
Combat

Frank Pilhofer
fp@fpx.de

April 2, 2002

Abstract

The Combat package provides a Tcl language mapping for CORBA, allowing the im-
plementation of CORBA clients and servers in the Tcl programming language.

On the client side, Combat is not only useful to easily test-drive your CORBA servers,
but rather makes Tcl an exciting language for distributed programming. Also, with Tk,
you can quickly develop attractive user interfaces accessing CORBA services. Server-side
scripting using [incr Tcl] classes also offers a wide range of possibilities.

This document describes the usage of Combat and expects that you are already familiar
with CORBA terminology and concepts.

The most recent version of Combat is always available from its homepage.1

1http://www.fpx.de/Combat/

1

Contents

1 Introduction 3
1.1 Terminology . 3
1.2 Interface Repository . 4
1.3 Feature Check . 6
1.4 Initialization . 7

2 Client Side scripting 7
2.1 idl2tcl . 7
2.2 ORB Methods . 8
2.3 The MICO Binder . 9
2.4 Handles . 9
2.5 Asynchronous Invocations . 10
2.6 Accessing Const Values . 12
2.7 Handle Management . 12
2.8 Dynamic Invocations . 13

3 The IDL to Tcl mapping 13
3.1 Mapping of Data Types . 13
3.2 Exceptions . 17

3.2.1 Throwing Exceptions . 17
3.2.2 Catching Exceptions . 18
3.2.3 Exception Example . 19

3.3 Working with TypeCodes . 19

4 The Interface Repository 19

5 Server Side Scripting 20
5.1 Implementing Servants . 20
5.2 The POA Pseudo Object . 22
5.3 The POA Current Pseudo Object . 22
5.4 The POA Manager Pseudo Object . 23
5.5 Examples . 23
5.6 Limitations . 24

6 To Do 25

2

1 Introduction

Let’s begin with an example. A popular one is the “Account” example, in which a Bank supports
thecreate operation to open a new account. An account, in turn, is an object that supports
thedeposit , withdraw andbalance operations. The IDL file could look as follows:

interface Account {
void deposit (in unsigned long amount);
void withdraw (in unsigned long amount);
long balance ();

};
interface Bank {

Account create (in string name, in string passwd);
};

Assuming that a server is running, and that an object reference for the Bank is available in
the file “Bank.ior” in the current directory, the following Combat script would connect the bank,
open an account, deposit and withdraw some bucks, and then check its balance.

% set Bank [corba::string_to_object file://[pwd]/Bank.ior]
% set Account [$Bank create MyName MyPassword]
% $Account deposit 700
% $Account withdraw 450
% puts "Current balance is $Account balance]."
Current balance is 250.

Here’s a list of Combat’s main features:

• Client side Tcl scripting

• Server side Tcl scripting with full POA support

• Straightforward IDL to Tcl mapping

• Asynchronous invocations

1.1 Terminology

Before describing the individual Combat commands, we should define our terminology.

Object Reference
An object reference, or IOR (for Interoperable Object Reference) is astring that uniquely
identifies a server object. No operations can be performed upon an IOR directly; it must
first be incarnated into ahandleusingcorba::string to reference .

Handle
A handle is a Tcl command with the same interface as the server object as defined in the
IDL description. Operations (or the getting/setting of attributes) on the handle transpar-
ently cause a server invocation to happen. Handles are acquired usingcorba::string -
to reference or as a result from a method invocation.

3

Handlesmustbe stored in a Tcl variable.2

Pseudo Object
A pseudo object is, on the outside, not much different from a handle. However, pseudo
objects are local, and an invocation on a pseudo object does not cause a remote servant to
be invoked, but is processed locally. Combat knows POA, POAManager and POACurrent
pseudo objects. A pseudo object is not associated with an object reference.

Servant
Used in server-side programming. A servant is an instance of an [incr Tcl] class that
inherits directly or indirectly fromPortableServer::ServantBase . Servants are
not CORBA objects; to invoke methods on a servant, one must first obtain an object
reference to the servant using POA functions.

1.2 Interface Repository

The Interface Repository is vital for the operation of Combat, and it is important that you un-
derstand its importance. Combat is fully dynamic and posesses no “compile-time” knowledge
of object interfaces. This is different from other language mappings, where such knowledge is
generated by the IDL “compiler” in the form of stubs and skeletons.

Combat instead pulls the information from Interface Repositories, at runtime. Combat dis-
tinguishes between alocal and manyremoterepositories. There is at most one local Interface
Repository; this is the one Combat itself is connected to.3 Then, servers themselves can be
connected to different remote Interface Repositories.

For each handle, Combat must find a matching Interface Repository entry. This is done in
the following way:

1. Object Referencesoptionallycontain a Repository Id. First of all, Combat looks up that
type in thelocal Interface Repository.4

2. If

• the Object Reference does not contain a Repository Id,

• there is no matching record in the local Interface Repository, or if

• the user wants to invoke a method that is not available for the current interface and
Combat wants to update its information,5

a interface request6 is sent to the server. If the server is properly configured, it
responds with a Interface Repository record in aremoteInterface Repository.

