 135

with your board by AMD). You should see an initial display from EBMON similar to the one that

follows, ending with the EBMON prompt `#'|

C:\> G:

G:\> CD \usr\joe\work29k

G:\USR\JOE\WORK29K> EBMON
Am29000 PC Coprocessor Board Monitor, version 3.0-18
Copyright 1990 Advanced Micro Devices, Inc.
Written by Gibbons and Associates, Inc.

Enter '?' or 'H' for help

PC Coprocessor Type = EB29K
I/O Base = 0x208
Memory Base = 0xd0000

Data Memory Size = 2048KB
Available I-RAM Range = 0x8000 to 0x1fffff
Available D-RAM Range = 0x80002000 to 0x801fffff

PageSize = 0x400
Register Stack Size = 0x800
Memory Stack Size = 0x1800

CPU PRL = 0x3
Am29027 Available = No
Byte Write Available = Yes

~.

Then exit the cu or tip program (done in the example by typing ~. at the EBMON prompt).

EBMON keeps running, ready for GDB to take over.

For this example, we've assumed what is probably the most convenient way to make sure the

same 29K program is on both the PC and the Unix system: a PC/NFS connection that establishes

\drive G:" on the PC as a �le system on the Unix host. If you do not have PC/NFS or some-

thing similar connecting the two systems, you must arrange some other way|perhaps oppy-disk

transfer|of getting the 29K program from the Unix system to the PC; GDB does not download it

over the serial line.

136 Debugging with GDB

13.4.4.2 EB29K cross-debugging

Finally, cd to the directory containing an image of your 29K program on the Unix system, and

start GDB|specifying as argument the name of your 29K program:

cd /usr/joe/work29k
gdb myfoo

Now you can use the target command:

target amd-eb /dev/ttya 9600 MYFOO

In this example, we've assumed your program is in a �le called `myfoo'. Note that the �lename

given as the last argument to target amd-eb should be the name of the program as it appears to

DOS. In our example this is simply MYFOO, but in general it can include a DOS path, and depending

on your transfer mechanism may not resemble the name on the Unix side.

At this point, you can set any breakpoints you wish; when you are ready to see your program

run on the 29K board, use the GDB command run.

To stop debugging the remote program, use the GDB detach command.

To return control of the PC to its console, use tip or cu once again, after your GDB session has

concluded, to attach to EBMON. You can then type the command q to shut down EBMON, returning

control to the DOS command-line interpreter. Type CTTY con to return command input to the

main DOS console, and type ~. to leave tip or cu.

13.4.4.3 Remote log

The target amd-eb command creates a �le `eb.log' in the current working directory, to help

debug problems with the connection. `eb.log' records all the output from EBMON, including echoes

of the commands sent to it. Running `tail -f' on this �le in another window often helps to

understand trouble with EBMON, or unexpected events on the PC side of the connection.

Chapter 13: Specifying a Debugging Target 137

13.4.5 GDB with a Tandem ST2000

To connect your ST2000 to the host system, see the manufacturer's manual. Once the ST2000

is physically attached, you can run:

target st2000 dev speed

to establish it as your debugging environment. dev is normally the name of a serial device, such

as `/dev/ttya', connected to the ST2000 via a serial line. You can instead specify dev as a TCP

connection (for example, to a serial line attached via a terminal concentrator) using the syntax

hostname:portnumber.

The load and attach commands are not de�ned for this target; you must load your program

into the ST2000 as you normally would for standalone operation. GDB reads debugging informa-

tion (such as symbols) from a separate, debugging version of the program available on your host

computer.

These auxiliary GDB commands are available to help you with the ST2000 environment:

st2000 command

Send a command to the STDBUGmonitor. See the manufacturer's manual for available

commands.

connect Connect the controlling terminal to the STDBUG command monitor. When

you are done interacting with STDBUG, typing either of two character sequences gets

you back to the GDB command prompt: RET~. (Return, followed by tilde and period)

or RET~C-D (Return, followed by tilde and control-D).

13.4.6 GDB and VxWorks

GDB enables developers to spawn and debug tasks running on networked VxWorks targets from

a Unix host. Already-running tasks spawned from the VxWorks shell can also be debugged. GDB

uses code that runs on both the Unix host and on the VxWorks target. The program gdb is installed

and executed on the Unix host. (It may be installed with the name vxgdb, to distinguish it from

a GDB for debugging programs on the host itself.)

138 Debugging with GDB

VxWorks-timeout args

All VxWorks-based targets now support the option vxworks-timeout. This option is

set by the user, and args represents the number of seconds GDB waits for responses to

rpc's. You might use this if your VxWorks target is a slow software simulator or is on

the far side of a thin network line.

The following information on connecting to VxWorks was current when this manual was pro-

duced; newer releases of VxWorks may use revised procedures.

To use GDB with VxWorks, you must rebuild your VxWorks kernel to include the remote

debugging interface routines in the VxWorks library `rdb.a'. To do this, de�ne INCLUDE_RDB in

the VxWorks con�guration �le `configAll.h' and rebuild your VxWorks kernel. The resulting

kernel contains `rdb.a', and spawns the source debugging task tRdbTask when VxWorks is booted.

For more information on con�guring and remaking VxWorks, see the manufacturer's manual.

Once you have included `rdb.a' in your VxWorks system image and set your Unix execution

search path to �nd GDB, you are ready to run GDB. From your Unix host, run gdb (or vxgdb,

depending on your installation).

GDB comes up showing the prompt:

(vxgdb)

13.4.6.1 Connecting to VxWorks

The GDB command target lets you connect to a VxWorks target on the network. To connect

to a target whose host name is \tt", type:

(vxgdb) target vxworks tt

GDB displays messages like these:

Attaching remote machine across net...
Connected to tt.

GDB then attempts to read the symbol tables of any object modules loaded into the VxWorks

target since it was last booted. GDB locates these �les by searching the directories listed in the

command search path (see Section 4.4 [Your program's environment], page 25); if it fails to �nd an

object �le, it displays a message such as:

Chapter 13: Specifying a Debugging Target 139

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB command

path, and execute the target command again.

13.4.6.2 VxWorks download

If you have connected to the VxWorks target and you want to debug an object that has not

yet been loaded, you can use the GDB load command to download a �le from Unix to VxWorks

incrementally. The object �le given as an argument to the load command is actually opened twice:

�rst by the VxWorks target in order to download the code, then by GDB in order to read the

symbol table. This can lead to problems if the current working directories on the two systems

di�er. If both systems have NFS mounted the same �lesystems, you can avoid these problems by

using absolute paths. Otherwise, it is simplest to set the working directory on both systems to the

directory in which the object �le resides, and then to reference the �le by its name, without any

path. For instance, a program `prog.o' may reside in `vxpath/vw/demo/rdb' in VxWorks and in

`hostpath/vw/demo/rdb' on the host. To load this program, type this on VxWorks:

-> cd "vxpath/vw/demo/rdb"

v Then, in GDB, type:

(vxgdb) cd hostpath/vw/demo/rdb
(vxgdb) load prog.o

GDB displays a response similar to this:

Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use the load command to reload an object module after editing and recompiling

the corresponding source �le. Note that this makes GDB delete all currently-de�ned breakpoints,

auto-displays, and convenience variables, and to clear the value history. (This is necessary in order

to preserve the integrity of debugger data structures that reference the target system's symbol

table.)

140 Debugging with GDB

13.4.6.3 Running tasks

You can also attach to an existing task using the attach command as follows:

(vxgdb) attach task

where task is the VxWorks hexadecimal task ID. The task can be running or suspended when you

attach to it. Running tasks are suspended at the time of attachment.

13.4.7 GDB and Hitachi microprocessors

GDB needs to know these things to talk to your Hitachi SH, H8/300, or H8/500:

1. that you want to use `target hms', the remote debugging interface for Hitachi microprocessors,

or `target e7000', the in-circuit emulator for the Hitachi SH and the Hitachi 300H. (`target

hms' is the default when GDB is con�gured speci�cally for the Hitachi SH, H8/300, or H8/500.)

2. what serial device connects your host to your Hitachi board (the �rst serial device available

on your host is the default).

3. what speed to use over the serial device.

13.4.7.1 Connecting to Hitachi boards

Use the special gdb command `device port' if you need to explicitly set the serial device. The

default port is the �rst available port on your host. This is only necessary on Unix hosts, where it

is typically something like `/dev/ttya'.

gdb has another special command to set the communications speed: `speed bps'. This command

also is only used from Unix hosts; on DOS hosts, set the line speed as usual from outside GDB with

the DOS mode command (for instance, `mode com2:9600,n,8,1,p' for a 9600 bps connection).

The `device' and `speed' commands are available only when you use a Unix host to debug your

Hitachi microprocessor programs. If you use a DOS host, GDB depends on an auxiliary terminate-

and-stay-resident program called asynctsr to communicate with the development board through

a PC serial port. You must also use the DOS mode command to set up the serial port on the DOS

side.

Chapter 13: Specifying a Debugging Target 141

13.4.7.2 Using the E7000 in-circuit emulator

You can use the E7000 in-circuit emulator to develop code for either the Hitachi SH or the

H8/300H. Use one of these forms of the `target e7000' command to connect GDB to your E7000:

target e7000 port speed

Use this form if your E7000 is connected to a serial port. The port argument identi�es

what serial port to use (for example, `com2'). The third argument is the line speed in

bits per second (for example, `9600').

target e7000 hostname

If your E7000 is installed as a host on a TCP/IP network, you can just specify its

hostname; GDB uses telnet to connect.

13.4.7.3 Special GDB commands for Hitachi micros

Some GDB commands are available only on the H8/300 or the H8/500 con�gurations:

set machine h8300

set machine h8300h

Condition GDB for one of the two variants of the H8/300 architecture with `set

machine'. You can use `show machine' to check which variant is currently in e�ect.

set memory mod

show memory

Specify which H8/500 memory model (mod) you are using with `set memory'; check

which memory model is in e�ect with `show memory'. The accepted values for mod are

small, big, medium, and compact.

13.4.8 GDB and remote MIPS boards

GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to a serial

line. This is available when you con�gure GDB with `--target=mips-idt-ecoff'.

