
Version 1.0.7
Printed in USA
September 2001
IONA Technologies, Inc.

CORBA/C++ Programming
with ORBacus
Student Workbook

Copyright © 2000–2001 IONA Technologies

Parts of this material are adapted from M. Henning/S. Vinoski,Advanced CORBA Programming with
C++ . © 1999 Addison Wesley Longman, Inc. Reprinted by permission of Addison Wesley Longman.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in these notes and Object Oriented Concepts was aware of
the trademark claim, the designations have been printed in initial caps or all caps.

Object Oriented Concepts, Inc. has taken care in the preparation of this material, but makes no expressed
or implied warranty of any kind and assumes no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained therein.

ntity)

 the

an this
ls

tion

se.

d
may
eparate

rials
her,
ley
ROYALTY-FREE PUBLIC LICENSE AGREEMENT FOR ORBACUS TRAINING
COURSE MATERIALS

READ CAREFULLY: This License Agreement for ORBacus Training Course Materials
(“License”) is a legal agreement between you, the Licensee, (either an individual or a single e
and IONA Technologies (“IONA”) for non-commercial, royalty-free use of the Materials. Any
commercial use is subject to a different license. By using the Materials, Licensee indicates
acceptance of this License, and agrees to be bound by all its terms and conditions for using
Materials.

No rights are granted to the Materials except as expressly set forth herein. Nothing other th
License grants Licensee permission to use the Materials. Licensee may not use the Materia
except as expressly provided under this License. If Licensee does not accept the terms and
conditions of this License, do not use the Materials.

In consideration of Licensee's forbearance of commercial use of the Materials, IONA grants
Licensee non-exclusive, royalty-free rights as expressly provided herein.

DEFINITIONS.

The “Materials” are IONA’s training course materials for its ORBacus software.

To “distribute” means to broadcast, publish, transfer, post, upload, download or otherwise
disseminate in any medium to any third party.

To “modify” means to create a work derived from the Materials.

A “commercial use” is the use of the Materials in connection with, for or in aid of the genera
of revenue, such as in the conduct of Licensee's daily business operations.

LICENSE TO USE.

Licensee may use the Materials provided that such use does not constitute a commercial u
Licensee shall not copy or distribute the Materials. Licensee shall not modify the Materials.

Notwithstanding the restrictions on commercial use and copying, if Licensee is an accredite
academic institution, Licensee may use the Materials in courses provided at Licensee, and
provide copies of the Materials to the attendees at such courses, provided that there is no s
charge for such Materials other than general tuition for attendance at such institution.

RESTRICTIONS.

Licensee acknowledges that the Materials are protected by copyright laws and international
copyright treaties, as well as other intellectual property laws and treaties. The Materials are
licensed, not sold. All title and copyrights in and to the Materials and any copies of the Mate
are owned exclusively by IONA. The Materials incorporate, with the permission of the publis
certain material from “Advanced CORBA Programming with C++” published by Addison Wes
Longman. Licensee may not sublicense, assign or transfer this License or the Materials.

NO WARRANTIES.

IONA EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE MATERIALS. THE
MATERIALS ARE PROVIDED TO LICENSEE “AS IS,” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE ENTIRE RISK AS

he

(c)(1)
7-19,
51.

e will
e

all prior
one of
both

all be
ny and
is
any

ease
TO THE USE, QUALITY AND PERFORMANCE OF THE MATERIALS IS WITH THE
LICENSEE. SHOULD THE MATERIALS PROVE DEFECTIVE, LICENSEE ASSUMES THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

NO LIABILITY FOR DAMAGES.

IN NO EVENT WILL IONA BE LIABILE FOR ANY GENERAL, DIRECT, INDIRECT,
INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, INACCURATE INFORMATION, LOSS OF INFORMATION, OR ANY
OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR INABILITY TO USE THE
MATERIALS, EVEN IF IONA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

U.S. GOVERNMENT RESTRICTED RIGHTS.

The Materials are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by t
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs
and (2) of the commercial Computer Software-Restricted Rights 48 C.F.R. paragraph 52.22
as applicable. Manufacturer is IONA Technologies, Inc., 200 West Street, Waltham, MA 024

TERMINATION.

Any violation or any attempt to violate any of the terms and conditions of this License will
automatically terminate Licensee's rights under this License. Upon such termination License
cease any and all use of the Materials and will destroy any and all of Licensee's copies of th
Materials.

LICENSE SCOPE AND MODIFICATION.

This License sets forth the entire agreement between Licensee and IONA and supersedes
agreements and understandings between the parties related to the subject matter hereof. N
the terms of this License may be waived or modified except as expressly agreed in writing by
Licensee and IONA.

SEVERABILITY.

Should any provision of this License be declared void or unenforceable, the validity of the
remaining provisions shall not be affected thereby.

GOVERNING LAW.

This License is governed by the laws of the Commonwealth of Massachusetts, U.S.A., and sh
interpreted in accordance with and governed by the laws thereof. Licensee hereby waives a
all right to assert a defense based on jurisdiction and venue for any action stemming from th
License brought in U.S. District Court for the District of Massachusetts. Should Licensee have
questions concerning this License, or if Licensee desires to contact IONA for any reason, pl
contact at:

IONA Technologies, Inc.
200 West Street
Waltham, MA 02451
USA

Contents
3
4
-5

8
0

4

6

3

Unit 1: Introduction 1-1

1.1 What is CORBA? 1-2
1.2 The Object Management Group (OMG) 1-
1.3 What is Client/Server Computing? 1-
1.4 Advantages and Disadvantages of CORBA 1
1.5 Heterogeneity 1-6
1.6 The Object Management Architecture (OMA) 1-
1.7 Core Components of an ORB 1-1
1.8 Request Invocation 1-12
1.9 Object Reference Semantics 1-1

Unit 2: The OMG Interface Definition Language 2-1

2.1 Introduction 2-2
2.2 IDL Compilation (C++) 2-4
2.3 IDL Compilation (Mixed Languages) 2-6
2.4 IDL Source Files 2-7
2.5 Comments and Keywords 2-8
2.6 Identifiers 2-9
2.7 Built-In Types 2-10
2.8 Type Definitions 2-15
2.9 Enumerations 2-16
2.10 Structures 2-18
2.11 Unions 2-20
2.12 Guidelines for Unions 2-22
2.13 Arrays 2-24
2.14 Sequences 2-25
2.15 Sequences or Arrays? 2-2
2.16 Recursive Types 2-28
2.17 Constants and Literals 2-30
2.18 Constant Expressions 2-3
v

vi

1

4

2.19 Interfaces 2-34
2.20 Interface Syntax 2-35
2.21 Interface Semantics 2-36
2.22 Operation Syntax 2-37
2.23 Operation Example 2-38
2.24 User Exceptions 2-40
2.25 Using Exceptions Effectively 2-41
2.26 System Exceptions 2-42
2.27 Oneway Operations 2-44
2.28 Contexts 2-45
2.29 Attributes 2-46
2.30 Modules 2-47
2.31 Forward Declarations 2-48
2.32 Inheritance 2-49
2.33 Inheritance from Object 2-50
2.34 Inheritance Redefinition Rules 2-5
2.35 Inheritance Limitations 2-52
2.36 Multiple Inheritance 2-53
2.37 Scope Rules for Multiple Inheritance 2-5
2.38 IDL Scope Resolution 2-56
2.39 Nesting Restrictions 2-59
2.40 Anonymous Types 2-60
2.41 Repository IDs 2-63
2.42 Controlling Repository ID Prefixes 2-64
2.43 Predefined IDL 2-65
2.44 Using the IDL Compiler 2-66
2.45 Topics Not Covered Here 2-67

Unit 3: Exercise: Writing IDL Definitions 3-1

3.1 The Climate Control System 3-2
3.2 Thermometers 3-3
3.3 Thermostats 3-4
3.4 The Monitoring Station 3-5
3.5 What You Need to Do 3-6

Unit 4: Solution: Writing IDL Definitions 4-1

4.1 IDL for the Climate Control System 4-2

Unit 5: Basic C++ Mapping 5-1

5.1 Introduction 5-2
5.2 Mapping for Identifiers 5-3
5.3 Scoping Rules 5-4
5.4 Mapping for Modules 5-5
5.5 Mapping for Built-In Types 5-6
5.6 Overloading on Built-In Types 5-8

vii

3
4
26
30
1
2

33

6
7
8
9
2

4

0

5.7 Memory Allocation for Strings 5-9
5.8 Mapping for Constants 5-10
5.9 Variable-Length Types 5-12
5.10 Example: String Allocation 5-13
5.11 _var Types 5-14
5.12 C++ Mapping Levels 5-15
5.13 TheString_var Class 5-16
5.14 Main Rules for UsingString_var 5-20
5.15 Mapping for Fixed-Length Structures 5-2
5.16 Mapping for Variable-Length Structures 5-2
5.17 Mapping for Unbounded Sequences 5-
5.18 Example: Using a String Sequence 5-
5.19 Using Complex Element Types 5-3
5.20 Mapping for Bounded Sequences 5-3
5.21 Rules for Safe Use of Sequences 5-
5.22 Mapping for Arrays 5-34
5.23 Array Assignment and Allocation 5-36
5.24 Mapping for Unions 5-38
5.25 Using Unions Safely 5-45
5.26 Mapping fortypedef 5-46
5.27 Typeany: Concepts 5-47
5.28 Applications of Typeany 5-48
5.29 Mapping for Typeany 5-49
5.30 Using_var Types 5-58
5.31 Mapping for Variable-Length_var Types 5-60
5.32 Example: Simple Use of_var Types 5-62
5.33 Mapping for Fixed-Length_var Types 5-63
5.34 Dealing with Broken Compilers 5-64

Unit 6: Client-Side C++ Mapping 6-1

6.1 Introduction 6-2
6.2 Object References 6-3
6.3 Client-Side Proxies 6-4
6.4 Mapping for Interfaces 6-5
6.5 Mapping for Object References 6-
6.6 Life Cycle of Object References 6-
6.7 Reference Life Cycle Operations 6-
6.8 Object Reference Counts 6-
6.9 Scope of Object References 6-1
6.10 Nil References 6-13
6.11 References and Inheritance 6-1
6.12 Implicit Widening of_ptr References 6-15
6.13 Widening with_duplicate 6-16
6.14 Narrowing Conversion 6-18
6.15 Illegal Uses of References 6-2
6.16 Pseudo Objects and theORB Interface 6-22
6.17 ORB Initialization 6-24
6.18 Stringified References 6-26

viii

4
5

40

3
8

4
6

2

2

10

5

4

6.19 TheObject Interface 6-32
6.20 Object Reference Equivalence 6-3
6.21 Providing Object Equivalence Testing 6-3
6.22 _var References 6-36
6.23 _var References and Widening 6-39
6.24 References Nested in Complex Types 6-
6.25 Mapping for Operations 6-41
6.26 Mapping for Attributes 6-42
6.27 Parameter Passing 6-4
6.28 Parameter Passing: Pitfalls 6-5
6.29 Mapping for Exceptions 6-61
6.30 Mapping for System Exceptions 6-6
6.31 Semantics of System Exceptions 6-6
6.32 Mapping for User Exceptions 6-68
6.33 Compiling and Linking 6-69

Unit 7: Exercise: Writing a Client 7-1

7.1 Source Files and Build Environment 7-
7.2 Server Operation 7-2
7.3 Client Operation 7-3
7.4 What You Need to Do 7-3

Unit 8: Solution: Writing a Client 8-1

8.1 Communicating with the Thermostat 8-
8.2 Communicating with the Controller 8-4
8.3 The Complete Client Code 8-6

Unit 9: Server-Side C++ Mapping 9-1

9.1 Introduction 9-2
9.2 Mapping for Interfaces 9-3
9.3 Skeleton Classes 9-4
9.4 Servant Classes 9-6
9.5 Operation Implementation 9-8
9.6 Attribute Implementation 9-9
9.7 Servant Activation and Reference Creation 9-
9.8 Server Initialization 9-12
9.9 Parameter Passing 9-1
9.10 Throwing Exceptions 9-28
9.11 Exception Pitfalls 9-30
9.12 Tie Classes 9-33
9.13 Clean Server Shutdown 9-3
9.14 Handling Signals (UNIX) 9-38
9.15 Handling Signals (Windows) 9-40
9.16 Implementation Inheritance 9-41
9.17 Interface Inheritance 9-42

ix

2

5
6

-9

7

1
2
23

0
32

48

2

9.18 Compiling and Linking 9-43

Unit 10: Exercise: Writing a Server 10-1

10.1 Source Files and Build Environment 10-
10.2 Server Operation 10-2
10.3 What You Need to Do 10-3

Unit 11: Solution: Writing a Server 11-1

11.1 Solution 11-2
11.2 Theserver.h File 11-6
11.3 Theserver.cpp File 11-9

Unit 12: The Portable Object Adapter (POA) 12-1

12.1 Interface Overview 12-2
12.2 Functions of a POA 12-4
12.3 Functions of a POA Manager 12-
12.4 POA Manager State Transitions 12-
12.5 Request Flow 12-8
12.6 Contents of an Object Reference 12
12.7 Policies 12-10
12.8 POA Policies 12-12
12.9 POA Creation 12-14
12.10 POA-to-POA Manager Relationship 12-1
12.11 The Life Span Policy 12-18
12.12 The ID Assignment Policy 12-19
12.13 The Active Object Map (AOM) 12-20
12.14 The ID Uniqueness Policy 12-2
12.15 The Servant Retention Policy 12-2
12.16 The Request Processing Policy 12-
12.17 The Implicit Activation Policy 12-24
12.18 The Thread Policy 12-25
12.19 The Root POA Policies 12-26
12.20 Policy Creation 12-28
12.21 Creating Persistent Objects 12-3
12.22 Creating a Simple Persistent Server 12-
12.23 Explicit Servant Activation 12-36
12.24 Object Creation 12-40
12.25 Destroying CORBA Objects 12-42
12.26 Deactivation and Servant Destruction 12-

Unit 13: Exercise: Writing a Persistent Server 13-1

13.1 Source Files and Build Environment 13-
13.2 Server Operation 13-2
13.3 What You Need to Do 13-3

x

6
-8
9
10

2
14
16
8

4

2

2

4
-5
-6
-7
8

Unit 14: Solution: Writing a Persistent Server 14-1

14.1 Solution 14-2

Unit 15: Advanced Uses of the POA 15-1

15.1 Pre-Loading of Objects 15-2
15.2 Servant Managers 15-3
15.3 Servant Activators 15-4
15.4 Implementing a Servant Activator 15-
15.5 Use Cases for Servant Activators 15
15.6 Servant Manager Registration 15-
15.7 Type Issues with Servant Managers 15-
15.8 Servant Locators 15-11
15.9 Implementing Servant Locators 15-1
15.10 Use Cases for Servant Locators 15-
15.11 Servant Managers and Collections 15-
15.12 One Servant for Many Objects 15-1
15.13 TheCurrent Object 15-20
15.14 Default Servants 15-22
15.15 Trade-Offs for Default Servants 15-2
15.16 POA Activators 15-25
15.17 Implementing POA Activators 15-26
15.18 Registering POA Activators 15-28
15.19 Finding POAs 15-30
15.20 Identity Mapping Operations 15-3

Unit 16: Exercise: Writing Servant Locators 16-1

16.1 Source Files and Build Environment 16-
16.2 Server Operation 16-2
16.3 What You Need to Do 16-2

Unit 17: Solution: Writing Servant Locators 17-1

17.1 Solution 17-2

Unit 18: ORBacus Configuration 18-1

18.1 Introduction 18-2
18.2 Defining Properties 18-3
18.3 Setting Properties in the Registry 18-
18.4 Setting Properties in a Configuration File 18
18.5 Setting Properties Programmatically 18
18.6 Setting Properties from the Command Line 18
18.7 Commonly Used Properties 18-

xi

7

-9
0
2
4

8

9

5

0

2

-2
Unit 19: The Naming Service 19-1

19.1 Introduction 19-2
19.2 Terminology 19-3
19.3 Example Naming Graph 19-4
19.4 Naming IDL Structure 19-6
19.5 Name Representation 19-
19.6 Stringified Names 19-8
19.7 Pathnames and Name Resolution 19
19.8 Obtaining an Initial Naming Context 19-1
19.9 Naming Service Exceptions 19-1
19.10 Creating and Destroying Contexts 19-1
19.11 Creating Bindings 19-16
19.12 Context Creation Example 19-1
19.13 Rebinding 19-21
19.14 Resolving Bindings 19-22
19.15 Removing Bindings 19-24
19.16 Listing Name Bindings 19-26
19.17 Pitfalls in the Naming Service 19-2
19.18 Stringified Name Syntax 19-30
19.19 Using Stringified Names 19-31
19.20 URL-Style IORs 19-32
19.21 URL Escape Sequences 19-3
19.22 Resolving URL-Style IORs 19-36
19.23 Creating URL-Style IORs 19-37
19.24 What to Advertise 19-38
19.25 Federated Naming 19-39
19.26 Running the Naming Service 19-4
19.27 Thensadmin Tool 19-41
19.28 Compiling and Linking 19-42

Unit 20: Exercise: Using the Naming Service 20-1

20.1 Source Files and Build Environment 20-
20.2 Server Operation 20-2
20.3 What You Need to Do 20-2

Unit 21: Solution: Using the Naming Service 21-1

21.1 Solution 21-2

Unit 22: The Implementation Repository (IMR) 22-1

22.1 Purpose of an Implementation Repository 22
22.2 Binding 22-4
22.3 Indirect Binding 22-6
22.4 Automatic Server Start-Up 22-8
22.5 IMR Process Structure 22-9

xii

2

2

4
-7
-8
-9
0
2

20

1
32
33

39
22.6 Location Domains 22-10
22.7 Theimradmin Tool 22-11
22.8 Server Execution Environment 22-1
22.9 Server Attributes 22-14
22.10 Getting IMR Status 22-16
22.11 IMR Configuration 22-18
22.12 IMR Properties 22-20
22.13 The Boot Manager 22-22
22.14 Themkref Tool 22-23

Unit 23: Exercise: Using the Implementation Repository 23-1

23.1 Source Files and Build Environment 23-
23.2 Server Operation 23-2
23.3 What You Need to Do 23-2

Unit 24: Solution: Using the Implementation Repository 24-1

24.1 Solution 24-2

Unit 25: Threaded Clients and Servers 25-1

25.1 Overview 25-2
25.2 The Blocking Concurrency Model 25-3
25.3 The Reactive Concurrency Model 25-
25.4 The Threaded Concurrency Model 25
25.5 The Thread-per-Client Concurrency Model 25
25.6 The Thread-per-Request Concurrency Model 25
25.7 The Thread-Pool Concurrency Model 25-1
25.8 Selecting a Concurrency Model 25-1
25.9 Overview of JThreads/C++ 25-14
25.10 JTC Initialization 25-15
25.11 Simple Mutexes 25-16
25.12 Recursive Mutexes 25-17
25.13 Automatic Unlocking 25-18
25.14 Monitors 25-19
25.15 Simple Producer/Consumer Example 25-
25.16 Rules for Using Monitors 25-22
25.17 Static Monitors 25-26
25.18 TheJTCThread Class 25-28
25.19 Joining with Threads 25-30
25.20 Other JThreads/C++ Functionality 25-3
25.21 Synchronization Strategies for Servers 25-
25.22 Basic Per-Servant Synchronization 25-
25.23 Life Cycle Considerations 25-34
25.24 Threading Guarantees for the POA 25-

1. Introduction
d the

and
ns of
Summary

This unit presents the motivation for using CORBA, the basics of the CORBA architecture, an
fundamentals of the CORBA object model, including the semantics of object references.

Objectives

By the completion of this unit, you will have a basic understanding of CORBA’s advantages
disadvantages, how an ORB helps you to develop distributed applications, the basic functio
an ORB, and the semantics of request dispatch.

What is CORBA? Introduction

1
Introduction

Copyright 2000–2001 IONA Technologies

o

bout

e
ism,
dings

ming

d

1.1 What is CORBA?
Fundamentally, the Common Object Request Broker Architecture (CORBA) is a distributed
client/server platform with an object-oriented spin. The idea is to provide an object-oriented
programming model for distributed computing to programmers that is as close as possible t
programming with ordinary local objects. The job of CORBA is take all the grunt work out of
distributed programming, so you can focus on your business logic instead of having to worry a
distribution infrastructure.

CORBA consists of a large set of specifications that run to thousands of pages. However, th
fundamental services it provides can be summarized as above. Apart from an RPC mechan
CORBA offers a number of services that take care of common chores, provides language bin
for a number of popular programming languages, defines an interoperability protocol so
implementations from different vendors can interoperate, and it defines a number of program
guidelines and patterns (often enshrined in specific APIs) that you use when you develop
applications.

CORBA enables you to get away from having to worry about infrastructure and ad-hoc and
home-grown communication mechanism and replaces them with a an open and standardize
platform that is both portable and scalable.
1-2
1What is CORBA?
CORBA (Common Object Request Broker Architecture) is a distributed
object-oriented client/server platform.

It includes:

• an object-oriented Remote Procedure Call (RPC) mechanism

• object services (such as the Naming or Trading Service)

• language mappings for different programming languages

• interoperability protocols

• programming guidelines and patterns

CORBA replaces ad-hoc special-purpose mechanisms (such as socket
communication) with an open, standardized, scalable, and portable
platform.
Copyright 2000–2001 IONA Technologies

Introduction The Object Management Group (OMG)

2
Introduction

Copyright 2000–2001 IONA Technologies

nt to

here

e an
 of
te or

free of
1.2 The Object Management Group (OMG)
The Object Management Group (OMG) publishes specifications of technology that are mea
enable the development of distributed object-oriented applications. (By and large, the
specifications actually achieve this goal, although, as with any other large effort of this kind, t
are a few bad apples among the bunch.)

The specifications are submitted for technology adoption by members of the OMG who hav
interest in a specific technology. The specifications are developed and refined by a process
consensus decision making. Of the more than 800 member organizations, none can domina
otherwise unduly influence the process. Once published, specifications are made available
charge, and anyone can develop products based on these specifications free of charge.
Copyrigh
2The Object Management Group (OMG)

The OMG was formed in 1989 to create specifications for open
distributed computing.

Its mission is to

"… establish industry guidelines and object management
specifications to provide a common framework for distributed
application development."

The OMG is the world’s largest software consortium with more than
800 member organizations.

Specifications published by the OMG are free of charge. Vendors of
CORBA technology do not pay a royalty to the OMG.

Specifications are developed by consensus of interested submitters.
t 2000–2001 IONA Technologies 1-3

What is Client/Server Computing? Introduction

3
Introduction

Copyright 2000–2001 IONA Technologies

entities
rvice).
sly.

t
ven

he
ns,
xtends
his is
 or
1.3 What is Client/Server Computing?
Fundamentally, client/server computing is about different and distinct computational entities
(tasks, threads, processes, computers, systems) that cooperate to get some work done. The
are servers (which are passive and offer service), and clients (which are active and obtain se
The same entity can act as both a client and a server at different times or even simultaneou

A very simple example of a client/server system is the UNIX print spooler. Thelpsched (or
lpd) process is a server that runs permanently and waits for instructions from clients to prin
something; thelp (or lpr) command is a client that contacts the server with a print request. E
though the communication between the two is very simple, the print spooler exhibits all the
fundamental characteristics of a client/server system.

Adding object-oriented features to client/server computing means to transparently support t
fundamental principles of object orientation: the separation of interfaces from implementatio
inheritance, and polymorphism. These features mean that you get object-orientation that "e
across the wire", which means that you can access a remote object much as if it were local. (T
in sharp contrast to client/server platforms such as DCE, which has no real notion of objects
polymorphism and makes it very hard to naturally extend an OO programming model to
distributed systems.)
1-4
3What is Client/Server Computing?

A client/server computing system has the following characteristics:

• A number of clients and servers cooperate to carry out a
computational task.

• Servers are passive entities that offer a service and wait for requests
from clients to perform that service.

• Clients are active entities that obtain service from servers.

• Clients and servers usually run as processes on different machines
(but may run on a single machine or even within a single process).

• Object-oriented client/server computing adds OO features to the
basic distribution idea: interfaces, messages, inheritance, and
polymorphism.
Copyright 2000–2001 IONA Technologies

Introduction Advantages and Disadvantages of CORBA

4
Introduction

Copyright 2000–2001 IONA Technologies

ry

fierce

ge.

f the

mean
don’t

 state
ermit

ot as
as with
till

y in
1.4 Advantages and Disadvantages of CORBA
CORBA offers quite a few advantages. Among them is the fact that CORBA is not proprieta
technology, so you get implementations from a large number of vendors for almost every
imaginable combination of hardware, operating system, and programming language. Quite
competition among vendors ensures that you have a choice, while the specifications ensure
interoperability and portability. You can even get Open Source implementations free of char

CORBA makes distributed programming easier than any other platform in existence. Most o
low-level and difficult work required for distribution is taken care of for you, so you can
concentrate on your application instead of distributed programming. (However, that doesn’t
that you can forget that a network is somewhere between the client and server, only that you
have to deal with that network directly.)

On the down side, CORBA suffers from a few problems too. Because the OMG publishes
specifications, not source code, there is no reference implementation that would definitively
what CORBA is. This means that specifications are sometimes too loose or ambiguous and p
implementation behavior to diverge until the OMG catches up with the problem and fixes the
specification. Consensus decision making is also not necessarily the best way to establish a
specification. While the specifications usually do what most parties want, they are typically n
elegant or tight as they could be, due to the need to accommodate everyone’s needs. And,
any powerful and complex tool, it is easy to build something that doesn’t work very well. You s
need to know what you are doing and CORBA cannot do your thinking for you.

Still, CORBA is by far the most successful and widely-used distributed client/server technolog
existence. Once you know it, you will enjoy it!
Copyrigh
4Advantages and Disadvantages of CORBA

Some advantages:

• vendor-neutral and open standard, portable, wide variety of
implementations, hardware platforms, operating systems,
languages

• takes the grunt work out of distributed programming

Some disadvantages:

• no reference implementation

• specified by consensus and compromise

• not perfect

• can shoot yourself in the foot and blow the whole leg off…

Still, it’s the best thing going!
t 2000–2001 IONA Technologies 1-5

Heterogeneity Introduction

5
Introduction

Copyright 2000–2001 IONA Technologies

,

ce, is
s on a
ever;
 it

t can

jects
es the
1.5 Heterogeneity
CORBA hides most of the differences that are present in heterogeneous systems, which are
composed of components from different vendors that use different technologies. Specifically
CORBA provides the following features:

• Location transparency

The client does not know or care whether the target object is local to its own address spa
implemented in a different process on the same machine, or is implemented in a proces
different machine. Server processes are not obliged to remain on the same machine for
they can be moved around from machine to machine without clients becoming aware of
(with some constraints, which we discuss in Unit 22).

• Server transparency

The client does not need to know which server implements which objects.

• Language independence

The client does not care what language is used by the server. For example, a C++ clien
call a Java implementation without being aware of it. The implementation language for
objects can be changed for existing objects without affecting clients.

• Implementation independence

The client does not know how the implementation works. For example, the server may
implement its objects as proper C++ objects, or the server may actually implement its ob
using non-OO techniques (such as implementing objects as lumps of data). The client se
1-6
5Heterogeneity

CORBA can deal with homogeneous and heterogeneous
environments. The main characteristics to support heterogeneous
systems are:

• location transparency

• server transparency

• language independence

• implementation independence

• architecture independence

• operating system independence

• protocol independence

• transport independence
Copyright 2000–2001 IONA Technologies

Introduction Heterogeneity

 from

ven be

veral

s can
r

same consistent object-oriented semantics regardless of how objects are implemented
server.

• Architecture independence

The client is unaware of the CPU architecture that is used by the server and is shielded
such details as byte ordering and structure padding.

• Operating system independence

The client does not care what operating system is used by the server. The server may e
implemented without the support of an operating system—for example, as a real-mode
embedded program.

• Protocol independence

The client does not know what communication protocol is used to send messages. If se
protocols are available to communicate with the server, the ORB transparently selects a
protocol at run time.

• Transport independence

The client is ignorant of the transport and data link layer used to transmit messages. ORB
transparently use various networking technologies such as Ethernet, ATM, token ring, o
serial lines.
Copyright 2000–2001 IONA Technologies 1-7
in the

The Object Management Architecture (OMA) Introduction

6
Introduction

Copyright 2000–2001 IONA Technologies

de a
ate a

w the
n
ween

ept

an
and
red to
jects.

he
1.6 The Object Management Architecture (OMA)
The Object Management Architecture (OMA) and its core, the CORBA specification—provi
complete architectural framework that is both rich enough and flexible enough to accommod
wide variety of distributed systems.

The OMA uses two related models to describe how distributed objects and the interactions
between them can be specified in platform-independent ways. The Object Model defines ho
interfaces of objects distributed across a heterogeneous environment are described using a
Interface Definition Language (IDL), and the Reference Model characterizes interactions bet
such objects.

The Object Model defines an object as an encapsulated entity with animmutable distinct identity
whose services are accessed only through well-definedinterfaces. Clients use an object’s services
by issuingrequeststo the object. The implementation details of the object and its location are k
hidden from clients.

The Reference Model providesinterface categories that are general groupings for object
interfaces. As the above diagram shows, all interface categories are conceptually linked by
Object Request Broker (ORB). Generally, an ORB enables communication between clients
objects, transparently activating those objects that are not running when requests are delive
them. The ORB also provides an interface that can be used directly by clients as well as ob

The above diagram shows the interface categories that use the ORB’s activation and
communication facilities.

• Object Services are domain-independent, orhorizontally oriented, interfaces used by many
distributed object applications. For example, all applications must obtain references to t
1-8
6The Object Management Architecture (OMA)
Object Request Broker

Application
Interfaces

Domain
Interfaces

Object
Services
Copyright 2000–2001 IONA Technologies

Introduction The Object Management Architecture (OMA)

rson

many
rface

ou do

ing
ccess
e

objects they intend to use. Both the OMG Naming Service and the OMG Trading Servic
object services that allow applications to look up and discover object references. Objec
services are normally considered part of the core distributed computing infrastructure.

• Domain Interfaces play roles similar to those in the Object Services category except that
domain interfaces are domain-specific, orvertically oriented. For example, there are domain
interfaces used in health care applications that are unique to that industry, such as a Pe
Identification Service. Other interfaces are specific to finance, manufacturing,
telecommunications, and other domains. The multiple Domain Interface bubbles in the
preceding diagram indicate this multiplicity of domains.

• Application Interfaces are developed specifically for a given application. They are not
standardized by the OMG. However, if certain application interfaces begin to appear in
different applications, they become candidates for standardization in one of the other inte
categories.

Note that none of the interfaces in these categories are privileged in any way. For example, y
not need access to the source code for your ORB to use a naming service other than the
OMG-defined one. For example, you can implement a naming service of your own that
implements the OMG interfaces for the service, or you can make up an entirely different nam
service with different interfaces and use that instead. (Some of the other components that a
the ORB may expect a standards-conforming naming service to be present, so changing on
component may force you to change others; however, such interdependencies are rare.)
Copyright 2000–2001 IONA Technologies 1-9
e are
t

Core Components of an ORB Introduction

7
Introduction

Copyright 2000–2001 IONA Technologies

g
ary

e
ists

which
stub

 The

ever,
son
1.7 Core Components of an ORB
The above diagram shows the major components of an ORB:

• ORB Core

The ORB core is proprietary to each implementation and encapsulates basic networkin
facilities. Application code does not ever access the ORB core directly, and the propriet
interfaces and features of the core are hidden behind a facade of standardized APIs.

• ORB Interface

On top of the core, the ORB interface allows clients and servers to communicate with th
core. The ORB interface is standardized and the same for all clients and servers and ex
mainly for initialization purposes and a few other basic services.

• Static Stub

The purpose of a static stub is to accept a client request and to pass it to the ORB core,
in turn sees to it that the request makes its way to its (possibly remote) target object. The
is a piece of code that is generated by an Interface Definition Language (IDL) compiler.
way IDL is compiled into a language-specific API is standardized by language mapping
specifications. This means that the static stubs offer the same interface on all ORBs. How
the specific API is dependent on the type of object being accessed. For example, a per
object has a different interface than a car object, and the difference is reflected in the
generated API.
1-10
7Core Components of an ORB
Server ORB CoreClient ORB Core

Client Application Server Application

Object
Adapter

Static
Stub DII

ORB
Interface

ORB
Interface

Skeleton DSI

IDL-dependent Same for all
applications

There may be multiple
object adapters

Network
Copyright 2000–2001 IONA Technologies

Introduction Core Components of an ORB

send
 client

pes
y
 have
DII

ore
 In
ts in

 you
is
nk
es it
ests on
m of
 a

in

ts,
cts
APIs

ect

s
s
ome

The
he

ver. In
port
• Dynamic Invocation Interface (DII)

The Dynamic Invocation Interface (DII) provides an alternate way to access remote obje
Instead of being specific to a specific interface, the DII is general enough to allow you to
a request to any type of object, even an object whose interface was unknown when the
was compiled (no IDL-generated code is involved).

The main advantage of the DII is that it does not require compile-time knowledge of the ty
of objects a client can communicate with and is therefore very flexible. The DII is usuall
used to implement dynamic applications, such as debuggers and browsers, that cannot
compile-time knowledge of all the interfaces they need to deal with. The downside of the
is that it is much more complex than the static stub interface.

The DII interface is identical for all ORBs.

• Skeleton

The skeleton is the server-side equivalent of a stub. It is generated from IDL (and theref
specific to each object type) and provides an up-call interface into the application code.
effect, it provides a callback mechanism so you can implement the behavior of your objec
the server.

• Dynamic Skeleton Interface (DSI)

The Dynamic Skeleton Interface (DSI) is the server-side equivalent of the DII. It permits
to write a server that implements objects whose type is unknown at the time the server
written. This sounds almost like a contradiction in terms, but makes sense when you thi
about things like protocol bridges. A bridge must accept requests for objects whose typ
has never seen before and pass them on via some other protocol, translating these requ
the fly. The type knowledge necessary for this translation is supplied to the bridge in for
dynamic configuration information, or taken from an Interface Repository (IFR), which is
database of IDL definitions.

• Object Adapter

The object adapter mediates calls between the ORB and the server and serves two ma
purposes:

• It keeps track of how to map incoming requests onto programming language artifac
such as objects or procedures. To do this, the object adapter must know which obje
exist and when objects are created or destroyed. The object adapter therefore offers
that allow the application code to keep it informed of the life cycle of objects. The obj
adapter is also involved in creating and tracking the identity of objects.

• The object adapter straddles the boundary between language-independent request
received from clients and language-dependent up-calls that need to be made to pas
control to the application code in the server. For this reason, object adapters have s
components that differ for each language mapping.

Only one object adapter, the Portable Object Adapter (POA) is currently standardized. (
Basic Object Adapter (BOA) was deprecated with CORBA 2.2 and is no longer part of t
standard.) However, vendors can create other object adapters for special purposes, for
example, for real-time systems or object-oriented databases.

Note that only two processes are involved in the preceding diagram: one client and one ser
particular, there is no other process via which communications are routed. The run-time sup
for clients and servers is provided entirely in libraries.
Copyright 2000–2001 IONA Technologies 1-11
cts.

Request Invocation Introduction

8
Introduction

Copyright 2000–2001 IONA Technologies

P),
IORs).

ration
ber

uch as

ses) is
1.8 Request Invocation
Objects in CORBA are identified by object references. An object reference is a handle that
uniquely identifies a target object. For ORBs supporting the Internet Inter-ORB Protocol (IIO
object references are in a standard format and known as Interoperable Object References (

For a client to send a request to an object, it must hold an object reference and invoke an ope
via the reference (much like you must have a class instance pointer in C++ to invoke a mem
function on a C++ object). The ORB takes care of the entire request dispatch transparently, s
locating the object, starting its server if it is not running at the time, and making sure that
parameters are sent and received correctly (or an exception is raised for a failed request).

The language-specific object that receives the request (that is, a C++ instance for our purpo
known as the servant for a request.
1-12
8Request Invocation

Clients invoke requests (send messages) to objects via an object
reference. The object reference (IOR) identifies the target object.

When a request is sent by a client, the ORB:

• locates the target object

• activates the server if it is not running

• transmits arguments for the request to the server

• activates the target object (servant) in the server if it is not
instantiated

• waits for the request to complete

• returns the results of the request to the client or returns an exception
if the request failed
Copyright 2000–2001 IONA Technologies

Introduction Request Invocation
Copyright 2000–2001 IONA Technologies 1-13

Object Reference Semantics Introduction

9
Introduction

Copyright 2000–2001 IONA Technologies

n
ess
t be

rence
ace).

note
p
, its

oyed

e

nt
ect.
1.9 Object Reference Semantics
Object references are much like C++ class instance pointers in that they uniquely identify a
object. The main difference is that an object reference can denote an object in another addr
space. The semantics of object references are central to the CORBA object model and mus
understood in detail.

• Each reference identifies exactly one object.

Just as a C++ class instance pointer identifies exactly one object instance, an object refe
denotes exactly one CORBA object (which may be implemented in a remote address sp
A client holding an object reference is entitled to expect that the reference will always de
the same object while the object continues to exist. An object reference is allowed to sto
working only when its target object is permanently destroyed. After an object is destroyed
references become permanently non-functional. This means that a reference to a destr
object cannot accidentally denote some other object later.

• An object can have several references.

Several different references can denote the same object. In other words, each referenc
“names” exactly one object, but an object is allowed to have several names.

If you find this strange, remember that the same thing can happen in C++. A C++ class
instance pointer denotes exactly one object, and the pointervalue(such as 0x48bf0) identifies
that object. Multiple inheritance can cause a single C++ instance to have several differe
pointer values, depending on whether pointer points to a base or derived part of the obj
1-14
9Object Reference Semantics

An object reference is similar to a C++ class instance pointer, but can
denote an object in a remote address space.

• Every object reference identifies exactly one object instance.

• Several different references can denote the same object.

• References can be nil (point nowhere).

• References can dangle (like C++ pointers that point at deleted
instances).

• References are opaque.

• References are strongly typed.

• References support late binding.

• References can be persistent.
Copyright 2000–2001 IONA Technologies

Introduction Object Reference Semantics

” or
hat a

out of
s that
ject
ient

all

 black

ovide

. This
send
at

t. For

ia a
es of

g
is no
nto
e

disk.
 the
• References can be nil.

CORBA defines a distinguished nil value for object references. A nil reference points now
and is analogous to a C++ null pointer. Nil references are useful for conveying “not found
“not there” semantics. For example, an operation can return a nil reference to indicate t
client’s search for an object did not locate a matching instance.

• References can dangle.

After a server has passed an object reference to a client, that reference is permanently
the server’s control and can propagate freely via means invisible to the ORB. This mean
CORBA has no built-in automatic mechanism for the server to inform a client when the ob
belonging to a reference is destroyed. Similarly, there is no built-in automatic way for a cl
to inform a server that it has lost interest in an object reference.

• References are opaque.

Object references contain a number of standardized components that are the same for
ORBs as well as proprietary information that is ORB-specific. To permit source code
compatibility across different ORBs, clients and servers are not allowed to see the
representation of an object reference. Instead, they must treat an object reference as a
box that can be manipulated only through a standardized interface.

The encapsulation of object references is a key aspect of CORBA. It lets you add new
features, such as different communication protocols, over time without breaking existing
source code. In addition, vendors can use the proprietary part of object references to pr
value-added features, such as performance optimizations, without compromising
interoperability with other ORBs.

• References are strongly typed.

Every object reference contains an indication of the interface supported by that reference
arrangement allows the ORB run time to enforce type safety. For example, an attempt to
aprint message to anEmployee object (which does not support that operation) is caught
compile time for statically-typed languages (such as C++) and at run time, otherwise.

• References support late binding.

Clients can treat a reference to a derived object as if it were a reference to a base objec
example, assume that aManager interface is derived fromEmployee. A client may actually
hold a reference to aManager but may think of that reference as being of typeEmployee. As
in C++, a client cannot invokeManager operations via anEmployee reference. However, if a
client invokes theperson_number operation via theEmployee reference, the corresponding
message is still sent to theManager servant that implements theEmployee interface.

This arrangement is exactly analogous to C++ virtual function calls: invoking a method v
base pointer calls the virtual function in the derived instance. One of the major advantag
CORBA, compared with traditional RPC platforms, is that polymorphism and late bindin
work for remote objects exactly as they do for local C++ objects. This means that there
artificial wall through your architecture in which you must map an object-oriented design o
a remote procedure call paradigm. Instead, polymorphism works transparently across th
wire.

• References can be persistent.

Clients and servers can convert an object reference into a string and write the string to
Sometime later, that string can be converted back into an object reference that denotes
same original object.
Copyright 2000–2001 IONA Technologies 1-15
here

2. The OMG Interface Definition
Language
ding
Summary

This unit presents the syntax and semantics of the OMG Interface Definition Language, inclu
common idioms and design guidelines. The unit also shows how to use the IDL compiler to
produce C++ stubs and skeletons.

Objectives

By the completion of this unit, you will be able to write IDL definitions and to compile these
definitions into C++ stubs and skeletons.

Introduction The OMG Interface Definition Language

1
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ism
een
ontract

n be

ith

, as

isp,
ome a

age.
nts.
f data
s, and

e

2.1 Introduction
The OMG Interface Definition Language (IDL) is CORBA’s fundamental abstraction mechan
for separating object interfaces from their implementations. IDL establishes a contract betw
client and server that describes the types and object interfaces used by an application. This c
ensures that client and server agree on the types and interfaces used by an application.

IDL specifications are independent of the implementation language, so client and server ca
written in different languages. An IDL compiler translates IDL specifications into APIs in a
specific implementation language, such as C++. You use these generated APIs to interact w
applications and the ORB. The translation algorithms from IDL into APIs for specific
implementation languages are known aslanguage mappings and defined by the OMG. Currently,
CORBA defines language mappings for C, C++, Ada, COBOL, Smalltalk, Java, and Python
well as a scripting language called CORBAscript, which is useful for rapid prototyping.
Independent efforts are underway to provide language mappings for Eiffel, Modula 3, Perl, L
Visual Basic, and a number of others; some of these language mappings may eventually bec
standard.

IDL defines interfaces, not implementations. This means that IDL is a purely declarative langu
You cannot say anything about object state in IDL and you cannot write executable stateme
Instead, you use IDL to define types, interfaces, and operations (which permit the exchange o
between client and server). IDL is analogous to C++ header files, which define types, classe
methods

Data can be exchanged only if it is defined in IDL. You cannot, for example, pass a C++ typ
directly to a client or server because doing so would destroy the language independence of
CORBA. (For example, a Java server would not be able to use a C++ data type.)
2-2
1Introduction
IDL specifications separate language-independent interfaces from
language-specific implementations.

IDL establishes the interface contract between client and server.

Language-independent IDL specifications are compiled by an IDL
compiler into APIs for a specific implementation language.

IDL is purely declarative. You can neither write executable statements in
IDL nor say anything about object state.

IDL specifications are analogous to C++ type and abstract class
definitions. They define types and interfaces that client and server
agree on for data exchange.

You can exchange data between client and server only if the data’s
types are defined in IDL.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Introduction
Copyright 2000–2001 IONA Technologies 2-3

IDL Compilation (C++) The OMG Interface Definition Language

2
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

uce
nd
s.)

 using
L

L.
s that

he
2.2 IDL Compilation (C++)
An IDL compiler produces source files that must be combined with application code to prod
client and server executables. (Note that the CORBA standard does not specify the name a
number of files that should be produced; the above names are therefore specific to ORBacu

The above diagram shows the development steps for a client and server written in C++ and
the same ORB. Client and server developer must agree to use the same IDL source. The ID
source file (x.idl) is compiled by the IDL compiler into four files:

• x.h

This file contains C++ type definitions that correspond to the data types defined inx.idl . In
addition, it contains stub class definitions that correspond to the interfaces defined in ID
This header file is included in both client and server to ensure that they agree on the type
are used by the application.

• x.cpp

This file contains the source code for the types and classes declared inx.h . It is linked into
both client and server executables.

• x_skel.h

This file contains definitions that are specific to the server side, so it is included only in t
server source code. (x_skel.h includesx.h , so it is sufficient to write a single
#include “x_skel.h” statement insrv.cpp in order to include bothx_skel.h and
x.h .)
2-4
2IDL Compilation (C++ Language)
Server
Developer

Client
Developer

Server
Executable

x.idl

C++ ORB
Run-Time

Library

Client
Executable

srv.cppx_skel.cppx.h x.cpp

app.cpp
RPC

IDL
Developer

x_skel.h

IDL
Compiler
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language IDL Compilation (C++)

ked
• x_skel.cpp

This file contains source code for the skeleton classes that provide the server-side up-c
interface. It is linked into the server executable only.

For the client, the client application code (app.cpp in this example) is linked with the stubs into
the client executable. For the server, the stubs, skeletons, and the server application code
(srv.cpp in this example) is linked into server executable. Both client and server also are lin
against a library that provides the necessary run-time support.
Copyright 2000–2001 IONA Technologies 2-5
all

IDL Compilation (Mixed Languages) The OMG Interface Definition Language

3
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

.
ORB.

tten in

ion.
 and

 the
instead
s are
lient
a

2.3 IDL Compilation (Mixed Languages)
If client and server use different languages, they cannot share source or binary components
Despite that, they can communicate with each other, provided they both use an interoperable
The above diagram shows the development steps for a client written in Java and a server wri
C++.

Again, the only thing that links client and server developer is the IDL definition for the applicat
Otherwise, client and server developer use completely separate development environments
language mappings, and they can use ORBs from different vendors.

For the server side, the same development steps apply as for a pure C++ environment. For
client side, the developer uses an IDL compiler that generates stubs and skeletons in Java
of C++. (Of course, for a Java client, only the Java stubs are relevant and the Java skeleton
ignored.) The IDL-to-Java compiler produces a number of Java files that, together with the c
application code (app.java in this example), form the client executable. As for a C++ ORB,
library provides the necessary run-time support for the client application.
2-6
3IDL Compilation (Mixed Languages)
srv.cppx_skel.cppx.h x.cpp x_skel.h

Server
Developer

Client
Developer

x.idl

Client
Executable

app.java

RPC

IDL
Developer

IDL-to-C++
Compiler

IDL-to-Java
Compiler

x.java

Java ORB
Run-Time

Server
Executable

C++ ORB
Run-Time
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language IDL Source Files

4
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

rm

 to

 use all

must
ou to
2.4 IDL Source Files
You must use a.idl extension for your IDL source files. For example,CCS.idl is a legal IDL
file name. If you are working in an environment with case-insensitive file names,CCS.IDL is
legal. However, in environments with case-sensitive file names,CCS.IDL is not a legal IDL file
name.

Like C++, IDL permits free use of white space (spaces, tabs, horizontal and vertical tabs, fo
feeds, and newlines). All of these act as token separators (as does a C-style/*...*/ comment).
Indentation does not carry semantics, so you can use any layout you prefer. (You may want
follow the layout and punctuation used here, which follows the OMG style guide for IDL.)

IDL source files are preprocessed exactly as C++ source files are. This means that you can
of the C++ preprocessor features, such as#include, macro definitions, and so on.

As with C++, you can define types in any order that is convenient, with the proviso that you
define things before you can use them. (For recursive types, a forward declaration permits y
avoid violating this rule.)
Copyrigh
4IDL Source Files
The CORBA specification imposes a number of rules on IDL source
files:

• IDL source files must end in a .idl extension.

• IDL is a free-form language. You can use white space freely to
format your specification. Indentation is not lexically significant.

• IDL source files are preprocessed by the C++ preprocessor. You can
use #include, macro definitions, etc.

• Definitions can appear in any order, but you must follow the “define
before use” rule.
t 2000–2001 IONA Technologies 2-7

Comments and Keywords The OMG Interface Definition Language

5
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies
2.5 Comments and Keywords
IDL permits both C-style and C++-style comments.

IDL keywords must be spelled in lower case. For example,interface, struct, andunion are
valid keywords, whereasInterface, STRUCT, anduNion are not. There are four exceptions to
this rule: the keywordsTRUE, FALSE, Object, andValueBase must be capitalized as shown.
2-8
5Comments and Keywords
• IDL permits both C++-style and C-style comments:

/*
* A C-style comment
*/

// A C++-style comment

• IDL keywords are in lower case (e.g. interface), except for the
keywords TRUE, FALSE, Object, and ValueBase, which must be
spelled as shown.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Identifiers

6
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

A

ed over
g
. For

B

me
rules
at are

tifiers
2.6 Identifiers
IDL identifiers can contain letters, digits, and underscores, and they must start with a letter.
single leading underscore is ignored, soset_temp and_set_temp are considered the same
identifier. Identifiers with two or more leading underscores are illegal.

The rules for leading underscores exist to provide an escape hatch: as new features are add
time to IDL, new keywords must be introduced. The leading underscore rule permits existin
specifications that clash with a new keyword to be retained by adding a leading underscore
example, the IDL identifier_ValueBase is not treated as a keyword, but as an identifier. You
should not use leading underscores in your specifications unless a newer version of the OR
introduces a keyword that clashes with one of your identifiers.

IDL identifiers are case-insensitive, so you cannot use, for example,temp andTemp in the same
scope. However, once you have used an identifier to name a construct, you must use the sa
capitalization to name that same construct; otherwise, the IDL compiler flags an error. (These
exist to permit mapping of IDL into languages that are case-sensitive as well as languages th
case-insensitive, without having to resort to name mangling.)

In order to avoid awkward mappings into the target language, you should try and avoid iden
that are likely to be programming language keywords. For example,class, package, while,
import, PERFORM, andself are poor choices.
Copyrigh
6Identifiers

• IDL identifiers can contain letters, digits, and underscores. For

example:

Thermometer, nominal_temp

• IDL identifiers must start with a letter. A leading underscore is
permitted but ignored. The following identifiers are treated as
identical:

set_temp, _set_temp

• Identifiers are case-insensitive, so max and MAX are the same
identifier, but you must use consistent capitalization. For example,
once you have named a construct max, you must continue to refer to
that construct as max (and not as Max or MAX).

• Try to avoid identifiers that are likely to be keywords in programming
languages, such as class or package.
t 2000–2001 IONA Technologies 2-9

Built-In Types The OMG Interface Definition Language

7
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

t

s.

EEE

,

type
2.7 Built-In Types
IDL has a number of built-in types, similar to C++ and other programming languages.

2.7.1 Numeric Types
IDL supports integer, floating-point, and fixed-point types.

Integer Types

IDL providesshort, long, andlong long integer types, both signed and unsigned. Note tha
the size guarantees shown here must be maintained by language mappings.

NOTE: 64-bit integers were added with CORBA 2.1 and do not interoperate with older ORB

Floating-Point Types

IDL provides single, double, and extended precision floating-point types. IEEE format is not
supported in all environments; if that is the case, the ORB will provide an approximation to I
floating-point semantics.

NOTE: Be careful when using typelong double: it may not be supported in all environments
depending on your CPU architecture and your compiler. In addition, typelong double
was added with CORBA 2.1 and does not interoperate with older ORBs. In addition,
long double is not supported by the Java mapping.
2-10
7Built-In Types

IDL provides a number of integer and floating-point types:

Types long long, unsigned long long, and long double may
not be supported on all platforms.

Type Size Range

short ≥ 16 bits −215 to 215−1
unsigned short ≥ 16 bits 0 to 216−1
long ≥ 32 bits −231 to 231−1
unsigned long ≥ 32 bits 0 to 232−1
long long ≥ 64 bits −263 to 263−1
unsigned long long ≥ 64 bits 0 to 264−1
float ≥ 32 bits IEEE single precision
double ≥ 64 bits IEEE double precision
long double ≥ 79 bits IEEE extended precision
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Built-In Types

8
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

r
o

int
t

re a
on

Bs,
 that
Fixed-Point Types

Fixed-point types specify a total number of digits and a scale that sets the decimal point. Fo
example,fixed<5,2> specifies a fixed-point type with five digits, two of which are fractional, s
it can represent values from−999.99 to 999.99 in increments of0.01.

Fixed-point types can represent decimal fractions exactly (to the precision of the number of
fractional digits) and so are not plagued by the representational idiosyncrasies of floating-po
types. (For example, the number0.1 cannot be represented accurately as an IEEE floating-poin
value because IEEE floating-point format can represent fractions without error only if they a
fractional power of2.) Internally, calculations on fixed-point types are carried out with a precisi
of 62 digits, making them especially useful to represent monetary values.

NOTE: Fixed-point types were added with CORBA 2.1 and do not interoperate with older OR
so be sure to use them only if you know that they are supported by all environments
are relevant to you.
Copyrigh
8Built-In Types (cont.)

CORBA 2.1 added type fixed to IDL:

typedef fixed<9,2> AssetValue; // up to 9,999,999.99
// accurate to 0.01

typedef fixed<9,4> InterestRate; // up to 99,999.9999,
// accurate to 0.0001

typedef fixed<31,0> BigInt; // up to 10^31 - 1

Fixed-point types have up to 31 decimal digits.

Fixed-point types are not subject to the imprecision of floating-point
types.

Calculations are carried out internally with 62-digit precision.

Fixed-point types are useful mainly for monetary calculations.

Fixed-point types are not supported by older ORBs.
t 2000–2001 IONA Technologies 2-11

Built-In Types The OMG Interface Definition Language

9
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

or
rver

rious

RBA

sing
ither

Bs,
2.7.2 Character Types
The IDLchar type can hold an 8-bit character. IDL does not mandate a particular codeset f
characters, so you can use CORBA in, for example, an EBCDIC environment. If client and se
use different codesets, the ORB takes care of appropriately translating characters during
transmission.

The default codeset forchar is ISO Latin-1, which is a superset of ASCII. (The bottom 128
character positions are identical to ASCII; the top 128 character positions are occupied by va
European characters, such as ‘Å’.)

Wide characters permit support of scripts with large numbers of characters, such as Kanji. CO
does not mandate a particular codeset for wide characters. Instead, client and server ORB
transparently negotiate which codeset to use. This means that, for example, a Kanji client u
Shift-JIS can transparently communicate with a Kanji server using Unicode (provided that e
the client ORB or the server ORB can translate between Shift-JIS and Unicode).

NOTE: Wide characters were added with CORBA 2.1 and do not interoperate with older OR
so use them with caution.
2-12
9Built-In Types (cont.)

IDL provides two character types, char and wchar.

• char is an 8-bit character, wchar is a wide (2- to 6-byte) character.

• The default codeset for char is ISO Latin-1 (a superset of ASCII),
the codeset for wchar is 16-bit Unicode.

IDL provides two string types, string and wstring.

• A string can contain any character except NUL (the character with
value zero). A wstring can contain any character except a
character with all bits zero.

• Strings and wide strings can be unbounded or bounded:

typedef string City; // Unbounded
typedef string<3> Abbreviation; // Bounded
typedef wstring Stadt; // Unbounded
typedef wstring<3> Abkuerzung; // Bounded
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Built-In Types

its of
und.

date a
ver is
nsist

re
2.7.3 String Types
An IDL string can contain any character except the NUL character.1 Strings can be unbounded
or bounded. An unbounded string can hold any number of characters (up to the memory lim
your platform). A bounded string contains at most the number of characters specified in its bo
The bound doesnotcount any terminating NUL characters, so “Hello”doesfit into astring<5>.
(The notion of NUL-termination does not make sense in IDL because many programming
languages do not represent strings as a NUL-terminated sequence of bytes.)

Wide strings also can be unbounded or bounded. As for wide characters, IDL does not man
particular codeset for wide strings; instead, a codeset that is common to both client and ser
negotiated at run time. A wide string cannot contain a wide character whose value is zero (co
exclusively of zero bits). For bounded wide strings, the bound counts characters, not bytes.

1. This restriction is a concession to C and C++, in which it would be very difficult to deal with strings if they we
allowed to contain embedded NUL characters.
Copyright 2000–2001 IONA Technologies 2-13

Built-In Types The OMG Interface Definition Language

10
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

t to
mple,

ot
2.7.4 Other Built-In Types
IDL provides a few other built-in types, namely,octet, boolean, andany.

Type octet

Typeoctet is an uninterpreted 8-bit binary type. Values of typeoctet can store any pattern of
eight bits and are guaranteed not to be tampered with in transit. This is important if you wan
transmit binary data because all other IDL types are subject to translation in transit. (For exa
char values may undergo translation from ASCII to EBCDIC, andshort andlong values may
be byte-swapped.) IDL octet is theonly type that is suitable for transmission of binary data. Do n
be tempted to use some other type.

Type boolean

IDL provides the usual Boolean type. Its only values areTRUE andFALSE. (TRUE andFALSE are
IDL keywords and must be capitalized as shown.)

Type any

Typeany is a universal container type. A value of typeany can hold a value of any other type,
such aslong or string, or even another value of typeany. Typeany can also hold user-defined
complex types, such as structures or arrays.

Language mappings ensure that type any is type-safe: you cannot accidentally extract, for
example, a value of typelong and treat it as if it were adouble. Such type mismatches are
detected at run time. In addition, type any provides introspection capabilities. Given an any
containing a value of unknown type, you can ask the any what type of value it contains.
2-14
10Built-In Types (cont.)

• IDL type octet provides an 8-bit type that is guaranteed not to be

tampered with in transit. (All other types are subject to translation,
such as codeset translation or byte swapping.)

Type octet is useful for transmission of binary data.

• IDL type boolean provides a type with values TRUE and FALSE.

• IDL type any provides a universal container type.

• A value of type any can hold a value of any type, such as
boolean, double, or a user-defined type.

• Values of type any are type safe: you cannot extract a value as
the wrong type.

• Type any provides introspection: given an any containing a
value of unknown type, you can ask for the type of the contained
value.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Type Definitions

11
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

a

specific

ferent

 this

L

at this
uch as
To
ition
2.8 Type Definitions
As we saw on page 2-11, IDL provides atypedef keyword, which can use to rename (or alias)
type. The usual style considerations apply totypedef. The above definition ofYearType is
useful to the reader because it indicates that a value is a year, rather than some other, non-
number. Similarly,TempType is also useful; it indicates that some other value indicates a
temperature. As far as the application is concerned, years and temperatures are entirely dif
things and you should not pass one where the other is expected. The fact that they are both
represented by the same underlying type is coincidental and effectively abstracted away by
style of specification.

Conversely, the above definition ofTemperature type is simply bad style because it creates a
needless alias.

Be careful about the semantics oftypedef. It depends on the language mapping whether an ID
typedef results in a new, separate type or only an alias. In C++,YearType andTempType are
compatible types that can be used interchangeably. However, IDL provides no guarantee th
must be true for all language mappings. For a mapping to a more strictly-typed language, s
Pascal,YearType andTempType could conceivably be mapped to incompatible Pascal types.
avoid problems down the road, define each logical type exactly once and then use that defin
consistently throughout your specification.
Copyrigh
11Type Definitions

You can use typedef to create a new name for a type or to rename an
existing type:

typedef short YearType;
typedef short TempType;
typedef TempType TemperatureType; // Bad style

You should give each application-specific type a name once and then
use that type name consistently.

Judicious use of typedef can make your specification easier to
understand and more self-documenting.

Avoid needless aliasing, such as TempType and TemperatureType.
It is confusing and can cause problems in language mappings that use
strict rules about type equivalence.
t 2000–2001 IONA Technologies 2-15

Enumerations The OMG Interface Definition Language

12
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

inal
o

ous.

slated

ed to
ses a
2.9 Enumerations
IDL enumerations look much like their C++ counterpart. However, you cannot control the ord
values of enumerators.2 IDL guarantees that the ordinal values for enumerators increase left t
right, so in the aboveColor example,red is guaranteed to compare less thangreen. However,
the origin of ordinal values is not defined by IDL, and ordinal values may not even be contigu
(Each language mapping establishes its own rules for how to assign ordinal values to
enumerators.)

In practice, you do not care about ordinal values because the ORB ensures that they are tran
correctly. For example, if you send the valuered from a C++ client to a server written in an
unknown language, it is guaranteed that the valuered will be delivered to the server, even though
it may have a different ordinal value in the server’s programming language. Do not be tempt
send ordinal values as enumerators. Doing so has undefined behavior (and fortunately cau
compile-time error for most language mappings).

Enumerations cannot be empty.

Do not usetypedef with enumerations because it results in needless aliasing:

typedef enum Direction { up, down } DirectionType; // Bad style!

2. This would be difficult to map to languages without direct support for this feature.
2-16
12Enumerations

You can define enumerated types in IDL:

enum Color { red, green, blue, black, mauve, orange };

• The type Color becomes a named type in its own right. (You do not
need a typedef to name it.)

• A type name (such as Color) is mandatory. (There are no
anonymous enumerated types.)

• The enumerators enter the enclosing naming scope and must be
unique in that scope:

enum InteriorColor { white, beige, grey };
enum ExteriorColor { yellow, beige, green }; // Error!

• You cannot control the ordinal values of enumerators:

enum Wrong { red = 0, blue = 8 }; // Illegal!
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Enumerations
Copyright 2000–2001 IONA Technologies 2-17

Structures The OMG Interface Definition Language

13
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ion
s,
2.10 Structures
IDL supports structures, that is, sets of named members of arbitrary type. The above definit
creates a new type (TimeOfDay) which becomes a new type in its own right. As for enumeration
do not use typedef with structures because it needlessly aliases the type:

typedef struct TimeOfDay {
short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59

} DayTime; // Bad style!

Structures form naming scopes, so the following is legal (if ugly) IDL:

struct Outer {
struct FirstNested {

long first;
long second;

} first;

struct SecondNested {
long first;
long second;

} second;
};
2-18
13Structures

You can define structures containing one or more members of arbitrary
type (including user-defined complex types):

struct TimeOfDay {
short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59

};

• A structure must have at least one member.

• The structure name is mandatory. (There are no anonymous
structures.)

• Member names must be unique with the structure.

• Structures form naming scopes.

• Avoid use of typedef for structures.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Structures

s the
This example demonstrates that the variousfirst andsecond identifiers do not cause a name
collision. However, such in-line definition of types is hard to read, so the preceding is better
expressed as follows:

struct FirstNested {
long first;
long second;

};

struct SecondNested {
long first;
long second;

};

struct Outer {
FirstNested first;
SecondNested second;

};

Note that this definition is more readable but isnot exactly the same as the preceding definition.
The nested version only adds the single type nameOuter to the global scope, whereas the
non-nested version also addsFirstNested andSecondNested.

Of course, the second version must still be considered bad style because it ruthlessly reuse
identifiersfirst andsecond for different purposes. Even though such reuse is legal, in the
interest of clarity, you should avoid it.
Copyright 2000–2001 IONA Technologies 2-19

Unions The OMG Interface Definition Language

14
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ost
ve

s
ion.
2.11 Unions
IDL offers discriminated unions. Unlike C or C++ unions, IDL unions are discriminated. At m
one member of a union is active at a time, depending on the discriminator value. In the abo
example,num_in_stock is active if the discriminator value isred, green, orblue.

The discriminator type must an integral type, that is,char, an integer type,boolean, or an
enumeration type. You cannot useoctet or wchar as a discriminator.

NOTE: Even though it is legal, you should avoid defining unions that usechar as the
discriminator type. This avoids problems if client and server use different codesets.

Union members can be of any type, including user-defined complex types. As in C++, union
establish a naming scope, so member names need be unique only within their enclosing un

As for enumerations and structures, you should avoid usingtypedef with unions because it
creates needless aliases:

typedef union DateTime switch (boolean) {
case FALSE:

Date d;
case TRUE:

Time t;
} DateAndTime; // Bad style!
2-20
14Unions

IDL supports discriminated unions with arbitrary member type:

union ColorCount switch (Color) {
case red:
case green:
case blue:

unsigned long num_in_stock;
case black:

float discount;
default:

string order_details;
};

• A union must have at least one member.

• The type name is mandatory. (There are no anonymous unions.)

• Unions form naming scopes with unique member names.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Unions

struct
el
Thedefault case for a union is optional. If it is present, there must be at least one discrimi
value that is not used by explicitcase labels. For example, the following is illegal:

union BadUnion switch (boolean) {
case FALSE:

string member_1;
case TRUE:

float member_2;
default:

octet member_3; // Error!
};

One particular use of unions has become idiomatic and deserves special mention:

union AgeOpt switch (boolean) {
case TRUE:

unsigned short age;
};

Unions such as this one are used to implement optional values. A value of typeAgeOpt contains
anage only if the discriminator isTRUE. If the discriminator isFALSE, the union is empty and
contains no value other than the discriminator itself.

IDL does not support optional or defaulted operation parameters, so the preceding union con
is frequently used to simulate that functionality. This is particularly useful if no special sentin
(“dummy”) value is available to indicate the “this value is absent” condition for a parameter.
Copyright 2000–2001 IONA Technologies 2-21
nator

Guidelines for Unions The OMG Interface Definition Language

15
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

s

nnot
ver,

nt
er

ing

e as
2.12 Guidelines for Unions
As mentioned previously, avoid usingchar as a discriminator type for unions because it create
problems if the target environment does not use a codeset that can accurately represent the
discriminator value. For example, the following union causes problems if the client uses ISO
Latin-1 and the server uses EBCDIC:

union U switch (char) {
case '~':

long long_member;
//...
};

The problem here is that EBCDIC does not have a ‘~’ character, so the union discriminator ca
be represented in EBCDIC. The client ORB could send the ASCII code for ‘~’ (0x7e). Howe
doing so would result in the server ORB receiving the EBCDIC character ‘”’ (which also has
code 0x7e). Conversely, the client ORB could attempt to translate ‘~’ into a roughly equivale
character, such as EBCDIC ‘¬’. However, that is no longer the same character as ‘~’, so eith
approach (sending codes or attempting character translation) has problems.

Do not use unions as a back-door mechanism for type casting. Depending on the language
mapping, this either does not work at all or it causes undefined behavior.

Avoid using multiplecase labels for the same union member; in addition, you should avoid us
thedefault label. Unions using these features are legal and can be used without portability
problems, but make life harder for programmers because such unions are not as easy to us
unions that avoid thedefault label and restrict themselves to a singlecase label per member.
2-22
15Guidelines for Unions
A few guidelines to make life with unions easier:

• Do not use char as a discriminator type.

• Do not use unions to simulate type casting.

• Avoid using multiple case labels for a single union member.

• Avoid using the default case.

• Use unions sparingly. Often, they are abused to create operations
that are like a Swiss army knife.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Guidelines for Unions

ly
ctly
ing a
You should exercise caution before deciding to use unions in your IDL. Sometimes, they are
appropriate; however, quite often, unions end up being abused to build operations that are l
Swiss army knives, for example:

enum InfoKind { text, numeric, none };

union Info switch (InfoKind) {
case text:

string description;
case numeric:

long index;
};

interface Order {
void set_details(in Info details);

};

The operationset_details (see page 2-37 for IDL operations) can do triple duty in this
specification and accept astring, along, or (conceptually) no parameter at all. This is not on
confusing but also makes it harder for programmers to use the API because they must corre
initialize and pass a union value, something that is more complex and error-prone than pass
simple value. The following does the same job and is easier to understand:

interface Order {
void set_text_details(in string details);
void set_details_index(in long index);
void clear_details();

};
Copyright 2000–2001 IONA Technologies 2-23
ike

Arrays The OMG Interface Definition Language

16
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

, the
 all
types.

n, it

to pass
e not
l
ce)
ro; for

o the
2.13 Arrays
IDL supports both single- and multi-dimensional arrays of arbitrary element type. As in C++
array bounds must be positive and non-zero constant integer expressions. You must specify
array dimensions. IDL does not support open arrays because IDL does not support pointer
(In C and C++, open arrays are pointers in disguise.)

NOTE: Even though you are allowed to specify multi-dimensional arrays as a single definitio
is preferable to use a separatetypedef for each dimension. The above definition for
IdTable is better written as:

typedef string IdVector[20];
typedef IdVector IdTable[10];

Defining a separate row type avoids problems in some language bindings with
anonymous types: a direct definition using a singletypedef causes problems if you
want to declare or pass a variable that represents a row of the array.

Passing an array index between clients and servers is dangerous. For example, if you were
the number2 to indicate the third element of an array, you may get surprises. That is becaus
all programming languages use zero as the origin for array indexes. (For example, a Pasca
implementation may choose1 as the origin for array indexes.) If you must pass array (or sequen
indexes between clients and servers, make a convention that array indexes always start at ze
those language bindings where array indexes have a different origin, explicitly add the origin t
one that is passed. That way, you remain portable across languages.
2-24
16Arrays
IDL supports single- and multi-dimensional arrays of any element type:

typedef Color ColorVector[10];
typedef string IdTable[10][20];

You must use a typedef to define array types. The following is illegal:

Color ColorVector[10]; // Syntax error!

You must specify all array dimensions. Open arrays are not supported:

typedef string OpenTable[][20]; // Syntax error!

Be careful when passing array indexes between address spaces.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Sequences

17
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

s are
 zero
 of

ample,

(see
2.14 Sequences
As opposed to IDL arrays, which have a fixed number of elements at all times, IDL sequence
variable-length vectors. An unbounded sequence can contain any number of elements from
up to the memory limits of your environment. A bounded sequence can contain any number
elements from zero up to the bound.

A sequence can contain any type of elements, including another sequence. In the above ex
this is used to model a tree as sequence of sequences.

NOTE: You can define a sequence of sequences in a single definition:

typedef sequence< sequence<Node> > TreeOfNodes; // Deprecated!

Note the space between the two closing “>” tokens. The space is necessary because,
otherwise, “>>” would be as a single right-shift operator. Even though the preceding
definition is legal, it has been deprecated to avoid problems with anonymous types
page 2-60). The construct will become illegal in a future version of CORBA, so you
should avoid it.
Copyrigh
17Sequences

Sequences are variable-length vectors of elements of the same type.

Sequences can be unbounded (grow to any length) or bounded (limited
to a maximum number of elements):

typedef sequence<Color> Colors;
typedef sequence<long, 100> Numbers;

The sequence bound must be a non-zero, positive integer constant
expression.

You must use a typedef to define sequence types.

The element type can be any other type, including a sequence type:

typedef sequence<Node> ListOfNodes;
typedef sequence<ListOfNodes> TreeOfNodes;

Sequences can be empty.
t 2000–2001 IONA Technologies 2-25

Sequences or Arrays? The OMG Interface Definition Language

18
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

t run
ereas
 that
hich

ore
always

ause it

st
sing.) If
atrix
2.15 Sequences or Arrays?
Arrays always contain a fixed number of elements, whereas sequences can vary in length a
time. In addition, for arrays, all elements must be transmitted between client and server, wh
for sequences, only those elements that are actually present need be transmitted. It follows
arrays are appropriate only if you have a collection with a fixed number of elements, all of w
must exist at all times.

To model a fixed-length string (as opposed to a bounded string), an array of characters is m
appropriate than a bounded string or a bounded sequence. For example, a ZIP code, which
has five digits, is best modeled as:

typedef char ZIPCode[5];

This definition is more appropriate than either a bounded string or a bounded sequence bec
enforces that a ZIP code must have exactly five digits and not any number up to five.

Sequences are also useful to model sparse arrays. (A sparse array is an array in which mo
elements have a default value, such as zero. Sparse arrays are common in graphics proces
we need to, for example, transmit sparse 2-D matrices of numbers, we can naively model a m
inversion interface as follows:
2-26
18Sequences or Arrays?
Sequences and arrays are similar, so here are a few rules of thumb for
when to use which:

• If you have a list of things with fixed number of elements, all of which
exist at all times, use an array.

• If you require a collection of a varying number of things, use a
sequence.

• Use arrays of char to model fixed-length strings.

• Use sequences to implement sparse arrays.

• You must use sequences to implement recursive data structures.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Sequences or Arrays?

atrix
ata

ero
del them:

that
r

nd
nd a

sent

ger,

to get
 cell.
typedef float RowType[100];
typedef RowType SquareMatrix[100];

interface MatrixProcessor {
SquareMatrix invert(in SquareMatrix m);
// ...

};

Here we send a matrix of 10,000 values from the client to the server. The server inverts the m
and returns another matrix of 10,000 values. This requires transmission of 80,000 bytes of d
(4 bytes for eachfloat in each direction). If the matrices we use contain a large number of z
values, that is, are sparse, we can save considerable bandwidth by using sequences to mo

struct CellType {
float value;
unsigned long col_num;

};
typedef sequence<CellType, 100> RowType;

struct RowInfo{
RowType row_vals;
unsigned long row_num;

};
typedef sequence<RowInfo, 100> SquareMatrix;

The idea here is to only send those values in the matrix that are non-zero. ACellType structure
models the value of a particular cell by recording the value of the cell and the column in which
cell appears. A sequence of such cells (RowType) then models all the non-zero cells in a particula
row. Similarly, aRowInfo structure records one row containing at least one non-zero point,
together with an index that indicates which particular row is represented by the structure. A
sequence of suchRowInfo structures then models the 2-D matrix. For example, if we were to se
a matrix containing a single non-zero value in the third row and the tenth column, we would se
singleRowInfo structure withrow_num set to2 and containing a one-element sequence in its
row_vals member; that sequence would contain the value 9 in thecol_num member and the
value of the cell in thevalue member.

With this approach, if we assume that, on average 75% of cells are empty (which is not
uncommon), we will transmit a little over 40,000 bytes in total, instead of the 80,000 bytes we
using the earlier approach.

NOTE: The savings here are small because each cell only contains a singlefloat value and the
column index in each cell doubles the size of the cell. If the payload in each cell is lar
such as a 3-D point containing adouble for each coordinate, the savings are quite
spectacular. However, the technique does not work for matrices that are not sparse;
any saving, the sparseness of the array must outweigh the increase in size of each
Copyright 2000–2001 IONA Technologies 2-27

Recursive Types The OMG Interface Definition Language

19
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

rs in
rrently

s a
es and

on tree:
2.16 Recursive Types
IDL supports recursive types without the need for a pointer type by using sequence membe
structures or unions. The sequence element type must be the name of a structure or union cu
under definition.

2.16.1 Recursion Via Structures
The above example shows a data structure consisting of nodes, in which each node contain
long value and a number of descendant nodes. This approach can be used to model both tre
lists. Leaf nodes, which do not have descendants, contain anchildren sequence that is empty.

2.16.2 Recursion Via Unions
Recursion via unions is possible as well. Here is an example that defines a simple expressi

enum OpType {
OP_AND, OP_OR, OP_NOT,
OP_BITAND, OP_BITOR, OP_BITXOR, OP_BITNOT

};

enum NodeKind { LEAF_NODE, UNARY_NODE, BINARY_NODE };

union Node switch (NodeKind) {
case LEAF_NODE:

long value;
case UNARY_NODE:

struct UnaryOp {
2-28
19Recursive Types
IDL does not have pointers, but still supports recursive data types:

struct Node {
long value;
sequence<Node> children;

};

• Recursion is possible only for structures and unions.

• Recursion can be achieved only via a sequence member. The
element type of the sequence must be an enclosing structure or
union.

• Recursion can span more than one enclosing level.

• Mutual recursion is not supported by IDL.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Recursive Types

of the
dants.

on the

r

rsive
st to
OpType op;
sequence<Node, 1> child;

} u_op;
case BINARY_NODE:

struct BinaryOp {
OpType op;
sequence<Node, 2> children;

} bin_op;
};

Note that in this example, the incomplete type for the recursion is aunion (instead of astruct)
and thatbounded sequences are used. Using a bounded sequence improves the type safety
specification. For example, it enforces that a binary node cannot have more than two descen
However, we cannot enforce that a binary node must haveexactly two descendants. Attempts to
achieve this using arrays are illegal:

// ...
case BINARY_NODE:

struct BinaryOp {
OpType op;
Node children[2]; // Illegal!

} bin_op;
// ...

2.16.3 Multilevel Recursion
Recursion can extend over more than one level. Here is an example that shows the recursion
incomplete typeTwoLevelRecursive nested inside another structure definition:

struct TwoLevelRecursive {
string id;
struct Nested {

long value;
sequence<TwoLevelRecursive> children; // OK

} data;
};

2.16.4 Mutual Recursion
Mutual recursion is not supported. (It is impossible to define mutually recursive structures o
unions because the element type of the recursive member must be a type currently under
definition.) It is possible to approximate mutual recursion by creating a union containing recu
structure members. However, the approach is messy and loses some type safety, so it is be
avoid mutually recursive data structures entirely.
Copyright 2000–2001 IONA Technologies 2-29

Constants and Literals The OMG Interface Definition Language

20
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ntax is

als.
2.17 Constants and Literals
IDL allows constant definitions for all built-in types (except typeany) and for enumerated types.
Constants must be initialized with a literal or a constant expression (see page 2-33). The sy
borrowed from C++, so you can use the familiar C++ escape sequences and radixes.

2.17.1 Integer Constants
IDL permits initialization of integer constants with decimal, octal, or hexadecimal integer liter
Unary plus and minus are permitted:

const unsigned short A = 1;
const long B = -0234; // Octal 234, decimal 156
const long long C = +0x234; // Hexadecimal 234, decimal 564

2.17.2 Floating-Point Constants
For floating-point constants, IDL uses the same syntax as C++. Here are a few examples:

const double A = 3.7e-12; // integer, fraction, & exponent
const float B = -2.71; // integer part and fraction part
const double C = .88; // fraction part only
const long double D = 12.; // integer part only
const double E = .3E8; // fraction part and exponent
const double F = 2E11; // integer part and exponent
2-30
20Constants and Literals
You can define a constant of any built-in type (except any) or of an
enumerated type:

const long FAMOUS_CONST = 42;
const double SQRT_2 = 1.1414213;
const char FIRST = 'a';
const string GREETING = "Gooday, mate!";
const octet LSB_MASK = 0x01;

typedef fixed<6,4> ExchangeRate;
const ExchangeRate UNITY = 1.0D;

enum Color { ultra_violent, burned_hombre, infra_dead };
const Color NICEST_COLOR = ultra_violent;

Constants must be initialized by a literal or a constant expression.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Constants and Literals

tant.

er

he
2.17.3 Fixed-Point Constants
Fixed-point constants do not have an explicit number of digits and scale. The number of digits
the scale are instead inferred from the literal or expression that is used to initialize the cons
(Leading and trailing zeros in literals are ignored.) Fixed-point literals must end in ad or D. Here
are a few examples:

const fixed f1 = 99D; // fixed<2,0>
const fixed f2 = -02.71d; // fixed<3,2>
const fixed f3 = +009270.00D; // fixed <4,0>
const fixed f4 = 00.009D; // fixed <4,3>

2.17.4 Character and Wide Character Constants
IDL character constants support the same escape sequences as C++. For example:

const char c1 = 'c'; // the character c
const char c2 = '\007'; // ASCII BEL, octal escape
const char c3 = '\x41'; // ASCII A, hex escape
const char c4 = '\n'; // newline
const char c5 = '\t'; // tab
const char c6 = '\v'; // vertical tab
const char c7 = '\b'; // backspace
const char c8 = '\r'; // carriage return
const char c9 = '\f'; // form feed
const char c10 = '\a'; // alert
const char c11 = '\\'; // backslash
const char c12 = '\?'; // question mark
const char c13 = '\''; // single quote

Wide character literals use the prefixL. You can use Unicode universal character names to ent
characters from codesets other than ISO Latin-1:

const wchar X = L'X'; // 'X' as a wide character
const wchar OMEGA = L'\u03a9'; // Unicode universal character name

2.17.5 String and Wide String Constants
All of the escape sequences that are legal for characters also work for strings. In addition, t
escape sequence\” escapes a double quote. As with C++, lines ending in\ and adjacent string
literals are concatenated. (Both these are functions of the preprocessor.)

const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters \

('\xA' and 'B'), \
not the single \
character '\xAB'

const string<5> BS = "Hello"; // Bounded string constant

Wide string literals use the prefixL. As for character literals, you can use Unicode universal
character names for characters not from the ISO Latin-1 codeset.

const wstring LAST_WORDS = L"My God, it's full of stars!";
const wstring<8> O = L"Omega: \u3A9";
Copyright 2000–2001 IONA Technologies 2-31
and

Constants and Literals The OMG Interface Definition Language

tion

nnot

f the

tion
2.17.6 Boolean Constants
Boolean constants are supported. However, the only things you can do with them are nonse
ones, so it is probably best to simply useTRUE andFALSE.

const boolean CONTRADICTION = FALSE; // Bad idea...
const boolean TAUTOLOGY = TRUE; // Just as bad...

Both these definitions are bad style because they create needless aliases.

2.17.7 Octet Constants
Octet constants must be initialized with a non-negative integer literal or expression. Initializa
with a value outside the range0−255 is illegal.

const octet O1 = 0;
const octet O2 = 0xff;

NOTE: Octet constants were added in CORBA 2.3, so IDL files containing octet constants ca
be translated with older IDL compilers.

2.17.8 Enumeration Constants
You must initialize an enumeration constant with an enumerator that is a member of the type o
constant. Both scoped and unqualified names are legal.

enum Color { red, green, blue };

const FavoriteColor = green;
const OtherColor = ::blue;

NOTE: Enumeration constants were added in CORBA 2.3, so IDL files containing enumera
constants cannot be translated with older IDL compilers.
2-32 Copyright 2000–2001 IONA Technologies
nsical

The OMG Interface Definition Language Constant Expressions

21
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ssion:

d
 their
2.18 Constant Expressions
The arithmetic operators are occasionally useful to initialize numeric constants with an expre

const short MIN_TEMP = -10;
const short MAX_TEMP = 35;
const short DFLT_TEMP = (MAX_TEMP + MIN_TEMP) / 2;

const float TWO_PIES = 3.14 * 2.0; // Cannot use 3.14 * 2 here!

const fixed YEARLY_RATE = 0.1875D;
const fixed MONTHLY_RATE = YEARLY_RATE / 12D; // Cannot use 12 here!

The bitwise operators are rarely used (if ever). Note that IDL specifies that the>> operator always
performs a logical shift operation (injects zeros on the left), whereas in C++, the behavior is
implementation-defined:

const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff, guaranteed

NOTE: The behavior of constant expressions with respect to overflow is under-specified an
therefore not portable. You should ensure that constant expressions do not overflow
target type.
Copyrigh
21Constant Expressions
IDL defines the usual arithmetic and bitwise operators for constant
expressions:

The bitwise operators require integral operands. (IDL guarantees two’s
complement representation for integral types.)

The operators do not have exactly the same semantics as in C++:

• Arithmetic operators do not support mixed-mode arithmetic.

• The >> operator always performs a logical shift.

Operator
Type

IDL
Operators

Arithmetic + - * / %
Bitwise & | ^ << >> ~
t 2000–2001 IONA Technologies 2-33

Interfaces The OMG Interface Definition Language

22
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

at

a an
usually

part
private

d with
en

 a

t them
erence
rface.
2.19 Interfaces
IDL interfaces define object types, much like C++ class definitions. The main difference is th
interface instances can be remote, whereas C++ class instances cannot.

Interfaces mainly define operations (or attributes—see page 2-46). Invoking an operation vi
object reference on an interface instance (that is, a CORBA object) sends a message to the (
remote) object. The ORB takes care of locating the object, transmitting the message and its
arguments to the destination, and returning the results (if any) to the client.

By definition, everything defined in an interface is public. The notion of a private or protected
does not apply because they are implementation (not interface) concepts. Things are made
simply by not saying anything about them.

Similarly, interfaces do not have member variables because member variables are concerne
state (that is, implementation). IDL attributes (see page 2-46) are not member variables (ev
though they look somewhat like member variables). Of course, you canimplement an interface
such that it makes use of member variables; it is simply that such member variables are not
visible part of an object’s interface.

You can implement instances of an interface in a single server process, or you can implemen
in more than one process. Each interface instance represents a CORBA object. An object ref
denotes exactly one CORBA object. Each CORBA object has exactly one (most derived) inte

Interfaces define the smallest grain of distribution in CORBA. For something to be remotely
accessible, it must have an IDL interface.
2-34
22Interfaces

Interfaces, like C++ class definitions, define object types:

interface Thermometer {
string get_location();
void set_location(in string loc);

};

• Invoking an operation on an instance of an interface sends an RPC
call to the server that implements the instance.

• Interfaces define a public interface. There is no private or protected
section for interfaces.

• Interfaces do not have members. Members store state, but state is
an implementation (not interface) concern.

• Interfaces define the smallest and only granularity of distribution: for
something to be accessible remotely, it must have an interface.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Interface Syntax

23
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ition:

ust be

rrent
.

f the

learn
2.20 Interface Syntax
The above interface illustrates the kinds of definitions that may occur inside an interface defin

• exception definitions

• constant definitions

• attribute definitions

• type definitions

• operation definitions

We will discuss the various constructs in detail over the next few pages.

Interfaces form naming scopes, so the usual rule applies: each name used within a scope m
unique and must not change meaning throughout the scope (see page 2-59).

IDL uses scope resolution rules that are derived from C++. In order to resolve a name, the
compiler first searches the current interface, then searches base interfaces (if any) of the cu
interface, then searches the scopes enclosing the derived interface toward the global scope3

You can use the :: scope resolution operator to explicitly qualify a name. For example,
::Haystack::NotFound denotes the exception defined in the above interface, regardless o
context in which the qualified name is used.