2Even when working interactively.
3by performing corba::resolveinitial references InterfaceRepository
4Unfortunately, there is no standard CORBA mechanism to access the Repository Id field within an object

reference, so this does not work with Combat’s “Generic ORB” configuration.
5It may be that the implementation has been replaced with a derived type.
6 interface is the GIOP name, elsewhere, it’sget interface .

4

3. Combat uses the identifier of the remote Interface Repository’s record and checks if it is
also contained in the local Interface Repository, which is assumed to be more local and
therefore faster. If the record is found in the local Interface Repository, Combat uses it,
else it keeps the remote information.

It is a problem that, usually, administrative action is necessary for servers to properly re-
spond to a interface request. For most ORBs, this consists of the following steps:

1. Start up an Interface Repository server.7

2. Feed the Interface Repository with IDL files.8

3. Connect servers to Interface Repository.

Please see your ORB’s documentation for details.
Actually, using remote Interface Repositories by questioning each object for its own inter-

face information is the “CORBA” way to go. However, there are several reasons why you would
want to use a local Interface Repository:

• You do not have administrative control over the servers, and they have not been connected
to an Interface Repository, thus failing to respond tointerface requests.

• You have administrative control over the servers, but do not want to connect them to an
Interface Repository because of overhead.

• It is faster to pull information from a local Interface Repository than from a remote one.

The local Interface Repository, if available, can be administered with thecombat::ir com-
mand. A helper program,idl2tcl exists to generate a string representation of interface data
which can then be used to bootstrap the local Interface Repository. See below for more infor-
mation.

Some notes:

• It is assumed that data in the local Interface Repository does not conflict data in a remote
Interface Repository. If an entry exists in both, its contents are assumed to be equivalent.

• For server-side scripting, all necessary interface informationmustbe local.

• You have a problem if an object reference does not contain interface informationand its
server is not connected to a remote Interface Repository – if Combat does not know the
object’s type, it cannot look it up in the local Interface Repository. However, if you then
use the is a internal operation on the handle, Combat will associate the object with that
type and look it up locally.

• M ICO automatically provides an empty local Interface Repository by default, if not over-
ridden. ORBacus does not; if you do not connect to an Interface Repository uponcorba::-
init and thecombat::ir command is used, Combat autostarts anirserv process
and from then on treats it as local.

7M ICO: ird , ORBacus:irserv
8M ICO: idl --feed-ir --no-codegen-c++ , ORBacus:irfeed

5

• If you have connected to an external Interface Repository uponcorba::init , it may
be “remote” in the TCP/IP sense, but is still “local” in the Combat sense. In that case,
local and remote Interface Repositories may in fact be the same.

Forgive the rather lengthy elaboration. In normal operation, you will probably never notice
the fine distinction between the local and a remote Interface Repository, but the decision process
is important in case anything does not work as expected.

Hints on debugging Interface Repository problems:

• Usecorba::resolve initial references to check if a local Interface Reposi-
tory is available. (Note that in order to perform any operations on it, the Interface Repos-
itory must contain information about the Interface Repository’s interfaces.)

• The iordump tool that comes with many ORBs can be used to check if an object refer-
ence does include type information.

• To check if a remote server supportsinterface , try the internal get interface
operation yourself (interactively). If you get back a handle, it works, else (if you receive
0 or an exception) it doesn’t.

1.3 Feature Check

At the beginning of your script, you will have to decide whether Combat supports your CORBA
scripting requirements. This becomes important if you are working with multiple versions of
Combat or with other CORBA scripting extensions to Tcl. Thecorba::feature command
exists to verify that necessary optional features are implemented.

Syntax:

corba::feature names

corba::feature require ?-exact? feature ?version ?

The “names” subcommand returns a list of feature tokens supported by the implementation.
For Combat, this list iscore, async, callback, type, poa9, register, combat::ir andmico::bind10.

The “require ” subcommand has three possible usages. If called with only a feature token,
it succeeds if that feature is implemented. If that feature is not available at all, an error is
returned. If a version number is mentioned, the command only succeeds if the implementation
provides that feature with the same major number and at least the same minor number. With the
-exact option, the given version number must match the implemented version exactly.

It is expected that a feature is upwards compatible within the same major version number,
i.e. version 1.3 supports all operations that version 1.1 did, but version 2.1 is probably incom-
patible. Major version 0 is an exception in that it does not assume backwards compatibility.

As long as the Tcl language mapping is not official, Combat reports the version number of
the supported features to be the same as the Combat version (i.e. less than 1.0).

9Only if [incr Tcl] is available
10Only when using the MICO ORB

6

1.4 Initialization

Before any of the other commands can be used, Combat and the ORB must be initialized. This
is performed using thecorba::init command.

Syntax:

corba::init ? arbitrary-parameters ? ?ORB-specific-parameters ?

The command takes an arbitrary number of parameters. Combat itself does not process any
parameters. They are just passed to the ORB’sCORBA::ORBinit() method; please check
your ORB’s manual for a listing of potential options. The ORB will consume all ORB-specific
arguments and remove them from the command line, the remaining parameters are returned.