Use these GDB commands to specify the connection to your target board:

142 Debugging with GDB

target mips port

To run a program on the board, start up gdb with the name of your program as the

argument. To connect to the board, use the command `target mips port', where port

is the name of the serial port connected to the board. If the program has not already

been downloaded to the board, you may use the load command to download it. You

can then use all the usual GDB commands.

For example, this sequence connects to the target board through a serial port, and

loads and runs a program called prog through the debugger:

host$ gdb prog
GDB is free software and . . .
(gdb) target mips /dev/ttyb
(gdb) load prog
(gdb) run

target mips hostname:portnumber

On some GDB host con�gurations, you can specify a TCP connection (for instance,

to a serial line managed by a terminal concentrator) instead of a serial port, using the

syntax `hostname:portnumber'.

GDB also supports these special commands for MIPS targets:

set processor args

show processor

Use the set processor command to set the type of MIPS processor when you want to

access processor-type-speci�c registers. For example, set processor r3041 tells GDB

to use the CPO registers appropriate for the 3041 chip. Use the show processor

command to see what MIPS processor GDB is using. Use the info reg command to

see what registers GDB is using.

set mipsfpu double

set mipsfpu single

set mipsfpu none

show mipsfpu

If your target board does not support the MIPS oating point coprocessor, you should

use the command `set mipsfpu none' (if you need this, you may wish to put the

command in your .gdbinit �le). This tells GDB how to �nd the return value of functions

which return oating point values. It also allows GDB to avoid saving the oating

point registers when calling functions on the board. If you are using a oating point

coprocessor with only single precision oating point support, as on the r4650 processor,

use the command `set mipsfpu single'. The default double precision oating point

coprocessor may be selected using `set mipsfpu double'.

Chapter 13: Specifying a Debugging Target 143

In previous versions the only choices were double precision or no oating point, so `set

mipsfpu on' will select double precision and `set mipsfpu off' will select no oating

point.

As usual, you can inquire about the mipsfpu variable with `show mipsfpu'.

set remotedebug n

show remotedebug

You can see some debugging information about communications with the board by

setting the remotedebug variable. If you set it to 1 using `set remotedebug 1', every

packet is displayed. If you set it to 2, every character is displayed. You can check the

current value at any time with the command `show remotedebug'.

set timeout seconds

set retransmit-timeout seconds

show timeout

show retransmit-timeout

You can control the timeout used while waiting for a packet, in the MIPS remote proto-

col, with the set timeout seconds command. The default is 5 seconds. Similarly, you

can control the timeout used while waiting for an acknowledgement of a packet with

the set retransmit-timeout seconds command. The default is 3 seconds. You can

inspect both values with show timeout and show retransmit-timeout. (These com-

mands are only available when GDB is con�gured for `--target=mips-idt-ecoff'.)

The timeout set by set timeout does not apply when GDB is waiting for your program

to stop. In that case, GDB waits forever because it has no way of knowing how long

the program is going to run before stopping.

13.4.9 Simulated CPU target

For some con�gurations, GDB includes a CPU simulator that you can use instead of a hardware

CPU to debug your programs. Currently, a simulator is available when GDB is con�gured to debug

Zilog Z8000 or Hitachi microprocessor targets.

For the Z8000 family, `target sim' simulates either the Z8002 (the unsegmented variant of

the Z8000 architecture) or the Z8001 (the segmented variant). The simulator recognizes which

architecture is appropriate by inspecting the object code.

target sim

Debug programs on a simulated CPU (which CPU depends on the GDB con�guration)

144 Debugging with GDB

After specifying this target, you can debug programs for the simulated CPU in the same style as

programs for your host computer; use the file command to load a new program image, the run

command to run your program, and so on.

As well as making available all the usual machine registers (see info reg), this debugging target

provides three additional items of information as specially named registers:

cycles Counts clock-ticks in the simulator.

insts Counts instructions run in the simulator.

time Execution time in 60ths of a second.

You can refer to these values in GDB expressions with the usual conventions; for example,

`b fputc if $cycles>5000' sets a conditional breakpoint that suspends only after at least 5000

simulated clock ticks.

Chapter 14: Controlling GDB 145

14 ControllingGDB

You can alter the way GDB interacts with you by using the set command. For commands

controlling how GDB displays data, see Section 8.7 [Print settings], page 74; other settings are

described here.

14.1 Prompt

GDB indicates its readiness to read a command by printing a string called the prompt. This

string is normally `(gdb)'. You can change the prompt string with the set prompt command. For

instance, when debugging GDB with GDB, it is useful to change the prompt in one of the GDB

sessions so that you can always tell which one you are talking to.

Note: set prompt no longer adds a space for you after the prompt you set. This allows you to

set a prompt which ends in a space or a prompt that does not.

set prompt newprompt

Directs GDB to use newprompt as its prompt string henceforth.

show prompt

Prints a line of the form: `Gdb's prompt is: your-prompt'

14.2 Command editing

GDB reads its input commands via the readline interface. This gnu library provides consistent

behavior for programs which provide a command line interface to the user. Advantages are gnu

Emacs-style or vi-style inline editing of commands, csh-like history substitution, and a storage and

recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with the command set.

set editing

set editing on

Enable command line editing (enabled by default).

146 Debugging with GDB

set editing off

Disable command line editing.

show editing

Show whether command line editing is enabled.

14.3 Command history

GDB can keep track of the commands you type during your debugging sessions, so that you

can be certain of precisely what happened. Use these commands to manage the GDB command

history facility.

set history filename fname

Set the name of the GDB command history �le to fname. This is the �le where GDB

reads an initial command history list, and where it writes the command history from

this session when it exits. You can access this list through history expansion or through

the history command editing characters listed below. This �le defaults to the value of

the environment variable GDBHISTFILE, or to `./.gdb_history' if this variable is not

set.

set history save

set history save on

Record command history in a �le, whose name may be speci�ed with the set history

filename command. By default, this option is disabled.

set history save off

Stop recording command history in a �le.

set history size size

Set the number of commands which GDB keeps in its history list. This defaults to the

value of the environment variable HISTSIZE, or to 256 if this variable is not set.

History expansion assigns special meaning to the character !.

Since ! is also the logical not operator in C, history expansion is o� by default. If you decide to

enable history expansion with the set history expansion on command, you may sometimes need

to follow ! (when it is used as logical not, in an expression) with a space or a tab to prevent it from

being expanded. The readline history facilities do not attempt substitution on the strings != and

!(, even when history expansion is enabled.

The commands to control history expansion are:

Chapter 14: Controlling GDB 147

set history expansion on

set history expansion

Enable history expansion. History expansion is o� by default.

set history expansion off

Disable history expansion.

The readline code comes with more complete documentation of editing and history

expansion features. Users unfamiliar with gnu Emacs or vi may wish to read it.

show history

show history filename

show history save

show history size

show history expansion

These commands display the state of the GDB history parameters. show history by

itself displays all four states.

show commands

Display the last ten commands in the command history.

show commands n

Print ten commands centered on command number n.

show commands +

Print ten commands just after the commands last printed.

14.4 Screen size

Certain commands to GDB may produce large amounts of information output to the screen. To

help you read all of it, GDB pauses and asks you for input at the end of each page of output. Type

RET when you want to continue the output, or q to discard the remaining output. Also, the screen

width setting determines when to wrap lines of output. Depending on what is being printed, GDB

tries to break the line at a readable place, rather than simply letting it overow onto the following

line.

Normally GDB knows the size of the screen from the termcap data base together with the value

of the TERM environment variable and the stty rows and stty cols settings. If this is not correct,

you can override it with the set height and set width commands:

148 Debugging with GDB

set height lpp

show height

set width cpl

show width

These set commands specify a screen height of lpp lines and a screen width of cpl

characters. The associated show commands display the current settings.

If you specify a height of zero lines, GDB does not pause during output no matter how

long the output is. This is useful if output is to a �le or to an editor bu�er.

Likewise, you can specify `set width 0' to prevent GDB from wrapping its output.

14.5 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual conven-

tions: octal numbers begin with `0', decimal numbers end with `.', and hexadecimal numbers begin

with `0x'. Numbers that begin with none of these are, by default, entered in base 10; likewise, the

default display for numbers|when no particular format is speci�ed|is base 10. You can change

the default base for both input and output with the set radix command.

set input-radix base

Set the default base for numeric input. Supported choices for base are decimal 8, 10,

or 16. base must itself be speci�ed either unambiguously or using the current default

radix; for example, any of

set radix 012
set radix 10.
set radix 0xa

sets the base to decimal. On the other hand, `set radix 10' leaves the radix unchanged

no matter what it was.

set output-radix base

Set the default base for numeric display. Supported choices for base are decimal 8, 10,

or 16. base must itself be speci�ed either unambiguously or using the current default

radix.

show input-radix

Display the current default base for numeric input.

show output-radix

Display the current default base for numeric display.

Chapter 14: Controlling GDB 149

14.6 Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running on a slow machine, you

may want to use the set verbose command. This makes GDB tell you when it does a lengthy

internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that the symbol

table for a source �le is being read; see symbol-file in Section 12.1 [Commands to specify �les],

page 113.

set verbose on

Enables GDB output of certain informational messages.

set verbose off

Disables GDB output of certain informational messages.

show verbose

Displays whether set verbose is on or o�.

By default, if GDB encounters bugs in the symbol table of an object �le, it is silent; but if you

are debugging a compiler, you may �nd this information useful (see Section 12.2 [Errors reading

symbol �les], page 117).

set complaints limit

Permits GDB to output limit complaints about each type of unusual symbols before

becoming silent about the problem. Set limit to zero to suppress all complaints; set it

to a large number to prevent complaints from being suppressed.

show complaints

Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid questions to

con�rm certain commands. For example, if you try to run a program which is already running:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to uninchingly face the consequences of your own commands, you can disable

this \feature":

150 Debugging with GDB

set confirm off

Disables con�rmation requests.

set confirm on

Enables con�rmation requests (the default).

show confirm

Displays state of con�rmation requests.

Chapter 15: Canned Sequences of Commands 151

15 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 [Breakpoint command lists], page 45), GDB

provides two ways to store sequences of commands for execution as a unit: user-de�ned commands

and command �les.

