
A Common Error Description
Library for UNIX

Ken Raeburn
Bill Sommerfeld

MIT Student Information Processing Board

last updated 1 January 1989
for version 1.2

DRAFT COPY ONLY

Abstract

UNIX has always had a clean and simple system call interface, with a standard set of
error codes passed between the kernel and user programs. Unfortunately, the same cannot
be said of many of the libraries layered on top of the primitives provided by the kernel.
Typically, each one has used a di�erent style of indicating errors to their callers, leading to
a total hodgepodge of error handling, and considerable amounts of work for the programmer.
This paper describes a library and associated utilities which allows a more uniform way for
libraries to return errors to their callers, and for programs to describe errors and exceptional
conditions to their users.

Copyright c
 1987, 1988 by the Student Information Processing Board of the Massachusetts
Institute of Technology.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of M.I.T. and the M.I.T. S.I.P.B. not be
used in advertising or publicity pertaining to distribution of the software without speci�c,
written prior permission. M.I.T. and the M.I.T. S.I.P.B. make no representations about
the suitability of this software for any purpose. It is provided "as is" without express or
implied warranty.

Note that the �le texinfo.tex, provided with this distribution, is from the Free Software
Foundation, and is under di�erent copyright restrictions from the remainder of this package.

1

0.1 Why com err?

In building application software packages, a programmer often has to deal with a number
of libraries, each of which can use a di�erent error-reporting mechanism. Sometimes one of
two values is returned, indicating simply SUCCESS or FAILURE, with no description of
errors encountered. Sometimes it is an index into a table of text strings, where the name of
the table used is dependent on the library being used when the error is generated; since each
table starts numbering at 0 or 1, additional information as to the source of the error code is
needed to determine which table to look at. Sometimes no text messages are supplied at all,
and the programmer must supply them at any point at which he may wish to report error
conditions. Often, a global variable is assigned some value describing the error, but the
programmer has to know in each case whether to look at errno, h_errno, the return value
from hes_err(), or whatever other variables or routines are speci�ed. And what happens if
something in the procedure of examining or reporting the error changes the same variable?

The package we have developed is an attempt to present a common error-handling mech-
anism to manipulate the most common form of error code in a fashion that does not have
the problems listed above.

A list of up to 256 text messages is supplied to a translator we have written, along with
the three- to four-character \name" of the error table. The library using this error table
need only call a routine generated from this error-table source to make the table \known"
to the com err library, and any error code the library generates can be converted to the
corresponding error message. There is also a default format for error codes accidentally
returned before making the table known, which is of the form `unknown code foo 32', where
`foo' would be the name of the table.

0.2 Error codes

Error codes themselves are 32 bit (signed) integers, of which the high order 24 bits are
an identi�er of which error table the error code is from, and the low order 8 bits are a
sequential error number within the table. An error code may thus be easily decomposed
into its component parts. Only the lowest 32 bits of an error code are considered signi�cant
on systems which support wider values.

Error table 0 is de�ned to match the UNIX system call error table (sys_errlist); this
allows errno values to be used directly in the library (assuming that errno is of a type with
the same width as long). Other error table numbers are formed by compacting together
the �rst four characters of the error table name. The mapping between characters in the
name and numeric values in the error code are de�ned in a system-independent fashion, so
that two systems that can pass integral values between them can reliably pass error codes
without loss of meaning; this should work even if the character sets used are not the same.
(However, if this is to be done, error table 0 should be avoided, since the local system call
error tables may di�er.)

Any variable which is to contain an error code should be declared long. The draft
proposed American National Standard for C (as of May, 1988) requires that long variables
be at least 32 bits; any system which does not support 32-bit long values cannot make
use of this package (nor much other software that assumes an ANSI-C environment base)
without signi�cant e�ort.

2 A Common Error Description Library for UNIX

0.3 Error table source �le

The error table source �le begins with the declaration of the table name, as

error_table tablename

Individual error codes are speci�ed with

error_code ERROR NAME, "text message"

where `ec' can also be used as a short form of `error_code'. To indicate the end of the
table, use `end'. Thus, a (short) sample error table might be:

error_table dsc

error_code DSC_DUP_MTG_NAME,
"Meeting already exists"

ec DSC_BAD_PATH,
"A bad meeting pathname was given"

ec DSC_BAD_MODES,
"Invalid mode for this access control list"

end

0.4 The error-table compiler

The error table compiler is named compile_et. It takes one argument, the pathname
of a �le (ending in `.et', e.g., `dsc_err.et') containing an error table source �le. It parses
the error table, and generates two output �les { a C header �le (`discuss_err.h') which
contains de�nitions of the numerical values of the error codes de�ned in the error table,
and a C source �le which should be compiled and linked with the executable. The header
�le must be included in the source of a module which wishes to reference the error codes
de�ned; the object module generated from the C code may be linked in to a program which
wishes to use the printed forms of the error codes.