It’s a good idea to pass a script’s command-line arguments, which are contained in theargv
variable, tocorba::init . This can be done using

set argv [eval corba::init $argv]

Afterwards,argv contains the remaining options.
Callingcorba::init is optional. If not performed explicitly, it is invoked implicitly with

an empty list of arguments if the ORB is first accessed through any of the other commands.11

2 Client Side scripting

2.1 idl2tcl

As already mentioned above, Combat uses not precompiled stubs but the Dynamic Invocation
Interface for method invocations. In order to construct a request, information about the available
methods and the types of their parameters is needed. Combat reads this information from an
Interface Repository to typecheck parameter values.

A standalone program,idl2tcl is provided that reads in IDL files and that produces Tcl
declarations that can then be fed into the local Interface Repository with thecombat::ir
command (see below).

Usage:

idl2tcl ?--name name? idl-file ...

The resulting Tcl script is written to a file with the same base name as the IDL file, but with
the .tcl extension, in the current directory. It can then be read in your own scripts with the
source command, or appropriate portions can be copied and pasted.

The generated script initializes the Tcl variableir name to contain appropriate definitions
for the Interface Repository that can be used in a call tocombat::ir add . In the above
variable name,nameis the base name of the last IDL input file on the command line, or the
parameter given to the--name option.

Suppose you had a simple IDL filehello.idl ,
11Exceptcorba::feature , which does not require the ORB.

7

interface HelloWorld {
void hello ();

};

You could then “compile” the file to a Tcl definition using

idl2tcl hello.idl

In your own scripts, you would initialize the local Interface Repository using

source hello.tcl

combat::ir add $ ir hello

before connecting to anyHelloWorld objects.
You may find it interesting thatidl2tcl is itself a Combat program that browses the

Interface Repository using self-generated type information.

2.2 ORB Methods

Some basic ORB methods are provided in thecorba namespace. For details, see the CORBA
specification, Chapter 4 (“ORB Interface”).

corba::string to object ior

Takes an object reference string as parameter and incarnates into a new handle.

corba::object to string handle

Takes a handle as parameter and returns the stringified IOR of the associated object refer-
ence.

corba::resolve initial references id

Obtains an initial reference and incarnates it into a new handle. Examples include “Root-
POA”, “POACurrent”, “InterfaceRepository” and “NameService”. For “RootPOA” and “POACur-
rent”, a pseudo object rather than a “normal” handle is returned.

Note that to access the Interface Repository or the Naming Service, the Interface Repository
must contain appropriate information about the associated interface.

corba::list initial services

Returns a (potentially incomplete) list of valid ids that can be used withcorba::resolve -
initial references .

8

2.3 The MICO Binder

Only supported when Combat is running with MICO.

To access a service, you need some mechanism to receive its object references. This can be
done by passing IOR strings, or via the Naming Service. The MICO Binder 12 can be thought
of as a very simple naming mechanism, it searches for a server based on its Repository Id.

mico::bind ?-addr addr ? repoid ?Tag?

If no explicit address is given with the-addr option, all remote ORBs that were given upon
initialization (with the-ORBBindAddr option) are contacted and asked for a server serving
the given Repository Id.

If no Tag (an arbitrary string that may be used to distringuished different servers serving
the same interface) is given, any such server is acceptable; otherwise, a server object with the
same tag is searched for.

Because this mechanism is MICO-specific, the command resides in themico:: namespace.
You can only bind to servers implemented with MICO.13

2.4 Handles

As already noted, a handle is a Tcl command which you can invoke available operations, set or
query attributes on, as specified in the IDL description for that particular interface.

Method invocations: $obj op?parameters ...?
Query attribute: $obj attribute
Set attribute: $obj attribute value

Invocations are usually synchronous and will wait until the result from the server is available.
SeeAsynchronous Invocationsfor information about asynchronous invocations.

An operation is mapped to a Tcl procedure with the same number of parameters as in the
IDL interface description.in parameters are passedby value, as expected, whileout and
inout parameters are passedby reference. Consider the operation

interface A {
short op (in long val, inout short flags, out string name);

};

To invokeA::op , you pass the first parameter by value, while you must put the second
parameter in a variable first, and must give a variable name for the third parameter:

set flags 42
set res [$Aobj op -1 flags name]

Note that we did not use$flags or $name, and didn’t need to set thenamevariable prior
to the invocation. Afterwards, you will find inflags andname the values returned by the
operation.

12See also the MICO manual.
13This includes Combat servers, if Combat is built upon MICO.

9

Please see “The IDL to Tcl mapping” below for the details about how CORBA data types
are mapped to Tcl.

Each handle also supports the following “builtin” operations which have the same semantics
as defined in the CORBA specification.

get interface
Returns a handle of typeCORBA::InterfaceDef pointing into the Interface Repos-
itory. Since the interface type for handles must be known, this requires that the IDL
description for the Interface Repository has been loaded into the Interface Repository
itself.

is a repoid
Takes a Repository Id as parameter and returns true (1) if the object implements the given
interface.

non existent
Returns true (1) if the server providing the implementation for this object has ceased to
exist. A false return value (0) does not guarantee that any following invocations will
succeed.

is equivalent handle
Takes another handle as parameter and returns true (1) if the objects referenced by both
handles are equivalent, or false (0) if not.

duplicate
Returns a duplicate of the handle. See the section about handle management for more
information.