15.1 User-de�ned commands

A user-de�ned command is a sequence of GDB commands to which you assign a new name as a

command. This is done with the define command. User commands may accept up to 10 arguments

separated by whitespace. Arguments are accessed within the user command via $arg0. . .$arg9. A

trivial example:

define adder
print $arg0 + $arg1 + $arg2

To execute the command use:

adder 1 2 3

This de�nes the command adder, which prints the sum of its three arguments. Note the arguments

are text substitutions, so they may reference variables, use complex expressions, or even perform

inferior functions calls.

define commandname

De�ne a command named commandname. If there is already a command by that name,

you are asked to con�rm that you want to rede�ne it.

The de�nition of the command is made up of other GDB command lines, which are

given following the define command. The end of these commands is marked by a line

containing end.

if Takes a single argument, which is an expression to evaluate. It is followed by a series of

commands that are executed only if the expression is true (nonzero). There can then

optionally be a line else, followed by a series of commands that are only executed if

the expression was false. The end of the list is marked by a line containing end.

while The syntax is similar to if: the command takes a single argument, which is an ex-

pression to evaluate, and must be followed by the commands to execute, one per line,

152 Debugging with GDB

terminated by an end. The commands are executed repeatedly as long as the expression

evaluates to true.

document commandname

Document the user-de�ned command commandname, so that it can be accessed by

help. The command commandname must already be de�ned. This command reads

lines of documentation just as define reads the lines of the command de�nition, ending

with end. After the document command is �nished, help on command commandname

displays the documentation you have written.

You may use the document command again to change the documentation of a command.

Rede�ning the command with define does not change the documentation.

help user-defined

List all user-de�ned commands, with the �rst line of the documentation (if any) for

each.

show user

show user commandname

Display the GDB commands used to de�ne commandname (but not its documentation).

If no commandname is given, display the de�nitions for all user-de�ned commands.

When user-de�ned commands are executed, the commands of the de�nition are not printed. An

error in any command stops execution of the user-de�ned command.

If used interactively, commands that would ask for con�rmation proceed without asking when

used inside a user-de�ned command. Many GDB commands that normally print messages to say

what they are doing omit the messages when used in a user-de�ned command.

15.2 User-de�ned command hooks

You may de�ne hooks, which are a special kind of user-de�ned command. Whenever you run the

command `foo', if the user-de�ned command `hook-foo' exists, it is executed (with no arguments)

before that command.

In addition, a pseudo-command, `stop' exists. De�ning (`hook-stop') makes the associated

commands execute every time execution stops in your program: before breakpoint commands are

run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but treat them normally during

normal execution, you could de�ne:

Chapter 15: Canned Sequences of Commands 153

define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end

You can de�ne a hook for any single-word command in GDB, but not for command aliases; you

should de�ne a hook for the basic command name, e.g. backtrace rather than bt. If an error

occurs during the execution of your hook, execution of GDB commands stops and GDB issues a

prompt (before the command that you actually typed had a chance to run).

If you try to de�ne a hook which does not match any known command, you get a warning from

the define command.

15.3 Command �les

A command �le for GDB is a �le of lines that are GDB commands. Comments (lines starting

with #) may also be included. An empty line in a command �le does nothing; it does not mean to

repeat the last command, as it would from the terminal.

When you start GDB, it automatically executes commands from its init �les. These are �les

named `.gdbinit'. GDB reads the init �le (if any) in your home directory, then processes command

line options and operands, and then reads the init �le (if any) in the current working directory.

This is so the init �le in your home directory can set options (such as set complaints) which a�ect

the processing of the command line options and operands. The init �les are not executed if you

use the `-nx' option; see Section 2.1.2 [Choosing modes], page 14.

On some con�gurations of GDB, the init �le is known by a di�erent name (these are typically

environments where a specialized form of GDB may need to coexist with other forms, hence a

di�erent name for the specialized version's init �le). These are the environments with special init

�le names:

� VxWorks (Wind River Systems real-time OS): `.vxgdbinit'

� OS68K (Enea Data Systems real-time OS): `.os68gdbinit'

154 Debugging with GDB

� ES-1800 (Ericsson Telecom AB M68000 emulator): `.esgdbinit'

You can also request the execution of a command �le with the source command:

source �lename

Execute the command �le �lename.

The lines in a command �le are executed sequentially. They are not printed as they are executed.

An error in any command terminates execution of the command �le.

Commands that would ask for con�rmation if used interactively proceed without asking when

used in a command �le. Many GDB commands that normally print messages to say what they are

doing omit the messages when called from command �les.

15.4 Commands for controlled output

During the execution of a command �le or a user-de�ned command, normal GDB output is

suppressed; the only output that appears is what is explicitly printed by the commands in the

de�nition. This section describes three commands useful for generating exactly the output you

want.

echo text Print text. Nonprinting characters can be included in text using C escape sequences,

such as `\n' to print a newline. No newline is printed unless you specify one. In

addition to the standard C escape sequences, a backslash followed by a space stands

for a space. This is useful for displaying a string with spaces at the beginning or the

end, since leading and trailing spaces are otherwise trimmed from all arguments. To

print ` and foo = ', use the command `echo \ and foo = \ '.

A backslash at the end of text can be used, as in C, to continue the command onto

subsequent lines. For example,

echo This is some text\n\
which is continued\n\
onto several lines.\n

produces the same output as

echo This is some text\n
echo which is continued\n
echo onto several lines.\n

Chapter 15: Canned Sequences of Commands 155

output expression

Print the value of expression and nothing but that value: no newlines, no `$nn = '. The

value is not entered in the value history either. See Section 8.1 [Expressions], page 65,

for more information on expressions.

output/fmt expression

Print the value of expression in format fmt. You can use the same formats as for print.

See Section 8.4 [Output formats], page 69, for more information.

printf string, expressions. . .

Print the values of the expressions under the control of string. The expressions are

separated by commas and may be either numbers or pointers. Their values are printed

as speci�ed by string, exactly as if your program were to execute the C subroutine

printf (string, expressions. . .);

For example, you can print two values in hex like this:

printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the

simple ones that consist of backslash followed by a letter.

156 Debugging with GDB

Chapter 16: Using GDB under gnu Emacs 157

16 UsingGDBunder gnuEmacs

A special interface allows you to use gnu Emacs to view (and edit) the source �les for the

program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable �le you want

to debug as an argument. This command starts GDB as a subprocess of Emacs, with input and

output through a newly created Emacs bu�er.

Using GDB under Emacs is just like using GDB normally except for two things:

� All \terminal" input and output goes through the Emacs bu�er.

This applies both to GDB commands and their output, and to the input and output done by

the program you are debugging.

This is useful because it means that you can copy the text of previous commands and input

them again; you can even use parts of the output in this way.

All the facilities of Emacs' Shell mode are available for interacting with your program. In

particular, you can send signals the usual way|for example, C-c C-c for an interrupt, C-c C-z for

a stop.

� GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically �nds the source �le for that frame

and puts an arrow (`=>') at the left margin of the current line. Emacs uses a separate bu�er for

source display, and splits the screen to show both your GDB session and the source.

Explicit GDB list or search commands still produce output as usual, but you probably have

no reason to use them from Emacs.

Warning: If the directory where your program resides is not your current directory, it
can be easy to confuse Emacs about the location of the source �les, in which case the
auxiliary display bu�er does not appear to show your source. GDB can �nd programs
by searching your environment's PATH variable, so the GDB input and output session
proceeds normally; but Emacs does not get enough information back from GDB to
locate the source �les in this situation. To avoid this problem, either start GDB mode

158 Debugging with GDB

from the directory where your program resides, or specify an absolute �le name when
prompted for the M-x gdb argument.

A similar confusion can result if you use the GDB file command to switch to debugging
a program in some other location, from an existing GDB bu�er in Emacs.

By default, M-x gdb calls the program called `gdb'. If you need to call GDB by a di�erent

name (for example, if you keep several con�gurations around, with di�erent names) you can set

the Emacs variable gdb-command-name; for example,

(setq gdb-command-name "mygdb")

(preceded by ESC ESC, or typed in the *scratch* bu�er, or in your `.emacs' �le) makes Emacs call

the program named \mygdb" instead.

In the GDB I/O bu�er, you can use these special Emacs commands in addition to the standard

Shell mode commands:

C-h m Describe the features of Emacs' GDB Mode.

M-s Execute to another source line, like the GDB step command; also update the display

window to show the current �le and location.

M-n Execute to next source line in this function, skipping all function calls, like the GDB

next command. Then update the display window to show the current �le and location.

M-i Execute one instruction, like the GDB stepi command; update display window ac-

cordingly.

M-x gdb-nexti

Execute to next instruction, using the GDB nexti command; update display window

accordingly.

C-c C-f Execute until exit from the selected stack frame, like the GDB finish command.

M-c Continue execution of your program, like the GDB continue command.

Warning: In Emacs v19, this command is C-c C-p.

M-u Go up the number of frames indicated by the numeric argument (see section \Numeric

Arguments" in The gnu Emacs Manual), like the GDB up command.

Warning: In Emacs v19, this command is C-c C-u.

M-d Go down the number of frames indicated by the numeric argument, like the GDB down

command.

Chapter 16: Using GDB under gnu Emacs 159

Warning: In Emacs v19, this command is C-c C-d.

C-x & Read the number where the cursor is positioned, and insert it at the end of the GDB

I/O bu�er. For example, if you wish to disassemble code around an address that was

displayed earlier, type disassemble; then move the cursor to the address display, and

pick up the argument for disassemble by typing C-x &.

You can customize this further by de�ning elements of the list gdb-print-command;

once it is de�ned, you can format or otherwise process numbers picked up by C-x &

before they are inserted. A numeric argument to C-x & indicates that you wish special

formatting, and also acts as an index to pick an element of the list. If the list element

is a string, the number to be inserted is formatted using the Emacs function format;

otherwise the number is passed as an argument to the corresponding list element.

In any source �le, the Emacs command C-x SPC (gdb-break) tells GDB to set a breakpoint on

the source line point is on.

If you accidentally delete the source-display bu�er, an easy way to get it back is to type the

command f in the GDB bu�er, to request a frame display; when you run under Emacs, this recreates

the source bu�er if necessary to show you the context of the current frame.

