
E U R O P E A N S O U T H E R N O B S E R V A T O R Y

Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral

Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VERY LARGE TELESCOPE

Prepar

Appro

Release
Data Management Division

The ESO SkyCat Tool

Astronomical Image and Catalog Browser

Programmer’s Manual
ed
Name Date Signature

ved
Name Date Signature

d
Name Date Signature

Doc.No. VLT-MAN-ESO-19400-1552

Issue 2.2

Date 5/16/99

VLT PROGRAMME * TELEPHONE: +49 89 32006-0 * FAX: +49 89 320 2362

P. Quinn

A. Brighton 5/16/99

M. Albrecht

ii The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552

The ESO SkyCat Tool - Issue 2.2VLT-MAN-ESO-19400-1552 iii
Issue/Rev. Date Section/Page affected Reason/Initiation/Document/Re-
marks

1.0 19/01/98 All Created

2.0 01/08/98 Installation, Reference Updated.

2.1 11/09/98 All Updated, setup HTML, cross refs.

iv The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 5
Table of Contents

1 Introduction 7

2 Overview 9
2.1 Skycat Classes. 9

2.2 Package Organization . 10

2.3 Single Binary Versions of Skycat . 11

3 User’s Guide 13
3.1 The Skycat Application. 13

3.2 Skycat Widget Classes. 15

3.2.1 The Main Skycat Window . 15

3.2.2 The Catalog Window . 16

3.3 Extending Skycat . 16

3.3.1 Plugins . 17

Widget Level Plugins 17
Example Widget Level Plugin 18
Application Level Plugins 21
Example Application Level Plugin 22

3.3.2 Subclassing . 22

3.4 Remote Interfaces. 23

3.4.1 Tcl send . 23

3.4.2 Remote Socket Interface . 24

3.4.3 SysV Shared Memory . 24

3.4.4 Real-Time Server . 24

3.4.5 Mmap . 24

3.5 Skycat Public Interfaces . 25

3.5.1 Extended Tcl Commands . 25

3.5.2 C++ Classes . 25

3.5.3 C Libraries . 25

3.5.4 Itcl Classes, Itk Widgets . 25

3.5.5 Tcl Procs . 26

4 Reference 27
4.1 COMMANDS . 27

skycat(1) . 28

4.2 C++ CLASSES, C ROUTINES . 32

Skycat(3) . 33

SkySearch(3) . 40

ITCL CLASSES . 42

SkyCat(n). 43

SkyCatCtrl(n) . 46

SkyCatHduChooser(n) . 50

SkyQuery(n) . 53

6 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
SkyQueryResult(n)55

SkySearch(n)57

5 Installation61
5.1 Requirements . 61

5.2 Building the Software . 61

5.3 If you run into Problems... . 62

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 7
1 Introduction

This manual describes the implementation of skycat, a tool that combines visualization of images

with access to catalogs and archive data for astronomy.

The skycat application consists mainly of a small collection of Itcl classes based on the rtd (Real-

Time Display) and cat (Astronomical Catalog Library) packages. Skycat uses inheritance to add cat-

alog features to the rtd application, and to add image support to the catalog classes.

In addition, the skycat package contains support for generating a single binary executable that can

be more easily distributed on the net, since it does not require any special Tcl environment. The

skycat features are also available as a Tcl package or shared library that can be dynamically loaded

in a Tcl application.

1.1 Getting Skycat Software, Binaries and Documentation

The latest versions of the skycat sources, binaries, and documentation may always be found under

the following URL:

ftp://ftp.archive.eso.org/pub/skycat/

The documentation is in the doc subdirectory of the above URL.

1.2 Skycat mailing list

A mailing list has been setup to support a wide collaboration on the skycat, rtd and cat projects.

Please see the following URL for more information:

http://archive.eso.org/skycat/

1.3 Distribution and support

The skycat binaries are freely available to any users who want to download and use the software at

their own risk. Users who wish to modify the source code should contact malbrech@eso.org.

1.4 Purpose

The purpose of this manual is to describe the implementation of the skycat application.

1.5 Scope

This document is primarily aimed at software developers who would like to add new features to

skycat or modify existing features.

1.6 Applicable Documents

This document is based on the following documents:

[1] VLT-PRO-ESO-10000-0228, 1.0 10/03/93 -- VLT Software Programming Standards

1.7 Reference Documents

The following documents are referenced in this document:

8 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
[1] VLT-MAN-ESO-19400-1550 1.0 19/01/98 -- Tcl and C++ Utilities, Programmer’s Manual

[2] VLT-MAN-ESO-19400-1551 1.0 19/01/98 -- Astronomical Tcl and C++ Utilities

[3] GEN-SPE-ESO-19400-0949 3.1 16/01/98 -- Astronomical Catalog Library, User Manual

[4] VLT-MAN-ESO-17240-0866 1.0 15/01/98 -- Real Time Display, User’s Manual

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 9

-

-

2 Overview

The skycat application adds catalog searching features to the rtd (real-time image display) by defin-

ing subclasses of key Itcl classes in the rtd and cat packages. This section gives a short overview of

the skycat classes and the source code package. The next section goes into more details on the indi-

vidual widget classes and features for extending skycat, such as plugins.

2.1 Skycat Classes

The following table gives an overview of the Itcl classes defined by skycat:

The Reference section contains man pages for each of the skycat classes. The parent classes are de-

scribed in the documentation for the cat and rtd packages. Part of the class hierarchy is shown be-

Class Name Parent Class Description

SkyCat rtd::Rtd This class defines skycat’s main top level image win
dow and defines some supporting code for use by
remote applications using Tclsend.

SkyCatCtrl rtd::RtdImageCtrl Defines the image frame and control panel within the
main skycat window and also provides methods for
drawing symbols in the image window in world or
image coordinates.

SkyCatHDUChooser util::TopLevelWidget This is a pop up window that displays a list of availa
ble HDUs (FITS header/data units). This includes a
listing of any FITS tables and image extensions. A
small version of each image extension is also dis-
played.

SkySearch cat::AstroCat This is the top level window for searching catalogs. It
adds image and symbol plotting support to theAstro-
Cat parent class.

SkyQuery cat::AstroQuery Defines the frame in the catalog window for entering
query parameters and adds buttons for setting the
default search area from the image or a selected
region in the image.

SkyQueryResult cat::QueryResult This class defines the frame in the catalog window
use for displaying and editing catalog query results.
The derived class adds a hook to thertd pick object
feature for selecting an object in an image to add to a
local catalog.

10 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
low.

2.2 Package Organization

The source code for the skycat application consists of the following packages:

These packages are available from the skycat ftp directory: ftp://ftp.archive.eso.org/pub/skycat/.

See the installation instructions at the end of this document for instructions on compiling and in-

stalling this package. The documentation for all of the packages is also available in ftp://ftp.ar-

chive.eso.org/pub/skycat/doc.

Note: The rtd and cat package tar files each contain the tclutil and astrotcl packages, so

you won’t normally need to get them separately. For compatibility with previous re-

leases they are treated as internal packages.

The above packages are also dependent on a Tcl/Tk environment, including the TclX, BLT and Itcl,
which are also available from the above URL.

Each of the packages, including the skycat package, can be dynamically loaded in a Tcl application,

if compiled with shared library support.

Package Name Namespace Description

tclutil util General purpose Tcl and C++ utility classes and widgets.

astrotcl astro A collection of Tcl and C++ classes for astronomical software
(image I/O, compression, world coordinates).

rtd rtd Real-time image display widget and application.

cat cat Astronomical catalog library and widgets for searching catalogs and
browsing catalog directories.

skycat skycat Combines thertd image display features with catalog searching fea-
tures for theskycat application.

itk::Widget

itk::Toplevel util::TopLevelWidget

util::FrameWidget

cat::AstroQuery

cat::QueryResults

skycat::SkyQuery

skycat::SkyQueryResult

itk::Archetype

skycat::SkyCatrtd::Rtd

cat::AstroCat skycat::SkySearch

rtd::RtdImage rtd::RtdImageCtrl skycat::SkyCatCtrl

...

skycat::SkyCatHDUChooser

Skycat Itcl Class Hierarchy

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 11
2.3 Single Binary Versions of Skycat

Skycat can also be compiled as a single binary that includes all of the necessary bitmaps, colormaps

and Tcl source files.

For Tcl7.6/Tk4.2, this is done using a slightly modified version of ET1 (Embedded Tk), a public do-

main package designed for this purpose. This works by creating a single Tcl script out of all of the

Tcl sources (including all dependent packages). The generated Tcl script is then “compiled” by ET ,

creating a C source file, in which the Tcl code is declared as a string. ET defines the necessary envi-

ronment so that Tcl scripts are found in the string at run time. The bitmaps and colormap files are

compiled in, in all cases, so that there is no problem there.

For Tcl8.0/Tk8.0, the Scriptics TclPro prowrap2 application is used, if available. The ET version does

not currently work with Tcl8.0.

1. The ET code had to be extended to support Itcl and Itk.
2. See http://www.scriptics.com/tclpro/ for information about TclPro and prowrap.

12 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 13

d to

e

3 User’s Guide

This section first describes the skycat Itcl widget classes and then describes a number of ways to ex-

tend skycat and add new features by using plugins, Tcl send, a remote socket interface, and subclass-

ing.

3.1 The Skycat Application

The skycat application comes in two basic versions:

• An interpreted version

• A single binary version

Actually both versions are interpreting Tcl source code. The difference is in the external environ-

ment required.

The single binary version has all of the Tcl source files included as strings in the binary, and so does

not require any local Tcl installation or special environment to run. This version is easier to distrib-

ute over the net.

The interpreted version, on the other hand, requires a complete Tcl environment, with all of the

necessary extensions. This version is practical to use during development or when you want to dy-

namically load Tcl packages at run-time. This version is started using a symbolic link to a shell

script skycat.sh that sets the necessary environment variables and starts skycat_wish, passing it the

main skycat.tcl source file. The shell script is generated by the skycat configure script and includes

the package path names found at the time configure was run.

In both versions, the application is started by calling SkyCat::startSkyCat (a class procedure).

This proc sets up the necessary Tcl environment and creates an instance of the top level SkyCat
class. The command line arguments are passed unchanged to the class as options. See Rtd(n) and

SkyCat(n) for a detailed description of the options.

Usage:
skycat fitsFile - option value ...

Skycat Command Line Options

Option Value Description

-cat boolean(1 or 0) Include ESO/Archive catalog extensions (default: 1).

-colorramp_height height in pixles Height of colorramp window (default: 12).

-debug boolean Debug flag: If true, run background processes in the foregroun
ease debugging.

-default_cmap basename of
colormap file

Specify a different default colormap (default: “real”). See the
$RTD_LIBRARY/colormap directory for a list of the available
colormaps. The option value if the basename of the file.

-default_itt basename of itt
file.