Note that there is no need for an “isnil” operation, because nil object references are never
incarnated into a handle.

2.5 Asynchronous Invocations

As described so far, method (or attribute) invocations are synchronous, and the invocation blocks
until the result (or a success message) is received from the server. Additional flags can be added
before the attribute or operation nameto make an invocation asynchronous.

$obj -async op ?parameters ...?

$obj -callback proc op ?parameters ...?

With -async or -callback , the invocation does not wait for the result, but returns im-
mediately. Instead of the operation’s result, anasync-handleis returned.

-callback arranges for the given procedure to be called once the server process returns
and the result becomes available. The procedure is called at global level with the handle as
single parameter.

Thecorba::request command exists to monitor the status of asynchronous invocations
in progress.

Syntax:

10

corba::request get handle

corba::request poll ? handle ...?

corba::request wait ? handle ...?

get
Waits until the asynchronous request with the given async-handle has finished, and returns
the result of the operation, or throws an exception in case of a failure. Also extracts any
out or inout parameterswithin the context of theget invocation(see below).

poll
If called without arguments, it checks if any of the currently active asynchronous invoca-
tions has finished. Ifpoll is called with one or more handles as arguments, it checks if
any of these has finished. If yes, a single handle is returned.get should then be called on
that handle to retrieve the result. If none of the (given) request has finished,poll returns
immediately with an empty result.

wait
Similar topoll , but waits until one request has finished and then returns its handle. If
called without arguments, it considers all asynchronous requests that are in progress. If
there are no outstanding asynchronous requests, it immediately returns with an empty
result.

A callback procedure receives a handle as single argument and is expected to perform a
corba::request get on that handle. Here’s a simple example for a callback:

proc cb {handle} {
set res [corba::request get $handle]
puts "Result is: $res"

}
$obj -callback cb sleep 10

You must be careful using asynchronous invocations for operations without or inout
parameters. When setting up the invocation, only the name of the variable that was given for
theout or inout parameter is stored, and they are written to in the context in which the cor-
respondingcorba::request get is executed. So unless you declare the variables global
inside a callback function, they will not be visible on the outside. Here’s an example. Imagine
an object with astrcpy procedure that takes as parameters anout string (dest), and anin
string.

proc cb {handle} {
global dest
corba::request get $handle

}
global dest
$obj -callback cb strcpy dest "Hello World"
vwait dest

11

If corba::request get is executed in the callback procedure, thedest variable,
which is declared to take theout string parameter tostrcpy , is set. Ifdest were not declared
global, it would be set locally, and thevwait would block forever.

Notes:

• The -async and-callback flags can be used likewise on operations and attributes
(for very remote servers, setting or retrieving an attribute may take some time).

• Ordering is not guaranteed for asynchronous invocations, not even on the same object.

• Asynchronous invocations are only processed in Tcl’s event loop, so if your application
isn’t event driven, make sure to callupdate or vwait once in a while.

• Pseudo objects support the same syntax for asynchronous invocations. However, the asyn-
chrony is just “simulated” – operations on pseudo objects always happen synchronously
when setting up the request.

2.6 Accessing Const Values

Constant values (declared with the IDL keywordconst) can be accessed with thecorba::const
command:

corba::const repoid-or-scoped-name

Looks up the constant in thelocal Interface Repository using either its Repository Id or its
scoped name and returns the constant’s value as anAny value.

2.7 Handle Management

There are two commands related to duplicating and releasing handles. There are subtle differ-
ences in handle management depending on which version of Combat you are using. In Com-
bat/C++, handle management is fullyautomatic, and you need not spend much thought on it. In
Combat/Tcl, handle management ismanual.

Combat/C++ automatically releases all memory that is associated with a handle if the handle
is no longer referenced by a Tcl variable. In Combat/Tcl, you must usecorba::release
in order to release all memory. If you want to keep a handle even though it will be released
elsewhere, you must usecorba::duplicate to create a copy. One popular example where
duplicates are needed is in a servant, which receives an object reference as parameter. Because
the handle that is passed as a parameter will be released by the runtime after the servant’s method
returns, the servant must create a duplicate in order to keep a copy.

corba::duplicate ? typecode ? value

The corba::duplicate command takes a value as parameter, and optionally a type-
code. If the typecode is omitted, thenvaluemust be a handle. This handle is then duplicated,
and a new handle that encapsulates the same object reference as the original, is returned. If a
typecode is present, thenvaluemust match that typecode. The command will then traverse the
value according to the typecode and duplicate all of its handles. A “deep copy” is then returned.

12

corba::release ? typecode ? value

The syntax ofcorba::release is the same ascorba::duplicate . If the typecode
is omitted, thenvaluemust be a handle. All memory that the ORB associates with this handle
is released, and no further invocations using this handle are possible. If a typecode is present,
thenvaluemust match that typecode. The command will then traverse the value according to
the typecode and release all of its handles.

Since handle management in Combat/C++ is automatic, both of these two commands exist
in Combat/C++ for compatibility only.