The source �les displayed in Emacs are in ordinary Emacs bu�ers which are visiting the source

�les in the usual way. You can edit the �les with these bu�ers if you wish; but keep in mind that

GDB communicates with Emacs in terms of line numbers. If you add or delete lines from the text,

the line numbers that GDB knows cease to correspond properly with the code.

160 Debugging with GDB

Chapter 17: Reporting Bugs in GDB 161

17 Reporting Bugs in GDB

Your bug reports play an essential role in making GDB reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But in

any case the principal function of a bug report is to help the entire community by making the next

version of GDB work better. Bug reports are your contribution to the maintenance of GDB.

In order for a bug report to serve its purpose, you must include the information that enables us

to �x the bug.

17.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If the debugger gets a fatal signal, for any input whatever, that is a GDB bug. Reliable

debuggers never crash.

� If GDB produces an error message for valid input, that is a bug.

� If GDB does not produce an error message for invalid input, that is a bug. However, you

should note that your idea of \invalid input" might be our idea of \an extension" or \support

for traditional practice".

� If you are an experienced user of debugging tools, your suggestions for improvement of GDB

are welcome in any case.

17.2 How to report bugs

A number of companies and individuals o�er support for gnu products. If you obtained GDB

from a support organization, we recommend you contact that organization �rst.

You can �nd contact information for many support companies and individuals in the �le

`etc/SERVICE' in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for GDB to one of these addresses:

162 Debugging with GDB

bug-gdb@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gdb

Do not send bug reports to `info-gdb', or to `help-gdb', or to any newsgroups. Most users of

GDB do not want to receive bug reports. Those that do have arranged to receive `bug-gdb'.

The mailing list `bug-gdb' has a newsgroup `gnu.gdb.bug' which serves as a repeater. The

mailing list and the newsgroup carry exactly the same messages. Often people think of posting bug

reports to the newsgroup instead of mailing them. This appears to work, but it has one problem

which can be crucial: a newsgroup posting often lacks a mail path back to the sender. Thus, if we

need to ask for more information, we may be unable to reach you. For this reason, it is better to

send bug reports to the mailing list.

As a last resort, send bug reports on paper to:

gnu Debugger Bugs
Free Software Foundation Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not

sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and assume

that some details do not matter. Thus, you might assume that the name of the variable you use in

an example does not matter. Well, probably it does not, but one cannot be sure. Perhaps the bug

is a stray memory reference which happens to fetch from the location where that name is stored in

memory; perhaps, if the name were di�erent, the contents of that location would fool the debugger

into doing the right thing despite the bug. Play it safe and give a speci�c, complete example. That

is the easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to �x the bug if it is new to us.

Therefore, always write your bug reports on the assumption that the bug has not been reported

previously.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" Those bug reports

are useless, and we urge everyone to refuse to respond to them except to chide the sender to report

bugs properly.

Chapter 17: Reporting Bugs in GDB 163

To enable us to �x the bug, you should include all these things:

� The version of GDB. GDB announces it if you start with no arguments; you can also print it

at any time using show version.

Without this, we will not know whether there is any point in looking for the bug in the current

version of GDB.

� The type of machine you are using, and the operating system name and version number.

� What compiler (and its version) was used to compile GDB|e.g. \gcc{2.0".

� What compiler (and its version) was used to compile the program you are debugging|e.g.

\gcc{2.0".

� The command arguments you gave the compiler to compile your example and observe the bug.

For example, did you use `-O'? To guarantee you will not omit something important, list them

all. A copy of the Make�le (or the output from make) is su�cient.

If we were to try to guess the arguments, we would probably guess wrong and then we might

not encounter the bug.

� A complete input script, and all necessary source �les, that will reproduce the bug.

� A description of what behavior you observe that you believe is incorrect. For example, \It gets

a fatal signal."

Of course, if the bug is that GDB gets a fatal signal, then we will certainly notice it. But if

the bug is incorrect output, we might not notice unless it is glaringly wrong. You might as

well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly. Sup-

pose something strange is going on, such as, your copy of GDB is out of synch, or you have

encountered a bug in the C library on your system. (This has happened!) Your copy might

crash and ours would not. If you told us to expect a crash, then when ours fails to crash, we

would know that the bug was not happening for us. If you had not told us to expect a crash,

then we would not be able to draw any conclusion from our observations.

� If you wish to suggest changes to the GDB source, send us context di�s. If you even discuss

something in the GDB source, refer to it by context, not by line number.

The line numbers in our development sources will not match those in your sources. Your line

numbers would convey no useful information to us.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input

�le will make the bug go away and which changes will not a�ect it.

164 Debugging with GDB

This is often time consuming and not very useful, because the way we will �nd the bug is by

running a single example under the debugger with breakpoints, not by pure deduction from a

series of examples. We recommend that you save your time for something else.

Of course, if you can �nd a simpler example to report instead of the original one, that is a

convenience for us. Errors in the output will be easier to spot, running under the debugger

will take less time, and so on.

However, simpli�cation is not vital; if you do not want to do this, report the bug anyway and

send us the entire test case you used.

� A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary information,

such as the test case, on the assumption that a patch is all we need. We might see problems

with your patch and decide to �x the problem another way, or we might not understand it at

all.

Sometimes with a program as complicated as GDB it is very hard to construct an example

that will make the program follow a certain path through the code. If you do not send us the

example, we will not be able to construct one, so we will not be able to verify that the bug is

�xed.

And if we cannot understand what bug you are trying to �x, or why your patch should be an

improvement, we will not install it. A test case will help us to understand.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without �rst

using the debugger to �nd the facts.

Appendix A: Command Line Editing 165

Appendix A CommandLine Editing

This text describes GNU's command line editing interface.

A.1 Introduction to Line Editing

The following paragraphs describe the notation we use to represent keystrokes.

The text C-K is read as `Control-K' and describes the character produced when the Control key

is depressed and the K key is struck.

The text M-K is read as `Meta-K' and describes the character produced when the meta key (if

you have one) is depressed, and the K key is struck. If you do not have a meta key, the identical

keystroke can be generated by typing ESC �rst, and then typing K. Either process is known as

metafying the K key.

The text M-C-K is read as `Meta-Control-k' and describes the character produced by metafying

C-K.

In addition, several keys have their own names. Speci�cally, DEL, ESC, LFD, SPC, RET, and TAB

all stand for themselves when seen in this text, or in an init �le (see Section A.3 [Readline Init

File], page 168, for more info).

A.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the �rst

word on the line is misspelled. The Readline library gives you a set of commands for manipulating

the text as you type it in, allowing you to just �x your typo, and not forcing you to retype the

majority of the line. Using these editing commands, you move the cursor to the place that needs

correction, and delete or insert the text of the corrections. Then, when you are satis�ed with the

line, you simply press RET. You do not have to be at the end of the line to press RET; the entire

line is accepted regardless of the location of the cursor within the line.

166 Debugging with GDB

A.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears where

the cursor was, and then the cursor moves one space to the right. If you mistype a character, you

can use DEL to back up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice your error

until you have typed several other characters. In that case, you can type C-B to move the cursor

to the left, and then correct your mistake. Aftwerwards, you can move the cursor to the right with

C-F.

When you add text in the middle of a line, you will notice that characters to the right of the

cursor get `pushed over' to make room for the text that you have inserted. Likewise, when you

delete text behind the cursor, characters to the right of the cursor get `pulled back' to �ll in the

blank space created by the removal of the text. A list of the basic bare essentials for editing the

text of an input line follows.

C-B Move back one character.

C-F Move forward one character.

DEL Delete the character to the left of the cursor.

C-D Delete the character underneath the cursor.

Printing characters

Insert itself into the line at the cursor.

C-_ Undo the last thing that you did. You can undo all the way back to an empty line.

A.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you need in order to do editing

of the input line. For your convenience, many other commands have been added in addition to C-B,

C-F, C-D, and DEL. Here are some commands for moving more rapidly about the line.

C-A Move to the start of the line.

C-E Move to the end of the line.

M-F Move forward a word.

M-B Move backward a word.

Appendix A: Command Line Editing 167

C-L Clear the screen, reprinting the current line at the top.

Notice how C-F moves forward a character, while M-F moves forward a word. It is a loose

convention that control keystrokes operate on characters while meta keystrokes operate on words.

A.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use, usually by

yanking it back into the line. If the description for a command says that it `kills' text, then you

can be sure that you can get the text back in a di�erent (or the same) place later.

Here is the list of commands for killing text.

C-K Kill the text from the current cursor position to the end of the line.

M-D Kill from the cursor to the end of the current word, or if between words, to the end of

the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to the start

of the previous word.

C-W Kill from the cursor to the previous whitespace. This is di�erent than M-DEL because

the word boundaries di�er.

And, here is how to yank the text back into the line.

C-Y Yank the most recently killed text back into the bu�er at the cursor.

M-Y Rotate the kill-ring, and yank the new top. You can only do this if the prior command

is C-Y or M-Y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive kills

save all of the killed text together, so that when you yank it back, you get it in one clean sweep.

The kill ring is not line speci�c; the text that you killed on a previously typed line is available to

be yanked back later, when you are typing another line.

168 Debugging with GDB

A.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts as a

repeat count, other times it is the sign of the argument that is signi�cant. If you pass a negative

argument to a command which normally acts in a forward direction, that command will act in a

backward direction. For example, to kill text back to the start of the line, you might type M-- C-K.

The general way to pass numeric arguments to a command is to type meta digits before the

command. If the �rst `digit' you type is a minus sign (-), then the sign of the argument will

be negative. Once you have typed one meta digit to get the argument started, you can type

the remainder of the digits, and then the command. For example, to give the C-D command an

argument of 10, you could type M-1 0 C-D.

A.3 Readline Init File

Although the Readline library comes with a set of gnu Emacs-like keybindings, it is possible

that you would like to use a di�erent set of keybindings. You can customize programs that use

Readline by putting commands in an init �le in your home directory. The name of this �le is

`~/.inputrc'.

When a program which uses the Readline library starts up, the `~/.inputrc' �le is read, and

the keybindings are set.

