
GDB Annotations

Edition 0.5
May 1994

Cygnus Support

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Copyright c 1994 Free Software Foundation

Chapter 3: Values 1

1 What is an Annotation?

To produce annotations, start GDB with the --annotate=2 option.

Annotations start with a newline character, two `control-z' characters, and the name
of the annotation. If there is no additional information associated with this annotation,
the name of the annotation is followed immediately by a newline. If there is additional
information, the name of the annotation is followed by a space, the additional information,
and a newline. The additional information cannot contain newline characters.

Any output not beginning with a newline and two `control-z' characters denotes literal
output from GDB. Currently there is no need for GDB to output a newline followed by two
`control-z' characters, but if there was such a need, the annotations could be extended
with an `escape' annotation which means those three characters as output.

A simple example of starting up GDB with annotations is:

$ gdb --annotate=2
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.12.3 (sparc-sun-sunos4.1.3),
Copyright 1994 Free Software Foundation, Inc.

^Z^Zpre-prompt
(gdb)
^Z^Zprompt
quit

^Z^Zpost-prompt
$

Here `quit' is input to GDB; the rest is output from GDB. The three lines beginning
`^Z^Z' (where `^Z' denotes a `control-z' character) are annotations; the rest is output from
GDB.

2 The Server Pre�x

To issue a command to GDB without a�ecting certain aspects of the state which is
seen by users, pre�x it with `server '. This means that this command will not a�ect the
command history, nor will it a�ect GDB's notion of which command to repeat if hRETi is
pressed on a line by itself.

The server pre�x does not a�ect the recording of values into the value history; to print
a value without recording it into the value history, use the output command instead of the
print command.

Chapter 3: Values 2

3 Values

When a value is printed in various contexts, GDB uses annotations to delimit the value
from the surrounding text.

If a value is printed using print and added to the value history, the annotation looks
like

^Z^Zvalue-history-begin history-number value-ags
history-string
^Z^Zvalue-history-value
the-value
^Z^Zvalue-history-end

where history-number is the number it is getting in the value history, history-string is
a string, such as `$5 = ', which introduces the value to the user, the-value is the output
corresponding to the value itself, and value-ags is `*' for a value which can be dereferenced
and `-' for a value which cannot.

If the value is not added to the value history (it is an invalid oat or it is printed with
the output command), the annotation is similar:

^Z^Zvalue-begin value-ags
the-value
^Z^Zvalue-end

When GDB prints an argument to a function (for example, in the output from the
backtrace command), it annotates it as follows:

^Z^Zarg-begin
argument-name
^Z^Zarg-name-end
separator-string
^Z^Zarg-value value-ags
the-value
^Z^Zarg-end

where argument-name is the name of the argument, separator-string is text which sep-
arates the name from the value for the user's bene�t (such as `='), and value-ags and
the-value have the same meanings as in a value-history-begin annotation.

When printing a structure, GDB annotates it as follows:

^Z^Zfield-begin value-ags
�eld-name
^Z^Zfield-name-end
separator-string
^Z^Zfield-value
the-value
^Z^Zfield-end

where �eld-name is the name of the �eld, separator-string is text which separates the
name from the value for the user's bene�t (such as `='), and value-ags and the-value have
the same meanings as in a value-history-begin annotation.

When printing an array, GDB annotates it as follows:

Chapter 4: Frames 3

^Z^Zarray-section-begin array-index value-ags

where array-index is the index of the �rst element being annotated and value-ags has
the same meaning as in a value-history-begin annotation. This is followed by any number
of elements, where is element can be either a single element:

`,' whitespace ; omitted for the �rst element
the-value
^Z^Zelt

or a repeated element

`,' whitespace ; omitted for the �rst element
the-value
^Z^Zelt-rep number-of-repititions
repetition-string
^Z^Zelt-rep-end

In both cases, the-value is the output for the value of the element and whitespace can
contain spaces, tabs, and newlines. In the repeated case, number-of-repititons is the number
of consecutive array elements which contain that value, and repetition-string is a string
which is designed to convey to the user that repitition is being depicted.

Once all the array elements have been output, the array annotation is ended with

^Z^Zarray-section-end

4 Frames

Whenever GDB prints a frame, it annotates it. For example, this applies to frames
printed when GDB stops, output from commands such as backtrace or up, etc.