2.8 Dynamic Invocations

Invocations normally pull type information from the Interface Repository. In contrast, an invo-
cation usingcorba::dii does not require type information for the remote interface to be present
in the Interface Repository; here, type information is passed along with each invocation in a
separatespecparameter:

corba::dii handle spec ?parameters ...?

specis a list composed of three or four elements. The first element is the typecode of the
return value. The second element is the name of the operation to be invoked. The third element
describes the parameters. The fourth element is a list of exception typecodes that this operation
may throw. The parameter description is a list that contains one element per parameter. Each
parameter is described by a list of two elements. The first element is eitherin, out or inout, and
the second element is the typecode of the parameter type.

As described in the section about asynchronous invocations, you can also use the-asyncor
-callback option to initiate a dynamic invocation asynchronously.

3 The IDL to Tcl mapping

3.1 Mapping of Data Types

This section describes how IDL data types are mapped to Tcl types.

Primitive Types
short , long , unsigned short , unsigned long , long long andunsigned
long long values are mapped to Tcl’s integer type. Errors may occur if a value exceeds
the numerical range of Tcl’s integer type.

float , double , long double values are mapped to Tcl’s floating point type.

string andwstring values are mapped to Tcl strings.

boolean values are accepted as 0, 1, true, false, yes and no. In a result, they are always
rendered as 0 (false) and 1 (true).

octet , char andwchar values are mapped to strings of length 1.

13

fixed values are mapped to a floating-point value in exponential representation. De-
pending on their scale and value, it may or may not be possbile to use the value in a Tcl
expression.

Struct Types
struct values are mapped to a list. For each element in the structure, there are two
elements in the list – the first is the element name, the second is the element’s value. This
allows to easily assign structures from and to associative arrays, usingarray get and
array set .

Example: the IDL type

struct A {
unsigned long B;
string C;

};

can be matched by the Tcl list{B 42 C {Hello World }}.

Sequences
sequence values are mapped to a list. As an exception, sequences ofchar , octet
andwchar are mapped to strings.

Example: the IDL type (following the above example for a structure)

typedef sequence<A, 2> D;

can be matched by the Tcl list{{B 42 C {Hello World }}}. Note the extra level of
nesting compared to the struct above.

Arrays
array values are mapped to a list. As an exception, sequences ofchar , octet and
wchar are mapped to strings.

Enumerations
enum values are mapped to the enumeration identifiers (without any namespace quali-
fiers).

Example: the IDL type

enum E {F, G, H};

can be matched by the Tcl stringG.

Unions
union values are mapped to a list of length 2. The first element is the discriminator,
or (default) for the default member. The second element is the appropriate union
member. Note that the default case can also be represented by a concrete value distinct
from all other case labels.

14

Object References
Non-nil object references are mapped to handles. Nil object references are mapped to the
integer value 0 (zero).

Exceptions
exception values are mapped to a list of length one or two. The first element is the
Repository Id for the exception. If present, the second element is the exception’s contents,
equivalent to the structure mapping. The second element may be omitted if the exception
has no members.

Value Types
valuetype values are mapped to a list, likestructs . For each element in the in-
heritance hierarchy of avaluetype , there are two elements in the list – the first is the
element name, and the second is the element’s value. An additional membertc may
be present. If present, its value must be a typecode. In an invocation, this member de-
termines the type to be sent. This mechanism allows to send a derived valuetype where
a base valuetype is expected. If notc member is present, the valuetype must be of the
same type as requested by the parameter. In receiving a valuetype, thetc member is
always added. Avaluetype can also be the integer 0 (zero) for a null value.

Note that this language mapping disallows valuetypes that contain themselves.

custom valuetypes are not supported.

Value Boxes
Boxedvaluetype types are mapped to either the boxed type or to the integer 0 (zero)
for a null value. In the case of boxed integers, the value 0 will always be read as a null
value rather than a non-null value containing the boxed integer zero. Shoot yourself in
the foot if you run into this problem.

TypeCode values
TypeCode values are mapped to a string containing a description of the typecode:

• Typecodes for the primitive typesvoid , boolean , short , long , unsigned
short ,unsigned long , long long , unsigned long long , float , dou-
ble , long double , char , octet , string , any , TypeCode are mapped to
their name.

• Bounded string typecodes are mapped to a list of length two. The first element of
the list is the identifierstring , the second element is the bound.

• Bounded wstring typecodes are mapped to a list of length two. The first element of
the list is the identifierwstring , the second element is the bound.

• struct typecodes are mapped to a list of length three. The first element is the
identifierstruct . The second element is the Repository Id, if available (else, the
field may be empty). The third element is a list with an even number of elements.
The zeroth and other even-numbered elements are member names, followed by the
member’s typecode.

15

• union typecodes are mapped to a list of length four. The first element is the identi-
fier union . The second element is the Repository Id, if available (else, the field may
be empty). The third element is the typecode of the discriminator. The fourth ele-
ment is a list with an even number of elements. The zeroth and other even-numbered
elements are labels or the identifierdefault for the default label, followed by the
typecode of the associated member.

• exception typecodes are mapped to a list of length three. The first element is the
identifierexception , the second element the Repository Id, and the third element
is a list with an even number of elements. The zeroth and other even-numbered
elements are member names, followed by the member’s typecode.