In addition, the C-X C-R command re-reads this init �le, thus incorporating any changes that

you might have made to it.

A.3.1 Readline Init Syntax

There are only four constructs allowed in the `~/.inputrc' �le:

Variable Settings

You can change the state of a few variables in Readline. You do this by using the set

command within the init �le. Here is how you would specify that you wish to use vi

line editing commands:

set editing-mode vi

Appendix A: Command Line Editing 169

Right now, there are only a few variables which can be set; so few in fact, that we just

iterate them here:

editing-mode

The editing-mode variable controls which editing mode you are using.

By default, gnu Readline starts up in Emacs editing mode, where the

keystrokes are most similar to Emacs. This variable can either be set to

emacs or vi.

horizontal-scroll-mode

This variable can either be set to On or Off. Setting it to On means that

the text of the lines that you edit will scroll horizontally on a single screen

line when they are larger than the width of the screen, instead of wrapping

onto a new screen line. By default, this variable is set to Off.

mark-modified-lines

This variable when set to On, says to display an asterisk (`*') at the starts

of history lines which have been modi�ed. This variable is o� by default.

prefer-visible-bell

If this variable is set to On it means to use a visible bell if one is available,

rather than simply ringing the terminal bell. By default, the value is Off.

Key Bindings

The syntax for controlling keybindings in the `~/.inputrc' �le is simple. First you

have to know the name of the command that you want to change. The following pages

contain tables of the command name, the default keybinding, and a short description

of what the command does.

Once you know the name of the command, simply place the name of the key you wish

to bind the command to, a colon, and then the name of the command on a line in the

`~/.inputrc' �le. The name of the key can be expressed in di�erent ways, depending

on which is most comfortable for you.

keyname: function-name or macro

keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the above example, C-U is bound to the function universal-argument,

and C-O is bound to run the macro expressed on the right hand side (that

is, to insert the text `>&output' into the line).

"keyseq": function-name or macro

keyseq di�ers from keyname above in that strings denoting an entire key

sequence can be speci�ed. Simply place the key sequence in double quotes.

gnu Emacs style key escapes can be used, as in the following example:

170 Debugging with GDB

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, C-U is bound to the function universal-argument

(just as it was in the �rst example), C-X C-R is bound to the function re-

read-init-file, and ESC [1 1 ~ is bound to insert the text `Function

Key 1'.

A.3.1.1 Commands For Moving

beginning-of-line (C-A)

Move to the start of the current line.

end-of-line (C-E)

Move to the end of the line.

forward-char (C-F)

Move forward a character.

backward-char (C-B)

Move back a character.

forward-word (M-F)

Move forward to the end of the next word.

backward-word (M-B)

Move back to the start of this, or the previous, word.

clear-screen (C-L)

Clear the screen leaving the current line at the top of the screen.

A.3.1.2 Commands For Manipulating The History

accept-line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add it to the

history list. If this line was a history line, then restore the history line to its original

state.

previous-history (C-P)

Move `up' through the history list.

next-history (C-N)

Move `down' through the history list.

Appendix A: Command Line Editing 171

beginning-of-history (M-<)

Move to the �rst line in the history.

end-of-history (M->)

Move to the end of the input history, i.e., the line you are entering.

reverse-search-history (C-R)

Search backward starting at the current line and moving `up' through the history as

necessary. This is an incremental search.

forward-search-history (C-S)

Search forward starting at the current line and moving `down' through the the history

as necessary.

A.3.1.3 Commands For Changing Text

delete-char (C-D)

Delete the character under the cursor. If the cursor is at the beginning of the line,

and there are no characters in the line, and the last character typed was not C-D, then

return EOF.

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric argument says to kill the characters

instead of deleting them.

quoted-insert (C-Q, C-V)

Add the next character that you type to the line verbatim. This is how to insert things

like C-Q for example.

tab-insert (M-TAB)

Insert a tab character.

self-insert (a, b, A, 1, !, ...)

Insert yourself.

transpose-chars (C-T)

Drag the character before point forward over the character at point. Point moves

forward as well. If point is at the end of the line, then transpose the two characters

before point. Negative arguments don't work.

transpose-words (M-T)

Drag the word behind the cursor past the word in front of the cursor moving the cursor

over that word as well.

172 Debugging with GDB

upcase-word (M-U)

Uppercase all letters in the current (or following) word. With a negative argument, do

the previous word, but do not move point.

downcase-word (M-L)

Lowercase all letters in the current (or following) word. With a negative argument, do

the previous word, but do not move point.

capitalize-word (M-C)

Uppercase the �rst letter in the current (or following) word. With a negative argument,

do the previous word, but do not move point.

A.3.1.4 Killing And Yanking

kill-line (C-K)

Kill the text from the current cursor position to the end of the line.

backward-kill-line ()

Kill backward to the beginning of the line. This is normally unbound.

kill-word (M-D)

Kill from the cursor to the end of the current word, or if between words, to the end of

the next word.

backward-kill-word (M-DEL)

Kill the word behind the cursor.

unix-line-discard (C-U)

Kill the whole line the way C-U used to in Unix line input. The killed text is saved on

the kill-ring.

unix-word-rubout (C-W)

Kill the word the way C-W used to in Unix line input. The killed text is saved on the

kill-ring. This is di�erent than backward-kill-word because the word boundaries di�er.

yank (C-Y)

Yank the top of the kill ring into the bu�er at point.

yank-pop (M-Y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior command

is yank or yank-pop.

Appendix A: Command Line Editing 173

A.3.1.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument. M--

starts a negative argument.

universal-argument ()

Do what C-U does in gnu Emacs. By default, this is not bound.

A.3.1.6 Letting Readline Type For You

complete (TAB)

Attempt to do completion on the text before point. This is implementation de�ned.

Generally, if you are typing a �lename argument, you can do �lename completion; if

you are typing a command, you can do command completion, if you are typing in a

symbol to GDB, you can do symbol name completion, if you are typing in a variable

to Bash, you can do variable name completion.

possible-completions (M-?)

List the possible completions of the text before point.

A.3.1.7 Some Miscellaneous Commands

re-read-init-file (C-X C-R)

Read in the contents of your `~/.inputrc' �le, and incorporate any bindings found

there.

abort (C-G)

Stop running the current editing command.

prefix-meta (ESC)

Make the next character that you type be meta�ed. This is for people without a meta

key. Typing ESC F is equivalent to typing M-F.

undo (C-_)

Incremental undo, separately remembered for each line.

174 Debugging with GDB

revert-line (M-R)

Undo all changes made to this line. This is like typing the `undo' command enough

times to get back to the beginning.

A.3.2 Readline viMode

While the Readline library does not have a full set of vi editing functions, it does contain enough

to allow simple editing of the line.

In order to switch interactively between gnu Emacs and vi editing modes, use the command

M-C-J (toggle-editing-mode).

When you enter a line in vi mode, you are already placed in `insertion' mode, as if you had

typed an `i'. Pressing ESC switches you into `edit' mode, where you can edit the text of the line

with the standard vi movement keys, move to previous history lines with `k', and following lines

with `j', and so forth.

Appendix B: Using History Interactively 175

Appendix B Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user's stand-

point.

B.1 History Interaction

The History library provides a history expansion feature similar to the history expansion in csh.

The following text describes the syntax you use to manipulate history information.

History expansion takes two parts. In the �rst part, determine which line from the previous

history will be used for substitution. This line is called the event. In the second part, select portions

of that line for inclusion into the current line. These portions are called words. GDB breaks the

line into words in the same way that the Bash shell does, so that several English (or Unix) words

surrounded by quotes are considered one word.

B.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history subsititution, except when followed by a space, tab, or the end of the

line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?]

Refer to the most recent command containing string.

B.1.2 Word Designators

A : separates the event designator from the word designator. It can be omitted if the word

designator begins with a ^, $, * or %. Words are numbered from the beginning of the line, with the

�rst word being denoted by a 0 (zero).

176 Debugging with GDB

0 (zero) The zero'th word. For many applications, this is the command word.

n The n'th word.

^ The �rst argument. that is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y .

* All of the words, excepting the zero'th. This is a synonym for 1-$. It is not an error to

use * if there is just one word in the event. The empty string is returned in that case.

B.1.3 Modi�ers

After the optional word designator, you can add a sequence of one or more of the following

modi�ers, each preceded by a :.

The entire command line typed so far. This means the current command, not the

previous command.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing su�x of the form `.'su�x, leaving the basename.

e Remove all but the su�x.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

Appendix C: Formatting Documentation 177

Appendix C FormattingDocumentation

The GDB 4 release includes an already-formatted reference card, ready for printing with

PostScript or Ghostscript, in the `gdb' subdirectory of the main source directory1. If you can use

PostScript or Ghostscript with your printer, you can print the reference card immediately with

`refcard.ps'.

The release also includes the source for the reference card. You can format it, using TEX, by

typing:

make refcard.dvi

The GDB reference card is designed to print in landscape mode on US \letter" size paper; that

is, on a sheet 11 inches wide by 8.5 inches high. You will need to specify this form of printing as

an option to your dvi output program.

All the documentation for GDB comes as part of the machine-readable distribution. The docu-

mentation is written in Texinfo format, which is a documentation system that uses a single source

�le to produce both on-line information and a printed manual. You can use one of the Info for-

matting commands to create the on-line version of the documentation and TEX (or texi2roff) to

typeset the printed version.

GDB includes an already formatted copy of the on-line Info version of this manual in the

`gdb' subdirectory. The main Info �le is `gdb-version-number/gdb/gdb.info', and it refers to

subordinate �les matching `gdb.info*' in the same directory. If necessary, you can print out these

�les, or read them with any editor; but they are easier to read using the info subsystem in gnu

Emacs or the standalone info program, available as part of the gnu Texinfo distribution.

If you want to format these Info �les yourself, you need one of the Info formatting programs,

such as texinfo-format-buffer or makeinfo.

If you have makeinfo installed, and are in the top level GDB source directory (`gdb-4.16', in

the case of version 4.16), you can make the Info �le by typing:

cd gdb
make gdb.info

1 In `gdb-4.16/gdb/refcard.ps' of the version 4.16 release.

178 Debugging with GDB

If you want to typeset and print copies of this manual, you need TEX, a program to print its

dvi output �les, and `texinfo.tex', the Texinfo de�nitions �le.