Set the default intensity transfer table. (default: “ramp”). See th
$RTD_LIBRARY/colormap directory for a list of the available
files.

14 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552

te

in

an

ch

,
en a
s
er

Tcl
f

u-

age

t: 0).

w.
-file file name Specify a FITS file to load (‘-’ for stdin). This is the default
option, so you can leave off the “-file” part and just specify a file
to load.

-float_panel boolean If the option value is 1, the skycat info panel is put in a separa
popup window, leaving more space for the image window (The
default is off).

-min_scale
-max_scale

number
(2 = zoom 2x
-2 = zoom 1/2x)

Specify the min and max scale values for theMagnification
Menu. Negative values shrink the image, positive values zoom
closer. The default values are -10 and 20.

-panel_layout layout With this option, you can change the order of the zoom and p
windows in the layout. The default layout is:zoom windowon the
left, info panelin the center andpan windowright. If the layout is
specified assaoimage, a layout similar to saoimage is used (info
panel, pan window, zoom window). If reverse is specified, the
order of the windows is the reverse of the default.

-pickobjectorient vertical,
horizontal

Specify the orientation of the “Pick Object” window. The default
is horizontal (panel left, image right).vertical puts the image at
top and panel underneath.

-port port number Listen for remote commands on the given port (default: 0, whi
means to choose a port).

-remote boolean If-remote 1 is specified and a skycat process is already running
the existing skycat process is sent a message and asked to op
new window and the new skycat process exits immediately. Thi
has the advantage of sharing the image colormap and using few
system resources, however it depends on being able to use the
send mechanism. For security reasons, Tcl send will not work i
you are usingxhostbased X security. You need to useXauthsecu-
rity. See theTcl/Tk Tools book from O’Reilly for more on this
topic.

-rtd boolean If true, include ESO/VLT Real-Time Features in the Skycat men
bar (default: not included).

-scrollbars boolean If true, Display horizontal and vertical scrollbars for the image
(not displayed by default).

-shm_data boolean If true, put image data in sysV shared memory. By default im
files are mapped with mmap, not with sysV shared memory.

-shm_header boolean If true, put the image header in sysV shared memory (defaul

-usexshm boolean If true (default), use X shared memory, if available.

-use_zoom_view boolean If true (default), use a “view” of the image for the zoom windo

-verbose boolean If true, print diagnostic messages for debugging (default: 0).

-with_colorramp boolean If true (default), display the color bar.

Skycat Command Line Options

Option Value Description

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 15
3.2 Skycat Widget Classes

3.2.1 The Main Skycat Window

Skycat defines subclasses of some rtd and cat classes and combines the image display features of the

rtd with the catalog features of the cat package. The main window of the skycat application is inher-

ited from rtd and adds only the Data-Servers menu, which is generated automatically based on the

list of available catalogs. Skycat’s top level window is implemented by the SkyCat(n) widget class,

which is a subclass of the Rtd class. The SkyCat class adds the Data-Servers menu and defines an

-with_grid boolean If true, include a WCS grid button (default: 0).

-with_pan_window boolean If true (default), display the pan window.

-with_zoom_window boolean If true (default), display the zoom window.

-zoom_factor number Set the zooming factor for the zoom window (default: 4 x).

Skycat Command Line Options

Option Value Description

16 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
external proc interface, so that other Tcl applications can use the Tcl send command to send com-

mands to skycat.

The SkyCatCtrl(n) widget defines the inner frame, containing the image and the upper panel. This is

a subclass of the RtdImageCtrl class and adds methods for drawing plot symbols.

3.2.2 The Catalog Window

When a catalog is selected from the Data-Servers menu, the window that is displayed is a subclass of

the catalog class cat::AstroCat called SkySearch(n).

The top level SkySearch widget class adds image and plotting support to the cat::AstroCat
widget. It adds the Plot button and redefines the plot method to draw symbols in the image for each

query result object.

Skycat redefines the internal widgets that make up the AstroCat widget here to deal with images

and plotting.

The top widget, SkyQuery(n), is a subclass of cat::AstroQuery and adds two buttons for setting

the area of the image to search:

• “Select Area”, to interactively select a region of the image to search, and

• “Set From Image” to set the range to include the entire image.

The results of the query are displayed in a subclass of cat::QueryResult called SkyQueryRe-
sult(n). This class redefines the methods for adding an object to a local catalog to include automatic

selection of object coordinates using the RtdImagePick (pick object) widget.

3.3 Extending Skycat

There is an almost endless list of features that you could add to an application like skycat. Some of

the features are of general use, while many others are specific to a certain project or telescope. This

section describes some of the ways you can add new features or modify existing features without

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 17
having to make any changes in the skycat source code. This is important, since it saves a lot of work

merging source code after every new version comes out.

3.3.1 Plugins

Plugins are defined here as Tcl procedures that are called to extend skycat and add new features.

Skycat supports two types of plugins: one at the widget level, which is called for each instance of a

top level widget, after it has been constructed, and one at the application level, called once for the ap-

plication, before any widgets are created. The Tcl plugin procedure can do something simple, such

as add a new menu item with a new feature, or something quite complex, including replacing the

main application class with a derived class and dynamically loading Tcl packages from shared li-

brary files.

3.3.1.1 Widget Level Plugins

Nearly all of the top level widgets used in skycat support plugins. This is a simple feature inherited

from the TopLevelWidget base class. For any given widget class Foo that is a subclass of TopLev-
elWidget , a Tcl proc named Foo_plugin many be defined. The plugin proc is called for each in-

stance of that class, after the class construction is complete (after calling the init method), with the

name of the class instance as an argument.

The plugin source files are located as follows: If the environment variable FOO_PLUGIN is defined

(replace FOO with the Itcl class or application name in upper case), it is assumed to be a colon sepa-

rated list of plugin source file names, or the names of directories containing plugin files, or contain-

ing subdirectories with plugin files (see the example source tree below).

In the case of skycat, you could define the environment variable SKYCAT_PLUGIN, since skycat is

the name of the application and also the name of the main class. You could also define other envi-

ronment variables, such as SKYSEARCH_PLUGIN, for other toplevel Itcl classes, if you want to have

a Tcl proc be called for each instance.

Example:

setenv SKYCAT_PLUGIN “$dir1/myplugin1.tcl:$dir2/myplugin2.tcl:$dir3”

In the above example, the two source files ($dir1/myplugin1.tcl and $dir2/myplugin2.tcl) will be load-

ed as plugins, as well as any file named $dir3/${classname}_plugin.tcl or $dir3/*/${class-
name}_plugin.tcl. Probably the simplest way to organize the plugins is to define a single top level

plugin directory and create a subdirectory for each plugin.

You can put plugin procedures for more than one class in a single plugin file, or define environ-

ment variables and create files for each one separately. If the plugin procedure is defined, it will be

called once for each instance of the class. The directory containing the plugin file is automatically

$SKYCAT_PLUGIN

plugin_1/ plugin_2/ plugin_n/

SkyCat_plugin.tcl
SkySearch_plugin.tcl RtdImagePickObject_plugin.tcl

SkyCat_plugin.tcl SkyCat_plugin.tcl

...

Typical Skycat plugin directory structure.

18 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
appended the tcl auto_path variable, so that you can easily split the plugin into different source files

in that directory, as long as it contains a tclIndex file.

The plugin proc can be used to add features to widgets, such as additional menus or buttons. Once

you have the handle for the top level widget, it is usually easy to access other internal widgets, if

necessary, to make any changes or additions you want. The Tcl language is also very flexible and

will allow you to redefine procedures and methods at run time.

3.3.1.2 Example Widget Level Plugin

Below is an example plugin file for the SkyCat class. To use this plugin, you have to define the envi-

ronment variable SKYCAT_PLUGIN first, for example:

setenv SKYCAT_PLUGIN your-pathname /SkyCat_plugin.tcl

The source code for SkyCat_plugin.tcl is shown below:

proc SkyCat_plugin {this} {
 set w [info namespace tail $this]
 add_graphics_features $w
}

This plugin is used to add some menu items to the Graphics menu for saving line graphics to a file in

world or image coordinates so that they can be reloaded again later. The proc has to be called

SkyCat_plugin , since the main Itcl class name is SkyCat . The argument $this is the name of an

instance of the SkyCat class and is needed in order to be able to call methods. The variable w is set

to the name of the top level window, which is the same string, but without the Itcl namespace infor-

mation. You can usually use $w in place of $this , since the namespaces we are using (skycat ,

cat , rtd , etc.) are imported by default. $w has the advantage that it can be used to refer to both the

Tk widget and the Itcl class instance.

The code for the add_graphics_features proc is shown below:

proc add_graphics_features {w} {
 set m [$w get_menu Graphics]
 $m add separator
 $w add_menuitem $m command “Save graphics...” \
 {Save line graphics to a file} \
 -command [code save_graphics $w]

 $w add_menuitem $m command “Load graphics...” \
 {Load line graphics from a file} \
 -command [code load_graphics $w]
}

The methods used here to add menu items are described in the man page for TopLevelWidget in the

tclutil package documentation. We first get the handle for the Graphics menu, and then add the two

items to it, including a short help text and a Tcl command to be called to do the work.

We might have wanted to create a new menubutton, “Annotations”, rather than adding items to the

existing one. The code to do that would look something like this:

proc add_graphics_features {w} {
 set m [$w add_menubutton Annotations]

 $w add_menuitem $m command “Save annotations...” \
 {Save line graphics to a file} \
 -command [code save_annotations $w]

 $w add_menuitem $m command “Load annotations...” \

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 19
 {Load line graphics from a file} \
 -command [code load_annotations $w]
}

When the user selects the “Save graphics” (or “Save Annotations”) menu item, a tcl proc save_graphics
is called and that is where the real work begins.

We could also have put this code in an Itcl class, however this plugin does not have its own win-

dow (it only adds the menu items), so it makes sense to use plain Tcl procs here. It is usually easiest

to define one Itcl class per widget (frame or toplevel).

The save_graphics proc is a bit long, so we’ll take it a step at a time as an example. The first thing

we have to do is find out the name of the file in which to save the graphics:

set filename [filename_dialog]
if {“$filename” == ““} {
 return
}

The Tcl proc filename_dialog is one of a collection of simple dialog procedures provided by the

tclutil package. It pops up a file browser and returns the user’s selection, or an empty string if no file

was selected. So now we know the file. We can check if it exists already, and ask if we should over-

write it:
if {[file exists $filename]} {
 if {! [confirm_dialog “File `$filename’ exists. Overwrite it?”]} {
 return
 }
}

confirm_dialog is another tclutil dialog that displays a message and gets a yes or no answer (OK,

Cancel) from the user. Before we go any further, here is a short overview of the simple dialogs that

are available in this environment:

When we save the graphics, we have to ask whether to save the coordinates as world coordinates or

image pixel coordinates.
set choice [choice_dialog \
 “Please select the type of coordinates to save the graphics in:” \
 {{World Coordinates} {Image Coordinates} Cancel} \
 {World Coordinates} $w]
if {$choice == “Cancel”} {
 return
elseif {$choice == “World Coordinates”} {
 set units {deg J2000}
} else {
 set units image
}

Dialogs defined in the Tclutil Package

filename_dialog Choose a file with a file browser.

confirm_dialog Ask for confirmation before doing something.

error_dialog Report an error message.

info_dialog Display a message.

choice_dialog Ask the user to make a choice form a number of items.

input_dialog Ask the user to type something in.