3. The precise scope resolution rules are quite involved because they need to deal with pathological cases (see
page 2-56). However, if you use sensible (that is, unique) names in your specification, you will never have to
the intricacies of scope resolution.
Copyrigh
23Interface Syntax

You can nest exception, constant, attribute, operation, and type
definitions in the scope of an interface definition:

interface Haystack {
exception NotFound { unsigned long num_straws_searched; };

const unsigned long MAX_SIZE = 1000000;

readonly attribute unsigned long num_straws;

typedef long Needle;
typedef string Straw;

void add(in Straw s);
boolean remove(in Straw s);
boolean find(in Needle n) raises(NotFound);

};
t 2000–2001 IONA Technologies 2-35

Interface Semantics The OMG Interface Definition Language

24
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

actual
t is
 a

mented

ts
dicate
u to
2.21 Interface Semantics
The aboveFeedShed interface has operations with parameters of typeHaystack. For example,
we can pass an object of typeHaystack to theFeedShed::add operation. Conceptually, passing
an object passes the object itself. However, what is really passed is an object reference. The
Haystack object stays where it is (namely, in the server in which it is implemented) and wha
passed to theadd operation is an object reference to that hay stack. This is similar to passing
C++ pointer to a function. However, C++ pointers can only denote C++ objects in the same
address space, whereas CORBA object references can denote objects anywhere, and imple
in any language.

The receiver of an object reference (theadd or eat operation in this example) can use the
reference to invoke operations on the particular hay stack that was passed (such asadd, remove,
or find). Invoking an operation on a reference sends an RPC call to the object.

CORBA defines a special nil value for object references. An object reference that is nil poin
nowhere. Obviously, you cannot invoke operations on a nil reference because it does not in
an object that could respond to the invocation. CORBA defines an operation that permits yo
test whether a particular reference is nil (see page 6-13).
2-36
24Interface Semantics

Interfaces are types and can be used as parameter types (or as a
member for data structures). For example:

interface FeedShed {
void add(in Haystack s);
void eat(in Haystack s);

};

• The parameters of type Haystack are object reference parameters.

• Passing an object always passes it by reference.

• The object stays where it is, and the reference is passed by value.

• Invocations on the reference send an RPC call to the server.

• CORBA defines a dedicated nil reference, which indicates no object
(points nowhere).
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Operation Syntax

25
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ere is

the
 state

s

rt for
hich is
2.22 Operation Syntax
Every operation must have a name, a return type, and a (possibly empty) list of parameters. H
an interface showing the simplest possible operation:

interface Simple {
void op();

};

This operation does not send any values to the server and does not return any values from
server. (As a result, the only possible reason for invoking such an operation is to change the
of the target object as a side effect.) An operation definition must have a return type. If an
operation returns no value, its return type isvoid. The return type does not have a default:

interface Simple {
op(); // Error, missing return type

};

We discuss the optional parts of operation definitions in Sections 2.28 and 2.29.

You cannot overload operations because each operation must have a unique name within it
enclosing interface.4

4. Operation overloading is not supported because it is very messy to map into languages without built-in suppo
overloading. For such languages, overloaded operations would have to be mapped using a mangled name (w
fine for compilers but not for humans).
Copyrigh
25Operation Syntax
Every operation definition has:

• an operation name

• a return type (void if none)

• zero or more parameter definitions

Optionally, an operation definition may have:

• a raises expression

• a oneway operation attribute

• a context clause

You cannot overload operations because operation names must be
unique within the enclosing interface.
t 2000–2001 IONA Technologies 2-37

Operation Example The OMG Interface Definition Language

26
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

 a
utes
B
 it
nly
2.23 Operation Example
The above interface illustrates operations with parameters. IDL requires use of thein, out, or
inout directional attribute for each parameter. The directional attribute determines whether
parameter is sent from client to server, server to client, or in both directions. Directional attrib
are necessary mainly in order to preserve bandwidth: without a directional attribute, the OR
would have no way of knowing the origin and destination of a parameter, with the result that
would have to send all parameters in both directions. The directional attributes ensure that o
inout parameters are sent in both directions, conserving bandwidth.5

Note that the above example used the (rather awkward) operation namessquare_root,
square_root2, andsquare_root3 because IDL does not permit overloading of operations.
The following is illegal:

interface NumberCruncher {
double square_root(in double operand);
void square_root(in double operand, out double result); // Error
void square_root(inout double op_res); // Error

};

5. As we will see in Section 6.27, directional attributes also influence the mapping to the target language.
2-38
26Operation Example

Here is an interface that illustrates operations with parameters:

interface NumberCruncher {
double square_root(in double operand);
void square_root2(in double operand, out double result);
void square_root3(inout double op_res);

};

• Parameters are qualified with a directional attribute: in, inout, or
out.

• in: The parameter is sent from the client to the server.

• out: The parameter is returned from the server to the client.

• inout: The parameter is sent from the client to the server,
possibly modified by the server, and returned to the client
(overwriting the initial value).
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Operation Example

ue.

ou
e are

uld

ed as

”

ke the

ever

rst,
Note that all three operations in this example achieve the same thing: they compute the squa
of a number. However, each operation uses a different style:

• square_root accepts a number as anin parameter and returns the result as the return val

• square_root2 accepts a number as anin parameter and returns the result as an
out parameter.

• square_root3 accepts a number as anin parameter and overwrites it with the result.

Naturally, you would never define an interface likeNumberCruncher, which offers three
operations that all do the same thing. Instead, you would decide which style of interaction y
wanted to offer to clients. The question is, which style is best, and how do you choose it? Her
some guidelines:

• If an operation accepts one or morein parameters and returns a single result, the result sho
be returned as the return value.

• If an operation has several return values of equal importance, all values should be return
out parameters, and the return type of the operation should bevoid.

By making all return valuesout parameters, you emphasize that none of them is “special
(whereas if one value is returned as the return value and the others areout parameters, you
can easily create the impression that the return value is somehow more important).

• If an operation returns several values but one of the values is of special importance, ma
special value the return value and return the remainder asout parameters.

This style is most often found on iterator operations. For example:

boolean get_next(out SomeType next_value);

This style allows the caller to write code along the following lines:

while (get_next(value)) {
// Process value

}

• Treatinout parameters with caution.

By using aninout parameter, the designer of the interface assumes that the caller will n
want to keep the original value and that it is OK to overwrite it. Therefore,inout parameters
dictate interface policy. If the client wants to keep the original value, it must make a copy fi
and that can be inconvenient.
Copyright 2000–2001 IONA Technologies 2-39
re root

User Exceptions The OMG Interface Definition Language

27
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

to
e.
dition,
 a

 is

r

2.24 User Exceptions
IDL user exceptions provide a standard way of handling errors. User exceptions are similar
structures in that exceptions form naming scopes and can contain members of arbitrary typ
However, unlike structures, exceptions are permitted to be empty (have no members). In ad
exceptions are not first-class data types: you cannot, for example, use an exception type as
structure member or as the member of another exception:

exception E1 {};
exception E2 {

long value;
E1 exc; // Illegal!

};

struct S {
E1 exc; // Illegal!

};

IDL does not provide exception inheritance, so each user exception defines a new type that
unrelated to any other exception type.

An operation can only raise those user exceptions that appear in itsraises clause.

Use IDL exceptions for all your error handling. Exceptions are integrated into the exception
handling mechanism of the target language and provide a well-understood and uniform erro
handling mechanism. In particular, do not use error codes; doing so results in awkward and
difficult-to-use interfaces.
2-40
27User Exceptions

A raises clause indicates the exceptions that an operation may raise:

exception Failed {};
exception RangeError {

unsigned long min_val;
unsigned long max_val;

};

interface Unreliable {
void can_fail() raises(Failed);
void can_also_fail(in long l) raises(Failed, RangeError);

};

• Exceptions are like structures but are allowed to have no members.

• Exceptions cannot be nested or be part of inheritance hierarchies.

• Exceptions cannot be members of other data types.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Using Exceptions Effectively

28
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ese
o have

mple,
se an
, you
trol.

you

value

error

alls
nce
2.25 Using Exceptions Effectively
You can use the above rules of thumb to help in designing your error handling. Following th
rules will result in code that is easier to understand and use (and, because of that, is likely t
fewer defects).

• Use exceptions only forexceptional circumstances.

Operations that raise exceptions for expected outcomes are ergonomically poor. For exa
a database lookup operation should not raise an exception if no results are found becau
empty result is nothing unusual. If you raise an exception for such an expected outcome
create an awkward programming style because exceptions break the normal flow of con

• Make sure that exceptions carryuseful information.

It is worse than useless to tell the caller something that is already known. For example, if
have an operation that accepts a single value as anin parameter, there is no point in returning
that value as an exception member when the value is out of range. After all, if only one
was passed, that is the only value that can be out of range.

• Make sure that exceptions carryprecise information.

An exception should convey precisely one semantic error condition. Do not lump several
conditions together so that the caller can no longer distinguish between them.

• Make sure that exceptions carrycomplete information.

If exceptions carry incomplete information, the caller will probably need to make further c
to find out what went wrong. However, if the initial call did not work, there is a good cha
that subsequent ones will not work either.
Copyrigh
28Using Exceptions Effectively
A few rules of thumb for how to use exceptions:

• Use exceptions only for exceptional circumstances.

• Make sure that exceptions carry useful information.

• Make sure that exceptions carry precise information.

• Make sure that exceptions carry complete information.

Sticking to these rules make the resulting APIs easier to use and
understand and results in better quality code.
t 2000–2001 IONA Technologies 2-41

System Exceptions The OMG Interface Definition Language

29
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

itions.

o add
 a

tion

u that

erver
oked,

ase,
2.26 System Exceptions
CORBA defines a number of system exceptions that cover infrastructure-related error cond
Currently, 35 system exceptions are defined. The list of system exceptions is occasionally
extended as new functionality is added to CORBA. System exceptions are defined in theCORBA
module (see page 2-65).

Any operation can raise a system exception. It is understood that this is the case; it is illegal t
a system exception to theraises clause of an operation. (Only user exceptions can appear in
raises clause.)

All system exceptions have the same data members: a minor exception code and a comple
status.

The completion status indicates at what point during call dispatch an error occurred:

• COMPLETED_YES

The failure occurred sometime after the operation in the server completed. This tells yo
any state changes made by the failed invocation have happened.

• COMPLETED_NO

The failure occurred on the way out of the client’s address space or on the way into the s
address space. It is guaranteed that the target operation was not invoked, or, if it was inv
no side effects of the operation have taken effect.

• COMPLETED_MAYBE

The completion status is indeterminate. This typically happens if the client invokes an
operation and loses connectivity with the server while the call is still in progress. In this c
2-42
29System Exceptions

CORBA defines 35 system exceptions. (The list is occasionally
extended.)

• Any operation can raise a system exception.

• System exceptions must not appear in a raises clause.

• All system exceptions have the same exception body:

enum completion_status {
COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE

};

exception <SystemExceptionName> {
unsigned long minor;
completion_status completed;

};
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language System Exceptions

of an
 can

s, such
.

there is no way for the client ORB to decide whether the operation was actually invoked in
server or whether the problem occurred before the request reached its target.

The minor code of a system exception is used to provide further information about the cause
error. The CORBA specification defines a number of minor codes. In addition, ORB vendors
allocate a range of minor codes to use for product-specific information.

enum completion_status {
COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE

};

#define SYSEX(NAME) exception NAME { \
unsigned long minor; \
completion_status completed; \

}

SYSEX(BAD_CONTEXT); // error processing context object
SYSEX(BAD_INV_ORDER); // routine invocations out of order
SYSEX(BAD_OPERATION); // invalid operation
SYSEX(BAD_PARAM); // an invalid parameter was passed
SYSEX(BAD_TYPECODE); // bad typecode
SYSEX(CODESET_INCOMPATIBLE); // incompatible codeset
SYSEX(COMM_FAILURE); // communication failure
SYSEX(DATA_CONVERSION); // data conversion error
SYSEX(FREE_MEM); // cannot free memory
SYSEX(IMP_LIMIT); // violated implementation limit
SYSEX(INITIALIZE); // ORB initialization failure
SYSEX(INTERNAL); // ORB internal error
SYSEX(INTF_REPOS); // interface repository unavailable
SYSEX(INVALID_TRANSACTION); // invalid TP context passed
SYSEX(INV_FLAG); // invalid flag was specified
SYSEX(INV_IDENT); // invalid identifier syntax
SYSEX(INV_OBJREF); // invalid object reference
SYSEX(INV_POLICY); // invalid policy override
SYSEX(MARSHAL); // error marshaling param/result
SYSEX(NO_IMPLEMENT); // implementation unavailable
SYSEX(NO_MEMORY); // memory allocation failure
SYSEX(NO_PERMISSION); // no permission for operation
SYSEX(NO_RESOURCES); // out of resources for request
SYSEX(NO_RESPONSE); // response not yet available
SYSEX(OBJECT_NOT_EXIST); // no such object
SYSEX(OBJ_ADAPTER); // object adapter failure
SYSEX(PERSIST_STORE); // persistent storage failure
SYSEX(REBIND); // rebind needed
SYSEX(TIMEOUT); // operation timed out
SYSEX(TRANSACTION_MODE); // invalid transaction mode
SYSEX(TRANSACTION_REQUIRED); // operation needs transaction
SYSEX(TRANSACTION_UNAVAILABLE); // no transaction
SYSEX(TRANSACTION_ROLLEDBACK); // operation was a no-op
SYSEX(TRANSIENT); // transient error, try again later
SYSEX(UNKNOWN); // the unknown exception

Some exceptions have the obvious meaning, whereas others are specific to particular feature
as transactions or the DII. We will discuss these exceptions as we discuss the relevant APIs
Copyright 2000–2001 IONA Technologies 2-43
the

Oneway Operations The OMG Interface Definition Language

30
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

to
this,

est to

ree
2.27 Oneway Operations
Operations declared asoneway are meant to provide an unreliable send-and-forget delivery
mechanism, similar to UDP datagrams. Aoneway operation may be lost and never be delivered
the server. The specification guarantees only that it will be delivered at most once. Beyond
there are no guarantees in the CORBA specification. In particular, it isnot guaranteed that a
oneway call will not block the caller, and it is not guaranteed thatoneway calls will be dispatched
asynchronously. Further,oneway calls may arrive out of order at the server.

Becauseoneway is underspecified, it is non-portable and different ORBs will use different
implementations. For ORBacus,oneway calls are guaranteed to not block the caller;oneway calls
will be lost if the caller sends them quicker than the server can accept them. It is probably b
avoidoneway entirely. If you do useoneway, be aware that your code is likely to behave
differently with a different ORB.

NOTE: Theoneway keyword will effectively be made obsolete by CORBA 3.0, which instead
uses quality-of-service policies to permit the caller to take explicit control over the deg
of reliability with which a call is dispatched.
2-44
30Oneway Operations

IDL permits operations to be declared as oneway:

interface Events {
oneway void send(in EventData data);

};

The following rules apply to oneway operations:

• The must have return type void.

• They must not have any inout or out parameters.

• They must not have a raises clause.

Oneway operations provide “best effort” send-and-forget semantics.

Oneway operations may not be delivered, may be dispatched
synchronously or asynchronously, and may block.

Oneway is non-portable in CORBA 2.3 and earlier ORBs.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Contexts

31
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

eters
ntext

on and

d to

g

 as a

wise

.

2.28 Contexts
CORBA provides the notion of context variables, which are similar in concept to UNIX
environment variables. Briefly, a client can maintain a number of named context variables. A
context variable (if set) stores a string value.

A raises clause on an operation transmits the named context variables as additional param
to the server. (A ‘*’ character acts as a wild card and must appear as the final character of a co
variable name.) The server can examine the variables as part of the operation implementati
use them as additional parameter values.

Contexts create a number of problems with respect to type safety:

• If a particular context variable is not set by the client, its value is (silently) not transmitte
the server.

This means that the server cannot rely on the value of a particular context variable bein
available even though it appears in thecontext clause.

• Context variables are untyped.

For the preceding example, the server may expect to find a numerical user ID in theUSER
variable. However, the client may have placed the user name into the variable. (Context
variables are strings, so there is no guarantee that a particular string will parse correctly
particular type of value.)

Of course, this completely destroys type safety because context variables bypass the other
strict type checking of the compiler.

Contexts are not supported universally by ORB vendors, so we suggest that you avoid them
Copyrigh
31Contexts
Operations can optionally define a context clause. For example:

interface Poor {
void doit() context("USER", "GROUP", "X*");

};

This instructs the client to send the values of the CORBA context
variables USER and GROUP with the call, as well as the value of all
context variables beginning with X.

Contexts are similar in concept to UNIX environment variables.

Contexts shoot a big hole through the type system!

Many ORBs do not support contexts correctly, so we suggest you avoid
them.
t 2000–2001 IONA Technologies 2-45

Attributes The OMG Interface Definition Language

32
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

d as
ber
rface

e
ning
tion to
 detail
o high
2.29 Attributes
IDL attributes define a pair of operations to send and fetch a named value. Attributes define
readonly only permit a value to be fetched, but not updated. Even though they look like mem
variables, attributes are no more than a notational short hand. For example, the following inte
is semantically identical to the above one:

interface Thermostat {
short get_temperature();
void set_nominal_temp(in short temp);
short get_nominal_temp();

};

Attributes are second-class citizens because it is illegal to add araises clause to an attribute
definition. This makes it impossible to raise user exceptions to indicate errors. Usually, this
becomes an issue if an attribute is writable because, at least in most cases, some values ar
unacceptable and considered out of range (such as setting a temperature on an air conditio
thermostat to 10,000 degrees). Without user exceptions, you must resort to a system excep
indicate that the attribute update failed. However, system exceptions do not provide enough
(such as being able to indicate whether the temperature setting is out of range because it is to
or too low).

NOTE: CORBA 3.0 will permit araises clause on attributes. However, since attributes are
simply a notational shortcut, it is probably best to avoid them completely and define
operations in their place.
2-46
32Attributes

An interface can contain one or more attributes of arbitrary type:

interface Thermostat {
readonly attribute short temperature;

attribute short nominal_temp;
};

Attributes implicitly define a pair of operations: one to send a value and
one to fetch a value.

Read-only attributes define a single operation to fetch a value.

Attributes are not state or member variables. They are simply a
notational short-hand for operations.

Attributes cannot have a raises clause, cannot be oneway, and
cannot have a context clause.

If you use attributes, they should be readonly.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Modules

33
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ope
odule
wed

,

by
t
ion of
2.30 Modules
IDL offers amodule construct that is very similar in concept to a C++ namespace. An IDL
module definition can contain any IDL construct, including another module definition. The sc
rules for modules are the same as for C++ namespaces: names must be unique within a m
and, when searching for a name, the compiler successively looks in enclosing modules follo
by the global scope.

You can use qualified names to explicitly refer to something in another module. For example
::M::L::I denotes the interface I above, regardless from the context in which it is used.

Modules can be reopened:

module A {
// Some definitions here...

};
module B {

// Some other definitions here...
};
module A {

// Reopen module A and add to it...
};

Reopening of modules is useful because it shields developers from changes. For example,
splitting a large definition into multiple module definitions, they can be maintained in differen
source files and modified independently. That way, a small change does not force recompilat
the entire system.
Copyrigh
33Modules

IDL modules provide a scoping construct similar to C++ namespaces:

module M {
// ...
module L { // Modules can be nested

// ...
interface I { /* ... */ };
// ...

};
// ...

};

Modules are useful to prevent name clashes at the global scope.

Modules can contain any IDL construct, including other modules.

Modules can be reopened and so permit incremental definition.
t 2000–2001 IONA Technologies 2-47

Forward Declarations The OMG Interface Definition Language

34
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ltiple
e as a
lared

t you
uire
ule:
2.31 Forward Declarations
Forward declarations of interfaces permit mutually dependent interfaces, as shown above. Mu
forward declarations of the same interface are legal. You can use a forward-declared interfac
parameter type, return type, or member type. However, you cannot inherit from a forward-dec
interface until after it is defined.

The name for a forward declaration must be simple, non-qualified identifier. This means tha
cannot use a forward declaration to refer to an interface in another module. If you really req
mutually dependent interface in different modules, you can achieve this by reopening a mod

module Males {
interface Husband;

};

module Females {
interface Wife {

Males::Husband get_spouse();
};

};

module Males {
interface Husband {

Females::Wife get_spouse();
};

};
2-48
34Forward Declarations

IDL permits forward declarations of interfaces so they can be mutually
dependent:

interface Husband; // Forward declaration

interface Wife {
Husband get_spouse();

};

interface Husband {
Wife get_spouse();

};

The identifier in a forward declaration must a be a simple (non-qualified)
name:

interface MyModule::SomeInterface; // Syntax error!
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Inheritance

35
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

are

rface is

ll
2.32 Inheritance
IDL supports inheritance. In the above example, aThermostat is-aThermometer. A
Thermostat automatically has the inheritedtemperature attribute as well as the
set_nominal_temp operation. Scope resolution for inheritance words as for C++: identifiers
resolved by successively searching base interfaces toward the root. This rule allowsTempType to
be used without qualification inside interfaceThermostat. (We could have also used
Thermometer::TempType or ::Thermometer::TempType.)

Inheritance gives rise to polymorphism and obeys the Liskov substitution principle: a derived
interface can be treated as if it were a base interface and so can be passed where a base inte
expected. The aboveLogger interface illustrates this. The parametert of theadd operation has
the typeThermometer. However, at run time, you can pass either aThermometer or a
Thermostat. If theLogger reads thetemperature attribute via the passed reference, the ca
will be dispatched to the most derived implementation, that is, late binding applies.
Copyrigh
35Inheritance

IDL permits interface inheritance:

interface Thermometer {
typedef short TempType;
readonly attribute TempType temperature;

};

interface Thermostat : Thermometer {
void set_nominal_temp(in TempType t);

};

You can pass a derived interface where a base interface is expected:

interface Logger {
long add(in Thermometer t, in unsigned short interval);
void remove(in long id);

};

At run time, you can pass a Thermometer or a Thermostat to add.
t 2000–2001 IONA Technologies 2-49

Inheritance from Object The OMG Interface Definition Language

36
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

object

to

ance,
paces.
2.33 Inheritance from Object
All IDL interfaces implicitly have typeObject as their base interface. The above inheritance
diagram illustrates this implicit inheritance for the IDL we saw on page 2-49. Because all
interfaces are type compatible withObject, you can useObject to create operations that can
generically deal with any type of interface. For example:

interface Generic {
void accept(in KeyType key, Object o);
Object lookup(in KeyType key);

};

If need be, the implementation of an operation can use a type-safe down-cast to narrow an
reference to a more specific type (see page 6-18).

Explicit inheritance fromObject is illegal:

interface Wrong : Object { /*...*/ }; // Error

Note that IDL deals only withinterfaceinheritance. Interface inheritance is purely a mechanism
determine type compatibility and has nothing to do with implementation. In particular, IDL
interfaces that are in an inheritance relationship may or may not be implemented using inherit
and instances of the base and derived interfaces can be implemented in different address s
2-50
36Inheritance from Object

All IDL interfaces implicitly inherit from type Object:

You must not explicitly inherit from type Object.

Because all interfaces inherit from Object, you can pass any interface
type as type Object. You can determine the actual type of an interface
at run time with a safe down-cast.

Thermometer Logger

Object

Thermostat
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Inheritance Redefinition Rules

37
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

e
 of a
2.34 Inheritance Redefinition Rules
Derived interfaces can legally redefine inherited types, constants, and exceptions of the sam
name. Obviously, doing so is extremely confusing and should be avoided. No other aspects
base interface can be redefined in a derived interface.
Copyrigh
37Inheritance Redefinition Rules

You can redefine types, constants, and exceptions in the derived
interface:

interface Thermometer {
typedef long IDType;
const IDType TID = 5;
exception TempOutOfRange {};

};

interface Thermostat : Thermometer {
typedef string IDType; // Yuk!
const IDType TID= "Thermostat"; // Aargh!
exception TempOutOfRange { long temp; }; // Ick!

};

While legal, this is too terrible to even contemplate. Do not do this!
t 2000–2001 IONA Technologies 2-51

Inheritance Limitations The OMG Interface Definition Language

38
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

t, all
e. This

, it
gled
2.35 Inheritance Limitations
As shown above, you cannot override attributes or operations in a derived interface. In effec
attribute and operation names used in a base interface are “used up” in the derived interfac
rule also implies that overloading is not supported in any form:

interface Thermometer {
attribute string my_id;

string get_id();
void set_id(in string s);

};

interface Thermostat : Thermometer {
attribute double my_id; // Illegal!

double get_id(); // Illegal!
void set_id(in double d); // Illegal!

};

Overloading is not supported because, for languages without direct support for overloading
would result in very difficult to use language mappings. (The mapping would have to use man
names, which is fine for compilers, but not for humans.)
2-52
38Inheritance Limitations

You cannot override attributes or operations in a derived interface:

interface Thermometer {
attribute long temperature;
void initialize();

};

interface Thermostat : Thermometer {
attribute long temperature; // Error!
void initialize(); // Error!

};

It is understood that a Thermostat already has an inherited
temperature attribute and initialize operation and you are not
allowed to restate this.

Overriding is a meaningless concept for interface inheritance!
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Multiple Inheritance

39
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

base

al or
tion

simply

such as
2.36 Multiple Inheritance
As shown above, multiple inheritance is supported. It is legal for interfaces to inherit the same
interface multiple times via different intermediate interfaces. The declaration order of base
interfaces is not significant. Because IDL only deals with interfaces, there is no notion of virtu
non-virtual inheritance; because virtual versus non-virtual inheritance deals with implementa
concerns (namely, whether the state of base implementations is shared or not), the concept
does not apply to IDL.6

6. When you consider that interfaces in an inheritance relationship may not be implemented using inheritance (
in C), this makes perfect sense.
Copyrigh
39Multiple Inheritance

Multiple inheritance, including inheritance of the same base interface
multiple times, is supported:

interface Sensor {
// ...

};

interface Thermometer : Sensor {
// ...

};

interface Hygrometer : Sensor {
// ...

};

interface HygroTherm : Thermometer, Hygrometer {
// ...

};

Sensor

Thermometer

HygroTherm

Hygrometer

Object
t 2000–2001 IONA Technologies 2-53

Scope Rules for Multiple Inheritance The OMG Interface Definition Language

40
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ames
map

if the
2.37 Scope Rules for Multiple Inheritance
If an interface inherits from more than one base interface none of the attribute and operation n
used in the base interfaces may overlap. The reason for this restriction is that it is awkward to
into languages without mechanisms to resolve the ambiguity of which base operation to call
operation is invoked on the derived interface.7

7. This restriction may be removed in a future version of CORBA.
2-54
40Scope Rules for Multiple Inheritance
You cannot inherit the same attribute or operation from more than one
base interface:

interface Thermometer {
attribute string model;

void reset();
};

interface Hygrometer {
attribute string model;

string reset();
};

interface HygroTherm : Thermometer, Hygrometer { // Illegal!
// ...

};
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Scope Rules for Multiple Inheritance

41
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

me to

2-byte
lly.)
If you inherit the same type name from multiple base interfaces, you must use a qualified na
identify the exact type. In the above example, the unqualified nameModelType is ambiguous in
the derived interface because it would be unclear whether the type denotes a 16-byte or a 3
string. (ModelType would be ambiguous even if both base interfaces defined the type identica
Using a qualified name, such asHygrometer::ModelType, removes the ambiguity and is
therefore legal.
Copyrigh
41Scope Rules for Multiple Inheritance (cont.)
You can multiply inherit ambiguous types, but you must qualify them
explicitly at the point of use:

interface Thermometer {
typedef string<16> ModelType;

};

interface Hygrometer {
typedef string<32> ModelType;

};

interface HygroTherm : Thermometer, Hygrometer {
attribute ModelType model; // Error!
attribute Hygrometer::ModelType model; // OK

};
t 2000–2001 IONA Technologies 2-55

IDL Scope Resolution The OMG Interface Definition Language

42
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

 use

opes.
ghout
me
2.38 IDL Scope Resolution

NOTE: The scope resolution rules are presented here for the sake of completeness. If you
sensible names for your IDL constructs, most of these rules will never concern you.

2.38.1 Uniqueness of identifiers
IDL modules, interfaces, structures, unions, exceptions, and parameter lists form naming sc
Within the a naming scope, identifiers must be distinct and must denote the same thing throu
that scope. Intuitively, this means that different things cannot have the same name in the sa
scope. For example:

struct Bad {
short temperature;
long Temperature; // Error!
Temp temp; // Error!

};

typedef string SomeType;

interface AlsoBad {
void op1(in SomeType t, in double t); // Error!
void op2(in Temp temp); // Error!
void op3(in sometype t); // Error!

};
2-56
42IDL Scope Resolution

The following IDL constructs establish naming scopes:

• modules, interfaces, structures, unions, exceptions, parameter lists

Within a naming scope, names must be unique.

To resolve a name, the compiler searches:

1. the current scope

2. if the current scope is an interface, the base interfaces toward the
root

3. enclosing scopes of the current scope

4. the global scope

Names not qualified as being part of the global scope with a leading
:: operator are introduced into the current scope when first used.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language IDL Scope Resolution

f the

for
Note that identifiers that differ only in capitalization are considered the same identifier. In addi
once used, you must use the same capitalization for an identifier throughout.

2.38.2 Scope Resolution Rules
The following example illustrates some of the scope resolution rules:

module CCS {
typedef short TempType;
const TempType MAX_TEMP = 99; // Max_TEMP is a short

interface Thermostat {
typedef long TempType; // OK

TempType temperature(); // Returns a long
CCS::TempType nominal_temp(); // Returns a short

};
};

Note that the redefinition ofTempType insideThermostat is legal (if ugly). Inside
Thermostat, TempType denotes along value. You can use a qualified name (CCS::TempType
or ::CCS::TempType to refer explicitly to the type defined in theCCS module.

In the presence of inheritance, base interfaces are searched before the enclosing scopes o
derived interface:

module Sensors {
typedef short TempType;
typedef string AssetType;

interface Thermometer {
typedef long TempType;

TempType temperature(); // Returns a long
AssetType asset_num(); // Returns a string

};
};

module Controllers {
typedef double TempType;

interface Thermostat : Sensors::Thermometer {
TempType nominal_temp(); // Returns a long
AssetType my_asset_num(); // Error!

};
};

In this example,nominal_temp doesnot return adouble because the definition ofTempType in
theThermometer base interface hides the definition ofTempType in the enclosing scope of
Thermostat. Also note that the definition ofmy_asset_num is in error because the compiler
never finds a definition forAssetType. This illustrates that only base interfaces are searched
definitions, but not the enclosing scope of base interfaces.
Copyright 2000–2001 IONA Technologies 2-57
tion,

The OMG Interface Definition Language IDL Scope Resolution

fied
. For

ed

e

2.38.3 Implicitly Introduced Identifiers
Using a name that isnot explicitly qualified with a leading:: operator introduces that name into
the current scope. Using a name thatis explicitly qualified with a leading:: operator doesnot
introduce that name into the current scope. Here is an example to illustrate this:

typedef string ModelType;

module CCS {
typedef short TempType;
typedef string AssetType;

};

module Controllers {
typedef CCS::TempType Temperature; // Introduces CCS _only_
typedef string ccs; // Error!
typedef long TempType; // OK
typedef ::CCS::AssetType AssetType; // OK

};

struct Values {
::ModelType ModelType; // OK
::modelType ModelType2; // Error!

};

Note that, onceCCS::TempType is used insideControllers, the identifier CCS is introduced
into the current scope and therefore no longer available to name other constructs. If a quali
name consists of several identifiers, only the first identifier is introduced into the current scope
example, the nameA::B::C only introducesA and leavesB andC available.

Implicit introduction of identifiers takes place only for relative qualified names. Absolute qualifi
names (which use a leading:: operator) do not introduce any identifier into the current scope.
This explains why the definition of the memberValues::ModelType is legal. (Note that the
definition ofValues::ModelType2 is illegal because of the requirement for consistent
capitalization of identifiers.)

If you implicitly introduce an enumerated type into the current scope, you must still qualify th
enumerators:

interface Sensor {
enum DeviceType { READ_ONLY, READ_WRITE };

};

interface Thermometer : Sensor {
union ThermData switch (DeviceType) {
case Sensor::READ_ONLY:

unsigned long read_addr;
case READ_WRITE: // Error!

unsigned long write_addr;

};
};

Even thoughDeviceType is implicitly introduced as the discriminator type, this does not
introduce the enumerators.
Copyright 2000–2001 IONA Technologies 2-58

The OMG Interface Definition Language Nesting Restrictions

43
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

le,

nd
ts C++
re
2.39 Nesting Restrictions
Named constructs that are directly nested cannot have the same name. In the above examp
M::X::M is legal, butM::M, S::s, andI::I are not.

NOTE: This rule was added with CORBA 2.3 because of the difficulty of mapping it to C++ a
Java, in which the direct nesting of same-named scopes causes clashes. (This affec
in particular because the name of a class is reserved for the constructor and therefo
cannot be used for anything else, such as a data member or member function.)
Copyrigh
43Nesting Restrictions

You cannot use directly nested constructs with the same name:

module M {
module X {

module M { /* ... */ }; // OK
};
module M { /* ... */ }; // Error!

};

struct S {
long s; // Error!

};

interface I {
void I(); // Error!

};
t 2000–2001 IONA Technologies 2-59

Anonymous Types The OMG Interface Definition Language

44
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ble to

s have

, they
ameter
on, and
2.40 Anonymous Types
The following constructs are legal IDL, but use anonymous types. In each case, it is prefera
use atypedef to explicitly give the type a name. This not only avoids problems in several
implementation languages, but also makes your IDL future-proof because anonymous type
been deprecated and will likely be made illegal in a future version.

Anonymous bounded strings and bounded wide strings should be explicitly named. Currently
are legal (but deprecated) in constant definitions, attribute declarations, return type and par
type declarations, sequence and array element declarations, and as the type of structure, uni
exception members. For example:

const string<5> GREETING = "Hello"; // Deprecated

interface Deprecated {
readonly attribute wstring<5> name; // Deprecated
wstring<5> op(in wstring<5> param); // Deprecated

};
typedef sequence<wstring<5> > WS5Seq; // Deprecated
typedef wstring<5> Name[4]; // Deprecated

struct Foo {
wstring<5> member; // Deprecated

};

// Similar for unions and exceptions...
2-60
44Anonymous Types
Anonymous types are currently legal in IDL, but CORBA 3.0 will
deprecate them.

Anonymous types cause problems for language mappings because
they create types without well-defined names.

You should avoid anonymous types in your IDL definitions.

For recursive structures and unions, they cannot be avoided in CORBA
2.3 and earlier versions.

CORBA 2.4 provides a forward declaration for structures and unions, so
anonymous types can be avoided completely.

If you name all your types, you will never have a problem!
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Anonymous Types

on, and

ple:
By usingtypedef, you can avoid all anonymous types:

typedef string<5> GreetingType;
typedef wstring<5> ShortWName;

const GreetingType GREETING = "Hello";

interface OK {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);

};
typedef sequence<ShortWName> WS5Seq;
typedef ShortWName Name[4];

struct Foo {
ShortWName member;

};

The same considerations apply to fixed-point types in attribute declarations, return type and
parameter type declarations, sequence and array element declarations, and for structure, uni
exception member types. For example:

interface Account {
fixed<10,2> balance; // Deprecated

};

This is better written as:

typedef fixed<10,2> BalanceType;

interface Account {
BalanceType balance;

};

Anonymous member types for structures, unions, and exceptions are deprecated. For exam

exception E {
long array_mem[10]; // Deprecated
sequence<long> seq_mem; // Deprecated
string<5> bstring_mem; // Deprecated

};

This is better expressed by naming each type:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortString;

exception E {
LongArray array_mem;
LongSeq seq_mem;
ShortString string_mem;

};
Copyright 2000–2001 IONA Technologies 2-61

Anonymous Types The OMG Interface Definition Language

ype
ous
You should also avoid anonymous sequence and array elements:

typedef sequence<sequence<long> > NumberTree;
typedef fixed<10,2> FixedArray[10];

Instead, provide a separate type definition for each element type:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;
typedef Fixed_10_2 FixedArray[10];

NOTE: With CORBA 2.3 and earlier ORBs, it is impossible to avoid an anonymous member t
for recursive structures and unions. For example, there is no way to avoid the anonym
member type in the following:

struct Node {
long val;
sequence<Node,2> children; // Anonymous member type

};

From CORBA 2.4 onwards, the following will be legal:

typedef struct Node; // Forward declaration
typedef sequence<Node,2> ChildSeq;

struct Node {
long val;
ChildSeq children; // Avoids anonymous type

};

This avoids the anonymous member type.
2-62 Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Repository IDs

45
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

e,

ient and
vers
 type;
ree on

u
e

2.41 Repository IDs
When you compile an IDL specification, the compiler creates a unique identifier for each typ
known as a repository ID. Repository IDs have the general formIDL:<name>:1.0.8 The<name>
component is the fully-qualified name of each type, using/ as a separator.

Repository IDs serve as unique type handles and, in many cases, are exchanged between cl
server as an indication of what data is being transmitted. This means that all clients and ser
that communicate with each other must use the same repository ID to denote the same IDL
otherwise, the CORBA type system falls apart because sender and receiver will no longer ag
the meaning of types and how to interpret data during marshaling.

The need for repository IDs to be unique provides the main motivation for IDL modules: if yo
place all the IDL for your application into a module, name clashes with other developers’ typ
names become less likely (but not impossible).

8. There are other repository ID formats, such asDCE: andLOCAL:. However, these do not have any practical
significance, so we do not cover them here.
Copyrigh
45Repository IDs
The IDL compiler generates a repository ID for each identifier:

module M { // IDL:M:1.0
typedef short T; // IDL:M/T:1.0
interface I { // IDL:M/I:1.0

attribute T a; // IDL:M/I/a:1.0
};

};

The repository ID uniquely identifies each IDL type.

You must ensure that repository IDs are unique.

If you have two IDL specifications with the same repository IDs but
different meaning, CORBA’s type system is destroyed!
t 2000–2001 IONA Technologies 2-63

Controlling Repository ID Prefixes The OMG Interface Definition Language

46
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

 a

le:

sult in
2.42 Controlling Repository ID Prefixes
The IDL#pragma prefix directive adds the specified prefix to each repository ID. By using
name that you own (such as a registered domain name), name clashes can be avoided.

Of course, you could also avoid name clashes by using a unique module name. For examp

module acme_com { // IDL:acme_com:1.0
module M { // IDL:acme_com/M:1.0

// ...
};

};

This approach also makes name clashes unlikely. However, it has the drawback that it can re
rather ugly and long identifiers in some language mappings (such asacme_com_M for the
C mapping).

A #pragma prefix does not suffer from this problem because the prefix is invisible in the
generated API and therefore does not add additional nested scopes or cause long and ugly
identifiers.
2-64
46Controlling Repository ID Prefixes
You should routinely add a #pragma prefix to your IDL definitions:

#pragma prefix "acme.com"

module M { // IDL:acme.com/M:1.0
typedef short T; // IDL:acme.com/M/T:1.0
interface I { // IDL:acme.com/M/I:1.0

attribute T a; // IDL:acme.com/M/I/a:1.0
};

};

#pragma prefix adds the specified prefix to each repository ID.

Use of a prefix makes name clashes with other repository IDs unlikely.
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Predefined IDL

47
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

s

dule
2.43 Predefined IDL
The CORBA specification defines a number of IDL types that all ORBs must provide. For
example, ORBs use an IDL interfaceTypeCode which provides functionality to enquire about the
details of a type at run time. (TypeCode is used, for example, to provide introspection for value
of typeany.)

Most of the predefined IDL types are nested in the OMG-definedCORBA module. In order to use
types defined in the CORBA module, such asTypeCode, you must includeorb.idl in your
specification to import the relevant definitions. You can then refer to types in the CORBA mo
by using a qualified name (CORBA::TypeCode or ::CORBA::TypeCode).
Copyrigh
47Predefined IDL
The CORBA specification defines a number of IDL types in the CORBA
module.

For example, the definition for TypeCode (a type that describes types)
and the definitions for the Interface Repository (IFR) are in the CORBA
module.

To use such predefined types in your IDL, you must include orb.idl:

#include <orb.idl> // Get access to CORBA module

interface TypeRepository {
CORBA::TypeCode lookup(in string name); // OK
// ...

};
t 2000–2001 IONA Technologies 2-65

Using the IDL Compiler The OMG Interface Definition Language

48
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

ide

re to
e

le

paste
)

name
efore are
2.44 Using the IDL Compiler
The ORBacus IDL-to-C++ compiler is calledidl .9 It compiles one or more IDL files provided as
arguments.10 For example:

$ idl x.idl y.idl

By default, for each IDL source file, the compiler generates two client-side and two server-s
files, with.h and.cpp as the default extensions for header and source files, respectively.

The idl command supports a large number of options. The most frequently used options a
control the preprocessor and to change the default file extensions. You can also suppress th
generation of server-side files with the--no-skeletons option, to avoid cluttering the build
directory with unwanted files if you are writing client-side code only.

One option that is useful is--impl . It causes the compiler to generate a header and source fi
(calledx_impl.h andx_impl.cpp) for the server application code, with operation
implementations that are no-ops. This option is useful because it saves you having to cut and
definitions from the generated skeleton file. (The--impl option does not override existing files.

The compiler supports a large number of other options (see the man page for details).

9. Note that the specification does not define the name of the IDL compiler command, the available options, or the
and number of the generated files. Such issues are considered outside the scope of the specification and ther
vendor-specific.

10.Whenever we show commands in this course, we assume a Bourne shell.
2-66
48Using the IDL Compiler

The IDL compiler is called idl . By default, for a file called x.idl, it
produces:

Major options:

x.h client-side header file
x.cpp client-side (stub) source file
x_skel.h server-side header file
x_skel.cpp server-side (skeleton) source file

-D <name>[= <val>] define preprocessor symbol <name> [with value <val>]
-U <name> undefine preprocessor symbol
-I <dir> add directory to include search path
-E run the preprocessor only
--c-suffix <s> change default cpp extension to <s>

--h-suffix <s> change default h extension to <s>

--impl generate implementation files
Copyright 2000–2001 IONA Technologies

The OMG Interface Definition Language Topics Not Covered Here

49
The OMG Interface Definition Language
Copyright 2000–2001 IONA Technologies

nal

not
2.45 Topics Not Covered Here
The above list presents a list of topics we did not cover in this unit. IDL supports two additio
pragma directives (which are unlikely to ever be of importance to you). A major part of
functionality is known as Objects by Value. However, the topic is large and complex, so we do
cover it in this unit.
Copyrigh
49Topics Not Covered Here

There are a few parts of IDL we did not cover in this unit:

• #pragma ID

This pragma allows you to selectively change the repository ID for a
particular type.

• #pragma version

This pragma allows you to change the version number for IDL:
format repository IDs.

• Objects By Value (OBV)

OBV provides a hybrid of structures with inheritance and objects
that are passed by value instead of by reference.

OBV is large and complex and covered in a separate unit.
t 2000–2001 IONA Technologies 2-67

3. Exercise: Writing IDL Definitions
u to

ics of
bs
Summary

This exercise provides you with hands-on experience of writing IDL definitions by asking yo
solve a simple interface design problem.

Objectives

By the completion of this exercise, you will have gained experience in the syntax and semant
IDL definitions, be able to write IDL definitions, and to compile these definitions into C++ stu
and skeletons.

The Climate Control System Exercise: Writing IDL Definitions

1
Exercise: Writing IDL Definitions

Copyright 2000–2001 IONA Technologies

mple
s. In
ezers
sed via
m to

to

s close

tor to
3.1 The Climate Control System
For the remainder of this course, we will use a simple climate control system (CCS) as an exa
application. The CCS controls the air-conditioning for various rooms in one or more building
addition, the system permits control of the temperature of manufacturing devices, such as fre
and semiconductor annealing ovens. The devices are installed at various locations and acces
a proprietary instrument control protocol. We want to provide a CORBA interface to this syste
integrate it with the remainder of the IT infrastructure.

The system contains a number of thermometers and thermostats. Thermostats, in addition
reporting the temperature around them also permit a desired (or nominal) temperature to be
selected. The CCS system attempts to maintain the actual temperature around a thermostat a
as possible to the nominal temperature.

The entire system can be controlled from a central monitoring station that permits an opera
monitor and adjust the temperature at different locations.

A CORBA server will act as a gateway to this system, by receiving CORBA messages and
translating them into corresponding messages that are sent to devices via the proprietary
instrument control protocol.
3-2
1The Climate Control System

The climate control system consists of:

• Thermometers

Thermometers are remote sensing devices that report the
temperature at various location.

• Thermostats

Thermostats are like thermometers but also permit a desired
temperature to be selected.

• A single control station

A control station permits an operator to monitor all devices and to
change the temperature in various parts of a building remotely.

The devices in the system use a proprietary instrument control protocol.
We need a CORBA interface to this system.
Copyright 2000–2001 IONA Technologies

Exercise: Writing IDL Definitions Thermometers

2
Exercise: Writing IDL Definitions

Copyright 2000–2001 IONA Technologies

as a
control
3.2 Thermometers
Thermometers are simple devices that report the current temperature. Each thermometer h
unique read-only asset number (which also acts as the network address for the instrument
protocol), a read-only model string, and location string (which can be set remotely).
Copyrigh
2Thermometers

Thermometers are simple devices that report the temperature and
come with a small amount of non-volatile memory that stores additional
information:

• Asset number (read-only)

Each thermometer has a unique asset number, assigned when it is
manufactured. This number also serves as the device’s network
address.

• Model (read-only)

Each thermometer can report its model (such as “Sens-A-Temp”).

• Location (read/write)

Each thermometer has non-volatile RAM that can be set to indicate
the device’s location (such as “Annealing Oven 27” or “Room 414").
t 2000–2001 IONA Technologies 3-3

Thermostats Exercise: Writing IDL Definitions

3
Exercise: Writing IDL Definitions

Copyright 2000–2001 IONA Technologies

d. The

ot

to. For
ostat

tures
3.3 Thermostats
Thermostats are just like thermometers but also permit a desired temperature to be selecte
CCS system attempts to keep the actual temperature as close as possible to the selected
temperature by controlling other devices, such as heaters or refrigeration units (which are n
further considered for this example). It is possible to remotely read the current setting of a
thermostat, as well as change it.

Thermostats, depending on their model, have different temperature ranges they can be set
example, a thermostat for an annealing oven has a different temperature range than a therm
for an air-conditioner. Attempts to set a thermostat outside its legal range of nominal tempera
are reported by the instrument control protocol.
3-4
3Thermostats

Thermostats are like thermometers:

• They can report the temperature, and have an asset number, model,
and location.

• The asset numbers of thermometers and thermostats do not
overlap. (No thermostat has the same asset number as a
thermometer).

• Thermostats permit remote setting of a nominal temperature.

• The CCS attempts to keep the actual temperature as close as
possible to the nominal temperature.

• The nominal temperature has a lower and upper limit to which it can
be set.

• Different thermostats have different temperature limits (depending
on the model).
Copyright 2000–2001 IONA Technologies

Exercise: Writing IDL Definitions The Monitoring Station

4
Exercise: Writing IDL Definitions

Copyright 2000–2001 IONA Technologies

s in
earch

 of
oms
 the

ted
s, a
rature;
ror
3.4 The Monitoring Station
The monitoring station (known as the controller), permits access to and control of the device
the system. An operator can list all devices in the system, locate specific devices by various s
criteria, and make relative changes to the temperature setting of a group of thermostats.

3.4.1 Listing Devices
A list operation returns a list of all devices connected to the system.

3.4.2 Making a Relative Temperature Change
A change operation permits an operator to increase or decrease the temperature of a group
thermostats by a delta value. (This is useful to, for example, decrease the temperature of ro
along the western side of a building during summer without disturbing the relative setting of
thermostats in those rooms.)

Some thermostats may not be able to raise or lower their temperature setting by the reques
amount because they may already be set at or close to their temperature limit. In such case
change operation sets those thermostats that can make the change in full to the new tempe
those thermostats that are already at or near their limit are set to the limit. In addition, an er
report provides the details of all those changes that did not succeed in full.

3.4.3 Searching for Devices
A search operation permits an operator to find all devices matching a specified set of asset
numbers, matching one or more locations, or matching one or more model descriptions.
Copyrigh
4The Monitoring Station
The monitoring station provides central control of the system. It can:

• read the attributes of any device

• list the devices that are connected to the system

• locate devices by asset number, location, or model

• update a number of thermostats as a group by increasing or
decreasing the current temperature setting relative to the current
setting
t 2000–2001 IONA Technologies 3-5

What You Need to Do Exercise: Writing IDL Definitions

r

 relate

There
ink
and

e files.
3.5 What You Need to Do
Create an IDL definition that captures the functionality of the climate control system.

Place your IDL definition into a file namedCCS.idl and compile it using theidl command.

We suggest that you develop the IDL incrementally, compiling occasionally to verify that you
approach is free from static errors up to that point.

Remember what you learned about name clashes and how to prevent them and use your
knowledge to avoid such name clashes.

Think about what interfaces should be present in your IDL and how these interfaces should
to each other.

Consider the various error conditions that may arise and how to best deal with them.

Note that there are many ways to capture this particular problem domain in a specification.
is not necessarily a single one and true way. The purpose of this exercise is to get you to th
about the different approaches and their trade-offs, and to familiarize you with the IDL syntax
the compiler.

When you have compiled your specification, have a look at the generated header and sourc
What parts of the specification do you recognize in the generated code?
3-6 Copyright 2000–2001 IONA Technologies

4. Solution: Writing IDL Definitions

IDL for the Climate Control System Solution: Writing IDL Definitions

You
e it.
4.1 IDL for the Climate Control System
Below is one possible solution to the exercise. Note that this is by far not the only possible
solution. In addition, we have made the IDL deliberately complex (particularly for thefind
operation) in order to exercise a representative subset of IDL features for use in later units.
should find it an instructive exercise to criticize this specification and look for ways to improv

#pragma prefix "acme.com"

module CCS {
typedef unsigned long AssetType;
typedef string ModelType;
typedef short TempType;
typedef string LocType;

interface Thermometer {
readonly attribute ModelType model;
readonly attribute AssetType asset_num;
readonly attribute TempType temperature;

attribute LocType location;
};

interface Thermostat : Thermometer {
struct BtData {

TempType requested;
TempType min_permitted;
TempType max_permitted;
string error_msg;

};
exception BadTemp { BtData details; };

TempType get_nominal();
TempType set_nominal(in TempType new_temp)

raises(BadTemp);
};

interface Controller {
typedef sequence<Thermometer> ThermometerSeq;
typedef sequence<Thermostat> ThermostatSeq;

enum SearchCriterion { ASSET, LOCATION, MODEL };

union KeyType switch(SearchCriterion) {
case ASSET:

AssetType asset_num;
case LOCATION:

LocType loc;
case MODEL:

ModelType model_desc;
};

struct SearchType {
KeyType key;
Thermometer device;
4-2 Copyright 2000–2001 IONA Technologies

Solution: Writing IDL Definitions IDL for the Climate Control System

ML

ional
riting

e either

e, we

delta
plexity

ot

ch of
nce is

ice is
};
typedef sequence<SearchType> SearchSeq;

struct ErrorDetails {
Thermostat tmstat_ref;
Thermostat::BtData info;

};
typedef sequence<ErrorDetails> ErrSeq;

exception EChange {
ErrSeq errors;

};

ThermometerSeq list();
void find(inout SearchSeq slist);
void change(

in ThermostatSeq tlist, in short delta
) raises(EChange);

};
};

4.1.1 Some Notes About This Specification
Much of the specification is self-explanatory. The general structure is shown in the following U
diagram:

We have used inheritance here to capture that thermostats are like thermometers with addit
functionality. (Note that this does not mean that we have to implement a thermostat by inhe
from a thermometer.) This inheritance relationship is exploited in thelist operation, which
returns a sequence of thermometers; that is, at run time, the actual sequence elements can b
thermometers or thermostats.

The controller acts as a collection manager for devices. Note that we can locate devices by
navigation from the controller to each device. However, the converse is not true; given a devic
cannot find out which controller is responsible for it.

Thechange operation is fairly self-explanatory. It accepts a sequence of thermostats and a
value and applies the requested temperature change to the supplied thermostats. Some com
arises from the need to provide detailed error information for those thermostats that could n
make the change; that information is returned in anEChange exception.

Thefind operation is quite complex. Note how it accepts a sequence of search records, ea
which contains a union to indicate by what criteria to search. Also note that the search seque
aninout parameter. This allows the operation to fill in the object reference member of each
element with the object reference of a matching device (or a nil reference if no matching dev
found). If more than one device matches a specific search key,find can grow the length of the
returned sequence.

Thermometer Controller

Thermostat

manages

▼

* 1
Copyright 2000–2001 IONA Technologies 4-3

IDL for the Climate Control System Solution: Writing IDL Definitions

 would

res

ave
an
gs.

k at
Spend some time thinking about the design offind. It has many drawbacks that could be
remedied quite easily. Also (even though we have not yet seen the C++ mapping), consider
steps a caller has to go through in order to set up a search and to process the results. How
you simplify this?

NOTE: We madefind deliberately complex because it serves to illustrate a number of featu
of the C++ mapping. A realistic design would (hopefully) look quite different.

If you had a look at the C++ files that are generated by the IDL compiler, you will probably h
realized that they are not very readable. As a general rule, these files are not meant for hum
consumption. Quite often, they use complex macros or cryptic work-arounds for compiler bu
You should resist the temptation to look at the generated code to work out how to write your
application. As we will see in Unit 5, it easier to learn how the C++ mapping works and to loo
the IDL specification instead of the generated files when writing your code.
4-4 Copyright 2000–2001 IONA Technologies
 the

5. Basic C++ Mapping
ere
r-side

g

Summary

This unit presents the mapping of IDL types to C++. The part of the C++ mapping covered h
applies to both client and server. The client-side mapping is covered in Unit 6 and the serve
mapping is presented in Unit 9.

Objectives

By the completion of this unit, you will know how to manipulate IDL data types in C++, includin
how to correctly deal with memory management for these types.

Introduction Basic C++ Mapping

1
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies
5.1 Introduction
The basic C++ mapping covers how IDL types map to C++ types and includes rules for the
mapping of identifiers, preserving IDL naming scopes, and memory management rules. The
client-side mapping (which deals with how to invoke operations) is covered in Unit 6 and the
server-side mapping (which deals with how to implement objects) is covered in Unit 9.
5-2
1Introduction

The basic C++ mappings defines how IDL types are represented in
C++. It covers:

• mapping for identifiers

• scoping rules

• mapping for built-in types

• mapping for constructed types

• memory management rules

For each IDL construct, the compiler generates a definition into the
client-side header file, and an implementation into the client-side stub
file.

General definitions (in the CORBA module) are imported with

#include <OB/CORBA.h>
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Identifiers

2
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

ing
at

u can
5.2 Mapping for Identifiers
As you can see above, IDL identifiers map into C++ identifiers without change. There is one
exception to this rule: if an IDL identifier happens to be a C++ keyword, it is escaped by prefix
it with _cxx_ . This results in legal but ugly code, so you should try and avoid IDL identifiers th
are likely to be programming language keywords.

NOTE: These examples coincidentally also cover the mapping for enumerated types. As yo
see, IDL enumerations map unchanged to C++ enumerations.
Copyrigh
2Mapping for Identifiers

• IDL identifiers map to corresponding C++ identifiers:

enum Color { red, green, blue };

The generated C++ contains:

enum Color { red, green, blue };

• IDL identifiers may clash with C++ keywords:

enum class { if, this, while, else };

Such identifiers are mapped with a _cxx_ prefix:

enum _cxx_class {
_cxx_if, _cxx_this, _cxx_while, _cxx_else

};

You should avoid using IDL identifiers that are likely to be keywords
in one or more programming languages.
t 2000–2001 IONA Technologies 5-3

Scoping Rules Basic C++ Mapping

3
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

t you

ace,
nstruct
5.3 Scoping Rules
The C++ mapping preserves IDL scoping rules. This means that if you have an identifier tha
can refer to as::I::L in IDL, you can refer to the corresponding identifier as::I::L in C++.

Depending on what type an IDL naming scope represents, it may end up as a C++ namesp
class, or structure. However, nesting of scopes is preserved regardless of the specific C++ co
that is generated by the IDL compiler.
5-4
3Scoping Rules
IDL scopes are preserved in the mapped C++. For example:

interface I {
typedef long L;

};

As in IDL, you can refer to the corresponding constructs as I or ::I
and as I::L or ::I::L .

The specific kind of C++ scope a particular IDL scope maps to depends
on the specific IDL construct.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Modules

4
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies
5.4 Mapping for Modules
IDL modules map one-to-one to C++ namespaces. If an IDL module is reopened, so is the
corresponding namespace:

module M1 {
// Some M1 definitions here...

};
module M2 {

// M2 definitions here...
};
module M1 {

// More M1 definitions here...
};

This translates to C++ as:

namespace M1 {
// Some M1 definitions here...

}
namespace M2 {

// M2 definitions here...
}
namespace M1 {

// More M1 definitions here...
}

Copyrigh
4Mapping for Modules

IDL modules map to C++ namespaces:

module Outer {
// More definitions here...
module Inner {

// ...
};

};

This maps to:

namespace Outer {
// More definitions here...
namespace Inner {

// ...
}

}

t 2000–2001 IONA Technologies 5-5

Mapping for Built-In Types Basic C++ Mapping

5
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

ific
5.5 Mapping for Built-In Types
All built-in IDL types map to names in theCORBAnamespace (except forstring andwstring,
which map to pointer types).

The integer and floating-point types map to type definitions in theCORBAnamespace. The reason
for mapping, for example, IDLlong to CORBA::Long instead of C++long is that it helps to
hide architecture-dependent size differences. By using the type definitions instead of a spec
native C++ type, you avoid problems when porting, for example, from a 32-bit to a 64-bit
environment.
5-6
5Mapping for Built-In Types

IDL built-in types map to type definitions in the CORBA namespace:

The type definitions are used to hide architecture-dependent size
differences.

You should use these type names for portable code.

IDL C++

short CORBA::Short

unsigned short CORBA::UShort

long CORBA::Long

unsigned long CORBA::ULong

long long CORBA::LongLong

unsigned long long CORBA::ULongLong

float CORBA::Float

double CORBA::Double

long double CORBA::LongDouble
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Built-In Types

6
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

lain
ned—

ou

r, to

n

IDL char andwchar map toCORBA::Char andCORBA::WChar, respectively.
CORBA::Char is a synonym for one of the three C++ character types (signed, unsigned, or p
char). Do not make assumptions in your code about whether characters are signed or unsig
such assumptions result in non-portable code.

CORBA::WChar is a synonym forwchar_t . Be aware that in older, non-standard C++
compilers,wchar_t in turn is merely an alias for one of the integer types. This means that y
cannot safely overload amongWChar and the integer types if you are using such an older
compiler. (With a standard C++ compiler, overloading is safe because thenwchar_t is a type in
its own right.)

IDL string maps tochar * and IDLwstring maps toCORBA::WChar * (which is the
same aswchar_t *). This mapping permits you to use standard library functions (such as
strcat) without the need for conversions.

IDL boolean maps to either one of the C++ character types or, for a standard C++ compile
C++ bool .

IDL octet maps to one of the C++ character types.

IDL fixed maps to a C++ class that provides appropriate semantics and permits conversio
among fixed-point, floating-point, and integer types.1

IDL any maps to the C++ classCORBA::Any . We cover this class in Section 5.29.

1. Because type fixed is used little, we do not cover it here. See Henning & Vinoski for details.
Copyrigh
6Mapping for Built-In Types (cont.)
CORBA::Fixed and CORBA::Any are C++ classes. The remaining
types map to C++ native types.

WChar and integer types may not be distinguishable for overloading.

Boolean , Char , and Octet may all use the same underlying character
type.

IDL C++

char CORBA::Char

wchar CORBA::WChar

string char *

wstring CORBA::WChar *

boolean CORBA::Boolean

octet CORBA::Octet

fixed<n,m> CORBA::Fixed

any CORBA::Any
t 2000–2001 IONA Technologies 5-7

Overloading on Built-In Types Basic C++ Mapping

7
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

to
ents:

+

5.6 Overloading on Built-In Types
If you need to port code among different ORBs (particularly if you also need to run in
environments with older C++ compilers), avoid overloading among types that are permitted
map to the same underlying type. For example, the following may not compile in all environm

void foo(CORBA::Char param) { /* ... */ };
void foo(CORBA::Boolean param) { /* ... */ }; // !!!
void foo(CORBA::Octet param) { /* ... */ }; // !!!
void foo(CORBA::Short param) { /* ... */ };
void foo(CORBA::Long param) { /* ... */ };
void foo(CORBA::WChar param) { /* ... */ }; // !!!

For ORBacus, the above presents no problem because all built-in types map to different C+
types. However, the same may not be true for other ORBs.
5-8
7Overloading on Built-In Types
• Do not overload functions solely on CORBA::Char ,
CORBA::Boolean , and CORBA::Octet . They may all use the
same underlying type.

ORBacus maps CORBA::Boolean to bool , CORBA::Char to
char , and CORBA::Octet to unsigned char .

• Do not overload functions solely on CORBA::WChar and one of the
integer types. With older C++ compilers, wchar_t may be
indistinguishable from an integer type for overloading.

If you are working exclusively with standard C++ compilers,
wchar_t is a type in its own right and so does not cause problems.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Memory Allocation for Strings

8
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

as:
5.7 Memory Allocation for Strings
To allocate and deallocate strings and wide strings, youmust use the provided functions. Use of
new, new[] , delete , ordelete[] is non-portable (and will in fact cause a crash in some
environments).

string_alloc allocates one more byte than was requested, in order to make room for the
terminating NUL byte:

char * p = CORBA::string_alloc(5); // Allocates 6 bytes
strcpy(p, "Hello"); // OK, "Hello" fits

string_dup allocates and copies a string in a single step, so you can write the preceding

char * p = CORBA::string_dup("Hello");

string_alloc andstring_dup return a null pointer if memory is exhausted. (They never
throw an exception.)

You must usestring_free to eventually deallocate a string returned fromstring_alloc or
string_dup . Passing a null pointer tostring_free is safe and does nothing.

Thewstring_* functions for wide string have analogous behavior. (Note that
wstring_alloc counts characters, not bytes.)
Copyrigh
8Memory Allocation for Strings

For dynamic allocation of strings, you must use the provided functions:

namespace CORBA {
// ...
char * string_alloc(ULong len);
char * string_dup(const char *);
void string_free(char *);
WChar * wstring_alloc(ULong len);
WChar * wstring_dup(const WChar *);
void wstring_free(WChar *);
// ...

};

Calling (w)string_alloc(n) allocates n+1 characters!

These functions are necessary for environments with non-uniform
memory architectures (such as Windows).
t 2000–2001 IONA Technologies 5-9

Mapping for Constants Basic C++ Mapping

9
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

tant

ses and

permit
5.8 Mapping for Constants
The mapping for constants is straight-forward: for every IDL constant, a corresponding cons
definition is generated into the client-side header file.

A minor problem arises if a constant definition is nested inside an interface. In that case, the
constant definition at the C++ level is nested inside a class (because interfaces map to clas
the mapping preserves the scoping of IDL identifiers). However, only integral constants and
enumerated constants can be initialized inside a class (and then only with a standard C++
compiler):

interface I {
const long ANSWER = 42;
const string NAME = "Deep Thought";

};

The generated C++ code could look like this:

class I /* ... */ {
static const CORBA::Long ANSWER = 42;
static const char * const NAME; // "Deep Thought"

};

Note that the string constant cannot be initialized in the class header because C++ does not
that.
5-10
9Mapping for Constants

Constants map to corresponding constant definitions in C++:

const long ANSWER = 42;
const string NAME = "Deep Thought";

This maps to:

const CORBA::Long ANSWER = 42;
const char * const NAME = "Deep Thought";

Global constants and constants that are nested in namespaces (IDL
modules) are initialized in the header file.

Constants that are defined inside interfaces may be initialized in the
header file if:

• they are of integral or enumerated type

• the target compiler complies with standard C++
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Constants

n is

e

Another legal mapping (which is used by ORBacus) is:

class I /* ... */ {
static const CORBA::Long ANSWER; // 42
static const char * const NAME; // "Deep Thought"

};

Note that neither constant is initialized in the header file. Instead, the appropriate initializatio
generated into the source file.

Usually, this does not matter, except when you want to use a constant in a context where a
compile-time constant expression is required, such as in aswitch statement or an array
definition:

char * wisdom_array[I::ANSWER]; // Compile-time error

This is no great hardship because you can use a dynamic allocation instead:

char ** wisdom_array = new char *[I::ANSWER]; // OK

In order to keep your code portable, you should not rely on initialization of constants that ar
nested inside interfaces, even for standard C++ environments.
Copyright 2000–2001 IONA Technologies 5-11

Variable-Length Types Basic C++ Mapping

10
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

pes,
ing
ught

from
er and

 the

.
imit
ntrant;
alue is
5.9 Variable-Length Types
The C++ mapping has the concept of fixed- and variable-length types. Most of the built-in ty
such aschar or long are fixed-length. Fixed-length types are easy to handle in the C++ mapp
because their size is known at compile time. However, variable-length types require more tho
because their length is undecided until run time. This means that, when values are passed
sender to receiver (or from caller to callee), they must be dynamically allocated by the send
deallocated by the receiver once the values are no longer needed.

This memory management rule places the burden of deallocating a variable-length value on
receiver of the value. If the receiver forgets to deallocate a value, it suffers a memory leak.
However, forcing the receiver of a value to deallocate it is the only viable option for CORBA
Other approaches all have serious drawbacks. For example, fixed-length buffers arbitrarily l
the size of values; retaining ownership of memory in the callee means that calls are not ree
and requiring the caller to preallocate memory means that repeated calls are necessary if a v
larger than the preallocated memory, and that is too expensive for distributed calls.
5-12
10Variable-Length Types

The following types are variable-length:

• strings and wide strings (bounded or unbounded)

• object references

• type any

• sequences (bounded or unbounded)

Structures, unions, and arrays can be fixed- or variable-length:

• They are fixed-length if they (recursively) contain only fixed-length
members or elements.

• They are variable-length if they (recursively) contain variable-length
members or elements.

Variable-length values require the sender to dynamically allocate the
value and the receiver to deallocate it.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Example: String Allocation

11
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 callee
alue
ates it

s, is
hat the
5.10 Example: String Allocation
The above code illustrates the general approach to passing variable-length values from the
(the server) to the caller (the client). The server allocates and initializes the variable-length v
and returns a pointer to the allocated memory; the client uses the returned value and dealloc
when it is no longer needed.

This allocation pattern is used for all variable-length values. It avoids arbitrary size limitation
reentrant, and does not require repeated calls to return large values. The only drawback is t
caller must remember to deallocate the returned value; otherwise, memory is leaked.
Copyrigh
11Example: String Allocation

The callee allocates the string and returns it to the caller:

char * getstring()
{

return CORBA::string_dup(some_message); // Pass ownership
}

The caller takes ownership of the string and must deallocate it:

{
char * p = getstring(); // Caller becomes responsible
// Use p...
CORBA::string_free(p); // OK, caller deallocates
}

All variable-length types follow this basic pattern.

Whenever a variable-length value is passed from server to client, the
server allocates, and the client must deallocate.
t 2000–2001 IONA Technologies 5-13

_var Types Basic C++ Mapping

12
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

e
ally
e

.

5.11 _var Types
To make life with variable-length types easier, the C++ mapping provides what is known as_var
types. For every variable-length and user-defined complex type, the C++ mapping creates a
corresponding_var type. The use of_var types is completely optional. If you choose to ignor
_var types, you simply must remember to explicitly deallocate everything that was dynamic
allocated. If you choose to use_var types, you need not remember deallocation because, onc
initialized, the_var type deallocates memory when its destructor runs.

Given theString_var type above, we can rewrite the preceding code example as follows:

{
CORBA::String_var sv(getstring());
// Use sv...

} // No explicit deallocation required here.

No memory leak occurs in this code because the destructor ofsv deallocates the memorysv took
ownership of when it was initialized.

Note that this simple example may appear trivial. However,_var types substantially simplify
memory management for real-life code (which is invariably more complex). In general,_var
types exist for the same purpose as the standard C++auto_ptr template:2 they make memory
leaks less likely (and also contribute to exception safety).

2. The C++ mapping does not use the standard C++auto_ptr type because it must work with older C++ compilers
Note that_var types donot have exactly the same ownership semantics asauto_ptr .
5-14
12_var Types

_var types are smart pointer classes you can use to make memory
leaks unlikely.

A _var type is initialized with a pointer to dynamic memory. When a
_var type goes out of scope, its destructor deallocates the memory.

The only purpose of _var types is to “catch” a dynamically-allocated
value and deallocate it later. You need not (but should) use them.

class String_var {
public:

String_var(char * p) { _ptr = p; }
~String_var() { CORBA::string_free(_ptr); }
// etc...

private:
char * _ptr;

};
H e l l o \0
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping C++ Mapping Levels

13
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 IDL

ins

ance
5.12 C++ Mapping Levels
_var types act as a convenience layer over the basic (or low-level) C++ mapping. For each
type, the compiler creates a pair of types: an actual (low-level) type that represents the
corresponding IDL type, and a_var type. The low-level type implements the semantics of the
type. For example, for a type corresponding to an IDL union, the generated C++ class conta
member functions that permit you to manipulate the value of a union. The union’s_var type is a
simple memory-management wrapper class that stores a pointer to its underlying union inst
and deallocates the memory for the underlying union when the_var instance goes out of scope.
Copyrigh
13C++ Mapping Levels

The IDL compiler generates a pair of types for every variable-length and
user-defined complex type, resulting in a low- and high-level mapping:

• The low level does not use _var types and you must deal with
memory management explicitly.

• The high level provides _var types as a convenience layer to make
memory management less error-prone.

IDL Type C++ Type C++ _var Type

string char * CORBA::String_var

any CORBA::Any CORBA::Any_var

interface foo foo_ptr class foo_var

struct foo struct foo class foo_var

union foo class foo class foo_var

typedef sequence<X> foo; class foo class foo_var

typedef X foo[10]; typedef X foo[10]; class foo_var
t 2000–2001 IONA Technologies 5-15

The String_var Class Basic C++ Mapping

14
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 a

y

5.13 The String_var Class
As an example of a_var class, let us examine the classCORBA::String_var in some detail.
This is useful because_var types for other IDL types (such as interfaces or structures) follow
similar pattern.3

String_var()

The default constructor initializes theString_var to contain a null pointer. Do not use a
default-constructedString_var until after you have initialized it:

CORBA::String_var s;
cout << "s = \"" << s << "\"" << endl; // Crash imminent!

String_var(char *)

Thechar * constructor initializes theString_var by taking ownership of its argument. It
assumes that the passed string was allocated withCORBA::string_alloc or
CORBA::string_dup because the destructor callsCORBA::string_free .

String_var(const char *)

If you construct aString_var using theconst char * constructor, theString_var
makes a deep copy of the string. When theString_var goes out of scope, it deallocates its cop
of the string but leaves the original copy unaffected. For example:

3. TheString_var class is the most complex of all_var types, so once you knowString_var , the other_var
types are easy to learn.
5-16
14The String_var Class

class String_var {
public:

String_var();
String_var(char * p);
String_var(const char * p);
String_var(const String_var & s);
~String_var();

String_var & operator=(char * p);
String_var & operator=(const char * p);
String_var & operator=(const String_var & s);

operator char *();
operator const char *() const;
operator char * &();

// ...
};
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping The String_var Class

eld by
const char * message = "Hello";
// ...

{
CORBA::String_var s(message); // Makes a deep copy
// ...

} // ~String_var() deallocates its own copy only.

cout << message << endl; // OK

String_var(const String_var &)

The copy constructor makes a deep copy. If you initialize oneString_var from another
String_var , modifications to one copy do not affect the other copy.

~String_var()

The destructor callsCORBA::string_free to deallocate the string held by theString_var .

String_var & operator=(char *)
String_var & operator=(const char *)
String_var & operator=(const String_var &)

The assignment operators follow the conventions of the constructors. Thechar * assignment
operator assumes that the string was allocated withstring_alloc or string_dup and takes
ownership of the string.

Theconst char * assignment operator and theString_var assignment operator each
make a deep copy.

Before accepting the new string, the assignment operators first deallocate the current string h
the target. For example:

CORBA::String_var target;
target = CORBA::string_dup("Hello"); // target takes ownership

CORBA::String_var source;
source = CORBA::string_dup("World"); // source takes ownership

target = source; // Deallocates "Hello" and takes
// ownership of deep copy of "World".

operator char *()
operator const char *()
operator char * &()

The conversion operators permit you to pass aString_var as if it were achar * . This makes
use ofString_var transparent. For example, you can print aString_var or pass it to library
functions as if you were using the underlyingchar * directly:

CORBA::String_var s = CORBA::string_dup("Hello");
cout << "Length of \"" << s << "\" is " << strlen(s) << endl;
Copyright 2000–2001 IONA Technologies 5-17

The String_var Class Basic C++ Mapping

15
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

ers of

 C++
char & operator[](ULong)
char operator[](ULong) const

The overloaded subscript operators permit you to use an index to get at the individual charact
aString_var as if it were an array. For example:

CORBA::String_var s = CORBA::string_dup("Hello");
cout << s[4] << endl;

const char * in() const
char * & inout()
char * & out()

These operators are provided mainly to deal with compilers that have problems applying the
conversion rules correctly. For example, your compiler may (incorrectly) reject the following:

CORBA::String_var s = ...;
cout << strlen(s) << endl; // Bad compiler can't handle this...

In this case, you can call thein operator explicitly to force the correct conversion:

CORBA::String_var s = ...;
cout << strlen(s.in()) << endl; // Force explicit conversion

Theout member function allows you to pass aString_var as an output parameter where a
char * & is expected. For example, assume we are using aread_string helper function,
defined as follows:
5-18
15The String_var Class (cont.)

class String_var {
public:

// ...

char & operator[](ULong index);
char operator[](ULong index) const;

const char * in() const;
char * & inout();
char * & out();
char * _retn();

};

ostream & operator<<(ostream, const CORBA::String_var);
istream & operator>>(istream, CORBA::String_var &);
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping The String_var Class

t

is

,

ction
void read_string(char * & s)
{

// Read a line of text from a file...
s = CORBA::string_dup(line_of_text);

}

Without_var types, if you want to callread_string twice with the same argument, you mus
remember to deallocate in between the two calls:

char * s;
read_string(s);
cout << s << endl;
CORBA::string_free(s); // Must deallocate here!
read_string(s);
cout << s << endl;
CORBA::string_free(s); // Must deallocate here!

If you use theout member function on aString_var instead, no deallocation is necessary:

CORBA::String_var s;
read_string(s.out());
cout << s << endl;
read_string(s.out()); // No leak here.
cout << s << endl;

The memory leak is avoided because theout member function first deallocates whatever string
currently held by aString_var and returns areference to a null pointer; this means that the
initial argument passed toread_string is a reference to a null pointer andread_string
then assigns the new pointer value via that reference.

char * _retn()

This member function returns the pointer currently held by aString_var and sets the pointer
inside theString_var to null. The net effect is that the call, after returning the pointer value
passes ownership for the string memory from theString_var to the caller. This is particularly
useful for exception safety. (See page 6-38 for details.)

ostream & operator<<(ostream, const CORBA::String_var)
istream & operator>>(istream, CORBA::String_var &)

The stream insertion and extraction operators permit you to insert and extract aString_var as
if it were a normal pointer. Note that, for extraction, the operator by default terminates extra
with the next white space character (just as it does forchar *).
Copyright 2000–2001 IONA Technologies 5-19

Main Rules for Using String_var Basic C++ Mapping

16
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies
5.14 Main Rules for Using String_var

The above slide summarizes the rules for usingString_var correctly.

Always initialize a String_var with a dynamically-allocated string.

Do not use an uninitializedString_var or initialize aString_var with a string that is not
allocated withCORBA::string_alloc or CORBA::string_dup :

{
CORBA::String_var s1;
cout << s1 << endl; // Bad news!

char message[] = "Hello";
CORBA::String_var s2 = message; // Bad news!

CORBA::String_var s3 = strdup("Hello"); // Bad news!
}

Assignment or construction from a const char * makes a deep copy.

Assignment and construction from aconst char * makes a deep copy:
5-20
16String_var : Summary

Keep the following rules in mind when using String_var :

• Always initialize a String_var with a dynamically-allocated string
or a const char * .

• Assignment or construction from a const char * makes a deep
copy.

• Assignment or construction from a char * transfers ownership.

• Assignment or construction from a String_var makes a deep
copy.

• Assignment of a String_var to a pointer makes a shallow copy.

• The destructor of a String_var deallocates memory for the string

• Be careful when using string literals with String_var .
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Main Rules for Using String_var

t

u

const char message[] = "Hello";
{

CORBA::String_var s = message; // OK, deep copy
}
cout << message << endl; // Fine

Assigning or constructing from a char * transfers ownership.

If you assign achar * to aString_var , theString_var takes ownership. This means tha
the string must initially have been allocated withstring_alloc or string_dup and that you
must not explicitly deallocate the string after the assignment:

{
char * p = CORBA::string_dup("Hello");
CORBA::String_var s = p; // s takes ownership
// Do not deallocate p here!
// ...

} // OK, s deallocates the string

Copying or assigning a String_var makes a deep copy.

If you assign oneString_var to another, or use the copy constructor, you get a deep copy:

String_var s1 = CORBA::string_dup("Hello");
String_var s2 = s1;
cout << s1 << endl; // Prints "Hello"
cout << s2 << endl; // Prints "Hello"
s1[0] = 'h';
s1[4] = 'O';
cout << s1 << endl; // Prints "hellO"
cout << s2 << endl; // Prints "Hello"

Assigning a String_var to pointer makes a shallow copy.

There is nothing wrong with assigning aString_var to achar * or const char * .
However, keep in mind that theString_var retains ownership of the string in this case, so yo
must not dereference the pointer after theString_var goes out of scope:

char * p;
{

CORBA::String_var s = CORBA::string_dup("Hello");
p = s; // Fine, p points at memory owned by s

}
cout << p << endl; // Disaster!

The destructor of a String_var deallocates memory for the string.

The destructor of aString_var callsCORBA::string_free . Obviously, this means that
you must initialize aString_var with memory that was allocated by
CORBA::string_alloc or CORBA::string_dup . However, it also means that you must
not give ownership of the same string to two differentString_var instances:
Copyright 2000–2001 IONA Technologies 5-21

Main Rules for Using String_var Basic C++ Mapping

se a

o cast

ch is
ests
 an
char * p = CORBA::string_dup("Hello");
char * q = p; // Both p and q point at the same string

CORBA::String_var s1 = p; // Fine, s1 takes ownership
// ...
CORBA::String_var s2 = q; // Very bad news indeed!

Be careful when using string literals with String_var .

As we saw, assignment or construction from achar * causes aString_var to take ownership
of the passed pointer, whereas assignment or construction from aconst char * makes a deep
copy. This causes problems with older compilers that do not adhere to the C++ standard:

CORBA::String_var s = "Hello"; // No problem with standard C++,
// but a complete disaster with
// older compilers!

This works fine with standard C++ compilers for which the type of a string literal is
const char * , causing theString_var to make its own copy of the string. However, for
older compilers, it spells disaster: in classic C++ (as in C), the type of a string literal ischar * .
As a result, theString_var takes ownership of the string and eventually callsstring_free
on it. This results in an attempt to deallocate non-heap memory and, in most cases, will cau
core dump.

If you have to use the same code base with both older and newer compilers, one option is t
the string literal toconst char * :

CORBA::String_var s = (const char *)"Hello"; // Fine

This works for both older and standard C++ compilers and forces a deep copy. However, we
suggest to avoid casts wherever possible and use an explicit call tostring_dup instead:

CORBA::String_var s = CORBA::string_dup("Hello"); // Fine too

Both approaches correctly result in a deep copy but, as a matter of style, the second approa
preferable because it makes it explicit that an allocation takes place, whereas the cast sugg
something more serious. In addition, the explicit copy will not work if you accidentally supply
argument of the wrong type, whereas the cast will quite happily let you turn, for example, a
floating-point variable into a pointer.
5-22 Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Fixed-Length Structures

17
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

o the
++

use

r

n care
5.15 Mapping for Fixed-Length Structures

IDL fixed-length structures map to C++ structures with public data members that correspond t
members. This means that you can access structure members as you would for any other C
struct :

Details d;
d.weight = 8.5;
d.count = 12;

If the structure only contains trivial members (that is, is a C++ aggregate), you can initialize
instances statically:

Detail s d = { 8.5, 12 };

(Some compilers still have problems with initialization of automatic aggregates, so you should
this style with caution.)

The generated structure may contain member functions that are internal to the mapping. Fo
example, structures frequently contain a class-specificoperator new and
operator delete . If such member functions exist, they are specific to your ORB and you
must not call them directly (because doing so would result in non-portable code).

If you need to dynamically allocate and deallocate fixed-length structures, usenew anddelete ,
as usual. If your platform has special memory-management requirements, these will be take
of by class-specific members, so you need not use a special-purpose allocation function for
structures.
Copyrigh
17Mapping for Fixed-length Structures
IDL structures map to C++ classes with public members. For example:

struct Details {
double weight;
unsigned long count;

};

This maps to:

struct Details {
CORBA::double weight;
CORBA::ULong count;

};

The generated structure may have additional member functions. If so,
they are internal to the mapping and you must not use them.
t 2000–2001 IONA Technologies 5-23

Mapping for Variable-Length Structures Basic C++ Mapping

18
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

bove.
ns. If

ers in

 from
is

ned

g)
ed

a

5.16 Mapping for Variable-Length Structures
The mapping for a structure containing a string (and therefore of variable length) is shown a
As for fixed-length structures, the generated structure may contain additional member functio
so, you must ignore them and not call such member functions directly.

The type of the string member (OB::StrForStruct in this case) is not defined by the C++
mapping. The specific type name does not matter; all you need to know is that string memb
user-defined types (such as structures, exceptions, sequences, or arrays) behave like a
String_var , that is, they are smart pointers. However, nested strings differ in one respect
a normalString_var : they are initialized to the empty string by their default constructor. Th
is different fromString_var , which is default-constructed to contain a null pointer.4

NOTE: In general, the C++ mapping uses self-managed types for the members of user-defi
complex types. This means that you do not have to explicitly deallocate memory for
every nested variable-length member. Instead, as soon as the outermost (containin
instance of a type is destroyed, the memory for all the contained members is releas
automatically.

The generated structure is easy to use if you keep in mind that string members behave like
String_var . For example:

4. This inconsistency is a historical glitch in the C++ mapping and we simply have to live with this wrinkle.
5-24
18Mapping for Variable-Length Structures

Variable-length structures map to C++ classes with public data
members. Members of variable-length type manage their own memory.

struct Fraction {
double numeric;
string alphabetic;

};

This maps to:

struct Fraction {
CORBA::Double numeric;
OB::StrForStruct alphabetic; // vendor-specific

};

String members behave like a String_var that is initialized to the
empty string.

Never use internal types, such as StrForStruct , in your code!
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Variable-Length Structures

 to

ain
res

ment

of the
{
Fraction f;
f.numeric = 1.0/3.0;
f.alphabetic = CORBA::string_dup("one third");

} // No memory leak here

Whenf goes out of scope, the destructor of each member is invoked, so the string assigned
f.alphabetic is correctly deallocated.

NOTE: You cannot statically initialize a variable-length structure because it will always cont
at least one member with a user-defined constructor. That is, variable-length structu
never are C++ aggregates.

You can treat variable-length structures must like any other variable in your program. Assign
and copy provide the appropriate deep-copy semantics:

{
struct Fraction f1, f2, f3;

f1.numeric = .5;
f1.alphabetic = CORBA::string_dup("one half");
f2.numeric = .25;
f2.alphabetic = CORBA::string_dup("one quarter");
f3.numeric = .125;
f3.alphabetic = CORBA::string_dup("one eighth");

f2 = f1; // Deep assignment
f3.alphabetic = f1.alphabetic; // Deep assignment
f3.numeric = 1.0;
f3.alphabetic[3] = '\0'; // Does not affect f1 or f2
f1.alphabetic[0] = 'O'; // Does not affect f2 or f3
f1.alphabetic[4] = 'H'; // Does not affect f2 or f3

} // Everything deallocated OK here

The following shows the before and after state of the three structures:

NOTE: If a sequence contains a recursive member (as shown on page 2-28), the type name
member is<struct_name>::_ <member_name>_seq . For example, the type of
thechildren member on page 2-28 isNode::_children_seq .

0.5

One Half

f1

numeric

alphabetic

0.5

one half

f2

1.0

one

f3

0.5

one half

f1

numeric

alphabetic

0.25

one quarter

f2

0.125

one eighth

f3

Before

After
Copyright 2000–2001 IONA Technologies 5-25

Mapping for Unbounded Sequences Basic C++ Mapping

19
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 you

hat
mber of

 of the
ond the
5.17 Mapping for Unbounded Sequences
Every named sequence type in IDL results in a C++ class of the same name. (Anonymous
sequences are mapped to classes with a name that is internal to the mapping, which is why
should avoid them.) The generated class has overloadedlength member functions that permit
you to grow and shrink the sequence at the tail, as well as overloaded subscript operators t
permit you get and set sequence elements. You can grow an unbounded sequence to any nu
elements (subject to memory limitations).

In order to add new sequence elements, you must first create them by increasing the length
sequence and then initialize the newly-added elements; accessing a sequence element bey
current length of a sequence results in undefined behavior.

No special memory allocation functions are required for sequences. If you want to use
dynamically allocated sequences, usenew anddelete to allocate and deallocate them. (The
sequence class will contain class-specificoperator new andoperator delete members
for operating systems with non-uniform memory management.)
5-26
19Mapping for Unbounded Sequences

Each IDL sequence type maps to a distinct C++ class.