TEX is a typesetting program; it does not print �les directly, but produces output �les called

dvi �les. To print a typeset document, you need a program to print dvi �les. If your system has

TEX installed, chances are it has such a program. The precise command to use depends on your

system; lpr -d is common; another (for PostScript devices) is dvips. The dvi print command may

require a �le name without any extension or a `.dvi' extension.

TEX also requires a macro de�nitions �le called `texinfo.tex'. This �le tells TEX how to typeset

a document written in Texinfo format. On its own, TEX cannot either read or typeset a Texinfo

�le. `texinfo.tex' is distributed with GDB and is located in the `gdb-version-number/texinfo'

directory.

If you have TEX and a dvi printer program installed, you can typeset and print this manual. First

switch to the the `gdb' subdirectory of the main source directory (for example, to `gdb-4.16/gdb')

and then type:

make gdb.dvi

Appendix D: Installing GDB 179

Appendix D Installing GDB

GDB comes with a configure script that automates the process of preparing GDB for instal-

lation; you can then use make to build the gdb program.1

The GDB distribution includes all the source code you need for GDB in a single directory, whose

name is usually composed by appending the version number to `gdb'.

For example, the GDB version 4.16 distribution is in the `gdb-4.16' directory. That directory

contains:

gdb-4.16/configure (and supporting �les)

script for con�guring GDB and all its supporting libraries

gdb-4.16/gdb

the source speci�c to GDB itself

gdb-4.16/bfd

source for the Binary File Descriptor library

gdb-4.16/include

gnu include �les

gdb-4.16/libiberty

source for the `-liberty' free software library

gdb-4.16/opcodes

source for the library of opcode tables and disassemblers

gdb-4.16/readline

source for the gnu command-line interface

gdb-4.16/glob

source for the gnu �lename pattern-matching subroutine

gdb-4.16/mmalloc

source for the gnu memory-mapped malloc package

The simplest way to con�gure and build GDB is to run configure from the `gdb-version-

number' source directory, which in this example is the `gdb-4.16' directory.

1 If you have a more recent version of GDB than 4.16, look at the `README' �le in the sources; we

may have improved the installation procedures since publishing this manual.

180 Debugging with GDB

First switch to the `gdb-version-number' source directory if you are not already in it; then run

configure. Pass the identi�er for the platform on which GDB will run as an argument.

For example:

cd gdb-4.16
./configure host
make

where host is an identi�er such as `sun4' or `decstation', that identi�es the platform where GDB

will run. (You can often leave o� host; configure tries to guess the correct value by examining

your system.)

Running `configure host' and then running make builds the `bfd', `readline', `mmalloc', and

`libiberty' libraries, then gdb itself. The con�gured source �les, and the binaries, are left in the

corresponding source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this automati-

cally when you run a di�erent shell, you may need to run sh on it explicitly:

sh configure host

If you run configure from a directory that contains source directories for multiple libraries or

programs, such as the `gdb-4.16' source directory for version 4.16, configure creates con�guration

�les for every directory level underneath (unless you tell it not to, with the `--norecursion' option).

You can run the configure script from any of the subordinate directories in the GDB distribu-

tion if you only want to con�gure that subdirectory, but be sure to specify a path to it.

For example, with version 4.16, type the following to con�gure only the bfd subdirectory:

cd gdb-4.16/bfd

../configure host

You can install gdb anywhere; it has no hardwired paths. However, you should make sure

that the shell on your path (named by the `SHELL' environment variable) is publicly readable.

Remember that GDB uses the shell to start your program|some systems refuse to let GDB debug

child processes whose programs are not readable.

Appendix D: Installing GDB 181

D.1 Compiling GDB in another directory

If you want to run GDB versions for several host or target machines, you need a di�erent gdb

compiled for each combination of host and target. configure is designed to make this easy by

allowing you to generate each con�guration in a separate subdirectory, rather than in the source

directory. If your make program handles the `VPATH' feature (gnu make does), running make in each

of these directories builds the gdb program speci�ed there.

To build gdb in a separate directory, run configure with the `--srcdir' option to specify where

to �nd the source. (You also need to specify a path to �nd configure itself from your working

directory. If the path to configure would be the same as the argument to `--srcdir', you can

leave out the `--srcdir' option; it is assumed.)

For example, with version 4.16, you can build GDB in a separate directory for a Sun 4 like this:

cd gdb-4.16

mkdir ../gdb-sun4

cd ../gdb-sun4

../gdb-4.16/configure sun4

make

When configure builds a con�guration using a remote source directory, it creates a tree for the

binaries with the same structure (and using the same names) as the tree under the source directory.

In the example, you'd �nd the Sun 4 library `libiberty.a' in the directory `gdb-sun4/libiberty',

and GDB itself in `gdb-sun4/gdb'.

One popular reason to build several GDB con�gurations in separate directories is to con�gure

GDB for cross-compiling (where GDB runs on one machine|the host|while debugging programs

that run on another machine|the target). You specify a cross-debugging target by giving the

`--target=target' option to configure.

When you run make to build a program or library, you must run it in a con�gured directory|

whatever directory you were in when you called configure (or one of its subdirectories).

The Makefile that configure generates in each source directory also runs recursively. If you

type make in a source directory such as `gdb-4.16' (or in a separate con�gured directory con�gured

with `--srcdir=dirname/gdb-4.16'), you will build all the required libraries, and then build GDB.

182 Debugging with GDB

When you have multiple hosts or targets con�gured in separate directories, you can run make

on them in parallel (for example, if they are NFS-mounted on each of the hosts); they will not

interfere with each other.

D.2 Specifying names for hosts and targets

The speci�cations used for hosts and targets in the configure script are based on a three-part

naming scheme, but some short prede�ned aliases are also supported. The full naming scheme

encodes three pieces of information in the following pattern:

architecture-vendor-os

For example, you can use the alias sun4 as a host argument, or as the value for target in a

--target=target option. The equivalent full name is `sparc-sun-sunos4'.

The configure script accompanying GDB does not provide any query facility to list all sup-

ported host and target names or aliases. configure calls the Bourne shell script config.sub to

map abbreviations to full names; you can read the script, if you wish, or you can use it to test your

guesses on abbreviations|for example:

% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub decstation
mips-dec-ultrix4.2
% sh config.sub hp300bsd
m68k-hp-bsd
% sh config.sub i386v
i386-unknown-sysv
% sh config.sub i786v
Invalid configuration `i786v': machine `i786v' not recognized

config.sub is also distributed in the GDB source directory (`gdb-4.16', for version 4.16).

Appendix D: Installing GDB 183

D.3 configure options

Here is a summary of the configure options and arguments that are most often useful for build-

ing GDB. configure also has several other options not listed here. See Info �le `configure.info',

node `What Configure Does', for a full explanation of configure.

configure [--help]
[--prefix=dir]
[--srcdir=dirname]
[--norecursion] [--rm]
[--target=target] host

You may introduce options with a single `-' rather than `--' if you prefer; but you may abbreviate

option names if you use `--'.

--help Display a quick summary of how to invoke configure.

-prefix=dir

Con�gure the source to install programs and �les under directory `dir'.

--srcdir=dirname

Warning: using this option requires gnu make, or another make that implements the

VPATH feature.

Use this option to make con�gurations in directories separate from the GDB source

directories. Among other things, you can use this to build (or maintain) several con�gu-

rations simultaneously, in separate directories. configure writes con�guration speci�c

�les in the current directory, but arranges for them to use the source in the directory

dirname. configure creates directories under the working directory in parallel to the

source directories below dirname.

--norecursion

Con�gure only the directory level where configure is executed; do not propagate

con�guration to subdirectories.

--rm Remove �les otherwise built during con�guration.

--target=target

Con�gure GDB for cross-debugging programs running on the speci�ed target. Without

this option, GDB is con�gured to debug programs that run on the same machine (host)

as GDB itself.

There is no convenient way to generate a list of all available targets.

host . . . Con�gure GDB to run on the speci�ed host.

There is no convenient way to generate a list of all available hosts.

184 Debugging with GDB

configure accepts other options, for compatibility with con�guring other gnu tools recursively;

but these are the only options that a�ect GDB or its supporting libraries.

Index 185

Index

#
. 17

in Modula-2 . 102

$
$. 79

$$. 79

$. 81

$ and info breakpoints . 38

$ and info line . 63

$, $, and value history . 71

$. 81

$ exitcode . 81

$bpnum . 36

$cdir. 62

$cwd . 62

.