20 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
Here we set units to either “deg J2000 ” for world coordinate degrees in J2000 or “image ” for im-

age pixel coordinates. This is the syntax that is supported by the rtd, along with other types, such as

“canvas” and “screen”. We will use $units below to convert the coordinates of the graphic items

from canvas to $units coordinates. But first, we need to open the output file and write the first

line of output indicating the units of the coordinates.

if {[catch {set fd [open $filename w]} msg]} {
 error_dialog $msg
 return
}
puts $fd “set units \”$units\””

Now we are almost ready to do some work. We still need access to the canvas widget holding the

image and graphics, the rtdimage object that displays the image in the canvas, and the graphics ed-

itor object, draw , of class CanvasDraw , that is normally used to create graphic items and setup

bindings for moving and resizing the objects.

set canvas [$w component image component canvas]
set image [$w component image get_image]
set draw [$w component image component draw]
$draw deselect_objects

Here we used the Itk component method to access the canvas component of the SkyCat image

window. Actually we are going two levels down here, that is why there are two “component ” ref-

erences in the first line. The above example could also be coded, perhaps a little more efficiently as

follows:

set im [$w component image]
set canvas [$im component canvas]
set image [$im get_image]
set draw [$im component draw]
...

The second line gets the handle of the internal rtdimage object, which we want to use for coordi-

nate conversion. This is not a widget, but the Tk image type called rtdimage , which is implement-

ed in C++. We could use the Itcl class object (of type SkyCatCtrl(n)) returned by [$w component
image] , since it implements the same methods as the internal rtdimage object (by forwarding

them), however, it is more efficient to use the object directly when possible.

The third line in the example gets the handle of the CanvasDraw object used to manage the line

graphics and uses it to make sure no objects are selected, since we don’t want to save the selection

handles along with the graphics.

Now we are ready to save the canvas graphics to the file. We can get the list of graphic objects and

all of the information we need about them from the canvas widget and use the rtdimage object to

convert the coordinates to the required units.

In the loop below, we write one line for each canvas item (except for image items, which we ignore

here). Each line has the format of a Tcl list of the form {type coordinates configOptions}, where:

• type is the item type (line, rect, etc.)

• coordinates are the converted coordinates (a list of floating point numbers). The coordinates are

converted by a procedure convert_coords shown later.

• configOptions is a list of configuration options for the item, such as {{-width 2} {-fill red} ...}.

foreach item [$canvas find all] {
 set type [$canvas type $item]
 if {“$type” == “image”} {
 continue
 }

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 21
 set coords [convert_coords [$canvas coords $item] canvas $units $image]
 set config {}
 foreach cfg [$canvas itemconfigure $item] {
 lappend config [list [lindex $cfg 0] [lindex $cfg 4]]
 }
 puts $fd [list $type $coords $config]
}

The convert_coords proc converts a list of coordinates from one units to another using an rt-
dimage object, which provides subcommands for this based on the image’s FITS header, assuming

the image supports world coordinates. The list of coordinates (coords) might contain only two

values {x y} or multiple points {x0 y0 x1 y1 x2 y2 ... xn yn} and the return value is a list with the new

units.

proc convert_coords {coords from_units to_units image} {
 set result {}
 set len [llength $coords]
 for {set i 0} {$i < $len} {incr i 2} {
 set ix [lindex $coords $i]
 set iy [lindex $coords [expr $i+1]]
 $image convert coords $ix $iy $from_units x y $to_units
 lappend result $x $y
 }
 return $result
}

The procedure for loading the graphics back is not shown here, but can be found in the source dis-

tribution in the skycat/demos directory.

Note that you can also define plugin procedures for other top level windows. For example, for the

catalog window, the proc would be called SkySearch_plugin .

3.3.1.3 Application Level Plugins

Some tasks might require more than just adding a new menu item to the existing window. You

might need to dynamically load shared libraries for new Tcl packages or even replace the main ap-

plication widget (SkyCat(n)) with a new derived class widget, which modifies the default behavior.

An application plugin is defined in the same way as the widget plugins described above, by defin-

ing the environment variable SKYCAT_PLUGINas a colon separated list of files or directories. How-

ever in this case, the plugin source file does not only (or necessarily) define the SkyCat_plugin
procedure, but also includes Tcl commands to execute at the global level. This works because the

plugin files for the main Itcl application class (SkyCat) are sourced before any widgets are created

(other plugin files are loaded on demand as needed).

Although the plugin procedure is only called after a widget is created, the file for the main widget

is sourced before the first instance is created, giving you a chance to execute code, where you can,

among other things, redefine the definition of the rtdimage Tk image type to include new com-

mands defined in a C++ subclass of Skycat (which is a subclass of RtdImage).

Before creating the first instance of the main skycat window, the application plugin files are sourced.

In the plugin code, you can set the global Tcl variable mainclass to the name of a new Itcl class

derived from the SkyCat widget class. The code that creates the main window will then use that

class in place of the SkyCat class. This is one way to gain full control of the application without

modifying it and also allows you to add new command line options, since these are the same as the

options for the main application class widget.

22 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
3.3.1.4 Example Application Level Plugin

Here is a very simple example of an application plugin, not for Skycat, but for Rtd. Just to demon-

strate how it works, we could make Skycat be a plugin for Rtd, so that when we define the environ-

ment variable RTD_PLUGIN to point to this file (or a directory containing the file Rtd_plugin.tcl)

and then start “rtd”, the window that actually comes up will be the skycat main window:

assumes these environment variables are defined

lappend auto_path $env(CAT_LIBRARY) $env(SKYCAT_LIBRARY)

load the required packages
foreach pkg {Cat Skycat} {
 if {[catch {package require $pkg} msg]} {
 puts “error loading $pkg package: $msg”
 return
 }
}

use this class for the main window
set mainclass SkyCat

A similar plugin can also be defined for skycat. There is one small problem though with redefining

the main application class as we did above, since this will not work for more than one plugin. We

could achieve a similar result by simply loading the Cat and Skycat Tcl packages and then adding

the Data-Servers menubutton to the menubar:

assumes these environment variables are defined

lappend auto_path $env(CAT_LIBRARY) $env(SKYCAT_LIBRARY)

load the required packages
foreach pkg {Cat Skycat} {
 if {[catch {package require $pkg} msg]} {
 puts “error loading $pkg package: $msg”
 return
 }
}

proc Rtd_plugin {this} {
 set w [info namespace tail $this]
 set image [$w component image]

 # set X defaults
 cat::setXdefaults
 skycat::setXdefaults

 # add the catalog menu
 AstroCat::add_catalog_menu $this $image ::skycat::SkySearch 0
}

We would have to add a little more code to get everything just right (for example, loading the sky-

cat Xdefaults cause the new menu button to have a different color than the others), but this should

give you an idea of how it works.

3.3.2 Subclassing

If you are planning on making changes or additions to skycat, you may want to define subclasses of

the existing Itcl or C++ classes and redefine selected methods to do what you want. This is the nor-

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 23

e

r-

-

-

d

mal way of doing things within skycat and related packages and can be used for new applications

as well as for skycat plugins.

For example, skycat’s main window is a subclass of the rtd main window. The catalog window is a

subclass of the AstroCat class. By defining a derived class, you can easily add buttons or menu

items to existing classes. By looking at the source code and/or documentation and redefining se-

lected methods, you can also change or add to the existing behavior.

One important thing to note here is the role of the Itcl class constructor and the init method. You

should not make any assumptions about the state of a widget or the options while in the construc-

tor. The base classes TopLevelWidget and FrameWidget both call the init method, using an “af-
ter idle” handler, after all constructors in the class hierarchy have completed.

Another thing to watch out for, when redefining methods, is to keep them compatible with the orig-

inal versions. It is best to call the parent class version of a method first, and then add your own

code, unless you are sure that that is not what you want.

3.4 Remote Interfaces

3.4.1 Tcl send

By using the Tcl send command, a second Tcl application can control skycat and do basically any-

thing. However, skycat offers an interface for using send that consists of a number of member procs

in the SkyCat class. These procedures are well suited for use by a remote application, since they do

not require any widget names. Of course this interface can also be used from within plugins or oth-

er Tcl code.

SkyCat Class Member Procs for use with Tcl send

Name Description

SkyCat::get_catalog This proc returns the instance name of a catalog widget. If mor
than one catalog window is open, it asks the user to select one
from a list. If it can’t find one, it reports an error and returns an
empty string.

SkyCat::get_imagesvr Same as above, but for the image server (DSS) window.

SkyCat::get_catalog_info Returns the contents of the catalog window as a Tcl list. The fo
mat of the return value is {{selected_row} {{ row1} { row2} ...}}
where each row is a list of column values. The selected_row is
empty if there is no selection, otherwise it is a list of column val
ues in the selected row.

SkyCat::display_image Fetch and display an image (from DSS), given the world coordi
nates (ra, dec, equinox) and a width and height in arcmin.

SkyCat::mark_image Display a rectangle on the image at the given world coordinates
center coordinates with the given width and height in arcmin an
return the item’s canvas tag or id.

SkyCat::unmark_image Remove the given mark from the image, by specifying the id
returned from SkyCat::mark_image.

SkyCat::load_image Load a FITS image for viewing.

24 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552

e.

r

l
s

3.4.2 Remote Socket Interface

The RTD (Real-Time Display) documentation has a section in the User’s Guide describing a remote

socket interface. This interface applies to Skycat as well. See the RTD documentation for more de-

tails. The socket interface works in basically the same way as Tcl send, except that you can use it

from a non-Tcl based application. You can send any rtdimage commands over the socket to be eval-

uated. One useful rtdimage command is remotetcl, which evaluates its argument in RTD’s Tcl inter-

preter.

3.4.3 SysV Shared Memory

The RTD documentation also describes the use of sysV shared memory. You can keep the image

data in shared memory and use Tcl send or the RTD socket interface to tell skycat when to update

the image.

3.4.4 Real-Time Server

rtdServer, the real-time server daemon used in VLT software, can be used with skycat or rtd to dis-

play images rapidly from shared memory. See the RTD documentation for a detailed description of

this.