An unbounded sequence grows and shrinks at the tail (like
variable-length vectors).

A length accessor function returns the number of elements.

A length modifier function permits changing the number of elements.

Sequences provide an overloaded subscript operator ([]).

Access to sequence elements is via the subscript operator with indexes
from 0 to length() - 1 .

You cannot grow a sequence by using the subscript operator. Instead,
you must explicitly increase the sequence length using the length
modifier.

Accessing elements beyond the current length is illegal.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Unbounded Sequences
Copyright 2000–2001 IONA Technologies 5-27

Mapping for Unbounded Sequences Basic C++ Mapping

20
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

um
se this
le

add

or

namic

le the
StrSeq()

The default constructor creates an empty sequence, so calling thelength accessor of a
default-constructed sequence returns zero.

StrSeq(CORBA::ULong)

The constructor permits you provide a hint to the sequence implementation as to the maxim
number of elements you expect you will be placing onto the sequence. The sequence can u
information to chunk memory allocations more efficiently. Using this constructor has no visib
effect otherwise. In particular, the sequence is still created with zero elements and you can
more elements to the sequence than the maximum provided to this constructor.5

StrSeq(const StrSeq &)
StrSeq & operator=(const StrSeq &)

The copy constructor and assignment operator make deep copies. (The assignment operat
releases storage for the original sequence first, of course.)

~StrSeq()

The destructor destroys a sequence. If the sequence contains variable-length elements, dy
memory for the elements is also released.

5. The sequence maximum is similar to the notion of capacity in some of the standard C++ library classes. Whi
actual number of elements remains below the maximum, no reallocation of the sequence memory will occur.
5-28
20Mapping for Unbounded Sequences (cont.)

typedef sequence<string> StrSeq;

This maps to:

class StrSeq {
public:

StrSeq();
StrSeq(CORBA::ULong max);
StrSeq(const StrSeq &);
~StrSeq();

StrSeq & operator=(const StrSeq &);

CORBA::ULong length() const;
void length(CORBA::ULong newlen);
CORBA:ULong maximum();

OB::StrForSeq operator[](CORBA::ULong idx);
const char * operator[](CORBA::ULong idx) const;
// ...

};
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Unbounded Sequences

ce
ce

the tail.
uence

uctor.)

antees
e

le, the

tend

eral, for

ts

 C++
CORBA::ULong length() const

The length accessor returns the number of elements of the sequence.

void length(CORBA::ULong)

The length modifier changes the length of a sequence:

• Increasing the length of a sequence creates new elements at the tail. Growing a sequen
initializes the new elements using their default constructor. (In this example, the sequen
elements are strings, so the new elements are initialized to the empty string.)

• Decreasing the length of a sequence truncates the sequence by destroying elements at
The truncated elements are permanently destroyed. This means that, if you shrink a seq
and grow it again, you cannot expect the previously truncated elements to still be there.
(Those elements will have been destroyed and then recreated using their default constr

CORBA::Long maximum()

The maximum accessor returns the current maximum of the sequence. The sequence guar
that elements will not be relocated in memory as long as the actual length remains below th
maximum.

OB::StrForSeq operator[](CORBA::ULong)
const char * operator[](CORBA::ULong) const

The subscript operators provide access to the sequence elements. Note that, in this examp
return type of the non-constant operator isOB::StrForSeq . This type name is internal to the
mapping and you will never need to use it directly. For all intents and purposes, you can pre
that the element type isString_var (with the exception that nested strings, as always, are
initialized to the empty string instead of a null pointer).

Of course, the return type of these operators depends on the sequence element type. In gen
a sequence containing elements of typeT, these operators return values of typeT & and typeT,
respectively. (For example, for a sequence ofCORBA::Double , the operators return
CORBA::Double & andCORBA::Double .)6

Sequences are indexed from0 to length() - 1 . Do not attempt to index a sequence beyond i
current length; doing so results in undefined behavior (most likely, a core dump).

6. For complex types, you may find that the actual type returned for the non-constant subscript operator is not a
reference. However, in that case, the actual type that is returned will behave as if it were a C++ reference.
Copyright 2000–2001 IONA Technologies 5-29

Example: Using a String Sequence Basic C++ Mapping

21
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

or the
cated
he

string

ote that
ance.

o
nce
 one

ous, we
tructor if
.

5.18 Example: Using a String Sequence
The above code sequence shows an example of using a string sequence. The constructor f
sequences uses the maximum constructor. This guarantees that the sequence will not be relo
in memory while it has five or fewer elements. Note that this guarantee does not extend to t
sequence elements if the elements are variable-length (as they are in this example).7

Immediately after construction, the sequence is empty (has zero elements).

The next step adds four sequence elements and verifies that the first element was initialized
correctly by its default constructor, before adding four new strings to the sequence. Note that
sequence elements take ownership for the string, so we useCORBA::string_dup for the
assignment.

The next step shortens the sequence by two and then proceeds to add six more elements. N
for the second loop, we increment the length by one inside the loop instead of setting it in adv
This second option works fine, but is likely to be less efficient because of additional memory
reallocations. Note that the second loop exceeds the maximum for the sequence. There is n
problem with this—the sequence grows its maximum as needed. (Depending on the seque
implementation, the maximum may increase in fairly large steps instead of incrementing by
whenever the sequence is extended by one element.)

The final step prints the sequence contents. This illustrates that the sequence elements
transparently can be used as if they were of typechar * or const char * .

7. The relocation guarantee is useful if you point at sequence elements. However, seeing that doing so is danger
suggest that you do not use pointers or references to sequence elements. As a rule, use the maximum cons
you know in advance how many elements you will use. It will avoid unnecessary relocations and so be faster
Otherwise, don’t bother with the maximum constructor.
5-30
21Example: Using a String Sequence

StrSeq s(5); // Maximum constructor
assert(s.length() == 0); // Sequences start off empty

s.length(4); // Create four empty strings
assert(s[0] && *s[0] == '\0'); // New strings are empty

for (CORBA::ULon g i = 0; i < 4; ++i)
s[i] = CORBA::string_dup(argv[i]); // Assume argv has four elmts

s.length(2); // Lop off last two elements
assert(s.length() == 2);

for (CORBA::ULon g i = 2; i < 8; ++i) { // Assume argv has eight elmts
s.length(i + 1); // Grow by one element
s[i] = CORBA::string_dup(argv[i]); // Last three iterations may

// cause reallocation
}
for (CORBA::ULon g i = 0; i < 8; ++i)

cout << s[i] << endl; // Show elements
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Using Complex Element Types

22
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 you get
e of

y

5.19 Using Complex Element Types
If a sequence contains elements of complex type, such as a structure or another sequence,
deep copy semantics for assignment and copying. Here is an example that uses a sequenc
structures to illustrate this:

struct Fraction {
double numeric;
string alphabetic;

};
typedef sequence<Fraction> FractSeq;

You can freely assign sequences and sequence elements to each other; the correct memor
management activities are take care of automatically:

FractSeq fs1;
fs1.length(1);
fs1[0].numeric = 1.0;
fs1[0].alphabetic = CORBA::string_dup("One");
FractSeq fs2 = fs1; // Deep copy
assert(fs2.length() == 1);
fs2.length(2);
fs2[1] = fs1[0]; // Deep copy

This results infs1 containing the single element {1.0, “One”}, andfs2 containing two elements,
{1.0, “One”} and {1.0, “One”}.
Copyrigh
22Using Complex Element Types
If a sequence contains complex elements, such as structures, the usual
deep copy semantics apply:

• Assignment or copying of sequences makes a deep copy.

• Assignment or copying of sequence elements makes a deep copy.

• Extending a sequence constructs the elements using their default
constructor.

• Truncating a sequence (recursively) releases memory for the
truncated elements.

• Destroying a sequence (recursively) releases memory for the
sequence elements and the sequence.
t 2000–2001 IONA Technologies 5-31

Mapping for Bounded Sequences Basic C++ Mapping

23
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

bsent

u will

ermit
s
e the
g &
5.20 Mapping for Bounded Sequences
The mapping for bounded sequences is identical, except that the maximum constructor is a
and the maximum is instead hard-wired into the generated class and themaximum accessor
always returns the sequence bound.

Do not attempt to increase the length of a bounded sequence beyond its bound. If you do, yo
suffer undefined behavior (most likely, a core dump).

NOTE: Both bounded and unbounded sequences have additional member functions that p
you to directly manipulate the buffer that underlies a sequence. Use of this feature i
useful only for octet sequences (which are often use to transmit binary data). Becaus
feature is rarely used and the API fairly complex, we do not show it here. (See Hennin
Vinoski for details.)
5-32
23Mapping for Bounded Sequences

Bounded sequences have a hard-wired maximum:

typedef sequence<string,5> StrSeq;

This maps to:

class StrSeq {
public:

StrSeq();
StrSeq(const StrSeq &);
~StrSeq();

StrSeq & operator=(const StrSeq &);

CORBA::ULong length() const;
void length(CORBA::ULong newlen);
CORBA:ULong maximum();
OB::StrForSeq operator[](CORBA::ULong idx);
const char * operator[](CORBA::ULong idx) const;
// ...

};
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Rules for Safe Use of Sequences

24
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

ointers
ill
ut the
vior.
ss
5.21 Rules for Safe Use of Sequences
The above slide summarizes the rules for safe use of sequences. You should avoid keeping p
or references to sequence elements. If the sequence is relocated in memory, the pointers w
dangle. (Of course, you can use the sequence maximum to ensure that this won’t happen b
trouble is probably not worth it.) Subscripting beyond the current length has undefined beha
Do not use pointer arithmetic on pointers to sequence elements. The results are meaningle
because sequence elements may not be in adjacent memory locations.
Copyrigh
24Rules for Safe Use of Sequences

Keep the following in mind when using sequences:

• Never point at sequence elements or keep references to them.

If the sequence relocates in memory, the pointers or references will
dangle.

• Never subscript beyond the current length.

The behavior is undefined if you read or write an element beyond
the current length. Most likely, you will corrupt memory.

• Do not assume that sequence elements are adjacent in memory.

Never perform pointer arithmetic on pointers to sequence elements.
The results are undefined.
t 2000–2001 IONA Technologies 5-33

Mapping for Arrays Basic C++ Mapping

25
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

of the
 can

 as the
is
nt of

l with
5.22 Mapping for Arrays
IDL arrays map to C++ arrays of the same name. This means that you can take advantage
guarantees provided by C++ for arrays. (Array elements are contiguous in memory and you
use pointer arithmetic.)

For each array, the compiler also generates a type<array> _slice . An array slice is the
element type of an array. For one-dimensional arrays, that means the slice type is the same
element type. For two-dimensional arrays, the slice type is the row type of the array (which
another array type). This means that a pointer to an array slice is a pointer to the first eleme
the array.

If an array has string elements, the elements behave like aString_var , that is, manage their
own memory.

The code for arrays looks the same as that for any other array (but you must remember to dea
string members correctly). For example:

NameList nl; // Ten empty strings
for (int i = 0; i < 10 && i < argc; ++i)

nl[i] = CORBA::string_dup(argv[i]);
nl[0] = nl[1]; // Deep copy

ScoreTable st; // Six undefined scores
st[0][0] = 99; // Initialize one score
5-34
25Mapping for Arrays

IDL arrays map to C++ arrays. For example:

typedef string NameList[10];
typedef long ScoreTable[3][2];

This maps to:

typedef OB::StrForStruct NameList[10];
typedef OB::StrForStruct NameList_slice;

typedef CORBA::Long ScoreTable[3][2];
typedef CORBA::Long ScoreTable_slice[2];

The slice type of an array is the element type of an array or, for a
multi-dimensional array, the element type of the outermost dimension.

This means that an <array> _slice * is of type “pointer to element”.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Arrays
Copyright 2000–2001 IONA Technologies 5-35

Array Assignment and Allocation Basic C++ Mapping

26
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

r

you

, the

sing
cate
5.23 Array Assignment and Allocation
The compiler generates additional functions to deal with dynamically allocated arrays. As fo
strings, these special-purpose functions are provided to deal with non-uniform
memory-management architectures. As for the memory-management functions for strings,
must use these functions instead ofnew[] anddelete[] .

<array> _slice * <array> _alloc()

This function allocates a new array and returns a pointer to the first element. If allocation fails
function returns null. You must eventually deallocate the array by passing the return value to
<array> _free .

<array> _slice * <array> _dup(const <array> _slice *)

This function allocates a new array and initializes it with the elements in the source array (u
deep copy semantics). If allocation fails, the function returns null. You must eventually deallo
the array by passing the return value to<array> _free .

void <array> _free(<array> _slice *)

This function deallocates an array previously allocated with<array> _alloc or
<array> _dup . Deallocation of a null pointer is safe and does nothing.
5-36
26Array Assignment and Allocation

For each array, the compiler generates functions to allocate, allocate
and copy, deallocate, and assign arrays:

NameList_slice * NameList_alloc();
NameList_slice * NameList_dup(const NameList_slice *);
void NameList_free(NameList_slice *);
void NameList_copy(

const NameList_slice * from,
NameList_slice * to

);

ScoreTable_slice * ScoreTable_alloc();
ScoreTable_slice * ScoreTable_dup(const ScoreTable_slice *);
void ScoreTable_free(ScoreTable_slice *);
void ScoreTable_copy(

const ScoreTable_slice * from,
ScoreTable_Slice * to

);
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Array Assignment and Allocation

s but

 tool.

an

copy
Here is a brief example that illustrates how to use these functions:

// Allocate and initialize an array
//
NameList_slice * nlp = NameList_alloc();
for (int i = 0; i < sizeof(nlp) / sizeof(*nlp); ++i)

nlp[i] = CORBA::string_dup("some name");

// Create copy of nlp
//
NameList_slice * nlp2 = NameList_dup(nlp);

// Clean up
//
NameList_free(nlp);
NameList_free(nlp2);

Due to the weak array semantics of C++, be careful if you have arrays of different dimension
the same element type:

typedef string TwoNames[2];
typedef string FiveNames[5];

If you pass an array ofFiveNames where an array ofTwoNames is expected or vice versa, the
results will be disastrous:

FiveNames fn;
// Initialize fn...
TwoNames_slice * tnp = FiveNames_dup(fn); // Bad news!

Your best defense against such errors are diligence and a memory management debugging

void <array> _copy(const <array> _slice * from, <array> _slice * to)

Because arrays are mapped to C++ arrays instead of classes, the mapping cannot provide
assignment operator for arrays. Instead, it generates an<array> _copy function, which
performs a deep assignment:

FiveNames first_five, last_five;
// Initialize...

// The last will be the first...
FiveNames_copy(last_five, first_five);

Note that the<array> _copy function does not allocate a new array. Instead, it copies the
contents of an existing array into another existing array. (Note that, in general,<array> _copy
will be faster than copying elements in a loop because the compiler will use a memory block
where possible.)
Copyright 2000–2001 IONA Technologies 5-37

Mapping for Unions Basic C++ Mapping

27
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

opy
difier
As

ot permit
5.24 Mapping for Unions
Unions are mapped to classes.8 Consider the following IDL union:

union U switch (char) {
case 'L':

long long_mem;
case 'c':
case 'C':

char char_mem;
default:

string string_mem;
};

The union maps to a class that supports the usual operations (default construction, (deep) c
construction, and (deep) assignment). In addition, the class contains an accessor and a mo
function for each union member, as well as an accessor and modifier for the discriminator. (
with other complex types, the class may contain additional members that are internal to the
mapping. You should ignore such members and not call them directly.)

8. They cannot be mapped to C++ unions because the union members may have constructors, but C++ does n
a union member to have a constructor. In addition, C++ unions are not discriminated.
5-38
27Mapping for Unions

IDL unions map to C++ classes of the same name:

• For each union member, the class has a modifier and accessor
function with the name of the member.

• If a union member is of complex type, a third overloaded member
function permits in-place modification of the active member.

• Every union has an overloaded member function _d which is used
to get and set the discriminator value.

• The default constructor of a union performs no application-visible
initialization.

• You activate a union member only by initializing it with its modifier
function.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Unions

s usual.

er.

tor

urns the
r is

ed
active
class U {
public:

U();
U(const U &);
~U();

U & operator=(const U &);

CORBA::Char _d();
void _d(CORBA::Char);

CORBA::Long long_mem() const;
void long_mem(CORBA::Long);
CORBA::Char char_mem() const;
void char_mem(CORBA::Char);
const char * string_mem() const;
void string_mem(char *);
void string_mem(const char *);
void string_mem(const CORBA::String_var &);

};

U()

The default-constructor does not perform any visible initialization of the class. You must not
access any part of a union until after you have initialized it.

U(const U &)
U & operator=(const U &)

The copy constructor and assignment operator perform deep copy and deep assignment, a

~U()

The destructor destroys the union and (recursively) deallocates memory for the union memb

CORBA::Char _d()
void _d(CORBA::Char)

The overloaded_d member permits you to read and (with some limitations) set the discrimina
value (see page 5-40). Note that the return and parameter type of_d depend on the discriminator
type of the union. In this example, the union has a discriminator type ofchar, so_d uses
CORBA::Char . (If we had used, for example,long as the discriminator,_d would use
CORBA::Long .)

Accessors and Modifiers

For each union member, the compiler generates accessors and modifiers. The accessor ret
corresponding member’s value. You mustnotcall the accessor for a member unless that membe
active. (Doing so has undefined behavior.)

The modifier for a member activates that member (if not active already), sets it to the suppli
value, and, as a side effect, sets the discriminator value of the union to be consistent with the
member.

An example will serve to illustrate this.
Copyright 2000–2001 IONA Technologies 5-39

Mapping for Unions Basic C++ Mapping

mber.

 two

ndent.

tor.

he
t
to

:

U my_u; // my_u is not initialized
my_u.long_mem(99); // Activate long_mem
assert(my_u._d() == 'L'); // Verify discriminator
assert(my_u.long_mem() == 99); // Verify value

The call tolong_mem in this example achieves two things: it activates the memberlong_mem
and, as a side effect, sets the discriminator value to'L' , as illustrated by the assertions.

Calling a different modifier deactivates the currently active member and activates the new me
So, continuing this example:

// Deactivate long_mem, activate char_mem
//
my_u.char_mem('X');
assert(my_u.char_mem() == 'X');

// The discriminator is now either 'C' or 'c',
// but we don't know which...
//
assert(my_u._d() == 'c' || my_u._d() == 'C');

my_u._d('C'); // Now the discriminator is definitely 'C'

The call tochar_mem deactivateslong_mem and activateschar_mem. Again, activating the
new member sets the discriminator as a side effect. However, for char_mem, the union has
legal discriminator values,'C' and'c' . The C++ mapping guarantees that one of these two
values will be used, but does not define which one, so the behavior is implementation-depe

NOTE: For this reason, we recommend that you avoid unions with more than onecase label per
member. Multiplecase labels per member result in the above ambiguity and make it
harder to write correct code, particularly when testing for the value of the discrimina

You can use_d to assign the value of the discriminator explicitly, as shown in the preceding
example. However, setting the discriminator is legal only if the new value is consistent with t
currently active member. In other words, you cannot use_d to activate a member for a union tha
has no active member, and you cannot use_d to change the currently active member. Attempts
do so have undefined behavior:

my_u.char_mem('Z'); // Activate/assign char_mem
assert(my_u._d() == 'c' || my_u._d() == 'C');

my_u._d('C'); // OK
my_u._d('c'); // OK too, doesn't change active member
my_u._d('X'); // Undefined behavior, would activate string_mem

Activating the default member of a union leaves the discriminator in a partially defined state

// Activate string_mem
//
my_u.string_mem(CORBA::string_dup("Hello"));
5-40 Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Unions

 and

ead a
eep
// Discriminator value is now anything except 'c', 'C', or 'L'
//
assert(my_u._d() != 'c' && my_u._d() != 'C' && my_u._d() != 'L');

// Now the discriminator has the value 'A'
//
my_u._d('A'); // OK, consistent with active member

NOTE: Thedefault label suffers from the same problem as multiplecase labels per member.
However, in this case, the discriminator value is even less defined and could be a
non-printing character, such as a Ctrl-S. This can be inconvenient during debugging
tracing, so we suggest that you avoid use of thedefault label.

Note that the preceding example also illustrates that string members of unions behave like a
String_var , that is, they assume ownership of the assigned string. Conversely, when you r
string member, you assume responsibility for deallocation, because read access makes a d
copy:

if (my_u._d() != 'c' && my_u._d() != 'C' && my_u._d() != 'L') {
// string_mem is active
CORBA::String_var s = my_u.string_mem();
cout << "member is " << s << endl;

} // s will deallocate the string
Copyright 2000–2001 IONA Technologies 5-41

Mapping for Unions Basic C++ Mapping

28
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

t

avior
o be
To access a union, typically the easiest way is to switch on the discriminator value to find ou
which member is active.

NOTE: Neverattempt to read a union member that is not active. Doing so has undefined beh
and will most certainly result in a core dump sooner or later. Unions are not meant t
used as a back-door mechanism for type casts!
5-42
28Mapping for Unions (cont.)

It is easiest to use a switch statement to access the correct member:

switch (my_u._d()) {
case 'L':

cout << "long_mem: " << my_u.long_mem() << endl;
break;

case 'c':
case 'C':

cout << "char_mem: " << my_u.char_mem() << endl;
break;

default:
cout << "string_mem: "

<< my_u.string_mem() << endl;
break;

}

Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Unions

29
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

n,
er
If a union does not have adefault label, the compiler generates an additional member functio
called_default .9 The_default member function leaves the union without an active memb
and a discriminator value that is no used by any of the explicitcase labels.

The function is needed to initialize a union to contain no active member:

AgeOpt age; // Nothing is initialized
age._default(); // Sets discriminator to FALSE
assert(age._d() == 0);

Note that the following attempt to achieve the same thing is illegal:

AgeOpt age; // Nothing is initialized
age._d(0); // Illegal!

This does not work because we cannot initialize a union by setting the discriminator.

If more than one discriminator value is available to indicate the “no member” case,_default
picks a discriminator value. If you care about the precise value, you must first call_default and
then_d to set the value exactly.

9. It is a little unfortunate that a unionwithout adefault case has an extra member function called_default . The
function would have better been called_deactivate .
Copyrigh
29Mapping for Unions (cont.)

A union without a default label has an extra member function called
_default :

union AgeOpt switch (boolean) {
case TRUE:

unsigned short age;
};

The generated class contains:

class AgeOpt {
public:

// ...
void _default(); // Sets discriminator to FALSE

};

_default picks a discriminator value that is not used by any of the
explicit case labels of the union.
t 2000–2001 IONA Technologies 5-43

Mapping for Unions Basic C++ Mapping

30
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

ction
his is

mber).

 data
If a union contains a member of complex type (a sequence, structure, union, fixed-point, orany
type), an additional referent member function is generated by the compiler. The referent fun
is provided for efficiency reasons. The accessor and modifier functions make deep copies. T
convenient but expensive if union members are large (because of the cost of copying the me

The referent function permits you to manipulate a union member in place without additional
copies. For example:

LongSeq ls; // Empty sequence
U my_u; // Uninitialized union
my_u.ls(ls); // Activate sequence member
LongSeq & lsr = my_u.ls(); // Get reference to sequence member
lsr.length(max); // Create max elements

// Fill the sequence inside the union,
// instead of filling the sequence first
// and then having to copy it into the
// union member.
//
for (int i = 0; i < max; ++i)

lsr[i] = i;
5-44
30Mapping for Unions (cont.)

Unions with members that are sequences, structures, unions, a
fixed-point type or of type any contain a referent function:

typedef sequence<long> LongSeq;
union U switch (long) {
case 0:

LongSeq ls;
};

The generated C++ contains:

class U {
public:

const LongSeq & ls() const; // Accessor
void ls(const LongSeq &); // Modifier
LongSeq & ls(); // Referent

// Other member functions here...
};
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Using Unions Safely

31
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 in

an

This

ly one
5.25 Using Unions Safely
The above slide summarizes how to use unions safely.

Note that the C++ mapping does not guarantee that union members will overlay each other
memory.10

Note that, for efficiency reasons, members are activated by their copy constructor, rather th
being initialized by the default constructor followed by an assignment.

Do not rely on any side effects from destructor calls (which is rather difficult to do anyway).
is because the union implementation may delay destructor calls and internally keep several
members active at a time.

10.ORBacus does overlay members in memory. If members have constructors, they are heap-allocated and on
member exists at a time. Other ORBs may use a different strategy.
Copyrigh
31Using Unions Safely

A few rules for using unions safely:

• Avoid multiple case labels for a single member.

• Avoid the default label.

• Never access a union member that is inconsistent with the
discriminator value.

• Only set the discriminator value if a member is already active and
only set it to a value that is consistent with that member.

• To deactivate all members, use _default .

• Do not assume that union members will overlay each other memory.

• Members are activated by their copy constructor.

• Do not rely on side effects from the destructor.
t 2000–2001 IONA Technologies 5-45

Mapping for typedef Basic C++ Mapping

32
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

, the

ell.

his

his
5.26 Mapping for typedef
IDL typedef simply maps to a corresponding C++typedef . If a single IDL type results in
more than one C++ type, the compiler generates a typedef for each C++ type. For example
singleLocType definition above results in two C++ definitions, one forLocType and one for
LocType_var . If an IDL definition results in a C++ function definition (such as
<array> _alloc), the compiler generates a function definition for the alias type name as w

C++ typedef does not create a new type but only an alternate name for an existing type. T
means that IDLtypedef has no effect on the C++ mapping (other than to provide syntactic
convenience).11 As a matter of style, you should still use the proper type names in your code. T
not only makes the code easier to understand, but also avoids problems if, for example, the
definition of a type changes during development.

11.The same need not be true in other languages, in which IDLtypedef may be mapped to incompatible types.
5-46
32Mapping for typedef

IDL typedef maps to a corresponding C++ typedef .

Note that aliases are preserved:

typedef short TempType;
typedef string LocType;
typedef LocType LocationType;

The corresponding C++ is:

typedef CORBA::Short TempType;

typedef char * LocType;
typedef CORBA::String_var LocType_var;

typedef LocType LocationType;
typedef LocType_var LocationType_var;
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Type any: Concepts

33
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 the

B
e

or
s

 not
5.27 Type any: Concepts
Values of typeany internally consist of a pair of values.

One member of the pair is an object of typeCORBA::TypeCode. A type code is an object that
stores a description of a type. (For example, for a value of typelong, the type code would simply
indicatelong; for a complex type, such as a structure, the type code (recursively) describes
name and type of each structure member.)

The second member of the pair is a binary buffer whose contents are interpreted by the OR
according to the description that is provided by the type code. (In other words, the type cod
describes how to make sense of the binary blob that represents the value.)

Because everyany value contains a type code, extraction of values can be made type safe. F
example, if you are passed anany that contains adouble value and attempt to extract the value a
a string, the extraction fails.

Note that the introspection facilities for typeany are also provided by the type code; the
TypeCode object offers operations that permit you to interrogate its contents at run time. In
addition, CORBA defines an interface calledDynAny, which permits you to dynamically
decompose and compose values of typeany even if you do not have compile-time knowledge of
the types that are involved. These features are quite advanced and rarely needed, so we do
cover them here. (See Henning & Vinoski for details.)
Copyrigh
33Type any: Concepts

A value of type any contains a pair of values internally:

• a TypeCode that describes the type of the value in the any

• the actual value

The TypeCode inside an any is used to enforce type safety. Extraction
of a value succeeds only if it is extracted as the correct type.

During marshaling, the TypeCode precedes the value on the wire, so
the receiving end knows how to interpret the bit pattern that constitutes
the value.

CORBA::TypeCode
Describing the Value

Actual Value
t 2000–2001 IONA Technologies 5-47

Applications of Type any Basic C++ Mapping

34
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

t the
eal
RBA

rs.
meter

ters to

plex
t cases

ans

to

ed at

o

5.28 Applications of Type any
Typeany is useful whenever it is impossible to know the precise type of a value in advance (a
time you write the IDL). Typeany therefore permits you to create generic interfaces that can d
with any type of value (even those types of value that have not yet been conceived). The CO
Event Service is an example where this approach is used.

Another use ofany is to simulate variable-length parameter lists as well as optional paramete
For example, the above IDL uses a sequence of name–value pairs as a variable-length para
list. This approach has the advantage of extensibility. For example, you can add new parame
the list without having to change the IDL (which can be useful for versioning and gradual
evolution of deployed applications).

Note that you should exercise caution regarding the use of typeany. While the flexibility ofany is
attractive, it comes at a significant cost. For one, typeany delays compile-time type checking until
run time. This not only means that you have to do more work at run time (and write more com
code), but also means that you will not know about type errors unless you actually have tes
that expose them. Second, typeany has more run-time overhead than static types and requires
more CPU and memory during marshaling, as well as more bandwidth on the wire. This me
that there is an inevitable performance penalty associated with typeany.

Note that if you have a small number of types that are known at compile time, but you want
make a generic operation for those types, you can use a union instead of anany. The advantage of
a union is that it only permits a limited set of types as its members (and that set is determin
compile time), which means that a union offers better type safety thanany. Use typeany only if
you truly need to deal with types that are not known in advance, or if you deliberately want t
design an interface to be extendable with new parameters in the future.
5-48
34Applications of Type any

Type any is useful if you cannot determine the types you will have to use
at compile time. This permits generic interfaces:

interface ValueStore {
void put(in string value_name, in any value);
any get(in string value_name);

};

You can also use this to implement variable-length parameter lists:

struct NamedValue {
string name;
any value;

};
typedef sequence<NamedValue> ParamList;

interface Foo {
void op(in ParamList pl);

};
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Type any

35
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

nd
5.29 Mapping for Type any
The IDL typeany maps to classAny in theCORBA namespace.12

5.29.1 Basic Member Functions
The class provides the usual constructor, copy constructor, and assignment operator. The
constructor initializes anAny with a type code that indicates “no value”. The copy constructor a
assignment operator perform the usual deep copy.

12.Note that the name of the IDL type isany, whereas the name of the C++ type isAny. When we use any, we mean
IDL type, or use the term in its language-independent sense. When we useAny, we are referring to the C++ type.
Copyrigh
35Mapping for Type any
IDL any maps to a class CORBA::Any :

class Any {
public:

Any();
Any(const Any &);
~Any();

Any & operator=(const Any &);

// ...
};

The constructor constructs an Any containing no value.

The usual deep copy semantics apply to the copy constructor and the
assignment operator.
t 2000–2001 IONA Technologies 5-49

Mapping for Type any Basic C++ Mapping

36
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

99.

 in
es

3 as a
5.29.2 Insertion of Built-In Types
Insertion into anAny is a simple matter of usingoperator<<= . For example:

CORBA::Any a;
CORBA::UShort us = 99;
a <<= us; // Insert 99 as an unsigned short
a <<= "Hello"; // Insert deep copy of "Hello"
a <<= (CORBA::Double)3; // Deallocate "Hello", insert 3.0

After default construction,a contains no value. The first insertion statement inserts the value
Because the right-hand side is a variable of typeCORBA::UShort , the type code of theAny is
set to indicateunsigned short. The second insertion statement inserts a string. This results
theAny replacing the previous value (99) with the string “Hello”. Note that string insertion mak
a deep copy by default, whether the right-hand side is of typechar * or const char * .13

(See page 5-54 for how to achieve consuming insertion.) The third insertion inserts the value
double (which results in deallocation of the previously copied “Hello”).

Be aware of the following frequent mistake:

a <<= 99; // Dubious!
a <<= (CORBA::Short)99; // Much better

The first insertion is non-portable because it will insert whatever type is mapped to C++int .

13.This differs fromString_var , which makes a copy only if the right-hand side is of typeconst char * and
assumes ownership of the right-hand side is of typechar * .
5-50
36Mapping for Type any (cont.)

Built-in types are inserted using overloaded <<= operators in the
CORBA namespace:

namespace CORBA {
// ...
void operator<<=(CORBA::Any &, Short);
void operator<<=(CORBA::Any &, UShort);
void operator<<=(CORBA::Any &, Long);
void operator<<=(CORBA::Any &, ULong);
void operator<<=(CORBA::Any &, LongLong);
// More insertion operators for other types here...
// ...

};

Each insertion operator inserts the value and sets the type code of the
Any as a side effect.

Note that string insertion makes a deep copy.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Type any

37
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

true if

se
u can
5.29.3 Extraction of Built-In Types
Extraction is achieved by using the overloaded extraction operators. Each operator returns
the type of the variable you extract into matches the type code inside theAny. Otherwise, the
operator returns false and does not change the value of its right-hand side:

CORBA::Any a;
a <<= (CORBA::Long)99;

CORBA::Long long_val;
CORBA::ULong ulong_val;

if (a >>= long_val) // This must succeed
assert(long_val == 99); // We know that we put 99 in there...

if (a >>= ulong_val)
abort(); // Badly broken ORB!

If you receive anAny but do not know exactly what type it contains, you can write an if-then-el
chain that attempts to extract the value as a different type in each branch until it succeeds. (Yo
also interrogate the type code of anAny; see Henning & Vinoski for details.)
Copyrigh
37Mapping for Type any (cont.)

Extraction uses overloaded >>= operators:

namespace CORBA {
// ...
Boolean operator>>=(const CORBA::Any &, Short &);
Boolean operator>>=(const CORBA::Any &, UShort &);
Boolean operator>>=(const CORBA::Any &, Long &);
Boolean operator>>=(const CORBA::Any &, ULong &);
Boolean operator>>=(const CORBA::Any &, LongLong &);
// More extraction operators for other types here...
// ...

};

Each operator returns true if the extraction succeeds.

Extraction succeeds only if the type code in the Any matches the type
as which a value is being extracted.
t 2000–2001 IONA Technologies 5-51

Mapping for Type any Basic C++ Mapping

38
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

e
mpile

ach
tely.
5.29.4 Extraction of Types Not Distinguishable for Overloading
The C++ mapping permits IDLchar, boolean, andoctet to map to the same C++ character
type. In addition, IDLwchar can map either C++wchar_t or (with older compilers) to one of
the C++ integer types. This means that the mapping cannot overload the<<= and>>= operators
for these types because, at the C++ level, they may be the same single type.

As shown above, you must use thefrom_ <type> andto_ <type> helper types for insertion
and extraction.14 Be careful to use the correct helper class. Depending on your ORB, using th
incorrect helper type may go undetected. (ORBacus uses distinct types, so you will get a co
time error with ORBacus.)

CORBA::Any a;
CORBA::Char c = 'X';
a <<= CORBA::Any::from_boolean(c); // Oops!
// ...
a >>= CORBA::Any::to_octet(c); // Oops!

NOTE: The same caveat applies to typeCORBA::WChar, which must be inserted and extracted
usingCORBA::Any::from_wchar andCORBA::Any::to_wchar , respectively.

14.These are actually the constructors of a class with the same name; because a different class is created by e
constructor, the<<= and>>= operators are overloaded on that class and then can set the type code appropria
5-52
38Mapping for Type any (cont.)

Insertion and extraction of char, boolean, and octet require use of a
helper type:

CORBA::Any a;
a <<= CORBA::Any::from_boolean(0); // Insert false
a <<= CORBA::Any::from_char(0); // Insert NUL
a <<= CORBA::Any::from_octet(0); // Insert zero byte

CORBA::Boolean b;
CORBA::Char c;
CORBA::Octet o;
if (a >>= CORBA::Any::to_boolean(b)) {

cout << "Boolean: " << b << endl;
} else if (a >>= CORBA::Any::to_char(c)) {

cout << "Char: '\\" << setw(3) << setfill('0') << oct
<< (unsigned)c << "\\'" << endl;

} else if (a >>= CORBA::Any::to_octet(o)) {
cout << "Octet: " <<

}

Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Type any

39
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 Any
nd the
ple:
5.29.5 Insertion and Extraction of Strings
Insertion of strings by default makes a deep copy:

const cha r * p = "Hello";
CORBA::Any a;
a <<= p; // Deep copy
a <<= (char *)p; // Deep copy too

Note that a deep copy is made regardless of whether the right-hand side is of type
const char * or char * .15

Extraction of strings is by constant pointer. Note that the returned pointer points at memory
internal to theAny. This means that you must not deallocate the extracted string because the
retains ownership of its memory. You also must take care not to dereference the pointer beyo
life time of the Any, or dereference it once the contents of the Any have changed. For exam

CORBA::Any a;
a <<= "Hello";
const char * p;
a >>= p; // Extract string

cout << "Any contents: \"" << p << "\"" << endl;
a <<= (CORBA::Double)3.14;
cout << "Any contents: \"" << p << "\"" << endl; // Big trouble!

15.This differs fromString_var , which makes a deep copy only forconst char * .
Copyrigh
39Mapping for Type any (cont.)

Insertion of a string makes a deep copy and sets the type code to
indicate an unbounded string:

CORBA::Any a;
a <<= "Hello"; // Deep copy, inserts unbounded string

Extraction of strings is by constant pointer:

const char * msg;
if (a >>= msg) {

cout << "Message was: \"" << msg << "\"" << endl;

// Do NOT deallocate the string here!

Extraction of strings (as for all other types extracted by pointer) is
shallow. (The Any continues to own the string after extraction.)

Do not dereference the pointer once the Any goes out of scope!
t 2000–2001 IONA Technologies 5-53

Mapping for Type any Basic C++ Mapping

40
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

UL

te
5.29.6 Insertion and Extraction of Bounded Strings
For bounded strings, you must use thefrom_string andto_string helper functions, which
require you to specify the bound explicitly. The bound value does not include the terminating N
byte of a string. Do not supply a string that is longer than the supplied bound; doing so has
undefined behavior:

CORBA::Any a;
a <<= CORBA::Any::from_string("Hello", 3); // Undefined!

As we will see in Section 6.27, strings that are obtained from CORBA remote calls are
dynamically allocated. If you want to insert such a string into anAny, it is useful to pass
ownership of the string memory to theAny. This avoids an additional data copy and is called
consuming insertion. If you pass a non-zero value as the third parameter tofrom_string , the
Any assumes that the string was allocated withstring_alloc or string_dup and takes
ownership of the memory instead of making a deep copy. TheAny releases that memory when the
value of theAny changes or when theAny goes out of scope. Obviously, you must not dealloca
the string once you have passed its ownership with consuming insertion.

NOTE: Insertion and extraction of wide strings is analogous to normal strings, using
from_wstring andto_wstring helper functions.
5-54
40Mapping for Type any (cont.)

To insert and extract bounded strings, you must use helper functions:

CORBA::Any a;
a <<= CORBA::Any::from_string("Hello", 10);

char * msg;
a >>= CORBA::Any::to_string(msg, 10);
cout << "Message: \"" << msg << "\"" << endl;

The bound for extraction must match the bound for insertion.

Do not insert a string with a bound that is less than the string length.

A bound value of zero indicates an unbounded string.

Consuming insertion can be achieved with an additional parameter:

CORBA::Any a;
char * p = CORBA::string_dup("Hello");
a <<= CORBA::Any::from_string(p, 0, 1); // a takes ownership
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Type any

41
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

 and
 of
5.29.7 Insertion of Simple User-Defined Types
Simple user-defined types, such as enumerations and aliases for simple types, are inserted
extracted like other simple types. For enumerations, the compiler generates a separate pair
overloaded operators for each type.

NOTE: If you insert an alias of a simple type, such asTempType, the type code inside theAny
will indicate the underlying type (short), not the alias type (TempType). You can force
the alias type to be inserted instead; see Henning & Vinoski for details.
Copyrigh
41Mapping for Type any (cont.)
The IDL compiler generates overloaded operators for each user-defined
type:

CORBA::Any a;
Colo r c = blue; // Assume enumerated type Color is defined
a <<= c;

Color c2;
int ok = (a >>= c2);
assert(ok && c2 == blue);

This also works for aliases of simple types, such as TempType.
t 2000–2001 IONA Technologies 5-55

Mapping for Type any Basic C++ Mapping

42
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

oints

ion is
5.29.8 Insertion of Structures, Unions, and Sequences
Structures, unions, and sequences are inserted using overloaded<<= operators generated by the
compiler. Note that insertion of avalue makes a deep copy, whereas insertion of apointer to a
value transfers ownership of the value to theAny.

Extraction of these types is by pointer to constant data (as for strings). The returned pointer p
at memory internal to theAny, so you must not dereference the extracted pointer once theAny ’s
contents have changed or theAny has gone out of scope. If you want to modify the extracted
value, you must make a copy and modify the copy. (This is enforced by the fact that extract
done via aconstant pointer):

const CCS::Thermostat::BtData * btdp;
if (a >>= btdp) {

// It's a BtData structure...
CCS::Thermostat::BtData copy = *btdp; // Make copy
copy.error_msg = another_message;

}

5-56
42Mapping for Type any (cont.)

For structures, unions, and sequences, the compiler generates
overloaded insertion and extraction operators:

CORBA::Any a;
CCS::Thermostat::BtData btd = ...; // Structure
a <<= btd; // Deep copy

CCS::Thermostat::BtData * btdp // *Pointer* to struct
= new CCS::Thermostat::BtData;

a <<= btdp; // Consuming insertion

• Insertion of a structure makes a deep copy.

• Insertion of a pointer is a consuming insertion.

Extraction is always by pointer to constant data:

const CCS::Thermostat::BtData * p;
a >>= p; // Shallow extraction
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Type any

43
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

ssary
f the
cause,

er class
ent

n
u must

oski
5.29.9 Insertion and Extraction of Arrays
Insertion and extraction of arrays requires the use of generated helper classes. This is nece
because of the weak array concept in C++: if we have two arrays of different dimensions but o
same element type, we cannot use overloading to distinguish between the two array types be
when passed to a function, both arrays are passed as a pointer to the first element. The help
for each array serves to create a unique type that can be used to distinguish between differ
arrays for the overloaded insertion and extraction operators.

Note that you must be careful to use the correct helper class. The following will not work:

arr10 aten; // IDL: typedef long arr10[10];
arr20 atwenty; // IDL: typedef long arr20[20];

a <<= arr20_forany(aten); // Bad news!
a >>= arr10_forany(atwenty); // Bad news!

For extraction, the<array> _forany helper instance behaves like a normal array, so you ca
pass it to another function and use the subscript operator to read the elements. However, yo
treat the extracted array as read-only because theAny retains ownership. If you want to modify an
extracted array, you must make a copy with the<array> _dup or <array> _copy helper
functions.

NOTE: We conclude our coverage of typeAny here. There are a few more features, such as
insertion and extraction of object references and exceptions. Refer to Henning & Vin
for these.
Copyrigh
43Mapping for Type any (cont.)

Arrays are inserted and extracted using generated helper classes called
<array> _forany .

typedef long arr10[10]; // IDL

Insertion and extraction use the arr10_forany helper class:

CORBA::Any a;
arr10 aten = ...;
a <<= arr10_forany(aten);
// ...

arr10_forany aten_array;
if (a >>= aten_array) {

cout << "First element: " << aten_array[0] << endl;
}

Insertion makes a deep copy, extraction is shallow.
t 2000–2001 IONA Technologies 5-57

Using _var Types Basic C++ Mapping

44
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

e when
5.30 Using _var Types
The mapping provides theString_var type to make life with dynamically allocated strings
easier. For the same reason, the mapping generates a_var type for each user-defined complex
type. Consider the following IDL:

struct Person {
string name;
string birth_date;

};

The mapping generates astruct Person from this type, as well as a class called
Person_var . ThePerson_var class takes the same role asString_var does for char *: it
stores a pointer to a dynamically allocated instance of a Person and deallocates that instanc
thePerson_var goes out of scope. Conversion operators onPerson_var ensure that you can
transparently pass aPerson_var where aPerson is expected, and an overloaded-> operator
delegates calls on thePerson_var to the underlyingPerson instance.

The general use pattern forPerson_var is the same as for aString_var . You initialize the
Person_var with a dynamically allocated instance so you cannot forget to deallocate that
instance:

{
Person_var pv = new Person;
pv->name = CORBA::string_dup("Michi Henning");
pv->birth_date = CORBA::string_dup("16 Feb 1960");

} // ~Person_var() deallocates here
5-58
44Using _var Types

The mapping creates a _var type for every user-defined complex type.
For variable-length types, a _var type behaves like a String_var :

• Assignment of a pointer to a _var transfers ownership of memory.

• Assignment of _var types to each other makes a deep copy.

• Assignment of a _var to a pointer makes a shallow copy.

• The destructor deallocates the underlying value.

• An overloaded -> operator delegates to the underlying value.

• _var types have user-defined conversion operators so you can
pass a _var where the underlying value is expected.

As for strings, _var types are simply smart pointers to help with
memory management.
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Using _var Types

), the
Graphically, we can show this as follows:

Depending on whether the underlying type is fixed-length or variable-length (see page 5-10
implementation of the member functions varies slightly. We will discuss_var types for
variable-length underlying types first and then discuss_var types for fixed-length underlying
types.

class Person_var {
public:

Person_var();
Person_var(Person *);
Person_var(const Person_var &);
~Person_var();

Person_var & operator=(Person *);
Person_var & operator=(const Person_var &);
Person * operator->();
const Person * operator->() const;

operator Person &();
operator const Person &() const;

// Other members here...
private:

Person * _ptr;
};

class Person {
public:

// Public members of Person...
};
Copyright 2000–2001 IONA Technologies 5-59

Mapping for Variable-Length _var Types Basic C++ Mapping

45
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

s.

stance
5.31 Mapping for Variable-Length _var Types
The above slide shows the_var mapping for variable-length structures, unions, and sequence
(There are a few other member functions, which we discuss on page 5-64.)

T_var()

The default constructor initializes the internal pointer to the underlying instance to null. As a
result, you cannot use a default-constructed_var instance until after you have initialized it.

T_var(T *)

The pointer constructor assumes that the passed pointer points to a dynamically allocated in
and takes ownership of the pointer.

T_var (const t_var &)

The copy constructor makes a deep copy of both theT_var and its underlying instance of typeT.
This means that assignment to a copy-constructedT_var affects only that copy and not the
instance it was copied from.

~T_var()

The destructor deallocates the instance pointed to by the internal pointer.

T_var & operator=(T *)

The pointer assignment operator first deallocates the instance of typeT currently held by the target
T_var and then assumes ownership of the instance pointed to by its argument.
5-60
45Mapping for Variable-Length _var Types

For a variable-length structure, union, or sequence T, the T_var type is:

class T_var {
public:

T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var & operator=(T *);
T_var & operator=(const T_var &);
T * operator->();
const T * operator->() const;

operator T &();
operator const T &() const;
// Other members here...

private:
T * _ptr;

};
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Variable-Length _var Types

 that

nt

script
T_var & operator=(const T_var &)

TheT_var assignment operator first deallocates the instance of typeT currently held by the target
T_var and then makes a deep assignment of both theT_var argument and the instance of typeT
that the argument points to.

T * operator->()
const T * operator->() const

The indirection operator is overloaded to permit its use on both constant and non-constant
instances of the underlying type. It returns a pointer to the underlying instance. This means
you can use theT_var to invoke any member function of the underlying type.

operator T &()
operator const T &() const

The conversion operators permit aT_var to be used in places where a constant or non-consta
reference to the underlying type is expected.

Additional Member Functions for Sequences and Arrays

If a _var ’s underlying type is a sequence or array type, the_var contains two additional member
functions.

<elmt_type> & operator[](CORBA::ULong)
const <elmt_type> & operator[](CORBA::ULong) const

The subscript operators are generated if aT_var has an underlying sequence or array type and
return the element at the given index. This allows you to index into a sequence using the sub
operator on a_var and avoids awkward expressions such assv->operator[](0) .
Copyright 2000–2001 IONA Technologies 5-61

Example: Simple Use of _var Types Basic C++ Mapping

46
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

s

t

5.32 Example: Simple Use of _var Types
The above code example illustrates the use of a_var type for an underlying sequence type.
Construction and assignment make the usual deep copy, so assignment to a_var does not affect
the_var it was initialized with.

Normally, you will use_var types mainly to “catch” the return value from a function that return
a dynamically allocated instance. For example:

{
NameSeq_var nsv = get_names(); // Assume get_names returns

// a pointer to a dynamically
// allocated sequence...

// Use nsv...

} // No need to deallocate anything here

As you will see in Section 6.27, this is most useful when you invoke a CORBA operation tha
returns a variable-length type because variable-length return types are always allocated
dynamically.
5-62
46Example: Simple Use of _var Types

// IDL: typedef sequence<string> NameSeq;

NameSeq_var ns; // Default constructor
ns = new NameSeq; // ns assumes ownership
ns->length(1); // Create one empty string
ns[0] = CORBA::string_dup("Bjarne"); // Explicit copy

NameSeq_var ns2(ns); // Deep copy constructor
ns2[0] = CORBA::string_dup("Stan"); // Deallocates "Bjarne"

NameSeq_var ns3; // Default constructor
ns3 = ns2; // Deep assignment
ns3[0] = CORBA::string_dup("Andrew"); // Deallocates "Stan"

cout << ns[0] << endl; // "Bjarne"
cout << ns2[0] << endl; // "Stan"
cout << ns3[0] << endl; // "Andrew"
Copyright 2000–2001 IONA Technologies

Basic C++ Mapping Mapping for Fixed-Length _var Types

47
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies

t

—

5.33 Mapping for Fixed-Length _var Types
The mapping for fixed-length_var types is almost identical to the one for variable-length_var
types. The main difference is that an additional constructor and assignment operator permit
initialization and assignment from a value of typeT. This means that the following code is correc
for a fixed-length underlying type:

// IDL: struct Point { double x; double y; };

Point origi n = { 0.0, 0.0 };
Point_var pv1 = origin; // Deep copy
Point_var pv2 = new Point; // pv2 takes ownership
pv2 = pv1; // Deep assignment
pv1->x = 99.0; // Does not affect pv2 or origin
pv2->x = 3.14; // Does not affect pv1, or origin
cout << pv1->x << endl; // 99.0
cout << pv2->x << endl; // 3.14
cout << origin->x << endl; // 0.0

NOTE: The mapping for_var types may still be confusing at this point. Don’t despair just yet
we will see how to use_var types to our advantages in Section 6.27.
Copyrigh
47Mapping for Fixed-Length _var Types

_var types for fixed-length underlying types is almost identical to _var
type for variable-length underlying types:

• As usual, the pointer constructor adopts the underlying instance.

• An additional constructor from a T value deep-copies the value.

• An additional assignment operator from a T deep-assigns the value.

The net effect is that _var types for both fixed-length and
variable-length underlying types provide intuitive deep copy semantics.

Fixed-length _var types are provided for consistency with
variable-length _var types.

_var types hide the memory management difference between
fixed-length and variable-length types for operation invocations.
t 2000–2001 IONA Technologies 5-63

Dealing with Broken Compilers Basic C++ Mapping

48
Basic C++ Mapping

Copyright 2000–2001 IONA Technologies
5.34 Dealing with Broken Compilers
As for String_var , _var types provide anin , inout , andout member function that helps
to get around problems with compilers that do not apply the C++ parameter matching rules
correctly.

For example, we may have a functionget_vals that expects a fixed-length parameterFLT and a
variable-length parameterVLT (bothout parameters). The signature ofget_vals is:

void get_vals(FLT & p1, VL T * & p2);

If your compiler chokes on attempts to pass_var types toget_vals , you can use the out
member functions to force the appropriate conversion explicitly:

FLT_var p1;
VLT_var p2;
get_vals(p1, p2); // This may not compile,
get_vals(p1.out(), p2.out()); // but this will.
5-64
48Dealing with Broken Compilers

Compilers occasionally have problems applying the parameter
matching rules correctly when you pass a _var type to a function.

Both fixed- and variable-length types have additional member functions
to get around such problems:

• in : passes a _var as an in parameter

• inout : passes a _var as an inout parameter

• out : passes a _var as an out parameter

Variable-length _var types have a _retn member function that return
a pointer to the underlying value and transfer ownership.

Fixed-length _var types have a _retn member function that returns
the underlying value itself. No transfer of ownership takes place in this
case.
Copyright 2000–2001 IONA Technologies

6. Client-Side C++ Mapping
tion

y

Summary

This unit presents the C++ mapping relevant to the client side, that is, initialization and finaliza
of the ORB run time, how to invoke operations and handle exceptions, and the memory
management rules that apply to parameter passing.

Objectives

By the completion of this unit, you will be able to write a client that can communicate with an
CORBA server.

Introduction Client-Side C++ Mapping

1
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

t
ted
eal

re

ent
6.1 Introduction
The C++ mapping for the client side deals mainly with the mapping for interfaces and objec
references, including the rules for how to pass parameters of various types and the associa
memory-management rules. This includes the mapping for IDL exceptions, so clients can d
with errors that arise during operation invocations.

The client-side mapping also addresses how the client must initialize the ORB run time befo
making CORBA calls.

The specification does not standardize compiling and linking, so how to create a working cli
executable is necessarily specific to each platform and vendor.
6-2
1Introduction
The client-side C++ mapping covers:

• Mapping for interfaces and object references

• Mapping for operation invocations and parameter passing rules

• Exception handling

• ORB initialization

This unit also covers how to compile and link a client into a working
binary program.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Object References

2
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

 to the
tion to
which

irectly
ence to

for a
+
t

an
ticular,
ger
6.2 Object References
For a client to send a message to a CORBA object, the client must have an object reference
object. The reference encapsulates the details that are required by the ORB to get an invoca
the correct object, namely, the address details for the server and an identifier that determines
object in the server is the target of the invocation.

Because CORBA provides protocol transparency, references are opaque and clients cannot d
instantiate them. Instead, the ORB instantiates references and returns a handle to the refer
the client.

Each object reference uniquely denotes exactly one CORBA object. However, it is possible
single object to have more than one reference. (This is analogous to maintaining several C+
pointers that all point at the same class instance. Also note that these C++ pointers need no
necessarily all have the same value.)

Conceptually, an object reference is much like a C++ class instance pointer, except that it c
denote an object in another address space. Otherwise, the semantics are very similar. In par
an object reference can be nil (point at no object) or dangle (point at an object that is no lon
there).
Copyrigh
2Object References

To make an invocation on an object, the client must have an object
reference.

An object reference encapsulates:

• a network address that identifies the server process

• a unique identifier (placed into the reference by the server) that
identifies which object in the server a request is for

Object references are opaque to the client. Clients cannot instantiate
references directly. (The ORB does this for the client.)

Each object reference denotes exactly one object but an object may
have more than one reference.

You can think of references as C++ pointers that can point into another
address space.
t 2000–2001 IONA Technologies 6-3

Client-Side Proxies Client-Side C++ Mapping

3
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

object
the
ct has

he

ll
re, and

 clients
on it,
f of the
se the
t the
 the
ns.
6.3 Client-Side Proxies
When an object reference enters the address space of a client, the ORB instantiates a proxy
and passes an object reference to that proxy to the client application code. The purpose of
proxy is to act as the local ambassador for the remote object. For example, if the remote obje
an operationfoo, the proxy has a C++ member functionfoo . To invoke thefoo operation, the
client invokesfoo on the proxy via the reference. (The reference is simply a C++ pointer to t
proxy instance.)

The implementation offoo in the proxy (which is generated by the IDL compiler) then takes a
the actions that are required to locate the correct server, marshal the invocation onto the wi
send it to the server.

The ORB instantiates a proxy whenever a new reference enters a client’s address space, so
never create proxies directly. Once the proxy is instantiated, the client can invoke operations
and the ORB locates the server and establishes network connections transparently on behal
client. However, the ORB has no way of knowing when a proxy is no longer needed (becau
client no longer wants to use the CORBA object represented by that proxy). This means tha
client must tell the ORB when it longer requires a proxy for a particular object. This enables
ORB to reclaim resources associated with a proxy, such as memory and network connectio
6-4
3Client-Side Proxies

A client-side invocation on an object reference is forwarded by the
reference to a client-side proxy object:

The proxy acts as a local ambassador for the remote object.

Clients control the life cycle of the proxy indirectly via the reference.

Object
Reference

Proxy
Skeleton
Instance

Servant

ServerClient
foo()

foo()

foo()

foo()
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Mapping for Interfaces

4
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

 on the

ce on
6.4 Mapping for Interfaces
Each IDL interface results in a separate proxy class of the same name. For every operation
interface, the proxy class contains a corresponding member function of the same name.

You must not instantiate a proxy class yourself. Instead, the ORB instantiates a proxy instan
your behalf as necessary.

Note thatMyObject inherits fromCORBA::Object . This reflects the fact that all IDL
interfaces implicitly inherit fromObject and therefore form an inheritance hierarchy with
Object as the root.

If the client holds a reference to a proxy instance, calling theget_value member function via
the reference sends a (possibly remote) message to the object.

The C++ mapping disallows instantiating a proxy directly, as well as declaring a pointer or a
reference to a proxy, so the following is illegal:

MyObject myobj; // Cannot instantiate a proxy directly
MyObject * mop; // Cannot declare a pointer to a proxy
void f(MyObject &); // Cannot declare a reference to a proxy

Note that none of these declarations will produce a compile-time error.
Copyrigh
4Mapping for Interfaces

Interfaces map to abstract base classes:

interface MyObject {
long get_value();

};

This generates the following proxy class:

class MyObject : public virtual CORBA::Object {
public:

CORBA::Long get_value();
// ...

};

• For each IDL operation, the class contains a member function.

• The proxy class inherits from CORBA::Object (possibly indirectly,
if the interface is a derived interface).

Never instantiate the proxy class directly!
t 2000–2001 IONA Technologies 6-5

Mapping for Object References Client-Side C++ Mapping

5
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

r
eas,

s for
6.5 Mapping for Object References
For each interface, the IDL compiler generates a_ptr and a_var reference type. The difference
between the two types is the same as for the all the other types: a_var reference acts as a wrappe
around the underlying_ptr type and takes care of resource allocation and deallocation, wher
if you use_ptr types directly, you must deal with these issues yourself.1

Although the C++ mapping does not require this, a_ptr reference is typically implemented as a
C++ pointer to the proxy class. In other words, the compiler generates the following definition
an interfaceMyObject:

class MyObject : public virtual CORBA::Object {
// ...

};

typedef MyObject * MyObject_ptr;

class MyObject_var {
public:

// ...
private:

MyObject_ptr _ptr;
};

1. We will explore the differences between _var and _ptr references through the remainder of this unit.
6-6
5Mapping for Object References

For each interface, the compiler generates two object reference types:

• <interface> _ptr

A _ptr reference is an unmanaged type that requires you to
allocate and deallocate resources explicitly.

• <interface> _var

A _var reference is a smart type that deallocates resources
automatically (similar to String_var and other _var types).

With either type of reference, you use -> to call an operation:

MyObject_ptr mop = ...; // Get _ptr reference...
CORBA::Lon g v = mop->get_value(); // Get value from object

MyObject_var mov = ...; // Get _var reference...
v = mov->get_value(); // Get value from object
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Life Cycle of Object References

6
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

reation
ts are
can
ces to

ORBA
r the
at
rence

ement
 the
6.6 Life Cycle of Object References
Object references have a life cycle, that is, they can be created and destroyed. Reference c
does not apply to clients. This is because references are “pointers” to objects, but the objec
implemented by servers. This means that reference creation is a server-side issue. Clients
always create a nil reference, however. (This is necessary to permit clients to pass nil referen
operations.)

Other than creating nil references, clients can copy references and destroy them. Copying a
reference creates another reference that denotes the same proxy (and therefore the same C
object). Conceptually, copying a reference creates both a new reference and a new proxy fo
same object. However, for efficiency reasons, proxies are reference counted. This means th
copying a reference creates a new reference that shares the same proxy as the original refe
and increments the reference count on the proxy. Destruction of a reference means to decr
the reference count; once the count reaches zero, no more references point at the proxy, so
proxy can be destroyed as well.
Copyrigh
6Life Cycle of Object References
Object references can be created and destroyed.

• Clients cannot create references (except for nil references).

• Clients can make a copy of an existing reference.

• Clients can destroy a reference.

The ORB uses the life cycle of references to track when it can reclaim
the resources (memory and network connection) associated with a
proxy.

Proxies are reference counted. The reference count tracks the number
of references that point to a proxy.

Destruction of the last reference to a proxy also destroys the proxy.
t 2000–2001 IONA Technologies 6-7

Reference Life Cycle Operations Client-Side C++ Mapping

7
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ia that
er

ject

are
6.7 Reference Life Cycle Operations
To destroy a reference (and indicate to the ORB that it no longer wants to access an object v
reference), the client must callCORBA::release . Note that release accepts a formal paramet
of typeCORBA::Object_ptr . Because all interfaces ultimately inherit fromObject, all proxy
classes haveCORBA::Object as their ultimate ancestor. This means that you can pass an ob
reference to any type of interface torelease .

The_duplicate member function makes a copy of a reference. the original and the copy
indistinguishable. Every reference created with_duplicate must eventually be passed to
release , to avoid resource leaks. (_duplicate andrelease are basically special purpose
allocation functions that are used in place ofnew anddelete . The motivation is much the same
as for the other special-purpose allocation functions, such asstring_alloc and
string_free : the special-purpose functions can be written to do the correct thing for
non-uniform memory-management architectures.).
6-8
7Reference Life Cycle Operations

To destroy a reference, you call release in the CORBA namespace:

namespace CORBA {
// ...
void release(Object_ptr);

};

Every proxy contains a static _duplicate member function:

class MyObject : public virtual CORBA::Object {
public:

static MyObject_ptr _duplicate(MyObject_ptr);
// ...

};

_duplicate returns a copy of the reference passed as the argument.

The copy of the reference is indistinguishable from the original.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Object Reference Counts

8
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

rence
a
erver.

es are
6.8 Object Reference Counts
As mentioned on page 6-7, proxies are reference counted for efficiency. Whenever the ORB
instantiates a proxy, it creates the proxy with an initial reference count of 1 and returns a refe
to the proxy to the client application code.2 The client can now invoke operations on the proxy vi
the reference and the proxy takes care of invoking the operation on the correct object in the s
(Note that this implies that the proxy must be associated with a network connection.)

The ORB keeps the proxy in memory for as long as the reference count remains non-zero.

2. For the moment, we will ignore the details of how the client obtains a reference. Suffice it to say that referenc
returned as the result of invoking an operation.
Copyrigh
8Object Reference Counts

When the ORB returns a reference to the client, its proxy is always
instantiated with a reference count of 1:

MyObject_ptr mop = ...; // Get reference from somewhere...

This creates the following situation:

The client invokes operations on the proxy via the reference, for
example:

CORBA::Lon g v = mop->get_value();

The proxy is kept alive in the client while its reference count is non-zero.

MyObject

1
mop
t 2000–2001 IONA Technologies 6-9

Object Reference Counts Client-Side C++ Mapping

9
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ges to
ust

xy is

se it
The client is responsible for informing the ORB when it no longer wants to use a reference
(because the ORB has no other way of knowing when a client no longer wants to send messa
an object). This means that every reference that is obtained by the client application code m
eventually be passed torelease (just as every pointer returned fromnew must eventually be
passed todelete).

A call to release decrements the reference count by one. If the count reaches zero, the pro
destroyed. It follows that you must not use a reference after having released it:

MyObject_ptr mop = ...; // Get reference...
CORBA::Lon g v = mop->get_value(); // Get a value
CORBA::release(mop); // Done with object
v = mop->get_value(); // Disaster!!!

The final statement has undefined behavior (and will most likely cause a core dump) becau
accesses deallocated memory.
6-10
9Object Reference Counts (cont.)

The client is responsible for informing the ORB when it no longer wants
to use a reference by calling release :

MyObject_ptr mop = ...; // Get reference
CORBA::Lon g v = mop->get_value(); // Use reference
// ...
CORBA::release(mop); // No longer interested

// in this object

release decrements the reference count:

Dropping the reference count to zero causes deallocation.

MyObject

0
mop
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Object Reference Counts

10
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

se a

was
ce

 not
After duplicating a reference, the reference count on the proxy goes up by one, with both
references pointing to the same proxy. To get rid of the proxy, the client must callrelease
exactly once on each reference (in any order):

MyObject_ptr mop1 = ...;
MyObject_ptr mop2 = MyObject::_duplicate(mop1);

// Use mop1 and mop2...

CORBA::release(mop1); // Could release mop2 here
CORBA::release(mop2); // Could release mop1 here

// Can't use either mop1 or mop2 from here on

You should make it a hard and fast rule to release each reference exactly once and to not u
reference after it was released.

NOTE: Note that with reference-counted proxies, you get away with using a reference after it
released provided that there still exists some other reference that keeps the referen
count above zero. However, because the C++ mapping does not require reference
counting, such code is non-portable and will fail disastrously with an ORB that does
use reference counting.
Copyrigh
10Object Reference Counts (cont.)

_duplicate makes a (conceptual) copy of a proxy by incrementing
the reference count:

MyObject_ptr mop1 = ...; // Get ref...
MyObject_ptr mop2 = MyObject::_duplicate(mop1); // Make copy

The proxy now looks like:

The client must release each of mop1 and mop2 exactly once to get rid
of the proxy.

MyObject

2
mop1

mop2
t 2000–2001 IONA Technologies 6-11

Scope of Object References Client-Side C++ Mapping

11
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ned,
r

client
 call to
sed

osing
6.9 Scope of Object References
Object references have a scope that is limited to their local address space and_duplicate and
release exist purely to deal with local resource allocation and deallocation.

If the client callsrelease on an object reference, the server has no idea that this has happe
and vice versa. (Neither_duplicate nor release cause network traffic, so client and serve
are necessarily ignorant about what each is doing with respect to these operations.)

The main consequence of this is that the client cannot expect the server to “know” when the
no longer wants an object and expect the server to clean reclaim resources in response to a
release by the client. CORBA simply does not work this way (and a lot of confusion is cau
by this misconception about_duplicate andrelease).

If you want the server to reclaim resources by destroying an object in response to a client “l
interest” in the object, the client must invoke adestroy operation on the object explicitly (see
page 12-42).
6-12
11Scope of Object References
_duplicate and release exist purely to manage resources in the
local address space.

If a client calls release on a reference, the server has no idea that this
has happened.

Conversely, if the server calls release on one of its references, the
client has no idea that this has happened.

Calling release has no effect whatsoever on anything but the local
address space.

You cannot implement destruction of objects by calling release in the
client. Instead, you must add an explicit destroy operation.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Nil References

12
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

t
de.)

p.
e with

f, you

 are
+ null
6.10 Nil References
You can call the static_nil member function on the proxy to create a nil reference. You can
duplicate and release a nil reference like any other reference. For nil references,_duplicate
andrelease do nothing, so callingrelease on a nil reference is optional. (It is usually easies
to release nil references like any other reference because that avoids an extra test in the co

Never invoke an operation on a nil reference. If you do, you will most likely suffer a core dum3

This means that you must treat an object reference that is passed to you from somewhere els
caution before using it to make a call (because the reference might be nil). To protect yoursel
can callCORBA::is_nil to see whether a reference is nil:

MyObject_ptr mop = ...; // Get reference
if (!CORBA::is_nil(mop)) {

// OK, not nil, we can make a call
cout << "Value is: " << mop->get_value() << endl;

} else {
// We got a nil reference, better not use it!
cout << "Cannot call via nil reference" << endl;

}

3. This is not surprising when you consider that references are usually implemented as pointers. Nil references
naturally implemented as null pointers, so calling an operation via a nil reference ends up dereferencing a C+
pointer.
Copyrigh
12Nil References

Every proxy class contains a static _nil member function. _nil
creates a nil reference:

class MyObject : public virtual CORBA::Object {
public:

static MyObject_ptr _nil();
// ...

};

You can duplicate a nil reference like any other reference.

You can (but need not) release a nil reference.

Do not invoke an operation on a nil reference:

MyObject_ptr nil_obj = MyObject::_nil(); // Create nil ref
nil_obj->get_value(); // Disaster!!!

You can test whether a reference is nil by calling CORBA::is_nil .
t 2000–2001 IONA Technologies 6-13

References and Inheritance Client-Side C++ Mapping

13
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ly

 same
6.11 References and Inheritance
If IDL interfaces inherit from each other, the generated proxy classes reflect the identical
inheritance hierarchy (including multiple inheritance). It follows that the C++ subtyping rules
apply to object references:

• You can pass a reference to a derived interface where a reference to a base interface is
expected.

• You can assign a reference to a derived interface to a reference to a base interface.

• A reference to any interface is compatible withCORBA::Object_ptr .

In other words, because_ptr referencesareC++ pointers to related classes, the can be implicit
widened to their base classes.4

4. If _ptr references are not implemented as C++ pointers, the C++ mapping requires that they must obey the
semantics, that is,_ptr references support implicit widening whether they are implemented as pointers or not.
6-14
13References and Inheritance

Proxy classes mirror the IDL inheritance structure.

interface Thermometer { /* ... */ };
interface Thermostat : Thermometer { /* ... */ };

The generated proxy classes reflect the same hierarchy:

class CORBA::Object { /* ... */ };
typedef CORBA::Object * Object_ptr;

class Thermometer : public virtual CORBA::Object { /* ... */ };
typedef Thermometer * Thermometer_ptr;

class Thermostat : public virtual Thermometer { /* ... */ };
typedef Thermostat * Thermostat_ptr;

It follows that object references to a derived interface are compatible
with object references to a base interface.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Implicit Widening of _ptr References

14
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

 types,

s at 1.

e can
6.12 Implicit Widening of _ptr References
As shown in the above code fragment, you can widen object references to any of their base
includingObject . Because no calls to_duplicate are involved anywhere (except implicitly,
during the creation of the proxy), all assignments are shallow and the reference count remain

In this situation, the client code can invoke operations via any of the reference (but of cours
invoke derived operations only on a derived reference):

CCS::TempType t;
t = tmstat->get_nominal(); // OK
t = thermo->get_nominal(); // Compile-time error
t = o1->get_nominal(); // Compile-time error

A single call torelease in this situation will destroy the proxy. It does not matter which
reference to pass torelease :

CORBA::release(thermo); // or CORBA::release(tmstat)
// or CORBA::release(o1)
// or CORBA::release(o2)

// Can't use any of the four references from here on...

Because the reference count on the proxy is 1, a single call to release is sufficient.
Copyrigh
14Implicit Widening of _ptr References

The following is legal code for the CCS:

CCS::Thermostat_ptr tmstat = ...; // Get Thermostat ref
CCS::Thermometer_ptr thermo = tmstat; // OK, widens
CORBA::Object_ptr o1 = tmstat; // OK too
CORBA::Object_Ptr o2 = tmstat; // OK too

After these assignments, we have the following situation:

Thermostat

1o1

o2

thermo

tmstat
t 2000–2001 IONA Technologies 6-15

Widening with _duplicate Client-Side C++ Mapping

15
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ently,

to
h

6.13 Widening with _duplicate

If you call _duplicate on each assignment, the reference count ends up being 4. Consequ
you must callrelease exactly once on each reference to get rid of the proxy again.

It is interesting to think through what happens during the above assignments:

• CCS::Thermometer_ptr
thermo = CCS::Thermometer::_duplicate(tmstat);

Thermometer::_duplicate expects a parameter of typeThermometer_ptr , so the
tmstat argument of typeThermostat_ptr is implicitly widened to
Thermometer_ptr .

• CORBA::Object_ptr o1 = CCS::Thermometer::_duplicate(thermo);

Here, the actual parameter type matches the formal parameter type (Thermometer_ptr)
and the return value is widened fromThermometer_ptr to Object_ptr . Note that we
also could have passed tmstat here; the result would be the same becausetmstat and
thermo both point at the same object.

• CORBA::Object_Ptr o1 = CCS::Object::_duplicate(thermo);

Here, the actual parameter type (Thermometer_ptr) is implicitly widened to
Object_ptr .

Whether or not you call_duplicate during assignments really depends on whether you want
decouple the life times of the references. With_duplicate , you can independently release eac
reference in different parts of your code without concern for the other references. Without
_duplicate , a single call torelease invalidates all four references.
6-16
15Widening with _duplicate

You can also explicitly make duplicates during widening:

CCS::Thermostat_ptr tmstat = ...; // Get reference
CCS::Thermometer_ptr thermo

= CCS::Thermometer::_duplicate(tmstat);
CORBA::Object_ptr o1 = CCS::Thermometer::_duplicate(thermo);
CORBA::Object_ptr o2 = CORBA::Object::_duplicate(thermo);

The reference count now is 4:

Thermostat

4o1

o2

thermo

tmstat
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Widening with _duplicate
Copyright 2000–2001 IONA Technologies 6-17

Narrowing Conversion Client-Side C++ Mapping

16
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

either

e

6.14 Narrowing Conversion
C++ type rules prevent implicit narrowing conversions:

CCS::Thermometer_ptr thermo = ...; // Get reference
CCS::Thermostat_ptr tstat = thermo; // Compile-time error

You may be tempted to use a cast or a dynamic cast to achieve what you want. However, n
will work:

CCS::Thermometer_ptr thermo = ...; // Get ref
CCS::Thermostat_ptr tstat1

= (CCS::Thermostat_ptr)thermo; // NO!
CCS::Thermostat_ptr tstat2

= dynamic_cast<CCS::Thermostat_ptr>(thermo); // NO!

The first cast is a sledgehammer cast that will get you into trouble as a matter of course. Th
second attempt (using a dynamic cast) is simply wrong.5

Instead, you must use the static_narrow member of the proxy to test whether a reference
supports a more derived type._narrow returns a non-nil reference if the passed reference
supports the corresponding type; otherwise, it returns nil:

5. A call to_narrow may need to contact the server but a dynamic cast won’t do that.
6-18
16Narrowing Conversion

The compiler generates a static _narrow member function for each
proxy that works like a C++ dynamic cast:

class Thermometer : public virtual CORBA::Object {
public:

// ...
static Thermometer_ptr _narrow(CORBA::Object_ptr);

};

class Thermostat : public virtual Thermometer {
public:

// ...
static Thermostat_ptr _narrow(CORBA::Object_ptr);

};

_narrow returns a non-nil reference if the argument is of the expected
type, nil otherwise. _narrow implicitly calls _duplicate !
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Narrowing Conversion

oted

e. In
CCS::Thermometer_ptr thermo = ...; // Get reference

// Try down-cast
CCS::Thermostat_ptr tmstat = CCS::Thermostat::_narrow(thermo);
if (CORBA::is_nil(tmstat)) {

// thermo isn't a Thermostat
} else {

// thermo is-a Thermostat
cout << "Nominal temp: " << tmstat->nominal_temp() << endl;

}
CORBA::release(tmstat); // _narrow calls _duplicate!

The call to_narrow succeeds (returns a non-nil reference) if the actual type of the object den
by thermo is of typeThermostat or a type derived fromThermostat .

Note that_narrow returns a copy of its argument, so you must release the returned referenc
the above code, we release the reference unconditionally, whether_narrow returned nil or not.
This illustrates that callingrelease on a nil reference does not harm (and can simplify your
code).
Copyright 2000–2001 IONA Technologies 6-19

Illegal Uses of References Client-Side C++ Mapping

17
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

en

tions.
6.15 Illegal Uses of References
The following is a list of illegal uses of references that are explicitly flagged as producing
undefined behavior by the C++ mapping.6 Do not use any of these constructs even if they happ
to work—they may suddenly stop working in a later release of the ORB.

You cannot compare references for equality or inequality with== or != :

CORBA::Object_ptr o1 = ...;
CORBA::Object_ptr o2 = ...;
if (o1 == o2) // Undefined behavior!

...;
if (o1 != o2) // Undefined behavior!

...;

You cannot use relational operators on references:

CORBA::Object_ptr o1 = ...;
CORBA::Object_ptr o2 = ...;
if (o1 < o2) // Undefined behavior!

...; // <, <=, >, and >= have no meaning

6. The C++ mapping does not permit these constructs because doing so would unduly restrict ORB implementa
6-20
17Illegal Uses of References
The following are illegal and have undefined behavior:

• comparison of references for equality or inequality

• applying relational operators to references

• applying arithmetic operators to references

• conversion of references to and from void *

• Down-casts other than with _narrow

• Testing for nil other than with CORBA::is_nil

Some of these may happen to work and may even do the right thing, but
they are still illegal!
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Illegal Uses of References
You cannot apply arithmetic operators to references:

CORBA::Object_ptr o1 = ...;
CORBA::Object_ptr o2;
o2 = o1 + 5; // Meaningless!
ptrdiff_t diff = o2 - o1; // Meaningless!

You cannot convert references to and fromvoid * :

CORBA::Object_ptr o = ...;
void * v = (void *)o; // Meaningless!

You cannot down-cast other than with_narrow :

CCS::Thermostat_ptr tmstat = ...; // Get reference
CORBA::Object_ptr o = tmstat; // OK
CCS::Thermostat_ptr tmstat2;

tmstat2 = dynamic_cast<CCS::Thermostat_ptr>(o); // Bad!
tmstat2 = static_cast<CCS::Thermostat_ptr>(o); // Bad!
tmstat2 = reinterpret_cast<CCS::Thermostat_ptr>(o); // Bad!
tmstat2 = (CCS::Thermostat_ptr)o; // Bad!

tmstat2 = CCS::thermostat::_narrow(o); // OK

You cannot test for nil other than withCORBA::is_nil :

if (tmstat) ... // Illegal!
if (tmstat != 0) ... // Illegal!
if (tmstat != CCS::Thermostat::_nil()) ... // Illegal!

if (!CORBA::is_nil(tmstat)) ... // OK
Copyright 2000–2001 IONA Technologies 6-21

Pseudo Objects and the ORB Interface Client-Side C++ Mapping

18
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

are
L
e local
jects as
tions

 of

DII).

ormal

 things
g you
6.16 Pseudo Objects and the ORB Interface
TheCORBA module contains a number of interface definitions, including theORB interface. The
ORB interface contains operations that provide access to the ORB run time, for example, for
initialization and finalization. Many of the interfaces in theCORBA module are marked with aPIDL
comment, meaning “Pseudo-IDL”. Interfaces defined in PIDL use the usual IDL syntax, but
subject to a number of restrictions. The most important one is that you cannot access a PID
interface remotely. This is because pseudo-objects are implemented as library objects that ar
to each address space and do not make sense if used remotely. You can think of pseudo-ob
objects that take care of low-level and vendor-specific implementation details and offer opera
that make sense only for the local address space.

Apart from not being able to invoke them remotely, pseudo-objects are subject to a number
other restrictions:

• Pseudo-interfaces do not inherit fromObject.

• Object references for pseudo-objects cannot be passed to another address space.

• Operations on pseudo-objects cannot be invoked via the Dynamic Invocation Interface (

• Pseudo-interfaces do not have definitions in the Interface Repository (IFR).

• Pseudo-interfaces may have special-purpose language mappings that deviate from the n
mapping rules.

You are not going to notice any of these restrictions (bar the final one) because doing these
does not make sense for pseudo-objects. The special-purpose mapping rules are somethin
need to be aware of, and we will illustrate them wherever necessary.
6-22
18Pseudo Objects and the ORB Interface

The CORBA module contains an interface ORB:

module CORBA {
interface ORB { // PIDL

// ...
};
// ...

};

The ORB interface is used to initialize the ORB run time and to get
access to initial object references.

The PIDL comment indicates Pseudo-IDL. PIDL interfaces are
implemented as library objects and used to access the ORB run time.

PIDL objects are not fully-fledged objects because they cannot be
accessed remotely.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Pseudo Objects and the ORB Interface
Copyright 2000–2001 IONA Technologies 6-23

ORB Initialization Client-Side C++ Mapping

19
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

BA

ts,

ion
ctor
ed
idea

it
6.17 ORB Initialization
Every client (and server) must initialize the ORB run time before it can make (or accept) COR
invocations. You do this by calling the library functionORB_init ; it has the following signature:

namespace CORBA {
// ...
ORB_ptr ORB_init(

int & argc,
char ** argv,
const char * orb_identifier = ""

);
// ...

};

You must passargc andargv to ORB_init . Note thatORB_init is passed a reference to
argc , so it can change the value ofargc , and is passed a non-constant pointer to the argumen
so it can change the contents of theargv vector. The signature ofORB_init looks that way
becauseORB_init scans the command line for ORB-specific command-line options. Any opt
beginning with-ORB is taken to be targeted at the ORB and is removed from the argument ve
by ORB_init . This means that, onceORB_init returns, the argument vector has been stripp
of ORB-specific options and now only contains application-specific options. (This is the same
as for the initialization call for the X11 tool kit.)

ORB_init returns an object reference to theORB object. That reference is like any other
reference as far as memory management is concerned. This means that you must release
6-24
19ORB Initialization and Finalization

The ORB interface contains an initialization and finalization operation.
You must call these to initialize and clean up the ORB:

CORBA::ORB_ptr orb; // Global for convenience

int
main(int argc, char * argv[])
{

try {
orb = CORBA::ORB_init(argc, argv);

} catch (...) {
cerr << "Cannot initialize ORB" << endl;
return 1;

}
// Use ORB...
orb->destroy(); // Must destroy!
CORBA::release(orb); // Clean up
return 0;

}

Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping ORB Initialization

umber
eventually (and you must release it as the final reference in your code), as shown on the prec
slide. However, before callingrelease on the ORB reference, you must invoke thedestroy
operation on the ORB. This is necessary in order avoid resource leaks, particularly in
multi-threaded programs.7

NOTE: Because theORB interface is typically required throughout much of your code, it is
common to make its reference a global variable.

The need to passargc andargv to ORB_init means that you cannot make CORBA calls
before you have enteredmain . In particular, you cannot call CORBA operations from global
constructors. Do not attempt to cheat by making a dummy argument vector and calling
ORB_init from a global constructor. Doing so has undefined behavior and may well fail
(because the ORB libraries themselves may be using global constructors).

NOTE: In order to be able to use predefined types, such asORB_ptr , you must include a header
file. The specification does not define the names of header files, so the name and n
of header files varies with each ORB. For ORBacus, you must includeOB/CORBA.h.

7. Some threads packages do not permit you to leavemain while there are threads other than the main thread.
ORB::destroy joins with all threads before it returns.
Copyright 2000–2001 IONA Technologies 6-25
eding

Stringified References Client-Side C++ Mapping

20
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ed
m the

om in

in
6.18 Stringified References
You can convert an object reference into a string withobject_to_string and later turn it back
into a an object reference withstring_to_object. While stringified, a reference can travel by
out-of-band means. For example, you can store it in database or send it via e-mail.

Stringified references can be used to permit a client to bootstrap: the server writes a stringifi
reference to a key object (such as the controller) into a file and the client reads the string fro
file and converts it back to a reference.8

A stringified reference looks something like this:

IOR:01d072402000000049444c3a61636d652e636f6d2f4343532f436f6e74726
f6c6c65723a312e30000100000000000000bc00000001010240110000006a616e
75732e6f6f632e636f6d2e6175003e950624000000abacab31393531323833343
632005f526f6f74504f410000cafebabe38b36f06000000000100000001000000
6c00000001394f40010001000a000000020001000300010004000100050001000
60001000700010008000100090001000100010520000100090101000c00000000
01010001000100020001000300010004000100050001000600010007000100080
00100090001000100010520000100

Note that, even though the string is quite long, a stringified reference takes up much less ro
memory.

8. This is a non-scalable and rather primitive mechanism, but will suffice for now. A better way for clients to obta
application references is via the Naming Service.
6-26
20Stringified References

You can convert an object reference into a string and back:

interface ORB {
string object_to_string(in Object obj);
Object string_to_object(in string str);
// ...

};

Stringified references can be used for bootstrapping:

• The server creates an object and writes its stringified reference to a
file.

• The client reads the file and uses the reference to access the object.

While simple, there are drawbacks to this idea. A Naming Service does
the same job better.

Stringified references are also useful to store references in databases.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Stringified References

se
, we

aks.

at
If we assume that the CCS server produces a stringified reference to the controller, we can
the client code as follows. (In this example, we pass the stringified reference asargv[1] .)

#include <OB/CORBA.h> // Import CORBA module
#include "CCS.h" // Import CCS system (IDL-generated)

CORBA::ORB_ptr orb; // Global for convenience

int
main(int argc, char * argv[])
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

// Get controller reference from argv
// and convert to object.
CORBA::Object_ptr obj = orb->string_to_object(argv[1]);
if (CORBA::is_nil(obj)) {

cerr << "Nil controller reference" << endl;
abort();

}

// Try to narrow to CCS::Controller.
CCS::Controller_ptr ctrl;
ctrl = CCS::Controller::_narrow(obj);
if (CORBA::is_nil(ctrl)) {

cerr << "Wrong type for controller ref." << endl;
abort();

}

// Use controller...

CORBA::release(ctrl); // Clean up
CORBA::release(obj); // Ditto...
orb->destroy(); // Must destroy before leaving main()
CORBA::release(orb); // Ditto...

return 0;
}

You will find boilerplate code very similar to this in almost every client, except that you might u
the Naming Service to obtain the first application reference. Also note that, for the time being
are ignoring error handling.

Note that the code is careful to release all the references it has acquired to avoid memory le
(We will see in page 9-23 how to avoid leaks in the presence of errors or exceptions.)

Also note that this code is not exception safe, in the sense that it does not callORB::destroy if
anything goes wrong. (Callingabort in case of an error is rarely a viable error-handling
strategy.) Here is a version that uses exceptions to get out of a code block in such a way th
ORB::destroy will always be called:
Copyright 2000–2001 IONA Technologies 6-27
write

Stringified References Client-Side C++ Mapping
#include <OB/CORBA.h> // Import CORBA module
#include "CCS.h" // Import CCS system (IDL-generated)

CORBA::ORB_ptr orb = CORBA::ORB::_nil(); // Nil initialized

int
main(int argc, char * argv[])
{

CCS::Controller_ptr ctrl = CCS::Controller::_nil();

try {
// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

// Get controller reference from argv
// and convert to object.
CORBA::Object_ptr obj = orb->string_to_object(argv[1]);
if (CORBA::is_nil(obj)) {

cerr << "Nil controller reference" << endl;
abort();

}

// Try to narrow to CCS::Controller.
ctrl = CCS::Controller::_narrow(obj);
if (CORBA::is_nil(ctrl)) {

cerr << "Wrong type for controller ref." << endl;
abort();

}

// Use controller...