The frame annotation begins with

^Z^Zframe-begin level address
level-string

where level is the number of the frame (0 is the innermost frame, and other frames have
positive numbers), address is the address of the code executing in that frame, and level-

string is a string designed to convey the level to the user. address is in the form `0x' followed
by one or more lowercase hex digits (note that this does not depend on the language). The
frame ends with

^Z^Zframe-end

Between these annotations is the main body of the frame, which can consist of

�

^Z^Zfunction-call
function-call-string

where function-call-string is text designed to convey to the user that this frame is
associated with a function call made by GDB to a function in the program being
debugged.

�

Chapter 4: Frames 4

^Z^Zsignal-handler-caller
signal-handler-caller-string

where signal-handler-caller-string is text designed to convey to the user that this frame
is associated with whatever mechanism is used by this operating system to call a signal
handler (it is the frame which calls the signal handler, not the frame for the signal
handler itself).

� A normal frame.

This can optionally (depending on whether this is thought of as interesting information
for the user to see) begin with

^Z^Zframe-address
address
^Z^Zframe-address-end
separator-string

where address is the address executing in the frame (the same address as in the frame-
begin annotation, but printed in a form which is intended for user consumption|in
particular, the syntax varies depending on the language), and separator-string is a
string intended to separate this address from what follows for the user's bene�t.

Then comes

^Z^Zframe-function-name
function-name
^Z^Zframe-args
arguments

where function-name is the name of the function executing in the frame, or `??' if not
known, and arguments are the arguments to the frame, with parentheses around them
(each argument is annotated individually as well see Chapter 3 [Values], page 2).

If source information is available, a reference to it is then printed:

^Z^Zframe-source-begin
source-intro-string
^Z^Zframe-source-file
�lename
^Z^Zframe-source-file-end
:
^Z^Zframe-source-line
line-number
^Z^Zframe-source-end

where source-intro-string separates for the user's bene�t the reference from the text
which precedes it, �lename is the name of the source �le, and line-number is the line
number within that �le (the �rst line is line 1).

If GDB prints some information about where the frame is from (which library, which
load segment, etc.; currently only done on the RS/6000), it is annotated with

^Z^Zframe-where
information

Then, if source is to actually be displayed for this frame (for example, this is not true
for output from the backtrace command), then a source annotation (see Chapter 11

Chapter 6: Annotation for GDB Input 5

[Source], page 8) is displayed. Unlike most annotations, this is output instead of the
normal text which would be output, not in addition.

5 Displays

When GDB is told to display something using the display command, the results of the
display are annotated:

^Z^Zdisplay-begin
number
^Z^Zdisplay-number-end
number-separator
^Z^Zdisplay-format
format
^Z^Zdisplay-expression
expression
^Z^Zdisplay-expression-end
expression-separator
^Z^Zdisplay-value
value
^Z^Zdisplay-end

where number is the number of the display, number-separator is intended to separate the
number from what follows for the user, format includes information such as the size, format,
or other information about how the value is being displayed, expression is the expression
being displayed, expression-separator is intended to separate the expression from the text
that follows for the user, and value is the actual value being displayed.

6 Annotation for GDB Input

When GDB prompts for input, it annotates this fact so it is possible to know when to
send output, when the output from a given command is over, etc.

Di�erent kinds of input each have a di�erent input type. Each input type has three
annotations: a pre- annotation, which denotes the beginning of any prompt which is being
output, a plain annotation, which denotes the end of the prompt, and then a post- anno-
tation which denotes the end of any echo which may (or may not) be associated with the
input. For example, the prompt input type features the following annotations:

^Z^Zpre-prompt
^Z^Zprompt
^Z^Zpost-prompt

The input types are

prompt When GDB is prompting for a command (the main GDB prompt).

commands When GDB prompts for a set of commands, like in the commands command.
The annotations are repeated for each command which is input.

overload-choice

When GDB wants the user to select between various overloaded functions.

Chapter 8: Information on Breakpoints 6

query When GDB wants the user to con�rm a potentially dangerous operation.

prompt-for-continue

When GDB is asking the user to press return to continue. Note: Don't expect
this to work well; instead use set height 0 to disable prompting. This is
because the counting of lines is buggy in the presence of annotations.