3.4.5 Mmap

Skycat and rtd use mmap to map image files to memory, since this is more efficient, especially for

very large images. Applications can take advantage of this fact by modifying the image data in the

file and then signaling skycat or rtd to redisplay the image.

See the rtdimage subcommand mmap, which supports this.

SkyCat::pick_object Pop up a window and ask the user to select an object in the imag
Wait for the selection and return the information for it in the
form:

 {x y ra dec equinox fwhmX fwhmY angle object background}

An optional Tcl command may be specifed to be called wheneve
a new object is selected. The command can include a “send ...”
prefix to call a proc in another application.

SkyCat::get_skycat_images Return a list ofSkyCatCtrl class instances in this process
(there might be multiple cloned instances of the image window,
created via the “New Window” menu item). To get the top level
window for an image, you can use the command [winfo topleve
$skycatImage]. The main windows for skycat have names such a
.skycat1, .skycat2, etc., although you should not use the hard
coded names. UseSkyCat::get_skycat_images and
check that the return value actually still exists with [winfo exists
$skycatImage].

SkyCat Class Member Procs for use with Tcl send

Name Description

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 25
3.5 Skycat Public Interfaces

The plugin and remote interfaces open up many possibilities for extending skycat with new fea-

tures, however they also open the door to backward compatibility problems in future releases.

While we can’t guarantee that future changes will not break existing plugins, we can define a public
interface and try to avoid making changes that will not be backward compatible to it. This section at-

tempts to define that interface.

The interface as a whole is described in the documentation for the packages used: tclutil, astrotcl, rtd,

cat and skycat, and will not be repeated here. Instead, we simply list some basic guidelines for devel-

oping code that can more easily be supported in future releases.

3.5.1 Extended Tcl Commands

Any Tcl commands that are implemented in C or C++ are considered part of the public interface.

This makes sense, since the private part is hidden in the C or C++ code. This includes central com-

mands such as rtdimage (an extended Tk image type and also a Tcl command) and astrocat, the Tcl

interface to the catalog library, and also any of the commands provided by the Tcl, Tk, TclX, Itcl,

and BLT Toolkits.

3.5.2 C++ Classes

The public methods of any C++ classes are naturally part of the public interface.

Derived classes also have access to protected methods and member variables. You might need this

access in order to derive a subclass of, for example, the RtdImage or Skycat classes, for adding new

image features.

Derived classes may redefine base class methods, however if the derived class version does not also

call the parent class version, we can not guarantee future compatibility.

3.5.3 C Libraries

The C interfaces used by skycat and rtd all have C++ class wrappers, so none of the C libraries be-

long to the “supported” public interface. Use the C++ classes instead. In this way, we can replace a

C library, while still keeping the same C++ class interface. This is also very likely to happen, espe-

cially for classes, such as FitsIO and WCS.

3.5.4 Itcl Classes, Itk Widgets

The Itcl classes used by skycat use the keywords public, private, and protected to indicate which parts

of the class belong to the public interface, which parts are private, and which parts may only be

used in derived classes. Itcl is not as strict as C++ at enforcing these restrictions, since you can get

around them, for example, by calling a method with the full “scope” path name. Still, this helps to

document the public interface. The man pages for the classes also list the public and protected

methods as well as the Itk components, which are the symbolic names of the internal widget compo-

nents.

Any Itk components are public, so you can use the Itk component command to access internal widg-

ets. Thus, it is okay to use “$w component canvas ”, but not “$w.canvas ”, which might change

to something else in the future, such as “$w.top.left.canvas ”.

Any Itk options or public class variables are also public. You can access these values with the built-

26 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
in cget and configure methods.

Derived classes may need to also access the protected member variables and methods. For example,

nearly all of the Itk widgets used by skycat are derived from either TopLevelWidget or Frame-
Widget and refer to their widget frames as $w_, which is a protected variable in the base class. Pro-

tected variables for widget names are okay to use in derived classes, however hard coded widget

path names (even relative path names) should be avoided, if possible.

As with the C++ interface, derived classes may redefine base class methods, however if the derived

class version does not also call the parent class version, we can not guarantee future compatibility.

Most of the Itcl classes used in skycat define Itk widgets that interact with the user. There are not

normally many methods that are meant to be called from outside the class hierarchy. These include

any callback methods for button presses or other events and any methods that add new menus or

other widgets to the display or return the names of existing widgets. For example, the following

methods, which are defined in the TopLevelWidget base class, are part of the public interface:

3.5.5 Tcl Procs

There are a number of utility procs defined in the tclutil package (in tkutil.tcl and tclutil.tcl). These

are part of the public interface and are not likely to change.

Also, all of the dialog procs in the tclutil package (in udialog.tcl) are public. These include procs

such as error_dialog , info_dialog , and warning_dialog (see the plugin example earlier in

this chapter).

start Member proc to start an application from the main class.

busy Display the busy cursor over the window while evaluating some commands.

add_menubar Add a menu bar to the window.

add_menubutton Add a menubutton to the menu bar.

add_menuitem Add a menu item to a menubutton.

configure_menub
utton

Configure a menubutton.

get_menu Get the widget name of a menu from the menubutton label.

add_help_button Add a help button to the menubar.

list_windows Return a list of top level windows, besides this one.

hide_windows Hide all top level windows besides this one.

add_short_help Add a short help window to the main window.

quit Quit the window and exit the application, if there are no more windows.

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 27
4 Reference

Following is a list of man pages for the various classes and utilities provided in the skycat package.

4.1 COMMANDS

28 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
4.1.1 skycat(1)

NAME
skycat - A tool for displaying astronomical images and catalogs

SYNOPSIS
skycat ?filename? ?-option value ...?

OPTIONS
?-file filename?
 Specify a FITS file to display. '-' means read the file from
 the standard input. The '-file' part is optional, so you can
 also simply specify a file name. Image compression and
 decompression is done automatically, based on the file name
 suffix: .gzfits or .gfits for GZIP compression, .hfits for
 H-compress, and .cfits for UNIX compression.

-cat bool
 If bool is 1, include 'Data-Servers' menu in the menubar (This
 is the default). The 'Data-Servers' menu gives you access to
 the ESO Archive extensions for browsing astronomical catalogs,
 plotting objects in the image window and getting images over
 the network from the image servers, such as the Digitized Sky
 server.

-rtd bool
 If bool is 1, include the Real-Time menu in the menubar
 (default is 0). The Real-Time menu gives you access to the VLT
 Real-Time Display features, such as camera control and rapid
 frames. To use these features, the rtdServer daemon must be
 running on the local host. A client application, linked with
 the Rtd image event library can then send images via shared
 memory to be displayed in rapid succession.

-float_panel bool
 If the option value is 1, the skycat info panel is put in a
 separate popup window, leaving more space for the image window
 (The default is off).

-panel_layout <saoimage | reverse | default>
 With this option you can change the order of the zoom and pan
 windows in the layout. The default layout is: zoom window on
 the left, info panel in the center and pan window right. If
 "-panel_layout saoimage" is specified, a layout similar to
 saoimage is used (info panel, pan window, zoom window). If
 "-panel_layout reverse" is specified, the order of the windows
 is the reverse of the default.

-remote bool
 If "-remote 1" is specified and a skycat process is already
 running, the existing skycat process is sent a message and
 asked to open a new window and the new skycat process exits
 immediately. This has the advantage of sharing the image
 colormap and using fewer system resources, however it depends
 on being able to use the Tcl send mechanism. For security
 reasons, Tcl send will not work if you are using "xhost" based
 X security. You need to use X-auth security. See the "Tcl/Tk
 Tools" book from O'Reilly for more on this topic.

-min_scale n

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 29
-max_scale n
 Specify the min and max scale values for the Magnification
 menu. Negative values shrink the image, positive values zoom
 in closer. The default values are -10 and 20.

-port portnum
 Specify a port number to use for the remote RTD socket
 interface. See the Rtd User's Guide for details on this socket
 based interface. By default, a port number is chosen
 automatically and written to the file ~/.rtd-remote.

-disp_image_icon bool
 If bool is 1 (default), display a miniature version of the
 image in the tool's icon window.

-default_cmap <cmap>
 Specify the default colormap. This should be one of the names
 listed in the 'Colors' popup window (default is 'real').

-default_itt <itt>
 Specify the default intensity transfer table. This should be
 one of the names listed in the 'Colors' popup window (default
 is 'ramp').

-colorramp_height <pixels>
 This option can be used to change the height of color bar (the
 widget at the bottom of the screen displaying the image
 colors).

-with_colorramp bool
 If bool is true, display the color bar (default).

-with_zoom_window bool
 If bool is true, display the zoom window (default).

-with_pan_window bool
 If bool is true, display the pan window (default).

-dozoom bool
 If bool is true, turn the zoom window on automatically
 (default).

DESCRIPTION
The ESO Skycat tool combines the image display capabilities of the RTD
(Real-Time Display) with a set of classes for accessing astronomical
catalogs locally and over the network using HTTP. The tool allows you
to view FITS images from files or from the Digitized Sky Survey (DSS).

MENU ITEMS:

File menu
 Open...
 Open and display a (FITS) image file.
 Reopen...
 Reload the image display after the image has changed
 on disk.
 Save as...
 Save the current image to a file.
 Save region as...
 Save a section of the current image to a file.
 Print...
 Print the current image to a file or printer.

30 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 Clear
 Clear the image display.

 New Window
 Display up a new main window.
 Close
 Close the main window and exit if there are no more
 windows.

 Exit
 Exit the application.

View menu
 Colors...
 Display a window for manipulating the image colormap.
 Cut Levels...
 Display a window for manipulating the image cut levels.
 Cuts...
 Display a graph of pixel values along a line drawn
 interactively over the image.
 Pick Object...
 Select an object or star in the image and display
 statistics.
 Fits Header...
 Display the FITS header for the current image.
 Pixel Table...
 Display a table of pixel values surrounding the mouse
 cursor.
 Magnification
 Set the magnification factor of the image display.

 Hide Control Panel
 Toggle the visibility of the upper control panel
 Hide Popup Windows
 Toggle the visibility of the popup windows.

Graphics menu
 Toolbox
 Display the line graphics toolbox.
 Mode =>
 Select the drawing mode.
 Width =>
 Set the line width for drawing.
 Arrow =>
 Select the arrow mode for lines.
 ArrorShape =>
 Select the arrow shape for lines.
 Fill =>
 Select the fill color for drawing.
 Outline =>
 Select the outline color for drawing.
 Stipple =>
 Select the stipple pattern for filling objects.
 Font =>
 Select the font to use for labels.
 Smooth =>
 Set the smooth option for drawing polygons

 Clear =>
 Delete graphic objects.
 Delete =>
 Delete selected graphic objects.

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 31
 Hide Graphics
 Toggle the visibility of the image line graphics

Data-Servers
 Catalogs =>
 Select a catalog from the menu.
 Image Servers =>
 Select an image server from the menu.
 Archives =>
 Select an archive from the menu.
 Local Catalogs =>
 Select a local catalog from the menu.