} catch (...) {
CORBA::release(ctrl); // Clean up
CORBA::release(obj); // Ditto...
orb->destroy(); // Must destroy before leaving ma

in()
CORBA::release(orb); // Ditto...

}

return 0;
}

6-28 Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Stringified References

21
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

gified

this:

 of a

 fact,

want to
ality).

o this
Stringified references are written in a format that is interoperable, so you can exchange strin
references among clients and servers that use different ORBs.

Nil references can be stringified like any other reference. A stringified nil reference looks like

IOR:01000000010000000000000000000000

You must treat stringified references as opaque. Any attempt to make sense of the contents
reference violates the CORBA object model. In particular,nevercompare stringified references to
determine whether they point at the same object. The outcome is completely undefined. (In
the same single object may have different stringified references as different times.)

Because references are opaque, it follows that you cannot use them as database keys if you
store objects in a database (because use of references as keys implies comparison for equ

Theonly legal uses of stringified references are to create them withobject_to_string, to store
them for later retrieval, and to pass them tostring_to_object to convert them back into a
reference.

NOTE: During debugging, it can be useful to examine the contents of a reference. You can d
with theiordump tool supplied with ORBacus.
Copyrigh
21Stringified References (cont.)

Stringified references are interoperable and can be exchanged among
clients and servers using different ORBs.

Nil references can be stringified.

You must treat stringified references as opaque:

• Never compare stringified references to determine whether they
point at the same object.

• Do not use stringified references as database keys

The only things you can legally do with stringified references are:

• obtain them from object_to_string

• store them for later retrieval

• convert them back to a reference with string_to_object
t 2000–2001 IONA Technologies 6-29

Stringified References Client-Side C++ Mapping

22
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

s a

l with
X, you

efault
 IORs

pace
Instead of passing a stringified reference tostring_to_object, you can also pass it a URL
beginning withfile:// . The URL must denote the absolute pathname to a file that contain
stringified IOR as the first line of the file.string_to_object reads the stringified IOR from the
specified file and the proceeds as usual. This mechanism is useful mainly to conveniently dea
stringified references that must be passed as command-line arguments. For example, in UNI
can write

./server ‘cat /usr/local/CCS/ctrl.ref‘

to pass the stringified reference in a file on the command line. However, for Windows, the d
command-line interpreter cannot make such substitutions, which makes it awkward to pass
as program arguments. Afile:// URL gets around this problem. For example:

./server file://c:\winnt\Program%20Files\CCS\ctrl.ref

or:

./server file:///usr/local/CCS/ctrl.ref

NOTE: Not all characters are legal in URLs without escaping them. For example, a single s
must be represented as%20.

NOTE: This feature is non-standard and specific to ORBacus.
6-30
22Stringified References (cont.)
You can use a URL to denote a file containing a stringified reference:

• file:///usr/local/CCS/ctrl.ref (UNIX)

• file://c:\winnt\Program%20Files\CCS\ctrl.ref (NT)

string_to_object accepts such URLs as a valid IOR strings and
reads the stringified reference from the specified file.

This mechanism is specific to ORBacus!
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Stringified References
Copyright 2000–2001 IONA Technologies 6-31

The Object Interface Client-Side C++ Mapping

23
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ces)

al

revent
with a

a
d

6.19 The Object Interface
TheObject interface is the ultimate base interface, so all interfaces (and therefore, all referen
support the operations onObject. Note thatObject is defined in PIDL, so the normal language
mapping rules need not necessarily apply. We have already seen a deviation form the norm
mapping rules forduplicate (which maps to_duplicate on each proxy class),release
(which maps toCORBA::release), andis_nil (which maps toCORBA::is_nil).9

The remaining operations are mapped as follows:

class Object {
public:

// ...
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong max);
Boolean _is_a(const char * repository_id);
// ...

};

Note that the C++ mapping adds a leading underscore to each operation name. This is to p
name clashes with operations on an actual interface. For example, if you create an interface

9. The reason for these deviations is that_duplicate must return a different type for each interface, so it cannot be
single member function onObject . release andis_nil map to functions in the CORBA namespace (instea
of member functions on the proxy) because, otherwise, they could not be called on nil references.
6-32
23The Object Interface

The CORBA module contains the Object interface.

All references provide this interface (because all interfaces inherit from
Object):

interface Object { // PIDL
Object duplicate()
void release();
boolean is_nil();
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(unsigned long max);
boolean is_a(in string repository_id);
// ...

};

Note that Object is defined in PIDL.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping The Object Interface

there
t

y to

at the

s an

4 for

this:

re
s

non_existent operation, that operation will be mapped tonon_existent on the derived
proxy class and therefore not clash with_non_existent on the inheritedObject base class.

The operations have the following semantics:

Boolean _non_existent()

This operation returns true if an object reference dangles (points at an object that is no longer
because it has been deleted). If_non_existent returns true, this is an authoritative answer tha
the object no longer exists and will never exist again. Conversely, if_non_existent returns
false, this is an authoritative answer that the object is known to exist. (However, when you tr
reach it, it may not work because, for example, the network may have just gone down.)

_non_existent contacts the server to determine whether an object exists. This means th
operation may fail (for example, because connectivity cannot be established). If
_non_existent cannot make a determination of an object’s status due to an error, it raise
exception (see page 6-66).

Boolean is_equivalent(Object_ptr other_object)

This operation determines whether two references (not objects) are identical. (See page 6-3
more detail.)

ULong _hash(ULong max)

This operation returns a hash value for a reference in the range0 to max-1 . You will rarely (if
ever) have a use for this operation.10

Boolean _is_a(const char * repository_id)

This operation returns true if the reference supports the specified interface. You can call it like

CORBA::Object_ptr obj = ...; // Get a reference
if (!CORBA::is_nil(obj) {

if (obj->_is_a("IDL:acme.com/CCS/Controller:1.0")) {
// It's a controller

} else {
// It's something else

}
} else {

// Got a nil reference
}

Theis_a operation is provided mainly for clients which do not have static type knowledge (a
not linked with the stubs for an interface) and are using the DII instead. If you have the stub
linked, it is easier to call_narrow , which achieves the same thing.

10.It was added mainly to make protocol bridges easier to implement.
Copyright 2000–2001 IONA Technologies 6-33

Object Reference Equivalence Client-Side C++ Mapping

24
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

note
re
nces.
re

nslate
6.20 Object Reference Equivalence
You can call_is_equivalent as follows:

CORBA::Object_ptr o1 = ...; // Get reference
CORBA::Object_ptr o2 = ...; // Another one...

if (o1->_is_equivalent(o2)) {
// o1 and o2 denote the same object

} else {
// o1 and o2 may or may not denote the same
// object, who knows...

}

Note that_is_equivalent provides only a partial answer with respect toobjectidentity. If the
answer is true, you know definitively that the two references are identical and, therefore, de
the same object. However, if the answer is false, you definitively know that the references a
different; however, that does not imply anything about the objects denoted by the two refere
Both references may, in fact, denote the same object, despite the fact that the references a
different.11

11.These semantics were chosen deliberately to make it possible to build object domain bridges, which must tra
object references as they cross domains.
6-34
24Object Reference Equivalence
is_equivalent tests if two object references are identical:

• if they are equivalent, the two references denote the same object

• if they are not equivalent, the two references may or may not denote
the same object

is_equivalent test object reference identity, not object identity!

Because a single object may have several different references, a false
return from is_equivalent does not indicate that the reference
denote different objects!

is_equivalent is a local operation (never goes out on the wire).
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Providing Object Equivalence Testing

25
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

it by
e

ereas
6.21 Providing Object Equivalence Testing
If your clients require object identity (as opposed to reference identity), you must arrange for
adding an explicit operation to each interface. The operation must return an ID that is uniqu
across all objects. (Not that the asset numbers in the CCS serve the same purpose.)

Object identity is more expensive than reference identity because it requires a remote call (wh
is_equivalent is a local operation).
Copyrigh
25Providing Object Equivalence Testing
If you require object identity, you must supply it yourself:

interface Identity {
typedef whatever UniqueID;
UniqueID id();

};

You can use this interface as a base interface for your objects.

Clients can invoke the id operation to obtain a unique ID for each
object.

Two objects are identical if their IDs are identical.

Note that the asset number in the CCS serves as object identity.
t 2000–2001 IONA Technologies 6-35

_var References Client-Side C++ Mapping

26
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies
6.22 _var References
_var references, like other_var types, help to avoid resource leaks._var references use the
usual deep copy semantics and are generated for each interface. For example, here is the_var
reference type for aThermometer:

class Thermometer_var {
public:

Thermometer_var();
Thermometer_var(Thermometer_ptr &);
Thermometer_var(const Thermometer_var &);
~Thermometer_var();

Thermometer_var & operator=(Thermometer_ptr &);
Thermometer_var & operator=(const Thermometer_var &);

operator Thermometer_ptr &();
Thermometer_ptr operator->() const;

Thermometer_ptr in() const;
Thermometer_ptr & inout();
Thermometer_ptr & out();
Thermometer_ptr _retn();

private:
Thermometer_ptr _ptr;

};
6-36
26_var References
_var references are used to make memory leaks less likely.

Like other _var types, _var references make deep copies and release
their reference in the destructor:

{
CORBA::Object_var obj = orb->string_to_object(...);
CCS::Controller_var ctrl = CCS::Controller::_narrow(obj);
// ...

} // No need to release anything here...

Use _var references to “catch” object references returned from
invocations.

_var references are extremely useful for exception safety!
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping _var References

xy by

n

same
Thermometer_var()

The default constructor initializes the_var to a nil reference.

Thermometer_var(Thermometer_ptr &)

The_ptr constructor takes ownership of the reference; the_var callsrelease on the
reference when it goes out of scope.

Thermometer_var(const Thermometer_var &)

The copy constructor makes a deep copy, that is, it increments the reference count on the pro
calling_duplicate .

~Thermometer_var()

The destructor callsrelease on the reference.

Thermometer_var & operator=(Thermometer_ptr &)

The assignment operator from a_ptr first release the reference that is currently held and then
takes ownership of its argument.

Thermometer_var & operator=(const Thermometer_var &)

The assignment operator from a_var first releases the reference that is currently held and the
calls_duplicate on the right-hand side, taking ownership of the copy.

operator Thermometer_ptr &()

This conversion operator permits you to pass a_var reference where a_ptr reference is
expected and makes passing and assignment of_var references transparent.

Thermometer_ptr operator-> const

The indirection operator returns the underlying_ptr reference, delegating any operation
invocations to the proxy.

Thermometer_ptr in() const
Thermometer_ptr & inout()
Thermometer_ptr& out()

The explicit conversion operators are provided to get around compiler problems and have the
semantics as for other_var types.

Thermometer_ptr _retn()

The_retn member function returns the underlying reference and sets the internal_ptr
reference to nil. This transfers ownership from the_var to the caller.
Copyright 2000–2001 IONA Technologies 6-37

_var References Client-Side C++ Mapping

plicit

all
 the
Using_var references, we can rewrite the code on page 6-27 as follows:

#include <OB/CORBA.h> // Import CORBA module
#include "CCS.hh" // Import CCS system (IDL-generated)

CORBA::ORB_var orb; // Global for convenience

int
main(int argc, char * argv[])
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

// Get controller reference from argv
// and convert to object.
CORBA::Object_var obj = orb->string_to_object(argv[1]);
if (CORBA::is_nil(obj)) {

cerr << "Nil controller reference" << endl;
return 1;

}

// Try to narrow to CCS::Controller.
CCS::Controller_var ctrl = CCS::Controller::_narrow(obj);
if (CORBA::is_nil(ctrl)) {

cerr << "Wrong type for controller ref." << endl;
return 1;

}

// Use controller...

// No need to release anything here (but
// ORB::destroy() is still necessary).
orb->destroy();

return 0;
}

This code is far superior to the version on page 6-27. Firstly, the code is not cluttered with ex
calls torelease . Secondly, in case of an early return out ofmain , the references will still be
correctly released (whereas the code on page 6-27 had a leak in this case). Finally, if any c
throws an exception, the compiler will invoke the destructors of all local variables, so even in
presence of exceptions, the references will be correctly released.
6-38 Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping _var References and Widening

27
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ans

d
a

6.23 _var References and Widening
As opposed_ptr references,_var references are not in an inheritance relationship. This me
that you cannot implicitly widen among_var references; the code simply does not compile.

However, using_duplicate , you can widen references explicitly. For example:

Thermostat_var tstat = ...;

Thermometer_var thermo;
thermo = Thermometer::_duplicate(tstat);
thermo = Thermostat::_duplicate(tstat);

CORBA::Object_var obj;
obj = Thermostat::_duplicate(tstat);
obj = Thermometer::_duplicate(tstat);
obj = CORBA::Object::_duplicate(tstat);

Because_duplicate both expects and returns a_ptr reference, these statements compile an
work correctly. (The implicit widening on_ptr references means that the compiler always finds
matching signature.)
Copyrigh
27_var References and Widening

_var references do not mirror the IDL inheritance hierachy:

class Thermometer : public virtual CORBA::Object { /* ... */ };
class Thermostat : public virtual Thermometer { /* ... */ };

typedef Thermometer * Thermometer_ptr;
typedef Thermostat * Thermostat_ptr;

class Thermometer_var { /* ... */ }; // No inheritance!
class Thermostat_var { /* ... */ }; // No inheritance!

Implicit widening on _var references therefore does not compile:

Thermostat_var tstat = ...;
Thermometer_var thermo = tstat; // Compile-time error
CORBA::Object_var obj = tstat; // Compile-time error

You can use _duplicate to widen a reference explicitly:

Thermostat_var tstat = ...;
Thermometer_var thermo = Thermometer::_duplicate(tstat);
t 2000–2001 IONA Technologies 6-39

References Nested in Complex Types Client-Side C++ Mapping

28
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

take

p

6.24 References Nested in Complex Types
If an object reference is a member of a complex type, the member behaves like a_var reference.
In other words, whenever an object reference member is the target of an assignment, it will
ownership of the right-hand side. If the right-hand side is another reference member or a_var
reference,_duplicate is called by the assignment operator, with the net effect being a dee
copy.

Just withString_var andchar * , you can mix_var and_ptr references. Simply
remember that

• when a_ptr is on the left-hand side, the assignment is shallow;

• when a_var is on the left-hand side, it will take ownership of the right-hand side;

• when a_var is on both sides of an assignment, you get a deep copy.
6-40
28References Nested in Complex Types

References that are members of structures, unions, or exceptions, or
elements of sequences or arrays behave like _var references:

struct DevicePair {
Thermometer mem1;
Object mem2;

};

The same rules as for strings apply:

Thermometer_var thermo = ...;
Thermostat_var tstat = ...;

DevicePair dp;
dp.mem1 = thermo; // Deep assignment
dp.mem2 = Object::_duplicate(thermo); // Deep assignment
DevicePair dp2 = dp; // Deep copy
dp2.mem2 = orb->string_to_object(argv[1]); // No leak here
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Mapping for Operations

29
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

or

de for
6.25 Mapping for Operations
As we saw on page 6-5, operations map to proxy member functions with the same name. F
example:

interface Example {
void send(in char c);
oneway void put(in char c);
long get_long();
string id_to_name(in string id);

};

The generated proxy class contains the corresponding member functions:

class Example : public virtual CORBA::Object {
public:

// ...
void send(CORBA::Char c);
void put(CORBA::Char c);
CORBA::Long get_long();
char * id_to_name(const char * id);
// ...

};

Note that the signature for twoway and oneway operations is the same. (But the generated co
each function does different things for twoway and oneway dispatch.)
Copyrigh
29Mapping for Operations
Operations on IDL interfaces map to proxy member functions with the
same name.

If you have a _var or _ptr reference to a proxy instance, you invoke
the member function via the reference’s -> operator.

The proxy member function sends the request to the remote object and
blocks until the reply arrives.

The proxy unmarshals the results and returns.

The net effect is a synchronous procedure call.
t 2000–2001 IONA Technologies 6-41

Mapping for Attributes Client-Side C++ Mapping

30
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ither
ttribute
6.26 Mapping for Attributes
Attributes map to a pair of member functions, an accessor and a modifier. If an attribute is
readonly, no modifier is generated by the compiler.

To read an attribute, you simply invoke the accessor:

CCS::Thermometer_var t = ...; // Get reference
CORBA::ULong anum = t->asset_num();
cout << "Asset number is " << anum << endl;

Similarly, to write an attribute, you invoke the modifier:

CCS::Thermometer_var t = ...;
t->location("Room 414");

This example illustrates that there is truly no difference between operations and attributes. E
way, the proxy makes a synchronous remote procedure call to the server, so operation and a
accesses have exactly the same performance.
6-42
30Mapping for Attributes

IDL attributes map to a pair of member functions, one to read the value
and one to write it.

readonly attributes only have an accessor and no modifier.

interface Thermometer {
readonly attribute unsigned long asset_num;

attribute string location;
};

The proxy contains:

class Thermometer : public virtual CORBA::Object {
public:

CORBA::ULong asset_num(); // Accessor
char * location(); // Accessor
void location(const char *); // Modifier

};
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing

31
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ell as
oids
e
lso
6.27 Parameter Passing
The parameter passing rules are quite complex and depend on the type of a parameter as w
the direction in which it is passed. The motivation for these rules is efficiency: the mapping av
data copying and dynamic memory allocation wherever possible. This means that values ar
dynamically allocated only if they are of variable length and travel from server to client. (This a
makes the stubs reentrant so there are no thread-safety issues inherent in the API.)
Copyrigh
31Parameter Passing

The rules for parameter passing depend on the type and direction:

• Simple in parameters are passed by value.

• Complex in parameters are passed by constant reference.

• inout parameters are passed by reference.

• Fixed-length out parameters are passed by reference.

• Variable-length out parameters are dynamically allocated.

• Fixed-length return values are passed by value.

• Variable-length return values are dynamically allocated.

• Fixed-length array return values are dynamically allocated.

Note: Variable-length values that travel from server to client are
dynamically allocated. Everything else can be allocated on the stack.
t 2000–2001 IONA Technologies 6-43

Parameter Passing Client-Side C++ Mapping

32
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ch as
t

d

6.27.1 Rules for Simple Types
Above is a an operation that passes achar in all possible directions. The signature of the proxy
reflects that the type is simple and of fixed length, and so can be passed by value or, forinout and
out parameters, by reference. (The same rules apply for other simple types of fixed length, su
long, double, octet, and so on.) A call via an object reference to this operation in the clien
might look like this:

Foo_var fv = ...; // Get reference

CORBA::Char inout_val;
CORBA::Char out_val;
CORBA::Char ret_val;

inout_val = 'A';
ret_val = fv->op('X', inout_val, out_val);

cout << "ret_val: " << ret_val << endl;
cout << "inout_val: " << inout_val << endl;
cout << "out_val: " << out_val << endl;

Obviously, you must initializein andinout parameters before the call, otherwise you will sen
undefined values.
6-44
32Parameter Passing (cont.)

Consider an operation that passes a char parameter in all possible
directions:

interface Foo {
char op(in char p_in, inout char p_inout, out char p_out);

};

The proxy signature is:

CORBA::Char op(
CORBA::Char p_in,
CORBA::Char & p_inout,
CORBA::Char & p_out

);

This signature is no different than for any normal C++ function that
passes parameters in the same directions.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing

33
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

at
rates
6.27.2 Rules for Fixed-Length Complex Types
For fixed-length unions and structures, the rules are the same as for simple types, except th
in parameters are passed by constant reference for efficiency. Note that the compiler gene
<typename> _out as the parameter type forout parameters. For fixed-length types, this is
simply an alias to a reference to the type.12 The client can call the operation as follows:

Foo_var fv = ...; // Get reference...

F in_va l = { 'A', 1 };
F inout_va l = { 'B', 2 };
F out_val;
F ret_val;

ret_val = fv->op(in_val, inout_val, out_val);

// in_val is unchanged, inout_val may have been changed,
// and out_val and ret_val are filled in by the operation.

12.The<typename> _out types are important for variable-length parameters. (See page 6-50.)
Copyrigh
33Parameter Passing (cont.)

Fixed-length unions and structures are passed by value or by reference:

struct F {
char c;
short s;

};

interface Foo {
F op(in F p_in, inout F p_inout, out F p_out);

};

The proxy signature is:

typede f F & F_out;
F op(

const F & p_in,
F & p_inout,
F_out p_out

);
t 2000–2001 IONA Technologies 6-45

Parameter Passing Client-Side C++ Mapping

34
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

 that,

lso

(Of
n.)
6.27.3 Rules for Fixed-Length Arrays
Because C++ has a weak array concept, arrays are passed as a pointer to array slice. Note
even though the formal parameter type in thein direction isSA, when you pass the array, what
will actually be passed is a pointer to the first element (that is, a pointer to an array slice). A
note that, for fixed-length arrays, the_out parameter type is simply an alias for a pointer to an
array slice. The client can call the operation as follows:

Foo_var fv = ...; // Get reference...

SA in_va l = { 1, 2 };
SA inout_va l = { 3, 4 };
SA out_val;
SA_slice * ret_val; // Note pointer to an array slice

ret_val = op(in_val, inout_val, out_val);

// in_val is unchanged, inout_val may have been changed,
// out_val now contains values, and ret_val points
// to a dynamically allocated instance.

SA_free(ret_val); // Must free here!

Note that the return value is dynamically allocated and you must deallocate it after the call.
course, you can also use anSA_var to catch the return value and let it take care of deallocatio
6-46
34Parameter Passing (cont.)
Fixed-length arrays are passed by pointer to an array slice:

typedef short SA[2];

interface Foo {
SA op(in SA p_in, inout SA p_inout, out SA p_out);

};

The proxy signature is:

typedef SA_slice * SA_out;
SA_slice * op(

const SA p_in,
SA_slice * p_inout,
SA_out p_out

);
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing
Copyright 2000–2001 IONA Technologies 6-47

Parameter Passing Client-Side C++ Mapping

35
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

t

6.27.4 Rules for Strings
Strings are passed as normalchar * pointers. Note that strings that travel from server to clien
must be dynamically allocated and the client must deallocate them when they are no longer
needed. The client can call the operation as follows:

Foo_ref fv = ...; // Get reference...

// inout strings *must* be dynamically allocated
char * inout_val = CORBA::string_dup("World");

char * out_val;
char * ret_val;

ret_val = fv->op("Hello", inout_val, out_val);

cout << "inout_val: \"" << inout_val << "\"" << endl;
cout << "out_val: \"" << out_val << "\"" << endl;
cout << "ret_val: \"" << ret_val << "\"" << endl;

// Clean up...
CORBA::string_free(inout_val);
CORBA::string_free(out_val);
CORBA::string_free(ret_val);
6-48
35Parameter Passing (cont.)

Strings are passed as pointers.

interface Foo {
string op(

in string p_in,
inout string p_inout,
out string p_out

);
};

The proxy signature is:

char * op(
const char * p_in,
char * & p_inout,
CORBA::String_out p_out

);

String_out is a class that behaves (almost) like a char * & .
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing

.

. This
string
may
te the

e no
well
There are several important things to note here:

• Thein parameter can be stack allocated or heap allocated, and you can even pass a lit
The only thing that is important is that you pass an initialized value.

• Theinout parametermust be dynamically allocated before the call and must be initialized

• Theinout parametermust be deallocated after the call (because we allocated it).

• Theout parameter and the return valuemust be deallocated after the call.

Note that theinout parameter is passed as a pointer to a reference, not just as a plain pointer
is necessary because the string that is returned by the server may be longer than the initial
sent by the client. In turn, this implies reallocation, which means that not only the string itself
change, but also its location in memory. To reallocate, the call stub must be able to dealloca
initial value, which requires that the initial value must be dynamically allocated.

Because theinout parameter is dynamically allocated, we must deallocate the value when w
longer need it. And, similarly, theout parameter and the return value must be deallocated as
because the stub will dynamically allocate these.13

Explicit deallocation is tedious, so it is a good idea to useString_var to make life easier and
less error-prone. Here is the same code example usingString_var :

Foo_ref fv = ...; // Get reference...

CORBA::String_var inout_val = CORBA::string_dup("World");

CORBA::String_var out_val;
CORBA::String_var ret_val;

ret_val = fv->op("Hello", inout_val, out_val);

cout << "inout_val: \"" << inout_val << "\"" << endl;
cout << "out_val: \"" << out_val << "\"" << endl;
cout << "ret_val: \"" << ret_val << "\"" << endl;

// No deallocation necessary, the String_vars take care of it...

NOTE: The mapping prohibits passing of null pointers asin or inout parameters. The
following is guaranteed to result in a crash:

CORBA::String_var in_val, inout_val, out_val, ret_val;

ret_val = fv->op(in_val, inout_val, out_val); // Wrong!

This fails because the stub will attempt to dereference a null pointer forin_val and
inout_val and promptly cause a core dump.

Neverpass null pointers asin or inout parameters. This rule holds forall types that are
passed by pointer.

13.We will return to the details of theString_out type on page 6-50. For now, assume that it is the same as a
char * & .
Copyright 2000–2001 IONA Technologies 6-49
eral.

Parameter Passing Client-Side C++ Mapping

36
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

 first

e

6.27.5 Purpose of _out Types
As we saw on page 6-48, the caller must deallocate the stringout parameter that is allocated by
the stub. It follows that the first code example on the above slide leaks memory because the
out parameter is not deallocated before the second call overwrites thename pointer.

On the other hand, if you use_var types, no leak occurs because the formal parameter of typ
String_out takes care of deallocating any previous value. Here is an outline of how the
String_out type works:

class String_out {
public:

String_out(char * & s): _sref(s) { _sref = 0; }
String_out(String_var & sv): _sref(sv._sref) {

string_free(_sref);
_sref = 0;

}
// More member functions here...

private:
char * & _sref;

};

Here is the proxy signature for a stringout parameter once more:

void get_name(CORBA::String_out name);
6-50
36Parameter Passing (cont.)

interface Foo {

void get_name(out string name);
};

The following code leaks memory:

char * name;
fv->get_name(name);
// Should have called CORBA::string_free(name) here!
fv->get_name(name); // Leak!

The following code does not:

CORBA::String_var name;
fv->get_name(name);
fv->get_name(name); // Fine

The String_out type takes care of deallocating the first result before
passing the parameter to the stub.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing

till
, the

ull

s

The preceding code examples demonstrate that the effect of callingget_name differs depending
on whether we pass a achar * or aString_var . Here is what happens if we pass achar * :

1. The formal parameter type isString_out and the actual argument type ischar * . The
compiler looks for the best argument match and constructs a temporaryString_out
instance using thechar * & constructor.

2. Thechar * & constructor forString_out sets the passed pointer to null without
deallocating any memory and binds the passed pointer to its privatechar * reference.

3. The stub forget_name gets control and eventually sets the reference inside the
String_out temporary to a dynamically allocated address. Because the reference is s
bound to the actual argument, that assigns to the argument so, when the call completes
argument has been changed to contain the address of the dynamically allocated string.

If we pass aString_var to get_name , a slightly different sequence of events takes place:

1. The formal parameter type isString_out and the actual argument type isString_var .
The compiler looks for the best argument match and constructs a temporaryString_out
instance using theString_var constructor.

2. TheString_var constructor binds the pointer contained inside theString_var to its
private reference and callsstring_free . This deallocates any previous string that may
have been assigned to theString_var . It then sets the value of the actual argument to n
via the reference.

3. The stub forget_name gets control and eventually sets the reference inside the
String_out temporary to a dynamically allocated address, as in step 3 for the previou
scenario.

The net effect is that if you pass aString_var , any previously held value is automatically
deallocated, whereas if you pass achar * , you must deallocate any previous value explicitly.

The compiler generates_out types for all variable-length types, such as object references,
sequences, etc. In addition, for consistency,_out types are generated for fixed-length types as
well. However, because no deallocation issues arise for fixed-lengthout parameters, those_out
types are simply aliases for a reference to the underlying type.
Copyright 2000–2001 IONA Technologies 6-51

Parameter Passing Client-Side C++ Mapping

37
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

n
ry.
ration
6.27.6 Rules for Variable-Length Complex Types
Sequences and variable-length structures and unions are dynamically allocated if they are aout
parameter or the return value. Note that forinout parameters, no dynamic allocation is necessa
Instead, the stub can modify the parameter via the C++ reference. The client can call the ope
as follows:

Foo_var fv = ...; // Get reference...

OctSeq in_val;
OctSeq inout_val
OctSeq * out_val; // *Pointer* to OctSeq
OctSeq * ret_val; // *Pointer* to OctSeq

in_val.length(1);
in_val[0] = 99;
inout_val.length(2);
inout_val[0] = 5;
inout_val[1] = 6;

ret_val = fv->op(in_val, inout_val, out_val);

// inout_val may have been modified, out_val and
6-52
37Parameter Passing (cont.)

Sequences and variable-length structures and unions are dynamically
allocated if they are an out parameter or the return value.

typedef sequence<octet> OctSeq;
interface Foo {

OctSeq op(
in OctSeq p_in,
inout OctSeq p_inout,
out OctSeq p_out

);
};

The proxy signature is:

typedef OctSeq & OctSeq_out;
OctSeq * op(const OctSeq & p_in,

OctSeq & p_inout,
OctSeq_out p_out);
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing

s arise
// ret_val point to now initialized sequences

delete out_val; // Must deallocate here!
delete ret_val; // Must deallocate here!

Note that theout parameter and the return value require deallocation.

As before, using_var types makes life considerably easier:

Foo_var fv = ...; // Get reference...

OctSeq in_val;
OctSeq inout_val;
OctSeq_var out_val; // _var type
OctSeq_var ret_val; // _var type

in_val.length(1);
in_val[0] = 99;
inout_val.length(2);
inout_val[0] = 5;
inout_val[1] = 6;

ret_val = fv->op(in_val, inout_val, out_val);

// out_val and ret_val will eventually deallocate...

Whenout_val andret_val go out of scope, they will call delete on the pointers that were
returned by the call toop . You can use_var types forin andinout parameters as well.
However, doing this offers not much of an advantage because no memory management issue
in this case (but the use of a _var types still requires dynamic allocation):

Foo_var fv = ...; // Get reference...

OctSeq_var in_val(new OctSeq);
OctSeq_var inout_val(new OctSeq);
OctSeq_var out_val;
OctSeq_var ret_val;

in_val->length(1);
in_val[0] = 99;
inout_val->length(2);
inout_val[0] = 5;
inout_val[1] = 6;

ret_val = fv->op(in_val, inout_val, out_val);

// ...

This code is correct but slightly less efficient because of the unnecessary allocation for thein and
inout parameter.
Copyright 2000–2001 IONA Technologies 6-53

Parameter Passing Client-Side C++ Mapping

38
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

y are
l the
6.27.7 Rules for Variable-Length Arrays
As for variable-length complex types, variable-length arrays are dynamically allocated if the
out parameters or the return value and must be deallocated by the caller. The client can cal
operation as follows:

Foo_var fv = ...; // Get reference...

EA in_val;
in_val[0].name = CORBA::string_dup("Michi");
in_val[0].number = 1;
in_val[1].name = CORBA::string_dup("Steve");
in_val[1].number = 2;

EA inout_val;
inout_val[0].name = CORBA::string_dup("Bjarne");
inout_val[0].number = 3;
inout_val[1].name = CORBA::string_dup("Stan");
inout_val[1].number = 4;

EA_slice * out_val; // Note pointer to slice
EA_slice * ret_val; // Note pointer to slice

ret_val = fv->op(in_val, inout_val, out_val);
// in_val is unchanged, inout_val may have been changed,
6-54
38Parameter Passing (cont.)

Variable-length out arrays and return values are dynamically allocated.

struct Employee {
string name;
long number;

};
typedef Employee EA[2];

interface Foo {
EA op(in EA p_in, inout EA p_inout, out EA p_out);

};

The proxy signature is:

EA_slice * op(
const EA p_in,
EA_slice * p_inout,
EA_out p_out

);
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing

ry:
// out_val and ret_val point at dynamically allocated arrays

EA_free(out_val); // Must free here!
EA_free(ret_val); // Must free here!

As for other variable-length types, use of_var types makes the explicit deallocation unnecessa

Foo_var fv = ...; // Get reference...

EA in_val;
// Initialize in_val...

EA inout_val;
// Initialize inout_val...

EA_var out_val; // _var type
EA_var ret_val; // _var type

ret_val = fv->op(in_val, inout_val, out_val);
// in_val is unchanged, inout_val may have been changed,
// out_val and ret_val point at dynamically allocated arrays

// No need for explicit deallocation here...
Copyright 2000–2001 IONA Technologies 6-55

Parameter Passing Client-Side C++ Mapping

39
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies
6.27.8 Rules for Object References
For object references, the same rules apply as for strings: the client must deallocateout
parameters and return values. The client can call the operation as follows:

Foo_var fv = ...; // Get reference...

Thermometer_ptr in_val = ...; // Initialize in param
Thermometer_ptr inout_val = ...; // Initialize inout param
Thermometer_ptr out_val;
Thermometer_ptr ret_val;

ret_val = fv->op(in_val, inout_val, out_val);

CORBA::release(in_val);
CORBA::release(inout_val);
CORBA::release(out_val);
CORBA::release(ret_val);
6-56
39Parameter Passing (cont.)

Object reference out parameters and return values are duplicated.

interface Thermometer { /* ... */ };

interface Foo {
Thermometer op(

in Thermometer p_in,
inout Thermometer p_inout,
out Thermometer p_out

);
};

The proxy signature is:

Thermometer_ptr op(
Thermometer_ptr p_in,
Thermometer_ptr & p_inout,
Thermometer_out p_out

);
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing
As with the previous examples, using_var types makes life considerable easier and safer beca
you cannot accidentally forget to release a reference:

Foo_var fv = ...; // Get reference...

Thermometer_var in_val = ...; // Initialize in param
Thermometer_var inout_val = ...; // Initialize inout param
Thermometer_var out_val;
Thermometer_var ret_val;

ret_val = fv->op(in_val, inout_val, out_val);

// No releases necessary here.
Copyright 2000–2001 IONA Technologies 6-57
use

Parameter Passing: Pitfalls Client-Side C++ Mapping

40
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ar

to
r, and

hich
e

r.

d out
equent

 null
6.28 Parameter Passing: Pitfalls
The above slide summarizes a few of the pitfalls that you may encounter until you are famili
with the parameter passing rules.

Obviously, you must initialize anyin andinout parameters you pass to an operation. Failure
do so is asking for trouble: for a simple type, you will be passing a garbage value to the serve
for a type passed by pointer (such as a string), you will be passing an uninitialized pointer (w
is likely to cause a core dump when the stub dereferences the pointer in order to marshal th
string).

The C++ mapping makes it illegal to pass a null pointer as anin or inout parameter.14 Failure to
obey this rules will cause a core dump in the stub when it attempts to marshal the paramete

As you saw in the preceding sections, you must deallocate variable-length return values an
parameters that are passed by pointer. Failure to do so results in a resource leak. The most fr
cause of leaks is code like the following:

// Assume IDL:
// interface Foo {
// string get_name();
// void set_name(in string n);
// };

Foo_var fv = ...;

14.For nil object references, it is OK to pass a nil reference, even if nil references happen to be implemented as
pointers. However, you cannot pass, for example, a null pointer as anin string.
6-58
40Parameter Passing: Pitfalls
Stick to the following rules when invoking operations:

• Always initialize in and inout parameters.

• Do not pass in or inout null pointers.

• Deallocate out parameters that are passed by pointer.

• Deallocate variable-length return values.

• Do not ignore the return value from an operation that returns a
variable-length value.

• Use _var types to make life easier for yourself.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Parameter Passing: Pitfalls

is
cout << fv->get_name() << endl; // Leak!

CORBA::String_var s = fv->get_name(); // Better
cout << s << endl;

// Or use:
cout << CORBA::String_var(fv->get_name()) << endl;

The use of aString_var temporary prevents this kind of problem. Another common mistake
to write code like the following:

Foo_var fv1 = ...;
Foo_var fv2 = ...;

fv1->set_name(fv2->get_name()); // Leak!

CORBA::String_var tmp = fv2->get_name();
fv1->set_name(tmp); // Better!

// Or use:
fv1->set_name(CORBA::String_var(fv2->get_name()));
Copyright 2000–2001 IONA Technologies 6-59

Parameter Passing: Pitfalls Client-Side C++ Mapping

an
,
.
ed
, it
The following table summarizes the parameter passing rules. Note that the formal type ofout
parameters is<typename> _out . However, apart from the transparent deallocation for_var
parameters done by_out types, they behave as if they were of the type shown.

If you use_var types to pass parameters, the situation gets considerably simpler:

Note that_var types do work asin parameters. This is occasionally useful if you want to pass
out_var parameter you received from one call as an in_var parameter to another call. However
keep in mind that_var types are useful mainly forinout andout parameters and return values
Do not use a _var type purely for a local variable. While it will work, it is wasteful due to the ne
to initialize_var types with dynamically-allocated memory. If all you need is a local variable
is easier and more efficient to simply use a stack-allocated instance.

IDL Type in inout out Return Type

simple simple simple & simple & simple
enum enum enum & enum & enum
fixed const Fixed & Fixed & Fixed & Fixed

string const char * char * & char * & char *

wstring const WChar * WChar * & WChar * & WChar *

any const Any & Any & Any * & Any *

objref objref_ptr objref_ptr & objref_ptr & objref_ptr

sequence const sequence & sequence & sequence * & sequence *

struct, fixed const struct & struct & struct & struct
union, fixed const union & union & union & union
array, fixed const array array_slice * array_slice * array_slice *

struct, variable const struct & struct & struct * & struct *

union, variable const union & union & union * & union *

array, variable const array array_slice * array_slice * & array_slice *

IDL Type in inout/out Return Type

string const String_var & String_var & String_var

wstring const WString_var & WString_var & WString_var

any const Any_var & Any_var & Any_var

objref const objref _var & objref_var & objref_var

sequence const sequence _var & sequence_var & sequence_var

struct const struct _var & struct_var & struct_var

union const union _var & union_var & union_var

array const array _var & array_var & array_var

string const String_var & String_var & String_var

wstring const WString_var & WString_var & WString_var

any const Any_var & Any_var & Any_var

objref const objref _var & objref_var & objref_var

sequence const sequence _var & sequence_var & sequence_var
6-60 Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Mapping for Exceptions

41
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

best
at a
by

erive
6.29 Mapping for Exceptions
Up to now, we have ignored how to deal with error conditions. Even though CORBA does its
to make a remote procedure call appear like a local one, the reality of networking means th
remote invocation is more likely to fail than a local function call. Such failures are indicated
system exceptions. In addition, user exceptions can be raised by operations to indicate
application-specific errors.

The C++ mapping arranges exceptions into the hierarchy shown above. The base classes
CORBA::Exception , CORBA::SystemException , andCORBA::UserException are
abstract and simply encapsulate common functionally. In addition, because all exceptions d
from CORBA::UserException , you can catch all CORBA exceptions in a single generic
catch handler, which is useful.

Specific system exceptions are derived fromSystemException , whereas specific user
exceptions are all derived fromUserException .
Copyrigh
41Mapping for Exceptions

IDL exceptions map to a hierarchy of C++ classes:

TRANSIENT

Exception

UNKNOWN

BAD_PARAM

SystemException UserException

DupAsset

EChange

BadTemp...
...

...

...
...

...
t 2000–2001 IONA Technologies 6-61

Mapping for Exceptions Client-Side C++ Mapping

42
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ons,

 the

rity.
The above slide shows the exception hierarchy as defined in theCORBA namespace. The
Exception base class (and therefore all derived exceptions) contains three member functi
_name, _rep_id , and_raise .

• The_name member function returns the name of the exception, such as"BAD_PARAM".

• The_rep_id member function returns the repository ID of an exception, such as
"IDL:omg.org/CORBA/BAD_PARAM:1.0" . You will rarely have a need to call these
members directly. They are present mainly for debugging and as an aid to implementing
ostream inserter for exceptions.

• The_raise member function is rapidly becoming obsolete. It was originally added to
support C++ compilers without exception handling, so we will not discuss it further.

Note that all concrete system exceptions derive fromSystemException and all concrete user
exceptions derive fromUserException .

Given these definitions, a client can implement error handling at the desired level of granula
For example, here is some code that might be used when calling theset_nominal operation on a
thermostat:

CCS::Thermostat_var ts = ...;
CCS::TempType temp = ...;

try {
ts->set_nominal(temp);

} catch (const CCS::Thermostat::BadTemp &) {
// New temperature out of range
6-62
42Mapping for Exceptions (cont.)

The exception hierarchy looks like this:

namespace CORBA {
class Exception { // Abstract
public:

virtual ~Exception();
virtual const char * _name() const;
virtual const char * _rep_id() const;
virtual void _raise() = 0;

};
class SystemException : public Exception { // Abstract

// ...
};
class UserException : public Exception { // Abstract

// ...
};
class UNKNOWN : public SystemException { /* ... */ }; // Concrete
class FREE_MEM : public SystemException { /* ... */ }; // Concrete
// etc...

};
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Mapping for Exceptions

 well as

age

me
hange

alue.
o a
it by
} catch (const CORBA::UserException & e) {
// Some other user exception was raised
cerr << "User exception: " << e << endl;

} catch (const CORBA::OBJECT_NOT_EXIST &) {
cerr << "No such thermostat" << endl;

} catch (const CORBA::SystemException & e) {
// Some other system exception
cerr << "System exception: " << e << endl;

} catch (...) {
// Some non-CORBA exception -- should never happen

}

This code handles exceptions in detail, by catching specific user and system exceptions as
handling other user and system exceptions generically.

Note that the finalcatch handler should never run because a compliant ORB will not throw
anything but CORBA exceptions. Usually, the best thing to do is to have a genericcatch handler
for “impossible” exceptions fairly high up in your call hierarchy; that handler can print a mess
and terminate the program.

Also note that you can insert both user and system exceptions into anostream . This works
because the mapping provides an overloaded<< operator forCORBA::Exception . The precise
formatting of the string that is printed is implementation defined. Typically, it will print the na
of the exception and, for system exceptions, the completion status and minor code. You can c
the formatting of the string by writing overloadedostream inserters forSystemException
andUserException (or even writing overloadedostream inserters for specific exceptions).

Typically, you will not handle exceptions in this much detail for every call. Instead, calls will
typically only handle one or two error conditions of interest and permit other exceptions to
percolate back up the call hierarchy, where they can be handled generically.

Note that the code catches exceptions by constant reference rather than by non-constant v
This is more efficient because the compiler can eliminate the need to copy the exception int
temporary. It is also much better if you rethrow an exception because, if you catch and throw
a base reference, the exception won’t be sliced if its actual type is more derived.
Copyright 2000–2001 IONA Technologies 6-63

Mapping for System Exceptions Client-Side C++ Mapping

43
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

nt
ode

g to

nd
6.30 Mapping for System Exceptions
The SystemException class offers the usual default constructor, copy constructor, assignme
operator, and destructor. (The default constructor creates a system exception with a minor c
of 0 and a completion status ofCOMPLETED_NO.) In addition, a two-parameter version of the
constructor permits you to initialize a system exception during construction (instead of havin
first default construct it and then set the members).

Theminor andcompleted member functions permit you to read and write the minor code a
the completion status. The actual (concrete) system exceptions are also defined in theCORBA
namespace and simply defined by derivation fromSystemException .
6-64
43Mapping for System Exceptions

All system exceptions derive from the SystemException base class:

class SystemException : public Exception {
public:

SystemException();
SystemException(const SystemException &);
SystemException(

ULong minor,
CompletionStatus status

);
~SystemException();

SystemException & operator=(const SystemException);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);
// ...

};
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Mapping for System Exceptions
Copyright 2000–2001 IONA Technologies 6-65

Semantics of System Exceptions Client-Side C++ Mapping

44
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ns,
to be

notes
rence
ation

rther

you

raise

g the
6.31 Semantics of System Exceptions
The specification defines the meaning of the various system exceptions. For some exceptio
because of their general nature, the specification only outlines in general terms when they are
raised. For other exceptions, the specification is quite specific. Above is a list of the system
exceptions you are most likely to see, so it is useful to know their meaning.

• OBJECT_NOT_EXIST

This exception is an authoritative indication that the reference for the request is stale (de
a non-existent object). If you receive this exception, you can safely conclude that the refe
to the object is permanently non-functional and therefore you should clean up any applic
resources (such as database entries) you may have for that object.

• TRANSIENT

TRANSIENT indicates that the ORB attempted to reach the server and failed. It is not an
indication that the server or the object does not exist. Instead, it simply means that no fu
determination of an object’s status was possible because it could not be reached.TRANSIENT
is typically raised if connectivity to the server cannot be established—things may work if
try again later.

• BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. Some ORBs
this exception if you pass a null pointer to an operation.

• COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress. At the
protocol level, the client sends a request to the server and then waits for a reply containin
6-66
44Semantics of System Exceptions

The standard defines semantics for system exceptions. For some
exceptions, the semantics are defined only in broad terms (such as
INTERNAL or NO_MEMORY).

The most commonly encountered system exceptions are:

OBJECT_NOT_EXIST, TRANSIENT, BAD_PARAM, COMM_FAILURE,
IMP_LIMIT, NO_MEMORY, UNKNOWN, NO_PERMISSION, and
NO_RESOURCES.

The specification defines minor codes for some exceptions to provide
more detailed information on a specific error. Standard minor codes are
allocated in the range 0x4f4d0000–0x4f4d0fff.

Vendors can allocate a block of minor code values for their own use. For
ORBacus-specific minor codes, the allocated range is 0x4f4f0000–
0x4f4f0fff.
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Semantics of System Exceptions

.
he
e size

 in the

or if

n to
nd if

y have

not
ges for
results. If the connection drops after the client has sent the request but before the reply
arrived, the client-side run time raisesCOMM_FAILURE.

• IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run time
There are a variety of reasons for this exception. For example, you may have reached t
maximum number of references you can hold simultaneously in your address space, th
of a parameter may have exceeded the allowed maximum, or your ORB may impose a
maximum on the number of clients or servers that can run simultaneously. Your ORB’s
documentation should provide more detail about such limits.

• NO_MEMORY

The ORB run time ran out of memory at some stage during a call. You can check the
completion status to see whether it happened before or after the operation was invoked
server.

• UNKNOWN

This exception is raised if an operation implementation raises a non-CORBA exception
an operation raises a user exception that does not appear in the operation’sraises
expression.UNKNOWN is also raised if the server returns a system exception that is unknow
the client. This can happen if the server uses a later version of CORBA than the client a
new system exceptions have been added to the later version.

• NO_PERMISSION

This exception can be raised by ORBs that provide a Security Service if the caller has
insufficient privileges to invoke an operation.

• NO_RESOURCES

The ORB has encountered a general resource limitation. For example, the run time ma
reached the maximum permissible number of open connections.

If you receive a system exception, its minor code may be non-zero and provide additional
information about the exception. You cannot use the minor code programmatically (at least
easily) because the C++ mapping does not provide symbolic constants or string error messa
minor codes. However, the minor code is still useful for debugging and logging.
Copyright 2000–2001 IONA Technologies 6-67
 has

Mapping for User Exceptions Client-Side C++ Mapping

45
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

extra
l
public
son for

m

6.32 Mapping for User Exceptions
The mapping for user exceptions is the same as the one for structures, with the addition of an
constructor. User exceptions map exactly like structures, except that they have an additiona
constructor. As you can see in the example above, the two members of the exception map to
data members, and the constructor accepts two parameters, one for each member. The rea
the additional constructor is so that you can initialize and throw the exception in a single
statement:

if (something_failed)
throw Boom("Something failed", 99);

(On the client side, you will rarely (if ever) throw CORBA exceptions. However, the same
mapping applies to the server side, where the functionality is useful.)

The code to catch and handle user exceptions looks very similar to the code to handle syste
exceptions and accessing a structure:

try {
some_ref->some_op();

} catch (const Boom & b) {
cerr << "Boom: " << b.msg << " (" << b.errno << ")" << endl;

}

6-68
45Mapping for User Exceptions

User exceptions map to a class with public members:

exception Boom {
string msg;
short errno;

};

This generates:

class Boom : public CORBA::UserException {
Boom();
Boom(const char*, CORBA::Short);
Boom(const Boom &);
Boom& operator=(const Boom &);
~Boom();

OB::StrForStruct msg;
CORBA::Short errno;

};
Copyright 2000–2001 IONA Technologies

Client-Side C++ Mapping Compiling and Linking

46
Client-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

.

he

u also

is
6.33 Compiling and Linking
The exact compile and link commands you need to use to link an executable depend on the
platform. The above examples show compile and link commands for GNU C++ under Linux

Assuming that ORBacus is installed in/opt/OB , the include files are under
/opt/OB/include in separate hierarchies. For example, the ORBacus include files are in
/opt/OB/include/OB , whereas the JThreads/C++ include files are in
/opt/OB/include/JTC . Include directives in the installed and generated header files are
always relative to the installation root. For example, ORBacus header files use includes of t
form:

#include <OB/CORBA.h>
#include <OB/JTC.h>

This means that a single-I/opt/OB/include directive is sufficient to locate the installed
header files. Because the IDL-generated header files are typically in the current directory, yo
need add a-I. directive.

To link the client, you must link the compiled application code and the compiled stubs. The
ORBacus run-time support is provided inlibOB and threads support (if you use JThreads/C++)
provided inlibJTC (which in turn depends on the native threads library for your platform).
Copyrigh
46Compiling and Linking

To create a client executable, you must compile the application code
and the stub code. Typical compile commands are:

c++ -I. -I/opt/OB/include -c client.cc
c++ -I. -I/opt/OB/include -c MyIDL.cpp

The exact flags and compile command vary with the platform.

To link the client, you must link against libOB :

c++ -o client client.o MyIDL.o -L/opt/OB/lib -lOB

If you are using JThreads/C++, you also need to link against the JTC
library and the native threads library. For example:

c++ -o client client.o MyIDL.o -L/opt/OB/lib \
-lOB -lJTC -lpthread
t 2000–2001 IONA Technologies 6-69

7. Exercise: Writing a Client
Summary

In this unit, you will develop a simple CORBA client that communicates with a server that is
provided for you.

Objectives

By the completion of this unit, you will be able to build CORBA clients that read or write
attributes, invoke operations, and handle CORBA exceptions.

Source Files and Build Environment Exercise: Writing a Client

u, so

ver

not

the

bjects.
ry:

e

7.1 Source Files and Build Environment
In yourclient directory you will find the following files:

• Makefile

Use this makefile to compile the code. All the relevant targets have been provided for yo
you do not need to change this file. The targets are:

• all

This target builds both client and server excutables.

• client

This target builds the client executable.

• server

This target builds the server excutable.

• clean

This target removes all intermediate files and the files that are generated by the ser
when it runs.

• clobber

This target does the same thing asclean but also removes theclient andserver
executable files.

• CCS.idl

This file contains the IDL for the Climate Control System we presented in Unit 4. YOu do
need to change this file.

• server.h , server.cpp

These are the source files for the server you will communicate with. You do not need to
change these files.

• client.cpp

This file contains the source code for the client. You will need to modify this file as part of
exercise.

7.2 Server Operation
The server creates a single controller object and a number of thermometer and thermostat o
On start-up, the server writes two stringified object references into files in the current directo

• tmstat.ref

This file contains the stringified reference for a thermostat object.

• ctrl.ref

This file contains the stringified reference to the controller object.

To start the server, use

./server &

to run the server in the background or, alternatively, run the server in a different window in th
foreground. (Make sure that the server’s working directory is yourclient directory.)
7-2 Copyright 2000–2001 IONA Technologies

Exercise: Writing a Client Source Files and Build Environment

r in

d then

ious

g.

iler
nd
n
les.

 by

 is for
rature,

e with
7.3 Client Operation
The client executable expects the stringified references for the thermostat and the controlle
argv[1] andargv[2] . You can start the client as follows:

./client file:///home/michi/labs/client/tmstat.ref \
file:///home/michi/labs/client/ctrl.ref

The client first uses the thermostat reference to invoke a few operations on the thermostat, an
uses the controller reference to use the more complex operations on the controller.

7.4 What You Need to Do
Much of the client is already implemented for you, so you do not have to waste time on the ted
(and not very instructive) chores of finding include files, setting compiler options, and so on.
Instead, you will be focussing on the more interesting aspects of the client-side C++ mappin

The places in the client code are marked with a

// MISSING, step X

comment, so you know where you are expected to make changes.

NOTE: If you find yourself trying to read the header files that are generated by the IDL comp
in order to work out what functions to call and what arguments to pass, step back a
think again. The header files are largely incomprehensible and not meant for huma
consumption. In order to decide what to do, look at the IDL and the C++ mapping ru
This will get you to your goal much quicker.

7.4.1 Communicating with the Thermostat

1. Get the stringified thermostat reference fromargv[1] and unstringify it.

2. The client code contains an overloaded operator to display the details of a device:

static ostream &
operator<<(ostream os, CCS::Thermometer_ptr t)

With this operator, you can display the details of a thermometer or thermostat reference
inserting the reference into a stream:

CCS::Thermometer_var tmstat = ...;
cout << tmstat << endl;

Implement the body of this operator. You should display whether the inserted reference
thermometer or thermostat, show the asset number, model, location, and current tempe
and, if the device is thermostat, show the setting of the nominal temperature.

3. Use the inserter you just created to display the details of the thermostat reference you
unstringified in step 1.

4. Change the temperature of the thermostat to a valid temperature. (Use room temperatur
a Fahrenheit scale.) Read back the setting you just changed to convince yourself that it
actually worked.
Copyright 2000–2001 IONA Technologies 7-3

Source Files and Build Environment Exercise: Writing a Client

e).

 for

se

meter.)
of the
5. The client code contains an overloaded operator to display the details of aBtData structure
on a stream:

static ostream &
operator<<(ostream & os, const CCS::Thermostat::BtData & btd)

Implement the body of this operator.

6. Change the setting of the thermostat to an illegal value (outside room temperature rang
Verify that the setting fails and that an exception is thrown. Display the details of the
exception using the operator you implemented in step 5.

7.4.2 Communicating with the Controller

7. Get the stringified controller reference fromargv[2] and unstringify it.

8. Get the list of devices from the controller. Display the number of devices and the details
each device.

9. Search the CCS for devices in rooms "Earth" and "HAL". Show the devices found in the
rooms.

10. The client code contains an overloaded operator to display the details of anEChange
exception:

static ostream &
operator<<(ostream & os, const CCS::Controller::EChange & ec)

Implement the body of this operator.

11. Increase the temperature of all thermostats by 40 degrees. (To do this, you will have to
somehow get all thermostats first, because you cannot set the temperature of a thermo
Some thermostats will raise an exception in response to the change. Display the details
exception that is returned using the operator you implemented in step 10.
7-4 Copyright 2000–2001 IONA Technologies

Solution: Writing a Client
8. Solution: Writing a Client
Copyright 2000–2001 IONA Technologies 8-1

Communicating with the Thermostat Solution: Writing a Client
8.1 Communicating with the Thermostat

Step 1

// Get thermostat reference from argv[1]
// and convert to object.
CORBA::Object_var obj = orb->string_to_object(argv[1]);
if (CORBA::is_nil(obj)) {

cerr << "Nil thermostat reference" << endl;
throw 0;

}

// Try to narrow to CCS::Thermostat.
CCS::Thermostat_var tmstat;
try {

tmstat = CCS::Thermostat::_narrow(obj);
} catch (const CORBA::SystemException & se) {

cerr << "Cannot narrow thermostat reference: "
<< se << endl;

throw 0;
}
if (CORBA::is_nil(tmstat)) {

cerr << "Wrong type for thermostat ref." << endl;
throw 0;

}

Step 2

// Show the details for a thermometer or thermostat.

static ostream &
operator<<(ostream & os, CCS::Thermometer_ptr t)
{

// Check for nil.
if (CORBA::is_nil(t)) {

os << "Cannot show state for nil reference." << endl;
return os;

}

// Try to narrow and print what kind of device it is.
CCS::Thermostat_var tmstat = CCS::Thermostat::_narrow(t);
os << (CORBA::is_nil(tmstat)?"Thermometer:":"Thermostat:")

<< endl;

// Show attribute values.
CCS::ModelType_var model = t->model();
CCS::LocType_var location = t->location();
os << "\tAsset number: " << t->asset_num() << endl;
os << "\tModel : " << model << endl;
os << "\tLocation : " << location << endl;
8-2 Copyright 2000–2001 IONA Technologies

Solution: Writing a Client Communicating with the Thermostat
os << "\tTemperature : " << t->temperature() << endl;

// If device is a thermostat, show nominal temperature.
if (!CORBA::is_nil(tmstat))

os << "\tNominal temp: " << tmstat->get_nominal() << endl;
return os;

}

Step 3

// Show details of thermostat
cout << tmstat << endl;

Step 4

// Change the temperature of the thermostat to a valid
// temperature.
cout << "Changing nominal temperature" << endl;
CCS::TempType old_temp = tmstat->set_nominal(60);
cout << "Nominal temperature is now 60, previously "

<< old_temp << endl << endl;

cout << "Retrieving new nominal temperature" << endl;
cout << "Nominal temperature is now "

<< tmstat->get_nominal() << endl << endl;

Step 5

// Show the information in a BtData struct.

static ostream &
operator<<(ostream & os, const CCS::Thermostat::BtData & btd)
{

os << "CCS::Thermostat::BtData details:" << endl;
os << "\trequested : " << btd.requested << endl;
os << "\tmin_permitted: " << btd.min_permitted << endl;
os << "\tmax_permitted: " << btd.max_permitted << endl;
os << "\terror_msg : " << btd.error_msg << endl;
return os;

}

Step 6

// Change the temperature to an illegal value and
// show the details of the exception that is thrown.
cout << "Setting nominal temperature out of range" << endl;
bool got_exception = false;
try {

tmstat->set_nominal(10000);
} catch (const CCS::Thermostat::BadTemp & e) {

got_exception = true;
Copyright 2000–2001 IONA Technologies 8-3

Communicating with the Thermostat Solution: Writing a Client
cout << "Got BadTemp exception: " << endl;
cout << e.details << endl;

}
if (!got_exception)

assert("Did not get exception");

8.2 Communicating with the Controller

Step 7

// Get controller reference from argv[2]
// and convert to object.
obj = orb->string_to_object(argv[2]);
if (CORBA::is_nil(obj)) {

cerr << "Nil controller reference" << endl;
throw 0;

}

// Try to narrow to CCS::Controller.
CCS::Controller_var ctrl;
try {

ctrl = CCS::Controller::_narrow(obj);
} catch (const CORBA::SystemException & se) {

cerr << "Cannot narrow controller reference: "
<< se << endl;

throw 0;
}
if (CORBA::is_nil(ctrl)) {

cerr << "Wrong type for controller ref." << endl;
throw 0;

}

Step 8

// Get list of devices
CCS::Controller::ThermometerSeq_var list = ctrl->list();

// Show number of devices.
CORBA::ULong len = list->length();
cout << "Controller has " << len << " device";
if (len != 1)

cout << "s";
cout << "." << endl;

// Show details for each device.
CORBA::ULong i;
for (i = 0; i < len; ++i)

cout << list[i].in();
cout << endl;
8-4 Copyright 2000–2001 IONA Technologies

Solution: Writing a Client Communicating with the Thermostat
Step 9

// Look for device in Rooms Earth and HAL.
cout << "Looking for devices in Earth and HAL." << endl;
CCS::Controller::SearchSeq ss;
ss.length(2);
ss[0].key.loc(CORBA::string_dup("Earth"));
ss[1].key.loc(CORBA::string_dup("HAL"));
ctrl->find(ss);

// Show the devices found in that room.
for (i = 0; i < ss.length(); ++i)

cout << ss[i].device.in(); // Overloaded <<
cout << endl;

Step 10

// Loop over the sequence of records in an EChange exception and
// show the details of each record.

static ostream &
operator<<(ostream & os, const CCS::Controller::EChange & ec)
{

CORBA::ULong i;
for (i = 0; i < ec.errors.length(); ++i) {

os << "Change failed:" << endl;
os << ec.errors[i].tmstat_ref.in(); // Overloaded <<
os << ec.errors[i].info << endl; // Overloaded <<

}
return os;

}

Step 11

// Increase the temperature of all thermostats
// by 40 degrees. First, make a new list (tss)
// containing only thermostats.
cout << "Increasing thermostats by 40 degrees." << endl;
CCS::Thermostat_var ts;
CCS::Controller::ThermostatSeq tss;
for (i = 0; i < list->length(); ++i) {

ts = CCS::Thermostat::_narrow(list[i]);
if (CORBA::is_nil(ts))

continue; // Skip thermometers
len = tss.length();
tss.length(len + 1);
tss[len] = ts;

}

// Try to change all thermostats.
try {
Copyright 2000–2001 IONA Technologies 8-5

Communicating with the Thermostat Solution: Writing a Client
ctrl->change(tss, 40);
} catch (const CCS::Controller::EChange & ec) {

cerr << ec; // Overloaded <<
}

8.3 The Complete Client Code
For your reference, the complete client code is shown below.

#include <OB/CORBA.h>
#include <assert.h>

#if defined(HAVE_STD_IOSTREAM)
using namespace std;
#endif

#include "CCS.h"

//---

// Show the details for a thermometer or thermostat.

static ostream &
operator<<(ostream & os, CCS::Thermometer_ptr t)
{

// Check for nil.
if (CORBA::is_nil(t)) {

os << "Cannot show state for nil reference." << endl;
return os;

}

// Try to narrow and print what kind of device it is.
CCS::Thermostat_var tmstat = CCS::Thermostat::_narrow(t);
os << (CORBA::is_nil(tmstat)?"Thermometer:":"Thermostat:")

<< endl;

// Show attribute values.
CCS::ModelType_var model = t->model();
CCS::LocType_var location = t->location();
os << "\tAsset number: " << t->asset_num() << endl;
os << "\tModel : " << model << endl;
os << "\tLocation : " << location << endl;
os << "\tTemperature : " << t->temperature() << endl;

// If device is a thermostat, show nominal temperature.
if (!CORBA::is_nil(tmstat)) {

os << "\tNominal temp: "
<< tmstat->get_nominal() << endl;

}
return os;
8-6 Copyright 2000–2001 IONA Technologies

Solution: Writing a Client Communicating with the Thermostat
}

//---

// Show the information in a BtData struct.

static ostream &
operator<<(ostream & os, const CCS::Thermostat::BtData & btd)
{

os << "CCS::Thermostat::BtData details:" << endl;
os << "\trequested : " << btd.requested << endl;
os << "\tmin_permitted: " << btd.min_permitted << endl;
os << "\tmax_permitted: " << btd.max_permitted << endl;
os << "\terror_msg : " << btd.error_msg << endl;
return os;

}

//---

// Loop over the sequence of records in an EChange exception and
// show the details of each record.

static ostream &
operator<<(ostream & os, const CCS::Controller::EChange & ec)
{

CORBA::ULong i;
for (i = 0; i < ec.errors.length(); ++i) {

os << "Change failed:" << endl;
os << ec.errors[i].tmstat_ref.in(); // Overloaded <<
os << ec.errors[i].info << endl; // Overloaded <<

}
return os;

}

//---

int
main(int argc, char * argv[])
{

int status = 0;
CORBA::ORB_var orb;

try {
// Initialize ORB and check arguments.
orb = CORBA::ORB_init(argc, argv);
if (argc != 3) {

cerr << "Usage: client IOR IOR" << endl;
throw 0;

}

Copyright 2000–2001 IONA Technologies 8-7

Communicating with the Thermostat Solution: Writing a Client
// Get thermostat reference from argv[1]
// and convert to object.
CORBA::Object_var obj = orb->string_to_object(argv[1]);
if (CORBA::is_nil(obj)) {

cerr << "Nil thermostat reference" << endl;
throw 0;

}

// Try to narrow to CCS::Thermostat.
CCS::Thermostat_var tmstat;
try {

tmstat = CCS::Thermostat::_narrow(obj);
} catch (const CORBA::SystemException & se) {

cerr << "Cannot narrow thermostat reference: "
<< se << endl;

throw 0;
}
if (CORBA::is_nil(tmstat)) {

cerr << "Wrong type for thermostat ref." << endl;
throw 0;

}

// Show details of thermostat
cout << tmstat << endl;

// Change the temperature of the thermostat to a valid
// temperature.
cout << "Changing nominal temperature" << endl;
CCS::TempType old_temp = tmstat->set_nominal(60);
cout << "Nominal temperature is now 60, previously "

<< old_temp << endl << endl;

cout << "Retrieving new nominal temperature" << endl;
cout << "Nominal temperature is now "

<< tmstat->get_nominal() << endl << endl;

// Change the temperature to an illegal value and
// show the details of the exception that is thrown.
cout << "Setting nominal temperature out of range"

<< endl;
bool got_exception = false;
try {

tmstat->set_nominal(10000);
} catch (const CCS::Thermostat::BadTemp & e) {

got_exception = true;
cout << "Got BadTemp exception: " << endl;
cout << e.details << endl;

}
if (!got_exception)

assert("Did not get exception");
8-8 Copyright 2000–2001 IONA Technologies

Solution: Writing a Client Communicating with the Thermostat
// Get controller reference from argv[2]
// and convert to object.
obj = orb->string_to_object(argv[2]);
if (CORBA::is_nil(obj)) {

cerr << "Nil controller reference" << endl;
throw 0;

}

// Try to narrow to CCS::Controller.
CCS::Controller_var ctrl;
try {

ctrl = CCS::Controller::_narrow(obj);
} catch (const CORBA::SystemException & se) {

cerr << "Cannot narrow controller reference: "
<< se << endl;

throw 0;
}
if (CORBA::is_nil(ctrl)) {

cerr << "Wrong type for controller ref." << endl;
throw 0;

}

// Get list of devices
CCS::Controller::ThermometerSeq_var list = ctrl->list();

// Show number of devices.
CORBA::ULong len = list->length();
cout << "Controller has " << len << " device";
if (len != 1)

cout << "s";
cout << "." << endl;

// Show details for each device.
CORBA::ULong i;
for (i = 0; i < len; ++i)

cout << list[i].in();
cout << endl;

// Look for device in Rooms Earth and HAL.
cout << "Looking for devices in Earth and HAL." << endl;
CCS::Controller::SearchSeq ss;
ss.length(2);
ss[0].key.loc(CORBA::string_dup("Earth"));
ss[1].key.loc(CORBA::string_dup("HAL"));
ctrl->find(ss);

// Show the devices found in that room.
for (i = 0; i < ss.length(); ++i)

cout << ss[i].device.in(); // Overloaded <<
Copyright 2000–2001 IONA Technologies 8-9

Communicating with the Thermostat Solution: Writing a Client
cout << endl;

// Increase the temperature of all thermostats
// by 40 degrees. First, make a new list (tss)
// containing only thermostats.
cout << "Increasing thermostats by 40 degrees." << endl;
CCS::Thermostat_var ts;
CCS::Controller::ThermostatSeq tss;
for (i = 0; i < list->length(); ++i) {

ts = CCS::Thermostat::_narrow(list[i]);
if (CORBA::is_nil(ts))

continue; // Skip thermometers
len = tss.length();
tss.length(len + 1);
tss[len] = ts;

}

// Try to change all thermostats.
try {

ctrl->change(tss, 40);
} catch (const CCS::Controller::EChange & ec) {

cerr << ec; // Overloaded <<
}

}
catch (const CORBA::Exception& ex) {

cerr << "Uncaught CORBA exception: " << ex << endl;
status = 1;

} catch (...) {
status = 1;

}

if (!CORBA::is_nil(orb)) {
try {

orb -> destroy();
} catch (const CORBA::Exception& ex) {

cerr << ex << endl;
status = 1;

}
}

return status;
}

8-10 Copyright 2000–2001 IONA Technologies

9. Server-Side C++ Mapping
ect a
ow to

at this
ation
Summary

This unit presents the basics of the server-side mapping. In particular, it covers how to conn
servant to the IDL-generated skeleton classes, how to implement attributes and operations, h
throw exceptions, and the memory management rules that apply to the server side. Note th
unit presents only the basics of server implementation. Unit 12 and Unit 15 cover implement
techniques in more depth.

Objectives

By the completion of this unit, you will be able to implement a simple CORBA server.

Introduction Server-Side C++ Mapping

1
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

les.
9.1 Introduction
The server-side C++ mapping is a superset of the client-side mapping. IDL data types map
identically and the parameter passing rules are simply the mirror image of the client-side ru
The remainder of the APIs is quite small and easy to learn.
9-2
1Introduction

The server-side C++ mapping is a superset of the client-side mapping.

Writing a server requires additional constructs to:

• connect servants to skeleton classes

• receive and return parameters correctly

• create object references for objects

• initialize the server-side run time

• run an event loop to accept incoming requests

The server-side mapping is easy to learn because most of it follows
from the client-side mapping.
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Mapping for Interfaces

2
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

The
er
r

9.2 Mapping for Interfaces
For the server side, the IDL compiler generates separate skeleton header and source files.
skeleton classes defined in those files provide an up-call interface for the ORB into the serv
application code. The skeleton class contains pure virtual functions for each IDL operation o
attribute.

The name of the skeleton class is the IDL interface name with aPOA_ prefix. For example, an
interfaceI at global scope has the skeleton classPOA_I. If an interface is nested in a module, the
module maps to a namespace as usual, but with thePOA_prefix on the module; everything inside
the module then has the usual name without a prefix. For example, for a module::M containing
an interfaceI , the name of the skeleton class isI , nested within a::POA_M namespace.
Copyrigh
2Mapping for Interfaces

On the server side, a skeleton class provides the counterpart to the
client-side proxy class.

Skeletons provides an up-call interface from the ORB networking layer
into the application code.

The skeleton class contains pure virtual functions for IDL operations.

Skeleton classes have the name of the IDL interface with a POA_prefix.
For example:

• ::MyObject has the skeleton ::POA_MyObject

• CCS::Thermometer has the skeleton class
POA_CCS::Thermometer .

Note that modules map to namespaces as for the client side, and that
the POA_prefix applies only to the outermost scope (whether module or
interface).
t 2000–2001 IONA Technologies 9-3

Skeleton Classes Server-Side C++ Mapping

3
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ORB

e
eleton
to the

 see

e it
lass.
) by

 an
 an
tual, it
 a
al
9.3 Skeleton Classes
The skeleton classes generated by the IDL compiler provide the link between the server-side
run time and your application code. The following points are worth noting:

• The name of the skeleton class isPOA_AgeExample, whereas the name of the proxy for the
same interface isAgeExample . In other words, even if client and server are collocated in th
same address space, an object reference held by the client does not point directly at a sk
class instance. Instead, it still points at the proxy as usual, and the proxy delegates calls
skeleton. Retaining this extra level of collocation is important to preserve a number of
transparencies provided by the POA. In particular, it ensures that client and server code
the same semantics during call dispatch regardless of whether they are collocated.

• The skeleton class inherits fromPortableServer::ServantBase . In general, all
skeletons haveServantBase as their ultimate ancestor. This design was chosen becaus
permits functionality that is common to all skeletons to be factored into a common base c
In addition, it permits you to pass servants generically (regardless of their interface type
passing a pointer or reference toServantBase .

• Each skeleton class contains a pure virtual function for each IDL operation. To dispatch
incoming request, the server-side run time invokes the corresponding virtual function on
instance of the skeleton class. Because the functions on the skeleton class are pure vir
follows that you cannot instantiate a skeleton class directly; instead you must instantiate
class that is derived from the skeleton and provides implementations for those pure virtu
functions.
9-4
3Skeleton Classes

The skeleton class for an interface contains a pure virtual function for
each IDL operation:

interface AgeExample {
unsigned short get_age();

};

The skeleton class contains:

class POA_AgeExample :
public virtual PortableServer::ServantBase {

public:
virtual CORBA::UShort

get_age() throw(CORBA::SystemException) = 0;
// ...

};
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Skeleton Classes

e

• Each member function of the skeleton has an exception specification.
CORBA::SystemException always is present in this exception specification because
operations can throw a system exception. If an IDL operation raises user exceptions, th
exception specification contains an additional entry for each user exception.
Copyright 2000–2001 IONA Technologies 9-5
 all

Servant Classes Server-Side C++ Mapping

4
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ts are

e is
virtual

(but

and

d
o

use it

you
sses
9.4 Servant Classes
The above example shows how to derive a servant class from its skeleton. The following poin
worth noting:

• The name of the servant class isAgeExample_impl . You can use any name you like but,
by convention, servant classes usually use their interface name with an_impl suffix.

• The servant class inherits from its skeleton class (POA_AgeExample) using virtual
inheritance. Virtual inheritance is, strictly speaking, necessary only if multiple inheritanc
used somewhere in the class hierarchy. However, we recommend that you always use
inheritance as a matter of principle because using virtual inheritance never does any harm
forgetting to use it when it would be necessary has dire consequences).

• The name of the header file containing the skeleton class definition is not standardized
varies among different ORBs. ORBacus uses the base name of the IDL file with a_skel
suffix as the header file name for the server side.

• The servant class must implement all pure virtual functions it inherits from the skeleton
(otherwise, the servant class cannot be instantiated).

• The servant class prevents copying and assignment by making the copy constructor an
assignment operation private and leaving them unimplemented. Although it is possible t
permit copying and assignment of servants, it is usually not necessary or desirable. We
recommend that you habitually hide the copy constructor and assignment operator beca
will expose accidental copying and assignment in your code.

• Apart from the need to provide implementations for the inherited pure virtual functions,
can add whatever member functions and data members you want. Typically, servant cla
9-6
4Servant Classes

Servant classes are derived from their skeleton:

#include "Age_skel.h" // IDL file is called "Age.idl".
// Header file names are ORB-specific!

class AgeExample_impl : public virtual POA_AgeExample {
public:

// Inherited IDL operation
virtual CORBA::UShort

get_age() throw(CORBA::SystemException);
// You can add other members here...

private:
AgeExample_impl(const AgeExample_impl &); // Forbidden
void operator=(const AgeExample_impl &); // Forbidden
// You can add other members here...

};
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Servant Classes

 In
.

contain private data members that either store the state of the object represented by the
servant, or store a handle that permits access to the object’s state. It is also common to
constructor as well as private helper functions that aid in manipulating a servant’s state.
short, you can add whatever you deem suitable to support your servant implementation
Copyright 2000–2001 IONA Technologies 9-7
 add a

Operation Implementation Server-Side C++ Mapping

5
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ption.
ss as
of the
d, an
9.5 Operation Implementation
To implement an operation, you simply readin andinout parameters, setinout andout
parameters, or return a value as appropriate; to indicate an error condition, you throw an exce
The above example is trivial, of course; typically, you will perform a database or network acce
part of the operation implementation, or access private member variables that hold the state
object. What exactly your operations do is entirely up to you; as far as the ORB is concerne
operation is simply an up-call into the servant function, which provides whatever behavior is
appropriate.
9-8
5Operation Implementation

The implementation of a servant’s virtual functions provides the
behavior of an operation:

CORBA::UShort
AgeExample_impl::
get_age() throw(CORBA::SystemException)
{

return 16;
}

Typically, the implementation of an operation will access private
member variables that store the state of an object, or perform a
database access to retrieve or update the state.

Once a servant’s function is invoked, your code is in control and can
therefore do whatever is appropriate for your implementation.
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Attribute Implementation

6
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

o
ation.
een
9.6 Attribute Implementation
Each IDL attribute maps to a pair of virtual functions with the same name, overloaded as a
modifier and accessor. (If an attribute isreadonly, the skeleton only contains an accessor but n
modifier.) Otherwise, the implementation of an attribute is exactly as the same as for an oper
(This example illustrates that there truly is no difference in efficiency or implementation betw
attributes and operations. Attributes are simply IDL syntactic sugar.)
Copyrigh
6Attribute Implementation

As for the client side, attributes map to an accessor and modifier
function (or just an accessor for readonly attributes):

interface Part {
readonly attribute long asset_num;

attribute long price;
};

The skeleton code contains:

class POA_Part : public virtual PortableServer::ServantBase {
public:

virtual CORBA::Long asset_num() throw(CORBA::SystemException) = 0;
virtual CORBA::Long price() throw(CORBA::SystemException) = 0;
virtual void price(CORBA::Long) throw(CORBA::SystemException) = 0;
// ...

};
t 2000–2001 IONA Technologies 9-9

Servant Activation and Reference Creation Server-Side C++ Mapping

7
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ter
patch
en
n the

y

e the
the
uch as

 legal,

lly used
eation
9.7 Servant Activation and Reference Creation
Merely instantiating a servant does nothing as far as the ORB is concerned. Immediately af
instantiation of the servant, you simply have a C++ object instance. Before the ORB can dis
requests to the servant, you mustactivatethe servant. Activating a servant creates the link betwe
an object reference and the C++ instance that is used by the ORB to dispatch requests to. I
above example, the call to_this both activates the servant and returns its object reference.1

Note that_this implicitly calls _duplicate (which increases the reference count of the prox
from 0 to 1), so you must eventually release the returned reference to avoid a memory leak.

Once activated in this way, further calls to_this return the same reference as the first call.

Once you have obtained an object reference by calling_this , you can make that reference
available to clients so they can invoke operations on the corresponding object. You can mak
reference available as a string (by calling object_to_string), or you can pass it to a client as
return value of another operation invocation, or you can advertise the reference in a service s
the Naming or Trading Service.

NOTE: The above example instantiates the servant on the stack as a local variable. This is
but rare. Instead, you will almost always instantiate servants on the heap by callingnew.
We discuss the reasons for this in Section 12.25.

1. There are many more ways to activate a servant and to obtain its reference. The method shown above is typica
only for transient objects that are implicitly activated. We cover the various servant activation and reference cr
options in Unit 12.
9-10
7Servant Activation and Reference Creation

Every skeleton class contains a function called _this :

class POA_AgeExample :
public virtual PortableServer::ServantBase {

public:
AgeExample_ptr _this();
// ...

};

To create a CORBA object, you instantiate the servant and call _this :

AgeExample_impl age_servant; // Create servant
AgeExample_var av = age_servant._this(); // Create reference

• Instantiating the servant has no effect on the ORB.

• Calling _this activates the servant and returns its reference.

_this implicitly calls _duplicate , so you must eventually release the
returned reference.
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Servant Activation and Reference Creation
Copyright 2000–2001 IONA Technologies 9-11

Server Initialization Server-Side C++ Mapping

8
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ps (or

hat
ter
9.8 Server Initialization
The above sequence of steps describes basic server initialization. All servers follow these ste
follow some variation of these steps). Following is themain program for a simple server that
makes an AgeExample object available to clients and then waits for incoming requests. Note t
quite a few API calls shown here have not been explained. We will cover these in detail in la
sections.

#include <iostream.h>
#include <OB/CORBA.h>
#include "Age_skel.h"

// Servant class definition here...

int
main(int argc, char * argv[])
{

// Initialize ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get reference to Root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa =

PortableServer::POA::_narrow(obj);
9-12
8Server Initialization
A server must initialize the ORB run time before it can accept requests.
To initialize the server, follow the following steps:

1. Call ORB_init to initialize the run time.

2. Get a reference to the Root POA.

3. Instantiate one or more servants.

4. Activate each servant.

5. Make references to your objects available to clients.

6. Activate the Root POA’s POA manager.

7. Start a dispatch loop.
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Server Initialization

 POA
ys is
 the

tion

n to

nd
// Create an object
AgeExample_impl age_servant;

// Write its stringified reference to stdout
AgeExample_var aev = age_servant._this();
CORBA::String_var str = orb->object_to_string(aev);
cout << str << endl;

// Activate POA manager
PortableServer::POAManager_var mgr = poa->the_POAManager();
mgr->activate();

// Accept requests
orb->run();

}

The code goes through the following steps:

1. CallORB_init to initialize the run time.

Initialization for the server side is the same as for the client side. The call toORB_init
initializes the run time and returns a reference to the ORB. As for the client,ORB_init scans
the command line for any arguments staring with-ORB and removes them. For ORBacus,
options beginning with-OA are used to control the object adapter and are also removed.

2. Get a reference to the Root POA.

The next step is to obtain a reference to the POA. The ORB has a built-in distinguished
known as the Root POA. The Root POA is pre-configured with certain policies and alwa
the first POA that a server must obtain. (You can create other POAs by making calls on
Root POA.) Callingresolve_initial_references("RootPOA") returns a
reference to the Root POA.2

3. Instantiate one or more servants.

Here, we instantiate a single servant on the stack. (As mentioned earlier, you will mostly
instantiate your servants on the heap. However, for this simple example, stack instantia
will be good enough.)

4. Activate each servant.

We call_this on the servant. This both activates the servant (makes its existence know
the POA) and returns an object reference for the corresponding object.

5. Make references to your objects available to clients.

For this simple example, we write a stringified reference for our object tocout . Calling
object_to_string on the ORB reference produces a reference in stringified form.
Clients can convert the string back into an active reference by callingstring_to_object .

2. resolve_initial_references is used to gain access to a number of important references that clients a
servers require initially. For example, you can useresolve_initial_references to get access to the
Naming and Trading Service, the Interface Repository, and a number of other important references.
Copyright 2000–2001 IONA Technologies 9-13

Server Initialization Server-Side C++ Mapping

ued.
y
ests

 call

ing
t

t

6. Activate the Root POA’s POA manager.

Every POA has an associated POA manager which controls the flow of requests to that
You can obtain the POA manager for a POA by calling thethe_POAmanager operation.
Initially, POA managers start out in a holding state, in which incoming requests are que
To pass requests through to a POA, the POA manager must be activated. You do this b
calling theactivate operation on the POA manager. For a single-threaded ORB, requ
will not be dispatched immediately. Instead, request dispatch starts when you call
ORB::run . However, for multi-threaded servers, request dispatch starts as soon as you
activate .

7. Start a dispatch loop.

The final step is to hand the thread of control to the ORB so it can start accepting incom
client requests. The call toORB::run hands the thread of control to the ORB and does no
return until it is interrupted.3 Internally,ORB::run creates an infinite loop around a call tha
monitors network connections (such asselect); incoming client requests to servants are
dispatched in this loop.

3. We will see other ways of makingORB::run return control to the caller in Section 9.13.
9-14 Copyright 2000–2001 IONA Technologies
 POA.

Server-Side C++ Mapping Parameter Passing

9
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

rt, this
 is
9.9 Parameter Passing
The parameter passing rules for the server side are the mirror image of the client side. In sho
means that, if the client expects to be handed a dynamically-allocated value by the stub and
responsible for deallocating that value, the skeleton must allocate the corresponding value.

In the next few sections, we examine the parameter passing rules in detail for each possible
parameter type and direction.
Copyrigh
9Parameter Passing
The parameter passing rules for the server side follow those for the
client side.

If the client is expected to deallocate a parameter it receives from the
server, the server must allocate that parameter:

• Variable-length out parameters and return values are allocated by
the server.

• String and object reference inout parameters are allocated by the
client; the server code must reallocate object references to change
them and may reallocate inout strings or modify their contents in
place.

• Everything else is passed by value or by reference.
t 2000–2001 IONA Technologies 9-15

Parameter Passing Server-Side C++ Mapping

10
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ration
9.9.1 Rules for Simple Types
Simple types are passed by value or by reference. A simple implementation of the above ope
might be:

CORBA::Char
Foo_impl::
op(

CORBA::Char p_in,
CORBA::Char & p_inout,
CORBA::Char_out p_out

) throw(CORBA::SystemException)
{

// Use p_in, it's initialized already
cout << p_in << endl;

// Change p_inout
p_inout = 'A';

// Set p_out
p_out = 'Z';

// Return a value
return 'B';

}

9-16
10Parameter Passing (cont.)

Consider an operation that passes a char parameter in all possible
directions:

interface Foo {
char op(in char p_in, inout char p_inout, out char p_out);

};

The skeleton signature is:

virtual CORBA::Char op(
CORBA::Char p_in,
CORBA::Char & p_inout,
CORBA::Char_out p_out

) throw(CORBA::SystemException) = 0;

Parameters are passed by value or by reference, as for the client side.

(Char_out is a typedef for Char & .)
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Parameter Passing

11
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

r
t be:
9.9.2 Rules for Fixed-Length Complex Types
The rules for fixed-length complex types are the same as for simple types, that is, paramete
passing is by value and by reference. A simple implementation of the above operation migh

F Foo_impl::
op(const F & p_in,

F & p_inout,
F_out p_out

) throw(CORBA::SystemException)
{

// Use incoming values of p_in and p_inout (not shown)

// Modify p_inout
p_inout.c = 'A';
p_inout.s = 1;

// Initialize p_out
p_out.c = 'Z';
p_out.s = 99;

// Create and initialize return value
F resul t = { 'Q', 55 };
return result;

}

Copyrigh
11Parameter Passing (cont.)