This translator accepts a -language lang argument, which determines for which lan-
guage (or language variant) the output should be written. At the moment, lang is currently
limited to ANSI-C and K&R-C, and some abbreviated forms of each. Eventually, this will
be extended to include some support for C++. The default is currently K&R-C, though the
generated sources will have ANSI-C code conditionalized on the symbol __STDC__.

0.5 Run-time support routines

Any source �le which uses the routines supplied with or produced by the com err pack-
age should include the header �le `<com_err.h>'. It contains declarations and de�nitions
which may be needed on some systems. (Some functions cannot be referenced properly
without the return type declarations in this �le. Some functions may work properly on
most architectures even without the header �le, but relying on this is not recommended.)

3

The run-time support routines and variables provided via this package include the fol-
lowing:

void initialize_xxxx_error_table (void);

One of these routines is built by the error compiler for each error table. It makes the
xxxx error table \known" to the error reporting system. By convention, this routine should
be called in the initialization routine of the xxxx library. If the library has no initialization
routine, some combination of routines which form the core of the library should ensure that
this routine is called. It is not advised to leave it the caller to make this call.

There is no harm in calling this routine more than once.

#define ERROR_TABLE_BASE_xxxx nnnnnL

This symbol contains the value of the �rst error code entry in the speci�ed table. This
rarely needs be used by the programmer.

const char *error_message (long code);

This routine returns the character string error message associated with code; if this is
associated with an unknown error table, or if the code is associated with a known error table
but the code is not in the table, a string of the form `Unknown code xxxx nn' is returned,
where xxxx is the error table name produced by reversing the compaction performed on the
error table number implied by that error code, and nn is the o�set from that base value.

Although this routine is available for use when needed, its use should be left to circum-
stances which render com_err (below) unusable.

void com_err (const char *whoami, /* module reporting error */
long code, /* error code */
const char *format, /* format for additional detail */
...); /* (extra parameters) */

This routine provides an alternate way to print error messages to standard error; it
allows the error message to be passed in as a parameter, rather than in an external variable.
Provide grammatical context for \message."

If format is (char *)NULL, the formatted message will not be printed. format may not
be omitted.

#include <stdarg.h>

void com_err_va (const char *whoami,
long code,
const char *format,
va_list args);

This routine provides an interface, equivalent to com_err above, which may be used by
higher-level variadic functions (functions which accept variable numbers of arguments).

#include <stdarg.h>

void (*set_com_err_hook (void (*proc) ())) ();

void (*proc) (const char *whoami, long code, va_list args);

void reset_com_err_hook ();

4 A Common Error Description Library for UNIX

These two routines allow a routine to be dynamically substituted for `com_err'. After
`set_com_err_hook' has been called, calls to `com_err' will turn into calls to the new hook
routine. `reset_com_err_hook' turns o� this hook. This may intended to be used in
daemons (to use a routine which calls syslog(3)), or in a window system application (which
could pop up a dialogue box).

If a program is to be used in an environment in which simply printing messages to the
stderr stream would be inappropriate (such as in a daemon program which runs without a
terminal attached), set_com_err_hook may be used to redirect output from com_err. The
following is an example of an error handler which uses syslog(3) as supplied in BSD 4.3:

#include <stdio.h>
#include <stdarg.h>
#include <syslog.h>

/* extern openlog (const char * name, int logopt, int facility); */
/* extern syslog (int priority, char * message, ...); */

void hook (const char * whoami, long code,
const char * format, va_list args)

{
char buffer[BUFSIZ];
static int initialized = 0;
if (!initialized) {

openlog (whoami,
LOG_NOWAIT|LOG_CONS|LOG_PID|LOG_NDELAY,
LOG_DAEMON);

initialized = 1;
}
vsprintf (buffer, format, args);
syslog (LOG_ERR, "%s %s", error_message (code), buffer);

}

After making the call set_com_err_hook (hook);, any calls to com_err will result in
messages being sent to the syslogd daemon for logging. The name of the program, `whoami',
is supplied to the `openlog()' call, and the message is formatted into a bu�er and passed
to syslog.

Note that since the extra arguments to com_err are passed by reference via the va_

list value args, the hook routine may place any form of interpretation on them, including
ignoring them. For consistency, printf-style interpretation is suggested, via vsprintf (or
_doprnt on BSD systems without full support for the ANSI C library).

0.6 Coding Conventions

The following conventions are just some general stylistic conventions to follow when
writing robust libraries and programs. Conventions similar to this are generally followed
inside the UNIX kernel and most routines in the Multics operating system. In general,
a routine either succeeds (returning a zero error code, and doing some side e�ects in the
process), or it fails, doing minimal side e�ects; in any event, any invariant which the library
assumes must be maintained.

5

In general, it is not in the domain of non user-interface library routines to write error
messages to the user's terminal, or halt the process. Such forms of \error handling" should
be reserved for failures of internal invariants and consistancy checks only, as it provides the
user of the library no way to clean up for himself in the event of total failure.