7 Errors

^Z^Zquit

This annotation occurs right before GDB responds to an interrupt.

^Z^Zerror

This annotation occurs right before GDB responds to an error.

Quit and error annotations indicate that any annotations which GDB was in the middle
of may end abruptly. For example, if a value-history-begin annotation is followed by a
error, one cannot expect to receive the matching value-history-end. One cannot expect
not to receive it either, however; an error annotation does not necessarily mean that GDB
is immediately returning all the way to the top level.

A quit or error annotation may be preceded by

^Z^Zerror-begin

Any output between that and the quit or error annotation is the error message.

Warning messages are not yet annotated.

8 Information on Breakpoints

The output from the info breakpoints command is annotated as follows:

^Z^Zbreakpoints-headers
header-entry
^Z^Zbreakpoints-table

where header-entry has the same syntax as an entry (see below) but instead of containing
data, it contains strings which are intended to convey the meaning of each �eld to the user.
This is followed by any number of entries. If a �eld does not apply for this entry, it is
omitted. Fields may contain trailing whitespace. Each entry consists of:

^Z^Zrecord
^Z^Zfield 0
number
^Z^Zfield 1
type
^Z^Zfield 2
disposition
^Z^Zfield 3
enable
^Z^Zfield 4
address

Chapter 10: Running the Program 7

^Z^Zfield 5
what
^Z^Zfield 6
frame
^Z^Zfield 7
condition
^Z^Zfield 8
ignore-count
^Z^Zfield 9
commands

Note that address is intended for user consumption|the syntax varies depending on the
language.

The output ends with

^Z^Zbreakpoints-table-end

9 Invalidation Notices

The following annotations say that certain pieces of state may have changed.

^Z^Zframes-invalid

The frames (for example, output from the backtrace command) may have
changed.

^Z^Zbreakpoints-invalid

The breakpoints may have changed. For example, the user just added or deleted
a breakpoint.

10 Running the Program

When the program starts executing due to a GDB command such as step or continue,

^Z^Zstarting

is output. When the program stops,

^Z^Zstopped

is output. Before the stopped annotation, a variety of annotations describe how the
program stopped.

^Z^Zexited exit-status

The program exited, and exit-status is the exit status (zero for successful exit,
otherwise nonzero).

^Z^Zsignalled

The program exited with a signal. After the ^Z^Zsignalled, the annotation
continues:

Chapter 12: Annotations We Might Want in the Future 8

intro-text
^Z^Zsignal-name
name
^Z^Zsignal-name-end
middle-text
^Z^Zsignal-string
string
^Z^Zsignal-string-end
end-text

where name is the name of the signal, such as SIGILL or SIGSEGV, and string is
the explanation of the signal, such as Illegal Instruction or Segmentation
fault. intro-text, middle-text, and end-text are for the user's bene�t and have
no particular format.

^Z^Zsignal

The syntax of this annotation is just like signalled, but GDB is just saying
that the program received the signal, not that it was terminated with it.

^Z^Zbreakpoint number

The program hit breakpoint number number.

^Z^Zwatchpoint number

The program hit watchpoint number number.

11 Displaying Source

The following annotation is used instead of displaying source code:

^Z^Zsource �lename:line:character:middle:addr

where �lename is an absolute �le name indicating which source �le, line is the line
number within that �le (where 1 is the �rst line in the �le), character is the character
position within the �le (where 0 is the �rst character in the �le) (for most debug formats
this will necessarily point to the beginning of a line), middle is `middle' if addr is in the
middle of the line, or `beg' if addr is at the beginning of the line, and addr is the address
in the target program associated with the source which is being displayed. addr is in the
form `0x' followed by one or more lowercase hex digits (note that this does not depend on
the language).

12 Annotations We Might Want in the Future

- target-invalid
the target might have changed (registers, heap contents, or
execution status). For performance, we might eventually want
to hit `registers-invalid' and `all-registers-invalid' with
greater precision

- systematic annotation for set/show parameters (including
invalidation notices).

Index 9

- similarly, `info' returns a list of candidates for invalidation
notices.

Index

(Index is nonexistent)