Fixed-length unions and structures are passed by value or by reference:

struct F {
char c;
short s;

};

interface Foo {
F op(in F p_in, inout F p_inout, out F p_out);

};

The skeleton signature is:

typede f F & F_out;
virtual F op(

const F & p_in,
F & p_inout,
F_out p_out

) throw(CORBA::SystemException) = 0;
t 2000–2001 IONA Technologies 9-17

Parameter Passing Server-Side C++ Mapping

12
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

cated
9.9.3 Rules for Fixed-Length Array Types
Passing fixed-length arrays is similar to passing other fixed-length complex types. However,
because it is impossible in C++ to pass arrays by value, the return value is dynamically allo
by the server. A simple implementation of the above operation might be:

SA_slice * Foo_impl::
op(const SA p_in,

SA_slice * p_inout,
SA_out p_out

) throw(CORBA::SystemException)
{

const size_t arr_len = sizeof(p_in) / sizeof(*p_in);

// Use incoming values of p_in and p_inout (not shown)

// Modify p_inout
for (CORBA::ULong i = 0 ; i < arr_len; ++i)

p_inout[i] = i;

// Initialize p_out
for (CORBA::ULong i = 0 ; i < arr_len; ++i)

p_out[i] = i * i;

// Create and initialize return value.
9-18
12Parameter Passing (cont.)

Fixed-length arrays are passed by pointer to an array slice:

typedef short SA[2];

interface Foo {
SA op(in SA p_in, inout SA p_inout, out SA p_out);

};

The skeleton signature is:

typedef SA_slice * SA_out;
virtual SA_slice * op(

const SA p_in,
SA_slice * p_inout,
SA_out p_out

) throw(CORBA::SystemException) = 0;
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Parameter Passing
SA_slice * result = SA_alloc(); // Dynamic allocation!
for (CORBA::ULong i = 0 ; i < arr_len; ++i)

result[i] = i * i * i;

return result;
}

Note that the return value is dynamically allocated. Youmustuse the generated allocation function
(SA_alloc in this example).
Copyright 2000–2001 IONA Technologies 9-19

Parameter Passing Server-Side C++ Mapping

13
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

tion
9.9.4 Rules for Strings
Strings that travel from server to client must be dynamically allocated. A simple implementa
of the above operation might be:

char * Foo_impl::
op(const char * p_in,

char * & p_inout,
CORBA::String_out p_out

) throw(CORBA::SystemException)
{

// Use incoming value
cout << p_in << endl;

// Change p_inout
size_t len = strlen(p_inout);
for (i = 0; i < len; ++i)

to_lower(p_inout[i]);

// Create and initialize p_out
p_out = CORBA::string_dup("Hello");

// Create and initialize return value
return CORBA::string_dup("World");

}

9-20
13Parameter Passing (cont.)

Strings are passed as pointers.

interface Foo {
string op(

in string p_in,
inout string p_inout,
out string p_out

);
};

The skeleton signature is:

virtual char * op(
const char * p_in,
char * & p_inout,
CORBA::String_out p_out

) throw(CORBA::SystemException) = 0;
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Parameter Passing
Note that it is legal to change aninout string in place, as shown in the preceding example. If yo
want to change aninout string such that it becomes shorter than the initial string, you can eit
write NUL byte into the initial string, or you can reallocate the string:

char * Foo_impl::
op(const char * p_in,

char * & p_inout,
CORBA::String_out p_out

) throw(CORBA::SystemException)
{

// ...

// Change p_inout
*p_inout = '\0'; // Shorten by writing NUL

// OR:

CORBA::string_free(p_inout);
p_inout = CORBA::string_dup(""); // Shorten by reallocation

// ...
}

If you want to lengthen aninout string, you have no choice but to reallocate it:

char * Foo_impl::
op(const char * p_in,

char * & p_inout,
CORBA::String_out p_out

) throw(CORBA::SystemException)
{

// ...

// Lengthen inout string by reallocation
CORBA::string_free(p_inout);
p_inout = CORBA::string_dup(longer_string);

// ...
}

Copyright 2000–2001 IONA Technologies 9-21
u
her

Parameter Passing Server-Side C++ Mapping

14
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies
9.9.5 Rules for Variable-Length Complex Types
Variable-length complex types are dynamically allocated in theout direction and for the return
value. A simple implementation of the above operation might be:

OctSeq *
Foo_impl::
op(const OctSeq & p_in,

OctSeq & p_inout,
OctSeq_out p_out

) throw(CORBA::SystemException)
{

// Use incoming values of p_in and p_inout (not shown)

// Modify p_inout
CORBA::ULong len = p_inout.length();
p_inout.length(++len);
for (CORBA::ULong i = 0 ; i < len; ++len)

p_inout[i] = i % 256;

// Create and initialize p_out
p_out = new OctSeq;
p_out->length(1);
(*p_out)[0] = 0;
9-22
14Parameter Passing (cont.)

Sequences and variable-length structures and unions are dynamically
allocated if they are an out parameter or the return value.

typedef sequence<octet> OctSeq;
interface Foo {

OctSeq op(
in OctSeq p_in,
inout OctSeq p_inout,
out OctSeq p_out

);
};

The skeleton signature is:

typedef OctSeq & OctSeq_out;
virtual OctSeq * op(const OctSeq & p_in,

OctSeq & p_inout,
OctSeq_out p_out

) throw(CORBA::SystemException) = 0;
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Parameter Passing

d to

where
// Create and initialize return value
OctSe q * p = new OctSeq;
p->length(2);
(*p)[0] = 0;
(*p)[1] = 1;

some_func(); // Potential leak here!

return p;
}

Note that it is necessary to first dereferencep before applying the subscript operator. If you write

p[0] = 0; // Wrong!

the compiler will assume thatp points at an array of sequences and that zero is being assigne
the first sequence in the array. To avoid this mistake, you can use a_var type as the return value
instead:

OctSeq *
Foo_impl::
op(const OctSeq & p_in,

OctSeq & p_inout,
OctSeq_out p_out

) throw(CORBA::SystemException)
{

// ...

// Create and initialize return value
OctSeq_va r p = new OctSeq;
p->length(2);
p[0] = 0;
p[1] = 1;

some_func(); // No leak here

return p._retn();
}

This version has the added advantage that it is exception safe. If an exception is thrown any
between the allocation and the return, the_var type will take care of correctly deallocating the
allocated memory, whereas the previous version (which didn’t use a_var type) will leak that
memory.
Copyright 2000–2001 IONA Technologies 9-23

Parameter Passing Server-Side C++ Mapping

15
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ion of
9.9.6 Rules for Variable-Length Arrays
Variable-length array types are passed like fixed-length arrays, with the exception that out
parameters for variable-length arrays must be dynamically allocated. A simple implementat
the above operation might be:

EA_slice *
Foo_impl::
op(const EA p_in,

EA_slice * p_inout,
EA_out p_out

) throw(CORBA::SystemException)
{

size_t arr_len = sizeof(p_in) / sizeof(*p_in);

// Use p_in and initial value of p_inout (not shown)

// Modify p_inout
p_inout[0] = p_inout[1];
p_inout[1].name = CORBA::string_dup("Michi");
p_inout[1].number = 1;

// Create and initialize p_out
p_out = EA_alloc();
for (CORBA::ULong i = 0 ; i < arr_len; ++i) {
9-24
15Parameter Passing (cont.)

struct Employee {

string name;
long number;

};
typedef Employee EA[2];

interface Foo {
EA op(in EA p_in, inout EA p_inout, out EA p_out);

};

The skeleton signature is:

virtual EA_slice * op(
const EA p_in,
EA_slice * p_inout,
EA_out p_out

) throw(CORBA::SystemException) = 0;
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Parameter Passing
p_out[i].name = CORBA::string_dup("Sam");
p_out[i].number = i;

}

// Create and initialize return value
EA_slice * result = EA_alloc();
for (CORBA::ULong i = 0 ; i < arr_len; ++i) {

result[i].name = CORBA::string_dup("Max");
result[i].number = i;

}

return result;
}

Copyright 2000–2001 IONA Technologies 9-25

Parameter Passing Server-Side C++ Mapping

16
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

d the
9.9.7 Rules for Object References
For object references, you must reallocate inout parameters and allocate out parameters an
return value. A simple implementation of the above operation might be:

Thermometer_ptr
Foo_impl::
op(Thermometer_ptr p_in,

Thermometer_ptr & p_inout,
Thermometer_out p_out

) throw(CORBA::SystemException)
{

// Use p_in
if (!CORBA::is_nil(p_in))

cout << p_in->temperature() << endl;

// Use p_inout
if (!CORBA::is_nil(p_inout))

cout << p_inout->temperature() << endl;

// Modify p_inout
CORBA::release(p_inout);
p_inout = Thermometer::_duplicate(p_in);

// Initialize p_out
9-26
16Parameter Passing (cont.)

Object reference out parameters and return values are duplicated.

interface Thermometer { /* ... */ };

interface Foo {
Thermometer op(

in Thermometer p_in,
inout Thermometer p_inout,
out Thermometer p_out

);
};

The skeleton signature is:

virtual Thermometer_ptr op(
Thermometer_ptr p_in,
Thermometer_ptr & p_inout,
Thermometer_out p_out

) throw(CORBA::SystemException) = 0;
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Parameter Passing

lso
p_out = Thermostat::_narrow(p_in);

// Create return value
return _this();

}

Note that, before usingp_in or p_inout , the code ensures that these references are not nil. A
note that the new value ofp_inout is allocated with_duplicate . p_out and the return value
are allocated as well (_narrow and_this implicitly call _duplicate).
Copyright 2000–2001 IONA Technologies 9-27

Throwing Exceptions Server-Side C++ Mapping

17
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ble:
9.10 Throwing Exceptions
Throwing an exception is a simple matter of instantiating the exception and throwing it. For
example:

CCS::TempType
Thermostat_impl::
set_nominal(CCS::TempType new_temp)
throw(CORBA::SystemException, CCS::Thermostat::BadTemp)
{

if (new_temp > max_temp || new_temp < min_temp) {
CCS::Thermostat::BtData btd;
btd.requested = new_temp;
btd.min_temp = min_temp;
btd.max_temp = max_temp;
throw CCS::Thermostat::BadTemp(btd);

}
// Remember previous nominal temperature and
// set new nominal temperature...
return previous_temp;

}

In this code example, the exception is initialized with a temporary variable of typeBtData .

Alternatively, you can instantiate the exception and initialize it without using a temporary varia
9-28
17Throwing Exceptions
The exception mapping is identical for client and server. To throw an
exception, instantiate the appropriate exception class and throw it.

You can either instantiate an exception as part of the throw statement,
or you can instantiate the exception first, assign to the exception
members, and then throw the exception.

You should always make your implementation exception safe in that, if it
throws an exception, no durable state changes remain.

Avoid throwing system exceptions and use user exceptions instead.

If you must use a system exception, set the CompletionStatus
appropriately.
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Throwing Exceptions

tor in

ugh
se it is
 the

tion,

 a
CCS::TempType
Thermostat_impl::
set_nominal(CCS::TempType new_temp)
throw(CORBA::SystemException, CCS::Thermostat::BadTemp)
{

if (new_temp < min_temp || new_temp > max_temp) {
CCS::Thermostat::BadTemp bt;
bt.details.requested = new_temp;
bt.details.min_temp = min_temp;
bt.details.max_temp = max_temp;
throw bt;

}
// Remember previous nominal temperature and
// set new nominal temperature...
return previous_temp;

}

For exceptions with a few simple members, it is usually easiest to use the exception construc
thethrow statement. For example:

exception ErrorReport {
string file_name;
unsigned long line_num;
string reason;

};

You can use a singlethrow statement to construct and throw this exception:

throw ErrorReport("foo.cc", 597, "Syntax error");

In general, you should avoid throwing system exceptions. Not only is it difficult to convey eno
detail to the caller with a system exception, it also makes it harder to debug the code becau
no longer clear whether a particular system exception was raised by the ORB run time or by
application code. If you must throw a system exception, take care to set theCompletionStatus
correctly. Ideally, you should undo any side-effects of the operation before throwing the excep
so the state of the object is the same as it was before the invocation. In that caseCOMPLETED_NO is
the correct status to use. Otherwise, you must set the status toCOMPLETED_YES, even if not all
side-effects happened. (COMPLETED_MAYBE is never appropriate when application code throws
system exception.)

Remember that the default constructor for system exceptions sets the completion status to
COMPLETED_NO and the minor code to zero:

if (input_parameter_unacceptable)
throw CORBA::BAD_PARAM();

To set theCompletionStatus to COMPLETED_YES, you can use a throw like the following:

if (db_connection_broke_after_partial_update)
throw CORBA::PERSIST_STORE(CORBA::COMPLETED_YES, 0);
Copyright 2000–2001 IONA Technologies 9-29

Exception Pitfalls Server-Side C++ Mapping

18
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies
9.11 Exception Pitfalls
There are two common pitfalls with respect to exceptions: memory leaks and illegal user
exceptions.

9.11.1 Avoiding Memory Leaks
If you have allocated memory for a variable-lengthout parameter and then throw an exception,
that memory will be leaked unless you deallocated it first. For example:

interface Example {
void get_name(out string name);

};

The following code will leak memory:

void
Example_impl::
op(CORBA::String_out name)
{

name = CORBA::string_dup("Otto");

// Do some database access or whatever...
if (database_access_failed)

throw CORBA::PERSIST_STORE(); // Bad news!
}

9-30
18Exception Pitfalls
• If you throw an exception and have allocated memory to a
variable-length out parameter, you must deallocate that memory
first.

Use _var types to prevent such memory leaks.

• Do not throw user exceptions that are not part an operation’s
raises clause.

Use a try block around calls to other operations that may throw
user exceptions.
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Exception Pitfalls

y
s

 in the
ton
The memory that was allocated to thename parameter is leaked in this case. To prevent the lea
you could explicitly deallocate the memory again before throwing the exception. However, d
so is needlessly complex and error prone. A better way to deal with memory leaks is to use a_var
temporary:

void
Example_impl::
op(CORBA::String_out name)
{

CORBA::String_var name_tmp = CORBA::string_dup("Otto");

// Do some database access or whatever...
if (database_access_failed)

throw CORBA::PERSIST_STORE(); // OK, no leak
name = name_tmp._retn(); // Transfer ownership

}

This code is free of leaks because, if an exception is thrown, the destructor ofname_tmp will
deallocate its memory. Once it is clear that no more exception can occur,name_tmp is used to
pass ownership of the allocated string to thename parameter.

As we saw on page 6-38, the same technique can be used for return values, or in fact for an
dynamically allocated resource. (The use of_var types in this way is one example of Stroustrup’
“Resource Acquisition is Initialization” idiom.)

9.11.2 Avoiding Illegal User Exceptions
An operation implementation in a servant can only throw those user exceptions that appear
corresponding IDLraises clause. This is because the virtual function generated into the skele
has athrow specification that explicitly lists all legal user exceptions. If you throw a user
exception that is not in thethrow specification, you will end up in the C++unexpected
function (which, by default, terminates the process). You can easily make this mistake if you
invoke other operations as part of an operation’s implementation. For example:

interface EmployeeFinder {
struct Details { /* ... */ };
exception BadEmployee { /* ... */ };
Details get_details(in string name) raises(BadEmployee);
// ...

};

interface ReportGenerator {
exception BadDepartment { /* ... */ };
void show_employees(in string department) raises(BadDepartment);
// ...

};

The following implementation ofshow_employees illustrates the problem:

void
ReportGenerator_impl::
show_employees(const char * department)
throw(CORBA::SystemException, ReportGenerator::BadDepartment)
Copyright 2000–2001 IONA Technologies 9-31
k,
oing

Exception Pitfalls Server-Side C++ Mapping

l call

ions.
ion

e

.

{
EmployeeFinder_var ef = ...;

// Locate department and get list of employee names...
for (each emp_name in list) {

Details_va r d = ef->get_details(emp_name); // Dubious!
// Show employee's details...

}
}

The problem with this code is that if the employee list is not accurate for some reason, it wil
get_details with an invalid name. In turn,get_details will throw aBadEmployee
exception, which, according to the exception specification ofshow_employees , is illegal and
results in process termination.

This kind of problem can crop up whenever you invoke other functions that may throw except
Note that this mistake can also bite you if you call a non-CORBA function. If the called funct
throws a C++ exception (such asstd::ios_base::failure), your program suffers the same
fate.

The way around the problem is to catch exceptions in at least a generic manner if one of th
functions you call may throw exceptions. For example:

void
ReportGenerator_impl::
show_employees(const char * department)
throw(CORBA::SystemException, ReportGenerator::BadDepartment)
{

try {
EmployeeFinder_var ef = ...;

// Locate department and get list of employee names...
for (each emp_name in list) {

try {
Details_va r d = ef->get_details(emp_name);
// Show employee's details...

} catch (const EmployeeFinder::BadEmployee &) {
// Ignore bad employee and try next one...

}
}

} catch (const CORBA::Exception &) {
// Other CORBA exceptions are dealt with higher up.
throw;

} catch (...) { // This really is an assertion failure
// because it indicates a bug in the code

write_error_log_report();
throw CORBA::INTERNAL();

}
}

Here, the code protects itself against user exceptions fromget_details by skipping unknown
employee names and keeps going, and deals with non-CORBA exceptions by logging them
9-32 Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Tie Classes

19
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

dea is
t way,
n be

ntiate a
 stored
s.

to its
ction.
ou
tie in
ead

mend
rther
9.12 Tie Classes
The C++ mapping offers an alternative way to implement servants via tie classes. The basic i
to replace inheritance from the skeleton class with delegation from a generated tie class. Tha
the implementation class does not need to inherit from any base class. Occasionally, this ca
useful, for example, if you must implement your implementation classes by using a class
framework that forces you to extensively use inheritance; the tie approach can help to avoid
complex and difficult to understand inheritance hierarchies in such a case.

The generated tie class has the name of the skeleton class with a_tie suffix. The tie class is a
template; the actual implementation class becomes the template parameter when you insta
tie. The constructor of a tie requires the address of the implementation class; that pointer is
in a private data member of the tie so it can delegate invocations to the implementation clas

The tie approach has a number of disadvantages. For one, it is possible to navigate from a tie
implementation instance, but it is not possible to navigate the relationship in the opposite dire
However, as we will see in Section 12.25, navigation in the opposite direction is required if y
want to support life cycle operations on your objects, so you must store a back-pointer to the
the implementation class. Second, ties can create a number of problems with respect to thr
safety, requiring extra locking around creation and destruction of servants.

Overall, other features of the POA have made the tie approach largely redundant; we recom
that you avoid ties unless you have an overriding reason to use them. We will not cover ties fu
in this course. (See Henning & Vinoski if you require further details.)
Copyrigh
19Tie Classes

The C++ mapping offers an alternative way to implement servants.

A tie class replaces inheritance from the skeleton with delegation:

class Thermometer_impl { // NO inheritance here!
public:

// Usual CORBA operation implementation here...
};

// ...

Thermometer_impl * servantp = new Thermometer_impl;
POA_CCS::Thermometer_tie<Thermometer_impl> tie(servantp);
CCS::Thermometer_var = tie._this();

The tie instance delegates each call to the implementation instance, so
the implementation instance does not have to inherit from a skeleton.

The IDL compiler generates ties with the --tie option.
t 2000–2001 IONA Technologies 9-33

Clean Server Shutdown Server-Side C++ Mapping

20
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ecause
 For
me

d

e

wn is

hat
 Once
ce

dows
9.13 Clean Server Shutdown
The example server main program we saw on page 9-12 had no way to terminate cleanly b
ORB::run does not return; the only way to terminate such a server is to kill it with a signal.
simple servers, this is acceptable. However, more complex servers must usually perform so
finalization tasks before they can exit, so we require a way to causeORB::run to return the main
thread of control.

A call to ORB::shutdown initiates ORB shutdown. The singlewait_for_completion
parameter determines whethershutdown should wait for shutdown to complete: if
wait_for_completion is true,shutdown waits until all current requests have completed an
all object adapters have been destroyed before returning control to the caller; if
wait_for_completion is false,shutdown initiates shutdown and returns without blocking th
caller. In the latter case, you can follow a call toshutdown(false) (which initiates shutdown)
with a later call toshutdown(true) . If, by the time the second call is made, shutdown has
completed, the second call returns immediately; otherwise, it blocks and returns when shutdo
complete.

Oncerun has returned (because of a call toshutdown), you must callORB::destroy before
leavingmain . Failure to do so may cause resource leaks, depending on the environment.4 The
effect of callingdestroy is to destroy the ORB object, which, in turn, reclaims all resources t
were associated with the ORB. (See Section 12.26 for a discussion of the cleanup actions.)
you have called destroy, you must not invoke any operations you invoke on the ORB referen
raiseOBJECT_NOT_EXIST. Once the ORB is shutdown, the only legal CORBA operations you

4. Under UNIX, the kernel will clean up and reclaim all resources. However, for other environments, such as Win
or embedded systems, that is not the case and failure to calldestroy may cause permanent resource leaks.
9-34
20Clean Server Shutdown

The ORB object contains shutdown and destroy operations that
permit clean server shutdown:

interface ORB {
void shutdown(in boolean wait_for_completion);
void destroy();
// ...

};

• With a false parameter, shutdown initiates ORB shutdown and
returns immediately.

• With a true parameter, shutdown initiates ORB shutdown and does
not return until shutdown is complete.

ORB shutdown stops accepting new requests, allows requests in
progress to complete, and destroys all object adapters.

You must call destroy before leaving main !
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Clean Server Shutdown

 to

own
can invoke are_duplicate , CORBA::release , CORBA::is_nil , ORB::destroy , and
ORB_init . These rules allow you to use global_var references without running the risk of
something going wrong in their destructors. In addition, these rules make it possible for you
destroy an ORB and to create a new one by callingORB_init .

Armed with this knowledge, we can revisit the server code on page 9-12 and make it “shutd
safe”:

#include <iostream.h>
#include <OB/CORBA.h>
#include "Age.h"

// Servant class definition here...

CORBA::ORB_var orb; // Global, OK!

int
main(int argc, char * argv[])
{

int status = 0; // Return value from main()

try {
// Initialize ORB
orb = CORBA::ORB_init(argc, argv);

// Get Root POA, etc., and initialize application...

// Accept requests
orb->run(); // orb->shutdown(false) may be called

// from elsewhere, such as another
// thread, a signal handler, or as
// part of an operation.

} catch (...) {
status = 1;

}

// Don't invoke CORBA operations from here on, it won't work!

if (!CORBA::is_nil(orb)) { // If we created an ORB...
try {

orb->destroy(); // Wait for shutdown to complete
// and destroy ORB

} catch (const CORBA::Exception &) {
status = 1;

}
}
// Do application-specific cleanup here...

return status;
}

Copyright 2000–2001 IONA Technologies 9-35

Clean Server Shutdown Server-Side C++ Mapping

nd

rces
es a
Note that we have added some exception handling to this example to ensure thatmain returns a
failure status to the operating system if something goes wrong. The pertinent points of this c
are:

• ORB::run is called from the main thread. This is necessary for maximum portability.
(Depending on the underlying thread support, callingrun from a thread other than the main
thread may not work.)

• If shutdown(false) is called while the run loop is dispatching requests, run returns a
the code callsORB::destroy before it leavesmain . Again, this is necessary for
portability. (Depending on the underlying thread support, callingdestroy aftermain
returns, for example, from a global constructor, may not work.)

• destroy does not return until after all executing requests have completed and all resou
have been correctly reclaimed. This not only ensures resource recovery, but also provid
point at which your application can perform its own clean-up work.

You should write all your server code to follow this pattern.
9-36 Copyright 2000–2001 IONA Technologies
ode

Server-Side C++ Mapping Clean Server Shutdown
Copyright 2000–2001 IONA Technologies 9-37

Handling Signals (UNIX) Server-Side C++ Mapping

21
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ke it

o bring

ting
9.14 Handling Signals (UNIX)
Theshutdown function is guaranteed safe for calling from within a signal handler.5 We can
exploit this fact to achieve clean termination of a server on receipt of a signal. (You should ma
a habit to always handleSIGINT , SIGHUP, andSIGTERM because these signals are typically
used to achieve clean process shutdown and are sent when a system administrator wants t
down the machine.)

You can establish the handler on entry tomain , using thesigaction call (in preference to the
old signal call, which suffers from race conditions and does not allow you to achieve restar
interrupted system calls):

struct sigaction sa; // New signal state

sa.sa_handler = handler; // Set handler function
sigfillset(&sa.sa_mask); // Mask all other signals

// while handler runs
sa.sa_flag s = 0 | SA_RESTART; // Restart interrupted syscalls

if (sigaction(SIGINT, &sa, (struct sigaction *)0) == -1)
abort();

if (sigaction(SIGHUP, &sa, (struct sigaction *)0) == -1)
abort();

5. At least in ORBacus. Unfortunately, the standard does not say anything about signal handling.
9-38
21Handling Signals (UNIX)

To react to signals and terminate cleanly, call shutdown from within the
signal handler:

extern "C"
void handler(int)
{

try {
if (!CORBA::is_nil(orb))

orb->shutdown(false);
} catch (...) {

// Can't throw here...
}

}

You can install the signal handler on entry to main .

You should handle at least SIGINT , SIGHUP, and SIGTERM.

Do not call shutdown(true) or destroy from within a signal handler!
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Handling Signals (UNIX)

ls that
if (sigaction(SIGTERM, &sa, (struct sigaction *)0) == -1)
abort();

// Initialize ORB, etc...

The handler itself should set the caught signals to be ignored. This is useful to prevent signa
are sent to a process in rapid succession from triggering the handler a second time:

extern "C"
void handler(int)
{

// Ignore further signals
struct sigaction ignore;
ignore.sa_handler = SIG_IGN;
sigemptyset(&ignore.sa_mask);
ignore.sa_flags = 0;
if (sigaction(SIGINT, &ignore, (struct sigaction *)0) == -1)

abort();
if (sigaction(SIGTERM, &ignore, (struct sigaction *)0) == -1)

abort();
if (sigaction(SIGHUP, &ignore, (struct sigaction *)0) == -1)

abort();

// Terminate event loop
try {

if (!CORBA::is_nil(orb))
orb->shutdown(false);

} catch (...) {
// Can't throw here...

}
}

Note that you must not callshutdown(true) from a signal handler. This is because
shutdown(true) will cause actions inside the ORB that are not signal-safe. For the same
reason, you must not calldestroy from within a signal handler.6

6. Note that if you want to cause shutdown from within an operation implementation, you must use
shutdown(false) . Callingshutdown(true) or destroy from within an executing operation raises
BAD_INV_ORDER.
Copyright 2000–2001 IONA Technologies 9-39

Handling Signals (Windows) Server-Side C++ Mapping

22
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

are
9.15 Handling Signals (Windows)
For Windows operating systems, you can use a signal handler as shown above. You must
instantiate aJTCAdoptCurrentThread instance inside the handler because console events
handled in a separate thread.

To install the handler, use the following code inmain :

BOOL rc = SetConsoleCtrlHandler((PHANDLER_ROUTINE)handler, TRUE);
if (!rc) {

// Could not install handler
abort();

}

SetConsoleCtrlHandler installs a handler for the following events:CTRL_C_EVENT,
CTRL_BREAK_EVENT, CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and
CTRL_SHUTDOWN_EVENT.
9-40
22Handling Signals (Windows)

For Windows, use the following signal handler:

BOOL
handler(DWORD)
{

// Inform JTC of presence of new thread
JTCAdoptCurrentThread adopt;

// Terminate event loop
try {

if (!CORBA::is_nil(orb))
orb->shutdown(false);

} catch (...) {
// Can't throw here...

}
return TRUE;

}

Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Implementation Inheritance

23
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

ance.

s are

s

9.16 Implementation Inheritance
The above diagram shows how to implement derived interfaces using implementation inherit
The C++ definitions of the implementation classes are as follows:

class Thermometer_impl : public virtual POA_CCS::Thermometer {
// ...
};

class Thermostat_impl : public virtual POA_CCS::Thermostat,
public virtual Thermometer_impl {

// ...
}

Obviously, this approach is possible only if the servants for both base and derived interface
implemented in the same process. Using implementation inheritance, the derived
Thermostat_impl servant must implement only theget_nominal andset_nominal
operations defined in interfaceThermostat and need not implement the four attributes it inherit
from interfaceThermometer.
Copyrigh
23Implementation Inheritance

If you are implementing base and derived interfaces in the same server,
you can use implementation inheritance:

Thermometer_impl implements pure virtual functions inherited from
POA_CCS::Thermometer , and Thermostat_impl implements pure
virtual functions inherited from POA_CSS::Thermostat .

POA_CCS::Thermometer

POA_CCS::Thermostat Thermometer_impl

Thermostat_impl
t 2000–2001 IONA Technologies 9-41

Interface Inheritance Server-Side C++ Mapping

24
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

e.

 five

 and
e that
tation

he
9.17 Interface Inheritance
You need not use implementation inheritance to implement the servant for a derived interfac
Instead, by omitting the inheritance form the base servant class, you can choose to use a
completely separate implementation for the servant of the derived interface:

class Thermometer_impl : public virtual POA_CCS::Thermometer {
// ...
};

class Thermostat_impl : public virtual POA_CCS::Thermostat {
// ...
}

Naturally, using this implementation technique, you must implement seven virtual functions,
to provide implementations for the four attributes in interfaceThermometer, and two to provide
implementations for the two operations in interfaceThermostat.

Note that this technique can also be used to simulate implementation inheritance if the base
derived interfaces are provided by different servers. For example, if you have two servers, on
implements thermometers and one that implements thermostats, you can simulate implemen
inheritance for the base part of thermometers with delegation. In that case, aThermostat servant
would store an object reference to itsThermometer base instance and delegate invocations on t
base part of aThermostat via that reference.
9-42
24Interface Inheritance

You can choose to use interface inheritance:

Thermometer_impl implements five virtual functions, and
Thermostat_impl implements seven virtual functions.

POA_CCS::Thermometer

POA_CCS::Thermostat Thermometer_impl

Thermostat_impl
Copyright 2000–2001 IONA Technologies

Server-Side C++ Mapping Compiling and Linking

25
Server-Side C++ Mapping

Copyright 2000–2001 IONA Technologies

e exact
9.18 Compiling and Linking
Compiling and linking a server is almost identical to compiling and linking a client (see
page 6-69), except that a server must also contain the generated skeleton code. Note that th
commands required vary with your operating system and compiler.
Copyrigh
25Compiling and Linking

To create a server executable, you must compile the application code,
skeleton code, and the stub code. Typical compile commands are:

c++ -I. -I/opt/OB/include -c server.cc
c++ -I. -I/opt/OB/include -c MyIDL_skel.cpp
c++ -I. -I/opt/OB/include -c MyIDL.cpp

The exact flags and compile command vary with the platform.

To link the server, you must link against libOB :

c++ -o server server.o MyIDL_skel.o MyIDL.o -L/opt/OB/lib -lOB

If you are using JThreads/C++, you also need to link against the JTC
library and the native threads library. For example:

c++ -o server server.o MyIDL_skel.o MyIDL.o -L/opt/OB/lib \
-lOB -lJTC -lpthread
t 2000–2001 IONA Technologies 9-43

10.Exercise: Writing a Server
vant
Summary

In this unit, you will develop a server that implements the CCS IDL we presented in Unit 4.

Objectives

By the completion of this unit, you will have a detailed understanding of how to implement ser
classes, accept requests, process parameters, and throw exceptions on the server side.

Source Files and Build Environment Exercise: Writing a Server

r
ill

r

s on a

is
pdates

fined

a

r
r

10.1 Source Files and Build Environment
You will find this exercise in yourserver directory. The files in this directory are the same as fo
Unit 7. Theclient.cpp file contains the solution to the exercise presented in Unit 8. You w
use this program as the test harness for the changes you make to the server source code.

10.2 Server Operation
The server implements a single controller object and a fixed number of thermometers and
thermostats. The server uses stack-based servants for now. (We will change it to use prope
reference-counted servants in Unit 13.)

The server uses a simulated Instrument Control Protocol (ICP) to access hypothetical device
network. The protocol simulator is implemented in theicp directory. The ICP API is very simple
and can be found inicp/icp.h . (See Henning & Vinoski, pages 390–393 for details.) For th
exercise, the simulated network is non-persistent, so every time the server shuts down, all u
you made to the network are lost. You will not need to change the implementation of the ICP
simulator, but you should at least briefly review the description of the simulator in Henning &
Vinoski so you have some idea how the server accesses and updates state.

The IDL operations in the server read and write to the ICP network using helper functions de
in each class. For example,Thermometer_impl contains a helper function called
get_model that reads the model string for a device from the network, andThermostat_impl
contains a helper functionset_nominal_temp that updates a thermostat on the network with
new temperature setting. You will implement all operations in the server using these helper
functions.

The single controller object in the server is implemented by theController_impl class. This
class contains a private member variable and two public helper functions:

class Controller_impl : public virtual POA_CCS::Controller {
public:

// ...

// Helper functions to allow thermometers and
// thermostats to add themselves to the m_assets map
// and to remove themselves again.
void add_impl(CCS::AssetType anum, Thermometer_impl * tip);
void remove_impl(CCS::AssetType anum);

private:
// Map of known servants
typedef map<CCS::AssetType, Thermometer_impl *> AssetMap;
AssetMap m_assets;

// ...
};

Them_assets member maps asset numbers toThermometer_impl pointers. Because
Thermostat_impl is derived fromThermometer_impl , this means that both thermomete
and thermostat servant pointers can be stored in this map. The map is used by the controlle
servant to implement functionality such aslist andfind . The constructor of
Thermometer_impl callsm_ctrl->add_impl(anum, this) to add itself to the
10-2 Copyright 2000–2001 IONA Technologies

Exercise: Writing a Server Source Files and Build Environment

hy

he
ks.

hat the

n
: the

e

controller’s map, and the destructor callsm_ctrl->remove_impl to remove itself from the
map. This ensures that the controller servant has an accurate view of what devices exist. Th
m_ctrl variable is a static member variable ofThermometer_impl (initialized in therun
function), so thermometer and thermostat servants can get at the controller servant.

10.3 What You Need to Do

Step 1

Read the description of the ICP API in Henning & Vinoski, pages 390–393.

Step 2

Study the contents of theserver.h file. Make sure that you understand how the class hierarc
works and what member functions and member variables are used in each class. Note that
m_anum is a protected member inThermometer_impl so it is accessible in the derived
Thermostat_impl class. Also have a look at how theStrFinder function object is
implemented. This function object is used for the implementation of find and searches the
m_assets map for devices that match a specific location or model string.

Step 3

Have a look at themain function inserver.cpp . Make sure you understand how the signal
handler works and howmain is structured. The code for the server is mostly implemented in t
run function. Look at what the run function does and make sure you understand how it wor
Look through the actions of the constructors forThermometer_impl and
Thermostat_impl and follow the logic to make sure you understand how the controller
servant keeps track of devices.

Step 4

Theget_loc helper function and the member function to read the IDLlocation attribute are
empty. Implement these functions. Be sure to add some trace to your code so you can see w
server is doing when it runs. Use the provided client to test your changes.

Step 5

Theset_nominal_temp helper function is only partially implemented. The code to throw a
exception if the nominal temperature is out of range is missing. Add the missing code. (Note
ICP API returns the minimum and maximum temperature for attributes namedMIN_TEMP and
MAX_TEMP.)

Step 6

Implement the body of thelist operation in the controller. You can loop over the contents of th
m_assets map with loop such as:

AssetMap::iterator i;
for (i = m_assets.begin(); i != m_assets.end(); i++)

// ...

The expressioni->first evaluates to the asset number, andi->second evaluates to the
servant pointer.
Copyright 2000–2001 IONA Technologies 10-3
e

Source Files and Build Environment Exercise: Writing a Server

loop
pt fails,
oop

t

Step 7

Implement the body of thechange operation in the controller. Hint: an easy way to implement
this operation is to instantiate an exception at the beginning, just in case it is needed. Then
over the input sequence and attempt to set the temperature on each thermostat. If the attem
add an element to the sequence in the exception you have previously allocated. When the l
terminates, check if the sequence inside the exception has non-zero length. If so, throw the
exception.)

Step 8 (Difficult)

Implement the body of thefind operation in the controller. To search for an asset number tha
matches, you can use an expression such as:

AssetMap::iterator where;
where = m_assets.find(28);
if (where != m_assets.end())

// Found it, where points at map entry

To search for devices by location or asset number, you can use a search such as:

AssetMap::iterator where; // Iterator for asset map
where = find_if(

m_assets.begin(), m_assets.end(),
StrFinder(CCS::Controller::LOCATION, "some_string")

);
if (where != m_assets.end())

// Found it...
10-4 Copyright 2000–2001 IONA Technologies

11.Solution: Writing a Server

Solution Solution: Writing a Server
11.1 Solution

Step 4

// Helper function to read the location from a device.

CCS::LocType
Thermometer_impl::
get_loc()
{

char buf[32];
if (ICP_get(m_anum, "location", buf, sizeof(buf)) != 0)

abort();
return CORBA::string_dup(buf);

}

// IDL location attribute accessor.

CCS::LocType
Thermometer_impl::
location() throw(CORBA::SystemException)
{

return get_loc();
}

Step 5

// Helper function to set a thermostat's nominal temperature.

CCS::TempType
Thermostat_impl::
set_nominal_temp(CCS::TempType new_temp)
throw(CORBA::SystemException, CCS::Thermostat::BadTemp)
{

short old_temp;

// We need to return the previous nominal temperature,
// so we first read the current nominal temperature before
// changing it.
if (ICP_get(

m_anum, "nominal_temp", &old_temp, sizeof(old_temp)
) != 0) {

abort();
}

// Now set the nominal temperature to the new value.
if (ICP_set(m_anum, "nominal_temp", &new_temp) != 0) {

// If ICP_set() failed, read this thermostat's
// minimum and maximum so we can initialize the
11-2 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
// BadTemp exception.
CCS::Thermostat::BtData btd;
ICP_get(

m_anum, "MIN_TEMP",
&btd.min_permitted, sizeof(btd.min_permitted)

);
ICP_get(

m_anum, "MAX_TEMP",
&btd.max_permitted, sizeof(btd.max_permitted)

);
btd.requested = new_temp;
btd.error_msg = CORBA::string_dup(

new_temp > btd.max_permitted ? "Too hot" : "Too cold"
);
throw CCS::Thermostat::BadTemp(btd);

}
return old_temp;

}

Step 6

// IDL list operation.

CCS::Controller::ThermometerSeq *
Controller_impl::
list() throw(CORBA::SystemException)
{

// Create a new thermometer sequence. Because we know
// the number of elements we will put onto the sequence,
// we use the maximum constructor.
CCS::Controller::ThermometerSeq_var listv

= new CCS::Controller::ThermometerSeq(m_assets.size());
listv->length(m_assets.size());

// Loop over the m_assets map and create a
// reference for each device.
CORBA::ULong count = 0;
AssetMap::iterator i;
for (i = m_assets.begin(); i != m_assets.end(); ++i)

listv[count++] = i->second->_this();
return listv._retn();

}

Step 7

// IDL change operation.

void
Controller_impl::
change(
Copyright 2000–2001 IONA Technologies 11-3

Solution Solution: Writing a Server
const CCS::Controller::ThermostatSeq & tlist,
CORBA::Short delta

) throw(CORBA::SystemException, CCS::Controller::EChange)
{

CCS::Controller::EChange ec; // Just in case we need it

// We cannot add a delta value to a thermostat's temperature
// directly, so for each thermostat, we read the nominal
// temperature, add the delta value to it, and write
// it back again.
CORBA::ULong i;
for (i = 0; i < tlist.length(); ++i) {

if (CORBA::is_nil(tlist[i]))
continue; // Skip nil references

// Read nominal temp and update it.
CCS::TempType tnom = tlist[i]->get_nominal();
tnom += delta;
try {

tlist[i]->set_nominal(tnom);
}
catch (const CCS::Thermostat::BadTemp & bt) {

// If the update failed because the temperature
// is out of range, we add the thermostat's info
// to the errors sequence.
CORBA::ULong len = ec.errors.length();
ec.errors.length(len + 1);
ec.errors[len].tmstat_ref = tlist[i];
ec.errors[len].info = bt.details;

}
}

// If we encountered errors in the above loop,
// we will have added elements to the errors sequence.
if (ec.errors.length() != 0)

throw ec;
}

Step 8

// IDL find operation

void
Controller_impl::
find(CCS::Controller::SearchSeq & slist)
throw(CORBA::SystemException)
{

// Loop over input list and look up each device.
CORBA::ULong listlen = slist.length();
CORBA::ULong i;
11-4 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
for (i = 0; i < listlen; ++i) {

AssetMap::iterator where; // Iterator for asset map
int num_found = 0; // Num matched per iteration

// Assume we will not find a matching device.
slist[i].device = CCS::Thermometer::_nil();

// Work out whether we are searching by asset,
// model, or location.
CCS::Controller::SearchCriterion sc = slist[i].key._d();
if (sc == CCS::Controller::ASSET) {

// Search for matching asset number.
where = m_assets.find(slist[i].key.asset_num());
if (where != m_assets.end())

slist[i].device = where->second->_this();
} else {

// Search for model or location string.
const char * search_str;
if (sc == CCS::Controller::LOCATION)

search_str = slist[i].key.loc();
else

search_str = slist[i].key.model_desc();

// Find first matching device (if any).
where = find_if(

m_assets.begin(), m_assets.end(),
StrFinder(sc, search_str)

);

// While there are matches...
while (where != m_assets.end()) {

if (num_found == 0) {
// First match overwrites reference
// in search record.
slist[i].device = where->second->_this();

} else {
// Each further match appends a new
// element to the search sequence.
CORBA::ULong len = slist.length();
slist.length(len + 1);
slist[len].key = slist[i].key;
slist[len].device = where->second->_this();

}
++num_found;

// Find next matching device with this key.
where = find_if(

++where, m_assets.end(),
StrFinder(sc, search_str)
Copyright 2000–2001 IONA Technologies 11-5

Solution Solution: Writing a Server
);
}

}
}

}

11.2 The server.h File

#ifndef server_HH_
#define server_HH_

#include <map>

#ifdef HAVE_STDLIB_H
include <stdlib.h>
#endif

#include "CCS_skel.h"

#ifdef _MSC_VER
using namespace std;
#endif

class Controller_impl;

class Thermometer_impl : public virtual POA_CCS::Thermometer {
public:

// IDL attributes
virtual CCS::ModelType model()

throw(CORBA::SystemException);
virtual CCS::AssetType asset_num()

throw(CORBA::SystemException);
virtual CCS::TempType temperature()

throw(CORBA::SystemException);
virtual CCS::LocType location()

throw(CORBA::SystemException);
virtual void location(const char * loc)

throw(CORBA::SystemException);

// Constructor and destructor
Thermometer_impl(CCS::AssetType anum, const char * location);
virtual ~Thermometer_impl();

static Controller_impl * m_ctrl; // My controller

protected:
const CCS::AssetType m_anum; // My asset number

private:
11-6 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
// Helper functions
CCS::ModelType get_model();
CCS::TempType get_temp();
CCS::LocType get_loc();
void set_loc(const char * new_loc);

// Copy and assignment not supported
Thermometer_impl(const Thermometer_impl &);
void operator=(const Thermometer_impl &);

};

class Thermostat_impl :
public virtual POA_CCS::Thermostat,
public virtual Thermometer_impl {

public:
// IDL operations
virtual CCS::TempType get_nominal()

throw(CORBA::SystemException);
virtual CCS::TempType set_nominal(

CCS::TempType new_temp
) throw(

CORBA::SystemException,
CCS::Thermostat::BadTemp

);

// Constructor and destructor
Thermostat_impl(

CCS::AssetType anum,
const char * location,
CCS::TempType nominal_temp

);
virtual ~Thermostat_impl() {}

private:
// Helper functions
CCS::TempType get_nominal_temp();
CCS::TempType set_nominal_temp(CCS::TempType new_temp)

throw(CCS::Thermostat::BadTemp);

// Copy and assignment not supported
Thermostat_impl(const Thermostat_impl &);
void operator=(const Thermostat_impl &);

};

class Controller_impl : public virtual POA_CCS::Controller {
public:

// IDL operations
virtual CCS::Controller::ThermometerSeq *

list() throw(CORBA::SystemException);
virtual void
Copyright 2000–2001 IONA Technologies 11-7

Solution Solution: Writing a Server
find(CCS::Controller::SearchSeq & slist)
throw(CORBA::SystemException);

virtual void
change(

const CCS::Controller::ThermostatSeq & tlist,
CORBA::Short delta

) throw(
CORBA::SystemException,
CCS::Controller::EChange

);

// Constructor and destructor
Controller_impl() {}
virtual ~Controller_impl() {}

// Helper functions to allow thermometers and
// thermostats to add themselves to the m_assets map
// and to remove themselves again.
void add_impl(CCS::AssetType anum, Thermometer_impl * tip);
void remove_impl(CCS::AssetType anum);

private:
// Map of known servants
typedef map<CCS::AssetType, Thermometer_impl *> AssetMap;
AssetMap m_assets;

// Copy and assignment not supported
Controller_impl(const Controller_impl &);
void operator=(const Controller_impl &);

// Function object for the find_if algorithm to search for
// devices by location and model string.
class StrFinder {
public:

StrFinder(
CCS::Controller::SearchCriterion sc,
const char * str

) : m_sc(sc), m_str(str) {}
bool operator()(

pair<const CCS::AssetType, Thermometer_impl *> & p
) const
{

switch (m_sc) {
case CCS::Controller::LOCATION:

return strcmp(p.second->location(), m_str) == 0;
break;

case CCS::Controller::MODEL:
return strcmp(p.second->model(), m_str) == 0;
break;

default:
11-8 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
abort(); // Precondition violation
}
return 0; // Stops compiler warning

}
private:

CCS::Controller::SearchCriterion m_sc;
const char * m_str;

};
};

#endif

11.3 The server.cpp File

#include <OB/CORBA.h>

#include <algorithm>
#include <signal.h>
#include <string>
#include <fstream>

#if defined(HAVE_STD_IOSTREAM) || defined(HAVE_STD_STL)
using namespace std;
#endif

#include "icp.h"
#include "server.h"

//---

// Helper function to write a stringified reference to a file.

void
write_ref(const char * filename, const char * reference)
{

ofstream file(filename);
if (!file) {

string msg("Error opening ");
msg += filename;
throw msg.c_str();

}
file << reference << endl;
if (!file) {

string msg("Error writing ");
msg += filename;
throw msg.c_str();

}
file.close();
if (!file) {
Copyright 2000–2001 IONA Technologies 11-9

Solution Solution: Writing a Server
string msg("Error closing ");
msg += filename;
throw msg.c_str();

}
}

//---

Controller_impl * Thermometer_impl::m_ctrl; // static member

// Helper function to read the model string from a device.

CCS::ModelType
Thermometer_impl::
get_model()
{

char buf[32];
if (ICP_get(m_anum, "model", buf, sizeof(buf)) != 0)

abort();
return CORBA::string_dup(buf);

}

// Helper function to read the temperature from a device.

CCS::TempType
Thermometer_impl::
get_temp()
{

short temp;
if (ICP_get(m_anum, "temperature", &temp, sizeof(temp)) != 0)

abort();
return temp;

}

// Helper function to read the location from a device.

CCS::LocType
Thermometer_impl::
get_loc()
{

char buf[32];
if (ICP_get(m_anum, "location", buf, sizeof(buf)) != 0)

abort();
return CORBA::string_dup(buf);

}

// Helper function to set the location of a device.

void
Thermometer_impl::
11-10 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
set_loc(const char * loc)
{

if (ICP_set(m_anum, "location", loc) != 0)
abort();

}

// Constructor.

Thermometer_impl::
Thermometer_impl(

CCS::AssetType anum,
const char * location

) : m_anum(anum)
{

if (ICP_online(anum) != 0) // Mark device as on-line
abort();

set_loc(location); // Set its location
m_ctrl->add_impl(anum, this); // Add self to controller's map

}

// Destructor.

Thermometer_impl::
~Thermometer_impl()
{

try {
m_ctrl->remove_impl(m_anum); // Remove self from map
ICP_offline(m_anum); // Mark device as off-line

} catch (...) {
abort(); // Prevent exceptions from escaping

}
}

// IDL model attribute.

CCS::ModelType
Thermometer_impl::
model() throw(CORBA::SystemException)
{

return get_model();
}

// IDL asset_num attribute.

CCS::AssetType
Thermometer_impl::
asset_num() throw(CORBA::SystemException)
{

return m_anum;
}

Copyright 2000–2001 IONA Technologies 11-11

Solution Solution: Writing a Server
// IDL temperature attribute.

CCS::TempType
Thermometer_impl::
temperature() throw(CORBA::SystemException)
{

return get_temp();
}

// IDL location attribute accessor.

CCS::LocType
Thermometer_impl::
location() throw(CORBA::SystemException)
{

return get_loc();
}

// IDL location attribute modifier.

void
Thermometer_impl::
location(const char * loc) throw(CORBA::SystemException)
{

set_loc(loc);
}

//---

// Helper function to get a thermostat's nominal temperature.

CCS::TempType
Thermostat_impl::
get_nominal_temp()
{

short temp;
if (ICP_get(m_anum, "nominal_temp", &temp,sizeof(temp)) != 0)

abort();
return temp;

}

// Helper function to set a thermostat's nominal temperature.

CCS::TempType
Thermostat_impl::
set_nominal_temp(CCS::TempType new_temp)
throw(CCS::Thermostat::BadTemp)
{

short old_temp;
11-12 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
// We need to return the previous nominal temperature,
// so we first read the current nominal temperature before
// changing it.
if (ICP_get(

m_anum, "nominal_temp", &old_temp, sizeof(old_temp)
) != 0) {

abort();
}

// Now set the nominal temperature to the new value.
if (ICP_set(m_anum, "nominal_temp", &new_temp) != 0) {

// If ICP_set() failed, read this thermostat's
// minimum and maximum so we can initialize the
// BadTemp exception.
CCS::Thermostat::BtData btd;
ICP_get(

m_anum, "MIN_TEMP",
&btd.min_permitted, sizeof(btd.min_permitted)

);
ICP_get(

m_anum, "MAX_TEMP",
&btd.max_permitted, sizeof(btd.max_permitted)

);
btd.requested = new_temp;
btd.error_msg = CORBA::string_dup(

new_temp > btd.max_permitted ? "Too hot" : "Too cold"
);
throw CCS::Thermostat::BadTemp(btd);

}
return old_temp;

}

// Constructor.

Thermostat_impl::
Thermostat_impl(

CCS::AssetType anum,
const char * location,
CCS::TempType nominal_temp

) : Thermometer_impl(anum, location)
{

// Base Thermometer_impl constructor does most of the
// work, so we need only set the nominal temperature here.
set_nominal_temp(nominal_temp);

}

// IDL get_nominal operation.
Copyright 2000–2001 IONA Technologies 11-13

Solution Solution: Writing a Server
CCS::TempType
Thermostat_impl::
get_nominal() throw(CORBA::SystemException)
{

return get_nominal_temp();
}

// IDL set_nominal operation.

CCS::TempType
Thermostat_impl::
set_nominal(CCS::TempType new_temp)
throw(CORBA::SystemException, CCS::Thermostat::BadTemp)
{

return set_nominal_temp(new_temp);
}

//---

// Helper function for thermometers and thermostats to
// add themselves to the m_assets map.

void
Controller_impl::
add_impl(CCS::AssetType anum, Thermometer_impl * tip)
{

m_assets[anum] = tip;
}

// Helper function for thermometers and thermostats to
// remove themselves from the m_assets map.

void
Controller_impl::
remove_impl(CCS::AssetType anum)
{

m_assets.erase(anum);
}

// IDL list operation.

CCS::Controller::ThermometerSeq *
Controller_impl::
list() throw(CORBA::SystemException)
{

// Create a new thermometer sequence. Because we know
// the number of elements we will put onto the sequence,
// we use the maximum constructor.
CCS::Controller::ThermometerSeq_var listv

= new CCS::Controller::ThermometerSeq(m_assets.size());
11-14 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
listv->length(m_assets.size());

// Loop over the m_assets map and create a
// reference for each device.
CORBA::ULong count = 0;
AssetMap::iterator i;
for (i = m_assets.begin(); i != m_assets.end(); ++i)

listv[count++] = i->second->_this();
return listv._retn();

}

// IDL change operation.

void
Controller_impl::
change(

const CCS::Controller::ThermostatSeq & tlist,
CORBA::Short delta

) throw(CORBA::SystemException, CCS::Controller::EChange)
{

CCS::Controller::EChange ec; // Just in case we need it

// We cannot add a delta value to a thermostat's temperature
// directly, so for each thermostat, we read the nominal
// temperature, add the delta value to it, and write
// it back again.
CORBA::ULong i;
for (i = 0; i < tlist.length(); ++i) {

if (CORBA::is_nil(tlist[i]))
continue; // Skip nil references

// Read nominal temp and update it.
CCS::TempType tnom = tlist[i]->get_nominal();
tnom += delta;
try {

tlist[i]->set_nominal(tnom);
}
catch (const CCS::Thermostat::BadTemp & bt) {

// If the update failed because the temperature
// is out of range, we add the thermostat's info
// to the errors sequence.
CORBA::ULong len = ec.errors.length();
ec.errors.length(len + 1);
ec.errors[len].tmstat_ref = tlist[i];
ec.errors[len].info = bt.details;

}
}

// If we encountered errors in the above loop,
// we will have added elements to the errors sequence.
Copyright 2000–2001 IONA Technologies 11-15

Solution Solution: Writing a Server
if (ec.errors.length() != 0)
throw ec;

}

// IDL find operation

void
Controller_impl::
find(CCS::Controller::SearchSeq & slist)
throw(CORBA::SystemException)
{

// Loop over input list and look up each device.
CORBA::ULong listlen = slist.length();
CORBA::ULong i;
for (i = 0; i < listlen; ++i) {

AssetMap::iterator where; // Iterator for asset map
int num_found = 0; // Num matched per iteration

// Assume we will not find a matching device.
slist[i].device = CCS::Thermometer::_nil();

// Work out whether we are searching by asset,
// model, or location.
CCS::Controller::SearchCriterion sc = slist[i].key._d();
if (sc == CCS::Controller::ASSET) {

// Search for matching asset number.
where = m_assets.find(slist[i].key.asset_num());
if (where != m_assets.end())

slist[i].device = where->second->_this();
} else {

// Search for model or location string.
const char * search_str;
if (sc == CCS::Controller::LOCATION)

search_str = slist[i].key.loc();
else

search_str = slist[i].key.model_desc();

// Find first matching device (if any).
where = find_if(

m_assets.begin(), m_assets.end(),
StrFinder(sc, search_str)

);

// While there are matches...
while (where != m_assets.end()) {

if (num_found == 0) {
// First match overwrites reference
// in search record.
slist[i].device = where->second->_this();
11-16 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
} else {
// Each further match appends a new
// element to the search sequence.
CORBA::ULong len = slist.length();
slist.length(len + 1);
slist[len].key = slist[i].key;
slist[len].device = where->second->_this();

}
++num_found;

// Find next matching device with this key.
where = find_if(

++where, m_assets.end(),
StrFinder(sc, search_str)

);
}

}
}

}

//---

void
run(CORBA::ORB_ptr orb)
{

// Get reference to Root POA.
CORBA::Object_var obj

= orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa

= PortableServer::POA::_narrow(obj);

// Create a controller and set static m_ctrl member
// for thermostats and thermometers.
Controller_impl ctrl_servant;
Thermometer_impl::m_ctrl = &ctrl_servant;

// Write controller stringified reference to ctrl.ref.
CCS::Controller_var ctrl = ctrl_servant._this();
CORBA::String_var str = orb->object_to_string(ctrl);
write_ref("ctrl.ref", str);

// Create a few devices. (Thermometers have odd asset
// numbers, thermostats have even asset numbers.)
Thermometer_impl thermo1(2029, "Deep Thought");
Thermometer_impl thermo2(8053, "HAL");
Thermometer_impl thermo3(1027, "ENIAC");

Thermostat_impl tmstat1(3032, "Colossus", 68);
Thermostat_impl tmstat2(4026, "ENIAC", 60);
Thermostat_impl tmstat3(4088, "ENIAC", 50);
Copyright 2000–2001 IONA Technologies 11-17

Solution Solution: Writing a Server
Thermostat_impl tmstat4(8042, "HAL", 40);

// Write a thermostat reference to tmstat.ref.
CCS::Thermostat_var tmstat = tmstat1._this();
str = orb->object_to_string(tmstat);
write_ref("tmstat.ref", str);

// Activate POA manager
PortableServer::POAManager_var mgr = poa->the_POAManager();
mgr->activate();

// Accept requests
orb->run();

}

//---

static CORBA::ORB_var orb; // Global, so handler can see it.

//---

#ifdef WIN32
BOOL
handler(DWORD)
{

// Inform JTC of presence of new thread
JTCAdoptCurrentThread adopt;

// Terminate event loop
try {

if (!CORBA::is_nil(orb))
orb->shutdown(false);

} catch (...) {
// Can't throw here...

}
return TRUE;

}
#else
extern "C"
void handler(int)
{

// Ignore further signals
struct sigaction ignore;
ignore.sa_handler = SIG_IGN;
sigemptyset(&ignore.sa_mask);
ignore.sa_flags = 0;
if (sigaction(SIGINT, &ignore, (struct sigaction *)0) == -1)

abort();
if (sigaction(SIGTERM, &ignore, (struct sigaction *)0) == -1)

abort();
11-18 Copyright 2000–2001 IONA Technologies

Solution: Writing a Server Solution
if (sigaction(SIGHUP, &ignore, (struct sigaction *)0) == -1)
abort();

// Terminate event loop
try {

if (!CORBA::is_nil(orb))
orb->shutdown(false);

} catch (...) {
// Can't throw here...

}
}
#endif

//---

int
main(int argc, char* argv[])
{

// Install signal handler for cleanup
#ifdef WIN32

BOOL rc = SetConsoleCtrlHandler((PHANDLER_ROUTINE)handler, TR
UE);

if (!rc)
abort();

#else
struct sigaction sa; // New signal state
sa.sa_handler = handler; // Set handler function
sigfillset(&sa.sa_mask); // Mask all other signals

// while handler runs
sa.sa_flag s = 0 | SA_RESTART; // Restart interrupted syscal

ls

if (sigaction(SIGINT, &sa, (struct sigaction *)0) == -1)
abort();

if (sigaction(SIGHUP, &sa, (struct sigaction *)0) == -1)
abort();

if (sigaction(SIGTERM, &sa, (struct sigaction *)0) == -1)
abort();

#endif

// Initialize the ORB and start working...
int status = 0;
try {

orb = CORBA::ORB_init(argc, argv);
run(orb);

} catch (const CORBA::Exception & ex) {
cerr << "Uncaught CORBA exception: " << ex << endl;
status = 1;

} catch (...) {
cerr << "Uncaught non-CORBA exception" << endl;
Copyright 2000–2001 IONA Technologies 11-19

status = 1;
}

// Destroy the ORB.
if (!CORBA::is_nil(orb)) {

try {
orb->destroy();

} catch (const CORBA::Exception & ex) {
cerr << "Cannot destroy ORB: " << ex << endl;
status = 1;

}
}

return status;
}

12.The Portable Object Adapter (POA)
ality
tate of
cle

 and

,

Summary

This unit presents the Portable Object Adapter (POA) in detail and covers most of the function
of the POA interfaces. It explains how to create persistent objects and how to link database s
objects to object references and servants. In addition, this unit covers how to support life cy
operations for CORBA objects.

Objectives

By the completion of this unit, you will be able to create servers that permit clients to create
destroy objects and that offer objects whose state is persistent. In addition, you will have a
thorough understanding of the functionality of the POA, including how to control request flow
initialization, finalization, and memory management techniques.

Interface Overview The Portable Object Adapter (POA)

1
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

r of

that

ore

RB

rface;
12.1 Interface Overview
The interfaces to the POA are defined in IDL in thePortableServer module:

• POA

The POA interface is the central server-side interface and contains quite a large numbe
operations. POAs are concerned with tasks such as keeping track of which servants are
currently instantiated and their addresses in memory, the activation and deactivation of
servants, the creation of object references, and various other life cycle issues (such as
permitting a servant to be deleted at a time when no operation invocation is in progress in
servant).

• POAManager

Conceptually a POA manager represents a transport endpoint that is used by one or m
POAs. POA managers control the flow of requests into POAs.

• Servant

The IDLServant type is defined in the specification as follows:

module PortableServer {
native Servant;
// ...

};

native is an IDL keyword that may be used only by OMG-defined specifications and O
vendors. Thenative keyword indicates that the corresponding IDL construct is highly
dependent on the target programming language and therefore does not have an IDL inte
12-2
1Interface Overview

The Portable Object Adapter provides a number of core interfaces, all
part of the PortableServer module:

• POA

• POAManager

• Servant

• POA Policies (seven interfaces)

• Servant Managers (three interfaces)

• POACurrent

• AdapterActivator

Of these, the first five are used regularly in almost every server;
POACurrent and AdapterActivator support advanced or unusual
implementation techniques.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Interface Overview

t
cannot
e

emain
e
ding

eep a
allow
vants

 to
 are
rity

g
 any
instead, each language mapping must specify how the native type is represented as
programming-language artifacts for a specific implementation language.

Thenative keyword was added to IDL after earlier attempts to specify the interface for
servants were unsuccessful—as it turns out, to get elegant language mappings, servan
implementations must use features that are specific to each programming language and
be expressed in IDL. (This is not surprising when you consider that servants straddle th
boundary between language-independent IDL definitions and language-specific
implementations.)

• POA Policies (seven interfaces)

Each POA has seven policies that are associated with that POA when it is created (and r
in effect without change for the life time of each POA). The policies control aspects of th
implementation techniques that are used by servants using that POA, such as the threa
model and whether object references are persistent or transient.

• Servant Managers (three interfaces)

Servant managers permit lazy instantiation of servants. Instead of requiring a server to k
separate C++ object instantiated in memory for each CORBA object, servant managers
servers to be written such that C++ instances are created on demand for only those ser
that are actually used.

• POACurrent

POACurrent is an object that provides information about a currently executing operation
the operation’s implementation. This information is useful mainly for interceptors (which
used to implement functionality required by services such as the Transaction and Secu
Service).

• AdapterActivator

An adapter activator is a callback object that permits you to create an object adapter on
demand, when a request arrives for it, instead of forcing you keep all adapters active in
memory at all times. Adapter activators are useful mainly to implement optimistic cachin
schemes, where entire groups of objects are instantiated in memory when a request for
one of the objects in the group is received.
Copyright 2000–2001 IONA Technologies 12-3

Functions of a POA The Portable Object Adapter (POA)

2
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

bject
,
rrect

. Each
ith the

ell as
12.2 Functions of a POA
The main purpose of a POA is to bridge the gap between the abstract notion of a CORBA o
and the concrete representation of that object’s behavior in form of a servant. In other words
POAs can be seen as a mapping mechanism that associates incoming requests with the co
C++ object in the server’s memory.

A server can contain any number of POAs besides the Root POA (which is always present)
POA, when it is created, is associated with a set of seven policies. These policies remain w
POA for its life time (that is, they become immutable once the POA is created). The policies
determine the implementation characteristics of the servants associated with the POA, as w
aspects of object references (such as whether references are transient or persistent).

A POA can have any number of servants, but each servant belongs to exactly one POA.1

1. The specification (at least in theory) permits a single servant to be associated with more than POA at a time.
However, this must be considered a defect because it creates a number of semantic conflicts; westronglyrecommend
that you never use the same servant with more than one POA.
12-4
2Functions of a POA
Each POA forms a namespace for servants.

All servants that use the same POA share common implementation
characteristics, determined by the POA’s policies. (The Root POA has a
fixed set of policies.)

Each servant has exactly one POA, but many servants may share the
same POA.

The POA tracks the relationship between object references, object IDs,
and servants (and so is intimately involved in their life cycle).

POAs map between object references and the associated object ID and
servants and map an incoming request onto the correct servant that
incarnates the corresponding CORBA object.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Functions of a POA Manager

3
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

 POAs.

POA

arget

rs the

d

ates to
ent is
rver.
12.3 Functions of a POA Manager
A POA manager acts as a gate that controls the flow of requests to one or more associated
Conceptually, a POA manager represents a transport endpoint (such as a host–port pair for
TCP/IP). A POA is associated with its POA manager when the POA is created; thereafter, the
manager for a POA cannot be changed.

A POA manager is in one of four possible states:

• Active

This is the normal state in which the POA manager passes an incoming request to the t
POA, which in turn passes the request to the correct servant.

• Holding

In this state, the POA manager holds requests in a queue. Once the POA manager ente
active state, it passes the requests to their destination POAs.

• Discarding

Incoming requests are rejected with aTRANSIENT exception. This exception indicates to the
client that the request cannot be delivered right now, but that it may work if retransmitte
again later.

• Inactive

Requests are rejected; however, instead of raising an exception, the POA manager indic
the client that the connection to the server is no longer usable. Depending on how the cli
configured, this may result in an attempt by the client to locate a new instance of the se
Copyrigh
3Functions of a POA Manager

A POA manager is associated with a POA when the POA is created.
Thereafter, the POA manager for a POA cannot be changed.

A POA manager controls the flow of requests into one or more POAs.

A POA manager is associated with a POA when the POA is created.
Thereafter, the POA manager for a POA cannot be changed.

A POA manager is in one of four possible states:

• Active : Requests are processed normally

• Holding : Requests are queued

• Discarding : Requests are rejected with TRANSIENT

• Inactive : Requests are rejected; clients may be redirected to a
different server instance to try again.
t 2000–2001 IONA Technologies 12-5

POA Manager State Transitions The Portable Object Adapter (POA)

4
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

d with
s out
ager,

nd the
royed
can
ion.
12.4 POA Manager State Transitions
The above diagram shows the possible state transitions. The arcs in the diagram are labele
the corresponding IDL operation name. Initially, when it is first created, a POA manager start
in the holding state. Before the ORB delivers requests to POAs associated with that POA man
you must transition to the active state (see page 9-14).

Note that, once the POA manager enters the inactive state, it cannot be reactivated again a
only remaining transition is the destruction of the POA manager. POA managers are not dest
explicitly; instead, a POA manager is destroyed once the last of its POAs is destroyed. You
freely transition among the remaining states by invoking the corresponding transition operat

The IDL for the POAManager interface is as follows:

module PortableServer {
// ...
interface POAManager {

exception AdapterInactive {};

enum State { HOLDING, ACTIVE, DISCARDING, INACTIVE };

State get_state();
void activate() raises(AdapterInactive);
void hold_requests(in boolean wait_for_completion)

raises(AdapterInactive);
void discard_requests(in boolean wait_for_completion)

raises(AdapterInactive);
void deactivate(
12-6
4POA Manager State Transitions
Discarding

Active

Holding Inactive

discard_requests

discard_requests

hold_requests

activate

discard_requests

deactivate

deactivate

deactivate

creation destruction

activate

hold_requests

activate

hold_requests
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) POA Manager State Transitions

rated

ger
h they

til all
ll this
s

ase
 the

ow
rs fill
ing
in boolean etherealize_objects,
in boolean wait_for_completion

) raises(AdapterInactive);
};

};

State get_state()

Theget_state operation returns the current state of the of the POA manager as an enume
value.

void activate() raises(AdapterInactive)

Theactivate operation transitions the POA manager into the active state. If the POA mana
was previously in the holding state, the queued requests are dispatched in the order in whic
were received. Attempts to activate an inactive POA manager raiseAdapterInactive.

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive)

Thehold_requests operation transitions the POA manager into the holding state. Incoming
requests are queued up to some implementation-dependent limit.2 If wait_for_completion is
false, the operation returns immediately; otherwise, it queues incoming requests but waits un
currently executing requests have completed before returning control to the caller. If you ca
operation withwait_for_completion set to true from within a servant that has a POA that i
controlled by this POA manager, the operation raises BAD_INV_ORDER (because it would
deadlock otherwise). Attempts to invoke this operation on an inactive POA manager raise
AdapterInactive.

void discard_requests(in boolean wait_for_completion)
raises(AdapterInactive)

Thediscard_requests operation transitions the POA manager into the discarding state.
Incoming requests are rejected with aTRANSIENT exception. Thewait_for_completion
parameter has the same semantics as forhold_requests. Attempts to invoke this operation on
an inactive POA manager raiseAdapterInactive.

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion

) raises(AdapterInactive)

Thedeactivate operation transitions the POA manager into the inactive state. Incoming
requests are faced with a closed connection; the behavior that is visible to the client in this c
depends on the type of object reference (transient or persistent) and the rebinding policy of
client. The wait_for_completion parameter has the same semantics as fordiscard_requests.
Theetherealize_objects parameter determines whether or not servant activators will be
asked to destroy existing servants. (See page 15-4.) Attempts to invoke this operation on an
inactive POA manager raiseAdapterInactive.

2. In ORBacus, the underlying transport is used as the queueing mechanism. This means that, due to TCP/IP fl
control, leaving a POA manager in the holding state may cause flow control to affect the client (if transport buffe
up completely) and cause the client to block in an operation until the POA manager transitions out of the hold
state.
Copyright 2000–2001 IONA Technologies 12-7

Request Flow The Portable Object Adapter (POA)

5
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

for

he POA

e the
 passes
12.5 Request Flow
The general request flow into a server is shown above. Note that the diagram represents a
conceptual view only. In the implementation, requests are not physically passed in this way
efficiency reasons.

Conceptually, the request is directed toward a particular ORB within a server.3 If the ORB is
processing requests (that is, has created a dispatch loop by callingORB::run or is dispatching
requests explicitly viaORB::work_pending andORB::perform_work), the request is passed
to the POA manager.

The POA manager determines whether the request is queued, discarded, or passed on. If t
manager is in the active state, the request is passed to the correct POA.

The POA determines the relationship between the CORBA reference that was used to mak
call (and, therefore, the CORBA object represented by that reference) and the servant, and
the request to the correct servant.

3. It is possible to instantiate multiple ORBs by callingORB_init more than once with different ORB IDs. This is
useful if you, for example, require different dispatch policies to be used for different objects.
12-8
5Request Flow
Conceptually, incoming requests are directed toward a particular ORB.

If the ORB is accepting requests, it passes the request to a POA
manager.

The POA manager (if it is in the active state) passes the request to a
POA, which in turn passes it to the correct servant.

ORB Servants
Incoming
request

Server Application

dispatch

POA
POA

Manager
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Contents of an Object Reference

6
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

o

t can
he

 (at
lient
ct key,
ORB
f the

r
 treat
12.6 Contents of an Object Reference
For a server to correctly dispatch incoming requests to the correct servant, and for a client t
correctly connect to the a server, an object reference must contain a minimum amount of
information. In particular, it must contain an address (such as a host–port pair) that the clien
use to contact the server, and it must contain information that, once a request is passed to t
server, identifies the particular target object for an invocation.

As shown above, an object reference contains exactly that. The transport information, which
least for IIOP) is standardized, enables the client to connect to the correct server. When a c
sends an invocation to a particular server, it sends the object key with the request. The obje
internally, contains both a POA name and an object ID. The POA name enables the receiving
to identify the correct POA to pass the request to. In turn, the POA uses the object ID part o
object key to identify the specific servant that must handle the request.

Note that the object key is in a proprietary format, specific to each ORB vendor, and is neve
looked at except by the server that created it. Other clients and servers in a CORBA system
the object key as an opaque blob of data.
Copyrigh
6Contents of an Object Reference
Conceptually, an object reference contains the following information:

• Repository ID (optional, identifies interface type)

• Addressing information (identifies a transport endpoint)

• Object key (identifies POA and object within the POA)

The object key is in a proprietary format, specific to each ORB.

Repository ID Transport Address
Object ID

POA Name

Object Key

Object Reference
t 2000–2001 IONA Technologies 12-9

Policies The Portable Object Adapter (POA)

7
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

 as of
ing

objects)
. As a
t

12.7 Policies
Each POA is associated with a set of seven policies when the POA is created. The policies
determine implementation characteristics of object references created by that POA, as well
servants that are associated with that POA, such as the life time of references or the thread
model to be used for request dispatch.

Policies are used in contexts other than the POA.4 For that reason, theCORBA module provides an
abstract base interface for policies from which all concrete policies are derived. ThePolicy
interface provides only the basic features that are common to all policies. Thepolicy_type
attribute identifies the specific kind of policy. (Policy numbers are assigned by the OMG.)

Thecopy operation returns a (polymorphic) copy of a policy, and thedestroy operation destroys
a policy object. The specification requires you to calldestroy on a policy object you have created
before releasing its last reference.5

4. CORBA is using policies as a general abstraction for a quality-of-service (QoS) framework. For example, the
real-time and messaging specifications both use policies to control various operational aspects of an ORB.

5. This is a rather useless requirement because policy objects are locality constrained (implemented as library
and the ORB can reclaim their resources automatically, when the last reference to a policy object is released
result, all ORBs we are aware of implementdestroy as a no-op, so you don’t suffer a resource leak if you do no
call destroy before releasing a policy reference.
12-10
7Policies

Each POA is associated with a set of seven policies when it is created.

Policies control implementation characteristics of object references and
servants.

The CORBA module provides a Policy abstract base interface:

module CORBA {
typedef unsigned long PolicyType;

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};
typedef sequence<Policy> PolicyList;
// ...

};
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Policies
Copyright 2000–2001 IONA Technologies 12-11

POA Policies The Portable Object Adapter (POA)

8
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

olicy

down.
n and

ery
ually

t are

s. You
u can

rst
12.8 POA Policies
The seven POA policies are all derived from theCORBA::Policy base interface. Each controls a
different aspect of the implementation of an object. We briefly describe the purpose of each p
here and discuss it in more detail as we present the relevant implementation techniques.

• LifespanPolicy

The life span policy controls whether a reference is transient or persistent. A transient
reference works only for as long as its POA remains in existence and then becomes
permanently non-functional. Therefore, transient references do not survive server shut-
Persistent references continue to denote the same object even if the server is shut dow
restarted.

• IdAssignmentPolicy

The ID assignment policy controls whether the object ID that is part of the object key of ev
reference is created by the ORB or is provided by the application. Transient references us
use IDs that are created by the ORB, whereas persistent reference usually use IDs tha
provided by the application.

• IdUniquenessPolicy

The ID uniqueness policy determines how object references are mapped to C++ servant
can choose to use one servant for each CORBA object that is provided by a server, or yo
choose to incarnate multiple CORBA objects with the same C++ servant.

• ImplicitActivationPolicy

The implicit activation policy determines whether a newly instantiated servant must be
explicitly activated (registered with the ORB) or will be activated automatically when you fi
12-12
8POA Policies
The PortableServer module contains seven interfaces that are
derived from the CORBA::Policy interface:

• LifespanPolicy

• IdAssignmentPolicy

• IdUniquenessPolicy

• ImplicitActivationPolicy

• RequestProcessingPolicy

• ServantRetentionPolicy

• ThreadPolicy
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) POA Policies

ant
e to
l

imes

le
create a reference for the servant. Transient references usually use implicitly activated
servants, whereas persistent references must use explicitly activated servants.

• RequestProcessingPolicy

The request processing policy controls whether the POA maintains the object ID-to-serv
associations for you (either to multiple servants or a single servant). You can also choos
maintain these associations yourself. Doing so is more work, but provides more powerfu
implementation choices.

• ServantRetentionPolicy

The servant retention policy controls whether you keep your servants in memory at all t
or instantiate them on demand, as requests arrive from clients.

• ThreadPolicy

The thread policy controls whether requests are dispatched on a single thread or multip
threads.
Copyright 2000–2001 IONA Technologies 12-13

POA Creation The Portable Object Adapter (POA)

9
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

ory
ave

er

ot
all

e;

veral

hare
ated

n

.

12.9 POA Creation
The POA interface provides an operation that creates POAs. (This is an example of the fact
pattern, which we will examine in more detail in Section 12.24.) Initially, the only POA you h
access to is the Root POA, returned byresolve_initial_references. In order to create
other POAs, you call thecreate_POA operation on the Root POA or, once you have created oth
POAs, on a POA other than the Root POA.

The newly created POA becomes a child of the POA on which you invokecreate_POA. In other
words, if you have multiple POAs in a server, they are arranged into a hierarchy with the Ro
POA at the top. You control the shape of the hierarchy by choosing the POA on which you c
create_POA.

Each POA has a name, controlled by setting theadapter_name parameter. You can choose any
name you deem suitable, but you must ensure that no other sibling POA has the same nam
otherwise,create_POA raises anAdapterAlreadyExists exception. As with a directory tree,
the name of a POA must be unique only within the context of its parent, so you can have se
POAs with the same name, as long as they have different parent POAs.

Themanager parameter controls whether the new POA will use a separate POA manager or s
a POA manger with other POAs: if you pass a nil reference, a new POA manager will be cre
for this POA; otherwise, you can pass a reference to an existing POA manager6 and the new POA
will be added to the list of POAs controlled by that manager.

Thepolicies parameter sets the policies to be applied to the new POA. The policy list can
contain up to seven distinct POA policies. If you supply a value for the same policy more tha

6. Thethe_POAManager read-only attribute on the POA interface returns the POA manager reference for a POA
12-14
9POA Creation

The POA interface allows you to create other POAs:

module PortableServer {
interface POAManager;

exception AdapterAlreadyExists {};
exception InvalidPolicy { unsigned short index; };
interface POA {

POA create_POA(
in string adapter_name,
in POAManager manager,
in CORBA::PolicyList policies;

) raises(AdapterAlreadyExists, InvalidPolicy);
readonly attribute POAManager the_POAManager;
// ...

};
// ...

};
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) POA Creation

en

all
once, or if one of the policies does not apply to the POA, thecreate_POA raises
InvalidPolicy; theindex member of the exception indicates the first policy that was found
be in error. You can create a POA with an empty policy sequence. If you do, each of the sev
policies gets a default value.

For now, let us look at a simple example. The code that follows creates the following POA
hierarchy:

For now, we will use the simplest way to create this hierarchy, using the default policies for
POAs, and using a separate POA manager for each POA.

// Initialize ORB and get Root POA
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =

PortableServer::POA::_narrow(obj);
assert(!CORBA::is_nil(root_poa));

// Create empty policy list
CORBA::PolicyList policy_list;

// Create Controller POA
PortableServer::POA_var ctrl_poa = root_poa->create_POA(

"Controller",
PortableServer::POAManager::_nil(),
policy_list);

// Create Thermometer POA as a child of the Controller POA
PortableServer::POA_var thermometer_poa = ctrl_poa->create_POA(

"Thermometers",
PortableServer::POAManager::_nil(),
policy_list);

// Create Thermostat POA as a child of the Controller POA
PortableServer::POA_var thermostat_poa = ctrl_poa->create_POA(

"Thermostats",
PortableServer::POAManager::_nil(),
policy_list);

Root POA

Controller

ThermostatsThermometers
Copyright 2000–2001 IONA Technologies 12-15
to

POA Creation The Portable Object Adapter (POA)

lows:

 first
Because the code passes a nil reference as themanager parameter, each POA ends up with its
own, separate POA manager; because the code passes an empty policy sequence as thepolicies
parameter, each POA gets created with the default policies.

If we wanted to use the same POA manager for all four POAs, we could write the code as fol

// Initialize ORB and get Root POA
PortableServer::POA_var root_poa = ...;

// Create empty policy list
CORBA::PolicyList policy_list;

// Get the Root POA manager
PortableServer::POAManager_var mgr = root_poa->the_POAManager();

// Create Controller POA, using the Root POA's manager
PortableServer::POA_var ctrl_poa = root_poa->create_POA(

"Controller",
mgr,
policy_list);

// Create Thermometer POA as a child of the Controller POA,
// using the Root POA's manager
PortableServer::POA_var thermometer_poa = ctrl_poa->create_POA(

"Thermometers",
mgr,
policy_list);

// Create Thermostat POA as a child of the Controller POA,
// using the Root POA's manager
PortableServer::POA_var thermostat_poa = ctrl_poa->create_POA(

"Thermostats",
mgr,
policy_list);

This code is almost identical to the preceding example. The only difference is that the code
gets a reference to the Root POA’s manager by reading thethe_POAManager attribute of the Root
POA, and then passes that manager’s reference to the threecreate_POA calls.
12-16 Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) POA-to-POA Manager Relationship

10
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

lled

parate
with
down
ure

he

uests
12.10POA-to-POA Manager Relationship
create_POA is flexible enough to permit you to create arbitrary hierarchies of POAs, contro
by an arbitrary number of POA managers.

There are many reasons for using more than one POA. For example, it is common to use a se
POA for each interface that is provided by a server. (This technique is common in conjunction
servant managers.) The POA hierarchy also controls the order of destruction when you shut
the ORB: child POAs are destroyed before their parents. (This is useful to, for example, ens
that thermometers and thermostats are destroyed before the controller is destroyed.)

Similarly, you may want to use more than one POA manager in order to separately control t
processing of requests for different groups of objects. (This is useful if you want to suspend
request processing temporarily for one set of objects without affecting the processing of req
for another set of objects.)
Copyrigh
10POA-to-POA Manager Relationship

With create_POA, you can create arbitrary POA-to-POA manager
relationships:

Application

Root POA

ORB

POA

POA

POA

POA

POA

POA
POA

Manager

POA
Manager
t 2000–2001 IONA Technologies 12-17

The Life Span Policy The Portable Object Adapter (POA)

11
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

nces
r
 a front
12.11The Life Span Policy
The life span policy controls whether references are transient or persistent. Transient refere
are usually created for objects that only exist temporarily, to support short-lived client–serve
interactions. On the other hand, persistent references are usually created if a server acts as
end to some form of persistent store, such as a document retrieval service, which makes it
desirable to pass out references to clients that can survive server shut-down.

Although the specification does not require it, you should combine thePERSISTENT life span
policy with an implicit activation policy value ofNO_IMPLICIT_ACTIVATION, and an ID
assignment policy value ofUSER_ID.7

Note that, to create persistent objects, you must do a few things other than using thePERSISTENT
life span policy. We discuss these details in Section 12.21.

7. While the other two combinations are legal, they do not have realistic use cases.
12-18
11The Life Span Policy

The life span policy controls whether references are transient or
persistent. The default is TRANSIENT.

enum LifespanPolicyValue { TRANSIENT, PERSISTENT };

interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

};

You should combine PERSISTENT with:

• ImplicitActivationPolicy: NO_IMPLICIT_ACTIVATION

• IdAssignmentPolicy: USER_ID

You should combine TRANSIENT with:

• ImplicitActivationPolicy: IMPLICIT_ACTIVATION

• IDAssignmentPolicy: SYSTEM_ID
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) The ID Assignment Policy

12
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

he
tion.

ing

e

12.12The ID Assignment Policy
The ID assignment policy controls whether object IDs (which end up being embedded into t
object key inside references) are generated by the POA or supplied explicitly by the applica
As we saw on page 12-9, the object ID ultimately identifies which servant is to handle an incom
request. This means that each ID denotes exactly one servant at a time.

If the ID assignment policy isSYSTEM_ID, the POA automatically creates unique identifiers. If th
policy isUSER_ID, the POA rejects attempts to use the same ID a second time.
Copyrigh
12The ID Assignment Policy

The ID assignment policy controls whether object IDs are created by
the ORB or by the application. The default is SYSTEM_ID.

enum IdAssignmentPolicyValue { USER_ID, SYSTEM_ID };

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

You should combine USER_ID with:

• ImplicitActivationPolicy: NO_IMPLICIT_ACTIVATION

• LifespanPolicy: PERSISTENT

You should combine SYSTEM_ID with:

• ImplicitActivationPolicy: IMPLICIT_ACTIVATION

• LifespanPolicy: TRANSIENT
t 2000–2001 IONA Technologies 12-19

The Active Object Map (AOM) The Portable Object Adapter (POA)

13
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

ach

est to.
12.13The Active Object Map (AOM)
The POA maintains a lookup table known as the Active Object Map (AOM) that associates e
object ID with the address of the corresponding servant in memory.8 This means that each object
ID must uniquely identify a servant; otherwise, the POA could end up with a single object ID
designating two servants simultaneously and would not know which servant to give the requ

8. You can change the setting of the servant retention policy toNON_RETAIN in order to provide your own AOM.
12-20
13The Active Object Map (AOM)

Each POA with a servant retention policy of RETAIN has an AOM. The
AOM provides a mapping from object IDs to servant addresses:

The object ID is the index into the map and sent by clients with each
incoming request as part of the object key.

Object Reference

POA Active Object Map

Servants

Object ID

Servant Pointer
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) The ID Uniqueness Policy

14
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

nce
 to the

ith
BA

at run
12.14The ID Uniqueness Policy
You can chose to provide a separate C++ servant for each CORBA object by setting the ID
uniqueness policy toUNIQUE_ID. This setting enforces that no servant can appear more than o
in the AOM, so each CORBA object is incarnated by a separate servant. (This corresponds
diagram shown on page 12-20.)

If you set the policy toMULTIPLE_ID, a single servant can incarnate more than one CORBA
object simultaneously:

MULTIPLE_ID is useful if a server must provide access to a large number of CORBA objects w
limited memory footprint. The cost of this increased scalability is that the identity of the COR
object for a request is no longer implicit in the particular servant instance. Instead, the
implementation of each operation must associate the object ID with the correct object state
time.

Object Reference

POA Active Object Map

Servants

Object ID

Servant Pointer
Copyrigh
14The ID Uniqueness Policy

The ID uniqueness policy controls whether a single servant can
represent more than one CORBA object. The default is UNIQUE_ID.):

enum IdUniquenessPolicyValue { UNIQUE_ID, MULTIPLE_ID };

interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

• UNIQUE_ID enforces that no servant can appear in the AOM more
than once.

• MULTIPLE_ID permits the same servant to be pointed at by more
than one entry in the AOM.