Real-time menu (displayed when -rtd 1 is specified)
 Attach Camera
 Attach the real-time camera - start receiving images.
 Detach Camera
 Detach the real-time camera - stop receiving images.
 Set Camera...
 Set the real-time camera name.

 Rapid Frame
 Create a rapid frame by interactively drawing a
 rectangle on the image.

Help menu
 About Skycat...
 Display a window with information about this Skycat
 version.
 Help...
 Display information about Skycat in netscape (if
 netscape is available).

ENVIRONMENT VARIABLES
$SKYCAT_CONFIG
 If set, this is used as the URL to access the skycat
 configuration file, which contains the list of available
 catalogs and how to query them. By default, the configuration
 file is also searched for in $HOME/.skycat/skycat.cfg, and if
 that is not found, in the ESO default URL:
 http://archive.eso.org/skycat/skycat2.0.cfg.

$SKYCAT_PLUGIN
 If set, this variable should be a colon separated list of
 files or directories containing skycat plugins. A skycat
 plugin is a Tcl script that defines a Tcl proc to be called
 for each instance of the main window. The script is sourced
 before any windows are created and can also load shared
 libraries dynamically to add new features. See the Skycat
 User's Guide (ftp://ftp.archive.eso.org/pub/skycat/docs) for
 more information.

FILES
 http://archive.eso.org/skycat/skycat2.0.cfg - default
 configuration file.

SEE ALSO

32 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
SkyCat(n), Skycat(3), rtd(1), RtdImage(3), AstroCat(n)

- - - - - -
Last change: 07 May 99

4.2 C++ CLASSES, C ROUTINES

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 33
4.2.1 Skycat(3)

NAME
Skycat - A C++ class that extends the rtdimage Tk image type

PARENT CLASS
RtdImage

SYNOPSIS
#include "Skycat.h"

class Skycat : public RtdImage {
...
public:
 Skycat(Tcl_Interp*, const char* instname, int argc, char** argv,
 Tk_ImageMaster master, const char* imageType,
 Tk_ConfigSpec* specs = (Tk_ConfigSpec*)NULL,
 RtdImageOptions* options = (RtdImageOptions*)NULL);

 virtual ~Skycat() {}

 virtual int call(const char* name, int len, int argc, char* argv[]);

 static int CreateImage(Tcl_Interp*, char *name, int argc, char **argv,
 Tk_ImageType*, Tk_ImageMaster, ClientData*);

 static Skycat* getInstance(char* name);

 int get_compass(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 double ratio, double angle,
 double& cx, double& cy, double& nx, double& ny,
 double& ex, double& ey);

 int rotate_point(double& x, double& y, double cx, double cy, double angle);

 int make_label(ostream& os, const char* label, double x, double y,
 const char* tags, const char* color,

const char* font = "-*-courier-medium-r-*-*-*-120-*-*-*-*-*-*");

 int draw_symbol(const char* shape,
 double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_circle(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_square(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,

34 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_plus(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_cross(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_triangle(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_diamond(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_ellipse(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_compass(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_line(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int draw_arrow(double x, double y, const char* xy_units,
 double radius, const char* radius_units,
 const char* bg, const char* fg,
 const char* symbol_tags,
 double ratio = 1., double angle = 0.,
 const char* label = NULL, const char* label_tags = NULL);

 int symbolCmd(int argc, char* argv[]);
 int hduCmd(int argc, char* argv[]);

};

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 35
DESCRIPTION
Class Skycat extends the RtdImage C++ class by adding methods for
drawing symbols in an image based in world or image coordinates and by
adding support for FITS tables and multiple FITS HDUs. Since the
RtdImage class implements the rtdimage Tk image type, this class adds
features to the rtdimage command as well.

The symbol drawing methods defined here were originally implemented in
Itcl and were later moved here to improve performance when plotting
large numbers of symbols in an image.

CONSTRUCTOR
Skycat(interp, instname, argc, argv, master, imageType, specs, options)
 Create a new skycat extended rtdimage object with the given
 name and arguments. The optional arguments "specs" and
 "options" allow derived classes to add new configuration
 options. See RtdImage(3) for hints on how to add new
 subcommand and options. The imageType argument is normally
 "rtdimage", but could be set to a different name, if you do
 not want to redefine the rtdimage type, but add a new one
 instead. The "master" argument is a Tk struct that contains
 pointers to the image handling routines.

METHODS
call(name, len, argc, argv)
 This virtual method is defined at every level in the class
 hierarchy and is used to call a member function by specifying
 the name as a string. This is used to implement rtdimage
 subcommands by passing control from Tcl to C++. All of the
 methods that implement subcommands take the same arguments:
 argc and argv, the Tcl command line arguments.

CreateImage(interp, name, argc, argv, type, master, clientData)
 This is the entry point from tcl to create a image.

getInstance(name)
 Return a pointer to the Skycat class object for the given tcl
 rtdimage instance name, or NULL if the name is not an
 rtdimage.

get_compass(x, y, xy_units, radius, radius_units, ratio, angle,
 cx, cy, nx, ny, ex, ey)
 Return the canvas coordinates of the 3 points: center, north
 and east, given the center point and radius in the given
 units, an optional rotation angle, and an x/y ellipticity
 ratio. If the image supports world coordinates, that is taken
 into account (the calculations are done in RA,DEC before
 converting to canvas coords). The conversion to canvas coords
 automatically takes the current zoom and rotate settings into
 account. The return arguments {cx cy nx ny ex ey} are for the
 3 points center, north and east.

rotate_point(x, y, cx, cy, angle)
 Rotate the point x,y around the center point cx,cy by the
 given angle in degrees.

make_label(os, label, x, y, tags, color, font)
 Write a Tcl canvas command to the given stream to add a label
 to the image at the given canvas coordinates with the given

36 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 label text, color and canvas tags.

draw_symbol(shape, x, y, xy_units, radius, radius_units, bg, fg,
 symbol_tags, ratio, angle, label, label_tags)
 Draw a symbol on the image with the given shape at the given
 coordinates (in the given x,y units), with the given radius
 (in radius_units), bg and fg color, canvas tags list, x/y
 ratio and rotation angle.

 shape may be one of "circle", "square", "plus", "cross",
 "triangle", "diamond", "ellipse", "compass", "line", "arrow".

 x and y are the coordinates in "xy_units", which is one of the
 units accepted by the Rtd commands (canvas, image, screen,
 "wcs $equinox", "deg $equinox").

 The radius value is interpreted in radius_units.

 bg and fg are X color names for the symbol (may be the same).

 symbol_tags should be a Tcl list of canvas tags for the
 symbol.

 ratio and angle are used to stretch/shrink and rotate the
 symbol.

 label is an optional text for a label to place near the
 symbol.

 label_tags should be a Tcl list of canvas tags for the label,
 or an empty or null string, if there is no label.

 Returns an error if the coordinates or part of the symbol are
 off the image.

 This method uses world coordinates, if available, for the
 rotation and orientation, for symbols that support it (i.e.:
 rotation is relative to WCS north).

draw_square(x, y, xy_units, radius, radius_units, bg, fg, symbol_tags,
 ratio, angle, label, label_tags)
draw_circle(...)
draw_plus(...)
draw_cross(...)
draw_triangle(...)
draw_diamond(...)
draw_ellipse(...)
draw_compass(...)
draw_line(...)
draw_arrow(...)
 These methods each draw one type of symbol. They are called by
 the draw_symbol method and have the same arguments (but no
 shape argument, of course).

symbolCmd(argc, argv)
 This method implements a the Tcl symbol subcommand (a new
 rtdimage subcommand added in this subclass):

 Usage:

 $instName symbol $shape $x $y $xy_units $radius $radius_units \
 $bg $fg $symbol_tags ?$ratio $angle $label $label_tags?

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 37
 Draw a symbol on the image with the given shape at the given
 coordinates (in the given x,y units), with the given radius
 (in radius_units), bg and fg color, canvas tags list, x/y
 ratio and rotation angle.

 shape may be one of "circle", "square", "plus", "cross",
 "triangle", "diamond", "ellipse", "compass", "line", "arrow".

 x and y are the coordinates in "xy_units", which is one of the
 units accepted by the Rtd commands (canvas, image, screen,
 "wcs $equinox", "deg $equinox").

 The radius value is interpreted in radius_units.

 bg and fg are X color names for the symbol (may be the same).

 symbol_tags should be a Tcl list of canvas tags for the
 symbol.

 ratio and angle are optional and used to stretch/shrink and
 rotate the symbol. The default ratio is 1, default angle 0.

 label is an optional text for a label to place near the
 symbol.

 label_tags should be a Tcl list of canvas tags for the label,
 or an empty or null string, if there is no label.

 Returns an error if the coordinates or part of the symbol are
 off the image.

 Uses world coordinates, if available, for the rotation and
 orientation, for symbols that support it (i.e.: rotation is
 relative to WCS north).

hduCmd(argc, argv)
 This method implements the "hdu" subcommand, to access
 different FITS HDUs (header data units). Each HDU may be of
 type "image", "binary" table or "ascii" table.

 Usage: <path> hdu count
 or: <path> hdu list
 or: <path> hdu listheadings
 or: <path> hdu type ?number?
 or: <path> hdu headings ?$number?
 or: <path> hdu get ?$number? ?$filename? ?$entry?
 or: <path> hdu create $type $extname $headings $tform $data
 or: <path> hdu delete $number
 or: <path> hdu set $number
 or: <path> hdu ?$number?

 If the "hdu count" subcommand is specified, it returns the
 number of HDUs in the current image.

 The "hdu type" subcommand returns the type of the current or
 given HDU as a string "ascii", "binary" or "image".

 If the "hdu list" subcommand is specified, it returns a Tcl
 list of FITS HDU information of the form:

 {{number type extname naxis naxis1 naxis2 naxis3 crpix1
 crpix2} ...}

38 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 Where:

 - number is the HDU number

 - type is the HDU type: one of "image", "binary table",
 "ascii table".

 - extname is the value of the EXTNAME keyword, if set

 - naxis, naxis1, naxis2, naxis3 match the FITS keyword
 values.

 The "hdu listheadings" subcommand returns a list of the column
 names returned by the "hdu list" subcommand. This can be used
 to set the title of a table listing of the HDUs in a FITS
 file.

 The "hdu headings" subcommand returns a list of the column
 names in the current or given FITS table.

 The "hdu get" subcommand with no arguments returns the
 contents of the current ASCII or binary table as a Tcl list (a
 list of rows, where each row is a list of column values). If
 the HDU number is given, the contents of the given HDU are
 returned. If a filename argument is given, the FITS table is
 written to the given file in the form of a local (tab
 separated) catalog. If optional "entry" argument is given, it
 specifies the catalog config entry as a list of {{keyword
 value} {keyword value} ...}, as defined in the catalog config
 file (~/.skycat/skycat.cfg). The entry is written to the
 header of the local catalog file and is used mainly to specify
 plot symbol information for the catalog.