• sequence typecodes are mapped to a list of length two or three. The first element
is the identifiersequence , the second element is the typecode of the member
type. The third element, if present, denotes the sequence’s bound. Otherwise, the
sequence is unbounded.

• array typecodes are mapped to a list of length three. The first element is the
identifierarray , the second element is the typecode of the member type, the third
element is the array’s length.

• enum typecodes are mapped to a list of length two. The first element is the identifier
enum, the second element is a list of the enumeration identifiers.

• Object reference typecodes are mapped to a list of length two. The first element is
the identifierObject , the second element is the Repository Id of the IDLinter-
face .

• fixed typecodes are mapped to a list of length three. The first element is the
identifier fixed . The second element is the number of significant digits, the third
element is the scale.

• valuetype typecodes are mapped to a list of length five. The first element is the
identifiervaluetype . The second element is the Repository Id. The third element
is a list of non-inherited members. For each member, there are three elements in
the list, a visibility (private or public), the member name and the member’s
typecode. The fourth element is the typecode of the valuetype’s concrete base, or 0
(zero) if the valuetype does not have a concrete base. The fifth element is either an
empty string or one of the modifierscustom , abstract or truncatable .

• Boxedvaluetype typecodes are mapped to a list of length 3. The first element
is the identifiervaluebox . The second element is the Repository Id, and the third
element is the typecode of the boxed type.

• A recursive reference to an outer type (in astruct , union or valuetype) can
be expressed by a list of length two. The first element is the identifierrecursive ,
the second element is the Repository Id of the outer type, which must appear in the
same typecode description.

Examples for legal TypeCodes are:

• struct {} {s short ul {unsigned long } Q string }

16

• enum {A B C}
• union {} short {0 boolean (default) string }
• struct IDL:S:1.0 {foo {sequence {recursive IDL:S:1.0 }}}

See the description ofcorba::type . The of subcommand can be used to retrieve
TypeCode information from the Interface Repository, theequivalent subcommand
can be used to check TypeCode values against known types.

Any values
any values are mapped to a list of length two. The first element is the typecode, and the
second element is the value.

3.2 Exceptions

3.2.1 Throwing Exceptions

Exceptions can be thrown with thecorba::throw command.
Syntax:

corba::throw <exception>

The parameter must be an exception according to the mapping above: a list of length one
or two. The first element of the list is the exception’s Repository Id. The second element is a
list of the exception’s members according to the mapping for structures. If the following two
exceptions were declared in interface A,

interface A {
exception EX {

long value;
string reason;

};
exception OOPS {};

};

then these would be legal invocations ofcorba::throw

corba::throw {IDL:A/EX:1.0 {value 42 reason "oops, what’s up?"}}
corba::throw IDL:A/OOPS:1.0

The exception must be known to thelocal Interface Repository, where the given Repository
Id is looked up.14 In the second example, the exception’s members could be omitted because
the exception does not have any members.

If this command is used in a servant in the context of a server invocation, and if the exception
is not caught within the servant, it is passed back to the client side. If an exception is not caught
within a client, the client prints an error message and terminates.

14With the exception of system exceptions.

17

3.2.2 Catching Exceptions

Exceptions can be caught with Tcl’scatch command. See the Tcl manual page for details.

catch {
... object invocations that might throw exceptions ...

} result

If this command returns 0, the script has completed successful, without throwing an excep-
tion, and result contains the script’s return code. Ifcatch returns 1, an error has happened,
and the error code is stored in the result variable.

A small problem is that not all errors are exceptions, so you will have to check the result
from catch carefully if it contains an exception or other error information. You should check
the first item of the result if it is a known exception’s Repository Id.

For convenience, you can also use thecorba::try command to handle exceptions. It
implements Java-style processing of exceptions.

Syntax:

corba::try block ?catch {repoid ?var?} c-block? ... ?finally f-block?

First, the code blockblock is evaluated. If a CORBA exception or Tcl error has occured,
then thecatch clauses are searched left to right. Eachcatch clause is associated with a
Repository Id and a code block. For the first clause whose Repository Id matches the Repository
Id of the exception that has occured, the associated code block is executed.

The special value... for a Repository Id in acatch clause is recognized to match all
CORBA exceptions and Tcl errors.

If a variable name is associated with the Repository Id in acatch clause, this variable is
set to the exception that has occured during execution of the associated code block.

Regardless of whether an exception or error has occured and whether an exception or error
has indeed been handled by acatch clause, the code block associated with thefinally
clause is, if it exists, always executed.

If there are nocatch clauses, an implicit clause that catches... is used.
The return value of thecorba::try statement is computed as follows, in order of priority:

• If a finally clause exists and its associated code block completes with a return value
different fromTCL OK(i.e. causes itself an error or executes a Tclreturn , break or
continue statement), then this return code is used.

• If a CORBA exception or Tcl error occurs while executing the “main” code block, and this
exception or error is handled by acatch clause, then the return value of the associated
code block for this clause is used.

• If a CORBA exception or Tcl error occurs while executing the “main” code block, and
this exceptions is not handled by acatch clause, then this error is used.

• If no CORBA exception or Tcl error occurs while executing the “main” code block, then
its return code is used.