For MULTIPLE_ID, an operation implementation can ask its POA for
the object ID for the current invocation.
t 2000–2001 IONA Technologies 12-21

The Servant Retention Policy The Portable Object Adapter (POA)

15
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

e
efault

se the
12.15The Servant Retention Policy
The servant retention policy controls whether an AOM is present (RETAIN) or absent
(NON_RETAIN). Obviously, for theNON_RETAIN case, this deprives the POA of automatically
mapping the object ID for an incoming request to the correct C++ servant. Depending on th
setting of the request processing policy, the ORB either maps all requests to a nominated d
servant (USER_DEFAULT_SERVANT) or it calls back into the application code to supply it with a
servant for the request (USE_SERVANT_MANAGER).

Most servers that must provide access to a large number of CORBA objects simultaneously u
NON_RETAIN policy to limit the number of servants that must be in memory simultaneously.
12-22
15The Servant Retention Policy

The servant retention policy controls whether a POA has an AOM. (The
default is RETAIN).

enum ServantRetentionPolicyValue { RETAIN, NON_RETAIN };

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

};

NON_RETAIN requires a request processing policy of
USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER.

With NON_RETAIN and USE_DEFAULT_SERVANT, the POA maps
incoming requests to a nominated default servant.

With NON_RETAIN and USE_SERVANT_MANAGER, the POA calls back
into the server application code for each incoming request to map the
request to a particular servant.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) The Request Processing Policy

16
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

f

nts are
uest

D.
s is

e
ntiate
added
s

r, the
t.
12.16The Request Processing Policy
The most simple approach to implementing a server is to use a request processing policy o
USE_ACTIVE_OBJECT_MAP_ONLY together with a servant retention policy ofRETAIN. This
combination uses a separate servant for each CORBA object (see page 12-20), and all serva
permanently in memory. If a request arrives for a an object ID that is not in the AOM, the req
raisesOBJECT_NOT_EXIST in the client.

TheUSE_DEFAULT_SERVANT policy can be combined with both RETAIN and NON_RETAIN
policies:

• If used withNON_RETAIN, the POA passes all incoming requests to a nominated default
servant (established by calling theset_servant operation on the POA).

• If used withRETAIN, the POA first looks for an instantiated servant with the given object I
If one is found in the AOM, the request is passed to that servant; otherwise, the request
passed to the default servant.

USE_SERVANT_MANAGER can be used with eitherRETAIN or NON_RETAIN:

• If used withRETAIN and a request arrives for which no entry can be found in the AOM, th
ORB makes a callback to an application-provided servant manager that is asked to insta
a servant for the request. If the servant manager instantiates such a server, that servant is
to the AOM and the request is passed to the new servant; otherwise, the operation raise
OBJECT_NOT_EXIST in the client.

• If used withNON_RETAIN, the ORB also calls back to an application-provided servant
manager and dispatches the request if the servant manager returns a servant. Howeve
association between CORBA object and the servant is effective for only a single reques
Copyrigh
16The Request Processing Policy

The request processing policy controls whether a POA uses static
AOM, a default servant, or instantiates servants on demand. (The
default is USE_ACTIVE_OBJECT_MAP_ONLY.)

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};

interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

};

USE_DEFAULT_SERVANT requires MULTIPLE_ID.

USE_ACTIVE_OBJECT_MAP_ONLY requires RETAIN.
t 2000–2001 IONA Technologies 12-23

The Implicit Activation Policy The Portable Object Adapter (POA)

17
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

r
Root
12.17The Implicit Activation Policy
The code examples we have seen so far simply call_this on a newly instantiated servant in orde
to create a reference for the corresponding CORBA object. This technique works because the
POA always uses theIMPLICIT_ACTIVATION policy. The first call to_this generates a new
unique ID for the servant and adds the servant to the AOM. (The Root POA usesSYSTEM_ID and
RETAIN).

However, as we will see in Section 12.22,IMPLICIT_ACTIVATION is useful only for transient
objects. For persistent objects, you must useNO_IMPLICIT_ACTIVATION (because persistent
objects almost always useUSER_ID, for whichIMPLICIT_ACTIVATION is illegal).
12-24
17The Implicit Activation Policy

The implicit activation policy controls whether a servant can be
activated implicitly or must be activated explicitly. (The default is
NO_IMPLICIT_ACTIVATION).

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION, NO_IMPLICIT_ACTIVATION

};

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

};

• For IMPLICIT_ACTIVATION (which requires RETAIN and
SYSTEM_ID), servants are added to AOM by calling _this .

• For NO_IMPLICIT_ACTIVATION, servants must be activated with
a separate API call before you can obtain their object reference.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) The Thread Policy

18
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

reads

el of
. For
over
12.18The Thread Policy
The thread policy controls whether requests are dispatched on a single thread or multiple th
per POA. If you chooseSINGLE_THREAD_MODEL, all invocations on that POA are serialized. If
you chooseORB_CTRL_MODEL, the ORB is free to implement any threading strategy it prefers
(including single-threaded dispatch).

Unfortunately, the specification is rather weak when it comes to controlling the threading mod
a server, so ORBs from different vendors exhibit different behavior with respect to threading
ORBacus, additional policies control a server’s concurrency model with more precision. We c
these in Unit 25.
Copyrigh
18The Thread Policy

The thread policy controls whether requests are dispatched
single-threaded (are serialized) or whether the ORB chooses a
threading model for request dispatch. The default is ORB_CTRL_MODEL.

enum ThreadPolicyValue {
ORB_CTRL_MODEL, SINGLE_THREAD_MODEL

};

interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

};

• ORB_CTRL_MODEL allows the ORB to chose a threading model.
(Different ORBs will exhibit different behavior.)

• SINGLE_THREAD_MODEL serializes all requests on a per-POA
basis.
t 2000–2001 IONA Technologies 12-25

The Root POA Policies The Portable Object Adapter (POA)

19
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

e

ts.
12.19The Root POA Policies
The Root POA always has the policies shown above. The policies for the Root POA have th
default values, except for the implicit activation policy (which has a default value of
NO_IMPLICIT_ACTIVATION).

The Root POA usesTRANSIENT andSYSTEM_ID, so it is useful only for creation of transient
references. You should therefore restrict use of the Root POA to short-lived temporary objec
12-26
19The Root POA Policies

The Root POA has a fixed set of policies:

Note that the implicit activation policy does not have the default value.

The Root POA is useful for transient objects only.

If you want to create persistent objects or use more sophisticated
implementation techniques, you must create your own POAs.

Life Span Policy TRANSIENT
ID Assignment Policy SYSTEM_ID
ID Uniqueness Policy UNIQUE_ID
Servant Retention Policy RETAIN
Request Processing Policy USE_ACTIVE_OBJECT_MAP_ONLY
Implicit Activation Policy IMPLICIT_ACTIVATION
Thread Policy ORB_CTRL_MODEL
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) The Root POA Policies
Copyright 2000–2001 IONA Technologies 12-27

Policy Creation The Portable Object Adapter (POA)

20
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies
12.20Policy Creation
The POA offers one factory operation for each of the seven policies:

module PortableServer {
// ...
interface POA {

LifespanPolicy
create_lifespan_policy(

in LifespanPolicyValue value
);

IdAssignmentPolicy
create_id_assignment_policy(

in IdAssignmentPolicyValue value
);

IdUniquenessPolicy
create_id_uniqueness_policy(

in IdUniquenessPolicyValue value
);

ImplicitActivationPolicy
create_implicit_activation_policy(

in ImplicitActivationPolicyValue value
);
12-28
20Policy Creation

The POA interface provides a factory operation for each policy.

Each factory operation returns a policy with the requested value, for
example:

module PortableServer {
// ...
interface POA {

// ...
LifespanPolicy create_lifespan_policy(

in LifespanPolicyValue value
);

// ...
};

You must call destroy on the returned object reference before you
release it.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Policy Creation

n call
e

ate

 a
RequestProcessingPolicy
create_request_processing_policy(

in RequestProcessingPolicyValue value
);

ServantRetentionPolicy
create_servant_retention_policy(

in ServantRetentionPolicyValue value
);

ThreadPolicy
create_thread_policy(

in ThreadPolicyValue value
);

// ...
};

};

To create a new POA, you first create the required policies, add them to a policy list, and the
thecreate_POA operation with the policy list. Here is an example that creates a POA with th
PERSISTENT, USER_ID, andSINGLE_THREAD_MODEL policy values, leaving the remaining
policies at their defaults:

PortableServer::POA_var root_poa = ...; // Get Root POA

CORBA::PolicyList pl;
pl.length(3);

pl[0] = root_poa->create_lifespan_policy(
PortableServer::PERSISTENT

);
pl[1] = root_poa->create_id_assignment_policy(

PortableServer::USER_ID
);

pl[2] = root_poa->create_thread_policy(
PortableServer::SINGLE_THREAD_MODEL

);

PortableServer::POA_var CCS_poa =
root_poa->create_POA("CCS", nil_mgr, pl);

pl[0]->destroy();
pl[1]->destroy();
pl[2]->destroy();

Note that policies are copied when they are passed tocreate_POA, so destroying the policy
objects after creating a POA does not affect the created POA. (Of course, if you need to cre
several POAs, you can keep the policy list around and reuse it for different calls tocreate_POA.)

NOTE: The above code is somewhat tedious if written in-line, so we suggest that you write
simple helper function that you can use to simplify your POA creation.
Copyright 2000–2001 IONA Technologies 12-29

Creating Persistent Objects The Portable Object Adapter (POA)

21
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

t POA
n and

. (This

ll
12.21Creating Persistent Objects
The server we developed in Unit 10 created transient references because we used the Roo
for all its objects. Obviously, this is useless if the server is to retain any state across shut-dow
re-start. Frequently, we need to develop servers that offer objects whose state is stored in a
database or a network, such that the server acts as a CORBA front end to the persistent state
is a very common scenario when adding legacy applications to a CORBA system.)

To create persistent references, you must take care of the steps shown above, which we wi
examine over the next few slides.
12-30
21Creating Persistent Objects

Persistent objects have references that continue to work across server
shut-down and re-start.

To create persistent references, you must:

• use PERSISTENT, USER_ID, and NO_IMPLICIT_ACTIVATION

• use the same POA name and object ID for each persistent object

• link the object IDs to the objects’ identity and persistent state

• explicitly activate each servant

• allow the server to be found by clients by

• either specifying a port number (direct binding)

• or using the implementation repository (IMR)

It sounds complicated, but it is easy!
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Creating Persistent Objects
Copyright 2000–2001 IONA Technologies 12-31

Creating a Simple Persistent Server The Portable Object Adapter (POA)

22
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

ent
ach

each
nd
ct this
s for

r, once
 clashes.
12.22Creating a Simple Persistent Server
The above list presents a “cook book” approach to implementing a simple server for persist
objects. Note that, for now, we restrict ourselves to a simple implementation model where e
CORBA object has a separate C++ servant that is permanently in memory.

12.22.1Creating Persistent POAs
The first step is to create persistent POAs. A simple approach is to use a separate POA for
interface that is supported by the server.9 In the CCS system, we have three different interfaces a
the controller object is a collection manager for thermometers and thermostats. We can refle
relationship by creating three POAs, with the POA for the controller as the parent of the POA
thermometers and thermostats:

PortableServer::POA_ptr
create_persistent_POA(

const char * name,
PortableServer::POA_ptr parent)

{
// Create policy list for simple persistence
CORBA::PolicyList pl;
pl.length(3);
pl[0] = parent->create_lifespan_policy(

PortableServer::PERSISTENT

9. For servers that keep all servants permanently in memory, a single persistent POA can be sufficient. Howeve
you use servant managers, having separate POAs simplifies servant instantiation and avoids object ID name
12-32
22Creating a Simple Persistent Server
• Use a separate POA for each interface.

• Create your POAs with the PERSISTENT, USER_ID, and
NO_IMPLICIT_ACTIVATION policies.

• Override the _default_POA method on your servant class.
(Always do this for all POAs other than the Root POA. If you have
multiple ORBs, do this even for the Root POA on non-default ORBs.)

• Explicitly activate each servant with activate_object_with_id .

• Ensure that servants have unique IDs per POA. Use some part of
each servant’s state as the unique ID (the identity).

• Use the identity of each servant as its database key.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Creating a Simple Persistent Server
);
pl[1] = parent->create_id_assignment_policy(

PortableServer::USER_ID
);

pl[2] = parent->create_thread_policy(
PortableServer::SINGLE_THREAD_MODEL

);

// Get parent POA's POA manager
PortableServer::POAManager_var pmanager

= parent->the_POAManager();

// Create new POA
PortableServer::POA_var poa =

parent->create_POA(name, pmanager, pl);

// Clean up
for (CORBA::ULong i = 0 ; i < pl.length(); ++i)

pl[i]->destroy();

return poa._retn();
}

int
main(int argc, char * argv[])
{

// ...

PortableServer POA_var root_poa = ...; // Get Root POA

// Create POAs for controller, thermometers, and thermostats.
// The controller POA becomes the parent of the thermometer
// and thermostat POAs.
PortableServer::POA_var ctrl_poa

= create_persistent_POA("Controller", root_poa);
PortableServer::POA_var thermo_poa

= create_persistent_POA("Thermometers", ctrl_poa);
PortableServer::POA_var tstat_poa

= create_persistent_POA("Thermostats", ctrl_poa);

// Create servants...

// Activate POA manager
PortableServer::POAManager_var mgr

= root_poa->the_POAManager();
mgr->activate();

// ...
}

Copyright 2000–2001 IONA Technologies 12-33

Creating a Simple Persistent Server The Portable Object Adapter (POA)

23
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

 in
12.22.2Overriding _default_POA

If you use POAs other than the Root POA, you must override the_default_POA operation
inherited fromServantBase . An easy way to do this is to use a private static class member
your servant class, together with an modifier and an accessor. For example:

class Thermometer_impl : public virtual POA_CCS::Thermometer {
public:

Thermometer_impl(/* ... */)
{

if (CORBA::is_nil(m_poa))
throw "Thermometer_impl::m_poa not set!"

// ...
}

static void
poa(PortableServer::POA_ptr poa)
{

if (!CORBA::is_nil(m_poa))
throw "Thermometer_impl::m_poa set more than once!"

m_poa = PortableServer::POA::_duplicate(poa);
}

static PortableServer::POA_ptr
poa()
12-34
23Creating a Simple Persistent Server (cont.)

PortableServer::ServantBase (which is the ancestor of all
servants) provides a default implementation of the _default_POA
function.

The default implementation of _default_POA always returns the Root
POA.

If you use POAs other than the Root POA, you must override
_default_POA in the servant class to return the correct POA for the
servant.

If you forget to override _default_POA , calls to _this and several
other functions will return incorrect object references and implicitly
register the servant with the Root POA as a transient object.

Always override _default_POA for servants that do not use the Root
POA! If you use multiple ORBs, override it for all servants!
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Creating a Simple Persistent Server

ou

ating
es
{
if (CORBA::is_nil(m_poa))

throw "Thermometer_impl::m_poa not set!"
return m_poa; // Note: no call to _duplicate() here!

}

virtual PortableServer::POA_ptr
_default_POA()
{

return PortableServer::POA::_duplicate(m_poa);
}

private:
static PortableServer::POA_var m_poa;
// ...

};

int
main(int argc, char * argv[])
{

// ...
PortableServer::POA_var thermo_poa

= create_persistent_POA("Thermometers", ctrl_poa);
Thermometer_impl::poa(thermo_poa);
// ...
PortableServer::POAManager_var mgr

= root_poa->the_POAManager();
mgr->activate();
// ...

}

Note that this technique ensures that the POA for a servant class is set only once and that y
cannot instantiate a servant before the POA has been set. The staticpoa accessor is useful if you
want to get at the servant’s POA before you have a servant instance, for example, when cre
references withcreate_reference_with_id (see page 15-16). Note that this accessor do
not call_duplicate on the returned reference, so you can make a call such as

Thermometer_impl::poa()->create_reference_with_id(...);

without having to release the returned reference.
Copyright 2000–2001 IONA Technologies 12-35

Explicit Servant Activation The Portable Object Adapter (POA)

24
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

hich
ences
four

, for

ject.

er bit
urity
12.23Explicit Servant Activation
For POAs with theUSER_ID policy, we must explicitly add servants to the POA’s AOM by calling
activate_object_with_id. The object ID is passed to the call as a sequence of octets, w
allows us to use IDs of any length and data type. However, because dealing with octet sequ
directly and because, in practice, IDs are frequently string values, the C++ mapping provides
helper functions to make it easier to convert object IDs to strings and vice versa:

namespace PortableServer {
// ...
char * ObjectId_to_string(const ObjectId &);
CORBA::WChar * ObjectId_to_wstring(const Object Id &);

ObjectId * string_to_ObjectId(const char *);
ObjectId * wstring_to_ObjectId(const CORBA::WChar *);

}

Note thatObjectId_to_string andObjectId_to_wstring will throw aBAD_PARAM
exception if called with an object ID that is considered malformed by the ORB. (For example
POAs with theSYSTEM_ID policy, object IDs usually must conform to an internal format.)

You can use any value as the object ID that uniquely (within its POA) identifies the target ob
In addition, you must ensure that you use the same ID for the same logical CORBA object
whenever you activate that object. For that reason, the best choice for an ID value is whatev
of object state provides the object’s identity. It might be a database row identifier, a social sec
12-36
24Creating a Simple Persistent Server (cont.)

To explicitly activate a servant and create an entry for the servant in the
AOM, call activate_object_with_id :

typedef sequence<octet> ObjectId;
// ...
interface POA {

exception ObjectAlreadyActive {};
exception ServantAlreadyActive {};
exception WrongPolicy {};
void activate_object_with_id(

in ObjectId id, in Servant p_servant
) raises(

ObjectAlreadyActive,
ServantAlreadyActive,
WrongPolicy

);
// ...

};
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Explicit Servant Activation

 (The
 to the

t

number, or, in case of the CCS, an asset number. One convenient place to do this is a serva
constructor:

class Thermometer_impl : public virtual POA_CCS::Thermometer {
public:

Thermometer_impl(CCS::AssetType anum /* , ... */);
// ...

};

Thermometer_impl::
Thermometer_impl(CCS::AssetType anum /* , ... */)
{

// ...
ostrstream tmp;
tmp << anum << ends;
PortableServer::ObjectId_var oid

= PortableServer::string_to_ObjectId(tmp.str());
tmp.rdbuf()->freeze(0);
m_poa->activate_object_with_id(oid, this);

}

Merely instantiating the servant is then sufficient to ensure that it is activated correctly:

Thermometer_impl * t1 = new Thermometer_impl(22);

Of course, you can also activate the servant without doing this from a servant’s constructor.
advantage of this is that the POA policies and the way the servant is activated are unknown
servant.)

NOTE: For multi-threaded servers, the POA dispatches requests as soon as you call
activate_object_with_id . This means that, to avoid race conditions, you mus
call activate_object_with_id only once all other initialization for the servant is
complete; otherwise, you end up with a race condition that can permit an incoming
request to be dispatched before you have fully initialized the servant.
Copyright 2000–2001 IONA Technologies 12-37
nt’s

Explicit Servant Activation The Portable Object Adapter (POA)

25
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

hold
ith a

ate.

. You
of the

ation.

pdate is
shuts
y how
 of a

he
of an
12.23.1Storing Persistent Servant State
Obviously, CORBA objects cannot be persistent unless you have some kind of database to
their state. The object ID acts as the key that permits you to associate an object reference w
CORBA object and its servant, and the object ID acts as the database key to the object’s st

Exactly when and how to read and update the state for an object depends on your application
can choose to hold all of a servant’s state in memory (for example, as private data members
servant) and to initialize all servants on construction, or you can use more sophisticated
techniques, such as lazy initialization, depending on the space-time trade-offs for your applic

Similarly, for updates, you can choose to update the database immediately as soon as an u
made, or to cache updates until some timer expires, the servant is destroyed, or the server
down. The exact strategy as to how to update persistent servant state is largely determined b
much you are willing to sacrifice performance in order to reduce the risk of data loss in case
crash.

As far as the ORB is concerned, the persistence mechanism you use is entirely up to you. T
ORB merely enables you to correctly associate an incoming request with the persistent state
object; the ORB does not provide persistence for the objects you create.
12-38
25Creating a Simple Persistent Server (cont.)
A servant’s object ID acts as a key that links an object reference to the
persistent state for the object.

• For read access to the object, you can retrieve the state of the
servant in the constructor, or use lazy retrieval (to spread out
initialization cost).

• For write access, you can write the updated state back immediately,
or when the servant is destroyed, or when the server shuts down.

When to retrieve and update persistent state is up to your application.

The persistence mechanism can be anything you like, such as a
database, text file, mapped memory, etc.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Explicit Servant Activation

26
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

er for a
er;

port
ote the

ving

r POA
ou could
A

umber

h
ave
12.23.2Fixing a Port Number
Because persistent references contain addressing information, you must ensure that a serv
set of persistent objects starts on the same machine every time, and uses a fixed port numb
otherwise, references created by a previous run of the same server are no longer valid.

The-OAport option allows you to set a port number when you start a server. By keeping the
number constant for each server execution, you can ensure that references continue to den
same objects across server start-up and shut-down.10

Occasionally, you may find that incorrectly configured DNS servers prevent clients from resol
a domain name that is embedded in an IOR. For such cases, you can use the-OAnumeric option
to override the domain name with a dotted-decimal IP address.

NOTE: Options beginning with-OA are ORBacus-specific and processed byORB_init.

If you use-OAport , it only affects the Root POA manager, so-OAport works correctly if all
persistent POAs use the that POA manager. There is no portable way to assign a port to othe
managers because POA managers do not have a separate identity (such as a name) that y
use to associate the port number with. If you need to control the port number for multiple PO
managers, you can use the (ORBacus-specific)OB::POAManagerFactory interface to create
named POA managers. You can then use configuration properties to attach a different port n
to each named POA manager. (See the ORBacus manual for details.)

10.For large installations with many servers, manual administration of port numbers becomes a burden. For suc
installations, you can use the Implementation Repository (IMR), which permits you (among other things) to h
port numbers assigned dynamically without breaking existing references. (See Unit 22 for details.)
Copyrigh
26Creating a Simple Persistent Server (cont.)

POAs using the PERSISTENT policy write addressing information into
each object reference.

You must ensure that the same server keeps using the same address
and port; otherwise, references created by a previous server instance
dangle:

• The host name written into the each IOR is obtained automatically.

• You can assign a specific port number using the -OAport option.

If you do not assign a port number, the server determines a port
number dynamically (which is likely to change every time the server
starts up).

If you do not have a working DNS, use -OAnumeric . This forces
dotted-decimal addresses to be written into IORs.
t 2000–2001 IONA Technologies 12-39

Object Creation The Portable Object Adapter (POA)

27
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

 the
ne or
cial is

effect

ry that
 to a

t
ermit
an

must
ate
12.24Object Creation
If we want to permit clients to create new objects (instead of offering a fixed set of objects in
server), we can add one or more object factories to the system. An object factory contains o
more operations that return an object reference. As far as the ORB is concerned, nothing spe
actually happening—the client simply invokes an operation that returns an object reference.
However, the implementation of a factory operation creates a new CORBA object as a side
(possibly creating a new record in a database for the object).

There are many ways to create factory interfaces. For example, you can have a single facto
offers a separate creation operation for each type of object, you can add factory operations
collection manager interface (such as theController interface), or you can add creation
operations that create more than one object at a time.

It is important that your creation operations completely initialize the new object. Designs tha
create an object with one operation and then initialize it with another are poor (because you p
objects to be created that are not fully initialized, and therefore run the risk of a client using
uninitialized object).

Implementing a create operation is almost trivial. You must return an object reference, so you
call _this on an instantiated servant.11 That servant can be persistent or transient, as appropri
for your situation. Initialization of persistent object state (if any) is up to the factory
implementation. For example:

11.See Section 15.2 for how to avoid the cost of instantiating a servant immediately.
12-40
27Object Creation

Clients create new objects by invoking operations on a factory. The
factory operation returns the reference to the new object. For example:

exception DuplicateAsset {};

interface ThermometerFactory {
Thermometer create(in AssetType n) raises(DuplicateAsset);

};

interface ThermostatFactory {
Thermostat create(in AssetType n, in TempType t)

raises(DuplicateAsset, Thermostat::BadTemp);
};

As far as the ORB is concerned, object creation is just another
operation invocation.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Object Creation

ith

all

orate on
iple.
CCS::Thermometer_ptr
ThermometerFactory_impl::
create(CCS::AssetType n)
throw(CORBA::SystemException, CCS::DuplicateAsset)
{

// Create database record for the new servant (if needed)
// ...

// Instantiate a new servant on the heap
Thermometer_impl * thermo_p = new Thermometer_impl(n);

// Activate the servant if it is persistent (and
// activation is not done by the constructor)
// ...

return thermo_p->_this();
}

The main thing to note here is that youmust instantiate the new servant on the heap by calling
new. If you use a stack-based servant, you will leave a dangling pointer in the POA’s AOM, w
an eventual crash the most likely outcome.12

NOTE: The preceding code example drops the return value fromnew. This need not cause a
memory leak, depending on how you write your code to shut down the server. (Rec
that, if the POA uses theRETAIN policy, it uses an AOM, so the servant pointer is not
lost, but stored in the AOM after registration of the servant.)

Of course, you can also choose to store the servant pointer in a data structure and
explicitly delete the servant again later.

12.Note that there are several other reasons why servants should be instantiated on the heap. Rather than elab
these here, we suggest that you simply make it a habit to use heap-instantiated servants as a matter of princ
Copyright 2000–2001 IONA Technologies 12-41

Destroying CORBA Objects The Portable Object Adapter (POA)

28
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

sset

u can

stems
ieldy.
12.25Destroying CORBA Objects
To permit clients to destroy a CORBA object, simply add adestroy operation to the object’s
interface, as shown above.

Note that you could also add adestroy operation to the object’s factory:

interface ThermometerFactory {
Thermometer create(in AssetType n);
void destroy(in AssetType n); // Not recommended!

};

There are two fundamental problems with this IDL:

• Placing thedestroy operation on the object’s factory means that you must specify the a
number of the object to be destroyed. However, this creates an additional error scenario
because it allows a client to supply the asset number of a non-existent thermometer. Yo
deal with this by throwing a user exception, but it makes the design more complex than
necessary. (Note that you could not useOBJECT_NOT_EXIST to indicate an invalid asset
number because then the client would conclude that thefactory does not exist instead of the
object to be destroyed, so you would probably useBAD_PARAM.)

• Placingdestroy on the factory places an additional burden on clients because, for each
object, they have to remember which factory was used to create the object. For large sy
with large numbers of factories and objects, this approach can rapidly become very unw
12-42
28Destroying CORBA Objects
To permit clients to destroy a CORBA object, add a destroy operation
to the interface:

interface Thermometer {
// ...
void destroy();

};

The implementation of destroy deactivates the servant and permanently
removes its persistent state (if any).

Further invocations on the destroyed object raise OBJECT_NOT_EXIST.

As far as the ORB is concerned, destroy is an ordinary operation with
no special significance.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Destroying CORBA Objects

29
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

tive
r

12.25.1Object Deactivation
In order to inform the ORB that an object is destroyed, you must remove its entry from the Ac
Object Map by callingdeactivate_object. Once the entry for the servant is removed, furthe
requests raiseOBJECT_NOT_EXIST in the client because no entry with the corresponding
object ID can be found in the AOM.

However,deactivate_object doesnot remove the entry for the specified object ID
immediately. Instead, it marks the entry as to be removed once all operations (includingdestroy
itself) have finished. This means that youcannot implementdestroy like this:

void
Thermometer_impl::
destroy() throw(CORBA::SystemException)
{

ostrstream tmp;
tmp << m_anum << ends;
PortableServer::ObjectId_var oid

= PortableServer::string_to_ObjectId(tmp.str()));
tmp.rdbuf()->freeze(0);
m_poa->deactivate_object(oid); // Fine
delete this; // Disaster!!!

}

Callingdelete this; is wrong because the POA invokes operations onServantBase after
the operation completes, which results in accessing deleted memory.
Copyrigh
29Destroying CORBA Objects (cont.)

The POA holds a pointer to each servant in the AOM. You remove the
AOM entry for a servant by calling deactivate_object:

interface POA {
// ...
void deactivate_object(in ObjectId oid)

raises(ObjectNotActive, WrongPolicy);
};

Once deactivated, further requests for the same object raise
OBJECT_NOT_EXIST (because no entry can be found in the AOM).

Once the association between the reference and the servant is
removed, you can delete the servant.

deactivate_object does not remove the AOM entry immediately,
but waits until all operations on the servant have completed.

Never call delete this; from inside destroy !
t 2000–2001 IONA Technologies 12-43

Destroying CORBA Objects The Portable Object Adapter (POA)

30
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

o
orry
at we

rom
he
12.25.2Reference-Counted Servants
Because we cannot calldelete this; from insidedestroy , we end up with a problem:
when and from where should we calldelete on the servant after it is deactivated? (There is n
convenient place where we could do this.) In addition, if a server is multi-threaded, we must w
about the fact that multiple operation invocations may be in the servant simultaneously and th
cannot delete the servant until after all these invocations have finished.

To get around this, thePortableServer namespace contains theRefCountServantBase
reference-counting mix-in class. To use it, you simply inherit from it:

class Thermometer_impl :
public virtual POA_CCS::Thermometer,
public virtual PortableServer::RefCountServantBase {

// ...
};

Note that the constructor is protected, so you can only instantiate classes that are derived f
RefCountServantBase . The constructor initializes a reference count for the servant to 1. T
_add_ref and_remove_ref operations increment and decrement the reference count,
respectively. In addition,_remove_ref callsdelete this; once the reference count drops
to zero.

By inheriting fromRefCountServantBase , we can implement ourdestroy operation as
follows, without having to artificially find a point of control at which it is safe to calldelete (and
without having to worry about still-executing operations in that servant):
12-44
30Destroying CORBA Objects (cont.)

For multi-threaded servers, you must wait for all invocations to complete
before you can physically destroy the servant.

To make this easier, the ORB provides a reference-counting mix-in
class for servants:

class RefCountServantBase : public virtual ServantBase {
public:

~RefCountServantBase();
virtual void _add_ref();
virtual void _remove_ref();

protected:
RefCountServantBase();

};

The ORB keeps a reference count for servants and calls delete on the
servant once the reference count drops to zero.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Destroying CORBA Objects

emory

1

rvant

unted

ired
. (See
CCS::Thermometer_ptr
ThermometerFactory_impl::
create(AssetType n) throw(CORBA::SystemException)
{

CCS::Thermometer_impl * thermo_p = new Thermometer_impl(...);
// ...

m_poa->activate_object_with_id(oid, thermo_p);
thermo_p->_remove_ref(); // Drop ref count
return thermo_p->_this();

}

void
Thermometer_impl::
destroy() throw(CORBA::SystemException)
{

ostrstream tmp;
tmp << m_anum << ends;
PortableServer::ObjectId_var oid

= PortableServer::string_to_ObjectId(tmp.str());
tmp.rdbuf()->freeze(0);
m_poa->deactivate_object(oid); // Fine

}

The trick here is to realize that, in the factorycreate operation, we allocate the servant by calling
new. This sets the reference count for the servant to 1. Callingactivate_object_with_id
increments the reference count a second time, so now it is 2. The call to_remove_ref
decrements the reference count again, so now the only thing that keeps the servant alive in m
is its entry in the AOM. Every time the ORB invokes an operation, it calls_add_ref (which
increments the reference count) and every time an operation completes, the ORB calls
_remove_ref (which drops the reference count again). This means that, for as long as the
CORBA object exists, the reference count on the servant will be at least 1, and greater than
during operation invocations.

Whendestroy is called by a client, the reference count for the servant is 2 on entry to the
operation (assuming no other threads are executing inside the servant).destroy breaks the
reference-to-servant association by callingdeactivate_object . (Remember that this does
not remove the servant’s entry from AOM immediately, but only when all requests for the se
have completed.)decativate_object calls_remove_ref , which drops the reference
count to 1. Oncedestroy returns control to the ORB, the ORB calls_remove_ref to balance
the call to_add_ref it made when it invokeddestroy . This drops the reference count to 0,
removes the servant’s entry from the AOM, and callsdelete on the servant.

NOTE: We strongly encourage you to useRefCountServantBase for your servants if you
support life cycle operations. This is of paramount importance for threaded servers,
where you cannot otherwise be sure when it is safe to delete a servant. Reference-co
servants require you to use heap allocation, but you should be using heap-allocated
servants anyway. The main reason for preferring heap allocation is that it is also requ
for more advanced implementation techniques that instantiate servants on demand
Section 15.2.)
Copyright 2000–2001 IONA Technologies 12-45

Destroying CORBA Objects The Portable Object Adapter (POA)

31
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

sts may
is
ou can

would

easy
12.25.3Destroying the Persistent State of an Object
For a single-threaded server, it is OK to destroy servant state immediately from withindestroy.
However, this technique does not generalize to multi-threaded servants because other reque
still be executing inside the servant in parallel and require the persistent state to remain. Th
means that it is best to destroy persistent servant state from the servant’s destructor, when y
be sure that no other requests are still active in the servant.

However, take care not to destroy persistent state unconditionally. If you do, you will end up
destroying the persistent state for every object when the server shuts down. This, of course,
be wrong because, for persistent objects, server shut-down does not imply that the server’s
CORBA objects are destroyed, only that their implementation is temporarily unavailable. An
way to deal with this is to add a boolean member variable to each servant:

class Thermometer_impl :
public virtual POA_CCS::Thermometer,
public virtual PortableServer::RefCountServantBase {

public:
Thermometer_impl(AssetType anum) :

m_anum(anum), m_removed(false) { /* ... */ }
~Thermometer_impl();
// ...

protected:
AssetType m_anum;
bool m_removed;

};
12-46
31Destroying CORBA Objects (cont.)
Destroying a persistent object implies destroying its persistent state.

Generally, you cannot remove persistent state as part of destroy
(because other operations executing in parallel may still need it):

• It is best to destroy the persistent state from the servant’s destructor.

• The servant destructor also runs when the server is shut down, so
take care to destroy the persistent state only after a previous call to
destroy.

• Use a boolean member variable to remember a previous call to
destroy.
Copyright 2000–2001 IONA Technologies

The Portable Object Adapter (POA) Destroying CORBA Objects

t.
le.
layed
nt
In thedestroy member function, set them_removed member to true and then check it in the
destructor:

Thermometer_impl::
~Thermometer_impl()
{

if (m_removed) {
// Destroy persistent state for this object...

}
// Release whatever other resources (not related to
// persistent state) were used...

}

NOTE: deactivate_object does not immediately remove the AOM entry for the servan
Instead, the entry is marked for deletion and removed once the servant becomes id
Until this happens, new request that arrive for the same servant are transparently de
until the servant is deactivated. Therefore, you do not have to worry about concurre
activation and deactivation of the same servant.
Copyright 2000–2001 IONA Technologies 12-47

Deactivation and Servant Destruction The Portable Object Adapter (POA)

32
The Portable Object Adapter (POA)

Copyright 2000–2001 IONA Technologies

ned.

sts
use a

It

he
12.26Deactivation and Servant Destruction
You can explicitly destroy a POA by calling itsdestroy operation. Doing this recursively
destroys any descendent POAs before destroying the parent POA. In other words,destroy does a
depth-first traversal of the POA hierarchy; the order in which siblings are destroyed is undefi

Thewait_for_completion flag determines whether the invocation waits until current reque
have finished executing and destruction is complete. We strongly recommend that you do not
wait_for_completion flag of false unless you are prepared to have currently executing
operations fail in unpredictable ways (because all their POA-related calls will raise
OBJECT_NOT_EXIST if you do this).

Theetherealize_objects parameter is relevant to servant activators. (See Section 15.3.)
determines whether servants will be etherealized as part of the call or not.

If you callORB::shutdown or ORB::destroy, the ORB makes an implicit call to
POA::destroy on the Root POA. (ORB::shutdown passes the value of its
wait_for_completion flag through toPOA::destroy.)

Note that callingdestroy on a POA implicitly invokes_remove_ref on every servant in the
AOM. This means that each servant’s destructor runs once operations have drained out of t
servant.
12-48
32Deactivation and Servant Destruction

The POA offers a destroy operation:

interface POA {
// ...
void destroy(

in boolean etherealize_objects,
in boolean wait_for_completion

);
};

Destroying a POA recursively destroys its descendant POAs.

If wait_for_completion is true, the call returns after all current
requests have completed and all POAs are destroyed. Otherwise, the
POA is destroyed immediately.

Calling ORB::shutdown or ORB::destroy implicitly calls
POA::destroy on the Root POA.
Copyright 2000–2001 IONA Technologies

13.Exercise: Writing a Persistent Server
 to
Summary

In this unit, you will add persistence to a server and implement life cycle operations.

Objectives

By the completion of this unit, you will know how to create persistent object references, how
maintain state in a database, and how to implement life cycle operations.

Source Files and Build Environment Exercise: Writing a Persistent Server

e

jor

, and

c
s the

isk if
un).

e

e the
umber

y a
 their
ring
e

, the

otion

them
13.1 Source Files and Build Environment
You will find this exercise in yourpersistent directory. The files in this directory are the sam
as for Unit 10.

13.2 Server Operation
This server differs markedly from the one we presented in Unit 11. The following are the ma
differences:

• The ICP simulator is persistent for this exercise, so state changes from run to run are
remembered.

• The server maintains a list of asset numbers on disk.

• The server uses reference-counted servants that inherit fromRefCountServantBase .

• The server uses three separate persistent POAs, one for each type of object.

• The controller supports two factory operations to create thermometers and thermostats
thermometers offer adestroy operation.

13.2.1 The Persistent ICP Simulator
The persistent version of the ICP simulator works as follows. The ICP library creates a stati
object that, in its constructor, uploads the database into memory and, in its destructor, write
contents of the database to disk. The database file is calledCCS_DB and is created in the current
directory. A consequence of this design is that the database contents will not be written to d
the server terminates abnormally (because then the destructor of the global object will not r
Clearly, this is not a realistic approach for a real application but will be good enough for the
purposes of this exercise.

The format of theCCS_DB file is documented in Henning & Vinoski, pages 1026–1027. Pleas
have a look at the description there for the details.

When a device is created by the ICP simulator, it uses the asset number to decide what typ
device should have. If the asset number is odd, the device is a thermometer, and if the asset n
is even, the device is a thermostat. (This is not an in-built limitation of our system, but simpl
reflection of the fact that we do not have real hardware devices that we could interrogate for
model string, so we must infer the model some other way. With real hardware, the model st
would be read out of ROM.) Keep this limitation in mind during testing of your server becaus
attempts to create a device with the wrong asset number for its type will fail.

13.2.2 Persistent Asset Numbers
The ICP simulator does not offer a way to discover which devices are on the network. This
presents a problem for the controller, which must know which devices exist. To get around this
constructor of the controller reads a list of asset number from the fileCCS_assets , and the
destructor writes the current asset list into the file when the server shuts down. Note that the n
of what devices exist must match in theCCS_DB andCCS_assets file—if they go out of sync,
the server will get confused. You can easily ensure that the two files match by hand-editing
(or simply clearing them).

13.2.3 Reference-Counted Servants
Servants for this server are allocated on the heap and inherit fromRefCountServantBase . In
addition, the server uses persistent POAs with theRETAIN andUSER_ID policies, so servants must
13-2 Copyright 2000–2001 IONA Technologies

Exercise: Writing a Persistent Server Source Files and Build Environment

cies.)

A

g a

ular

tring

 the
t

be explicitly entered into the AOM withactivate_object_with_id . Note that
activate_object_with_id calls_add_ref on the servant. This means that you can ca
_remove_ref as soon as you have added a new servant to the AOM. (You can look at the
constructor of the controller servant to see how this works.)

13.2.4 Separate POAs
The server uses a separate POA for each type of device. (The POAs all have the same poli
Note that servants override the_default_POA method to ensure that object references are
created with the correct POA identifier. Each servant class has a privatem_poa member that is
used to hold the POA for all servants of the same type.

13.2.5 Life Cycle Operations
TheController interface contains two new operations,create_thermometer and
create_thermostat. In addition, theThermometer interface contains adestroy operation.
You will implement these operations as part of this exercise.

13.3 What You Need to Do

Step 1

Have a look at theCCS.idl file to see how the life cycle operations affect the interfaces.

Step 2

Study the contents of theserver.h file. Make sure that you understand how the _default_PO
function is implemented. Have a look at the overloaded staticpoa member functions. These
functions are useful when you need to get at the POA for an interface without actually havin
servant instance. Note that the you mustnot release the return value from thepoa accessor.

Also note that the controller contains an exists helper function to determine whether a partic
device exists already. This helper function is useful for the implementation of the factory
operations.

Step 3

Look at the servermain function. Note that an extracatch clause forconst char * has
been added. This is useful if you encounter a fatal error condition. You can simply throw a s
constant in order to cleanly terminate the program with a message. For example:

throw "Fatal error: Cannot open DB file";

Step 4

Look at the body of therun function. It creates three POAs using the
create_persistent_POA helper function and sets the staticm_poa member in each servant
class. The body ofcreate_persistent_POA is empty. Add the required code.

Step 5

Implement the body ofcreate_thermometer . You can look at the implementation of the
constructor for the controller to get a general idea of the actions you need to take. Note that
make_oid helper function is provided so you can easily convert an asset number to an octe
sequence. Remember that you must not only update the ICP network, but also update the
Copyright 2000–2001 IONA Technologies 13-3
ll

Source Files and Build Environment Exercise: Writing a Persistent Server

vious
controllers notion of what devices exist by callingadd_impl . Modify the provided client source
code to test your implementation.

Step 6

Implement the body of thedestroy operation and test your implementation.

Step 7

Implement the body of thecreate_thermostat operation.

Step 8

Test your implementation. You should be able to reuse the controller IOR produced by a pre
run of the server to reach a newly-created server process.
13-4 Copyright 2000–2001 IONA Technologies

14.Solution: Writing a Persistent Server

Solution Solution: Writing a Persistent Server
14.1 Solution

Step 4

// Create a new POA named 'name' and with 'parent' as its
// ancestor. The new POA shares its POA manager with
// its parent.

static PortableServer::POA_ptr
create_persistent_POA(

const char * name,
PortableServer::POA_ptr parent)

{
// Create policy list for simple persistence
CORBA::PolicyList pl;
CORBA::ULong len = pl.length();
pl.length(len + 1);
pl[len++] = parent->create_lifespan_policy(

PortableServer::PERSISTENT
);

pl.length(len + 1);
pl[len++] = parent->create_id_assignment_policy(

PortableServer::USER_ID
);

pl.length(len + 1);
pl[len++] = parent->create_thread_policy(

PortableServer::SINGLE_THREAD_MODEL
);

pl.length(len + 1);
pl[len++] = parent->create_implicit_activation_policy(

PortableServer::NO_IMPLICIT_ACTIVATION
);

// Get parent POA's POA manager
PortableServer::POAManager_var pmanager
= parent->the_POAManager();

// Create new POA
PortableServer::POA_var poa =

parent->create_POA(name, pmanager, pl);

// Clean up
for (CORBA::ULong i = 0 ; i < len; ++i)

pl[i]->destroy();

return poa._retn();
}

14-2 Copyright 2000–2001 IONA Technologies

Solution: Writing a Persistent Server Solution
Step 5

CCS::Thermometer_ptr
Controller_impl::
create_thermometer(CCS::AssetType anum, const char * loc)
throw(CORBA::SystemException, CCS::Controller::DuplicateAsset)
{

if (exists(anum))
throw CCS::Controller::DuplicateAsset();

if (anu m % 2 == 0)
throw CORBA::BAD_PARAM(); // ICS limitation

if (ICP_online(anum) != 0)
abort();

if (ICP_set(anum, "location", loc) != 0)
abort();

Thermometer_impl * t = new Thermometer_impl(anum);
PortableServer::ObjectId_var oid = make_oid(anum);
Thermometer_impl::poa()->activate_object_with_id(oid, t);
t->_remove_ref();

return t->_this();
}

Step 6

// IDL destroy operation.

void
Thermometer_impl::
destroy() throw(CORBA::SystemException)
{

m_ctrl->remove_impl(m_anum);
if (ICP_offline(m_anum) != 0)

abort();
PortableServer::ObjectId_var oid = make_oid(m_anum);
PortableServer::POA_var poa = _default_POA();
poa->deactivate_object(oid);

}

Step 7

CCS::Thermostat_ptr
Controller_impl::
create_thermostat(

CCS::AssetType anum,
const char* loc,
CCS::TempType temp)

throw(
CORBA::SystemException,
CCS::Controller::DuplicateAsset,
CCS::Thermostat::BadTemp)
Copyright 2000–2001 IONA Technologies 14-3

Solution Solution: Writing a Persistent Server
{
if (exists(anum))

throw CCS::Controller::DuplicateAsset();
if (anum % 2)

throw CORBA::BAD_PARAM(); // ICS limitation
if (ICP_online(anum) != 0)

abort();
if (ICP_set(anum, "location", loc) != 0)

abort();
// Set the nominal temperature.
if (ICP_set(anum, "nominal_temp", &temp) != 0) {

// If ICP_set() failed, read this thermostat's
// minimum and maximum so we can initialize the
// BadTemp exception.
CCS::Thermostat::BtData btd;
ICP_get(

anum, "MIN_TEMP",
&btd.min_permitted, sizeof(btd.min_permitted)

);
ICP_get(

anum, "MAX_TEMP",
&btd.max_permitted, sizeof(btd.max_permitted)

);
btd.requested = temp;
btd.error_msg = CORBA::string_dup(

temp > btd.max_permitted ? "Too hot" : "Too cold"
);
ICP_offline(anum);
throw CCS::Thermostat::BadTemp(btd);

}

Thermostat_impl * t = new Thermostat_impl(anum);
PortableServer::ObjectId_var oid = make_oid(anum);
Thermostat_impl::poa()->activate_object_with_id(oid, t);
t->_remove_ref();

return t->_this();
}

Step 8

./server -OAport 7819 >ctrl.ref
14-4 Copyright 2000–2001 IONA Technologies

15.Advanced Uses of the POA
the

g

Summary

This unit covers advanced aspects of the POA that permit you to exercise tight control over
trade-offs in performance, scalability, and memory consumption of a server.

Objectives

By the completion of this unit, you will be able to create sophisticated servers that scale to
unlimited numbers of objects. In addition, you will have an appreciation of advanced cachin
techniques, such as eviction of servants and optimistic caching.

Pre-Loading of Objects Advanced Uses of the POA

1
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

A
le and

 set
rge

ble.
ver
cially
15.1 Pre-Loading of Objects
So far, all the server code we have seen used theUSE_ACTIVE_OBJECT_MAP_ONLY policy for its
POAs. As a result, we end up with a design that requires a separate servant for each CORB
object and forces us to keep all servants in memory at all times. This is a perfectly acceptab
sensible implementation choice, provide that you can afford it. This will be the case if:

• The number of objects is small enough to fit into memory without increasing the working
unacceptably. Generally, this means that you can either have a fairly small number of la
objects or a fairly large number of small objects.

• The time taken to iterate over the database and to instantiate all the servants is accepta
Generally, this means that initialization of each servant has to be fast, otherwise the ser
may take minutes or hours to enter its dispatch loop, which is usually unacceptable (espe
if servers are started automatically as requests arrive—see Unit 22).

To get around this problem, the POA offers servant managers.
15-2
1Pre-Loading of Objects

The USE_ACTIVE_OBJECT_MAP_ONLY requires one servant per
CORBA object, and requires all servants to be in memory at all times.

This forces the server to pre-instantiate all servants prior to entering its
dispatch loop:

int main(int argc, char * argv[])
{

// Initialize ORB, create POAs, etc...
// Instantiate one servant per CORBA object:
while (database_records_remain) {

// Fetch record for a servant...
// Instantiate and activate servant...

}
// ...
orb->run(); // Start dispatch loop
// ...

}

Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Servant Managers

2
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

nstead

ve

tors,
15.2 Servant Managers
Servant managers allows you to bring a servant into memory when a request for it arrives, i
of having to keep all servants in memory at all times, just in case they are needed. Servant
managers come in two flavors, both derived from a common base interface:

module PortableServer {
// ...

interface ServantManager {};

interface ServantActivator : ServantManager {
// ...

};

interface ServantLocator : ServantManager {
// ...

};
};

Servant activators require theRETAIN policy to bring servants into memory on demand (and lea
them in the AOM thereafter). Servant locators require theNON_RETAIN policy and only provide
the association between a request and its servant for the duration of a single request.

Servant locators require more implementation work from the application than servant activa
but are more powerful and offer more aggressive scalability options.

Both servant activators and servant locators also require theUSE_SERVANT_MANAGER policy.
Copyrigh
2Servant Managers

Servant managers permit you to load servants into memory on
demand, when they are needed.

Servant managers come in two flavors:

• ServantActivator (requires the RETAIN policy)

The ORB makes a callback the first time a requests arrives for an
object that is not in the AOM. The callback returns the servant to the
ORB, and the ORB adds it to the AOM.

• ServantLocator (requires the NON_RETAIN policy)

The ORB makes a callback every time a request arrives. The
callback returns a servant for the request. Another callback is made
once the request is complete. The association between request and
servant is in effect only for the duration of single request.
t 2000–2001 IONA Technologies 15-3

Servant Activators Advanced Uses of the POA

3
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

te an
ding

ntry in

ntiate

s the
e,

use

ld not
B

es to
ration
15.3 Servant Activators
Servant activators have the IDL interface shown above. As the server programmer, you crea
implementation of this interface and register it with a POA. (See page 15-9.) The correspon
POA must use theRETAIN andUSE_SERVANT_MANAGER policies.

Once an activator is registered, if a request comes in for which the ORB cannot locate an e
the AOM, instead of raisingOBJECT_NOT_EXIST in the client, it first calls theincarnate
operation, passing the object ID and the POA for the request. Nowincarnate is in control and
can use the information passed to it to locate the state of a servant for the request and insta
the servant:

• If incarnate can instantiate a servant, it returns the servant to the ORB, which then add
object ID and servant to its AOM and dispatches the request as usual. (This is, of cours
completely transparent to the client.)

• If incarnate cannot locate the state for a servant with the given object ID (probably beca
the corresponding object was destroyed previously), it simply raisesOBJECT_NOT_EXIST,
which is propagated back to the client.

TheRequest exception presents a third option to return control to the ORB. Ifincarnate raises
this exception, it returns an object reference. This indicates to the ORB that the request cou
be handled by this POA, but that retrying the request at the returned IOR may work. The OR
returns the IOR to the client, and the client-side ORB (transparently to the application) then tri
dispatch the request using the new IOR. This mechanism can be used to support object mig
(albeit at the cost of slower request dispatch).
15-4
3Servant Activators

exception ForwardRequest {

Object forward_reference;
};
interface ServantManager {};
interface ServantActivator : ServantManager {

Servant incarnate(
in ObjectId oid,
in POA adapter

) raises(ForwardRequest);

void etherealize(
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations

);
};
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Servant Activators

n and

gle
ther
 map
Theetherealize operation is invoked by the ORB to instruct you that it no longer requires
servant and gives you a chance to reclaim the servant.

The ORB invokesetherealize in the following circumstances:

• deactivate_object was called for an object represented by the servant

• POAManager::deactivate was called on a POA manager with active servants

• POA::destroy was called withetherealize_objects set to true

• ORB::shutdown or ORB::destroy were called

Thecleanup_in_progress parameter is true if the call toetherealize resulted because of a
call toPOAManager::deactivate, POA::destroy, ORB::shutdown, orORB::destroy;
otherwise, the parameter is false. This allows you to distinguish between normal deactivatio
application (or POA) shut-down.

Theremaining_activations parameter is false if this servant is used to only represent a sin
CORBA object; otherwise, if true, the parameter indicates that this servant still represents o
CORBA objects and therefore should not be physically deleted. (See page 15-18 for how to
multiple CORBA objects onto a single C++ servant.)

NOTE: The ORB removes the entry for the passed object ID from the AOMbefore it calls
etherealize.
Copyright 2000–2001 IONA Technologies 15-5
the

Implementing a Servant Activator Advanced Uses of the POA

4
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies
15.4 Implementing a Servant Activator
To implement a servant activator, you must derive your implementation from
PortableServer::ServantActivator . This means your servant activator is itself a
servant for theServantActivator interface:

class Activator_impl :
public virtual POA_PortableServer::ServantActivator {

public:
virtual PortableServer::Servant
incarnate(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa

) throw(CORBA::SystemException,
PortableServer::ForwardRequest);

virtual void
etherealize(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa,
PortableServer::Servant serv,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

) throw(CORBA::SystemException);
};
15-6
4Implementing a Servant Activator

The implementation of incarnate is usually very similar to a factory
operation:

1. Use the object ID to locate the persistent state for the servant.

2. If the object ID does not exist, throw OBJECT_NOT_EXIST.

3. Instantiate a servant using the retrieved persistent state.

4. Return a pointer to the servant.

The implementation of etherealize gets rid of the servant:

1. Write the persistent state of the servant to the DB (unless you are
using write-through).

2. If remaining_activations is false, call _remove_ref (or call
delete , if the servant is not reference-counted).
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Implementing a Servant Activator

d
tate to
n the
ant:
The implementation ofincarnate can be outlined as follows:

PortableServer::Servant
Activator_impl::
incarnate(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa

) throw(CORBA::SystemException, PortableServer::ForwardRequest)
{

// Turn the OID into a string
CORBA::String_var oid_str;
try {

oid_string = PortableServer::ObjectId_to_string(oid);
} catch (const CORBA::BAD_PARAM &) {

throw CORBA::OBJECT_NOT_EXIST(); // Malformed OID
}

// Use OID to look in the DB for the persistent state...
if (object_not_found)

throw CORBA::OBJECT_NOT_EXIST();

// Use the state retrieved from the database to
// instantiate a servant. The type of the servant may be
// implicit in the POA, the object ID, or the database state.
AssetType anum = ...;
return new Thermometer_impl(anum, /* ... */);

}

The implementation ofetherealize is usually very simple. If your servants are implemente
to write updates directly to the database with each update operation, there is no persistent s
be finalized. Otherwise, if updates are held in memory and written to the database only whe
servant is destroyed,etherealize must write the database state before destroying the serv

void
Activator_impl::
etherealize(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa,
PortableServer::Servant serv,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

) throw(CORBA::SystemException)
{

// Write updates (if any) for this object to database and
// clean up any resources that may still be used by the
// servant (or do this from the servant destructor)...
if (!remaining_activations)

serv->_remove_ref(); // Or delete serv, if not ref-counted
}

Copyright 2000–2001 IONA Technologies 15-7

Use Cases for Servant Activators Advanced Uses of the POA

5
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

 for
any
u
st (see

saving
tiated.
fered

nd is

tors.
15.5 Use Cases for Servant Activators
Servant activators are useful mainly because they incur the cost of servant initialization only
those servants that are actually used. In addition, the initialization cost is distributed over m
calls instead of incurred up-front, so the server starts up more quickly. This is important if yo
arrange for servers to be started by an implementation repository when a client sends a reque
Unit 22), which works well only if the server comes up quickly.

If only a subset of the server’s objects are touched by clients, servant activators offer some
in memory consumption because only those servants that are actually used need be instan
However, if a server runs for a long time and clients, over time, end up using every object of
by the server, all servants eventually end up in memory, so there is no saving.

NOTE: You can calldeactivate_object to get rid of unused servants in order to limit the
memory consumption of the server. This idea generalizes to that of a servant cache a
described in more detail in Henning & Vinoski as the Evictor Pattern. However, such
servant caches are best implemented with servant locators instead of servant activa
15-8
5Use Cases for Servant Activators

Use servant activators if:

• you cannot afford to instantiate all servants up-front because it takes
too long

A servant activator distributes the cost of initialization over many
calls, so the server can start up quicker.

• clients tend to be interested in only a small number of servants over
the period the server is up

If all objects provided by the server are eventually touched by
clients, all servants end up in memory, so there is no saving in that
case.

Servant activators are of interest mainly for servers that are started on
demand.
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Servant Manager Registration

6
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

his is

 the
nd
15.6 Servant Manager Registration
You must register a servant manager with a POA before you activate the POA’s manager. T
necessary because, otherwise, clients will getOBJ_ADAPTER exceptions for their requests. (If you
use the same servant manager for multiple POAs and later create another POA that will use
same servant manager, you must temporarily put the POA manager into the holding state a
activate it again once you have created the new POA and set its servant manager.)

In C++, instantiation and registration of a servant manager is trivial:

Activator_impl * ap = new Activator_impl;
PortableServer::ServantManager_var mgr_ref = ap->_this();
some_poa->set_servant_manager(mgr_ref);

You cannot change the servant manager of a POA once you have assigned it. Calling
set_servant_manager a second time raisesOBJ_ADAPTER.
Copyrigh
6Servant Manager Registration

You must register a servant manager with the POA before activating the
POA’s POA manager:

interface POA {
// ...
void set_servant_manager(in ServantManager mgr)

raises(WrongPolicy);
ServantManager get_servant_manager() raises(WrongPolicy);

};

If you pass a servant activator, to set_servant_manager, the POA
must use USE_SERVANT_MANAGER and RETAIN.

You can register the same servant manager with more than one POA.

You can set the servant manager only once; it remains attached to the
POA until the POA is destroyed.

get_servant_manager returns the servant manager for a POA.
t 2000–2001 IONA Technologies 15-9

Type Issues with Servant Managers Advanced Uses of the POA

7
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

ed.

is for

ce to
w you

vant

face

ach

eters

, you

erver
iation
 object.
15.7 Type Issues with Servant Managers
When a POA callsincarnate , it passes the POA and object ID for the servant to be instantiat
incarnate is not told by the POA which type of interface (for example, a thermometer or a
thermostat) is required. In fact, the POA itself does not know what type of interface a request
until after it gets a servant for the request from the application. (The type of interface that
eventually handles a request is not known at compile time and not transmitted over the wire
because of late binding.) This means that a servant manager must know what type of interfa
instantiate purely from the arguments it receives. The above slide presents the options for ho
can deal with multiple interface types and servant managers.

The easiest thing is to simply use a separate POA and separate servant managerclass for each
interface type. That way, the decision which interface is needed is hard-coded into each ser
manager class and made at compile time.

Another option is to share a servant manager among several POAs, one POA for each inter
type. In that case, the servant manager can use the POA name (available by reading thethe_name
attribute on the POA). This approach allows you to use a single servant manager class for e
interface type and decides what type to instantiate at run time. This approach is useful if
instantiation of different servant types is substantially similar in nature (such as for thermom
and thermostats, where a lot of the code is identical).

You can use a type marker that becomes part of the object ID of each servant. For example
could use a a “t” prefix on the object ID for thermostats, and an “m” for thermometers. This
approach also works well, but is maintenance intensive if the interface types supported by a s
grow over time (and it adds a small size penalty to object references). Alternatively, as a var
on this idea, you can keep the type marker in the database with the persistent state of each
15-10
7Type Issues with Servant Managers

How does a servant manager know which type of interface is needed?
Some options:

• Use a separate POA and separate servant manager class for each
interface. The interface is implicit in the servant manager that is
called.

• Use a separate POA for each interface but share the servant
manager. Infer the interface from the POA name by reading the
the_name attribute on the POA.

• Use a single POA and servant manager and add a type marker to
the object ID. Use that type marker to infer which interface is
needed.

• Store a type marker in the database with the persistent state.

The second option is usually easiest.
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Servant Locators

8
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

tion
is

as

vant.

te) is

ject ID.

t was
15.8 Servant Locators
Servant locators provide a more powerful alternative to servant activators. They require the
NON_RETAIN policy andUSE_SERVANT_MANAGER policies on the POA. One consequence of
NON_RETAIN is that the POA no longer maintains an Active Object Map. Instead, the associa
between a request and its servant remains in effect only for the duration of the request and
forgotten by the POA as soon as a request completes.

If you use servant locators,every incoming request causes the POA to first callpreinvoke. Like
incarnate, preinvoke can either throw anOBJECT_NOT_EXIST exception or return a servant.
If preinvoke returns a servant, the request is given to the servant. As soon as the servant h
carried out the request, the POA callspostinvoke, which permits you to clean up. Once
postinvoke has finished, the POA forgets the association between the request and the ser
Another request for the same object will callpreinvoke again (and may be carried out by the
same servant or a different one).

Note that, in contrast to servant activators, servant locators are told which operation (or attribu
being invoked via theoperation parameter (CORBA::Identifier is an unbounded string).
This permits you to select a servant based on the operation name as well as the POA and ob

preinvoke can return a value to the ORB in thethe_cookie parameter. The ORB treats the
cookie as an opaque value and never looks at it. However, it guarantees that the cookie tha
returned bypreinvoke will be passed topostinvoke. This allows you pass information from
preinvoke to postinvoke, for example, by using the cookie as a key into a data structure.
Copyrigh
8Servant Locators

native Cookie;
interface ServantLocator : ServantManager {

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie

) raises(ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant serv

);
};
t 2000–2001 IONA Technologies 15-11

Implementing Servant Locators Advanced Uses of the POA

9
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies
15.9 Implementing Servant Locators
To implement a servant locator, you must derive your implementation from
PortableServer::ServantLocator :

// In the PortableServer namespace:
// typedef void * Cookie;

class Locator_impl :
public virtual POA_PortableServer::ServantLocator,
public virtual PortableServer::RefCountServantBase {

public:
virtual PortableServer::Servant
preinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
const char * operation,
PortableServer::ServantLocator::Cookie & the_cookie

) throw(CORBA::SystemException,
PortableServer::ForwardRequest);

virtual void
postinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
15-12
9Implementing Servant Locators

The implementation of preinvoke is usually very similar to a factory
operation (or incarnate):

1. Use the POA, object ID, and operation name to locate the persistent
state for the servant.

2. If the object does not exist, throw OBJECT_NOT_EXIST.

3. Instantiate a servant using the retrieved persistent state.

4. Return a pointer to the servant.

The implementation of postinvoke gets rid of the servant:

1. Write the persistent state of the servant to the DB (unless you are
using write-through).

2. Call _remove_ref (or call delete , if the servant is not
reference-counted).
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Implementing Servant Locators

th

ils.)
const char * operation,
PortableServer::ServantLocator::Cookie the_cookie,
PortableServer::Servant the_servant

) throw(CORBA::SystemException);
};

A simple implementation ofpreinvoke can be identical to an implementation ofincarnate.
Note that the IDLCookie type is mapped to avoid * in C++, so you can move arbitrary
information betweenpreinvoke andpostinvoke .

PortableServer::Servant
Locator_impl::
preinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
const char * operation,
PortableServer::ServantLocator::Cookie & the_cookie

) throw(CORBA::SystemException, PortableServer::ForwardRequest)
{

// Turn the OID into a string
CORBA::String_var oid_str;
try {

oid_string = PortableServer::ObjectId_to_string(oid);
} catch (const CORBA::BAD_PARAM &) {

throw CORBA::OBJECT_NOT_EXIST(); // Malformed OID
}

// Use OID to look in the DB for the persistent state...
if (object_not_found)

throw CORBA::OBJECT_NOT_EXIST();

// Use the state retrieved from the database to
// instantiate a servant. The type of the servant may be
// implicit in the POA, the object ID, or the database state.
AssetType anum = ...;
return new Thermometer_impl(anum, /* ... */);

}

Note that this is not the most efficient implementation ofpreinvoke, mainly because it creates
and destroys a servant for each request. However, with a bit of thought, we can come up wi
designs in which servants are not destroyed bypostinvoke but are placed into a pool instead, to
be reused if another request comes in for the same object. (See Henning & Vinoski for deta

NOTE: The implementation ofpostinvoke is very similar to an implementation of
etherealize, so we do not show it here.
Copyright 2000–2001 IONA Technologies 15-13

Use Cases for Servant Locators Advanced Uses of the POA

10
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

to the
scale

d.
 so

ptions.
must

ion
you

ntees

pool
e fact
ift
an be
15.10Use Cases for Servant Locators
The main use case for servant locators is that they limit memory consumption in the server
number of objects actually in use at any one time. This means that you can build servers that
to very large numbers of objects whose state is retrieved from persistent storage on deman
(Naturally, this scalability does not come for free because each invocation does more work,
throughput will be somewhat less.)

Another advantage of servant locators is that you can use thepreinvoke andpostinvoke
calls to perform work that is common to all operations. For example, if you support life cycle
operations and use anm_removed member as shown on page 12-46, you test this member in
preinvoke and throw anOBJECT_NOT_EXIST exception if the object no longer exists. (Note
that servant activators and servant locators can only throw system exceptions, not user exce
Also note that, if you want to access servant members during preinvoke or postinvoke, you
perform a down-cast fromServantBase * to a pointer to the actual type of your servant.)

preinvoke andpostinvoke can also be useful to ensure exclusive access to a critical reg
by locking and unlocking a mutex before and after every operation (or only some operations—
can make a choice depending on the operation name). This works because the POA guara
that, in multi-threaded servers,preinvoke , the operation body, andpostinvoke all run in the
same thread.

Finally, servant locators are useful to implement the Evictor Pattern, which creates a bounded
of the most recently used servants. This technique is extremely effective because it exploits th
that clients usually are interested in a small number of objects for some time before they sh
interest to a different group of objects; this locality of reference means that most requests c
satisfied by an already instantiated servant. (See Henning and Vinoski for details.)
15-14
10Use Cases for Servant Locators

Advantages of servant locators:

• They provide precise control over the memory use of the server,
regardless of the number of objects supported.

• preinvoke and postinvoke bracket every operation call, so you
can do work in these operations that must be performed for every
operation, for example:

• initialization and cleanup

• creation and destruction of network connections or similar

• acquisition and release of mutexes

• You can implement servant caches that bound the number of
servants in memory to the n most recently used ones (Evictor
Pattern.)
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Use Cases for Servant Locators
Copyright 2000–2001 IONA Technologies 15-15

Servant Managers and Collections Advanced Uses of the POA

11
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

rvants
 in

place

is,

e

nt into
15.11Servant Managers and Collections
In the absence of servant managers, an operation likelist on theController interface can be
implemented by iterating over a list of servant pointers and calling_this on each servant to
obtain its reference. However, if servant managers are used, this creates a problem: not all se
are in memory, so iterating over them will not return the complete list of objects. In addition,
order to create a reference, you would have to instantiate the servant first in order to call_this on
the servant. Of course, this would defeat the purpose of using servant managers in the first
and would make operations such aslist prohibitively expensive.

To get around this problem, the POA offerscreate_reference and
create_reference_with_id. Both operations create an object reference in isolation, that
without the need for an instantiated servant.create_reference requiresSYSTEM_ID and
generates a unique object ID for the reference, whereascreate_reference_with_id requires
USER_ID and you have supply an object ID explicitly. (This is analogous to the difference
betweenactivate_object andactivate_object_with_id.)1

Both operations require you to supply the repository ID for interface the reference will denot
(such as"IDL:acme.com/CCS/Thermometer:1.0").

Once you have created a reference this way, you can return it to clients as usual. The only
difference to calling_this is that the reference does not have a servant yet. When a client
invokes an operation via the reference, a servant manager can take care of bringing the serva
memory as usual.

1. If you usecreate_reference, you do not know what the generated object ID is unless you also call
reference_to_id. (See page 15-32.)
15-16
11Servant Managers and Collections

For operations such as Controller::list, you cannot iterate over a
list of servants to return references to all objects because not all
servants may be in memory.

Instead of instantiating a servant for each object just so you can call
_this to create a reference, you can create a reference without
instantiating a servant:

interface POA {
// ...
Object create_reference(in CORBA::RepositoryId intf)

raises(WrongPolicy);

Object create_reference_with_id(
in ObjectId oid,
in CORBA::RepositoryId intf

) raises(WrongPolicy);
};
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Servant Managers and Collections

vides
ss.
Because operations such aslist are strongly typed and return something other than typeObject,
you must call_narrow before you can return the reference:

CCS::Controller::ThermometerSeq *
Controller_impl::
list() throw(CORBA::SystemException)
{

CCS::Controller::ThermometerSeq_var return_seq
= new CCS::Controller::ThermometerSeq;

CORBA::ULong index = 0;

// Iterate over the database contents (or other list
// of existing objects) and create reference for each.
while (more objects remain) {

// Get asset number from database and convert to OID.
CCS::AssetType anum = ...;
ostrstream ostr;
ostr << anum << ends;
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(ostr.str());
ostr.rdbuf()->freeze(0);

// Use object state to work out which type of device
// we are dealing with and which POA to use.
const char * rep_id;
PortableServer::POA_var poa;
if (device is a thermometer) {

rep_id = "IDL:acme.com/CCS/Thermometer:1.0";
poa = ...; // Thermometer POA

} else {
rep_id = "IDL:acme.com/CCS/Thermostat:1.0";
poa = ...; // Thermostat POA

}

// Create reference
CORBA::Object_var obj =

poa->create_reference_with_id(oid, rep_id);
// Narrow and store in our return sequence.
return_seq->length(index + 1);
if (device is a thermometer)

return_seq[index++] = CCS::Thermometer::_narrow(obj);
else

return_seq[index++] = CCS::Thermostat::_narrow(obj);
}
return return_seq._retn();

}

Note that this code relies on an ORB-specific optimization, namely, that a call to_narrow with a
precise type match is short-cut by the ORB and not sent to the target servant. ORBacus pro
this optimization (but other ORBs may not). Without the optimization, this technique is usele
Copyright 2000–2001 IONA Technologies 15-17

One Servant for Many Objects Advanced Uses of the POA

12
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

there
e
jects

 will

e
is not
rvant

sis.
15.12One Servant for Many Objects
If you use theMULTIPLE_ID policy with RETAIN,2 you can add the same servant to the AOM
several times with different object IDs. This means that there are as many CORBA objects as
are entries in the AOM, but that some of these objects happen to be represented by the sam
servant. This idea is attractive if we need a server that supports a large number of CORBA ob
that are used by clients simultaneously, but must limit its memory footprint.

If you useMULTIPLE_ID, you must ensure that, if you register the same servant for multiple
objects, all objects support the same interface (have the same repository ID), otherwise you
get unpredictable behavior at run time (such as clients receiving aBAD_OPERATION exception, or
even silent and potentially fatal run time errors).

Using a single servant for multiple CORBA objects means that we can no longer maintain th
object state in the servant, because the identity of the CORBA object for a particular request
longer implicit in the C++ servant that handles the request. In other words, the same single se
must now pretend to be different CORBA objects for different requests, on a per-request ba
Servants use theCurrent interface to achieve this.

2. ForNON_RETAIN POAs, neitherMULTIPLE_ID norUNIQUE_ID have any effect because the mapping from
object IDs to servants is managed by the application.
15-18
12One Servant for Many Objects

If you use the MULTIPLE_ID policy with RETAIN, a single servant can
incarnate more than one object:

All CORBA objects that are incarnated by the same servant must have
the same IDL interface.

Object Reference

POA Active Object Map

Servants

Object ID

Servant Pointer
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA One Servant for Many Objects
Copyright 2000–2001 IONA Technologies 15-19

The Current Object Advanced Uses of the POA

13
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

and

n the
st,
c

n the

t

15.13The Current Object
TheCurrent object delivers information about the currently executing request to a servant (
therefore must be invoked only from within the context of an operation on a servant). Calling
get_POA or get_object_id from outside the context of an executing operation raises
NoContext.

You obtain access to theCurrent object by callingresolve_initial_references:

CORBA::Object_var obj =
orb->resolve_initial_references("POACurrent");

PortableServer::Current_var cur =
PortableServer::Current::_narrow(obj);

You only need to callresolve_initial_references once to obtain theCurrent object and,
thereafter, you can use that same object reference for all POAs and servants. Invocations o
Current object automatically return the correct information for the currently executing reque
even in multi-threaded servers. In effect,Current is a singleton object that returns thread-specifi
data.

The implementation of our servants now must use theCurrent object on entry to each operation
to find out what its identity should be for the current request, and use that information to act o
correct state. Assuming that we store a reference to theCurrent object in the global variable
poa_current , we can write a helper function that retrieves the asset number for the curren
request. (You would usually make this function a private member function of the servant):
15-20
13The Current Object

The Current object provides information about the request context to
an operation implementation:

module PortableServer {
// ...
exception NoContext {};

interface Current : CORBA::Current {
POA get_POA() raises(NoContext);
ObjectId get_object_id() raises(NoContext);

};
};

The get_POA and get_object_id operations must be called from
within an executing operation (or attribute access) in a servant.

Note: You must resolve the Root POA before resolving POACurrent.
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA The Current Object

asset
p in a
CCS::AssetType
Thermometer_impl::
get_anum()
throw(CORBA::SystemException)
{

// Get object ID from Current object
PortableServer::ObjectId_var oid =

poa_current->get_object_id();

// Check that ID is valid
CORBA::String_var tmp;
try {

tmp = PortableServer::ObjectId_to_string(oid);
} catch (const CORBA::BAD_PARAM &) {

throw CORBA::OBJECT_NOT_EXIST();
}

// Turn string into asset number
istrstream istr(tmp.in());
CCS::AssetType anum;
istr >> anum;
if (str.fail())

throw CORBA::OBJECT_NOT_EXIST();
return anum;

}

To implement the servant, we call this helper function on entry to every operation to get the
number, and in turn use the asset number as a key to locate the data (typically, by looking it u
database or interrogating a network):

CCS::LocType
Thermometer_impl::
location() throw(CORBA::SystemException)
{

CCS::AssetType anum = get_anum(); // Who are we?

// Get location string from the database
CORBA::String_var loc = db_get_field(anum, "LocationField");
return loc._retn();

}

void
Thermometer_impl::
location(const char * loc) throw(CORBA::SystemException)
{

CCS::AssetType anum = get_anum(); // Who are we?

// Set location string in the database
db_set_field(anum, "LocationField", loc);

}

Copyright 2000–2001 IONA Technologies 15-21

Default Servants Advanced Uses of the POA

14
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

:

he

can
is not

r this

ce
rfaces

the
15.14Default Servants
If you set theUSE_DEFAULT_SERVANT policy, the POA allows you to register a default servant

• If you combineUSE_DEFAULT_SERVANT with RETAIN, the POA first attempts to locate a
matching servant in the AOM. If no servant is explicitly for the object ID in the request, t
POA passes the request to the default servant. (This situation is shown above.)

• If you combineUSE_DEFAULT_SERVANT with NON_RETAIN, all requests go to the default
servant.

The first combination, even though appealing at first, is probably overkill. For example, you
achieve the same effect by using two POAs, one with a default servant and one without. This
only simple, but also makes call dispatch to the default servant faster because it avoids the
two-step process of locating a servant by first looking for an explicitly registered servant and
passing the request to the default servant only if no explicitly registered servant is found. Fo
reason, we recommend that, if you use default servants, you should use POAs with the
NON_RETAIN policy.

ForUSE_DEFAULT_SERVANT andNON_RETAIN, you must use a separate POA for each interfa
that is implemented by a default servant (because a single servant cannot implement two inte
simultaneously). ForUSE_DEFAULT_SERVANT andRETAIN, you can mix interface types on the
same POA, but all requests that are directed to the default servant must be for objects with
same interface.
15-22
14Default Servants

Default servants require MULTIPLE_ID and USE_DEFAULT_SERVANT:

Any request for which no explicit entry exists in the AOM is given to the
default servant.

Use either RETAIN or NON_RETAIN with USE_DEFAULT_SERVANT.

Object Reference

POA Active Object Map

Servants

Object ID

Servant Pointer

Default

Default Servant
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Default Servants

is no

be
As for servant managers, you must explicitly register the default servant for a POA:

interface POA {
// ...
Servant get_servant() raises(NoServant, WrongPolicy);
void set_servant(in Servant s) raises(WrongPolicy);

};

get_servant returns the current default servant and raisesNoServant if none has been set.

set_servant sets the default servant. You can callset_servant more than once to change the
default servant. (However, it is unlikely that you would ever do this unless you wanted to
dynamically replace the code for the default servant at run time.)

The POA calls_add_ref on the default servant during the call toset_servant . This means
that, if you use a reference-counted default servant, you can call_remove_ref immediately
after callingset_servant . If you do this, the default servant will be automatically destroyed
when its POA is destroyed. Otherwise, you must destroy the default servant explicitly once it
longer needed.

Also note that the POA calls_add_ref when you callget_servant . This means that you
must eventually call_remove_ref on the returned servant, otherwise the reference count will
left too high. An easy way to ensure this happens is to use aServantBase_var when calling
get_servant :

PortableServer::ServantBase_var servant
= some_poa->get_servant();

// ServantBase_var destructor calls _remove_ref() eventually...

// If we want the actual type of the servant again, we must
// use a down-cast:
Thermometer_impl * dflt_serv =

dynamic_cast<Thermometer_impl *>(servant);
Copyright 2000–2001 IONA Technologies 15-23

Trade-Offs for Default Servants Advanced Uses of the POA

15
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

an be
tion
ct

front
 atomic
endent

l

t state
s and
s with
f

15.15Trade-Offs for Default Servants
The main motivation for using default servants is scalability because a single C++ instance c
used to simultaneously represent an unlimited number of CORBA objects. The implementa
becomes very simple: each operation first retrieves the object ID to identify the CORBA obje
and then uses the identity of the object to retrieve its state. As a result, the servant itself is
completely stateless, which make this approach ideal if you want to use a CORBA server as a
end to a database that may be updated independently. Provided that the database provides
access to servant state, there are no cache coherency issues that could arise through indep
updates.

Using default servants, the scalability of a CORBA server is no longer limited by its memory
consumption and only depends on the bandwidth to the database and the number of paralle
invocations you can afford to support.

The unlimited scalability of default servants comes at a price though: each access to servan
takes longer than if you would use multiple servants that hold their state in member variable
write to the database only occasionally when they are updated. However, if you have accesse
good locality of reference and a database with effective caching, the performance penalty o
default servants can be surprisingly small, so the technique is well worth exploring.
15-24
15Trade-Offs for Default Servants

Default servants offer a number of advantages:

• simple implementation

• POA and object ID can be obtained from Current

• ideal as a front end to a back-end store

• servant is completely stateless

• infinite scalability!

The downside:

• possibly slow access to servant state
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA POA Activators

16
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

ervant
mory
t
of
a POA

he
15.16POA Activators
The POA offers a mechanism to activate POAs on demand. The idea is similar to those of s
managers: by providing a callback mechanism, it is possible to avoid having all POAs in me
at all times. The main motivation for POA activators is to permit a server to easily implemen
optimistic caching (also known as pre-fetching). This is important if, for example, a number
objects are always used as a group. By using a separate POA for each group, you can use
activator to activate all the servants for the objects in a group at once, so they are available
immediately, without further initialization while they are in use. Once you no longer require a
group, you can simply invokedestroy on the POA to reclaim the resources that were used by t
group.

To implement a POA activator, you must derive a servant class from
PortableServer::AdapterActivator :

class POA_Activator_impl :
public virtual POA_PortableServer::AdapterActivator {

public:
POA_Activator_impl() {}

virtual ~POA_Activator_impl() {}
virtual CORBA::Boolean

unknown_adapter(
PortableServer::POA_ptr parent,
const char * name

) throw(CORBA::SystemException);
};
Copyrigh
16POA Activators
You can create POAs on demand, similar to activating servants on
demand:

module PortableServer {
// ...
interface AdapterActivator {
boolean unknown_adapter(in POA parent, in string name);

};
};

This is a callback interface you provide to the ORB.

If a request for an unknown POA arrives, the ORB invokes the
unknown_adapter operation to allow you to create the POA.
t 2000–2001 IONA Technologies 15-25

Implementing POA Activators Advanced Uses of the POA

17
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies
15.17Implementing POA Activators
To implement a POA activator, you only need to create theunknown_adapter member
function:

CORBA::Boolean
POA_Activator_impl::
unknown_adapter(

PortableServer::POA_ptr parent,
const char * name

) throw(CORBA::SystemException)
{

// Check which adapter is being activated and
// create appropriate policies. (Might use pre-built
// policy list here...)
CORBA::PolicyList policies;
if (strcmp(name, "Some_adapter") == 0) {

// Create policies for "Some_adapter"...
} else if (strcmp(name, "Some_other_adapter") == 0) {

// Create policies for "Some_other_adapter"...
} else {

// Unknown POA name
return false;

}

15-26
17Implementing POA Activators

The parent parameter allows you to get details of the parent POA
(particularly, the name of the parent POA).

The name parameter provides the name for the new POA.

While unknown_adapter is running, requests for the new adapter are
held pending until the activator returns.

The implementation of the activator must decide on a set of policies for
the new POA and instantiate it.

If optimistic caching is used, the activator must instantiate the servants
for the POA. (If combined with USE_SERVANT_MANAGER, a subset of
the servants can be instantiated instead.)

On success, the activator must return true to the ORB (which
dispatches the request as usual.) A false return value raises
OBJECT_NOT_EXIST in the client.
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Implementing POA Activators

his is
ctivated
// Select POA manager for new adapter (parent POA
// manager in this example).
PortableSerer::POAManager_var mgr = parent->the_POAManager();

// Create new POA.
try {

PortableServer::POA_var child =
parent->create_POA(name, mgr, policies);

} catch (const PortableServer::POA:AdapterAlreadyExists &) {
return false;

} catch (...) {
return false;

}

// For optimistic caching, activate servants here...

return true;
}

Note that the code ensures that false is returned if the POA being activated already exists. T
necessary because (at least for multi-threaded servers), another thread may have already a
the adapter.
Copyright 2000–2001 IONA Technologies 15-27

Registering POA Activators Advanced Uses of the POA

18
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

the
POAs
15.18Registering POA Activators
To register a POA activator, you must set thethe_activator attribute of its parent POA. Note
that, by attaching an activator to all POAs (including the Root POA), you can ensure that an
incoming request automatically activates the necessary parent POAs as well. For example,
code of the preceding example can be modified such that the POA activator adds itself to the
it creates:

CORBA::Boolean
POA_Activator_impl::
unknown_adapter(

PortableServer::POA_ptr parent,
const char * name

) throw(CORBA::SystemException)
{

// ...

// Create new POA.
try {

PortableServer::POA_var child =
parent->create_POA(name, mgr, policies);

PortableServer::AdapterActivator_var act = _this();
child->the_activator(act);

} catch (const PortableServer::POA:AdapterAlreadyExists &) {
return false;
15-28
18Registering POA Activators
An adapter activator must be registered by setting the POA’s
the_activator attribute:

interface POA {
// ...
attribute AdapterActivator the_activator;

};

You can change the adapter activator of an existing POA, including the
Root POA.

By attaching an activator to all POAs, a request for a POA that is low in
the POA hierarchy will automatically activate all parent POAs that are
needed.
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Registering POA Activators

the
erver
OA.

POA
rk

vated
} catch (...) {
return false;

}

// ...
}

In main , we use the same adapter activator as the Root POA’s activator:

// ...

PortableServer::POA_var root_poa = ...;

// Create activator servant.
POA_Activator_impl act_servant;

// Register activator with Root POA.
PortableServer::AdapterActivator_var act = act_servant._this();
root_poa->the_activator(act);

// ...

Note that, for POA activators to work, the POA manager for the Root POA must be active if
server uses indirect binding via the implementation repository (see Unit 22); otherwise, the s
has no transport endpoint for the incoming request that should result in activation of a new P
However, it is not necessary for POAs that are dynamically activated to actually use the Root
manager; you can use any POA manager you like but, for indirect binding, activation will wo
only when the Root POA manger is active.

If your server does not use the implementation repository, the POA manager of the to-be-acti
POA must be in the active state.
Copyright 2000–2001 IONA Technologies 15-29

Finding POAs Advanced Uses of the POA

19
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

l

lace
le
15.19Finding POAs
Thethe_children attribute retrieves a list of all the (current) children of a POA.

Thethe_parent attribute returns the parent of a POA. (The parent of the Root POA is a nil
reference.)

Thefind_POA operation returns the child POA with the supplied name. If theactivate_it
parameter is true, calls tofind_POA trigger the parent’s POA activator. This is particularly usefu
if you use adapter activators anyway because you can create new POAs by simply calling
find_POA from main. This has the advantage that all your POA creation code is kept in one p
and that you can centralize the mapping from POA names to policies (for example, in a sing
lookup table that maps POA names to policy lists).

// ...

PortableServer::POA_var root_poa = ...;

// Create activator servant.
POA_Activator_impl act_servant;

// Register activator with Root POA.
PortableServer::AdapterActivator_var act = act_servant._this();
root_poa->the_activator(act);

// Use find_POA to create a POA hierarchy. The POAs will be
// created by the adapter activator.
15-30
19Finding POAs

The find_POA operation locates a POA:

// In module PortableServer: typedef sequence<POA> POAList;
interface POA {

// ...
POA find_POA(in string name, in boolean activate_it)

raises(AdapterNonExistent);
readonly attribute POAList the_children;
readonly attribute POA the_parent;

};

You must invoke find_POA on the correct parent (because POA
names are unique only within their parent POA).

If activate_it is true and the parent has an adapter activator,
unknown_adapter will be called to create the child POA.