 The "hdu create" command creates a new FITS table in the
 current image file. $type maye be "ascii" for an ASCII table
 or "binary" for a binary FITS table. The name of the table is
 given by extname. The table headings and data correspond to
 the catalog headings and data. The tform argument is a list of
 FITS storage formats, one for each column, of the form {16A 2D
 12A ...} (similar to FORTRAN formats, see the FITS docs).

 The "hdu delete" command deletes the given HDU. The argument
 is the HDU number. The other HDUs in the file following the
 deleted one are moved to fill the gap.

 If the "hdu" subcommand is specified with no arguments, it
 returns the current HDU number. If a number argument is given,
 the current HDU is set to that number.

 The "hdu set" subcommand sets the current HDU to the given
 number. The keyword "set" is optional (see below).

 An optional numerical argument may be passed to the "hdu"
 subcommand, in which case the "current HDU" is set to the
 given number.

SEE ALSO
SkyCat(n), SkySearch(3), RtdImage(3), TkImage(3), FitsIO(3)

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 39
- - - - - -
Last change: 07 May 99

40 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
4.2.2 SkySearch(3)

NAME
SkySearch - C++ class to extend the "astrocat" Tcl command

PARENT CLASS
TclAstroCat

SYNOPSIS
#include "SkySearch.h"

class SkySearch : public TclAstroCat {
...
public:
 SkySearch(Tcl_Interp* interp, const char* cmdname, const char* instname);

static int astroCatCmd(ClientData, Tcl_Interp* interp, int argc, char* argv[]);

 virtual int imgplotCmd(int argc, char* argv[]);
};

DESCRIPTION
The SkySearch class extends the "astrocat" Tcl command (class
TclAstroCat) with image plotting capabilities. The plot method was
originally implemented as an Itcl method (see SkySearch(n)), but this
turned out to be slow for large numbers of plot symbols. This class
improves the plotting performace by making use of C++ symbol drawing
methods defined in the Skycat class. This class adds a "plot"
subcommand to the astrocat Tcl command.

PUBLIC METHODS
astroCatCmd(clientData, interp, argc, argv)
 This is the entry point from Tcl. This static method is called
 when the astrocat command is used. It creates a new Tcl
 command with the same name as its first argument, that can be
 used to access the astrocat and skysearch subcommands. the
 object can be deleted with the "delete" subcommand.

imgplotCmd(argc, argv)
 This method implements the "plot" subcommand:

 usage: $instName imgplot $image ?$data? ?$equinox? ?$headings?

 This subcommand is used to plot catalog objects on the skycat
 image and was reimplemented here in C++ code to improve
 performance for large complicated catalogs.

 $image is the name of the image object ("rtdimage" object,
 implemented by the RtdImage C++ class and extended by the
 Skycat C++ class).

 If $data is specified, it should be a Tcl list of rows to be
 plotted, in the format returned by the query command.

 If $equinox is specified, it is the equinox of the ra and dec
 columns in the data (the first 3 columns are assumed to be id,
 ra and dec, unless otherwise defined in the catalog config
 entry or header).

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 41
 If $headings is given, it is used as a Tcl list of column
 headings. Otherwise the catalog headings are used, if there
 is a current catalog.

 Note: normally you will need to specify all the arguments,
 since the querries are done in the background (See AstroCat(n)
 (cat package) and Batch(n) (tclutil package)). The information
 for the previous query is lost when the background process
 exits. This might change if queries were done using threads
 or if the background/interrupt handling were done in the C++
 code rather than in the Tcl code, as it is done now.

SEE ALSO
astrocat(n), AstroCat(n), SkyCat(n), SkySearch(n), RtdImage(3),
TkImage(3), TclCommand(3), Batch(n)

- - - - - -
Last change: 07 May 99

42 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
4.2.3 ITCL CLASSES

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 43
4.2.4 SkyCat(n)

NAME
 SkyCat - image display application class with catalog extensions

NAMESPACE
 skycat

PARENT CLASS
 rtd::Rtd

SYNOPSIS
 SkyCat <path> ?options?

DESCRIPTION
 This class defines a top level window for the skycat application. The
 easiest way to create an instance this class is via the "startSkyCat"
 proc. It sets up the environment, creates an instance of the class and
 then waits for the application to exit.

 The SkyCat widget supports the same options as the Rtd widget, its base
 class, and adds some of its own options. The widget options are the
 same as the skycat command line options, since these are passed
 unchanged to the widget.

ITK COMPONENTS
 image
 SkyCatCtrl(n) widget (derived from RtdImageCtrl), for displaying
 image and control panel.

WIDGET OPTIONS
 -cat
 Flag: if true, display the data-servers menu (catalog features).

 -catalog
 Specify a catalog (may be a local file) to load on startup.

 -dhsdata
 Directory used to hold image files from OLAF/DHS.

 -dhshost
 For OLAF (On-Line Archive Facility): name of DHS host machine.

 -help_url
 Url to use for the help menu - link to skycat WWW page.

 -remote
 If another skycat application is running on this display, use it
 rather than this process (saves memory and colors in the
 colormap).

 -rtd
 Flag: if true, display the real-time menu (VLT features).

44 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
PUBLIC METHODS
 clone {}
 Make a new main window (redefined from parent class).

 feedback {msg}
 This method is redefined here to get feedback during startup.

PROTECTED METHODS
 add_go_menu {}
 Add a "Go" menu with shortcuts to view images previously viewed.

 add_graphics_save_menu_item {}
 Add a menu item to the Graphics menu for saving the line graphics
 in a FITS table in the image.

 add_help_menu {}
 Add a menubutton with help items.

 add_olaf_menu {}
 Add a menubutton with OLAF items.

 add_realtime_menu {}
 Add the Real-time menubutton and menu, if the -rtd option was
 given.

 add_view_hdu_menu_item {}
 Add a menu item to the View menu for selecting the current HDU.

 init {}
 Called after the options have been evaluated.

 load_toplevel_geometry {}
 Restore the position of the top level window from the previous
 session.

 make_init_window {}
 Display a window while the application is starting up.

 make_rtdimage {}
 Create the rtd image widget with catalog extensions (redefined
 from parent class to use class with catalog features added).

 resize {w h}
 Called when the main window is resized: Check the geometry to
 make sure it fits on the screen.

 save_toplevel_geometry {}
 Save the position of the top level window so we can reload it the
 next time.

 select_region {x0 y0 x1 y1}
 This method is called when a region of the image has been selected
 (via -regioncommand option when creating image above). The
 arguments are the bounding box of the region in canvas coords.
 pass it on to any catalog windows to select any catalog symbols in
 the region.

 setXdefaults {}
 Set default X resources for colors and fonts, and set some default
 key bindings. This method is called from the parent class and
 overridden here. These are built-in defaults that the user can
 also override in the ~/.Xdefaults file.

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 45
 start_remote {}
 This method is called for the -remote option. If another skycat is
 running, use it to display the image and exit, otherwise do it in
 this process. Try Tk send, and if that fails, fall back on the
 RTD socket interface.

PROTECTED VARIABLES
 percent_done_
 Used in startup dialog .

COMMON CLASS VARIABLES
 toplevel_geometry_
 Name of the file used to save the positions of the top level
 windows.

SEE ALSO
 Rtd(n)

- - - - - -
Last change: 07 May 99

46 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
4.2.5 SkyCatCtrl(n)

NAME
 SkyCatCtrl - image display widget with catalog extensions

NAMESPACE
 skycat

PARENT CLASS
 rtd::RtdImageCtrl

SYNOPSIS
 SkyCatCtrl <path> ?options?

DESCRIPTION
 This class extends the RtdImageCtrl class (see RtdImageCtrl(n)) by
 adding image catalog extensions and user interface dialogs for use with
 astronomical catalogs.

WIDGET OPTIONS
 -debug
 Flag: if true, run queries in the foreground for better
 debugging.

PUBLIC METHODS
 about {}
 Display a popup window with information about this application.

 add_history {filename}
 Add the current image to the history catalog under the given
 filename. The current FITS header is used to extract information
 about the image to put in the catalog. The file basename is
 assumed to be the unique id.

 apply_history {filename}
 Check if the given filename is in the history catalog, and if so,
 apply the cut levels and color settings for the file.

 clear {}
 This method is also redefined from the parent class to set the
 window header info.

 convert_coords {coords from_units to_units}
 Convert the given coordinates from $from_units to $to_units and
 return the result. $coords may be a list of an even number of
 values {x1 y1 x2 y2 x3 y3 ...}. The result is the same list,
 converted to the output coordinates.

 display_fits_hdus {}
 Display a popup window listing the HDUs in the current image, if
 any.

 draw_symbol {shape x y xy_units radius radius_units bg fg symbol_tags
 {ratio 1} {angle 0} {label ""} {label_tags ""}}
 Draw a symbol on the image with the given shape at the given

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 47
 coordinates (in the given x,y units), with the given radius (in
 radius_units), bg and fg color, canvas tags list, x/y ratio and
 rotation angle.

 shape may be one of "circle", "square", "plus", "cross",
 "triangle", "diamond", "ellipse", "compass", "line", "arrow".

 x and y are the coordinates in "xy_units", which is one of the
 units accepted by the Rtd commands (canvas, image, screen, "wcs
 $equinox", "deg $equinox").

 The radius value is interpreted in radius_units.

 bg and fg are X color names for the symbol (may be the same).

 symbol_tags should be a Tcl list of canvas tags for the symbol.

 ratio and angle are optional and used to stretch/shrink and rotate
 the symbol. The default ratio is 1, default angle 0.

 label is an optional text for a label to place near the symbol.

 label_tags should be a Tcl list of canvas tags for the label, or
 an empty or null string, if there is no label.

 Returns an error if the coordinates or part of the symbol are off
 the image.

 Uses world coordinates, if available, for the rotation and
 orientation, for symbols that support it (i.e.: rotation is
 relative to WCS north).

 forward_image {}
 Go forward again to the next image.

 load_graphics_from_image {}
 Check if there is a FITS table with the same name as the current
 image extension, but with ".GRAPHICS" appended. If found, restore
 the previously saved line graphics from the table. This method is
 called automatically when a new image extension is loaded.

 mark_image {ra dec width height}
 Display a rectangle on the image at the given center coords with
 the given width and height and return the items tag or id.

 previous_image {}
 Go back to the previous image.

 save_as {{dir "."} {pattern "*"} {x0 ""} {y0 ""} {x1 ""} {y1 ""}}
 Save the current image or a section of the current image to a file
 in FITS format chosen from a file name dialog. If dir and pattern
 are specified, they are used as defaults for the file selection
 dialog. If x0, y0, x1 and y1 are specified (canvas coordinates),
 then a section of the image is saved.