One effect of this return value handling is that all code blocks may execute a Tclreturn ,
break or continue statement, which will then be correctly passed along to the surrounding
code.

18

3.2.3 Exception Example

Here’s an example how exceptions could be handled:

corba::try {
...

} catch {IDL:A/EX:1.0 oops} {
oops contains A::EX data

} catch {IDL:omg.org/CORBA/COMM_FAILURE:1.0} {
remote server may be down

} catch {... oops} {
puts "oops: unexpected exception: $oops"

}

3.3 Working with TypeCodes

Thecorba::type command can be used to ensure type safety.

corba::type of <repoid-or-scoped-name>
When given the Repository Id or scoped name of any type (such as a struct), this command
retrieves the type code from thelocal Interface Repository.

corba::type match <TypeCode> <value>
If the value matches the type code, this command returns 1, otherwise 0. This enables
applications to verify type-safety of operation parameters or type-safe composition of
Any values.

corba::type equivalent <TypeCode> <TypeCode>
Type codes can be compared for identity using string comparison. This method is a less
strict comparison and returns 1 if both types are equivalent, meaning that they accept the
same values (for example, they ignore type aliasing). This information can for example
be used to extract values from an Any, by comparing the Any’s type code against known
(expected) type codes.

4 The Interface Repository

Combat provides thecombat::ir command to access the Interface Repository, which re-
sides in thecombat namespace because it is specific to the Combat package. You have already
learned one usage of this command when bootstrapping a local Interface Repository with infor-
mation about the interfaces generated byidl2tcl .

Syntax:

combat::ir add ir-description-seq

This adds new entries to thelocal Interface Repository.ir-description-seq must
be a string generated byidl2tcl . In case of duplicates, existing entries in the Interface
Repository are overwritten, while modules and interfaces are reopened and added to.

19

5 Server Side Scripting

5.1 Implementing Servants

The server-side mapping is kept similar to the C++ mapping in that it is based on the POA and
associated interfaces. Servants are realized using [incr Tcl] classes. Previous exposure to [incr
Tcl] is useful, but not required.

To implement a servant, you must write an [incr Tcl] class that inherits, directly or indi-
rectly, from the Combat-provided classPortableServer::ServantBase . In the imple-
mentation, you must provide public variables for IDL attributes and a public method for IDL
operations, all with the same name as in the IDL file.

As a little piece of magic, since Combat does not have compile-time type information, you
must provide run-time type information. This is done by implementing the public method
Interface (leading underscore, capital I), which does not have any parameters and must

return the Repository Id for the servant’s most-derived IDL interface.

Important note: Type information for all interfacesmustbe contained in thelocal
Interface Repository!

As an example, consider the following IDL file:

interface Foo {
void HelloWorld ();
attribute short x;

};

Its implementation could look like

class Foo {
inherit PortableServer::ServantBase

public method _Interface {} {
return "IDL:Foo:1.0"

}

public method HelloWorld {} {
puts "Hello World"

}

public variable x
}

As with method invocations,in parameters are passed by value, whileout and inout
parameters are passed by reference. Consider the operation

interface A {
short op (in long val, inout short flags, out string name);

};

20

In your implementation, you receive variable names for theflags andname parameters.
However, since these variables are set “outside” your class method, i.e. one level “above”, you
must “import” them usingupvar (see the Tcl manual). Therefore, an implementation for the
above method could look like

class A {
inherit PortableServer::ServantBase

public method _Interface {
return "IDL:A:1.0"

}

public method op { val flags_name name_name } {
upvar $flags_name flags $name_name name
puts "val is $val"
puts "flags is $flags"
set flags -1
set name "Hello World"
return 42

}
}

Now that we have written an implementation, we can create an instance of that class (“Ser-
vant”) using

set serv [Foo #auto]

Servant memory mangement is left entirely to the user. Servants are allocated and deleted
using the above construction mechanism and [incr Tcl]’sdelete operator. The application is
responsible not to delete any servants that are still referenced in a POA.

Servants are not automatically accessible from the outside after their creation. They must
beactivated in a POA first.

Each servant inherits thethis member function, which has three purposes (the same as in
the C++ mapping).

1. Within the context of a request invocation, returns a new handle incarnating a reference
for the object that the servant currently incarnates.

2. Outside the context of a request invocation, if the servant has not yet been activated, and if
its POA has theIMPLICIT ACTIVATION policy, the servant is activated, and a handle
incarnating an object reference to that servant is returned.

3. Outside the context of a request invocation, if the servant has already been activated, and
if its POA has theUNIQUEID policy, a handle incarnating an object reference to that
servant is returned.

21

5.2 The POA Pseudo Object

A pseudo object for the Root POA is obtained usingcorba::resolve initial references :

set RootPOA [corba::resolve_initial_references RootPOA]

POA pseudo objects support all operations as defined in the CORBA specification. The
usual type mapping rules apply, with a single exception. Thecreate POAmethod receives
as its second parameter a list of policyvaluesrather than a list of policyobjects. That means
that the corresponding factory operations, likecreate lifespan policy are not needed.
Example:

set myPOA [$RootPOA create_POA 0 {USE_SERVANT_MANAGER PERSISTENT}]

This creates a new POA as a child of the Root POA. A new POA Manager is created,
because a nil value rather than a handle is passed as the first parameter. The new POA will
support persistent objects and use a servant manager.