You can use this to instantiate all your POAs by simply calling
find_POA.
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Finding POAs
PortableServer::POA_var ctrl_poa
= root_poa->find_POA("Controller", true);

PortableServer::POA_var thermometer_poa
= ctrl_poa->find_POA("Thermometers", true);

PortableServer::POA_var thermostat_poa
= ctrl_poa->find_POA("Thermostats", true);

// Activate POAs...
Copyright 2000–2001 IONA Technologies 15-31

Identity Mapping Operations Advanced Uses of the POA

20
Advanced Uses of the POA

Copyright 2000–2001 IONA Technologies

ants.

oke
side:

s the

a.

 is as
15.20Identity Mapping Operations
The POA provides operations that allow you to map among references, object IDs, and serv

ObjectId servant_to_id(in Servant s)
raises(ServantNotActive, WrongPolicy)

This operation returns the object ID for a servant. The behavior depends on whether you inv
servant_to_id from inside an executing operation on the specified servant, or from the out

• If called from inside an executing operation on the specified servant, the operation return
object ID for the current request (that is, the semantics are the same as calling
get_object_id on theCurrent object).

• If called from outside an executing operation on the specified servant, the POA must

• either use theRETAIN policy, together withUNIQUE_ID or IMPLICIT_ACTIVATION,

• or theUSE_DEFAULT_SERVANT policy.

servant_to_id raisesWrongPolicy if the policies on the POA do not match these criteri

The behavior when called from outside an executing operation on the specified servant
follows:

• If the specified servant is in the AOM andUNIQUE_ID is in effect, the operation returns
that servant’s ID.

• If the POA usesIMPLICIT_ACTIVATION (which impliesSYSTEM_ID) and the servant is
not in the AOM, it implicitly activates the servant with a new object ID and returns
that ID. This happens whetherUNIQUE_ID orMULTIPLE_ID is in effect and whether you
15-32
20Identity Mapping Operations

The POA offers a number of operations to map among object
references, object IDs, and servants:

interface POA {
// ...
ObjectId servant_to_id(in Servant s)

raises(ServantNotActive, WrongPolicy);
Object servant_to_reference(in Servant s)

raises(ServantNotActive, WrongPolicy);
Servant reference_to_servant(in Object o)

raises(ObjectNotActive, WrongAdapter, WrongPolicy);
ObjectId reference_to_id(in Object reference)

raises(WrongAdapter, WrongPolicy);
Servant id_to_servant(in ObjectId oid)

raises(ObjectNotActive, WrongPolicy);
Object id_to_reference(in ObjectId oid)

raises(ObjectNotActive, WrongPolicy);
};
Copyright 2000–2001 IONA Technologies

Advanced Uses of the POA Identity Mapping Operations

 you
, or

s the

 is as

ses

ion
useUSE_DEFAULT_SERVANT or USE_ACTIVE_OBJECT_MAP_ONLY and is almost
certainly not what you want, so we suggest you avoidIMPLICIT_ACTIVATION.

• If neither of the preceding conditions holds, the operation raisesServantNotActive.

Object servant_to_reference(in Servant s)
raises(ServantNotActive, WrongPolicy)

This operation returns the object reference for a servant. The behavior depends on whether
invokeservant_to_reference from inside an executing operation on the specified servant
from the outside:

• If called from inside an executing operation on the specified servant, the operation return
reference for the current request (that is, the semantics are the same as calling
get_object_id on theCurrent object and creating a reference with that object ID).

• If called from outside an executing operation on the specified servant, the POA must

• either use theRETAIN policy, together withUNIQUE_ID or IMPLICIT_ACTIVATION,

• or theUSE_DEFAULT_SERVANT policy.

servant_to_reference raisesWrongPolicy if the policies on the POA do not match
these criteria.

The behavior when called from outside an executing operation on the specified servant
follows:

• If the specified servant is in the AOM andUNIQUE_ID is in effect, the operation returns
that servant’s reference.

• If the POA usesIMPLICIT_ACTIVATION (which impliesSYSTEM_ID) and the servant is
not in the AOM, it implicitly activates the servant with a new object ID and returns a
reference containing that ID. This happens whetherUNIQUE_ID or MULTIPLE_ID is in
effect and whether you useUSE_DEFAULT_SERVANT or
USE_ACTIVE_OBJECT_MAP_ONLY and is almost certainly not what you want, so we
suggest you avoidIMPLICIT_ACTIVATION.

• If neither of the preceding conditions holds, the operation raisesServantNotActive.

Servant reference_to_servant(in Object o)
raises(ObjectNotActive, WrongAdapter, WrongPolicy)

Callingreference_to_servant on a POA other than the one that created the reference rai
WrongAdapter.

Calling reference_to_servant on a POA that does not use eitherRETAIN or
USE_DEFAULT_SERVANT raisesWrongPolicy.

Otherwise, the operation returns the servant for an object reference:

• If the POA usesRETAIN and the object denoted by the reference is in the AOM, the operat
returns the corresponding servant.

• Otherwise, if the POA usesUSE_DEFAULT_SERVANT, the operation returns the default
servant.

• Otherwise, the operation raisesObjectNotActive.
Copyright 2000–2001 IONA Technologies 15-33

Identity Mapping Operations Advanced Uses of the POA

ct
ObjectId reference_to_id(in Object reference)
raises(WrongAdapter, WrongPolicy)

Callingreference_to_id on a POA other than the one that created the reference raises
WrongAdapter. Otherwise,reference_to_id returns the object ID encapsulated in the
reference. (TheWrongPolicy exception is currently not raised and reserved for future
extensions.)

Servant id_to_servant(in ObjectId oid)
raises(ObjectNotActive, WrongPolicy)

Callingid_to_servant on a POA that does not have either theRETAIN policy or the
USE_DEFAULT_SERVANT policy raisesWrongPolicy. Otherwise, the operation behaves as
follows:

• If the specified ID is in the AOM,id_to_servant returns the corresponding servant.

• Otherwise, if the POA usesUSE_DEFAULT_SERVANT, id_to_servant returns the default
servant.

• Otherwise, the operation raisesObjectNotActive.

Object id_to_reference(in ObjectId oid)
raises(ObjectNotActive, WrongPolicy)

Callingid_to_reference on a POA that does not use theRETAIN policy raisesWrongPolicy.
Otherwise, if an object with the specified ID is currently active, the operation returns an obje
reference that encapsulates the specified ID. If no object with the specified ID is active, the
operation raisesObjectNotActive.
15-34 Copyright 2000–2001 IONA Technologies

16.Exercise: Writing Servant Locators
ate
Summary

In this unit, you will add a servant locator to the server we presented in Unit 14.

Objectives

By the completion of this unit, you will know how to implement servant locators and how to cre
references on demand without having to instantiate a servant.

Source Files and Build Environment Exercise: Writing Servant Locators

s

 in

rn an

to

ally

ch

d,
r
with a

 a

t.

y ID).

ain
oller.)

our
eep it
16.1 Source Files and Build Environment
You will find this exercise in yourlocator directory. The files in this directory are the same a
for Unit 13.

16.2 Server Operation
The server source code provided to you for this exercise implements the solution presented
Unit 14. The purpose of this exercise is to implement servant locators for this server.

With servant locators, not all devices are in memory at a time. This means that, when we retu
object reference (such as for thelist operation), we cannot call simply call_this because the
servant may not be in memory. This means that all references returned by the server need
created without servants, usingcreate_reference_with_id. The server uses this technique
for all operations, including the factory operations and it relies on a servant manager to actu
instantiate a servant for a device when it is needed.

Note that, as a result, the constructor of the controller no longer instantiates a servant for ea
device on start-up. Instead, it simply reads the list of asset numbers fromCCS_assets to update
its notion of what devices exists, without instantiating a servant.

The server uses a single servant locator that is shared between theThermometers and
Thermostats POAs. This means, that, inpreinvoke , you must make a decision as to what
type of servant to instantiate based on the POA name.

16.3 What You Need to Do

Step 1

Read the body of therun function. Note that it calls a modified version of
create_persistent_POA with a defaulted third argument. If no third argument is supplie
the function creates a persistent POA withRETAIN as in Unit 14. If a reference to a servant locato
is passed as the third argument, the function instead creates a POA that is suitable for use
servant locator.

The body ofcreate_persistent_POA is empty. Implement this function. (Note: much of the
body of this function is the same as for Unit 14, so you can save some time by using that as
starting point.)

Step 2

Themake_dref function is used to create a reference without having to instantiate a servan
Note that, depending on what the type of the actual device on the network is,make_dref must
create either a thermometer or a thermostat reference (using the correct POA and repositor
Implement this function. (Note: use themake_oid helper function to create the object ID.)

Step 3

The body ofpreinvoke on the servant locator is empty. Implement this operation. (You can g
some insight as to the correct implementation by looking at the other operations in the contr

Step 4

The body ofpostinvoke on the servant locator is empty. Implement this operation and test y
server. For this simple exercise, deallocate the servant in postinvoke instead attempting to k
around for later requests.
16-2 Copyright 2000–2001 IONA Technologies

17.Solution: Writing Servant Locators

Solution Solution: Writing Servant Locators
17.1 Solution

static PortableServer::POA_ptr
create_persistent_POA(

const char * name,
PortableServer::POA_ptr parent,
PortableServer::ServantManager_ptr locator

= PortableServer::ServantLocator::_nil())
{

// Create policy list for simple persistence
CORBA::PolicyList pl;
CORBA::ULong len = pl.length();
pl.length(len + 1);
pl[len++] = parent->create_lifespan_policy(

PortableServer::PERSISTENT
);

pl.length(len + 1);
pl[len++] = parent->create_id_assignment_policy(

PortableServer::USER_ID
);

pl.length(len + 1);
pl[len++] = parent->create_thread_policy(

PortableServer::SINGLE_THREAD_MODEL
);

pl.length(len + 1);
pl[len++] = parent->create_implicit_activation_policy(

PortableServer::NO_IMPLICIT_ACTIVATION
);

// Check if we need to register a servant locator
if (!CORBA::is_nil(locator)) {

pl.length(len + 1);
pl[len++] = parent->create_servant_retention_policy(

PortableServer::NON_RETAIN
);

pl.length(len + 1);
pl[len++] = parent->create_request_processing_policy(

PortableServer::USE_SERVANT_MANAGER
);

}

// Get parent POA's POA manager
PortableServer::POAManager_var pmanager

= parent->the_POAManager();

// Create new POA
PortableServer::POA_var poa =

parent->create_POA(name, pmanager, pl);
17-2 Copyright 2000–2001 IONA Technologies

Solution: Writing Servant Locators Solution
// Register servant locator, if required
if (!CORBA::is_nil(locator))

poa->set_servant_manager(locator);

// Clean up
for (CORBA::ULong i = 0 ; i < len; ++i)

pl[i]->destroy();

return poa._retn();
}

Step 2

// Helper function to create object references.

CCS::Thermometer_ptr
make_dref(CCS::AssetType anum)
{

// Convert asset number to OID
PortableServer::ObjectId_var oid = make_oid(anum);

// Look at the model via the network to determine
// the repository ID and the POA.
char buf[32];
if (ICP_get(anum, "model", buf, sizeof(buf)) != 0)

abort();
const char * rep_id;
PortableServer::POA_ptr poa;
if (strcmp(buf, "Sens-A-Temp") == 0) {

rep_id = "IDL:acme.com/CCS/Thermometer:1.0";
poa = Thermometer_impl::poa();
CORBA::Object_var obj

= poa->create_reference_with_id(oid, rep_id);
return CCS::Thermometer::_narrow(obj);

} else {
rep_id = "IDL:acme.com/CCS/Thermostat:1.0";
poa = Thermostat_impl::poa();
CORBA::Object_var obj

= poa->create_reference_with_id(oid, rep_id);
return CCS::Thermostat::_narrow(obj);

}
}

Step 3

PortableServer::Servant
DeviceLocator::
preinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
Copyright 2000–2001 IONA Technologies 17-3

Solution Solution: Writing Servant Locators
const char * operation,
PortableServer::ServantLocator::Cookie & the_cookie

) throw(CORBA::SystemException, PortableServer::ForwardRequest)
{

CCS::AssetType anum = make_anum(oid);
if (!Thermometer_impl::m_ctrl->exists(anum))

throw CORBA::OBJECT_NOT_EXIST();
CORBA::String_var poa_name = adapter->the_name();
if (strcmp(poa_name, "Thermometers") == 0)

return new Thermometer_impl(anum);
else

return new Thermostat_impl(anum);
}

Step 4

void
DeviceLocator::
postinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
const char * operation,
PortableServer::ServantLocator::Cookie the_cookie,
PortableServer::Servant the_servant

) throw(CORBA::SystemException)
{

the_servant->_remove_ref();
}

17-4 Copyright 2000–2001 IONA Technologies

18.ORBacus Configuration
or a
Summary

This unit covers the configuration mechanism of ORBacus, which controls value-added and
non-standard aspects of the ORB.

Objectives

By the completion of this unit, you will know how to control configuration parameters and
understand how defaults are applied at various levels to arrive at an effective configuration f
process.

Introduction ORBacus Configuration

1
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

ple,
ment

nes,
operty

set the

esses
18.1 Introduction
The specification falls short in a number of areas when it comes to ORB behavior. For exam
the specification loses few words about threads, or how to influence the connection manage
algorithm that is used by clients and servers.

Because the non-standard aspects of ORB behavior are just as important as the standard o
ORBacus offers a proprietary mechanism to control these aspects, known as properties. A pr
is a name–value pair. The name is a scoped name such asooc.orb.client_timeout or
ooc.orb.oa.conc_model . (All ORBacus properties useooc as the first element of their
name.) The value of a property is a string which, depending on the property, may be further
constrained. For example, some properties require a numeric value and the string you use to
value must parse as a number.

ORBacus processes property values once only, during initialization. This means that, if you
change the value of a property, it only affects processes you start after the change, not proc
that are running while you make the change.
18-2
1Introduction

Some aspects of behavior for ORBacus are controlled by properties.

Properties are scoped name–value pairs. The name is a variable such
as ooc.orb.client_timeout . The value of a property is a string.

ORBacus uses properties to change its behavior in some way.

There are properties to control threading models, to control the return
value from resolve_initial_references for different tokens, to
change connection management strategies, etc.

The property configuration mechanism is not standardized and
therefore specific to ORBacus.

Property values are read once only, on process start-up. Changing the
value of a property has no effect on running processes!
Copyright 2000–2001 IONA Technologies

ORBacus Configuration Defining Properties

2
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

es
rty
he
18.2 Defining Properties
You can define properties in a number of ways, depending on the platform. When ORBacus
retrieves property values, it follows the above sequence in order and overrides property valu
retrieved during earlier steps with values retrieved during later steps. This means that prope
values supplied on the command line override all other settings because the final step has t
highest precedence.

Most properties have a default value; that value is silently applied if the property is not set.
Copyrigh
2Defining Properties

Properties can be defined in a number of places:

1. in a Windows registry key under
HKEY_LOCAL_MACHINE\Software\OOC\Properties\ <name>

2. in a Windows registry key under
HKEY_CURRENT_USER\Software\OOC\Properties\ <name>

3. in a configuration file specified by the ORBACUS_CONFIG
environment variable

4. by setting a property from within the program

5. in a configuration file specified on the command line

6. by using a command-line option

Property values are retrieved using all these means (if applicable).

Higher numbers have higher precedence.
t 2000–2001 IONA Technologies 18-3

Setting Properties in the Registry ORBacus Configuration

3
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

y

e or
18.3 Setting Properties in the Registry
Under Windows, you can establish system-wide and per-user default values for properties b
setting registry keys underHKEY_LOCAL_MACHINE andHKEY_CURRENT_USER, respectively.

To determine the path to the key holding a property value, replace the “. ” characters in a property
name by “\ ” and prefix the root path depending on whether you want to establish a per-machin
per-user default value. For example, you can set
HKEY_CURRENT_USER\Software\OOC\Properties\ooc\orb\oa\thread_pool
to 20 if you want to use a default thread pool size of 20 for the current user.
18-4
3Setting Properties in the Registry
To set a property in the Windows registry, use the property name,
replacing the “. ” by “\ ”. For example, the property ooc.orb.id can be
set by setting the value of:

HKEY_LOCAL_MACHINE\Software\OOC\Properties\ooc\orb\id

Defaults for properties that affect all processes on the system can be
set under HKEY_LOCAL_MACHINE.

Defaults for properties that affect only the current user can be set under
HKEY_CURRENT_USER.
Copyright 2000–2001 IONA Technologies

ORBacus Configuration Setting Properties in a Configuration File

4
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

e

or

nly if
18.4 Setting Properties in a Configuration File
You can set properties in a configuration file. Lines beginning with “#” are comments and are
ignored. You can insert blank lines as you wish. Note that trailing white space characters arnot
ignored and become part of the property value.

Once you have created a property file, you can set theORBACUS_CONFIG environment variable
(UNIX only) to indicate the path to the configuration file. For example, using a Bourne shell
similar:

ORBACUS_CONFIG=/home/michi/.ob.config
export ORBACUS_CONFIG

Note that it is best to use an absolute pathname. Relative pathnames are legal, but will work o
they are correct relative to the current working directory.
Copyrigh
4Setting Properties in a Configuration File
You can create a configuration file containing property values. For
example:

Default client concurrency model is threaded
ooc.orb.conc_model=threaded

Default server concurrency model is a pool of 20 threads
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=20

Default naming service is on HostA, port 5000
ooc.orb.service.NameService=corbaloc::HostA:5000/NameService

Trailing white space is ignored and is not part of the property.
t 2000–2001 IONA Technologies 18-5

Setting Properties Programmatically ORBacus Configuration

5
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

uct a
ad of
18.5 Setting Properties Programmatically
You can set properties from within your programming using theOB::Properties class. The
getDefaultProperties member returns a property set that is initialized with the defaults
that may be present in a configuration file. To set properties explicitly, you must copy-constr
property set from the defaults and then set the properties you want on that copy. Finally, inste
callingCORBA::ORB_init , call the ORBacus-specificOBCORBA::ORB_init function,
which accepts the property set as the third argument.
18-6
5Setting Properties Programmatically

You can set properties from within your program using the
OB::Properties class and OBCORBA::ORB_init .

// Get default properties (established by config file)
OB::Properties_var dflt

= OB::Properties::getDefaultProperties();

// Initialize a property set with the defaults
OB::Properties_var props = new OB::Properties(dflt);

// Set the properties we want
props->setProperty("ooc.orb.conc_model", "threaded");
props->setProperty("ooc.orb.oa.conc_model", "thread_pool");
props->setProperty("ooc.orb.oa.thread_pool", "20");

// Initialize the ORB with the given properties
CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);
Copyright 2000–2001 IONA Technologies

ORBacus Configuration Setting Properties from the Command Line

6
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

with
18.6 Setting Properties from the Command Line
Most properties can be set using command-line options. The-ORBconfig option allows you
specify a different configuration file. Note that, if you also have a configuration file specified
theORBACUS_CONFIG environment variable, that configuration file is still read to establish
defaults. However, properties that are defined in the configuration file specified with
-ORBconfig override those defaults.

You can also specify many properties explicitly on the command line. For example,
-ORBthreaded is the same as setting theooc.orb.conc_model property tothreaded .
Copyrigh
6Setting Properties from the Command Line

You can pass the -ORBconfig <pathname> option to a process.

The specified file overrides the defaults that are taken from registry
keys or the ORBACUS_CONFIG environment variable, and overrides
values that are set with OBCORBA::ORB_init .

You can also set most properties from the command line directly. For
example:

./a.out -ORBconfig $HOME/ob.config \
-ORBthreaded -OAreactive

Explicit property values override the defaults in a configuration file, so
this process will use ooc.orb.conc_model=threaded and
ooc.orb.oa.conc_model=reactive .

See the manual for a complete list of options.
t 2000–2001 IONA Technologies 18-7

Commonly Used Properties ORBacus Configuration

7
ORBacus Configuration

Copyright 2000–2001 IONA Technologies

id
ence
18.7 Commonly Used Properties
The above properties are among the ones used more commonly.

• ooc.orb.service. <name>=<IOR>

This property controls the object reference returned byresolve_initial_references
for various tokens. For example, setting
ooc.orb.service.NameService=corbaloc::HostA:5000/NameService
sets the reference returned for the initial naming context. (See Section 19.20.)

You can also use the-ORBInitRef <name>=<IOR> command line option to set this
property. For example:

a.out -ORBInitRef NameService=corbaloc::HostA:5000/NameService

• ooc.orb.trace.connections= <level>

This property controls the level of tracing for connection establishment and closure. Val
tracing levels are 0, 1, and 2. This property is useful for debugging, for example, if a refer
will not bind correctly.

You can also use the-ORBtrace_connections <level> command-line option to set
this property.
18-8
7Commonly Used Properties

• ooc.orb.service. <name>=<IOR>

Specify the IOR to returned by resolve_initial_references.

• ooc.orb.trace.connections= <level> .

Trace connection establishment and closure at <level> (0−2).

• ooc.orb.trace.retry= <level> .

Trace connection reestablishment attempts at <level> (0−2).

• ooc.orb.oa.numeric= { true , false }

Use a dotted-decimal IP address in IORs instead of a name.

• ooc.orb.oa.port= <port>

Set the port number to be embedded in IORs.
Copyright 2000–2001 IONA Technologies

ORBacus Configuration Commonly Used Properties

 object

rt
• ooc.orb.trace.retry= <level>

This property controls the level of tracing of transparent retry attempts made by clients
connections go down. Valid tracing levels are 0, 1, and 2.

You can also use the-ORBtrace_rebind <level> command-line option to set this
property.

• ooc.iiop.numeric= { true , false }

This property, when set to true, causes dotted-decimal IP addresses to be inserted into
references instead of domain names. This is useful if the DNS on the client side is not
configured correctly and cannot resolve the domain name of the server.

You can also use the-OAnumeric command-line option to set this property.

• ooc.iiop.port= <port>

This property controls the port at which the server listens for incoming requests. That po
number inserted into object references created by the server. (See Unit 22.)

You can also use the-OAport <port> command-line option to set this property.
Copyright 2000–2001 IONA Technologies 18-9
when

19.The Naming Service
n be
m. The
their

s
agree
Summary

This unit presents the OMG Naming Service in detail and explains how the Naming Service ca
used to decouple clients and servers by providing an external reference exchange mechanis
unit also covers how to solve the bootstrapping problem for clients and servers by controlling
configuration.

Objectives

By the completion of this unit, you will know how to use the Naming Service as a rendezvou
point between clients and servers, and how to configure your application components so they
on the particular Naming Service they should use.

Introduction The Naming Service

1
The Naming Service

Copyright 2000–2001 IONA Technologies

er
nd is

der a

s. In
the
s and
19.1 Introduction
So far, we have used stringified references to allow clients to contact a server. This is a rath
clumsy way for clients to gain access to objects because copying stringified references arou
cumbersome, error prone, and does not scale. The Naming Service offers a solution to this
problem by offering an object reference advertising service. Servers advertise references un
name, and clients use the name to locate the reference in the naming service.

This allows clients to use meaningful names for objects instead of cryptic stringified reference
addition, it provides greater flexibility because of the extra level of indirection it adds. Finally,
Naming Service solves the bootstrapping problem because it provides a fixed point for client
servers to rendezvous.
19-2
1Introduction

Copying stringified references from a server to all its clients is clumsy
and does not scale.

The Naming Service provides a way for servers to advertise references
under a name, and for clients to retrieve them. The advantages are:

• Clients and servers can use meaningful names instead of having to
deal with stringified references.

• By changing a reference in the service without changing its name,
you can transparently direct clients to a different object.

• The Naming Service solves the bootstrapping problem because it
provides a fixed point for clients and servers to rendezvous.

The Naming Service is much like a white pages phone book. Given a
name, it returns an object reference.
Copyright 2000–2001 IONA Technologies

The Naming Service Terminology

2
The Naming Service

Copyright 2000–2001 IONA Technologies

 are
you
other
u can
19.2 Terminology
The above slide shows the terminology that is used for the Naming Service. Conceptually, a
Naming Service is similar to a file system, which uses directories and files. Naming contexts
analogous to directories: they hold name–IOR pairs, called bindings. By providing a name,
can obtain an IOR stored in a context under that name. The IOR for a binding may denote an
context or an application object; by adding bindings to contexts that denote other contexts, yo
connect contexts into arbitrary graphs.
Copyrigh
2Terminology

• A name-to-IOR association is called a name binding.

• Each binding identifies exactly one object reference, but an object
reference may be bound more than once (have more than one
name).

• A naming context is an object that contains name bindings. The
names within a context must be unique.

• Naming contexts can contain bindings to other naming contexts, so
naming contexts can form graphs.

• Binding a name to a context means to add a name–IOR pair to a
context.

• Resolving a name means to look for a name in a context and to
obtain the IOR bound under that name.
t 2000–2001 IONA Technologies 19-3

Example Naming Graph The Naming Service

3
The Naming Service

Copyright 2000–2001 IONA Technologies

, and

its

s a

erent

s the
le

stem

wn as
and
19.3 Example Naming Graph
The above slide shows an example of a small naming graph. Hollow nodes denote contexts
solid nodes denote application objects. The arcs represent bindings. Each arc is an object
reference, labeled with the name under which that reference is bound in its context.

Note that this is similar to a file system hierarchy:

• Within a context, name bindings are unique. Each binding can appear only once within
parent context.

• Given a starting context, you can navigate to a target node by traversing a path from the
starting context to the target node. The sequence of bindings used in the traversal form
pathname that uniquely identifies the target object.

• The same name binding can appear multiple times provided that each binding is in a diff
parent context. For example, the bindingbin appears twice in the above graph.

• A single object or context can have multiple names. For example, the sample graph use
name bindingssys ands1 for the same context. (This corresponds to the concept of multip
links to the same file or directory in a UNIX file system.)

Apart from the similarities, there are differences that distinguish a naming graph from a file sy
graph:

• It is possible for the graph to have contexts that have no names. Such contexts are kno
orphaned contexts. (This is different from a normal file system, which requires every file
directory to have a name.)
19-4
3Example Naming Graph

A naming service provides a graph of contexts that contain bindings to
other contexts or objects.

The graph is similar to (but not the same as) a file system hierarchy with
directories and files.

user sys s1

u1 u2 u3

fred joejim IR fred

sambin

app1

services bin lib

s1 s2 s3

app2

devices collections

dev1 cd

= Context
= Object

fred cd

Orphaned
Context

app2

= Object Reference

Orphaned
Context

Orphaned
Context

Orphaned
Context
Copyright 2000–2001 IONA Technologies

The Naming Service Example Naming Graph

ts
ntext

ed as

re
f you
• A naming graph has one or more distinguished contexts known asinitial naming contexts.
Typically, initial naming contexts are orphaned contexts (but they need not be). Converse
a context is orphaned, it is typically also an initial naming context. (Initial naming contex
determine the points at which clients gain access to a naming graph. An initial naming co
corresponds to what we think of as the root directory of a file system.)

• A naming graph can have more than one root. Typically, each such root is also configur
an initial naming context.

• A graph can consist of several disconnected subgraphs.

• It is possible for the graph to have loops.

NOTE: Even though loops are legal, we strongly recommend that you avoid them. Loops a
legal not because they are desirable but because it is impossible to prevent them. I
have loops in a graph, it is easy to get confused about which bindings are where; in
addition, administrative tools become harder to use.
Copyright 2000–2001 IONA Technologies 19-5
ly, if

Naming IDL Structure The Naming Service

4
The Naming Service

Copyright 2000–2001 IONA Technologies

part

o

e
r to

ntext
19.4 Naming IDL Structure
The IDL for the Naming Service follows the general structure shown above. The entire IDL is
of theCosNaming module. Apart from type definitions, the module contains three interfaces:

• NamingContext

This interface provides most of the functionality of the Naming Service and allows you t
create, remove, and lookup bindings.

• NamingContextExt

This interface was added in 1999 by a revision to the service known as the Interoperabl
Naming Service. The interface provides a few convenience functions that make it easie
deal with name bindings. The Interoperable Naming service was first published with
CORBA 2.4.

• BindingIterator

This interface is provided so you can list the bindings of a naming context even if the co
contains a very large number of bindings.
19-6
4Naming IDL Structure

The IDL for the Naming Service has the following overall structure:

//File: CosNaming.idl
#pragma prefix "omg.org"
module CosNaming {

// Type definitions here...
interface NamingContext {

// ...
};
interface NamingContextExt : NamingContext {

// ...
};
interface BindingIterator {

// ...
};

};

Note that all OMG-defined IDL uses the prefix omg.org.
Copyright 2000–2001 IONA Technologies

The Naming Service Name Representation

5
The Naming Service

Copyright 2000–2001 IONA Technologies

 name

es,

nd the

u can
ir of

l name

se than
19.5 Name Representation
Unlike a file name, which is a single string, the Naming Service uses a pair of strings as the
of a binding. (The diagram on page 19-4 only shows theid field and assumes that thekind field is
empty.) The idea of using a pair of strings instead of a single string was inspired by file nam
which often use an extension.1

A sequence of name components (or pairs of strings) forms a pathname that can be used to
navigate through a naming graph, such that each name component identifies one binding, a
sequence of name components identifies a path from a starting context via a number of
intermediate contexts to a target binding.

Note that, unlike for file system names, a name component can be any string. In particular, yo
freely use characters such as “/” or “.” as part of a name component, and even the empty pa
strings is a legal name component.

By definition, for two name components to be considered equal, both theirid andkind fields
must be equal. For two names to be equal, the names must have the same number of equa
components.

1. Unfortunately, this doesn’t achieve anything and only serves to make the Naming Service more complex to u
necessary. You can avoid most of the unnecessary complexity by simply leaving thekind field unused. (The C++
mapping initializes nested strings to the empty string, so you can effectively ignore thekind field.)
Copyrigh
5Name Representation

A name component is a pair of strings. A sequence of name
components forms a pathname through a naming graph:

module CosNaming {
typedef string Istring; // Historical hangover
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
// ...

};

The kind field is meant to be used similarly to a file name extension
(such as “filename.cc”).

For two name components to be considered equal, both id and kind
must be equal.
t 2000–2001 IONA Technologies 19-7

Stringified Names The Naming Service

6
The Naming Service

Copyright 2000–2001 IONA Technologies

nent

ich

n the

deal
19.6 Stringified Names
Names are sequences of structures, so we can show a name as a table that contains anid andkind
value for each name component. The above slide shows the representation of a two-compo
name that uses bothid andkind fields for each component.

The original Naming Services only provided the representation of names as sequences, wh
makes it difficult to deal with names as a single convenient unit. For example, if names are
sequences of pairs, it is not clear how to display a name in a user interface, in particular if eve
empty string is a legal value forid andkind fields. For this reason, the Interoperable Naming
Service added a stringified representation for names, using “.” as the separator forid andkind
fields, and “/” as the separator for name components. (We will discuss how stringified names
with various special conditions, such asid andkind fields that are empty or contain a “.” in
Section 19.18.)

Note that for two names to be equal, bothid andkind fields must be equal. This means that the
name components can all appear in the same parent context:

Guinness.Beer
Budweiser.Beer
Chair.Person
Chair.Furniture
19-8
6Stringified Names

Names are sequences of string pairs. We can show a name as a table:

This is a two-component name corresponding to the following graph:

The same name can be written as a string as:

Ireland.Country/Guinness.Brewery

Index id kind

0 Ireland Country
1 Guinness Brewery

Ireland.Country

Guinness.Brewery

Starting
Context
Copyright 2000–2001 IONA Technologies

The Naming Service Pathnames and Name Resolution

7
The Naming Service

Copyright 2000–2001 IONA Technologies

rvice.
t and

an

by the
d by
19.7 Pathnames and Name Resolution
You must realize that the concept of an absolute pathname does not apply to the naming se
That is because the Naming Service (unlike a file system) does not have a distinguished roo
interpretation of pathnames is always relative to some starting context on which you invoke
operation.

The process of name resolution is the same as for a file system: for a name withn components, the
first n−1 components are used to navigate through the graph to the target context identified
final component. Whatever operation you have specified then applies to the binding identifie
the final component.
Copyrigh
7Pathnames and Name Resolution
There is no such thing as an absolute pathname in a Naming Service.

All names must be interpreted relative to a starting context (because a
Naming Service does not have a distinguished root context).

Name resolution works by successively resolving each name
component, beginning with a starting context.

A name with components C1, C2, …, Cn: is resolved as:

This looks complex, but simply means that operation op is applied to
the final component of a name after all the preceding components have
been used to locate the final component.

cxt op c1 c2 … cn, , ,[]()→ cxt resolve c1[]() op c2 … cn, ,[]()→ →≡
t 2000–2001 IONA Technologies 19-9

Obtaining an Initial Naming Context The Naming Service

8
The Naming Service

Copyright 2000–2001 IONA Technologies

oth

 the
19.8 Obtaining an Initial Naming Context
Obviously, for clients and servers to be able to agree on advertised references, they must b
agree to use the same Naming Service. Both clients and servers call
resolve_initial_references("NameService") to obtain a reference to the initial naming
context. For example:

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get initial naming context.
CORBA::Object_var obj

= orb->resolve_initial_references("NameService");

// Narrow to NamingContext
CosNaming::NamingContext_var inc; // Initial naming context
inc = CosNaming::NamingContext::_narrow(obj);

// ...

If the Naming Service supports the CORBA 2.4 Interoperable Naming Service specification,
call will return a object of typeNamingContextExt instead, so you can narrow that to
NamingContextExt:
19-10
8Obtaining an Initial Naming Context
You must obtain an initial naming context before you can do anything
with the service.

The configured initial naming context is returned by

resolve_initial_references("NameService")

This returns an object reference to either a NamingContext or a
NamingContextExt object. (For ORBacus, you always get a
NamingContextExt interface.)

Exactly which context is returned depends on the ORB configuration.

You can override the default with the -ORBInitRef option:

./a.out -ORBInitRef NameService=<ior>
Copyright 2000–2001 IONA Technologies

The Naming Service Obtaining an Initial Naming Context

,
ned
// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get initial naming context.
CORBA::Object_var obj

= orb->resolve_initial_references("NameService");

// Narrow to NamingContextExt
CosNaming::NamingContextExt_var inc; // Initial naming context
inc = CosNaming::NamingContextExt::_narrow(obj);

if (!CORBA::is_nil(inc)) {
// It's an Interoperable Naming Service...

} else {
// Doesn't support INS, must be the old service then...

}

// ...

Note that ORBacus fully supports the INS specification so, for ORBacus, the narrow to
NamingContextExt will always succeed.

Exactly which instance of a naming context will be returned by
resolve_initial_references depends on the ORB configuration (see Unit 18). However
even if the configuration is inappropriate for what you want to do, you can override the retur
value from the command line by providing either a stringified IOR or a URL-style IOR (see
Section 19.20) to the initial naming context:

$./myclient -ORBInitRef NameService=IOR:013a0d0...

This causes the call toresolve_initial_references to return the specified IOR when
invoked with a service name ofNameService. In general, you can use this mechanism to add
arbitrary token–reference pairs toresolve_initial_references. For example:

$./myclient -ORBInitRef MyFavouriteService=IOR:013a0d0...

This returns the specified IOR when you call
resolve_initial_references("MyFavouriteService").
Copyright 2000–2001 IONA Technologies 19-11

Naming Service Exceptions The Naming Service

9
The Naming Service

Copyright 2000–2001 IONA Technologies

esolve

ing to

s to a

ved.

is
d in a
19.9 Naming Service Exceptions

NotFound Exception

This exception is raised by operations that require a name for lookup if the name does not r
to an existing binding. TheNotFound exception contains two data members.

• why

Thewhy member provides more information as to why a lookup failed.

• missing_node

One of the components of a name specifies a binding that does not exist.

• not_context

One of the components of a name (other than the final component) specifies a bind
an application object instead of to a context.

• not_object

One of the components of a name specifies an object reference that dangles (point
non-existent object).

• rest_of_name

Therest_of_name member contains the trailing part of the name that could not be resol

CannotProceed Exception

This exception indicates that the implementation has given up for some reason. Typically, th
happens when a name binding denotes a context in a different Naming Service implemente
19-12
9Naming Service Exceptions

The NamingContext interface defines a number of exceptions:

interface NamingContext {
enum NotFoundReason { missing_node, not_context, not_object };
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};
// ...

};
Copyright 2000–2001 IONA Technologies

The Naming Service Naming Service Exceptions

sible
tion if

ame

will
remote process, but that context could not be reached during name resolution (for example
because the network is down). TheCannotProceed exception contains two data members.

• cxt

This is the object reference to the context containing the first unresolved binding.

• rest_of_name

This member contains the unresolved remainder of the name.

InvalidName Exception

This exception is raised if you attempt to resolve an empty name (aName sequence with length
zero, containing no components). If your Naming Service implementation restricts the permis
characters for name components (the ORBacus implementation does not), it raises this excep
you attempt to create a binding that contains an illegal character.

AlreadyBound Exception

This exception is raised if you attempt to create a binding that already exists. (Remember, n
bindings must be unique within their parent context.)

NotEmpty Exception

This exception is raised if you attempt to destroy a context that still contains bindings. (As you
see on page 19-15, a context must be empty before you can destroy it.)
Copyright 2000–2001 IONA Technologies 19-13
,

Creating and Destroying Contexts The Naming Service

10
The Naming Service

Copyright 2000–2001 IONA Technologies

pt an
w
n bind

ant to
e (one
rst

a

 span
sical

d

19.10Creating and Destroying Contexts
Naming contexts act as a factory interface for other naming contexts and support adestroy
operation.

NamingContext new_context()

This operation creates a new, empty naming context. Note that the operation does not acce
in parameter that could be used to give a name to the new context. This means that the ne
context is not bound into the naming graph by any name and therefore is orphaned. You ca
the new context into the graph later by calling thebind operation (see page 19-26).

The reason for providing a factory operation that creates orphaned contexts is that you may w
create a binding in one Naming Service that denotes a context in a different Naming Servic
that is implemented by a different process, possibly on a remote machine). To do this, you fi
create an orphaned context in one service and then add a binding to the second service in
separate step.

Because bindings are provided by object references, a single connected naming graph can
servers on different machines. Such distribution of a single logical service over multiple phy
servers is known asfederation.

NamingContext bind_new_context(in Name n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound)

This factory operation creates a new context and binds the new context under the namen into the
context on whichbind_new_context was invoked. Typically, you will use this operation instea
of new_context because it both creates and names a context in a single step.
19-14
10Creating and Destroying Contexts
NamingContext contains three operations to control the life cycle of
contexts:

interface NamingContext {
// ...
NamingContext new_context();
NamingContext bind_new_context(in Name n) raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);
void destroy() raises(NotEmpty);
// ...

};
Copyright 2000–2001 IONA Technologies

The Naming Service Creating and Destroying Contexts

e, an

o

d in

ins

t,
t that
nder
;
w to
bind_new_context is analogous to the UNIXmkdir command, which both creates and name
a directory.

bind_new_context can raise some of the exceptions discussed in Section 19.9. For exampl
AlreadyBound exception indicates that the binding passed tobind_new_context is already in
use, andNotFound indicates that the namen could not be resolved to a target context on which t
invoke thebind_new_context operation. For the remainder of this unit, we do not explicitly
discuss the exceptions raised by operations. In all cases, they have the semantics explaine
Section 19.9.

void destroy() raises(NotEmpty)

Thedestroy operation destroys a context. You can destroy a context only if it is empty (conta
no bindings). Thedestroy operation, however, isnot analogous to the UNIXrmdir command:
rmdir both destroys a directory and removes its name from the parent directory. In contras
destroy only destroys a context and does not remove any bindings to the destroyed contex
may still exist in parent contexts. If you destroy a context that is bound into a parent context u
some name, you must also invoke anunbind operation (see page 19-24) on the parent context
otherwise, you will leave a dangling binding behind. You will see source code examples of ho
correctly destroy contexts in Section 19.15.
Copyright 2000–2001 IONA Technologies 19-15
s

Creating Bindings The Naming Service

11
The Naming Service

Copyright 2000–2001 IONA Technologies

to
.

aise a

ext will
19.11Creating Bindings

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound)

Thebind operation adds the namen to the context on whichbind is invoked. The new name
denotes the passed referenceobj. This is the operation you must use if you want to give a name
one of your objects. Note that youcan bind a nil reference even though it is rather meaningless
We suggest that you not do this.

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound)

Thebind_context operation works likebind but is used to bind contexts instead of normal
application objects. The parameternc has the typeNamingContext, and that makes it impossible
to pass something that is not a naming context. Attempts to bind a nil reference as a context r
BAD_PARAM exception.

If you usebind (instead ofbind_context) to bind acontext object, thebind operation will
work, but the binding will behave like an ordinary binding to an application object. If you
incorrectly bind a context withbind instead ofbind_context, the bound context will not
participate in name resolution because as far as the Naming Service is concerned, the cont
be treated like an application object.
19-16
11Creating Bindings
Two operations create bindings to application objects and to contexts:

interface NamingContext {
// ...
void bind(in Name n, in Object obj)

raises(
NotFound, CannotProceed,
InvalidName, AlreadyBound

);
void bind_context(in Name n, in NamingContext nc)

raises(
NotFound, CannotProceed,
InvalidName, AlreadyBound

);
// ...

};
Copyright 2000–2001 IONA Technologies

The Naming Service Creating Bindings
Copyright 2000–2001 IONA Technologies 19-17

Context Creation Example The Naming Service

12
The Naming Service

Copyright 2000–2001 IONA Technologies

elative
ch

ing
19.12Context Creation Example
In order to create a naming graph, you can either use operations that all use names that are r
to the initial naming context, or you can use single-component names that are relative to ea
newly-create context.

Here is an example that creates the above graph using names that relative to the initial nam
context. The application object that is bound here under the nameapp2/devices/dev1 is the
CCS controller:

CosNaming::NamingContext_var inc = ...; // Get initial context

CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("app2"); // kind is empty

CosNaming::NamingContext_var app2;
app2 = inc->bind_new_context(name); // inc -> app2

name.length(2);
name[1].id = CORBA::string_dup("collections");
CosNaming::NamingContext_var collections;
collections = inc->bind_new_context(name); // app2 -> collections

name[1].id = CORBA::string_dup("devices");
CosNaming::NamingContext_var devices;
19-18
12Context Creation Example

To create a naming graph, you can use names that are all relative to the
initial context or you can use names that are relative to each
newly-created context.

The code examples that follow create the following graph:

app2

devices collections

dev1 cd cd

app2

Initial
Context
Copyright 2000–2001 IONA Technologies

The Naming Service Context Creation Example
devices = inc->bind_new_context(name); // app2 -> devices

name.length(3);
name[2].id = CORBA::string_dup("cd");
CosNaming::NamingContext_var cd;
cd = inc->bind_new_context(name); // devices -> cd

name.length(4);
name[3].id = CORBA::string_dup("app2");
inc->bind_context(name, app2); // cd -> app2

CCS::Controller_var ctrl = ...;
name.length(3);
name[2].id = CORBA::string_dup("dev1");
inc->bind(name, ctrl); // devices -> dev1

name[1].id = CORBA::string_dup("collections");
name[2].id = CORBA::string_dup("cd");
inc->bind_context(name, cd); // collections -> cd

Note that (even though this is not advisable) it is legal to create loops in the graph.
Copyright 2000–2001 IONA Technologies 19-19

Context Creation Example The Naming Service

ontext
, the

 and
Contrast this with the following example, which always uses a name with a single compone
create the next part of the graph:

CosNaming::NamingContext_var inc = ...; // Get initial context

CosNaming::Name name; // Initialize name
name.length(1);
name[0].id = CORBA::string_dup("app2"); // kind is empty string

CosNaming::NamingContext_var app2;
app2 = inc->bind_new_context(name); // Create and bind

name[0].id = CORBA::string_dup("devices");
CosNaming::NamingContext_var devices;
devices = app2->bind_new_context(name); // Create and bind

name[0].id = CORBA::string_dup("collections");
CosNaming::NamingContext_var collections;
collections = app2->bind_new_context(name); // Create and bind

name[0].id = CORBA::string_dup("cd"); // Make cd context
CosNaming::NamingContext_var cd;
cd = devices->bind_new_context(name); // devices -> cd

collections->bind_context(name, cd); // collections -> cd

name[0].id = CORBA::string_dup("app2");
cd->bind_context(name, app2); // cd -> app2

CCS::Controller_var ctrl = ...; // Get controller ref

name[0].id = CORBA::string_dup("dev1");
devices->bind(name, ctrl); // Add controller

Which style of creation you use depends on your preferences and how much surrounding c
is available at the point in your code where you want to create a binding. (As a rule of thumb
less context information is needed by a bit of code, the easier that code becomes to modify
reuse.)
19-20 Copyright 2000–2001 IONA Technologies
nt to

The Naming Service Rebinding

13
The Naming Service

Copyright 2000–2001 IONA Technologies

w

when

t

u
empts
19.13Rebinding
If you attempt to create a binding that already exists withbind, bind_context, or
bind_new_context, you get anAlreadyBound exception. In contrast, rebind and
rebind_context allow you to replace the object reference for an existing binding with a ne
one. (If no binding exists with the given name, it is created.) For example, the following code
fragment does not raise an exception, no matter whether the specified binding already exists
the code first executes:

CORBA::Object_var obj = ...; // Get an object
CosNaming::NamingContext_var cxt = ...; // Get a context...

CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("Some name");

cxt->rebind(name, obj); // Fine
cxt->rebind(name, obj); // Fine

Be careful when usingrebind_context. If you replace an existing context with a new contex
under the same name, the previous context will be orphaned.

You cannot userebind or rebind_context to change the type of a binding. For example, yo
cannot change a binding to a context to now denote an application object, or vice versa. Att
to do so raise aNotFound exception with awhy member ofnot_context andnot_object,
respectively.
Copyrigh
13Rebinding

The rebind and rebind_context operations replace an existing
binding:

interface NamingContext {
// ...
void rebind(in Name n, in Object obj)

raises(
NotFound, CannotProceed, InvalidName

);
void rebind_context(in Name n, in NamingContext nc)

raises(
NotFound, CannotProceed, InvalidName

);
// ...

};

Use rebind_context with caution because it may orphan contexts!
t 2000–2001 IONA Technologies 19-21

Resolving Bindings The Naming Service

14
The Naming Service

Copyright 2000–2001 IONA Technologies

cally,

oller
19.14Resolving Bindings
Naturally, the Naming Service is useless unless you can get information back out of it, specifi
unless you can resolve a binding to an object reference. Theresolve operation returns the
reference that is stored under a binding. For example, the following code retrieves the contr
reference we advertised in Section 19.12:

CosNaming::NamingContext inc = ...; // Get initial context...

CosNaming::Name name;
name.length(3);
name[0].id = CORBA::string_dup("app2");
name[1].id = CORBA::string_dup("devices");
name[2].id = CORBA::string_dup("dev1");

CORBA::Object_var obj;
try {

obj = inc->resolve(name);
} catch (const CosNaming::NamingContext::NotFound &) {

// No such name, handle error...
abort();

} catch (const CORBA::Exception & e) {
// Something else went wrong...
cerr << e << endl;
abort();
19-22
14Resolving Bindings
The resolve operation returns the reference stored in a binding:

interface NamingContext {
// ...
Object resolve(in Name n) raises(

NotFound, CannotProceed, InvalidName
);

// ...
};

The returned reference is (necessarily) of type Object, so you must
narrow it to the correct type before you can invoke operations on the
reference.
Copyright 2000–2001 IONA Technologies

The Naming Service Resolving Bindings

rence

.14.1,
}

if (CORBA::is_nil(obj)) {
// Polite applications don't advertise nil references!
cerr << "Nil reference for controller! << endl;
abort();

}

CCS::Controller_var ctrl;
try {

ctrl = CCS::Controller::_narrow(obj);
} catch (CORBA::SystemException & e) {

// Can't figure it out right now...
cerr << "Can't narrow reference: " << e << endl;
abort();

}

if (CORBA::is_nil(ctrl)) {
// Oops!
cerr << "Someone advertised wrong type of object!" << endl;
abort();

}

// Use ctrl reference...

This example includes more detailed error handling, by making sure that the advertised refe
is not nil and that it is of the correct type.

Obviously, writing this code over and over again in an application is tedious, so you should
encapsulate it in appropriate helper functions or classes. (See Henning & Vinoski, Section 18
for a template function that wrapsresolve .)
Copyright 2000–2001 IONA Technologies 19-23

Removing Bindings The Naming Service

15
The Naming Service

Copyright 2000–2001 IONA Technologies
19.15Removing Bindings
To get rid of a binding (whether to a context or to an application object), you callunbind. For
example, the following code fragment removes thedev1 binding from the graph shown on
page 19-18, using a name relative to the initial naming context:

CosNaming::NamingContext_var inc = ...; // Get initial context

CosNaming::Name name;
name.length(3);
name[0].id = CORBA::string_dup("app2");
name[1].id = CORBA::string_dup("devices");
name[2].id = CORBA::string_dup("dev1");

inc->unbind(name);
19-24
15Removing Bindings
You can remove a binding by calling unbind:

interface NamingContext {
// ...
void unbind(in Name n) raises(

NotFound, CannotProceed, InvalidName
);

// ...
};

unbind removes a binding whether it denotes a context or an
application object.

Calling unbind on a context will create an orphaned context. To get rid
of a context, you must both destroy and unbind it!
Copyright 2000–2001 IONA Technologies

The Naming Service Removing Bindings

).

move
xt
e that

e

Having unbound the application object from the graph, we end up with the following picture:

Note that the controller object still exists (but is no longer accessible via the Naming Service

When you want to destroy a context, you must take care to both destroy the context and to re
the binding to that context in its parent context; otherwise, you will leave an orphaned conte
behind. In addition, you cannot destroy a context unless it is empty, so you have to make sur
all the context’s bindings are removed first.

As an example of this, let’s continue from the previous example and remove the
app2/devices/cd context (the bottom-most context in the graph). To do this, we first remov
the bindings labeledapp2 andcd and then destroy the context:

// ...
// Name is currently initialized "app2/devices/dev1".
// Change name to "app2/devices/cd/app2".
name.length(4);
name[2].id = CORBA::string_dup("cd");
name[3].id = CORBA::string_dup("app2");
inc->unbind(name); // Get rid of app2 link

name.length(3);
CosNaming::NamingContext_var tmp = inc->resolve(name);
tmp->destroy(); // Destroy cd context
name.length(2);
inc->unbind(name); // Remove binding in parent context

This creates the following graph:

Note that the code is incomplete because it leaves a dangling binding in thecollections
context!

app2

devices collections

cd cd

app2

Initial
Context

app2

devices collections

cd

Initial
Context
Copyright 2000–2001 IONA Technologies 19-25

Listing Name Bindings The Naming Service

16
The Naming Service

Copyright 2000–2001 IONA Technologies

f
be
n
how

its the

s

19.16Listing Name Bindings
Thelist operation permits you read the list of bindings in a context. Because the number o
bindings in a context may be very large (potentially larger than the amount of data that can
returned in a single call),list returns an iterator object if the number of bindings is larger tha
some (implementation-dependent) limit. We will go through the basics first and then examine
to use iterators.

Each binding is described by aBinding structure. Thebinding_name field provides the name
of the binding and thebinding_type field indicates whether the binding is to a context or an
application object.

When you call thelist operation, you must supply a value for thehow_many parameter. This
parameter limits the number of bindings that will be returned in thebl parameter; thelist
operation guarantees to return no more thanhow_many items (but may return fewer, either
because the context does not have that many bindings, or because the service arbitrarily lim
number of bindings that will be returned in a single call). Oncelist returns, you can look at the
length of thebl sequence to find out how many bindings were actually returned. Ifbl contains all
bindings in the context, theit parameter is nil.

NOTE: list only returns the bindings for the context on which it is invoked, not the binding
that may be part of child contexts (that is,list behaves like the UNIXls command, and
not like ls -R). This means that thebinding_name member of each of the returned
Binding structures has a length of one. (Strictly speaking, the type of the
binding_name member should beNameComponent instead ofName. However, we are
stuck with this misfeature of the IDL.)
19-26
16Listing Name Bindings

// In module CosNaming:
enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

interface BindingIterator; // Forward declaration
interface NamingContext {

// ...
void list(

in unsigned long how_many,
out BindingList bl,
out BindingIterator it

);
};
Copyright 2000–2001 IONA Technologies

The Naming Service Listing Name Bindings

e
any

 that

es not

.

A call to list may not return all of the bindings in a context. This happens in the following ca

• The context contains more bindings than the value ofhow_many. (It is legal to provide a value
of zero forhow_many.)

• The context contains fewer thanhow_many bindings, however, the number of bindings in th
context is greater than some implementation-defined limit. (ORBacus does not enforce
limit.)

Either way, if not all bindings in the context are returned by the call tolist, theit parameter is
set to an iterator object of typeBindingIterator:

interface BindingIterator {
boolean next_n(

in unsigned long how_many,
out BindingList bl

);
boolean next_one(out Binding b);
void destroy();

};

This iterator object permits you to access the remaining bindings in a context (namely those
were not returned by the initial call tolist).

boolean next_n(in unsigned long how_many, in out BindingList bl)

This operation returns the nexthow_many bindings in the parameterbl. As withlist, there may
be fewer sequence elements inbl than you requested withhow_many because the operation may
choose, for example, to never return more than some fixed number of bindings. (ORBacus do
enforce such a limit.) A value of zero forhow_many raises aBAD_PARAM exception.

The return value fromnext_n tells you whether thebl parameter contains valid bindings. If this
call tonext_n returned bindings, the return value isTRUE. If this call tonext_n returned no
bindings, the return value isFALSE, and the value ofbl is undefined.

boolean next_one(out Binding b)

This operation does the same thing as callingnext_n with ahow_many value of 1. You should
avoid using it because it is rather inefficient: it incurs the cost of remote call for each binding

void destroy()

Thedestroy operation permanently destroys the iterator. You can calldestroy at any time even
before you have retrieved all bindings from the context. However, you must calldestroy even if
you retrieve all bindings.
Copyright 2000–2001 IONA Technologies 19-27
ses:

Listing Name Bindings The Naming Service
Interpreting a Binding List

The following example shows how you can correctly iterate over a naming context to list its
contents. The code retrieves the bindings in lots of at most 100. Theshow_chunk helper
function takes care of displaying each lot of bindings.

void
show_chunk(const CosNaming::BindingList & bl) // Helper function
{

for (CORBA::ULong i = 0 ; i < bl.length(); ++i) {
cout << bl[i].binding_name[0].id;
if (bl[i].binding_name[0].id[0] == '\0'

|| bl[i].binding_name[0].kind[0] != '\0') {
cout << "." << bl[i].binding_name[0].kind;

}
if (bl[i].binding_type == CosNaming::ncontext)

cout << ": context" << endl;
else

cout << ": reference" << endl;
}

}

void
list_context(CosNaming::NamingContext_ptr nc)
{

CosNaming::BindingIterator_var it; // Iterator reference
CosNaming::BindingList_var bl; // Binding list
const CORBA::ULong CHUNK = 100; // Chunk size

nc->list(CHUNK, bl, it); // Get first chunk
show_chunk(bl); // Print first chunk

if (!CORBA::is_nil(it)) { // More bindings?
while (it->next_n(CHUNK, bl)) // Get next chunk

show_chunk(bl); // Print chunk
it->destroy(); // Clean up

}
}

Note that the code is careful to calldestroy on the iterator (if one was returned). This is
necessary to avoid an object leak in the Naming Service.
19-28 Copyright 2000–2001 IONA Technologies

The Naming Service Pitfalls in the Naming Service

17
The Naming Service

Copyright 2000–2001 IONA Technologies

run.

via nil

ay,

at
his
19.17Pitfalls in the Naming Service
Sticking to a handful of rules when using the Naming Service will save you trouble in the long

Do not advertise nil references. Advertising a nil reference in the service is legal, but
achieves nothing other than running the risk that a careless client might crash when it calls
reference that it has successfully resolved.

Do not advertise transient references. Advertising transient references makes no sense
because they will become stale and raise eitherTRANSIENT or OBJECT_NOT_EXISTS if clients
use them once the corresponding object has disappeared.

Avoid using unusual characters in names. If you use meta-characters that are
non-printable or have special meaning to the shell, it becomes harder to use thensadmin utility
(see page 19-41) for maintenance.

Take care to destroy contexts correctly. Always call bothdestroy andunbind when you
want to get rid of a context. (The order in which you make the calls does not matter.) That w
you avoid dangling bindings and orphaned contexts.

Call destroy on iterators. If you do not call destroy, the Naming Service does not know th
an iterator is no longer wanted and keeps the iterator around until the service is restarted. T
wastes memory.

Make the graph a single-rooted tree. Using a single-rooted tree structure avoids problems
with ambiguous path names and make administration of the service easier.
Copyrigh
17Pitfalls in the Naming Service
Here are a handful of rules you should adhere to when using the
Naming Service:

• Do not advertise nil references.

• Do not advertise transient references.

• Stay clear of unusual characters for names, such as “.”, “/”, “*”, etc.

• Take care to destroy contexts correctly.

• Call destroy on iterators.

• Make the graph a single-rooted tree.
t 2000–2001 IONA Technologies 19-29

Stringified Name Syntax The Naming Service

18
The Naming Service

Copyright 2000–2001 IONA Technologies

h.

vantage
19.18Stringified Name Syntax
The Interoperable Naming Service defines a stringified representation for names, using “/” and
“.” as the separator characters for name components andid andkind fields, respectively. A few
special rules cover how to deal with empty name components, and how to escape these
meta-characters:

• You can embed a literal “/”, “ .”, or “\” in a name component by escaping it with a backslas
(The only legal escape sequences are therefore “\/”, “ \.”, and “\\”; a backslash that appears
preceding any other character is a syntax error.)

• If a name component has an emptykind field, the “.” separator is omitted. A name
component with a trailing unescaped “.” is illegal.

• If a name component has an emptyid field, the name component begins with a leading “.”.

• The only legal representation of a name component in which bothid andkind are empty is a
single “.”.

• A stringified name with a leading or trailing unescaped “/” is illegal.

These rules ensure that each name has exactly one legal representation as a string. The ad
of this is that you can safely compare two stringified names for equality because the string
representation of names is unambiguous.
19-30
18Stringified Name Syntax

• A stringified name uses “/” and “.” to separate name components

and id and kind fields:

a.b/c.d (id[0] = “a”, kind[0] = “b”, id[1] = “c”, kind[1] = “d”)

• A backslash (“\”) escapes the meaning of these characters:

a\.b\/c\\d.e (id = “a.b/c\d”, kind = “e”

• A name without a trailing “.” denotes an empty kind field:

hello (id = “hello”, kind = ““)

• A name with a leading “.” indicates an empty id field:

.world (id = ““, kind = “world”)

• A single “.” denotes a name with empty id and kind fields:

. (id = ““, kind = ““)
Copyright 2000–2001 IONA Technologies

The Naming Service Using Stringified Names

19
The Naming Service

Copyright 2000–2001 IONA Technologies

(like

a
 that
19.19Using Stringified Names
TheNamingContextExt interface provides helper functions that make life with names a bit
easier. (Note thatNamingContextExt is derived fromNamingContext, so old (pre-INS) clients
can continue to work with INS implementations of the service.)

StringName to_string(in Name n) raises(InvalidName)
Name to_name(in StringName sn) raises(InvalidName)

These operations convert between names and stringified names. Note that they are merely
convenience operations that do the same thing no matter on what context you invoke them
C++ static member functions).

Object resolve_str(in StringName sn)
raises(NotFound, CannotProceed, InvalidName)

This operation works exactly likeNamingContext::resolve, but accepts a stringified name
instead. Note thatNamingContextExt provides this convenience only for name resolution but
not for other operations (such asbind, rebind, and so on). The reason for this is that resolving
binding is by far the most frequently used operation; adding versions of the other operations
operate on stringified names toNamingContextExt would not have been worth the resulting
interface bloat.
Copyrigh
19Using Stringified Names

The NamingContextExt interface provides convenience operations
for using stringified names:

interface NamingContextExt : NamingContext {
typedef string StringName;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn) raises(InvalidName);

Object resolve_str(in StringName sn) raises(
NotFound, CannotProceed, InvalidName

);
// ...

};

to_string and to_name are like C++ static helper functions. They do
the same thing no matter on what context you invoke them.
t 2000–2001 IONA Technologies 19-31

URL-Style IORs The Naming Service

20
The Naming Service

Copyright 2000–2001 IONA Technologies

ually

ers,
ORs
e

19.20URL-Style IORs
The specification defines two URL-style notations for IORs, thecorbaloc format and the
corbaname format. This makes it possible to easily create an IOR for configuration and
bootstrapping purposes without a need to copy complex stringified IORs around that are us
several hundred bytes in length.

Before we explore these IORs further, we must make it clear that URL-style IORs arenot a
general-purpose replacement for normal IORs. In particular, URL-style IORs offer no way to
encode information that is usually part of ordinary IORs, such as quality-of-service paramet
transaction policies, codeset information, or security attributes. This means that URL-style I
cannot be used to invoke operations on objects that require such additional information. Us
URL-style IORs exclusively for configuration and bootstrapping!
19-32
20URL-Style IORs

The specification defines two alternative styles of object references:

• corbaloc

An IOR that denotes an object at a specific location with a specific
object key, for example:

corbaloc::bobo.acme.com/obj17359

• corbaname

An IOR that denotes a reference that is advertised in a naming
service, for example:

corbaname::bobo.acme.com/NameService#CCS/controller

URL-style IORs are useful for bootstrapping and configuration.

Do not use them as a general replacement for normal IORs!
Copyright 2000–2001 IONA Technologies

The Naming Service URL-Style IORs

21
The Naming Service

Copyright 2000–2001 IONA Technologies

er

wn
IOR.

ound

st

OR.
19.20.1corbaloc IORs
A corbaloc IOR specifies a transport end-point and an object key. A few examples ofcorbaloc
IORs are shown above. You must specify a host name and, following a “/” character, an object
key. The syntax allows you to use fully-qualified domain names, unqualified host names, or
dotted-decimal IP addresses. You can also specify a port number; if omitted, the port numb
defaults to 2809.

A more interesting feature is that acorbaloc URL can contain more than one address, as sho
in the final example above. This feature permits you to add some amount of redundancy to an
For the above example, the URL specifies that an object with key “some_object_key” can be f
onhostA at port 372, onhostB at port 2809, or onhostC at port 3728. When binding such a
URL, the ORB tries to use each address until it finds one at which the corresponding reque
succeeds; a binding failure is reported to clients only if all of the addresses in the IOR fail.

NOTE: The complete syntax forcorbaloc is extensible to protocols other than IIOP, and you
can even embed addressing information for multiple different protocols in the same I
You can consult the CORBA specification for details on these features.
Copyrigh
21URL-Style IORs (cont.)

A corbaloc IOR encodes a host, a port, and an object key:

corbaloc::myhost.myorg.com:3728/some_object_key

The port number is optional and defaults to 2809:

corbaloc::myhost.myorg.com/some_object_key

Dotted-decimal addresses are legal:

corbaloc::123.123.123.123/some_object_key

You can specify a protocol and version. (The default is iiop and 1.0):

corbaloc:iiop:1.1@myhost.myorg.com:3728/some_object_key

Multiple addresses are legal:

corbaloc::hostA:372,:hostB,:hostC:3728/some_object_key
t 2000–2001 IONA Technologies 19-33

URL-Style IORs The Naming Service

22
The Naming Service

Copyright 2000–2001 IONA Technologies

ing
e

19.20.2corbaname IORs
A corbaname IOR provides a convenient way to denote an object that is advertised in a Nam
Service. The syntax is identical to that forcorbaloc IORs, except that the stringified name to b
resolved is appended following a “#” separator.
19-34
22URL-Style IORs (cont.)

A corbaname IOR is like a corbaloc IOR with an appended
stringified name:

corbaname::myhost:5000/NameService#controller

This URL denotes a naming context on myhost at port 5000 with object
key NameService. That context, under the stringified name
controller, contains the object denoted by the URL.

Complex names are possible:

corbaname::myhost:5000/ns#Ireland.Country/Guinness.Brewery

In this example, the naming context with key ns must contain a context
named Ireland.Country containing a binding Guinness.Brewery
that denotes the target object.
Copyright 2000–2001 IONA Technologies

The Naming Service URL Escape Sequences

23
The Naming Service

Copyright 2000–2001 IONA Technologies

n a
o the

 such
scaped,
layer
19.21URL Escape Sequences
The IETF RFC 2396 specification requires certain characters to be escaped if they appear i
URL. Because the OMG is bound by this syntax specification, URL-style IORs are subject t
rules laid out in RFC 2396. Fortunately, simple alphanumeric names and names that include
hyphens or underscores need no escape sequences. (We suggest that you limit yourself to
simple names because many of the other legal characters, even though they need not be e
have special meaning to the shell and can be difficult to deal with unless you add yet another
of quoting.)
Copyrigh
23URL Escape Sequences

ASCII alphabetic and numeric characters can appear in URL-style IOR
without escaping them. The following characters can also appear
without escapes:

“;”, “/”, “:”, “?”, “@”, “&”, “=”, “+”, “$”,
“,”, “-”, “_”, “.”, “!”, “~”, “*”, “‘”, “(“, “)”

All other characters must be represented in escaped form. For example:

A % is always followed by two hex digits that encode the byte value (in
ISO Latin-1) of the corresponding character.

Stringified Name Escaped Form

<a>.b/c.d %3ca%3e.b/c.d
a.b/ c.d a.b/%20%20c.d
a%b/c%d a%25b/c%25d
a\\b/c.d a%5c%5cb/c.d
t 2000–2001 IONA Technologies 19-35

Resolving URL-Style IORs The Naming Service

24
The Naming Service

Copyright 2000–2001 IONA Technologies

 with
19.22Resolving URL-Style IORs
One useful aspect of URL-style IORs is that you can convert them back to object references
ORB::string_to_object. If you pass a corbaname URL tostring_to_object, the ORB
transparently converts it into the target object reference (which includes the invoking theresolve
operation on the appropriate naming context).
19-36
24Resolving URL-Style IORs
You can pass a URL-style IOR directly to string_to_object :

CORBA::Object obj
= orb->string_to_object("corbaname::localhost/nc#myname");

The ORB resolves the reference like any other stringified IOR, including
the required resolve invocation on the target naming context.

This is useful particularly for configuration:

./myclient -ORBInitRef \
NameService=corbaloc::localhost/NameService
Copyright 2000–2001 IONA Technologies

The Naming Service Creating URL-Style IORs

25
The Naming Service

Copyright 2000–2001 IONA Technologies

t a
19.23Creating URL-Style IORs
URL-style IORs are simple enough to write out by hand but you can also create them
programmatically.

Theto_url operation onNamingContextExt is a helper function whose behavior is
independent of the specific context you invoke it on. Theaddrkey parameter must be in valid
corbaloc syntax and indicates the host, port, and object key. For example:

CosNaming::NamingContextExt_var nc = ...;
CORBA::String_var url =

nc->to_url(":localhost:5789/abc", "CCS/controller");
cout << url << endl;

This prints

corbaname::localhost:5789/abc#CCS/controller

to_url automatically deals with escape sequences that may be required to legally represen
stringified name as part of a URL. For example:

url = nc->to_url(":bobo.ooc.com.au/nc", "a\\b%/c.d");

This results in the URL:

corbaname::bobo.ooc.com.au/nc#a%5c%5cb%25/c.d
Copyrigh
25Creating URL-Style IORs

Apart from simply writing them down, you can create a URL-style IOR
using a NamingContextExt object:

interface NamingContextExt : NamingContext {
// ...
typedef string StringName;
typedef string Address;
typedef string URLString;

exception InvalidAddress;

URLString to_url(in Address addrkey, in StringName sn)
raises(InvalidAddress, InvalidName);

};

addrkey must be an address, optional port, and object key in
corbaloc syntax.
t 2000–2001 IONA Technologies 19-37

What to Advertise The Naming Service

26
The Naming Service

Copyright 2000–2001 IONA Technologies

 the
uld
cts at
h a
e they
y

should
dings

 what
oved.
 or

 make
ually
y,
19.24What to Advertise
What objects you should advertise in the Naming Service depends on your application. For
CCS system, the controller references is clearly the key public integration point, so you sho
advertise that. Typically, you can add bindings to the Naming Service for such singleton obje
installation time. It is a good idea to provide some means to recover lost bindings, either wit
separate tool, or you can write your servers such that they re-advertise key objects every tim
start up. That way, if the Naming Service database is lost or corrupted, customers can easil
recreate the bindings required by your clients.)

If you decide to advertise other objects as well (such as thermometers and thermostats), you
tie updates to the Naming Service to the life cycle operations for those objects: add new bin
as part of the factory operation and remove bindings as part of thedestroy operation.

If you add objects to the Naming Service that support life cycle operations, you must decide
to do if the Naming Service is down or unreachable when a binding must be created or rem
You can either fail the life cycle operation (that is, deny life cycle service), or you can create
remove the object anyway and live with the resulting inconsistency. If you permit the
inconsistency to arise, you should also have a tool that can be run to restore consistency, to
sure that there are no dangling and no missing bindings for your application. However, it is us
simpler to deny service and to put the effort into ensuring that the Naming Service is health
rather than to try and create fancy recovery schemes.
19-38
26What and When to Advertise
You should advertise key objects in the Naming Service, such as the
CCS controller. (Such objects are public integration points.)

Bootstrap objects are normally added to the service at installation time.

Provide a way to recreate key bindings with a tool.

You can advertise all persistent objects you create. If you do, tie the
updates to the Naming Service to the life cycle operations for your
objects.

Decide on a strategy of what to do when the Naming Service is
unavailable (deny service or live with the inconsistency).
Copyright 2000–2001 IONA Technologies

The Naming Service Federated Naming

27
The Naming Service

Copyright 2000–2001 IONA Technologies

ext in
matter

g
use the
 for all

hem
s are

 a

&

19.25Federated Naming
Because each naming context is identified by an object reference, it is trivial to link different
Naming Services into a federation, by creating a binding in one service that points at a cont
another service. You can exploit this to create naming hierarchies that use the same name no
which initial naming context is used by clients. In the above example, we have three Namin
Services, each in a different state. By cross-connecting the services as shown, a client can
initial naming context for any one of the three servers because the pathnames are the same
objects regardless of the starting context.

Arranging Naming Services along geographic or administrative boundaries and federating t
has the added advantage that local lookups can be resolved locally, which works well if client
more likely to be interested in local objects than in remote objects.

Note that fully connected structures such as the one shown above do not scale well beyond
handful of servers because the number of links at the top level grows asO(n2). For larger numbers
of servers, you usually have to change to a hierarchical federation structure. (See Henning
Vinoski for details.)
Copyrigh
27Federated Naming
Names
for CA

Initial
Naming
Context

Initial
Naming
Context

Initial
Naming
Context

CA CO MA

Names
for CO

Names
for MA

MA CA

CO CO

MA

Massachusetts ServerColorado ServerCalifornia Server

CA
t 2000–2001 IONA Technologies 19-39

Running the Naming Service The Naming Service

28
The Naming Service

Copyright 2000–2001 IONA Technologies

se.
it shuts
ing

22).
s to
istent
19.26Running the Naming Service
The executable image for ORBacus Names is in the ORBacusbin directory, with the name
nameserv . By default, the service runs in non-persistent mode, using an in-memory databa
(Of course, this means that everything you have added to the service is forgotten as soon as
down.) If you add the-d option, you can specify the name of a database file to make the nam
graph persistent. (The first time you use a new database, you must also specify the-s option,
which initializes (or re-initializes) the database file.)

It is convenient to register the Naming Service with the IMR for automatic start-up (see Unit
That way, not only does the service start up automatically when it is needed, but it also help
ensure that consistent and correct command-line options are used. If you want to run a pers
Naming Service that does not use the IMR, you must use the-OAport option to ensure that the
Naming Service uses the same port every time it starts.
19-40
28Running the Naming Service

ORBacus Names is provided as the nameserv executable. Common
options (use nameserv -h for a list):

• -i

Print initial naming context IOR on stdout

• -d database_file

Specifies database file for the service. (Without -d , the service is
not persistent and uses an in-memory database.)

• -s

(Re)initializes the database. Must be used with -d option.

The object key of the initial naming context is NameService.
Copyright 2000–2001 IONA Technologies

The Naming Service The nsadmin Tool

29
The Naming Service

Copyright 2000–2001 IONA Technologies

 is
can
19.27The nsadmin Tool
Thensadmin tool allows you to manipulate a Naming Service from the command line. This
useful for configuration and installation, or if you need to debug an application. (Note that you
use URL-style IORs as well as normal ones when you create a binding.)

For example, you can create a context calledCCS underneath the initial naming context and
advertise a controller references (assumed to be in the filectrl.ref) as follows:

nsadmin -c CCS
nsadmin -b CCS/controller `cat ctrl.ref`

Using the command

nsadmin -r CCS/controller

prints the controller reference on standard output.
Copyrigh
29The nsadmin Tool

The nsadmin tool provides a way to manipulate the Naming Service
from the command line. Common options (use nsadmin -h for a list):

• -b name IOR

Bind IOR under the name name.

• -c name

Create and bind a new context under the name name.

• -l [name]

List the contents of the context name. (Initial context, by default.)

• -r name

Print the IOR for the binding identified by name.

IORs can be in normal or URL-style syntax.
t 2000–2001 IONA Technologies 19-41

Compiling and Linking The Naming Service

30
The Naming Service

Copyright 2000–2001 IONA Technologies

me

d

19.28Compiling and Linking
The IDL files for the Naming Service are installed inidl/OB/CosNaming.idl . You will need
the IDL file if you want to compile stubs or skeletons for the service, or if you want to reuse so
of the Naming Service IDL definitions for your own IDL (in which case you must#include the
file).

The header files for the service are installed ininclude/OB/CosNaming.h and
include/OB/CosNaming_skel.h, and a library containing the stubs and skeletons is
provided inlib/libCosNaming.sl , so you do not have to compile the IDL or the stubs an
skeletons in order to use the service.
19-42
30Compiling and Linking

The IDL for ORBacus Names is installed in the ORBacus directory as
idl/OB/CosNaming.idl .

The header files for the service are in include/OB/CosNaming.h
and include/OB/CosNaming_skel.h .

The stubs and skeletons for ORBacus Names are pre-compiled and
installed in lib/libCosNaming.sl .

To compile a client or server that uses ORBacus Names, compile with
-I /opt/OB4/include and link with
-L /opt/OB4/lib -lCosNaming .
Copyright 2000–2001 IONA Technologies

20.Exercise: Using the Naming Service
ing

ow
he
Summary

In this unit, you will modify a server and client to rendezvous with each other using the Nam
Service instead of using a stringified IOR.

Objectives

By the completion of this unit, you will know how to configure and start the Naming Service, h
to use the administration tool for the service, and how to write clients and servers that use t
Naming Service to exchange IORs.

Source Files and Build Environment Exercise: Using the Naming Service

r

 in
vice.

d of
the

 the
ame
20.1 Source Files and Build Environment
You will find this exercise in yournaming directory. The files in this directory are the same as fo
Unit 16.

20.2 Server Operation
The server source code provided to you for this exercise implements the solution presented
Unit 17. The purpose of this exercise is to modify a client and server to use the Naming Ser

On start-up, the server advertises a reference to the controller in the Naming Service instea
writing it to a file. The client retrieves the reference from the Naming Service in order to locate
controller.

20.3 What You Need to Do

Step 1

Create a configuration file that sets a property to contain the reference returned by
resolve_initial_references("NameService"). Set an environment variable or registry
key to point at this configuration file.

Step 2

Start the Naming Service such that it runs at the host and port established in step 1.

Step 3

Use thensadmin command to create a context under the initial naming context. Name the
context using your login ID, such asstudent_1. Verify with nsadmin that the context was
created correctly.

Step 4

Therun function no longer writes a stringified reference to a file. Instead, it should advertise
controller reference in the Naming Service, in the context you created in step 3, under the n
controller. Add code torun to do this.

Step 5

Themain program in the client lacks the code to retrieve the controller reference from the
Naming Service. Add code tomain to do this.
20-2 Copyright 2000–2001 IONA Technologies

21.Solution: Using the Naming Service

Solution Solution: Using the Naming Service
21.1 Solution

Step 1

$ cat ob.config
ooc.orb.service.NameService=corbaloc::janus.ooc.com.au:5000/NameS
ervice
$ ORBACUS_CONFIG=`pwd`/ob.config; export ORBACUS_CONFIG

Step 2

$ /opt/OB4/bin/nameserv -OAport 5000

Step 3

$ nsadmin -c student_1
$ nsadmin -l
Found 1 binding:
student_1 [context]

Step 4

// Get Naming Service reference
obj = orb->resolve_initial_references("NameService");
CosNaming::NamingContext_var inc

= CosNaming::NamingContext::_narrow(obj);
if (CORBA::is_nil(inc))

throw "Cannot find initial naming context!";

// Advertise the controller reference in the naming service.
CosNaming::Name name;
name.length(2);
name[0].id = CORBA::string_dup("student_1");
name[1].id = CORBA::string_dup("controller");
obj = ctrl_servant->_this();
inc->rebind(name, obj);

Step 5

// Get controller reference from Naming Service
CORBA::Object_var obj

= orb->resolve_initial_references("NameService");
CosNaming::NamingContext_var inc

= CosNaming::NamingContext::_narrow(obj);
CosNaming::Name name;
name.length(2);
name[0].id = CORBA::string_dup("student_1");
name[1].id = CORBA::string_dup("controller");
obj = inc->resolve(name);

// Try to narrow to CCS::Controller.
21-2 Copyright 2000–2001 IONA Technologies

Solution: Using the Naming Service Solution
CCS::Controller_var ctrl;
try {

ctrl = CCS::Controller::_narrow(obj);
} catch (const CORBA::SystemException &se) {

cerr << "Cannot narrow controller reference: " << se << endl;
throw 0;

}
if (CORBA::is_nil(ctrl)) {

cerr << "Wrong type for controller ref." << endl;
throw 0;

}

Copyright 2000–2001 IONA Technologies 21-3

22.The Implementation Repository (IMR)
matic

u
 write
Summary

This unit explains the difference between direct and indirect binding and shows how an
implementation repository may be used to both enable server migration and to achieve auto
server activation on demand. The unit also covers performance and reliability trade-offs for
implementation repositories and shows how to configure the IMR for various deployment
scenarios.

Objectives

By the completion of this unit, you will know how to configure and use an IMR effectively. Yo
will also understand the environment in which processes are started by the IMR and how to
your server to work within this environment.

Purpose of an Implementation Repository The Implementation Repository (IMR)

1
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

ntally,

s is

ort

nts

ests
ith

e
ry if a
22.1 Purpose of an Implementation Repository
The main motivation for providing an IMR is to permit servers to move from port to port or
machine to machine without breaking existing references that are held by clients. Fundame
an IMR has three functions:

• The IMR maintains a registry of known servers.

A server that wants to take advantage of IMR functionality must be known to the IMR. Thi
achieved by explicitly registering the server with the IMR when the server is deployed.

• The IMR records which server is currently running on what machine, together with the p
numbers it uses for each POA.

This function of the IMR allows servers to change location (machine or port) without clie
being aware of this happening.

• The IMR starts servers on demand if they are registered for automatic activation.

This function of the IMR permits you to have servers that correctly respond to client requ
without the need to run them permanently. This is useful particularly for large systems w
many servers, some of which may not be needed all the time. (Idle servers still consum
system resources and so incur a cost. In addition, the feature permits automatic recove
server crashes because the IMR will transparently restart it.)
22-2
1Purpose of an Implementation Repository

An implementation repository (IMR) has three functions:

• It maintains a registry of known servers.

• It records which server is currently running on what machine,
together with the port numbers it uses for each POA.

• It starts servers on demand if they are registered for automatic
activation.

The main advantage of an IMR is that servers that create persistent
references

• need not run on a fixed machine and a fixed port number

• need not be running permanently
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) Purpose of an Implementation Repository
Copyright 2000–2001 IONA Technologies 22-3

Binding The Implementation Repository (IMR)

2
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

ablish
g an
 or

 into
s is

longer
oid
ences

MR)

nce,
ct to
22.2 Binding
When a client receives an object reference from somewhere, the client-side run time must est
a connection to the server that hosts the target object eventually. The process of associatin
object reference with a transport end point is known as binding. Binding can either be direct
indirect:

• For direct binding, a server embeds its own host name (or IP address) and port number
each reference. When clients connect, they therefore connect directly to the server. Thi
simple and efficient, but has drawbacks:

• You must assign a distinct port number to each server and set that port number
consistently on every execution of the server, using the-OAport option (or using a
server property—see Unit 18). For installations with a large number of servers, the
administration of port numbers can get cumbersome.

• Once a server has handed out persistent object references to its clients, you can no
move the server to a different port or different machine, at least not if you want to av
breaking the references that are held by clients. Because clients may store their refer
in files or a service such as the Naming Service (see Unit 19), you have no way of
knowing whether it is safe to move a server.

These problems can be avoided by indirect binding.

• Indirect binding requires a daemon process known as the Implementation Repository (I
to permanently run at a fixed location (host and port number). When a server creates a
persistent reference, it embeds the host name and port number of the IMR in the refere
instead of its own addressing information. When clients bind a reference, they first conne
22-4
2Binding

There are two methods of binding object references:

• Direct Binding (for persistent and transient references)

References carry the host name and port number of the server. This
works, but you cannot move the server around without breaking
existing references.

• Indirect Binding (for persistent references)

References carry the host name and port number of an
Implementation Repository (IMR). Clients connect to the IMR first
and then get a reference to the actual object in the server. This
allows servers to move around without breaking existing references.

IMRs are proprietary for servers (but interoperate with all clients).
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) Binding

is

me
they
the

 the
work

ly on
IMR.
the IMR and send their first request. On receipt of the request, the IMR works out where
server is currently running and returns a new reference to the client-side run time in a s
location-forward reply. The client ORB then opens another connection using the new
reference returned by the IMR, which contains the actual address details of the server.
Provided the server is actually running at the location that was forwarded by the IMR, th
second attempt succeeds and the client request ends up at the correct destination.

The extra level of indirection provided by the IMR allows you to move servers around over ti
without breaking existing references. Servers, when they start up, inform the IMR of where
currently are, so the IMR always knows about the current location of each server. In effect,
IMR provides a fixed point for object addressing in order to permit servers to change their
addresses.

Implementation repositories are not standardized by the OMG, so their implementation is
completely proprietary. In particular, servers can only use an implementation repository from
same ORB vendor. For example, an ORBacus server requires an ORBacus IMR and will not
with any other vendor’s IMR; similarly, no other vendor’s server can use an ORBacus IMR.

However, the interactions between clients and IMRs are completely standardized and only re
IIOP. This means that a client using any vendor’s ORB can interact with any other vendor’s
Copyright 2000–2001 IONA Technologies 22-5
 the
pecial

Indirect Binding The Implementation Repository (IMR)

3
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

to the

e

e
f the
me

cutes

r
o

22.3 Indirect Binding
The above diagram illustrates the sequence of interactions for indirect binding of a reference
controller object. The diagram assumes that the implementation repository runs on machinecoco
at port 2133 and that the CCS server is not running when the client invokes the request. Th
sequence of steps during binding is as follows.

1. The client invokes thefind operation on the controller. This results in the client-side run tim
opening a connection to the address found in the controller IOR, which is the address o
repository. With the request, the client sends the object key (which contains the POA na
and the object ID—controller andC1 in this example).

2. The IMR uses the POA name (Controller) to index into its server table and finds that the
server is not running. Because the server is registered for automatic start-up, the IMR exe
the command to start the server.

3. The server sends messages that inform the repository of its machine name (bobo), the names
of the POAs it has created and their port numbers (Controller at 1799), and the fact that it
is ready to accept requests.

4. The implementation repository constructs a new object reference that contains hostbobo ,
port number 1799, and the original object key and returns it in aLOCATION_FORWARD reply
to the client.

5. The client opens a connection tobobo at port 1799 and sends the request a second time.

6. The server uses the POA name (Controller) to locate the POA that contains the servant fo
the request, and uses the object ID (C1) to identify the target servant. The request is given t
the servant for processing.
22-6
3Indirect Binding
IDL:CCS/Controller:1.0 coco:2133 controller:C1

Object Reference

Client

CCS controller bobo:/opt/CCS/CCS_svr bobo.acme.com:1799
Payrol PR_V1 fifi.acme.com:1253

… … … …

Server Table

Implementation Repository at coco:2133

C1
C2
C3

controller

Server at bobo:1799

➀

➁

➂➃

➄ ➅

➆

find()[controller:C1]

fork/exec(bobo:/opt/CCS/CCS_sv

ready[controller, bobo:1799]

find()[controller:C1]

LOCATION_FORWARD[bobo:1799]

Reply for find()
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) Indirect Binding

t
ation
7. The servant completes thefind operation and returns its results, which are marshaled back
the client in aReply message.

As you can see, indirect binding uses the implementation repository as a location broker tha
returns a new IOR to the client that points at the current server location. The CORBA specific
does not limit indirection to a single level. Instead, it requires a client to always respond to a
LOCATION_FORWARD reply by attempting to send another request.
Copyright 2000–2001 IONA Technologies 22-7
to

Automatic Server Start-Up The Implementation Repository (IMR)

1
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

 to
the

s on

ver

self is
n. All
22.4 Automatic Server Start-Up
The IMR maintains knowledge of where each server is currently running in order to be able
forward that information to clients during indirect binding. This means that it is easy to extend
IMR to not only forward the location of a running server to clients, but to also start up server
demand when a client request arrives for a server that is not currently running.

The ORBacus IMR offers two modes of automatic server activation:

• In shared mode, a single copy of the server is started when the first request for that ser
arrives. Thereafter, all requests from all clients are directed to that server instance.

• In persistent mode, a single server instance is started by the IMR as soon as the IMR it
started. Thereafter, the IMR monitors the server process and restarts it when it goes dow
requests from all clients are sent to that same server instance.
22-8
1Automatic Server Start-Up

The IMR can optionally start server processes.