 The return value is the name of the new file, if any, or an empty
 string. (redefined from parent class to set filename_, used in
 check_save).

 save_graphics_with_image {}
 Save the current line graphics in a FITS binary table in the
 image. The table has 3 columns: "type", "coords", and "config".
 "type" gives the shape and is one of the Tk canvas item types.

48 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 "coords" is a list of coordinates for the item. "config" is a Tcl
 list of configuration options for the item. There can be one
 graphics table for each image extension. For each image extension,
 the graphics table is called "${extname}.GRAPHICS".

 select_area {{shape rectangle}}
 Ask the user to select an area of the image by dragging out a
 region and return as a result a list of the form {x0 y0 x1 y1} in
 pixels.

 selected_area {id x0 y0 x1 y1}
 This method is called when the user has selected an area of the
 image. The results are in canvas coordinates, clipped to the area
 of the image.

 send_to_netscape {url}
 Send a URL to be displayed by netscape.

 subscribe {variable dhshost dhsdata}
 Subscribe to (or unsubscribe from) the OLAF DHS server images
 (ESO/Archive On-Line Archive Facility project: use the -dhshost
 and -dhsdata options to add this feature.) The first argument is
 the name of the trace variable used in the checkbutton menuitem.
 dhshost is the name of the host running the DHS server, to which
 we subscribe. dhsdata is the directory to use to hold the images
 files (temporary files).

 unmark_image {id}
 Remove the given mark from the image.

 update_fits_hdus {}
 Update the popup window listing the HDUs in the current image.

 update_history_menu {w m}
 Update the given menu with image history items. $w is the
 TopLevelWidget containing the menubar.

PROTECTED METHODS
 check_save {}
 If the current image is not saved in a file (came from a server,
 ...) check if it should be saved before loading a new image. Then,
 if the file exists, add image info for it to the history catalog.

 display_logo {}
 Display the skycat logo in the center of the image window with
 some copywrite text Note that we assume here that the logo was
 created previously and the name of the image is in the global var
 skycat_logo.

 init {}
 This method is called from the base class (TopLevelWidget) after
 all the options have been evaluated.

 load_fits_ {}
 This method is redefined here from the base class to include the
 file name in the window header and note the filename.

 new_image_cmd {}
 This method is called by the image code whenever a new image is
 loaded. It is redefined here to handle multiple HDUs in FITS
 files.

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 49
 update_title {}
 Update the toplevel window header and icon name to include the
 name of the file being displayed.

PROTECTED VARIABLES
 back_list_
 Used for the Go=>Back/Forward menu itemes.

 filename_
 The name of the image file, if any.

 pi_
 Const PI.

 rad_
 Const PI/180.

 subscribe_pid_
 Pid of rtdSubscribe process (OLAF).

SEE ALSO
 RtdImageCtrl(n)

- - - - - -
Last change: 07 May 99

50 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
4.2.6 SkyCatHduChooser(n)

NAME
 SkyCatHduChooser - Itcl widget for displaying FITS extensions

NAMESPACE
 skycat

PARENT CLASS
 util::TopLevelWidget

SYNOPSIS
 SkyCatHduChooser <path> ?options?

DESCRIPTION
 This class defines a widget for displaying the HDUs in the current FITS
 image. The user can select a FITS table or image extension to display
 by clicking on an entry the list or on one of the small images
 displayed in a table.

ITK COMPONENTS
 buttons
 Button frame at bottom of window.

 image_table
 Frame (BLT table) used to display images in FITS extensions.

 table
 TableList(n) widget for displaying the list of HDUs.

WIDGET OPTIONS
 -catinfo
 Name of the FITS table containing catalog config info.

 -image
 Target SkyCatCtrl itcl class object.

PUBLIC METHODS
 show_hdu_list {}
 Update the list of HDUs and the image displays, if needed.

PROTECTED METHODS
 add_image_bindings {im hdu name}
 Add bindings to the given RtdImage itcl class object and set it to
 display the given HDU when clicked on. The image's extension name
 is also given.

 delete_hdu {}
 Select an HDU to display. This makes it the current HDU (XXX TO BE
 DONE: should also delete entry from $catinfo table).

 display_fits_table {name hdu}
 Display the current FITS table.

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 51
 get_config_entry_from_fits_table {extname filename}
 Return the catalog config entry for the named FITS table, if
 available, or a default entry. If the current FITS file contains
 an HDU named $catinfo, with an entry for the named catalog
 ($extname), then extract and return that entry as a Tcl keyed
 list.

 init {}
 This method is called after the options have been evaluated.

 make_buttons {}
 Add a row of buttons at bottom.

 make_image_table {}
 Make a subwindow for displaying miniature versions of image
 extensions.

 make_short_help {}
 Add a short help window.

 make_table {}
 Make the table component for displaying the HDU info.

 resize {im new_width new_height}
 This method is called when the image window is resized. The
 rtdImage widget and the new width and height are given.

 select_hdu {}
 This method is called when a line in the HDU list is selected.
 Update the states of the buttons depending on the selection.

 select_image_hdu {hdu}
 This method is called when the user clicks on an image HDU icon.
 Display the selected image and disable the delete button.

 set_hdu {}
 Set the HDU to display. Makes the currently selected HDU the
 current HDU.

PROTECTED VARIABLES
 ext_
 Array(HDUIndex,keyword) of image keyword and widget info.

 filename_
 Name of image file.

 image_
 Internal rtdimage object.

 imagetab_
 Table displaying image extensions.

 num_images_
 Number of image HDUs in the current FITS file.

 table_
 Table displaying the HDUs.

COMMON CLASS VARIABLES
 astrocat_

52 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 C++ astrocat object use here to access catalog entries.

SEE ALSO
 TopLevelWidget(n)

- - - - - -
Last change: 07 May 99

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 53
4.2.7 SkyQuery(n)

NAME
 SkyQuery - Widget for searching catalogs and plotting the results in an image.

NAMESPACE
 skycat

PARENT CLASS
 cat::AstroQuery

SYNOPSIS
 SkyQuery <path> ?options?

DESCRIPTION
 A SkyQuery widget is a frame containing entries for search options
 (inherited from class AstroQuery) with added support for plotting
 objects in an image.

WIDGET OPTIONS
 -skycat
 Name of SkyCat itcl widget.

PUBLIC METHODS
 convert_coords {in_x in_y in_units out_units}
 Convert the given input coordinates in the given input units to
 the given output units and return a list {x y} with the new
 values. The units may be one of {canvas image wcs deg "wcs
 $equinox", "deg $equinox"}.

 get_image_center_radius {wcs_flag}
 Return a list of values indicating the center coordinates and
 radius of the current image. If wcs_flag is 1, the return list is
 {ra dec equinox radius-in-arcmin}, otherwise {x y
 radius-in-pixels}. If no image is loaded, an empty string is
 returned.

 get_image_center_width_height {wcs_flag}
 Return a list of values indicating the center coordinates and the
 width and height of the current image. If wcs_flag is 1, the
 return list is {ra dec equinox width height}, width and height in
 arcmin, otherwise {x y width height} in pixels. If no image is
 loaded, an empty string is returned.

 select_area {}
 Ask the user to select an area to search interactively and insert
 the resulting radius and center pos in the catalog window.

 select_image_area {wcs_flag}
 Ask the user to select an area of the image by dragging out a
 region on the image return the resulting center pos and radius as
 a list of {x y radius-pixels}, or {ra dec equinox
 radius-in-arcmin} if wcs_flag is 1. If we are dealing with an
 image server, the radius value is replaced by width and height,
 i.e.: {ra dec equinox width height}, where width and height are in

54 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 arcmin for wcs or pixels otherwise. An empty string is returned
 if there is no image or the user cancels the operation.

 set_default_values {}
 Set the default values for the search panel entries: (redefined
 from parent class AstroCat to set values from the image).

 set_from_image {}
 Set the default search values to the center position and radius of
 the image, (for catalogs) of width and height of image (for image
 servers).

PROTECTED METHODS
 add_search_options {}
 Add (or update) the search options panel (redefined from parent
 class AstroCat to add buttons).

PROTECTED VARIABLES
 image_
 Internal rtdimage image for main image.

SEE ALSO
 AstroQuery(n)

- - - - - -
Last change: 07 May 99

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 55
4.2.8 SkyQueryResult(n)

NAME
 SkyQueryResult - Widget for viewing query results with skycat image support.

NAMESPACE
 skycat

PARENT CLASS
 cat::QueryResult

SYNOPSIS
 SkyQueryResult <path> ?options?

DESCRIPTION
 A SkyQueryResult widget is defined as a QueryResult (see cat package)
 with some added support for skycat image access, used for selecting
 objects to add to a local catalog.

WIDGET OPTIONS
 -catinfo
 Name of the FITS table containing catalog config info.

 -skycat
 Name of SkyCatCtrl itcl widget.

PUBLIC METHODS
 edit_selected_object {{command ""}}
 Pop up a window so that the user can edit the selected object(s)
 The optional command is evaluated with no args if the object is
 changed. (redefined from parent class AstroCat to add image
 support).

 enter_new_object {{command ""}}
 Pop up a dialog to enter the data for a new object for a local
 catalog The command is evaluated after the users enters the new
 data. (redefined from parent class to add image support).

 save_with_image {entry}
 Save the current data as a FITS table in the current image file.
 The argument is the catalog config entry.

PROTECTED METHODS
 save_config_info_to_fits_table {extname entry}
 Save the given catalog config entry in a FITS table with the name
 $catinfo. The hdu arg gives the HDU number of the $catinfo table,
 or 0 if it does not exist.

SEE ALSO
 QueryResult(n)

56 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
- - - - - -
Last change: 07 May 99

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 57
4.2.9 SkySearch(n)

NAME
 SkySearch - Widget for searching a catalog and plotting the results

NAMESPACE
 skycat

PARENT CLASS
 cat::AstroCat

SYNOPSIS
 SkySearch <path> ?options?

DESCRIPTION
 This class extends the AstroCat catalog widget browser class (see
 AstroCat(n) to add support for plotting objects and displaying images.

ITK COMPONENTS
 results
 SkyQueryResult(n) widget to display the results of a catalog
 query.

 searchopts
 SkyQuery(n) widget (derived from AstroQuery(n)) for displaying
 search options.

WIDGET OPTIONS
 -canvasfont
 Font used in canvas to mark objects.

 -id
 Optional unique id, used in searching for already existing catalog
 widgets.