. 101

.esgdbinit . 153

`.gdbinit' . 153

.os68gdbinit . 153

.vxgdbinit . 153

/
/proc. 29

:
:: . 67, 101

@
@ . 68

{
{type}. 66

A
a.out and C++ . 93

abbreviation . 17

active targets . 119

add-shared-symbol-file . 116

add-symbol-file . 115

AMD 29K register stack . 83

AMD EB29K . 121

AMD29K via UDI . 133

arguments (to your program) . 25

arti�cial array . 68

assembly instructions . 63

assignment . 107

attach . 28

automatic display . 72

automatic thread selection . 32

awatch . 40

B
b . 36

backtrace . 54

break. 36

break : : : thread threadno . 52

break in overloaded functions . 95

breakpoint commands . 45

breakpoint conditions . 43

breakpoint numbers . 35

breakpoint on memory address . 35

breakpoint on variable modi�cation 35

breakpoint subroutine, remote 124

breakpoints . 35

breakpoints and threads . 52

bt . 54

bug criteria . 161

bug reports . 161

bugs in GDB . 161

C
c . 47

C and C++ . 91

C and C++ checks . 95

C and C++ constants . 93

186 Debugging with GDB

C and C++ defaults . 94

C and C++ operators . 91

C++ . 91

C++ and object formats . 93

C++ exception handling . 95

C++ scope resolution . 67

C++ support, not in co� . 93

C++ symbol decoding style . 78

C++ symbol display . 96

call . 110

call overloaded functions . 94

call stack . 53

calling functions . 110

calling make . 15

casts, to view memory . 66

catch. 40

catch exceptions . 57

cd . 27

cdir . 62

checks, range . 89

checks, type . 88

checksum, for GDB remote . 128

choosing target byte order . 122

clear. 42

clearing breakpoints, watchpoints 41

co� versus C++ . 93

colon, doubled as scope operator 101

colon-colon . 67

command �les . 152, 153

command line editing . 145

commands . 45

commands for C++ . 95

commands to STDBUG (ST2000) 137

comment . 17

compilation directory . 62

complete . 20

completion. 18

completion of quoted strings . 19

condition . 44

conditional breakpoints . 43

con�guring GDB . 179

con�rmation . 150

connect (to STDBUG) . 137

continue . 47

continuing . 47

continuing threads . 52

control C, and remote debugging 125

controlling terminal . 27

convenience variables . 80

core . 115

core dump �le . 113

core-file . 115

CPU simulator . 143

crash of debugger . 161

current directory . 62

current thread . 31

cwd . 62

D
d . 42

debugger crash . 161

debugging optimized code . 23

debugging stub, example . 128

debugging target. 119

define . 151

delete . 42

delete breakpoints . 42

delete display . 73

deleting breakpoints, watchpoints 41

demangling . 77

detach . 28

device . 140

dir . 62

directories for source �les . 61

directory . 62

directory, compilation . 62

directory, current . 62

dis . 43

disable . 43

disable breakpoints . 42, 43

disable display . 73

disassemble . 63

display . 72

display of expressions . 72

do . 56

document . 152

Index 187

documentation. 177

down . 56

down-silently . 56

download to H8/300 or H8/500 115

download to Hitachi SH. 115

download to Nindy-960 . 115

download to VxWorks . 139

dynamic linking . 115

E
eb.log . 136

EB29K board . 133

EBMON . 134

echo . 154

eco� and C++ . 93

editing . 145

editing-mode . 169

elf/dwarf and C++ . 93

elf/stabs and C++ . 93

else . 151

Emacs . 157

enable . 43

enable breakpoints . 42, 43

enable display . 73

end . 45

entering numbers . 148

environment (of your program) . 25

error on valid input . 161

event designators . 175

examining data . 65

examining memory. 70

exception handlers . 40, 57

exceptionHandler . 125

exec-file . 113

executable �le . 113

exiting GDB . 15

expansion . 175

expressions . 65

expressions in C or C++ . 91

expressions in C++ . 93

expressions in Modula-2. 96

F
f . 55

fatal signal . 161

fatal signals . 50

fg . 47

file . 113

finish . 49

inching . 150

oating point . 84

oating point registers . 82

oating point, MIPS remote . 142

flush i cache . 126

focus of debugging . 31

foo . 118

fork, debugging programs which call 32

format options . 74

formatted output . 69

Fortran . 1

forward-search . 61

frame . 53

frame . 54, 55

frame number . 54

frame pointer . 53

frameless execution . 54

G
g++ . 91

GDB bugs, reporting . 161

GDB reference card . 177

GDBHISTFILE . 146

gdbserve.nlm . 131

gdbserver . 129

getDebugChar . 125

gnu C++ . 91

gnu Emacs . 157

H
h . 19

H8/300 or H8/500 download . 115

H8/300 or H8/500 simulator . 143

handle . 51

handle exception . 124

handling signals . 50

188 Debugging with GDB

hbreak . 37

help . 19

help target . 120

help user-defined . 152

heuristic-fence-post (MIPS) . 58

history expansion . 146

history �le . 146

history number . 79

history save . 146

history size . 146

history substitution . 146

Hitachi SH download . 115

Hitachi SH simulator . 143

horizontal-scroll-mode . 169

I
i . 21

i/o . 27

i386 . 124

i386-stub.c . 124

i960 . 132

if . 151

ignore . 45

ignore count (of breakpoint) . 44

INCLUDE RDB . 138

info . 21

info address . 103

info all-registers . 82

info args . 57

info breakpoints . 38

info catch . 57

info display . 73

info f . 57

info files . 116

info float . 84

info frame . 57, 87

info functions . 104

info line . 62

info locals . 57

info proc . 29

info proc id . 30

info proc mappings . 29

info proc status . 30

info proc times . 30

info program . 35

info registers . 82

info s . 55

info set . 21

info share . 117

info sharedlibrary . 117

info signals . 51

info source . 87, 104

info sources . 104

info stack . 55

info target . 116

info terminal . 27

info threads . 31

info types . 104

info variables . 104

info watchpoints . 40

inheritance . 96

init �le . 153

init �le name . 153

initial frame . 53

innermost frame . 53

inspect . 65

installation . 179

instructions, assembly . 63

Intel . 124

interaction, readline . 165

internal GDB breakpoints . 39

interrupt . 15

interrupting remote programs . 127

interrupting remote targets . 125

invalid input . 161

J
jump . 108

K
kill . 29

L
l . 59

languages . 85

latest breakpoint . 36

Index 189

leaving GDB . 15

linespec . 60

list . 59

listing machine instructions . 63

load �lename . 115

log �le for EB29K . 136

M
m680x0 . 124

m68k-stub.c . 124

machine instructions . 63

maint info breakpoints . 39

maint print psymbols . 105

maint print symbols . 105

make . 15

mapped . 114

mark-modified-lines . 169

member functions . 94

memory models, H8/500 . 141

memory tracing . 35

memory, viewing as typed object 66

memory-mapped symbol �le . 114

memset . 126

MIPS boards . 141

MIPS remote oating point . 142

MIPS remotedebug protocol . 143

MIPS stack . 57

Modula-2 . 96

Modula-2 built-ins . 98

Modula-2 checks . 101

Modula-2 constants . 99

Modula-2 defaults . 100

Modula-2 operators . 97

Modula-2, deviations from . 100

Motorola 680x0 . 124

multiple processes . 32

multiple targets . 119

multiple threads . 30

N
n . 49

names of symbols . 103

namespace in C++ . 94

negative breakpoint numbers . 39

New systag . 31

next . 49

nexti. 50

ni . 50

Nindy . 132

number representation . 148

numbers for breakpoints . 35

O
object formats and C++ . 93

online documentation . 19

optimized code, debugging . 23

outermost frame . 53

output . 154

output formats . 69

overloading . 47

overloading in C++ . 95

P
packets, reporting on stdout . 129

partial symbol dump . 105

patching binaries . 110

path . 26

pauses in output . 147

pipes . 25

pointer, �nding referent . 75

prefer-visible-bell . 169

print. 65

print settings . 74

printf . 155

printing data . 65

process image . 29

processes, multiple . 32

prompt . 145

protocol, GDB remote serial . 128

ptype . 103

putDebugChar . 125

pwd . 27

Q
q . 15

quit [expression] . 15

190 Debugging with GDB

quotes in commands . 19

quoting names . 103

R
raise exceptions . 41

range checking . 89

rbreak . 38

reading symbols immediately . 114

readline . 145

readnow . 114

redirection . 27

reference card . 177

reference declarations . 94

register stack, AMD29K . 83

registers . 82

regular expression . 38

reloading symbols . 105

remote connection without stubs 129

remote debugging . 122

remote programs, interrupting . 127

remote serial debugging summary 126

remote serial debugging, overview 123

remote serial protocol . 128

remote serial stub . 124

remote serial stub list . 123

remote serial stub, initialization 124

remote serial stub, main routine 124

remote stub, example . 128

remote stub, support routines . 125

remotedebug, MIPS protocol . 143

repeating commands . 17

reporting bugs in GDB . 161

reset . 133

response time, MIPS debugging . 57

resuming execution . 47

RET . 17

retransmit-timeout, MIPS protocol 143

return . 109

returning from a function . 109

reverse-search . 61

run . 24

running . 24

running 29K programs . 133

running VxWorks tasks . 140

rwatch . 40

S
s . 48

saving symbol table . 114

scope . 101

search . 61

searching . 61

section . 116

select-frame . 54

selected frame . 53

serial connections, debugging . 129

serial device, Hitachi micros . 140

serial line speed, Hitachi micros 140

serial line, target remote . 127

serial protocol, GDB remote . 128

set . 21

set args . 25

set check . 89, 90

set check range . 90

set check type . 89

set complaints . 149

set confirm . 150

set demangle-style . 78

set editing . 145

set endian auto . 122

set endian big . 122

set endian little . 122

set environment . 26

set gnutarget . 120

set height . 147

set history expansion . 147

set history filename . 146

set history save . 146

set history size . 146

set input-radix . 148

set language . 86

set listsize . 59

set machine . 141

set memory mod . 141

set mipsfpu . 142

set output-radix . 148

Index 191

set print address. 74

set print array . 75

set print asm-demangle . 77

set print demangle . 77

set print elements . 76

set print max-symbolic-offset 75

set print null-stop . 76

set print object . 78

set print pretty . 76

set print sevenbit-strings . 76

set print static-members . 78

set print symbol-filename . 74

set print union . 77

set print vtbl . 79

set processor args . 142

set prompt . 145

set remotedebug . 129, 143

set retransmit-timeout . 143

set rstack high address . 83

set symbol-reloading . 105