Library routines which can fail should be set up to return an error code. This should
usually be done as the return value of the function; if this is not acceptable, the routine
should return a \null" value, and put the error code into a parameter passed by reference.

Routines which use the �rst style of interface can be used from user-interface levels of a
program as follows:

{
if ((code = initialize_world(getuid(), random())) != 0) {

com_err("demo", code,
"when trying to initialize world");

exit(1);
}
if ((database = open_database("my_secrets", &code))==NULL) {

com_err("demo", code,
"while opening my_secrets");

exit(1);
}

}

A caller which fails to check the return status is in error. It is possible to look for code
which ignores error returns by using lint; look for error messages of the form \foobar returns
value which is sometimes ignored" or \foobar returns value which is always ignored."

Since libraries may be built out of other libraries, it is often necessary for the success
of one routine to depend on another. When a lower level routine returns an error code,
the middle level routine has a few possible options. It can simply return the error code
to its caller after doing some form of cleanup, it can substitute one of its own, or it can
take corrective action of its own and continue normally. For instance, a library routine
which makes a \connect" system call to make a network connection may re
ect the system
error code ECONNREFUSED (Connection refused) to its caller, or it may return a \server not
available, try again later," or it may try a di�erent server.

Cleanup which is typically necessary may include, but not be limited to, freeing allocated
memory which will not be needed any more, unlocking concurrancy locks, dropping reference
counts, closing �le descriptors, or otherwise undoing anything which the procedure did up
to this point. When there are a lot of things which can go wrong, it is generally good to
write one block of error-handling code which is branched to, using a goto, in the event of
failure. A common source of errors in UNIX programs is failing to close �le descriptors
on error returns; this leaves a number of \zombied" �le descriptors open, which eventually
causes the process to run out of �le descriptors and fall over.

{
FILE *f1=NULL, *f2=NULL, *f3=NULL;
int status = 0;

if ((f1 = fopen(FILE1, "r")) == NULL) {
status = errno;

6 A Common Error Description Library for UNIX

goto error;
}

/*
* Crunch for a while
*/

if ((f2 = fopen(FILE2, "w")) == NULL) {
status = errno;
goto error;

}

if ((f3 = fopen(FILE3, "a+")) == NULL) {
status = errno;

goto error;
}

/*
* Do more processing.
*/
fclose(f1);
fclose(f2);
fclose(f3);
return 0;

error:
if (f1) fclose(f1);
if (f2) fclose(f2);
if (f3) fclose(f3);
return status;

}

0.7 Building and Installation

The distribution of this package will probably be done as a compressed \tar"-format
�le available via anonymous FTP from SIPB.MIT.EDU. Retrieve `pub/com_err.tar.Z'
and extract the contents. A subdirectory profiled should be created to hold objects
compiled for pro�ling. Running \make all" should then be su�cient to build the library
and error-table compiler. The �les `libcom_err.a', `libcom_err_p.a', `com_err.h', and
`compile_et' should be installed for use; `com_err.3' and `compile_et.1' can also be
installed as manual pages.

Potential problems:

� Use of strcasecmp, a routine provided in BSD for case-insensitive string comparisons.
If an equivalent routine is available, you can modify CFLAGS in the make�le to de�ne
strcasecmp to the name of that routine.

� Compilers that de�ned __STDC__ without providing the header �le <stdarg.h>. One
such example is Metaware's High \C" compiler, as provided at Project Athena on the

7

IBM RT/PC workstation; if __HIGHC__ is de�ned, it is assumed that <stdarg.h> is not
available, and therefore <varargs.h> must be used. If the symbol VARARGS is de�ned
(e.g., in the make�le), <varargs.h> will be used.

� If your linker rejects symbols that are simultaneously de�ned in two library �les, edit
`Makefile' to remove `perror.c' from the library. This �le contains a version of
perror(3) which calls com_err instead of calling write directly.

As I do not have access to non-BSD systems, there are probably bugs present that may
interfere with building or using this package on other systems. If they are reported to me,
they can probably be �xed for the next version.

0.8 Bug Reports

Please send any comments or bug reports to the principal author: Ken Raeburn,
Raeburn@Athena.MIT.EDU.

0.9 Acknowledgements

I would like to thank: Bill Sommerfeld, for his help with some of this documentation, and
catching some of the bugs the �rst time around; Honeywell Information Systems, for not
killing o� the Multics operating system before I had an opportunity to use it; Honeywell's
customers, who persuaded them not to do so, for a while; Ted Anderson of CMU, for
catching some problems before version 1.2 left the nest; Stan Zanarotti and several others
of MIT's Student Information Processing Board, for getting us started with \discuss," for
which this package was originally written; and everyone I've talked into | I mean, asked
to read this document and the \man" pages.

8 A Common Error Description Library for UNIX