PUBLIC METHODS
 clear {}
 Clear the table listing (done in base class) and remove any plot
 symbols from the display.

 convert_coords {in_x in_y in_units out_units}
 Convert the given input coordinates in the given input units to
 the given output units and return a list {x y} with the new
 values. The units may be one of {canvas image wcs deg "wcs
 $equinox", "deg $equinox"}.

 delete_objects {}
 Delete any graphic objects in the image belonging to this
 catalog.

 deselect_objects {}
 Deselect any objects in the image.

 deselect_symbol {tag}

58 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 Deselect the given symbol, given its canvas tag or id.

 display_image_file {filename}
 Display the given image file.

 filter_query_results {}
 Remove any items in the query result list that have not been
 plotted because they were not in the image (circular
 search/rectangualr image).

 gen_blank_image {}
 Generate a dummy blank image for the purpose of plotting catalog
 objects on it. Return 0 if OK, otherwise 1.

 gen_pix_image {radius}
 Generate a blank image without WCS. radius is radius of the image
 in pixels, Returns "0" if all is OK.

 gen_wcs_image {ra_deg dec_deg equinox radius}
 Generate a blank image that supports world coordinates for the
 purpose of plotting catalog objects. ra_deg, dec_deg and equinox
 give the center of the image (in deg), radius the radius in
 arcmin. Returns "0" if all is OK.

 get_display_height {}
 Retun the height of the image display canvas.

 get_display_width {}
 Retun the width of the image display canvas.

 get_image_name {}
 Return the name (file or object name) of the currently loaded
 image, or empty if no image is loaded.

 get_table_row {id}
 Return the table row index corresponding the given symbol canvas
 id. Note: The plot subcommand in SkySearch.C adds a canvas tag
 "row#$rownum" that we can use here. Also: cat$id is first tag in
 the tag list for each object.

 label_object_in_image {id name}
 Insert the id for the given object in the image near the object
 and return a string containing status info. name identifies the
 source catalog (short_name).

 make_label {name id x y units text color}
 Add a label to the image at the given coordinates (in the given
 units) with the given text and color. The id arg should be a
 unique id for the label in the catalog and $name should be the
 short name of the catalog. $units may be any of the units
 supported by the RTD {image canvas screen "wcs $equinox" "deg
 $equinox"}.

 picked_wcs_object {x y units}
 This method is called when the user clicks on a graphic symbol for
 a star. The user might be selecting this star, so call the
 RtdImage method to do that.

 plot {}
 Plot the stars/objects found in the previous search in the image
 window. The symbols to use are taken from the config file.

 plot_again {}

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 59
 Re-plot the listed objects.

 save_with_image {}
 Save the current data as a FITS table in the current image file.

 select_region {x0 y0 x1 y1}
 This method is called when a region of the image has been selected
 (From class SkyCat, via -regioncommand option when creating the
 image). The arguments are the bounding box of the region in
 canvas coords. Select any catalog symbols in the region.

 select_symbol {id toggle {rownum -1}}
 Select a symbol, given the canvas id and optional row number in
 the table listing. If $toggle is 0, deselect all other symbols
 first, otherwise toggle the selection of the items given by $id.

 set_state {state}
 Set/reset widget states while busy (redefined from parent class
 AstroCat).

PROTECTED METHODS
 add_dialog_buttons {}
 Add the dialog button frame (redefined from parent class AstroCat
 to add Plot button).

 add_result_table {}
 Add the table for displaying the query results (redefined from
 parent class AstroCat to add image support).

 add_search_options {}
 Add the search options panel (redefined from parent class AstroCat
 to add image support).

 init {}
 Called after options have been evaluated.

 label_selected_object {}
 Insert the Id for the object selected in the Table in the image
 near the object.

 make_short_help {}
 Add a short help window and set the help texts (redefined from
 parent class AstroCat).

 select_result_row {}
 Called when a row in the table is selected. Redefined from parent
 clas to also select the plot symbol.

PROTECTED VARIABLES
 canvas_
 Canvas window containing main image.

 draw_
 CanvasDraw object for drawing on image.

 image_
 Internal rtdimage image for main image.

 label_tag_
 Canvas tag used to identify all labels for this instance.

60 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
 object_tag_
 Canvas tag used to identify all objects for this instance.

 skycat_
 SkyCatCtrl widget instance.

 symbols_
 Array containing supported symbol names.

 tag_
 Canvas tag used to identify all symbols for this instance.

 wcs_
 Name of wcs object for converting between hh:mm:ss and double
 deg.

COMMON CLASS VARIABLES
 history_catalog_
 Name of the history catalog.

 history_cols_
 List of columns in the history catalog.

SEE ALSO
 AstroCat(n)

- - - - - -
Last change: 07 May 99

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 61
5 Installation

The configure script and Makefile in this directory can be used to build any or all of the following

packages:

• tclutil - Tcl and C++ Utilities Package

• astrotcl - Astronomical Tcl and C++ Utilities

• rtd - Real-Time Display

• cat - Catalog library

• et - Patched version of Embedded Tk

• skycat - The ESO Skycat Tool

• plugins/gaia - A skycat plugin that adds photometry related features

5.1 Requirements

One of the following Tcl environments should be installed:

For Tcl7.6:

• itcl2.2 - [Incr Tcl], includes tcl7.6, tk4.2

• BLT2.1 - BLT toolkit, graphs and other widgets

• tclX7.6.0 - Extended Tcl

Or for Tcl8.0 (or newer, TclPro also supported - see below):

• Tcl8.0.3 - Tcl Shell

• Tk8.0.3 - Tk X Toolkit

• itcl3.0.1 - [Incr Tcl]

• BLT2.4f - BLT toolkit, graphs and other widgets

• tclX8.0.3 - Extended Tcl

These packages are available from the TCL archives.

• http://www.tcltk.com/ for Itcl.

• http://www.NeoSoft.com/tcl/ for TclX and other contributed Tcl software

• http://www.scriptics.com/tclpro/ for Tcl8.x, TclPro and the latest releases.

You can install the standard Tcl/Tk packages anywhere, however it is easiest to install them all in

the same directory (using the same -prefix argument to configure).

NOTE: If you are building with Scriptics TclPro, you also need a normal Tcl8.x installation (installed

from the source). The Skycat configure scripts depend on the $prefix/lib/tclConfig.sh and

related files being installed. These files are not currently part of the TclPro installation. Also, the

names of some of the libraries are different in TclPro. Skycat uses the "prowrap" application and the

Scriptics libraries to build a single binary version for tcl8.x, if they are found.

NOTE: In order to build a "single binary" version of skycat correctly, the static ".a" Tcl/Tk libraries

must be installed.

5.2 Building the Software

Optionally define the environment variable TCLTK_ROOT to point to the top level install directory

for Tcl (for example, /usr/local):

62 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552
% setenv TCLTK_ROOT /usr/local # for csh, tcsh

or:
% TCLTK_ROOT=/usr/local; export TCLTK_ROOT # for sh, ksh, bash

To compile the sources, type the following from the top level directory:

% configure -prefix $INSTALLDIR --with-gcc
% make all
% make install

$INSTALLDIR should be the name of the top level directory (such as /usr/local or $PWD/install)

in which to install the software. The default install directory is /usr/local.

The configure option --with-gcc says to use GNU gcc and g++. If you want to use CC and cc

instead, specify the --with-cc option:

% configure -prefix $INSTALLDIR --with-cc

If you prefer using shared libraries and loadable Tcl modules add the option:

--enable-shared

Note that if you are using g++, you must also have libg++ compiled as a shared library for this to

work (libg++-2.7.2.x also has the "--enable-shared" option). Also, if you use --enable-shared, both

static and shared libraries will be generated, otherwise only the static versions.

5.3 If you run into Problems...

The top level configure script actually runs "configure" in each of the package subdirectories found

(tclutil, astrotcl, rtd, cat, et, and skycat). If there are errors, you might try to run configure and make

manually in a subdirectory. As an alternative to configure, you can also use one of the scripts

config.debug, config.shared, etc, which do the same thing, but with different options. You might

want to copy one of the scripts and edit it first, to set the install directory or other options. See the

*/README and */INSTALL files for more information.

 Solaris cc:

On Solaris, make sure the correct C compiler is being used (not /usr/ucb/cc). We have tested with

Solaris SunPRO CC/cc and gcc (2.7.2.3).

 HP-UX message "out of memory":

On HP-UX: If you get the message "not enough memory" when running skycat with shared

libraries, it doesn’t necessarily mean that you have to buy more memory. This is the informative

message that HP prints when there is an undefined symbol in a shared library....

One way to find out what the symbol is, is to compile and use this little program with the C++

compiler: (I got this from Peter Biereichel):

#include <dl.h>
#include <errno.h>
#include <stdio.h>
main(int argc, char *argv[])
{
 shl_t handle;
 handle = shl_load(argv[1], BIND_IMMEDIATE | BIND_VERBOSE, 0L);
 if (handle == 0)
 {
 printf("shl_load failed %s\n", argv[1]);
 perror("");
 }

The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552 63
 else
 printf("shl_load ok\n");
}

 For example:

g++ shlload.C -o g++ shlload
% shlload librtd.sl
% shlload libcat.sl

Shlload should report the name of the undefined symbol in the given shared library.

Please report any problems to me:

Allan Brighton

abrighto@eso.org

64 The ESO SkyCat Tool - Issue 2.2 VLT-MAN-ESO-19400-1552

	1 Introduction
	2 Overview
	2.1 Skycat Classes
	2.2 Package Organization
	2.3 Single Binary Versions of Skycat

	3 User’s Guide
	3.1 The Skycat Application
	3.2 Skycat Widget Classes
	3.2.1 The Main Skycat Window
	3.2.2 The Catalog Window

	3.3 Extending Skycat
	3.3.1 Plugins
	3.3.1.1 Widget Level Plugins
	3.3.1.2 Example Widget Level Plugin
	3.3.1.3 Application Level Plugins
	3.3.1.4 Example Application Level Plugin

	3.3.2 Subclassing

	3.4 Remote Interfaces
	3.4.1 Tcl send
	3.4.2 Remote Socket Interface
	3.4.3 SysV Shared Memory
	3.4.4 Real-Time Server
	3.4.5 Mmap

	3.5 Skycat Public Interfaces
	3.5.1 Extended Tcl Commands
	3.5.2 C++ Classes
	3.5.3 C Libraries
	3.5.4 Itcl Classes, Itk Widgets
	3.5.5 Tcl Procs

	4 Reference
	4.1 COMMANDS

	4.1.1 skycat(1)
	4.2 C++ CLASSES, C ROUTINES

	4.2.1 Skycat(3)
	4.2.2 SkySearch(3)
	4.2.3 ITCL CLASSES
	4.2.4 SkyCat(n)
	4.2.5 SkyCatCtrl(n)
	4.2.6 SkyCatHduChooser(n)
	4.2.7 SkyQuery(n)
	4.2.8 SkyQueryResult(n)
	4.2.9 SkySearch(n)
	5 Installation
	5.1 Requirements
	5.2 Building the Software
	5.3 If you run into Problems...