set timeout . 143

set variable . 107

set verbose . 149

set width . 147

set write . 111

set debug traps . 124

setting variables . 107

setting watchpoints . 39

share . 117

shared libraries . 116

sharedlibrary . 117

shell. 15

shell escape . 15

show . 21

show args . 25

show check range . 90

show check type . 89

show commands . 147

show complaints . 149

show confirm . 150

show convenience . 81

show copying . 21

show demangle-style . 78

show directories . 62

show editing . 146

show endian . 122

show environment . 26

show gnutarget . 120

show height . 147

show history . 147

show input-radix . 148

show language . 87

show listsize . 59

show machine . 141

show mipsfpu . 142

show output-radix . 148

show paths . 26

show print address . 74

show print array . 76

show print asm-demangle . 78

show print demangle . 77

show print elements . 76

show print max-symbolic-offset 75

show print object. 78

show print pretty. 76

show print sevenbit-strings . 77

show print static-members . 78

show print symbol-filename . 75

show print union . 77

show print vtbl . 79

show processor . 142

show prompt . 145

show remotedebug . 129, 143

show retransmit-timeout . 143

show rstack high address . 83

show symbol-reloading . 105

show timeout . 143

show user . 152

show values . 80

show verbose . 149

show version . 21

show warranty . 21

show width . 147

show write . 111

si . 50

signal . 109

192 Debugging with GDB

signals . 50

silent . 46

sim . 143

simulator . 143

simulator, H8/300 or H8/500 . 143

simulator, Hitachi SH . 143

simulator, Z8000 . 143

size of screen . 147

source . 154

source path . 61

sparc-stub.c . 124

speed . 140

ST2000 auxiliary commands . 137

st2000 cmd . 137

stack frame . 53

stack on MIPS . 57

stacking targets . 119

starting . 24

STDBUG commands (ST2000) 137

step . 48

stepi. 50

stepping . 47

stopped threads . 52

stub example, remote debugging 128

stupid questions . 150

switching threads . 30

switching threads automatically . 32

symbol decoding style, C++ . 78

symbol dump . 105

symbol names . 103

symbol overloading . 47

symbol table . 113

symbol-file . 113

symbols, reading immediately . 114

T
target . 119

target amd-eb . 121

target array . 122

target byte order . 122

target core . 120

target cpu32bug . 121

target e7000 . 141

target est . 121

target exec . 120

target hms . 121

target mips port . 142

target nindy . 121

target op50n . 121

target remote . 120

target rom68k . 122

target sim . 121, 143

target sparclite . 122

target st2000 . 121

target udi . 121

target vxworks . 121

target w89k . 121

tbreak . 37

TCP port, target remote . 127

terminal . 27

thbreak . 37

this . 94

thread apply . 32

thread breakpoints . 52

thread identi�er (GDB) . 31

thread identi�er (system) . 31

thread number . 31

thread threadno . 31

threads and watchpoints . 40

threads of execution . 30

threads, automatic switching . 32

threads, continuing . 52

threads, stopped . 52

timeout, MIPS protocol . 143

toggle-editing-mode . 174

tty . 27

type casting memory . 66

type checking . 88

type conversions in C++ . 94

U
u . 49

udi . 133

UDI . 133

undisplay . 73

unknown address, locating . 69

Index 193

unset environment . 26

until. 49

up . 56

up-silently . 56

user-de�ned command . 151

V
value history . 79

variable name conict . 67

variable values, wrong . 67

variables, setting . 107

version number . 21

vi style command editing . 174

VxWorks . 137

vxworks-timeout . 138

W
watch. 39

watchpoints . 35

watchpoints and threads . 40

whatis . 103

where. 55

while . 151

wild pointer, interpreting . 75

word completion . 18

working directory . 62

working directory (of your program) 27

working language . 85

writing into core�les . 110

writing into executables . 110

wrong values . 67

X
x . 70

xco� and C++ . 93

Z
Z8000 simulator . 143

194 Debugging with GDB

The body of this manual is set in

cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.

cmti10 at 10.95pt ,

cmb10 at 10.95pt, and

cmsl10 at 10.95pt

are used for emphasis.

i

Table of Contents

Summary of GDB. 1

Free software . 1

Contributors to GDB . 2

1 A Sample GDB Session . 5

2 Getting In and Out of GDB . 11

2.1 Invoking GDB . 11

2.1.1 Choosing �les . 12

2.1.2 Choosing modes . 14

2.2 Quitting GDB . 15

2.3 Shell commands . 15

3 GDB Commands . 17

3.1 Command syntax . 17

3.2 Command completion . 18

3.3 Getting help . 19

4 Running Programs Under GDB 23

4.1 Compiling for debugging . 23

4.2 Starting your program . 24

4.3 Your program's arguments . 25

4.4 Your program's environment . 25

4.5 Your program's working directory . 27

4.6 Your program's input and output . 27

4.7 Debugging an already-running process . 28

4.8 Killing the child process . 29

4.9 Additional process information . 29

4.10 Debugging programs with multiple threads . 30

4.11 Debugging programs with multiple processes 32

5 Stopping and Continuing . 35

5.1 Breakpoints, watchpoints, and exceptions . 35

5.1.1 Setting breakpoints . 36

5.1.2 Setting watchpoints . 39

5.1.3 Breakpoints and exceptions . 40

ii Debugging with GDB

5.1.4 Deleting breakpoints . 41

5.1.5 Disabling breakpoints . 42

5.1.6 Break conditions . 43

5.1.7 Breakpoint command lists . 45

5.1.8 Breakpoint menus . 47

5.2 Continuing and stepping . 47

5.3 Signals . 50

5.4 Stopping and starting multi-thread programs . 52

6 Examining the Stack . 53

6.1 Stack frames . 53

6.2 Backtraces . 54

6.3 Selecting a frame . 55

6.4 Information about a frame . 56

6.5 MIPS machines and the function stack . 57

7 Examining Source Files . 59

7.1 Printing source lines . 59

7.2 Searching source �les . 61

7.3 Specifying source directories . 61

7.4 Source and machine code . 62

8 Examining Data . 65

8.1 Expressions . 65

8.2 Program variables . 66

8.3 Arti�cial arrays . 68

8.4 Output formats . 69

8.5 Examining memory. 70

8.6 Automatic display . 72

8.7 Print settings . 74

8.8 Value history . 79

8.9 Convenience variables . 80

8.10 Registers . 82

8.11 Floating point hardware . 84

9 Using GDB with Di�erent Languages 85

9.1 Switching between source languages . 85

9.1.1 List of �lename extensions and languages 85

9.1.2 Setting the working language . 86

9.1.3 Having GDB infer the source language 87

9.2 Displaying the language . 87

9.3 Type and range checking . 87

iii

9.3.1 An overview of type checking . 88

9.3.2 An overview of range checking . 89

9.4 Supported languages . 90

9.4.1 C and C++ . 91

9.4.1.1 C and C++ operators . 91

9.4.1.2 C and C++ constants . 93

9.4.1.3 C++ expressions . 93

9.4.1.4 C and C++ defaults . 94

9.4.1.5 C and C++ type and range checks 95

9.4.1.6 GDB and C . 95

9.4.1.7 GDB features for C++ . 95

9.4.2 Modula-2 . 96

9.4.2.1 Operators . 97

9.4.2.2 Built-in functions and procedures 98

9.4.2.3 Constants . 99

9.4.2.4 Modula-2 defaults . 100

9.4.2.5 Deviations from standard Modula-2 100

9.4.2.6 Modula-2 type and range checks 101

9.4.2.7 The scope operators :: and 101

9.4.2.8 GDB and Modula-2 . 102

10 Examining the Symbol Table 103

11 Altering Execution . 107

11.1 Assignment to variables . 107

11.2 Continuing at a di�erent address . 108

11.3 Giving your program a signal . 109

11.4 Returning from a function . 109

11.5 Calling program functions . 110

11.6 Patching programs . 110

12 GDB Files . 113

12.1 Commands to specify �les . 113

12.2 Errors reading symbol �les . 117

13 Specifying a Debugging Target 119

13.1 Active targets. 119

13.2 Commands for managing targets . 119

13.3 Choosing target byte order . 122

13.4 Remote debugging . 122

13.4.1 The GDB remote serial protocol . 123

13.4.1.1 What the stub can do for you 124

iv Debugging with GDB

13.4.1.2 What you must do for the stub 125

13.4.1.3 Putting it all together . 126

13.4.1.4 Communication protocol 128

13.4.1.5 Using the gdbserver program 129

13.4.1.6 Using the gdbserve.nlm program 131

13.4.2 GDB with a remote i960 (Nindy) . 132

13.4.2.1 Startup with Nindy . 132

13.4.2.2 Options for Nindy . 132

13.4.2.3 Nindy reset command . 133

13.4.3 The UDI protocol for AMD29K. 133

13.4.4 The EBMON protocol for AMD29K 133

13.4.4.1 Communications setup . 134

13.4.4.2 EB29K cross-debugging . 136

13.4.4.3 Remote log . 136

13.4.5 GDB with a Tandem ST2000 . 137

13.4.6 GDB and VxWorks . 137

13.4.6.1 Connecting to VxWorks . 138

13.4.6.2 VxWorks download . 139

13.4.6.3 Running tasks . 140

13.4.7 GDB and Hitachi microprocessors 140

13.4.7.1 Connecting to Hitachi boards 140

13.4.7.2 Using the E7000 in-circuit emulator 141

13.4.7.3 Special GDB commands for Hitachi micros . . . 141

13.4.8 GDB and remote MIPS boards . 141

13.4.9 Simulated CPU target . 143

14 Controlling GDB . 145

14.1 Prompt . 145

14.2 Command editing . 145

14.3 Command history . 146

14.4 Screen size. 147

14.5 Numbers . 148

14.6 Optional warnings and messages . 149

15 Canned Sequences of Commands 151

15.1 User-de�ned commands . 151

15.2 User-de�ned command hooks . 152

15.3 Command �les . 153

15.4 Commands for controlled output . 154

16 Using GDB under gnu Emacs 157

v

17 Reporting Bugs in GDB . 161

17.1 Have you found a bug? . 161

17.2 How to report bugs . 161

Appendix A Command Line Editing 165

A.1 Introduction to Line Editing . 165

A.2 Readline Interaction . 165

A.2.1 Readline Bare Essentials . 166

A.2.2 Readline Movement Commands . 166

A.2.3 Readline Killing Commands . 167

A.2.4 Readline Arguments . 168

A.3 Readline Init File . 168

A.3.1 Readline Init Syntax . 168

A.3.1.1 Commands For Moving . 170

A.3.1.2 Commands For Manipulating The History 170

A.3.1.3 Commands For Changing Text 171

A.3.1.4 Killing And Yanking . 172

A.3.1.5 Specifying Numeric Arguments 173

A.3.1.6 Letting Readline Type For You 173

A.3.1.7 Some Miscellaneous Commands 173

A.3.2 Readline vi Mode . 174

Appendix B Using History Interactively 175

B.1 History Interaction . 175

B.1.1 Event Designators . 175

B.1.2 Word Designators . 175

B.1.3 Modi�ers . 176

Appendix C Formatting Documentation 177

Appendix D Installing GDB . 179

D.1 Compiling GDB in another directory . 181

D.2 Specifying names for hosts and targets . 182

D.3 configure options . 183

Index . 185

vi Debugging with GDB