Two modes of operation are supported by the IMR:

• shared

All requests from all clients are directed to the same server. The
server is started on demand.

• persistent

Same as the shared mode, but the server is started whenever the
IMR starts and kept running permanently.

Servers are started by an Object Activation Daemon (OAD).

A single repository can have multiple OADs. An OAD must be running
on each machine on which you want to start servers.
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) IMR Process Structure

2
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

s the
ion and

s; in

mber
ive via
ts

d out
port on

 can
can
ers

w

inly
22.5 IMR Process Structure
Each server that uses indirect binding is configured to use a specific OAD. The OAD monitor
state of the server process and is informed by the server of state changes, such as POA creat
destruction. A server cannot use more than one OAD.

Each OAD, in turn, is configured to use a specific IMR. The IMR monitors the state its OAD
turn, each OAD passes state changes to its IMR, such as start-up of a new server process.

The IMR uses the information it receives from its OADs (such as the host name and port nu
for each of the server’s POAs) to resolve requests that arrive from clients. These requests arr
the binding port of the IMR; the IMR replies with location forward replies which direct the clien
to the correct server end point. The communication between the IMR and the OADs is carrie
on a separate port, so administrative access to the IMR can be secured separately from the
which clients bind requests.

Usually, the IMR on a host will also activate servers on that same host. In this case, the IMR
run in dual mode, in which a single process combines the functions of the IMR and OAD. You
also run the IMR in master mode (without the OAD functionality) if you want to activate serv
only on remote hosts. If you run the IMR in slave mode, it acts as an OAD only.

Server activation on each host is carried out by the OAD on that host: the OAD creates a ne
server process when instructed by the IMR.

IMRs and OADs maintain state information in a small database. This information is used ma
for error recovery. For example, if the IMR machine goes down, the IMR uses the state in its
database to update its knowledge of which servers are running where.
Copyrigh
2IMR Process Structure
OAD
Server

Server
Server

IMR/
OAD

OAD

Server

Server

Server

Server
Server

Host A

Host B Host C

Binding Port
Admin Port
t 2000–2001 IONA Technologies 22-9

Location Domains The Implementation Repository (IMR)

3
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

R are
the

own

, and
ility
ll be

ithout

in the

s is
n the
f the
22.6 Location Domains
Each IMR defines a location domain. All the servers that are configured to use the same IM
part of the IMR’s location domain. How you choose your location domains has influence on
reliability and performance of a system, as well as on server migration:

• You can choose to run one IMR and OAD on each machine so each machine forms its
location domain.

The advantage of this approach is that the communication among the servers, the OAD
the IMR is very fast because it happens via the back plane. In addition, you get high reliab
with such a configuration because if one machine dies, only servers on that machine wi
affected. All other servers continue to work normally.

The down side of this approach is that you cannot move a server to another machine w
breaking existing references that are held by clients.

• You can place several machines into a location domain.

The advantage of this approach is that you can freely move servers among the machines
location domain without invalidating references held by clients (because the IMR for the
server remains the same when the server is moved).

The down side of this approach is that the communication overhead is a little larger. Thi
rarely a concern because binding of a new reference via the IMR happens only once, whe
reference is first used by a client. However, if the machine running the IMR dies, none o
servers in the location domain are reachable by newly connecting clients until the IMR
machine is available again.
22-10
3Location Domains
IMR/
OAD Svr

Svr

Host D

Binding

Admin

OAD
Svr

Svr
Svr

IMR/
OAD

OAD

Svr

Svr

Svr

Svr
Svr

Host A

Host B Host C

Binding

OAD
Svr

Svr
Svr

OAD
Svr

Svr
Svr

Host E Host F

Domain 1

Domain 2
Admin
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) The imradmin Tool

4
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

d
d

to be

vior

 OAD
22.7 The imradmin Tool
You must register a server with the IMR under a unique name with
imradmin --add-server . This creates an entry in the IMR’s server table with the supplie
command line. The IMR instructs the appropriate OAD to start the server using the registere
command line when client requests arrive at the IMR’s binding port. You can register a server
started on a host other than the host on which the IMR runs by supplying a host name:

imradmin --add-server CCS_server /bin/CCSserver HostB

Servers automatically register their persistent POAs with the IMR. You can disable this beha
by setting theactivate-poas attribute to false (see page 22-15).

Once a server is registered, the first request from a client activates the server. Note that the
passes the-ORBserver_name option to the server. That option is processed byORB_init and
establishes communication between the server and its OAD.
Copyrigh
4The imradmin Tool

imradmin allows you to register servers with the IMR. General syntax:

imradmin <command> [<arg>...]

You must register each server under a server name with the IMR. The
server name must be unique for that IMR:

imradmin --add-server CCS_server /bin/CCSserver

When the IMR starts the server, it automatically passes the server
name in the -ORBserver_name option. (So the server knows that it
should contact the IMR.)

If you want to manually start a server that is registered with the IMR,
you must add the -ORBserver_name option when you start the server:

/bin/CCSserver -ORBserver_name CCS_server

Servers automatically register their persistent POAs with the IMR.
t 2000–2001 IONA Technologies 22-11

Server Execution Environment The Implementation Repository (IMR)

5
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

D

at the

table
urity
22.8 Server Execution Environment
Under NT, the server is created as a detached server. (The standard file descriptors are
disconnected.)

Under UNIX, the server is turned into a proper daemon process. This mainly means that the
working directory is the root directory and that the standard file descriptors are connected to
/dev/null .

22.8.1 Security Issues
There are a few consequences of this environment that you need to keep in mind:

• Never run the OAD from theroot user. Doing so means that all servers started by the OA
are run asroot ! The safest approach is to either run the OAD as the usernobody or to
create a separate user for the OAD and use that user ID exclusively. You can ensure th
OAD starts with the correct privileges by making it set-uid and set-gid to that user.

• If you have followed the previous advice, you may find that your server has insufficient
privileges to do its work. If so, the easy and reliable solution is to make the server execu
set-uid and set-gid to a user and group ID with appropriate privileges. (There are no sec
issues with artificially raising the privilege of a process by setting s-bits —all the security
holes stem from binaries that are set-uid toroot and then do not correctly lower their
privilege level when they should.)
22-12
5Server Execution Environment

An NT server started by the IMR becomes a detached process.

A UNIX server started by the IMR has the execution environment of a
daemon:

• File descriptors 0, 1, and 2 are connected to /dev/null

• One additional file descriptor is open to the OAD.

• The umask is set to 027 .

• The working directory is / .

• The server has no control terminal.

• The server is a session and group leader.

• The user and group ID are those of the OAD.

• Signals have the default behavior.
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) Server Execution Environment

s.

ly

 you

the

 to

easily

ou do
22.8.2 Setting the Server Environment
The environment in which a server is started by the OAD means that some things are inconve
For example, because the working directory is set to/ ,1 you must use absolute pathnames for file
Similarly, you cannot simply write to the standard output for tracing because the server’s file
descriptors are connected to the null device.

You should consider the following points when you decide to run a server with automatic
activation:

• CatchSIGTERM, SIGHUP, andSIGINT and ensure that you shut down cleanly and quick
on receipt of those signals.

• If your server creates child processes, pass received signals to the children; otherwise,
will leave the children abandoned. You can easily do this by using akill system call with a
process ID of 0 to send the signal to all processes in your process group.

• You must log tosyslog or redirect your standard file descriptors to a terminal or file for
tracing and debugging.

• You cannot rely on environment variables to be set up to anything meaningful because
environment is that of the OAD.

• Set yourumask to something meaningful for your server. The default of027 may not be
correct for your needs.

You can do all of these things directly in your server executable. However, doing so is
inconvenient and may require quite a complex configuration mechanism. A much better way
start your server with the correct file descriptors, environment variables, umask, or working
directory is to not register the server with the IMR, but to register a shell script instead. The
minimum skeleton for such a script is:

#!/bin/sh
exec "$@"

For example, if your script is called/usr/local/bin/launch , you can register the CCS
server command as

/usr/local/bin/launch /bin/CCSserver

As shown, the script does nothing and effectively becomes a no-op. However, you can add
whatever setup you require before the script execs the actual server. For example, you can
change theumask, redirect file descriptors, or set environment variables this way:

#!/bin/sh
umask 077
PATH=/bin:/usr/bin:/usr/local/bin; export PATH
HOME=/tmp; export HOME
cd $HOME
exec 1>>/$HOME/CCSserver.stdout
exec 2>>/$HOME/CCSserver.stderr
exec "$@"

1. If you change the working directory of your server, you should change to somewhere in the root file system. If y
not, a system administrator cannot unmount the file system without killing your server.
Copyright 2000–2001 IONA Technologies 22-13
nient.

Server Attributes The Implementation Repository (IMR)

6
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

ample:

s

22.9 Server Attributes
The--set-server command allows you to change the registration details of a server.

• Theexec attribute stores the pathname to the server executable, for example:

imradmin --set-server CCS_server exec /usr/local/bin/CCSserver

• Theargs attribute changes the additional arguments that are passed to a server, for ex

imradmin --set-server CCS_server args -dbfile /tmp/CCS_DB

The server will now be invoked as:

/usr/local/bin/CCSserver -dbfile /tmp/CCS_DB

Note that there are additional options beginning with-ORB that are used by the OAD to pas
additional information to the server.

• Themode attribute is either persistent or shared and changes the activation mode of the
server, for example:

imradmin --set-server CCS_server mode persistent

This changes the server’s mode to persistent activation.
22-14
6Server Attributes

imradmin permits you to set attributes for a registered server with the
--set-server command:

imradmin --set-server <server-name> <mode>

Valid modes are:

• exec

Changes the executable path for the server.

• args

Changes the arguments passed to the server.

• mode

Changes the mode. The mode must be shared or persistent .
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) Server Attributes

7
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

he
:

r

ct

a

you
• Theactivate_poas attribute controls whether POAs are registered automatically with t
IMR as they are created or must each be explicitly registered with the IMR. For example

imradmin --set-server CCS_server activate_poas false
imradmin --add-poa CCS_server Controller
imradmin --add-poa CCS_server Controller/Thermometers

With this registration, only requests for the controller and for thermometers cause serve
activation, but requests for thermostats do not.

• Theupdate_timeout attribute controls how long the IMR waits for status changes to
propagate to all the OADs. You should not have to change this value.

Note that there are additional options beginning with -ORB that are used

• Thefailure_timeout controls the amount of time the OAD waits for a server to conta
it and report as ready before the OAD concludes that the server is hanging or otherwise
broken.

• Themax_spawns attribute controls the number of times the OAD will attempt to restart
server that does not respond withinfailure_time before concluding that the server is
permanently broken. Once in that state, the OAD will no longer activate the server until
explicitly reset the server state with the--reset-server command:

imradmin --reset-server CCS_server
Copyrigh
7Server Attributes (cont.)

• activate_poas

If true , persistent POAs are registered automatically. If false ,
each persistent POA must be registered explicitly.

• update_timeout (msec)

The amount of time the IMR waits for updates to propagate.

• failure_timeout (sec)

How long to wait for the server to start up and report as ready.

• max_spawns

The number of times to try and restart the server before giving up.
imradmin --reset-server <server-name>
resets the failure count.
t 2000–2001 IONA Technologies 22-15

Getting IMR Status The Implementation Repository (IMR)

8
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

ands

tion
e

 yet.

 the
22.10Getting IMR Status
The IMR closely keeps track of the status of its OADs and servers. You can use various comm
to check on the current status and the configuration of the system.

• imradmin --get-server-info <server-name>

This command displays the status of the specified server. You can see all the configura
attributes of the server, as well as its current status. The status of a server has one of th
following values:

• forked

The OAD has created the server process, but the server has not contacted the OAD

• starting

The server has initiated contact with the OAD.

• running

The server is running and ready to accept requests (that is, the server has activated
POA manager for the Root POA).

• stopping

The server has calledORB::shutdown but has not exited yet.

• stopped

The server is not running.
22-16
8Getting IMR Status

A number of imradmin commands show you the status of the IMR and
its OADs:

• imradmin --get-server-info <server-name>

• imradmin --get-oad-status [<host>]

• imradmin --get-poa-status <server-name> <poa-name>

• imradmin --list-oads

• imradmin --list-servers

• imradmin --list-poas <server-name>

• imradmin --tree

• imradmin --tree-oad [<host>]

• imradmin --tree-server <server-name>
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) Getting IMR Status

OA

er.
• imradmin --get-oad-status [<host>]

This command shows the status (up or down) of all OADs or the status for the OAD on the
specified host.

• imradmin --get-poa-status <server-name> <poa-name>

This command shows the status of the specified POA. The status is that of the POA’s P
manager, that isactive , inactive , holding , ordiscarding . In addition, the
nonexistent state indicates that the POA is not currently instantiated.

• imradmin --list-oads

This command shows all OADs that are registered with the IMR.

• imradmin --list-servers

This command lists all servers that are registered with the IMR.

• imradmin --list-poas <server-name>

This command lists all the POA names that are known to the IMR for the specified serv

• imradmin --tree

This command lists the complete status of the IMR as a tree structure.

• imradmin --tree-oad [<host>]

This command limits the OAD status display to the specified host.

• imradmin --tree-server <server-name>

This command limits the server status display to the specified server.
Copyright 2000–2001 IONA Technologies 22-17

IMR Configuration The Implementation Repository (IMR)

9
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

hines.
22.11IMR Configuration
Configuration of the IMR is quite easy:

1. Create a configuration file for each machine on which you want to run an IMR or OAD.

2. Run an IMR in master mode or dual mode on exactly one of those machines.

3. Run an OAD on each of the other hosts by running the IMR in slave mode on those mac

This completes the configuration. You can now register servers withimradmin as discussed in
the previous sections.

imradmin also offers commands to remove items from the configuration:

• imradmin --remove-oad [<host>]

• imradmin --remove-server <server-name>

• imradmin --remove-poa <server-name> <poa-name>
22-18
9IMR Configuration

1. Set up a configuration file for each host in the location domain.

2. Run an IMR in master or dual mode on exactly one machine in your
location domain.

3. Run an OAD on each of the other hosts in the location domain by
running the IMR in slave mode.

Once you have configured the IMR, run the imr commands from a
start-up script in /etc/rc .

You can explicitly add an OAD (instead of having OADs add themselves
implicitly) with:

imradmin --add-oad [<host>]

To remove an OAD from the configuration:

imradmin --remove-oad [<host>]
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) IMR Configuration
Copyright 2000–2001 IONA Technologies 22-19

IMR Properties The Implementation Repository (IMR)

10
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

rious
l these

ne
nt
s.

 the

er

s

tive
bled,
22.12IMR Properties
The IMR reads configuration properties on start-up. These properties determine how the va
processes connect to each other and where they store their persistent state. You can contro
properties by setting theORBACUS_CONFIG environment variable to the pathname of a
configuration file, or you can point a server at a configuration file with the
-ORBconfig <pathname> option. By controlling these properties, you can run more than o
IMR and OAD on a single host and therefore have servers on the same machine use differe
location domains. This is particularly useful during development and for debugging purpose

• ooc.imr.dbdir= <dir>

This property controls where the IMR stores its persistent state. The current directory is
default.

• ooc.imr.forward_port= <port>

This property determines the port number that is written into each persistent IOR. In oth
words, this is the port number on which client requests are forwarded. The default port
is 9998.

• ooc.imr.admin_port= <port>

This property determines the port number on which the IMR communicates with its OAD
when it is in dual or master mode. The default port is 9999.

• ooc.imr.administrative= < true |false >

This property controls whether the IMR runs in administrative mode. When in administra
mode, the IMR accepts modifications to its registration database. When this mode is disa
22-20
10IMR Properties

The IMR and OAD use configuration properties:

• ooc.imr.dbdir= <dir >

• ooc.imr.forward_port= <port >

• ooc.imr.admin_port= <port >

• ooc.imr.administrative= <true | false >

• ooc.imr.slave_port= <port >

• ooc.imr.mode= <dual | master | slave >

• ooc.orb.service.IMR= <corbaloc URL>

• ooc.imr.trace.peer_status= <level >

• ooc.imr.trace.process_control= <level >

• ooc.imr.trace.server_status= <level >
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) IMR Properties

.
MR

MR
it

OAD

R’s

 will

to its

wn).

nd 2.
the registration database cannot be modified, that is, it is impossible to change registrat
OADs, servers, server attributes, and POAs. If you run an IMR in administrative mode, m
sure that the administrative port is not accessible through your firewall!

• ooc.imr.slave_port= <port>

This property determines the port number on which the OAD communicates with its IMR
You must set this property on all hosts on which the IMR or an OAD runs, otherwise the I
cannot find its OADs. (All OADs must use the same port.) The default port is 9997.

• ooc.imr.mode= <dual |master |slave >

This property controls the mode in which the IMR runs. In dual mode, it acts as both the I
and as an OAD for the local host. In master mode, the IMR acts as a pure IMR (that is,
cannot activate server processes on the local host). In slave mode, the IMR acts as a pure
(that is, expects an IMR to be running elsewhere).

• ooc.orb.service.IMR= <corbaloc URL>

This property contains the IOR to the implementation repository. The IOR denotes the IM
admin port (ooc.imr.admin_port) and is required by tools such asimradmin . You can
use acorbaloc IOR (see Section 19.20) with an object key ofIMR to set this property:

ooc.orb.service.IMR=corbaloc::janus.ooc.com.au:9999/IMR

Note that the port number in the IOR must match the setting ofooc.imr.admin_port .
You must set this property also on each machine that runs an OAD; otherwise, the OAD
not know where to find its IMR.

Setting this property controls the reference that is returned by a call to
resolve_initial_references with a token ofIMR.

• ooc.imr.trace.peer_status= <level>

This property controls the tracing output for process control messages sent by the IMR
OADs. Valid levels are 0, 1, and 2. The default level is 0, which produces no output.

• ooc.imr.trace.process_control= <level>

This property controls the tracing output for server process (server start-up and shut-do
Valid levels are 0, 1, and 2. The default level is 0, which produces no output.

• ooc.imr.trace.server_status= <level>

This property controls the tracing output for diagnostic messages. Valid levels are 0, 1, a
The default level is 0, which produces no output.
Copyright 2000–2001 IONA Technologies 22-21
ion of
ake

The Boot Manager The Implementation Repository (IMR)

11
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

o use
r the

tstrap

me

nt as

or the
 any
aving
22.13The Boot Manager
The IMR also serves as service for bootstrapping. This allows you to easily configure clients t
a defined initial reference environment. All you need to configure are the initial references fo
IMR; thereafter, acorbaloc reference of the formcorbaloc::<IMR-host>/<token> refers
to the corresponding initial reference configured for the IMR.

By default, the bootstrap service runs at port 2809 (which is also the default port forcorbaloc
references that do not contain an explicit port number). You can change the port for the boo
service by setting theooc.imr.locator_endpoint property (or by passing the
--locator-endpoint option to the IMR on start-up).

Once the initial reference environment for the IMR is configured, other processes get the sa
initial reference environment by setting theooc.orb.default_init_ref property (or by
passing-ORBDefaultInitRef option on the command line).

For example, the following command provides the same initial reference environment to clie
the initial reference environment that is configured for the IMR:

./client -ORBDefaultInitRef corbaloc::janus.iona.com

The advantage of this approach is that you can configure all the initial references (such as f
Naming Service, the Trading Service, etc.) only once for the IMR, and then easily configure
number of clients and servers to use the same set of initial references as the IMR (instead of h
to configure the references for all clients and servers separately).
22-22
11The Boot Manager

The IMR can act as a boot manager for corbaloc references.

A URL of the form

corbaloc::<IMR-host>/<token>

returns the object reference for the service identified by <token> as
configured for the IMR.

For example:

corbaloc::janus.iona.com/NameService

denotes the naming service as returned by
resolve_initial_references when called by the IMR.

-ORBDefaultInitRef corbaloc::janus.iona.com

configures the initial reference environment of a client as for the IMR.
Copyright 2000–2001 IONA Technologies

The Implementation Repository (IMR) The mkref Tool

12
The Implementation Repository (IMR)

Copyright 2000–2001 IONA Technologies

o

.d
22.14The mkref Tool
Especially during installation of your application, it is useful to be able to create references t
bootstrapping objects without having to run the actual server that hosts the object. Themkref
command allows you to do this. Note that, as for any URL-style IOR, you should not use
references created withmkref as a general IOR replacement. They are purely a convenience
Copyrigh
12The mkref Tool

You can create an object reference on the command line:

mkref <server-name> <object-ID> <poa-name>

For example:

mkref CCS_server the_controller Controller

This writes a corbaloc reference to standard output that you can use
to configure clients:

corbaloc::janus.ooc.com.au:9998/%AB%AC%AB0_RootPOA%00forward%00
%00%AB%AC%AB0CCS_server%00Controller%00%00the_controller

mkref is useful during installation, for example, if you want to produce
an IOR for bootstrapping.
t 2000–2001 IONA Technologies 22-23

23.Exercise: Using the Implementation
Repository
ur
Summary

In this unit, you will register your server for automatic start-up with the IMR and use themkref
utility to create a reference from the command line.

Objectives

By the completion of this unit, you will know how to use the Implementation Repository with yo
applications.

Source Files and Build Environment Exercise: Using the Implementation Repository

irects

 in
sitory.

1).

f

ify

he

nd
23.1 Source Files and Build Environment
You will find this exercise in yourimr directory. The files in this directory are the same as for
Unit 20, with one addition:

• launch

This is a simple shell script that launches the server with the passed arguments and red
standard output and standard error into the file/tmp/trace .

23.2 Server Operation
The server source code provided to you for this exercise implements the solution presented
Unit 21. The purpose of this exercise is to register a server to use the Implementation Repo

23.3 What You Need to Do

Step 1

Create a configuration file that sets the initial reference for the Naming Service. (See Unit 2
Add to this file all the properties that are required by the IMR.

Step 2

Start the Naming Service and the IMR. Verify that the IMR works by using theimradmin
command.

Step 3

Instead of launching the server directly from the IMR, we will use thelaunch script as an
intermediate step. This allows you to follow any error messages by looking at the contents o
/tmp/trace .

Register thelaunch script with the IMR as a server. Use your login ID as the server name. Ver
that the server was registered correctly withimradmin . Set the command-line arguments for
launch to the absolute path of the server and verify that the registration looks correct.

Step 4

Create an object reference withmkref that denotes the controller. Advertise that reference in t
Naming Service under the name<login ID>/controller.

Step 5

Edit theclient.cpp andserver.cpp source files to reflect the correct path in the Naming
Service and recompile. Test that the IMR starts your server correctly by running the client a
verifying that the server is started on demand.
23-2 Copyright 2000–2001 IONA Technologies

24.Solution: Using the Implementation
Repository

Solution Solution: Using the Implementation Repository
24.1 Solution

Step 1

$ cat ob.config
ooc.orb.service.NameService=corbaloc::janus.ooc.com.au:5000/NameS
ervice
ooc.orb.service.IMR=corbaloc::janus.ooc.com.au:9999/IMR
ooc.imr.mode=dual
ooc.imr.administrative=true
ooc.imr.dbdir=/home/michi/imr
ooc.imr.admin_port=9999
ooc.imr.forward_port=9998
ooc.imr.slave_port=9997
ooc.imr.trace.peer_status=2
ooc.imr.trace.process_control=2
ooc.imr.trace.server_status=2
$ ORBACUS_CONFIG=`pwd`/ob.config
$ export ORBACUS_CONFIG

Step 2

$ /opt/OB4/bin/nameserv -OAport 5000 &
[1] 7292
$ imr &
[2] 7295
[IMR: register_oad: janus]
[IMR: OAD for janus processes: EMPTY]
[OAD: ready for janus]
$ imradmin --tree
domain
`-- janus (up)

Step 3

$ imradmin --add-server CCS_server `pwd`/launch
$ imradmin --tree
domain
`-- janus (up)

`-- CCS_server (stopped)
$ imradmin --set-server CCS_server args `pwd`/server
$ imradmin --get-server-info CCS_server
Server CCS_server:

ID: 1
Status: stopped
Name: CCS_server
Host: janus
Path: /home/michi/labs/imr/launch
RunDir:
Arguments: /home/michi/labs/imr/server
24-2 Copyright 2000–2001 IONA Technologies

Solution: Using the Implementation Repository Solution
Activation Mode: shared
POA Activation: true
Update timeout (ms): 20000
Failure timeout (secs): 60
Maximum spawn count: 2
Started manually: no
Number of times spawned: 0

Step 4

$ mkref CCS_server the_controller Controller >ctrl.ref
$ cat ctrl.ref
corbaloc::janus:9998/%AB%AC%AB0_RootPOA%00forward%00%00%AB%AC%AB0
CCS_server%00Controller%00%00the_controller
$ nsadmin -c michi
$ nsadmin --bind michi/controller `cat ctrl.ref`
$ nsadmin -r michi/controller
IOR:01f28940010000000000000001000000000000005a0000000101005011000
0006a616e75732e6f6f632e636f6d2e617500000e273a000000abacab305f526f
6f74504f4100666f72776172640000abacab306d6963686900436f6e74726f6c6
c657200007468655f636f6e74726f6c6c6572
Copyright 2000–2001 IONA Technologies 24-3

25.Threaded Clients and Servers
ction
re

g

Summary

This unit covers the threading models supported by ORBacus and the JThreads/C++ abstra
library. It also discusses the options for creating thread-safe servers and what guarantees a
provided by the ORB to your application with respect to thread safety.

Objectives

By the completion of this unit, you will know how to create threaded clients and servers usin
ORBacus and JThreads/C++.

Overview Threaded Clients and Servers

1
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

ts and
is only

te
.)
25.1 Overview
ORBacus supports various concurrency models for clients and servers. By default, both clien
servers are single-threaded (but calls to servers may be made reentrantly, even though there
a single thread).

To specify a concurrency model, you can pass a command-line argument, set the appropria
property, or explicitly set the concurrency model from within your program. (See page 25-13

NOTE: For multi-threaded servers, request dispatch starts as soon as you activate a POA
manager.
25-2
1Overview

ORBacus supports a number of concurrency models for clients and
servers. These models control how requests are mapped onto threads:

• Blocking (default for clients, applies only to clients)

• Reactive (default for servers)

• Threaded

• Thread-per-Client

• Thread per request

• Thread pool

You can select a concurrency model by setting a property, by passing
an option on the command line, or programmatically.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers The Blocking Concurrency Model

2
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

With
client

r and
 The
e

y by
he
ide

ver

of
aded,
25.2 The Blocking Concurrency Model
The blocking concurrency model applies only to clients and is the default model for clients.
this concurrency model, all (twoway) requests are synchronous and blocking. As soon as the
invokes an operation, the client-side run time sends the corresponding request to the serve
then immediately calls a blocking read on the connection to that server to wait for the reply.
net effect is that the entire process (because there is only a single thread) is blocked until th
operation completes on the server side and the reply arrives via the network.

Foroneway requests, the client-side run time ensures that the call will not block synchronousl
examining the state of the connection first. If sending the request immediately would block t
client (because of flow control on the connection when transport buffers are full), the client-s
run time allocates a buffer to hold the request and returns from theoneway call immediately. If the
client sends anotheroneway request, that request may end up being buffered as well. Whene
the client sends a twoway request to a server for which there are bufferedoneway requests, the
client-side run time first sends the bufferedoneway requests and then blocks after sending the
twoway request until the reply arrives from the server.

The blocking model is attractive because it has low overhead. It uses the minimum number
system calls to send requests and receive their replies and, because the client is single-thre
there is obviously no overhead for locking or thread context switching.
Copyrigh
2The Blocking Concurrency Model
The blocking concurrency model applies only to clients and is the
default model.

• After sending a request, the client-side run time enters a blocking
read to wait for the reply from the server.

• For oneway requests, the ORB avoids blocking the client by holding
the request in a buffer if it would block the client. Buffered requests
are sent during the next request that goes to the same server.

No other activity can take place in the client while the client waits for a
request to complete.

Each call is synchronous for the application code and the ORB.

The blocking model is simple and fast.
t 2000–2001 IONA Technologies 25-3

The Reactive Concurrency Model Threaded Clients and Servers

3
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

at it

vents
 that

til the
s by

onous

e

rs
s only
ple,
25.3 The Reactive Concurrency Model

25.3.1 Reactive Model for Servers
For servers, the reactive concurrency model means that aselect loop is used in the server to
monitor the connections to clients. The server never enters a blocking read, which means th
can accept incoming requests from several clients (and that it can accept new incoming
connections from clients whenever it callsselect).

Note that this model is still single-threaded and that the server cannot respond to network e
while it is busy servicing a request. For example, if you implement a CORBA operation such
it takes minutes to complete, all incoming requests from other clients are simply queued un
operation completes. In effect, the reactive model serializes all incoming requests and work
completely finishing one request before paying attention to the next one.

25.3.2 Reactive Model for Clients
On the client side, the reactive model means that, when the client application makes a synchr
call, the client-side run time usesselect to avoid blocking. It first determines whether the
request can be sent immediately without blocking. If so, it sends the request and then calls
select to be notified when the reply arrives; if not, it monitors the outgoing connection to th
server and sends the request once it can avoid blocking and then callsselect to await the reply.

The advantage of the reactive model for the client side is that, although each call still appea
synchronous and blocking to the application, behind the scenes, the run time does not lose it
thread of control because it never makes a blocking system call. This means that, for exam
multiple buffered oneway requests can be send to several servers in parallel.
25-4
3The Reactive Concurrency Model

The reactive concurrency model applies to clients and servers and is
the default for servers.

The reactive model is single-threaded.

• For servers, a select loop is used to monitor existing connections.
This permits the server to accept requests from several clients.

• For clients, after sending a request, the client-side run time calls
select instead of using a blocking read.

If the client is also a server, it can accept incoming calls to its objects
while it is acting as the client for a synchronous call to some other
server.

The reactive model permits nested callbacks for single-threaded
servers. (Many ORBs cannot support this without multiple threads.)
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers The Reactive Concurrency Model

4
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

le its

sting
ve.

est

nt: it

e

ed
se it
25.3.3 Nested Callbacks
Consider a simple nested callback scenario. A client invokes an operationA on a server. The
implementation ofA, in turn, acts as a client and invokes an operationB on another object. If that
object is in the same address space as the client that calledA, the client really is a combined client
and server; we end up with the client having to service an invocation on one of its objects whi
only thread is conceptually blocked in a synchronous invocation.

The reactive concurrency model makes it possible for this scenario to work to any level of ne
depth without deadlock. The sequence of events and each transfer of control is outlined abo
Initially, the client makes a call onA. That call passes control to the proxy which sends the requ
for A to the server and then callsselect to wait for some network activity. Meanwhile, the call
has made its way to the server, which comes out of itsselect loop and dispatches the call
(synchronously) to the servant forA. The servant, in turn, decides to invoke operationB which
happens to be on an object in the original client. The server now behaves like the original clie
sends the request forB and waits in aselect for some network activity. Meanwhile, the original
client has detected the network activity and dispatch the request to the servant forB, which carries
out its task and returns, at which point the reply forB is sent to the server. This is detected by th
select call in the server, which now returns control toA. In turn,A is finished and returns itself
which gives the thread of control back to the skeleton forA. The skeleton sends the reply forA
back to the client and reenters itsselect loop. Meanwhile, the reply forA makes its way back to
the client, where it causes the proxy to return, completing the original operation invocation.

The reactive concurrency model is the only way to permit nested callbacks for single-thread
processes without deadlock. It is somewhat more expensive than the blocking model becau
incurs more system calls per request.
Copyrigh
4The Reactive Concurrency Model (cont.)
ref->A();
send(A);
select();

return;
// ...

loop:
select();

A() {
ref->B();

invoke(A);

reply(A);
goto loop;

Client/Server Server

send(B);
select();invoke(B);

B() {
//...
return;

}

reply(B);
select();

return; return;
}

t 2000–2001 IONA Technologies 25-5

The Reactive Concurrency Model Threaded Clients and Servers

5
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

lients

 work
.

ple, if

dard
it you
er

tocol.
25.3.4 Advantages of the Reactive Concurrency Model
The reactive concurrency model offers a few advantages. For one, it permits you to create c
that also act as servers without having to write a multi-threaded program. Second, it avoids
deadlocks for nested callbacks. Third, the model is transparent to your code because all the
of monitoring network connections and invoking operations is handled by the ORB run time

Keep in mind that the reactive model may cause operations to be called reentrantly. For exam
A callsB, andB callsA, you will have a suspended thread of control inA as well as an active thread
of control. This means that all writable state that is accessed by operationA must be local to A; if
you modify non-local state, the second invocation ofA will operate on potentially inconsistent
state.

The reactive model for ORBacus is extensible. ORBacus ships with three reactors: the stan
select reactor, an X11 reactor, and a Windows reactor. The X11 and Windows reactors perm
to handle GUI events simultaneously with incoming network traffic in a single-threaded serv
without blocking either the GUI or the CORBA invocations.

You can create reactors for you own purposes by extending theOB::Reactor interface, for
example, to react to events generated on network connections for an instrument control pro
25-6
5The Reactive Concurrency Model (cont.)
Advantages of the reactive concurrency model:

• permits creation of single-threaded processes that are both client
and server

• avoids deadlock if callbacks are nested

• asynchronous dispatch of multiple buffered oneway requests to
different servers

• transparent to the application code (but beware that operations may
be called reentrantly)

• permits integration of foreign event loops
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers The Threaded Concurrency Model

6
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

t the
time

ly
lusion

k. On
ead for
25.4 The Threaded Concurrency Model
The threaded concurrency model means that the ORB run time runs multi-threaded, but tha
application code runs single-threaded. The main advantage of this model is that the ORB run
can do things in parallel, such as request demultiplexing, while the application code is strict
serialized. This means that you do not have to write threaded code to take care of mutual exc
and data consistency as you would have to if application code were threaded.

The threaded concurrency model is useful particularly on multi-processor machines running
servers under high load because the ORB can take advantage of true parallelism for its wor
single-processor machines, the reactive model is usually faster because it incurs less overh
locking and context switching.
Copyrigh
6The Threaded Concurrency Model

The threaded concurrency model applies to clients and servers.

The ORB run time runs with threads, so sending and receiving of
network packets can proceed in parallel for many requests.

• For clients, multiple deferred requests sent with the DII are truly
dispatched in parallel, and oneway invocations do not block.

• For servers, the threaded model demultiplexes requests and
unmarshals in parallel.

To the application code, the threaded model appears single-threaded.

Operation bodies in the server are strictly serialized!

This model is useful on multi-processor machines for servers under
high load.
t 2000–2001 IONA Technologies 25-7

The Thread-per-Client Concurrency Model Threaded Clients and Servers

7
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

t come
te
single
r uses
more

 of the
 the
r
e

at

oth
25.5 The Thread-per-Client Concurrency Model
The thread-per-client concurrency model applies only to servers and dispatches requests tha
in on different connections in separate threads. In effect, the ORB run time creates a separa
dispatch thread for each incoming connection. The model is somewhat misnamed because a
client may have more than one connection to objects in the same server (namely, if the serve
more than one POA manager for its objects). Therefore, “thread-per-connection” would be a
appropriate name.

Each client that sends requests to a server has a separate connection to the server for each
server’s POA managers. This means that requests that arrive on different connections from
same client are dispatched in parallel, as are requests that arrive from the same client but fo
different POA managers. (Obviously, for any real parallelism to occur requests from the sam
client for different POA managers must actually be dispatched in parallel by that client.)

The POA threading policy further determines the degree of parallelism:

• If a POA has theSINGLE_THREAD_MODEL policy, requests to that POA will be strictly
serialized, no matter where they are coming from.

• If a POA has theORB_CTRL_MODEL policy, requests for that POA will be dispatched in
parallel if they arrive via different POA managers (from a threaded single client or from
multiple clients) of if they arrive via the same POA manager from different clients.

The thread-per-client concurrency model implies true application parallelism. This means th
your application must take care of any critical regions it may have.

The model is efficient because it creates a thread only once per connection. It is useful on b
multi- and single-processor machines (because of I/O interleaving).
25-8
7The Thread-per-Client Concurrency Model

The thread-per-client concurrency model applies to the server side.

The ORB creates one thread for each incoming connection.

• Requests coming in on different connections are dispatched in
parallel.

• Requests coming in on the same connection are serialized.

• Requests on POAs with SINGLE_THREAD_MODEL are serialized.

• Requests on POAs with ORB_CTRL_MODEL are dispatched in
parallel if those requests are dispatched by different POA managers
or are coming from different clients.

The model would better be named “thread-per-connection” because a
single server can use multiple POA managers.

You must take care of critical regions in your application with this model!
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers The Thread-per-Request Concurrency Model

8
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

,
quest.

th

 The

 a
25.6 The Thread-per-Request Concurrency Model
The thread-per-request concurrency model creates a new thread for each incoming request
dispatches the request in that thread, and destroys the thread again on completion of the re
All requests for POAs withORB_CTRL_MODEL are dispatched in parallel. (Requests for POAs wi
SINGLE_THREAD_MODEL are still serialized.)

While thread-per-request provides for true parallelism, it also expensive and therefore slow.
cost of thread creation and destruction plus the cost of context switching tend to dominate
performance. For this reason, the model is suitable only for long-running operations that do
substantial amount of work and can proceed in parallel.
Copyrigh
8Thread-per-Request Concurrency Model

The thread-per-request concurrency model only applies to servers.

• Each incoming request creates a new thread and is dispatched in
that thread.

• No request for a POA with ORB_CTRL_MODEL is ever blocked from
dispatch.

• On return from a request, its thread is destroyed.

The thread-per-request model supports nested callbacks with unlimited
nesting depth (subject to memory constraints and limits on the
maximum number of threads).

The model is inefficient for small operations (thread creation and
destruction overhead dominates throughput).

Use this model only for long-running operations that do a substantial
amount of work and can proceed in parallel.
t 2000–2001 IONA Technologies 25-9

The Thread-Pool Concurrency Model Threaded Clients and Servers

9
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

ests by
is
hat

ts

ds the
e for
.

25.7 The Thread-Pool Concurrency Model
The thread pool concurrency model creates a fixed-size pool of threads and dispatches requ
passing them to an idle thread taken from the pool. The degree of parallelism in the server
limited by the number of threads in the pool. If a request arrives while all threads are busy, t
request is blocked until a thread becomes idle and rejoins the pool.

All requests for POAs withORB_CTRL_MODEL are dispatched in parallel for this model. (Reques
for POAs withSINGLE_THREAD_MODEL are still serialized.)

The thread pool model is far more efficient than the thread-per-request model because it avoi
cost of thread creation and destruction for each request. This model is the best model to us
general-purpose threaded servers that offer a mixture of short- and long-running operations
25-10
9The Thread Pool Concurrency Model

The thread pool concurrency model dispatches requests onto a
fixed-size pool of threads.

• If a thread is idle in the pool, each incoming request is dispatched in
a thread taken from the pool.

• The number of concurrent operations in the server is limited by the
number of threads in the pool. (The run time uses two additional
threads for each connection).

• Requests that arrive while all threads are busy are transparently
delayed until a thread becomes idle.

This model is efficient because threads are not continuously created
and destroyed and provides a high degree of parallelism.

For general-purpose threaded servers, it is the best model to use.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers The Thread-Pool Concurrency Model
Copyright 2000–2001 IONA Technologies 25-11

Selecting a Concurrency Model Threaded Clients and Servers

10
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

e

 the

on to
e

25.8 Selecting a Concurrency Model
The concurrency model is controlled by three properties:

• ooc.orb.conc_model

This property controls the behavior for making calls (that is, when the process acts in th
client role). Legal values areblocking (which is the default),reactive , andthreaded .

• ooc.orb.oa.conc_model

This property controls the behavior for accepting calls (that is, when the process acts in
server role). Legal values arereactive (which is the default),threaded ,
thread-per-client , thread_per_request , andthread_pool .

• ooc.orb.oa.thread_pool= <n>

This property takes effect only ifooc.orb.oa.conc_model is set tothread_pool
and determines the number of threads in the pool. The default value is 10.

You have a number of ways to select a concurrency model for clients and servers.

25.8.1 Selecting the Concurrency Model via a Configuration File
To select a concurrency model via a configuration file, simply add the corresponding definiti
the configuration file for the process (see Unit 18). For example, the following settings set th
model tothreaded for the client role and tothread_pool for the server role:
25-12
10Selecting a Concurrency Model

Concurrency models are selected by:

• setting a property in a configuration file

• passing a command-line option

• setting a property programmatically

Properties that apply to concurrency models:

• ooc.orb.conc_model (client side)

blocking (default), reactive , threaded

• ooc.orb.oa.conc_model (server side)

reactive (default), threaded , thread_per_client ,
thread_per_request , thread_pool

• ooc.orb.oa.thread_pool= <n>
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Selecting a Concurrency Model

ng

kes
Select threaded for the client role
ooc.orb.conc_model=threaded

Select thread pool with 20 threads for the server role
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=20

25.8.2 Selecting the Concurrency Model via Command-Line Options
You can also set the value of a property via command-line options. For example, the followi
command line sets the same property values as the preceding example:

./a.out -ORBthreaded -OAthread_pool 20

If you use a configuration file as well as a command-line option, the command-line option ta
precedence.

25.8.3 Selecting the Concurrency Model Programmatically

// Get default properties (established by config file)
OB::Properties_var dflt = OB::Properties::getDefaultProperties();

// Initialize a property set with the defaults
OB::Properties_var props = new OB::Properties(dflt);

// Set the properties we want
props->setProperty("ooc.orb.conc_model", "threaded");
props->setProperty("ooc.orb.oa.conc_model", "thread_pool");
props->setProperty("ooc.orb.oa.thread_pool", "20");

// Initialize the ORB with the given properties
CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);

Properties set viaOBCORBA::ORB_init are overridden by any configuration file specified on
the command line (with-ORBconfig <file>) and by any explicit command-line options,
such as-ORBthreaded . However, they do override any properties that are specified by a
configuration file set by theORBACUS_CONFIG environment variable.
Copyright 2000–2001 IONA Technologies 25-13

Overview of JThreads/C++ Threaded Clients and Servers

11
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

, you
ss to
ation

ry

ges

u can

IX

tually
25.9 Overview of JThreads/C++
When using one of the threaded concurrency models, ORBacus is fully thread safe. That is
can call any ORB-related function and be sure that the ORB will correctly synchronize acce
its internal data. This means that you need to take care of critical regions only for your applic
code, but not for the ORB.

For multi-threaded operation, ORBacus is implemented on top of a threads abstraction libra
called JThreads/C++ (or JTC, for “Java-like Threads for C++”). This library shields the ORB
source code from idiosyncrasies of the underlying threads package. Because threads packa
differ considerably among operating systems (even versions of UNIX), JTC permits the ORB
threading logic to be written independently from the underlying operating system. The same
source code words across all versions of UNIX and Windows. If you have purchased JTC, yo
take advantage of it in the same way as the ORB.

By using JTC, you gain the advantage that your threaded code is portable across different
operating systems (even UNIX and Windows), which can reduce your development time
substantially. In addition, JThreads/C++ offers a simpler model than either Windows or POS
threads, so you get the best of both worlds. JTC provides commonly used and powerful
synchronization, mutual exclusion, and thread control primitives. Additionally, migration of
source code between C++ and Java becomes easier because the same concepts apply.

JTC is implemented as a thin layer on top of the underlying native threads API and adds vir
no overhead, so there is no performance penalty for using it.
25-14
11Overview of JThreads/C++

• JThreads/C++ (JTC) is required for ORBacus to support threaded

models.

• JTC is a threads abstraction library.

• JTC is implemented as a thin layer on top of the underlying native
threads package.

• JTC adds virtually no overhead.

• JTC provides a Java-like thread model (simpler than POSIX
threads).

• JTC shields you from idiosyncrasies of the underlying native threads
package.

• JTC provides common synchronization, mutual exclusion, and
thread control primitives.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers JTC Initialization

12
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

sing

rary
25.10JTC Initialization
In order to use JTC, your code must include theJTC/JTC.h header file to import the relevant
declarations. Before you do anything else, initialize an instance of theJTCInitialize class.
For example:

#include <JTC/JTC.h>

// ...

int
main(int argc, char * argv[])
{

// Initialize JTC
JTCInitialize jtc(argc, argv);

// ...
}

This code instructs the library to scan the command line for JTC-specific arguments by pas
argc andargv to the constructor. Any options that are recognized by JTC are stripped from
argv by the constructor.

The-JTCss option controls the stack size for threads created by JTC. If not specified, the lib
uses the default of the underlying threads package.

If you callORB_init , you need not useJTCInitialize and you need not includeJTC.h .
Copyrigh
12JTC Initialization

Your code must contain a #include <JTC/JTC.h> directive.

You must initialize JTC before making any other JTC-related calls by
constructing a JTCInitialize instance:

void JTCInitialize();
void JTCInitialize(int & argc, cha r * * argv);

The second constructor works like ORB_init in that it looks for
JTC-specific command line options and strips these options from argv .

Valid options are:

• -JTCversion

• -JTCss <stack_size> (in kB)

If you call ORB_init , you need not use JTCInitialize .
t 2000–2001 IONA Technologies 25-15

Simple Mutexes Threaded Clients and Servers

13
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

old a
e

25.11Simple Mutexes
TheJTCMutex class provides a simple mutual exclusion mechanism. Only one thread can h
mutex at a time, so you can use a mutex to establish simple critical regions in which only on
thread can execute at a time. For example:

class MyClass {
public:

void do_something() {
// ...

// Start critical region
m_mutex.lock();

// Update shared data structure here...

// End
m_mutex.unlock()

// ...
}

private:
JTCMutex m_mutex;

};
25-16
13Simple Mutexes

The JTCMutex class provides a simple non-recursive mutex:

class JTCMutex {
public:

void lock();
void unlock();

};

You must:

• call unlock only on a locked mutex

• call unlock only from the thread that called lock

Calling lock on a mutex that the calling thread has already locked
causes deadlock.

Never destroy a mutex that is locked!
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Recursive Mutexes

14
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

ust

of the
ave a
egion
25.12Recursive Mutexes
A recursive mutex is a mutex that keeps track of its owner (that is, the thread that locked it).
Multiple calls tolock by the same thread are legal and increment a lock count. The mutex m
be unlocked as many times as it was locked.

Recursive mutexes are more expensive to implement than non-recursive mutexes because
need to synchronize access to the lock count internally. However, they are convenient if you h
number of functions that call each other and each use the same mutex to protect a critical r
because you do not need to know when it is safe to call each function.
Copyrigh
14Recursive Mutexes

JTCRecursiveMutex provides a mutex that can be locked multiple
times by its owner:

class JTCRecursiveMutex {
public:

void lock();
void unlock();

};

• The first thread to call lock locks the mutex and the calling thread
becomes its owner.

• Multiple calls to lock increment a lock count.

• The owner must call unlock as many times as lock to unlock the
mutex.

Otherwise, the same restrictions apply as for non-recursive mutexes.
t 2000–2001 IONA Technologies 25-17

Automatic Unlocking Threaded Clients and Servers

15
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

 in a

tiate

rite
25.13Automatic Unlocking
Destroying a mutex without unlocking it first causes undefined behavior. (Typically, it results
deadlock eventually.) TheJTCSynchronized class makes it impossible to forget to unlock a
mutex, a recursive mutex, or a monitor. In order to protect a critical region, you simply instan
aJTCSynchronized object. The critical region ends when the thread of control leaves the
block containing the declaration, so you cannot forget to callunlock , even if an exception is
thrown or if you have multiple return paths out of a block. Using JTCSynchronized, we can rew
the example on page 25-16 as follows:

class MyClass {
public:

void do_something() {
// ...

// Start critical region
JTCSynchronized lock(m_mutex);

// Update shared data structure here...
// ...

} // Critical region ends here
private:

JTCMutex m_mutex;
};
25-18
15Automatic Unlocking

You must ensure that a mutex is unlocked before it is destroyed.
JTCSynchronized makes this easy:

JTCSynchronized {
JTCSynchronized(JTCMutex & m); // Lock mutex
JTCSynchronized(JTCRecursiveMutex & m); // Lock rec. mutex
JTCSynchronized(JTCMonitor & m); // Lock monitor
~JTCSynchronized(); // Unlock

};

The constructor calls lock and the destructor calls unlock . This
makes it impossible to leave a block containing a JTCSynchronized
object without calling unlock .

JTCSynchronized makes errors much less likely, especially if you
have multiple return paths or call something that may throw an
exception. The class works for mutexes, recursive mutexes, and
monitors.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Monitors

16
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

 at a
cular
d to

gion
25.14Monitors
A monitor provides a way to establish critical regions that provide access to only one thread
time. However, in contrast to a mutex, a monitor permits you to suspend a thread until a parti
condition holds and to suspend the thread if the condition is false. This allows another threa
enter the critical region. (Hopefully, that thread will eventually do something that makes the
condition true.)

When the condition is true, the second thread callsnotify and leaves the critical region. This
wakes up the first thread which now finds the condition true and continues inside the critical re
(with exclusive access) until it leaves the critical region again.
Copyrigh
16Monitors

The JTCMonitor class implements a Java-like monitor:

class JTCMonitor {
public:

JTCMonitor();
virtual ~JTCMonitor();
void wait(); // Wait for condition
void wait(long n); // Wait at most n msec for condition
void notify(); // Wake up one thread
void notifyAll(); // Wake up all threads

};

Only one thread can enter the critical region protected by a monitor.

A thread inside the region can call wait to suspend itself and give
access to another thread.

When a thread changes the condition, it calls notify to wake up a thread
that was waiting for the condition to change.
t 2000–2001 IONA Technologies 25-19

Simple Producer/Consumer Example Threaded Clients and Servers

17
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

e itself

o
ing
25.15Simple Producer/Consumer Example
To illustrate the use of monitors, let us examine a very simple unbounded queue. The queu
is a critical region, which means that only one thread can be in theenqueue or dequeue
functions at a time. in addition, we want to permit multiple consumer and producer threads t
remove and deposit items. However, if the queue is empty, we need to suspend the consum
thread.

A very simple non-threaded implementation of the queue looks like this:

#include <list>

template<class T> class Queue {
public:

void enqueue(const T & item) {
m_q.push_back(item);

}
T dequeue() {

T item = m_q.front();
m_q.pop_front();
return item;

}
private:

list<T> m_q;
};
25-20
17Simple Producer/Consumer Example
Assume we have a simple queue class:

template<class T> class Queue {
public:

void enqueue(cons t T & item);
T dequeue();

};

• Producer threads read items from somewhere and place them on
the queue by calling enqueue .

• Consumer threads fetch items from the queue by calling dequeue .

• The queue is a critical region and the consumer threads must be
suspended when the queue is empty.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Simple Producer/Consumer Example

to
To make this queue thread-safe, we simply inherit fromJTCMonitor .

The implementation ofenqueue (called by producer threads) simply locks the monitor, depos
an item, and callsnotify . If one or more consumer threads are currently waiting for an item
arrive, the call tonotify wakes up one consumer thread; otherwise, the call tonotify is
forgotten and has no effect.

The implementation ofdequeue (called by consumer threads) first checks whether items are
available. If not, it callswait to suspend the calling thread. Callingwait also releases the lock
on the critical region. Otherwise, if items are in the queue,dequeue removes one item from the
head of the queue and leaves the critical region unlocked:

#include <list>
#include <JTC/JTC.h>

template<class T> class Queue : JTCMonitor {
public:

void enqueue(const T & item) {
JTCSynchronized lock(*this);
m_q.push_back(item);
notify();

}
T dequeue() {

JTCSynchronized lock(*this);
while (m_q.size() == 0) {

try {
wait();

} catch (const JTCInterruptedException &) {
}

}
T item = m_q.front();
m_q.pop_front();
return item;

}
private:

list<T> m_q;
};

It is important to note that, if a call tonotify wakes up a consumer thread that is currently
suspended insidewait , the consumer thread comes out ofwait with the critical region locked.
In other words, a return fromwait also guarantees exclusive access to the critical region.

Also note that, after a return fromwait , the consumer retests the condition in awhile loop
before dequeuing an item and also checks whether thewait was interrupted. We will examine the
reason for this on page 25-24.
Copyright 2000–2001 IONA Technologies 25-21
its

Rules for Using Monitors Threaded Clients and Servers

18
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

and

ome
25.16Rules for Using Monitors
You must follow a few simple rules when using monitors. One of these is that you must catch
ignore aJTCInterruptedException when callingwait :

T dequeue() {
JTCSynchronized lock(*this);
while (m_q.size() == 0) {

try {
wait();

} catch (const JTCInterruptedException &) { // Correct
}

}
T item = m_q.front();
m_q.pop_front();
return item;

}

This is necessary because you may get a spurious interrupted system call exception from s
threads packages.

Make sure that you hold the lock on the monitor when callingwait or notify . If you don’t, the
calls throw aJTCIllegalMonitorState exception.
25-22
18Rules for Using Monitors

You must always catch and ignore a JTCInterrupted exception
around a wait :

T dequeue() {
JTCSynchronized lock(*this);
while (m_q.size() == 0)

wait(); // WRONG!!!
T item = m_q.front();
m_q.pop_front();
return item;

}

Failure to catch and ignore the exception may result in undefined
behavior.

In addition, you must call wait and notify with the mutex locked;
otherwise, you get a JTCIllegalMonitorState exception.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Rules for Using Monitors

19
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

 time

er—
You must acquire access to the critical regionbefore you test the condition. If you test the
condition first and then lock the monitor, the condition may have been changed in the mean
by another thread. This can result in live lock or undefined behavior. You mustalwaysacquire the
lock before looking at anything inside the critical region (even if you only read a single integ
read access of even a simple value isnot guaranteed to be atomic):

T dequeue() {
JTCSynchronized lock(*this); // Correct
while (m_q.size() == 0) {

try {
wait();

} catch (const JTCInterruptedException &) {
}

}
T item = m_q.front();
m_q.pop_front();
return item;

}

Copyrigh
19Rules for Using Monitors (cont.)

Always test the condition under protection of the monitor:

T dequeue() {
while (m_q.size() == 0) { // WRONG!!!

JTCSynchronized lock(*this);
try {

wait();
} catch (const JTCInterruptedException &) {
}
T item = m_q.front();
m_q.pop_front();
return item;

}
}

If you do not acquire access to the critical region first, the condition may
be changed by another thread in between the test and the update.
t 2000–2001 IONA Technologies 25-23

Rules for Using Monitors Threaded Clients and Servers

20
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

keups”.
You must always use awhile loop to retest the condition before entering a critical region:

T dequeue() {
JTCSynchronized lock(*this);
while (m_q.size() == 0) { // Correct

try {
wait();

} catch (const JTCInterruptedException &) {
}

}
T item = m_q.front();
m_q.pop_front();
return item;

}

This is necessary because some threads packages can send what is known as “spurious wa
In other words, it is possible for a thread suspended inwait to wake up even though no other
thread callednotify (or, more commonly, a call tonotify can incorrectly wake up more than
one thread). The solution is to retest the condition and, if it is still false, wait again, which is
achieved by thewhile loop.
25-24
20Rules for Using Monitors (cont.)

Always retest the condition when coming out of a wait :

T dequeue() {
JTCSynchronized lock(*this);
if (m_q.size() == 0) { // WRONG!!!

try {
wait();

} catch (const JTCInterruptedException &) {
}

}
T item = m_q.front();
m_q.pop_front();
return item;

}

If you do not retest the condition, it may not be what you expect!
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Rules for Using Monitors
Copyright 2000–2001 IONA Technologies 25-25

Static Monitors Threaded Clients and Servers

21
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

f a
25.17Static Monitors
You can protect static data with a static instance ofJTCMonitor , with some restrictions. In
particular, you must not use any of the monitor’s member functions until after you have
instantiated one or moreJTCInitialize objects and you must not use the monitor after the
final instance ofJTCInitialize goes out of scope. Note that construction and destruction o
staticJTCMonitor is not considered “use”, so the above example is guaranteed to work.
25-26
21Static Monitors

Occasionally, you need to protect static data from concurrent access.
You can safely use a JTCMonitor to do this:

class StaticCounter {
public:

static void inc() { JTCSynchronized lock(m_m);
++m_counter; }

static void dec() { JTCSynchronized lock(m_m);
--m_counter; }

static unsigned long val() { JTCSynchronized lock(m_m);
return m_counter; }

private:
static unsigned long m_counter;
static JTCMonitor m_m;

};

unsigned long StaticCounter::m_counter = 0;
JTCMonitor StaticCounter::m_m;
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Static Monitors
Copyright 2000–2001 IONA Technologies 25-27

The JTCThread Class Threaded Clients and Servers

22
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

thread,

he
t

25.18The JTCThread Class
ORBacus creates threads for you depending on the concurrency model you have selected.
However, on occasion, you may want to create threads for your own purposes. To create a
you must derive a class fromJTCThread and provide an implementation forrun . The code in
run becomes the thread’s starting code. For example:

class ProducerThread : public virtual JTCThread {
public:

ProducerThread(Queue<int> & q, int c) :
m_q(q), m_c(c) {}

virtual void run() {
for (int i = 0; i < m_c; ++i)

m_q.enqueue(i);
}

private:
Queue<int> & m_q; // Thread-safe queue
int m_c;

};

Here, we have a simple producer thread that, given a queue of integers and a count, adds t
requested number of integers to the queue. Similarly, we can create a consumer thread tha
removes the requested number of items from a queue:
25-28
22The JTCThread Class
To create a new thread, you instantiate a class instance that is derived
from JTCThread :

class JTCThread : public virtual JTCRefCount {
public:

JTCThread();
~JTCThread();

virtual void run();
void start();
// ...

};

Override the run method to provide a starting stack frame for the
thread.

Call start to set the thread running in its starting stack frame.
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers The JTCThread Class

he
d

class ConsumerThread : public virtual JTCThread {
public:

ConsumerThread(Queue<int> & q, int c) :
m_q(q), m_c(c) {}

virtual void run() {
for (int i = 0; i < m_c; ++i)

m_q.dequeue(i);
}

private:
Queue<int> & m_q; // Thread-safe queue
int m_c;

};

Neither of these thread classes does anything particularly useful, but it servers to illustrate t
concepts. (Note that theQueue<int> class used by these two classes is assumed to be threa
safe.)

To start a consumer and a producer thread, we can write:

// ...

JTCInitialize jtcinit; // Important!!!

Queue<int> the_queue; // Queue to use

JTCThreadHandle consumer; // Note: JTCThreadHandle
JTCThreadHandle producer; // Note: JTCThreadHandle

// Start both threads
consumer = new ConsumerThread(the_queue, 10000);
producer = new ProducerThread(the_queue, 10000);
consumer->start();
producer->start();

Thestart method on each thread starts it running in itsrun method. Note that we assign the
return value from new for each thread to aJTCThreadHandle instance. This class implements
reference counting for threads (just as a_var class implements reference counting in the C++
mapping). Assigning the returned thread pointer to aJTCThreadHandle class relieves us from
having to remember when the thread can be safely destroyed. As for_var classes, you can access
the member functions of the underlyingJTCThread instance via the overloaded-> operator.
Copyright 2000–2001 IONA Technologies 25-29

Joining with Threads Threaded Clients and Servers

23
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

.
h
to

 a
as
25.19Joining with Threads
Given aJTCThread or JTCThreadHandle object, any thread can join with any other thread
Joining with a thread means that the caller ofjoin is suspended until the thread being joined wit
completes itsrun method. Thejoin method is overloaded so you can limit the amount of time
wait for a thread to terminate.

While in ajoin , the calling thread may get aJTCInterruptedException . This means that
youmust write your calls tojoin as follows:

// ...

// Wait for consumer thread to finish
do {

try {
consumer->join();

} catch (const JTCInterruptedException &) {
}

} while (consumer->isAlive());

The call toisAlive in the terminating condition of the loop ensures that, in the presence of
stray exception, the caller does not erroneously conclude that the thread being joined with h
terminated.
25-30
23Joining with Threads

Given a thread, any other thread can join with it:

class JTCThread : public virtual JTCRefCount {
public:

// ...
void join();
void join(long msec);
void join(long msec, int nsec);
bool isAlive() const;
//...

};

The purpose of join is to suspend the caller until the thread being
joined with terminates.

Always join with threads in a loop, catching JTCInterrupted and
reentering join if that exception was thrown!
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Other JThreads/C++ Functionality

24
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

k at the
25.20Other JThreads/C++ Functionality
The JThreads/C++ library offers many more features than described here. Please have a loo
manual to familiarize yourself with the complete API.
Copyrigh
24Other JThreads/C++ Functionality
JThreads/C++ offers many more features:

• Named threads

• thread groups

• thread priorities

• sleep and yield

• thread-specific storage

Please consult the manual for details.
t 2000–2001 IONA Technologies 25-31

Synchronization Strategies for Servers Threaded Clients and Servers

25
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

ervant.
antage

issue.

is to
cess to
lot of

also
n the

arately.

, S., et.
25.21Synchronization Strategies for Servers
By far the easiest way to synchronize access to your servants is to use a monitor for each s
This ensures that only one thread can be in any operation on the servant at a time. The adv
of this approach is that it requires almost zero effort. The downside is that invocations are
serialized if they are serviced by the same servant. For many implementations, this is not an
However, if you use the same servant to incarnate multiple objects (with theMULTIPLE_ID
policy) or use a default servant, you may find that performance is hardly better than with a
single-threaded server because everything is serialized on that servant.

Another approach is to permit finer-grained parallelism by using reader/writer locks. The idea
permit concurrent access to the same servant for read operations, and to require exclusive ac
the servant only for update operations. This provides much better performance if you have a
contention on the servant, but requires considerably more implementation effort.1

Whichever approach you choose, a simple one thread per object approach will not work if you
support life cycle and collection manager operations. For example, if one thread is currently i
middle of thelist operation on the controller, it is unlikely that thedestroy operation on a
device will be successful if carried out concurrently (because both operations modify shared
internal data structures). This means that you must protect access to such shared data sep

1. How to implement this approach is beyond the scope of this course. For an in-depth discussion, see Kleiman
al. 1995.Programming With Threads. Englewood, NJ: Prentice Hall.
25-32
25Synchronization Strategies for Servers

You can use several strategies for synchronization:

• Permit only one concurrent request per servant.

This approach is very easy to implement with a monitor.

• Allows multiple concurrent read operations but require exclusive
access to the entire object for a write operation.

This approach provides more parallelism at the cost of greater
implementation complexity. (You need to create reader/writer locks
and synchronize explicitly by calling wait and notify .)

Use this approach only if you have high contention on a servant, for
example, with default servants.

For both approaches, take care of interactions among life cycle and
collection manager operations!
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Basic Per-Servant Synchronization

26
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

to do
25.22Basic Per-Servant Synchronization
Achieving per-servant synchronization is almost too easy with JThreads/C++. All you need
is inherit fromJTCMonitor and instantiate aJTCSynchronized object on entry to every
operation. For example:

// IDL model attribute.
CCS::ModelType
Thermometer_impl::
model() throw(CORBA::SystemException)
{

JTCSynchronized lock(*this);
// ...

}

// IDL asset_num attribute.
CCS::AssetType
Thermometer_impl::
asset_num() throw(CORBA::SystemException)
{

JTCSynchronized lock(*this);
// ...

}

// etc...
Copyrigh
26Basic Per-Servant Synchronization

For basic per-servant synchronization, use inheritance from
JTCMonitor for the servant:

class Thermometer_impl :
public virtual POA_CCS::Thermometer,
public virtual PortableServer::RefCountServantBase,
public virtual JTCMonitor {

// ...
};

In each operation body, instantiate a JTCSynchronized object on
entry to the operation.

With almost zero effort, all operations on the servant are serialized.

JTCMonitor uses recursive mutexes, so an operation implementation
can invoke operations on its own servant without deadlock.
t 2000–2001 IONA Technologies 25-33

Life Cycle Considerations Threaded Clients and Servers

27
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

ns
rt of our
e of
ffort:

o the

om
r it is
25.23Life Cycle Considerations
If you support life cycle or collection manager operations, you must interlock these operatio
against each other because they all access shared state (such as the list of devices that is pa
Controller_impl class). While it is possible to provide fine-grained access to at least som
these operations (for example, by locking on a per-device basis), it is usually not worth the e
life cycle operations and collection manager operations are typically carried out only rarely, s
increased concurrency is usually not realized.

The simple solution is to serialize all operations that either touch life cycle or operate on the
collection of devices. We can achieve this by making the controller implementation inherit fr
JTCMonitor and adding a boolean member variable to the class; that variable is true wheneve
OK to proceed with a life cycle or collection manager operation:

class Controller_impl :
public virtual POA_CCS::Controller,
public virtual PortableServer::RefCountServantBase,
public virtual JTCMonitor {

private:
bool m_lifecycle_ok; // True if OK to do a life cycle op

public:
// ...

};
25-34
27Life Cycle Considerations

You must pay attention to potential race conditions for life cycle
operations and collection manager operations:

• Factory operations, such as create_thermometer and
create_thermostat, must interlock with themselves and with
destroy.

• destroy must interlock with itself and with the factory operations.

• Collection manager operations, such as list and find, must
interlock among each other and with the life cycle operations.

The easiest solution is to have a global life cycle lock.

This serializes all life cycle and collection manager operations, but
permits other operations to proceed in parallel (if they are for different
target objects).
Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Life Cycle Considerations

s by

y be
d

Next, we need to make sure that a thread that wants to enter a life cycle or collection mana
operation atomically tests whetherm_lifecycle_ok is true and suspends itself if it is false.
Similarly, we want to make sure that a thread that is currently suspended on the
m_lifecycle_ok condition gets woken up when the condition becomes true. We can do thi
adding two methods to the controller, one to acquire the lock and one to release it:

class Controller_impl :
public virtual POA_CCS::Controller,
public virtual PortableServer::RefCountServantBase,
public virtual JTCMonitor {

private:
bool m_lifecycle_ok; // True if OK to do a life cycle op

public:
// Life cycle guard methods
void lifecycle_lock() {

JTCSynchronized lock(*this);
while (!m_lifecycle_ok) {

try {
wait();

} catch (const JTCInterruptedException &) {
}

}
m_lifecycle_ok = false;

}
void lifecycle_unlock() {

JTCSynchronized lock(*this);
m_lifecycle_ok = true;
notify();

}
// ...

};

The lifecycle_lock andlifecycle_unlock methods implement a simple
sleep/wake-up mechanism. If a thread that wants to enter a critical region finds the
m_lifecycle_ok variable false, it goes to sleep inlifecycle_lock . Whenever a thread
leaves its critical region, it sets the variable to true and wakes up a thread that may currentl
waiting to enter the critical region. Of course, we need to make sure that things are initialize
properly and set them_lifecycle_ok variable to true in the constructor:

Controller_impl::
Controller_impl(const char * asset_file) throw(int)

: m_asset_file(asset_file), m_lifecycle_ok(true)
{

// ...
}

We can now call thelifecycle_lock andlifecycle_unlock methods on entry and exit
of every life cycle operation. For example:
Copyright 2000–2001 IONA Technologies 25-35
ger

Life Cycle Considerations Threaded Clients and Servers

es the

 a

ithout
er
CCS::Thermometer_ptr
Controller_impl::
create_thermometer(CCS::AssetType anum, const char * loc)
throw(CORBA::SystemException, CCS::Controller::DuplicateAsset)
{

m_ctrl->lifecycle_lock();

if (exists(anum))
throw CCS::Controller::DuplicateAsset(); // OOPS!!!

if (ICP_online(anum) != 0)
abort();

if (ICP_set(anum, "location", loc) != 0)
abort();

Thermometer_impl * t = new Thermometer_impl(anum);
PortableServer::ObjectId_var oid = make_oid(anum);
Thermometer_impl::poa()->activate_object_with_id(oid, t);
t->_remove_ref();

m_ctrl->lifecycle_unlock();

return t->_this();
}

This is right, provided we make sure thatlifecycle_unlock is always called before the
operation returns. Of course, this is not the case in the above code example because it leav
critical region locked when the code throws an exception.

The solution is to use Stroustrup’s “resource acquisition is initialization” pattern. We can use
helper object that callslifecycle_lock in the constructor andlifecycle_unlock in the
destructor, so it becomes impossible to leave the scope in which the object is instantiated w
unlocking the critical region. The obvious place to do this is as a nested class in the controll
implementation:

class Controller_impl :
public virtual POA_CCS::Controller,
public virtual PortableServer::RefCountServantBase,
public virtual JTCMonitor {

private:
bool m_lifecycle_ok; // True if OK to do a life cycle op

public:
// Life cycle methods
void lifecycle_lock() { /* ... */ };
void lifecycle_unlock() { /* ... */ };
class LifeCycleSynchronized {
public:

static Controller_impl * m_ctrl;
LifeCycleSynchronized() { m_ctrl->lifecycle_lock(); }
~LifeCycleSynchronized() { m_ctrl->lifecycle_unlock(); }

};
// ...

};
25-36 Copyright 2000–2001 IONA Technologies

Threaded Clients and Servers Life Cycle Considerations

ce.

 safe

er,
TheLifeCycleSynchronized::m_ctrl member can be static because there is only on
instance of the controller. (The constructor ofController_impl initializes the member.) The
advantage is that, when we lock the critical region, we need not specify the controller instan

With this machinery in place, making the life cycle and collection manager operations thread
simply requires instantiatingController_impl::LifeCycleSynchronized object on
entry to each operation:

CCS::Thermometer_ptr
Controller_impl::
create_thermometer(CCS::AssetType anum, const char * loc)
throw(CORBA::SystemException, CCS::Controller::DuplicateAsset)
{

LifeCycleSynchronized lock;
// ...

}

CCS::Thermostat_ptr
Controller_impl::
create_thermostat(

CCS::AssetType anum,
const char* loc,
CCS::TempType temp)

throw(
CORBA::SystemException,
CCS::Controller::DuplicateAsset,
CCS::Thermostat::BadTemp)

{
LifeCycleSynchronized lock;
// ...

}

CCS::Controller::ThermometerSeq *
Controller_impl::
list() throw(CORBA::SystemException)
{

LifeCycleSynchronized lock;
// ...

}

void
Controller_impl::
find(CCS::Controller::SearchSeq & slist)
throw(CORBA::SystemException)
{

LifeCycleSynchronized lock;
// ...

}

Note that there is no need to establish a critical region for thechange operation. That is because
change simply loops over a list of references and invokes an operation on each one. Howev
Copyright 2000–2001 IONA Technologies 25-37
e

Life Cycle Considerations Threaded Clients and Servers

for
tent

d

ce

nger
e lock
especially for multi-threaded operation,change may fail for another reason: another thread ma
have destroyed a device, so one or more of the references in the list passed to change may d
non-existent object. To fix this, we need to change the IDL for the CCS to add another error
indicator of some kind (which is left as an exercise for the lab session for this unit).

The changes we have made so far take care of interlocking all life cycle operations, except
destroy . Thedestroy operation requires special care: we cannot simply remove the persis
state for the device insidedestroy because other member functions, such asset_nominal , may
still be executing concurrently. This means thatdestroy simply marks the device as removed an
callsdeactivate_object . The key here is to note thatdestroy doesnot release the life cycle
lock before it returns:

void
Thermometer_impl::
destroy() throw(CORBA::SystemException)
{

m_ctrl->lifecycle_lock();

// Remove entry in the AOM for the servant.
// Controller map and persistent state are cleaned up in
// the servant destructor.
PortableServer::ObjectId_var oid = make_oid(m_anum);
PortableServer::POA_var poa = _default_POA();
poa->deactivate_object(oid);

m_removed = true; // Mark device as destroyed

// Note: lifecycle lock is still held.
}

The call todeactivate_object eventually results in the servant destructor to run (namely, on
the last operation on the servant has completed) becausedeactivate_object drops the
reference count on the servant. Once the destructor runs, we know that the servant is no lo
needed and clean up the persistent state for the object. The final step is to unlock the life cycl
so other threads can proceed with life cycle operations:

Thermometer_impl::
~Thermometer_impl()
{

// Remove device from map and take it off-line
// if it was destroyed.
if (m_removed) {

m_ctrl->remove_impl(m_anum);
if (ICP_offline(m_anum) != 0)

abort();
}

// Permit life cycle operations again.
m_ctrl->lifecycle_unlock();

}

25-38 Copyright 2000–2001 IONA Technologies
y
enote a

Threaded Clients and Servers Threading Guarantees for the POA

28
Threaded Clients and Servers

Copyright 2000–2001 IONA Technologies

cess to

.

object
roy it.

ees for
not

ongly
st
s
s.
25.24Threading Guarantees for the POA
The POA provides a number of threading guarantees:

• _add_ref and_remove_ref are thread safe.

This guarantee ensures that the reference count will not be destroyed by concurrent ac
the same servant.

• If you use a servant activator for a POA

• calls toincarnate andetherealize on a servant activator are serialized,

• calls toincarnate andetherealize are mutually exclusive,

• incarnate is never called for a specific object ID while that object ID is in the AOM

These guarantees make sure that you will not attempt to activate a servant for the same
twice, or try to activate a servant at the same time as a different thread attempts to dest

• For requests arriving on different POAs with the same servant activator, no serialization
guarantees are provided.

If you share a servant activator among several POAs, there are no serialization guarant
requests that arrive via different POAs. This rarely presents a problem because you can
share servants across different POAs anyway. (The specification permits this, but we str
suggest you don’t do this because it is almost impossible to get right.) However, you mu
make sure that the code foractivate andincarnate is reentrant because multiple thread
may be calling these methods concurrently if you share a servant activator among POA
Copyrigh
28Threading Guarantees for the POA

• _add_ref and _remove_ref are thread safe.

• For requests arriving on the same POA

• calls to incarnate and etherealize on a servant activator
are serialized,

• calls to incarnate and etherealize are mutually exclusive,

• incarnate is never called for a specific object ID while that
object ID is in the AOM.

• For requests arriving on different POAs with the same servant
activator, no serialization guarantees are provided.

• preinvoke and postinvoke are not interlocked. preinvoke
may be called concurrently for the same object ID.

• preinvoke, the operation, and postinvoke run in one thread.
t 2000–2001 IONA Technologies 25-39

Threading Guarantees for the POA Threaded Clients and Servers

nd, in
t
at
• preinvoke andpostinvoke are not interlocked.preinvoke may be called concurrently
for the same object ID.

There are no serialization guarantees forpreinvoke andpostinvoke. The operations may
execute concurrently in any number of threads. This means that they must be reentrant a
addition, must make sure that anything they do is thread safe. The POA guarantees tha
preinvoke andpostinvoke will always be called in pairs though, so it cannot happen th
you get a call topreinvoke without the corresponding call topostinvoke.

• preinvoke, the operation, andpostinvoke run in the same thread.

The POA guarantees that it will callpreinvoke, the operation body, andpostinvoke in the
same thread. This means that you can, for example, communicate via preinvoke and
postinvoke by using thread-specific storage, or acquire a lock inpreinvoke and release that
lock in postinvoke.
25-40 Copyright 2000–2001 IONA Technologies

	1. Introduction
	1.1 What is CORBA?
	1.2 The Object Management Group (OMG)
	1.3 What is Client/Server Computing?
	1.4 Advantages and Disadvantages of CORBA
	1.5 Heterogeneity
	1.6 The Object Management Architecture (OMA)
	1.7 Core Components of an ORB
	1.8 Request Invocation
	1.9 Object Reference Semantics

	2. The OMG Interface Definition Language
	2.1 Introduction
	2.2 IDL Compilation (C++)
	2.3 IDL Compilation (Mixed Languages)
	2.4 IDL Source Files
	2.5 Comments and Keywords
	2.6 Identifiers
	2.7 Built-In Types
	2.8 Type Definitions
	2.9 Enumerations
	2.10 Structures
	2.11 Unions
	2.12 Guidelines for Unions
	2.13 Arrays
	2.14 Sequences
	2.15 Sequences or Arrays?
	2.16 Recursive Types
	2.17 Constants and Literals
	2.18 Constant Expressions
	2.19 Interfaces
	2.20 Interface Syntax
	2.21 Interface Semantics
	2.22 Operation Syntax
	2.23 Operation Example
	2.24 User Exceptions
	2.25 Using Exceptions Effectively
	2.26 System Exceptions
	2.27 Oneway Operations
	2.28 Contexts
	2.29 Attributes
	2.30 Modules
	2.31 Forward Declarations
	2.32 Inheritance
	2.33 Inheritance from Object
	2.34 Inheritance Redefinition Rules
	2.35 Inheritance Limitations
	2.36 Multiple Inheritance
	2.37 Scope Rules for Multiple Inheritance
	2.38 IDL Scope Resolution
	2.39 Nesting Restrictions
	2.40 Anonymous Types
	2.41 Repository IDs
	2.42 Controlling Repository ID Prefixes
	2.43 Predefined IDL
	2.44 Using the IDL Compiler
	2.45 Topics Not Covered Here

	3. Exercise: Writing IDL Definitions
	3.1 The Climate Control System
	3.2 Thermometers
	3.3 Thermostats
	3.4 The Monitoring Station
	3.5 What You Need to Do

	4. Solution: Writing IDL Definitions
	4.1 IDL for the Climate Control System

	5. Basic C++ Mapping
	5.1 Introduction
	5.2 Mapping for Identifiers
	5.3 Scoping Rules
	5.4 Mapping for Modules
	5.5 Mapping for Built-In Types
	5.6 Overloading on Built-In Types
	5.7 Memory Allocation for Strings
	5.8 Mapping for Constants
	5.9 Variable-Length Types
	5.10 Example: String Allocation
	5.11 _var Types
	5.12 C++ Mapping Levels
	5.13 The String_var Class
	5.14 Main Rules for Using String_var
	5.15 Mapping for Fixed-Length Structures
	5.16 Mapping for Variable-Length Structures
	5.17 Mapping for Unbounded Sequences
	5.18 Example: Using a String Sequence
	5.19 Using Complex Element Types
	5.20 Mapping for Bounded Sequences
	5.21 Rules for Safe Use of Sequences
	5.22 Mapping for Arrays
	5.23 Array Assignment and Allocation
	5.24 Mapping for Unions
	5.25 Using Unions Safely
	5.26 Mapping for typedef
	5.27 Type any: Concepts
	5.28 Applications of Type any
	5.29 Mapping for Type any
	5.30 Using _var Types
	5.31 Mapping for Variable-Length _var Types
	5.32 Example: Simple Use of _var Types
	5.33 Mapping for Fixed-Length _var Types
	5.34 Dealing with Broken Compilers

	6. Client-Side C++ Mapping
	6.1 Introduction
	6.2 Object References
	6.3 Client-Side Proxies
	6.4 Mapping for Interfaces
	6.5 Mapping for Object References
	6.6 Life Cycle of Object References
	6.7 Reference Life Cycle Operations
	6.8 Object Reference Counts
	6.9 Scope of Object References
	6.10 Nil References
	6.11 References and Inheritance
	6.12 Implicit Widening of _ptr References
	6.13 Widening with _duplicate
	6.14 Narrowing Conversion
	6.15 Illegal Uses of References
	6.16 Pseudo Objects and the ORB Interface
	6.17 ORB Initialization
	6.18 Stringified References
	6.19 The Object Interface
	6.20 Object Reference Equivalence
	6.21 Providing Object Equivalence Testing
	6.22 _var References
	6.23 _var References and Widening
	6.24 References Nested in Complex Types
	6.25 Mapping for Operations
	6.26 Mapping for Attributes
	6.27 Parameter Passing
	6.28 Parameter Passing: Pitfalls
	6.29 Mapping for Exceptions
	6.30 Mapping for System Exceptions
	6.31 Semantics of System Exceptions
	6.32 Mapping for User Exceptions
	6.33 Compiling and Linking

	7. Exercise: Writing a Client
	7.1 Source Files and Build Environment

	8. Solution: Writing a Client
	8.1 Communicating with the Thermostat

	9. Server-Side C++ Mapping
	9.1 Introduction
	9.2 Mapping for Interfaces
	9.3 Skeleton Classes
	9.4 Servant Classes
	9.5 Operation Implementation
	9.6 Attribute Implementation
	9.7 Servant Activation and Reference Creation
	9.8 Server Initialization
	9.9 Parameter Passing
	9.10 Throwing Exceptions
	9.11 Exception Pitfalls
	9.12 Tie Classes
	9.13 Clean Server Shutdown
	9.14 Handling Signals (UNIX)
	9.15 Handling Signals (Windows)
	9.16 Implementation Inheritance
	9.17 Interface Inheritance
	9.18 Compiling and Linking

	10. Exercise: Writing a Server
	10.1 Source Files and Build Environment

	11. Solution: Writing a Server
	11.1 Solution

	12. The Portable Object Adapter (POA)
	12.1 Interface Overview
	12.2 Functions of a POA
	12.3 Functions of a POA Manager
	12.4 POA Manager State Transitions
	12.5 Request Flow
	12.6 Contents of an Object Reference
	12.7 Policies
	12.8 POA Policies
	12.9 POA Creation
	12.10 POA-to-POA Manager Relationship
	12.11 The Life Span Policy
	12.12 The ID Assignment Policy
	12.13 The Active Object Map (AOM)
	12.14 The ID Uniqueness Policy
	12.15 The Servant Retention Policy
	12.16 The Request Processing Policy
	12.17 The Implicit Activation Policy
	12.18 The Thread Policy
	12.19 The Root POA Policies
	12.20 Policy Creation
	12.21 Creating Persistent Objects
	12.22 Creating a Simple Persistent Server
	12.23 Explicit Servant Activation
	12.24 Object Creation
	12.25 Destroying CORBA Objects
	12.26 Deactivation and Servant Destruction

	13. Exercise: Writing a Persistent Server
	13.1 Source Files and Build Environment

	14. Solution: Writing a Persistent Server
	14.1 Solution

	15. Advanced Uses of the POA
	15.1 Pre-Loading of Objects
	15.2 Servant Managers
	15.3 Servant Activators
	15.4 Implementing a Servant Activator
	15.5 Use Cases for Servant Activators
	15.6 Servant Manager Registration
	15.7 Type Issues with Servant Managers
	15.8 Servant Locators
	15.9 Implementing Servant Locators
	15.10 Use Cases for Servant Locators
	15.11 Servant Managers and Collections
	15.12 One Servant for Many Objects
	15.13 The Current Object
	15.14 Default Servants
	15.15 Trade-Offs for Default Servants
	15.16 POA Activators
	15.17 Implementing POA Activators
	15.18 Registering POA Activators
	15.19 Finding POAs
	15.20 Identity Mapping Operations

	16. Exercise: Writing Servant Locators
	16.1 Source Files and Build Environment

	17. Solution: Writing Servant Locators
	17.1 Solution

	18. ORBacus Configuration
	18.1 Introduction
	18.2 Defining Properties
	18.3 Setting Properties in the Registry
	18.4 Setting Properties in a Configuration File
	18.5 Setting Properties Programmatically
	18.6 Setting Properties from the Command Line
	18.7 Commonly Used Properties

	19. The Naming Service
	19.1 Introduction
	19.2 Terminology
	19.3 Example Naming Graph
	19.4 Naming IDL Structure
	19.5 Name Representation
	19.6 Stringified Names
	19.7 Pathnames and Name Resolution
	19.8 Obtaining an Initial Naming Context
	19.9 Naming Service Exceptions
	19.10 Creating and Destroying Contexts
	19.11 Creating Bindings
	19.12 Context Creation Example
	19.13 Rebinding
	19.14 Resolving Bindings
	19.15 Removing Bindings
	19.16 Listing Name Bindings
	19.17 Pitfalls in the Naming Service
	19.18 Stringified Name Syntax
	19.19 Using Stringified Names
	19.20 URL-Style IORs
	19.21 URL Escape Sequences
	19.22 Resolving URL-Style IORs
	19.23 Creating URL-Style IORs
	19.24 What to Advertise
	19.25 Federated Naming
	19.26 Running the Naming Service
	19.27 The nsadmin Tool
	19.28 Compiling and Linking

	20. Exercise: Using the Naming Service
	20.1 Source Files and Build Environment

	21. Solution: Using the Naming Service
	21.1 Solution

	22. The Implementation Repository (IMR)
	22.1 Purpose of an Implementation Repository
	22.2 Binding
	22.3 Indirect Binding
	22.4 Automatic Server Start�Up
	22.5 IMR Process Structure
	22.6 Location Domains
	22.7 The imradmin Tool
	22.8 Server Execution Environment
	22.9 Server Attributes
	22.10 Getting IMR Status
	22.11 IMR Configuration
	22.12 IMR Properties
	22.13 The Boot Manager
	22.14 The mkref Tool

	23. Exercise: Using the Implementation Repository
	23.1 Source Files and Build Environment

	24. Solution: Using the Implementation Repository
	24.1 Solution

	25. Threaded Clients and Servers
	25.1 Overview
	25.2 The Blocking Concurrency Model
	25.3 The Reactive Concurrency Model
	25.4 The Threaded Concurrency Model
	25.5 The Thread-per-Client Concurrency Model
	25.6 The Thread-per-Request Concurrency Model
	25.7 The Thread-Pool Concurrency Model
	25.8 Selecting a Concurrency Model
	25.9 Overview of JThreads/C++
	25.10 JTC Initialization
	25.11 Simple Mutexes
	25.12 Recursive Mutexes
	25.13 Automatic Unlocking
	25.14 Monitors
	25.15 Simple Producer/Consumer Example
	25.16 Rules for Using Monitors
	25.17 Static Monitors
	25.18 The JTCThread Class
	25.19 Joining with Threads
	25.20 Other JThreads/C++ Functionality
	25.21 Synchronization Strategies for Servers
	25.22 Basic Per-Servant Synchronization
	25.23 Life Cycle Considerations
	25.24 Threading Guarantees for the POA