The “native” data types from the POA specification are represented in the following way:

PortableServer::Servant
Servants are instances of an [incr Tcl] class that derives fromPortableServant::-
ServantBase , as seen above.

PortableServer::ObjectId
ObjectIds are mapped to Tcl strings.

PortableServer::ServantLocator::Cookie
Cookies are mapped to Tcl strings.

5.3 The POA Current Pseudo Object

A POA Current pseudo object is obtained usingcorba::resolve initial referen-
ces .

set POACurrent [corba::resolve_initial_references POACurrent]

A POA Current pseudo object implements all operations as defined in the CORBA specifi-
cation:

get POA
In the context of a method invocation on a servant, returns the POA in whose context it is
called.

get object id
In the context of a method invocation, returns the Object Id identifying the object in whose
context it is called.

22

5.4 The POA Manager Pseudo Object

A POA Manager pseudo object is obtained using thethe POAManager method on a POA
pseudo object. It implements the following methods as defined in the CORBA specification:

activate
Switches all associated POAs to the “active” state so that they can start serving requests.

hold requests wait for completion
Switches all associated POAs to the “holding” state, so that incoming method invocations
are queued. Queued requests are performed when the POA again enters the active state.

discard requests wait for completion
Switches all associated POAs to the “discarding” state, so that incoming method invoca-
tions are discarded rather than processed.

deactivate etherealize waitfor completion
Switches all associated POAs to the “inactive” state. Ifetherealizeis true, a servant
manager, if available, is asked to “etherealize” active objects.

5.5 Examples

While implementing servants should be pretty straightforward, the number of possibilities for
handling servants with the POA is pretty confusing. Let’s write a simple servant, and then try a
few examples. In the following examples, we assume that you have “compiled” the IDL file into
a Tcl file usingidl2tcl , that you have sourced that file and fed the local Interface Repository.

The “Hello World” IDL definition:

interface HelloWorld {
void hello ();

};

The “Hello World” implementation:

class HelloWorld {
inherit PortableServer::ServantBase

public method _Interface {} {
return "IDL:HelloWorld:1.0"

}

public method hello {} {
puts "Hello World"

}
}

Now, the following few lines of code create a Hello servant, activate it with the POA and
starts serving request.

23

set poa [corba::resolve_initial_references RootPOA]
set mgr [$poa the_POAManager]

set serv [Hello #auto]

$poa activate_object $serv
$mgr activate
vwait forever

First, we obtain the POA and POAManger pseudo objects. Then, we create an instance of
the “Hello” class and activate it using theactivate object method on the POA. Then, we
useactivate on the POA Manager to transition the POA from its initial Holding to the active
state. Last, we enter Tcl’s event loop by waiting for theforever variable to change, which
never happens – so Tcl never returns from the event loop and will process requests forever.

As an alternative toactivate object , we could also useservant to id . Since
the Root POA has theIMPLICIT ACTIVATION policy, it would cause the servant to be im-
plicitely activated.

Another alternative is to call the servant’s inheritedthis member function, which also
implicitely activates a servant.

Now let’s assume we want to activate more than one Hello servant, and we want to assign
each servant an Object Id of our choice, so that clients can bind to a specific servant. Since the
RootPOA has theSYSTEMID policy, this involves creating a new POA that has theUSERID
policy.

set poa [corba::resolve_initial_references RootPOA]
set mgr [$poa the_POAManager]
set mypoa [$poa create_POA MyPOA $mgr {USER_ID}]

set serv1 [Hello_impl #auto]
set serv2 [Hello_impl #auto]

$mypoa activate_object_with_id Hello-1 $serv1
$mypoa activate_object_with_id Hello-2 $serv2
$mgr activate
vwait forever

For a more complex example, see the server of the Bank/Account example in thedemo/account
subdirectory. There,create reference with id is used in the Bank factory to create
references to non-existent Account objects. A Servant Activator is then registered to create
Accounts on demand.

5.6 Limitations

Because [incr Tcl] currently does not support virtual inheritance, Combat does not support
multiple inheritance yet.

However, single implementation inheritance works, you can simply inherit from the base
implementation instead ofPortableServer::ServantBase .

24

6 To Do

Combat seems reasonably complete. Some random leftover thoughts:

• Multithreading is not yet supported. It might work if Combat commands are only used
from a single thread, but this is untested. If multithreading was supported, would it elim-
inate the need for asynchrony?

• Should [incr Tcl] be replaced on the server side? It’s basically nice, but does not support
diamont inheritance, and does not allow for reference-counted objects.

• Maybe interface information could be stored elsewhere than in the Interface Repository,
for example by storingFullInterfaceDescription data. This would improve
things with ORBs that do not provide an “internal” IFR.

• It would be wonderful to submit the interfaces and mappings in this document as an
official OMG language mapping. I do not have the authority and muscle to do that on my
own.

Note that the author’s motivation in further development of Combat is partly fueled by user
feedback. I would love to hear of projects using Combat, or of plans to use it.

25

